generated from mwc/lab_scatter
I created functions for all the given for this lab. Writing these functions were not terrible. In the beginning, I was a thinking a lot but then I got the hang of it as I continue to develop the functions. I incorporated the print command in my functions as I liked to see what was returning the check my work. I feel this helped me out in order to understand the how to develop functions. When I got stuck, i typically read the error that came up in my window or I broke down what it was asking me to develop and then reflect on what I coded.
This commit is contained in:
59
transform.py
59
transform.py
@@ -6,38 +6,79 @@
|
||||
|
||||
def maximum(data):
|
||||
"Returns the largest number in data"
|
||||
raise NotImplementedError
|
||||
highest = None
|
||||
for number in data:
|
||||
if highest is None:
|
||||
highest = number
|
||||
if number > highest:
|
||||
highest = number
|
||||
print(highest)
|
||||
return highest
|
||||
|
||||
|
||||
def minimum(data):
|
||||
"Returns the smallest number in data"
|
||||
raise NotImplementedError
|
||||
lowest = None
|
||||
for number in data:
|
||||
if lowest is None:
|
||||
lowest = number
|
||||
if number < lowest:
|
||||
lowest = number
|
||||
print(lowest)
|
||||
return lowest
|
||||
|
||||
|
||||
def bounds(data):
|
||||
"Returns a list of the smallest and largest numbers in data"
|
||||
raise NotImplementedError
|
||||
bounds = [minimum(data), maximum(data)]
|
||||
print(bounds)
|
||||
return bounds
|
||||
|
||||
def clamp(value, low, high):
|
||||
"""Clamps a value to a range from low to high.
|
||||
Returns value if it is between low and high.
|
||||
If value is lower than low, returns low. If value is higher than high, returns high.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
if value < low:
|
||||
print(low)
|
||||
return low
|
||||
if value > high:
|
||||
print(high)
|
||||
return high
|
||||
print(value)
|
||||
return value
|
||||
|
||||
|
||||
|
||||
def ratio(value, start, end):
|
||||
"""Returns a number from 0.0 to 1.0, representing how far along value is from start to end.
|
||||
The return value is clamped to [0, 1], so even if value is lower than start, the return
|
||||
value will not be lower than 0.0.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
r = (value - start) / (end - start)
|
||||
r = clamp(r, 0.0, 1.0)
|
||||
print(r)
|
||||
return(r)
|
||||
|
||||
def scale(value, domain_min, domain_max, range_min, range_max):
|
||||
"Given a value within a domain, returns the scaled equivalent within range."
|
||||
raise NotImplementedError
|
||||
r = ratio(value, domain_min, domain_max)
|
||||
scaled_value = range_min + r * (range_max - range_min)
|
||||
print(scaled_value)
|
||||
return scaled_value
|
||||
|
||||
def get_x_values(points):
|
||||
"Returns the first value for each point in points."
|
||||
raise NotImplementedError
|
||||
x_values = []
|
||||
for x, y in points:
|
||||
x_values.append(x)
|
||||
print(x_values)
|
||||
return x_values
|
||||
|
||||
def get_y_values(points):
|
||||
"Returns the second value for each point in points."
|
||||
raise NotImplementedError
|
||||
y_values = []
|
||||
for x, y in points:
|
||||
y_values.append(y)
|
||||
print(y_values)
|
||||
return y_values
|
||||
|
||||
Reference in New Issue
Block a user