generated from mwc/lab_scatter
	checkpoint 2: completed transform.py
This was review. everything was manageable.
This commit is contained in:
		
							
								
								
									
										49
									
								
								transform.py
									
									
									
									
									
								
							
							
						
						
									
										49
									
								
								transform.py
									
									
									
									
									
								
							@@ -6,38 +6,71 @@
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
def maximum(data):
 | 
					def maximum(data):
 | 
				
			||||||
    "Returns the largest number in data"
 | 
					    "Returns the largest number in data"
 | 
				
			||||||
    raise NotImplementedError
 | 
					    max= None
 | 
				
			||||||
 | 
					    for n in data:
 | 
				
			||||||
 | 
					        if max is None:
 | 
				
			||||||
 | 
					            max = n
 | 
				
			||||||
 | 
					        if n > max:
 | 
				
			||||||
 | 
					            max = n
 | 
				
			||||||
 | 
					    return max
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def minimum(data):
 | 
					def minimum(data):
 | 
				
			||||||
    "Returns the smallest number in data"
 | 
					    "Returns the smallest number in data"
 | 
				
			||||||
    raise NotImplementedError
 | 
					    min= None
 | 
				
			||||||
 | 
					    for n in data:
 | 
				
			||||||
 | 
					        if min is None:
 | 
				
			||||||
 | 
					            min = n
 | 
				
			||||||
 | 
					        if n < min:
 | 
				
			||||||
 | 
					            min = n
 | 
				
			||||||
 | 
					    return min
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def bounds(data):
 | 
					def bounds(data):
 | 
				
			||||||
    "Returns a list of the smallest and largest numbers in data"
 | 
					    "Returns a list of the smallest and largest numbers in data"
 | 
				
			||||||
    raise NotImplementedError
 | 
					    bounds=[]
 | 
				
			||||||
 | 
					    bounds.append(minimum(data))
 | 
				
			||||||
 | 
					    bounds.append(maximum(data))
 | 
				
			||||||
 | 
					    return bounds
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def clamp(value, low, high):
 | 
					def clamp(value, low, high):
 | 
				
			||||||
    """Clamps a value to a range from low to high. 
 | 
					    """Clamps a value to a range from low to high. 
 | 
				
			||||||
    Returns value if it is between low and high.
 | 
					    Returns value if it is between low and high.
 | 
				
			||||||
    If value is lower than low, returns low. If value is higher than high, returns high.
 | 
					    If value is lower than low, returns low. If value is higher than high, returns high.
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    raise NotImplementedError
 | 
					    val= None
 | 
				
			||||||
 | 
					    if value > low and value < high:
 | 
				
			||||||
 | 
					        val= value
 | 
				
			||||||
 | 
					    if value < low:
 | 
				
			||||||
 | 
					        val = low
 | 
				
			||||||
 | 
					    if value > high:
 | 
				
			||||||
 | 
					        val= high
 | 
				
			||||||
 | 
					    return val
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def ratio(value, start, end):
 | 
					def ratio(value, start, end):
 | 
				
			||||||
    """Returns a number from 0.0 to 1.0, representing how far along value is from start to end.
 | 
					    """Returns a number from 0.0 to 1.0, representing how far along value is from start to end.
 | 
				
			||||||
    The return value is clamped to [0, 1], so even if value is lower than start, the return 
 | 
					    The return value is clamped to [0, 1], so even if value is lower than start, the return 
 | 
				
			||||||
    value will not be lower than 0.0.
 | 
					    value will not be lower than 0.0.
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    raise NotImplementedError
 | 
					    ratio= (value-start)/(end-start)
 | 
				
			||||||
 | 
					    return clamp(ratio, 0, 1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def scale(value, domain_min, domain_max, range_min, range_max):
 | 
					def scale(value, domain_min, domain_max, range_min, range_max):
 | 
				
			||||||
    "Given a value within a domain, returns the scaled equivalent within range."
 | 
					    "Given a value within a domain, returns the scaled equivalent within range."
 | 
				
			||||||
    raise NotImplementedError
 | 
					    r= ratio(value,domain_min, domain_max)
 | 
				
			||||||
 | 
					    scale= range_min+r*(range_max-range_min)
 | 
				
			||||||
 | 
					    return scale
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def get_x_values(points):
 | 
					def get_x_values(points):
 | 
				
			||||||
    "Returns the first value for each point in points."
 | 
					    "Returns the first value for each point in points."
 | 
				
			||||||
    raise NotImplementedError
 | 
					    xs=[]
 | 
				
			||||||
 | 
					    for point in points:
 | 
				
			||||||
 | 
					        xs.append(point[0])
 | 
				
			||||||
 | 
					    return xs
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def get_y_values(points):
 | 
					def get_y_values(points):
 | 
				
			||||||
    "Returns the second value for each point in points."
 | 
					    "Returns the second value for each point in points."
 | 
				
			||||||
    raise NotImplementedError
 | 
					    ys=[]
 | 
				
			||||||
 | 
					    for point in points:
 | 
				
			||||||
 | 
					        ys.append(point[1])
 | 
				
			||||||
 | 
					    return ys
 | 
				
			||||||
		Reference in New Issue
	
	Block a user