{ "cells": [ { "cell_type": "markdown", "id": "worldwide-blood", "metadata": {}, "source": [ "# Introduction" ] }, { "cell_type": "markdown", "id": "understanding-numbers", "metadata": {}, "source": [ "*✏️ Write 2-3 sentences describing your research.*" ] }, { "cell_type": "markdown", "id": "greater-circular", "metadata": {}, "source": [ "## Overarching Question: [✏️ PUT YOUR QUESTION HERE ✏️]" ] }, { "cell_type": "markdown", "id": "appreciated-testimony", "metadata": {}, "source": [ "*✏️ Write 2-3 sentences explaining why this question.*" ] }, { "cell_type": "markdown", "id": "permanent-pollution", "metadata": {}, "source": [ "# Data" ] }, { "cell_type": "code", "execution_count": 4, "id": "technical-evans", "metadata": { "tags": [] }, "outputs": [], "source": [ "#Include any import statements you will need\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 5, "id": "overhead-sigma", "metadata": { "tags": [] }, "outputs": [], "source": [ "### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n", "\n", "file_name = \"US_births_2000-2014_SSA.csv\"\n", "dataset_path = \"data/\" + file_name\n", "\n", "df = pd.read_csv(dataset_path)" ] }, { "cell_type": "code", "execution_count": 6, "id": "heated-blade", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", " | year | \n", "month | \n", "date_of_month | \n", "day_of_week | \n", "births | \n", "
---|---|---|---|---|---|
0 | \n", "2000 | \n", "1 | \n", "1 | \n", "6 | \n", "9083 | \n", "
1 | \n", "2000 | \n", "1 | \n", "2 | \n", "7 | \n", "8006 | \n", "
2 | \n", "2000 | \n", "1 | \n", "3 | \n", "1 | \n", "11363 | \n", "
3 | \n", "2000 | \n", "1 | \n", "4 | \n", "2 | \n", "13032 | \n", "
4 | \n", "2000 | \n", "1 | \n", "5 | \n", "3 | \n", "12558 | \n", "