project_argument/argument.ipynb

455 lines
11 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "worldwide-blood",
"metadata": {},
"source": [
"# Introduction"
]
},
{
"cell_type": "markdown",
"id": "understanding-numbers",
"metadata": {},
"source": [
"*✏️ Write 2-3 sentences describing your research.*"
]
},
{
"cell_type": "markdown",
"id": "greater-circular",
"metadata": {},
"source": [
"## Overarching Question: [✏️ PUT YOUR QUESTION HERE ✏️]"
]
},
{
"cell_type": "markdown",
"id": "appreciated-testimony",
"metadata": {},
"source": [
"*✏️ Write 2-3 sentences explaining why this question.*"
]
},
{
"cell_type": "markdown",
"id": "permanent-pollution",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "technical-evans",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"#Include any import statements you will need\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "overhead-sigma",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n",
"\n",
"file_name = \"US_births_2000-2014_SSA.csv\"\n",
"dataset_path = \"data/\" + file_name\n",
"\n",
"df = pd.read_csv(dataset_path)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "heated-blade",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>year</th>\n",
" <th>month</th>\n",
" <th>date_of_month</th>\n",
" <th>day_of_week</th>\n",
" <th>births</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2000</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>6</td>\n",
" <td>9083</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2000</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>7</td>\n",
" <td>8006</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2000</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>11363</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2000</td>\n",
" <td>1</td>\n",
" <td>4</td>\n",
" <td>2</td>\n",
" <td>13032</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2000</td>\n",
" <td>1</td>\n",
" <td>5</td>\n",
" <td>3</td>\n",
" <td>12558</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" year month date_of_month day_of_week births\n",
"0 2000 1 1 6 9083\n",
"1 2000 1 2 7 8006\n",
"2 2000 1 3 1 11363\n",
"3 2000 1 4 2 13032\n",
"4 2000 1 5 3 12558"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"id": "continental-franklin",
"metadata": {},
"source": [
"**Data Overview**\n",
"\n",
"*✏️ Write 2-3 sentences describing this dataset. Be sure to include where the data comes from and what it contains.*"
]
},
{
"cell_type": "markdown",
"id": "infinite-instrument",
"metadata": {},
"source": [
"# Methods and Results"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "basic-canadian",
"metadata": {},
"outputs": [],
"source": [
"#Import any helper files you need here"
]
},
{
"cell_type": "markdown",
"id": "recognized-positive",
"metadata": {},
"source": [
"## First Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n"
]
},
{
"cell_type": "markdown",
"id": "graduate-palmer",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "endless-variation",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
" \n",
"✏️ *Write your answer below:*\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "portuguese-japan",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "negative-highlight",
"metadata": {},
"outputs": [],
"source": [
"#######################################################################\n",
"### 💻 YOUR WORK GOES HERE TO ANSWER THE FIRST RESEARCH QUESTION 💻 \n",
"### \n",
"### Your data analysis may include a statistic and/or a data visualization\n",
"#######################################################################"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "victorian-burning",
"metadata": {},
"outputs": [],
"source": [
"# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON "
]
},
{
"cell_type": "markdown",
"id": "collectible-puppy",
"metadata": {},
"source": [
"## Second Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n"
]
},
{
"cell_type": "markdown",
"id": "demographic-future",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "incorporate-roller",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
"\n",
"✏️ *Write your answer below:*\n"
]
},
{
"cell_type": "markdown",
"id": "juvenile-creation",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "pursuant-surrey",
"metadata": {},
"outputs": [],
"source": [
"#######################################################################\n",
"### 💻 YOUR WORK GOES HERE TO ANSWER THE SECOND RESEARCH QUESTION 💻 \n",
"###\n",
"### Your data analysis may include a statistic and/or a data visualization\n",
"#######################################################################"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "located-night",
"metadata": {},
"outputs": [],
"source": [
"# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON "
]
},
{
"cell_type": "markdown",
"id": "infectious-symbol",
"metadata": {},
"source": [
"# Discussion"
]
},
{
"cell_type": "markdown",
"id": "furnished-camping",
"metadata": {
"code_folding": []
},
"source": [
"## Considerations"
]
},
{
"cell_type": "markdown",
"id": "bearing-stadium",
"metadata": {},
"source": [
"*It's important to recognize the limitations of our research.\n",
"Consider the following:*\n",
"\n",
"- *Do the results give an accurate depiction of your research question? Why or why not?*\n",
"- *What were limitations of your datset?*\n",
"- *Are there any known biases in the data?*\n",
"\n",
"✏️ *Write your answer below:*"
]
},
{
"cell_type": "markdown",
"id": "beneficial-invasion",
"metadata": {},
"source": [
"## Summary"
]
},
{
"cell_type": "markdown",
"id": "about-raise",
"metadata": {},
"source": [
"*Summarize what you discovered through the research. Consider the following:*\n",
"\n",
"- *What did you learn about your media consumption/digital habits?*\n",
"- *Did the results make sense?*\n",
"- *What was most surprising?*\n",
"- *How will this project impact you going forward?*\n",
"\n",
"✏️ *Write your answer below:*"
]
}
],
"metadata": {
"jupytext": {
"cell_metadata_json": true,
"text_representation": {
"extension": ".Rmd",
"format_name": "rmarkdown",
"format_version": "1.2",
"jupytext_version": "1.9.1"
}
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}