generated from mwc/project_argument
750 lines
76 KiB
Plaintext
750 lines
76 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "worldwide-blood",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Introduction"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "understanding-numbers",
|
||
"metadata": {},
|
||
"source": [
|
||
"*✏️ Write 2-3 sentences describing your research.*"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "greater-circular",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Overarching Question: [How has the foundational implementation of government redlining had an effect on generational wealth by race and socioeconomic standing over time?]✏"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "appreciated-testimony",
|
||
"metadata": {},
|
||
"source": [
|
||
"This is an important question as we look at our cities and, still today, see heavily segregated areas which must have a foundational reason. Hopefully through this data set we see an irrefutable pattern that brings clarity to the overarching question."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "permanent-pollution",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Data"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "technical-evans",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"#Include any import statements you will need\n",
|
||
"import pandas as pd\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import seaborn as sns"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "overhead-sigma",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n",
|
||
"\n",
|
||
"file_name = \"metro-grades.csv\"\n",
|
||
"dataset_path = \"data/\" + file_name\n",
|
||
"\n",
|
||
"df = pd.read_csv(dataset_path)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "heated-blade",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>metro_area</th>\n",
|
||
" <th>holc_grade</th>\n",
|
||
" <th>white_pop</th>\n",
|
||
" <th>black_pop</th>\n",
|
||
" <th>hisp_pop</th>\n",
|
||
" <th>asian_pop</th>\n",
|
||
" <th>other_pop</th>\n",
|
||
" <th>total_pop</th>\n",
|
||
" <th>pct_white</th>\n",
|
||
" <th>pct_black</th>\n",
|
||
" <th>...</th>\n",
|
||
" <th>surr_area_white_pop</th>\n",
|
||
" <th>surr_area_black_pop</th>\n",
|
||
" <th>surr_area_hisp_pop</th>\n",
|
||
" <th>surr_area_asian_pop</th>\n",
|
||
" <th>surr_area_other_pop</th>\n",
|
||
" <th>surr_area_pct_white</th>\n",
|
||
" <th>surr_area_pct_black</th>\n",
|
||
" <th>surr_area_pct_hisp</th>\n",
|
||
" <th>surr_area_pct_asian</th>\n",
|
||
" <th>surr_area_pct_other</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>Akron, OH</td>\n",
|
||
" <td>A</td>\n",
|
||
" <td>24702</td>\n",
|
||
" <td>8624</td>\n",
|
||
" <td>956</td>\n",
|
||
" <td>688</td>\n",
|
||
" <td>1993</td>\n",
|
||
" <td>36963</td>\n",
|
||
" <td>66.83</td>\n",
|
||
" <td>23.33</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>304399</td>\n",
|
||
" <td>70692</td>\n",
|
||
" <td>11037</td>\n",
|
||
" <td>17295</td>\n",
|
||
" <td>23839</td>\n",
|
||
" <td>71.24</td>\n",
|
||
" <td>16.55</td>\n",
|
||
" <td>2.58</td>\n",
|
||
" <td>4.05</td>\n",
|
||
" <td>5.58</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>Akron, OH</td>\n",
|
||
" <td>B</td>\n",
|
||
" <td>41531</td>\n",
|
||
" <td>16499</td>\n",
|
||
" <td>2208</td>\n",
|
||
" <td>3367</td>\n",
|
||
" <td>4211</td>\n",
|
||
" <td>67816</td>\n",
|
||
" <td>61.24</td>\n",
|
||
" <td>24.33</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>304399</td>\n",
|
||
" <td>70692</td>\n",
|
||
" <td>11037</td>\n",
|
||
" <td>17295</td>\n",
|
||
" <td>23839</td>\n",
|
||
" <td>71.24</td>\n",
|
||
" <td>16.55</td>\n",
|
||
" <td>2.58</td>\n",
|
||
" <td>4.05</td>\n",
|
||
" <td>5.58</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>Akron, OH</td>\n",
|
||
" <td>C</td>\n",
|
||
" <td>73105</td>\n",
|
||
" <td>22847</td>\n",
|
||
" <td>3149</td>\n",
|
||
" <td>6291</td>\n",
|
||
" <td>7302</td>\n",
|
||
" <td>112694</td>\n",
|
||
" <td>64.87</td>\n",
|
||
" <td>20.27</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>304399</td>\n",
|
||
" <td>70692</td>\n",
|
||
" <td>11037</td>\n",
|
||
" <td>17295</td>\n",
|
||
" <td>23839</td>\n",
|
||
" <td>71.24</td>\n",
|
||
" <td>16.55</td>\n",
|
||
" <td>2.58</td>\n",
|
||
" <td>4.05</td>\n",
|
||
" <td>5.58</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>Akron, OH</td>\n",
|
||
" <td>D</td>\n",
|
||
" <td>6179</td>\n",
|
||
" <td>6921</td>\n",
|
||
" <td>567</td>\n",
|
||
" <td>455</td>\n",
|
||
" <td>1022</td>\n",
|
||
" <td>15144</td>\n",
|
||
" <td>40.80</td>\n",
|
||
" <td>45.70</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>304399</td>\n",
|
||
" <td>70692</td>\n",
|
||
" <td>11037</td>\n",
|
||
" <td>17295</td>\n",
|
||
" <td>23839</td>\n",
|
||
" <td>71.24</td>\n",
|
||
" <td>16.55</td>\n",
|
||
" <td>2.58</td>\n",
|
||
" <td>4.05</td>\n",
|
||
" <td>5.58</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>Albany-Schenectady-Troy, NY</td>\n",
|
||
" <td>A</td>\n",
|
||
" <td>16989</td>\n",
|
||
" <td>1818</td>\n",
|
||
" <td>1317</td>\n",
|
||
" <td>1998</td>\n",
|
||
" <td>1182</td>\n",
|
||
" <td>23303</td>\n",
|
||
" <td>72.91</td>\n",
|
||
" <td>7.80</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>387016</td>\n",
|
||
" <td>68371</td>\n",
|
||
" <td>42699</td>\n",
|
||
" <td>41112</td>\n",
|
||
" <td>40596</td>\n",
|
||
" <td>66.75</td>\n",
|
||
" <td>11.79</td>\n",
|
||
" <td>7.36</td>\n",
|
||
" <td>7.09</td>\n",
|
||
" <td>7.00</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>5 rows × 28 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" metro_area holc_grade white_pop black_pop hisp_pop \\\n",
|
||
"0 Akron, OH A 24702 8624 956 \n",
|
||
"1 Akron, OH B 41531 16499 2208 \n",
|
||
"2 Akron, OH C 73105 22847 3149 \n",
|
||
"3 Akron, OH D 6179 6921 567 \n",
|
||
"4 Albany-Schenectady-Troy, NY A 16989 1818 1317 \n",
|
||
"\n",
|
||
" asian_pop other_pop total_pop pct_white pct_black ... \\\n",
|
||
"0 688 1993 36963 66.83 23.33 ... \n",
|
||
"1 3367 4211 67816 61.24 24.33 ... \n",
|
||
"2 6291 7302 112694 64.87 20.27 ... \n",
|
||
"3 455 1022 15144 40.80 45.70 ... \n",
|
||
"4 1998 1182 23303 72.91 7.80 ... \n",
|
||
"\n",
|
||
" surr_area_white_pop surr_area_black_pop surr_area_hisp_pop \\\n",
|
||
"0 304399 70692 11037 \n",
|
||
"1 304399 70692 11037 \n",
|
||
"2 304399 70692 11037 \n",
|
||
"3 304399 70692 11037 \n",
|
||
"4 387016 68371 42699 \n",
|
||
"\n",
|
||
" surr_area_asian_pop surr_area_other_pop surr_area_pct_white \\\n",
|
||
"0 17295 23839 71.24 \n",
|
||
"1 17295 23839 71.24 \n",
|
||
"2 17295 23839 71.24 \n",
|
||
"3 17295 23839 71.24 \n",
|
||
"4 41112 40596 66.75 \n",
|
||
"\n",
|
||
" surr_area_pct_black surr_area_pct_hisp surr_area_pct_asian \\\n",
|
||
"0 16.55 2.58 4.05 \n",
|
||
"1 16.55 2.58 4.05 \n",
|
||
"2 16.55 2.58 4.05 \n",
|
||
"3 16.55 2.58 4.05 \n",
|
||
"4 11.79 7.36 7.09 \n",
|
||
"\n",
|
||
" surr_area_pct_other \n",
|
||
"0 5.58 \n",
|
||
"1 5.58 \n",
|
||
"2 5.58 \n",
|
||
"3 5.58 \n",
|
||
"4 7.00 \n",
|
||
"\n",
|
||
"[5 rows x 28 columns]"
|
||
]
|
||
},
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 30,
|
||
"id": "1378c142-b0ef-4048-aad0-3674ec12c532",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df[\"state\"] = df.metro_area.str.split(\", \").str.get(1)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "970ac473-ad2f-47df-b57d-f843992e2543",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Messing Around"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 32,
|
||
"id": "74a2f075-6acb-4d7c-b3b9-20d9bda274fe",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<Axes: xlabel='holc_grade', ylabel='pct_white'>"
|
||
]
|
||
},
|
||
"execution_count": 32,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGxCAYAAACXwjeMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAApsUlEQVR4nO3de1SVdaL/8c+Wq4pshRAkwfCKWlKhKZPmjQ551KNLVlMuTUybzsxBQ7GLTBfL00THlqlNaKcizFWO5jppt5NmmHZy8IaaWmbaaDApW48GCCc2Cs/vj6b9mz3ecAs8+6vv11rPWjzf59lfPrhDPz2X/Tgsy7IEAABgqBZ2BwAAALgSlBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEC7Q7Q1Orr63X06FG1adNGDofD7jgAAKABLMvS6dOnFRsbqxYtLn7s5aovM0ePHlVcXJzdMQAAgA9KS0vVsWPHi+5z1ZeZNm3aSPr5DyM8PNzmNAAAoCEqKysVFxfn+Xf8Yq76MvPLqaXw8HDKDAAAhmnIJSJcAAwAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaFf9U7OvRVlZWTpx4oQkKSoqSosWLbI5EQAATYcycxU6ceKEXC6X3TEAAGgWnGYCAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNF4NtN5JD+yzO4IVyT8xypPSz32Y5XxP0/xC5PsjgAA8GMcmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaLaWmRtuuEEOh+OcJTMzU5JUU1OjzMxMRUZGKiwsTOnp6XK5XHZGNkJ9UGvVB/9tCWptdxwAAJqUrU/N3r59u+rq6jzr+/bt05133qm7775bkjRz5kx99NFHWrVqlZxOp6ZNm6Zx48Zp8+bNdkU2QlWPEXZHAACg2dhaZqKiorzWn3/+eXXp0kWDBw9WRUWF8vPztXz5cg0bNkySVFBQoJ49e2rLli0aMGCAHZEBAICf8ZtrZmpra/XWW29pypQpcjgcKi4u1pkzZ5SamurZJzExUfHx8SoqKrrgPG63W5WVlV4LAAC4evlNmVmzZo3Ky8s1efJkSVJZWZmCg4PVtm1br/2io6NVVlZ2wXlyc3PldDo9S1xcXBOmBgAAdvObMpOfn68RI0YoNjb2iubJyclRRUWFZyktLW2khAAAwB/Zes3ML77//nt9+umnevfddz1jMTExqq2tVXl5udfRGZfLpZiYmAvOFRISopCQkKaMCwAA/IhfHJkpKChQ+/btNXLkSM9YcnKygoKCVFhY6Bk7cOCASkpKlJKSYkdMAADgh2w/MlNfX6+CggJlZGQoMPD/x3E6nZo6daqys7MVERGh8PBwTZ8+XSkpKdzJBAAAPGwvM59++qlKSko0ZcqUc7YtWLBALVq0UHp6utxut9LS0rR48WIbUgIAAH/lsCzLsjtEU6qsrJTT6VRFRYXCw8Mb9JrkR5Y1cSpcjuIXJtkdAQDQzC7n32+/uGYGAADAV5QZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0QLtDgDgymRlZenEiROSpKioKC1atMjmRADQvCgzgOFOnDghl8tldwwAsA2nmQAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0WwvMz/88IMmTpyoyMhItWzZUjfddJN27Njh2W5Zlp566il16NBBLVu2VGpqqg4ePGhjYgAA4E9sLTM//vijbr/9dgUFBenjjz/W119/rfnz56tdu3aefebNm6eXXnpJr7zyirZu3arWrVsrLS1NNTU1NiYHAAD+wtZnM/3Hf/yH4uLiVFBQ4BlLSEjwfG1ZlhYuXKgnnnhCY8aMkSQtW7ZM0dHRWrNmje69995mzwwAAPyLrUdm3n//ffXt21d333232rdvr1tuuUWvvfaaZ/vhw4dVVlam1NRUz5jT6VT//v1VVFR03jndbrcqKyu9FgAAcPWytcz85S9/0ZIlS9StWzetW7dOv/vd7/TQQw/pzTfflCSVlZVJkqKjo71eFx0d7dn2j3Jzc+V0Oj1LXFxc0/4QAADAVraeZqqvr1ffvn313HPPSZJuueUW7du3T6+88ooyMjJ8mjMnJ0fZ2dme9crKSgoNLqpk7k12R7giZ8sjJQX87eujxv888U/ttTsCAMPYemSmQ4cO6tWrl9dYz549VVJSIkmKiYmRJLlcLq99XC6XZ9s/CgkJUXh4uNcCAACuXraWmdtvv10HDhzwGvv222/VqVMnST9fDBwTE6PCwkLP9srKSm3dulUpKSnNmhUAAPgnW08zzZw5U7/61a/03HPP6de//rW2bdumV199Va+++qokyeFwaMaMGXr22WfVrVs3JSQk6Mknn1RsbKzGjh1rZ3QAAOAnbC0z/fr10+rVq5WTk6O5c+cqISFBCxcu1IQJEzz7PProo6qurtaDDz6o8vJyDRw4UGvXrlVoaKiNyQEAgL+wtcxI0qhRozRq1KgLbnc4HJo7d67mzp3bjKkAAIApbH+cAQAAwJWgzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARrP9E4ABXJmIkLrzfg0A1wrKDGC4399SbncEALAVp5kAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaIF2BwAANFxWVpZOnDghSYqKitKiRYtsTgTYjzIDAAY5ceKEXC6X3TEAv8JpJgAAYDTKDAAAMBplBgAAGI0yAwAAjGZrmXn66aflcDi8lsTERM/2mpoaZWZmKjIyUmFhYUpPT+fCNwAA4MX2IzO9e/fWsWPHPMsXX3zh2TZz5kx98MEHWrVqlTZt2qSjR49q3LhxNqYFAAD+xvZbswMDAxUTE3POeEVFhfLz87V8+XINGzZMklRQUKCePXtqy5YtGjBgQHNHBQAAfsj2IzMHDx5UbGysOnfurAkTJqikpESSVFxcrDNnzig1NdWzb2JiouLj41VUVGRXXAAA4GdsPTLTv39/LV26VD169NCxY8f0zDPPaNCgQdq3b5/KysoUHBystm3ber0mOjpaZWVlF5zT7XbL7XZ71isrK5sqPgAA8AO2lpkRI0Z4vu7Tp4/69++vTp066Z133lHLli19mjM3N1fPPPNMY0UEAAB+zvbTTH+vbdu26t69uw4dOqSYmBjV1taqvLzcax+Xy3Xea2x+kZOTo4qKCs9SWlraxKkBAICd/KrMVFVV6bvvvlOHDh2UnJysoKAgFRYWerYfOHBAJSUlSklJueAcISEhCg8P91oAAMDVy9bTTA8//LBGjx6tTp066ejRo5ozZ44CAgI0fvx4OZ1OTZ06VdnZ2YqIiFB4eLimT5+ulJQU7mQCAAAetpaZv/71rxo/frxOnjypqKgoDRw4UFu2bFFUVJQkacGCBWrRooXS09PldruVlpamxYsX2xkZAAD4GVvLzIoVKy66PTQ0VHl5ecrLy2umRAAAwDS2f2geADSn2/94u90RrkhIZYgcckiSyirLjP95Nk/fbHcEXAX86gJgAACAy0WZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAY7YrKzKFDh7Ru3Tr99NNPkiTLsholFAAAQEP5VGZOnjyp1NRUde/eXf/8z/+sY8eOSZKmTp2qWbNmNWpAAACAi/GpzMycOVOBgYEqKSlRq1atPOP33HOP1q5d22jhAAAALsWnZzN98sknWrdunTp27Og13q1bN33//feNEgwAAKAhfDoyU11d7XVE5henTp1SSEjIFYcCAABoKJ/KzKBBg7Rs2TLPusPhUH19vebNm6ehQ4c2WjgAAIBL8ek007x58zR8+HDt2LFDtbW1evTRR/XVV1/p1KlT2ryZx7kDAIDm49ORmRtvvFHffvutBg4cqDFjxqi6ulrjxo3Trl271KVLl8bOCAAAcEE+HZkpKSlRXFycHn/88fNui4+Pv+JgAIBzWS2t834NXMt8KjMJCQk6duyY2rdv7zV+8uRJJSQkqK6urlHCAQC81d5Ra3cEwO/4dJrJsiw5HI5zxquqqhQaGnrFoQAAABrqso7MZGdnS/r57qUnn3zS6/bsuro6bd26VTfffHOjBgQAALiYyyozu3btkvTzkZm9e/cqODjYsy04OFhJSUl6+OGHGzchAADARVxWmfnss88kSffff78WLVqk8PDwJgkFAADQUD5dAFxQUNDYOQAAAHzS4DIzbtw4LV26VOHh4Ro3btxF93333XevOBgAANe6rKwsnThxQpIUFRWlRYsW2ZzIPzW4zDidTs8dTE6ns8kCAQCAn504cUIul8vuGH6vwWXm708tcZoJAAD4C58+ZwYAAMBf+FRmXC6X7rvvPsXGxiowMFABAQFeCwAAQHPx6W6myZMnq6SkRE8++aQ6dOhw3k8DBgAAaA4+lZkvvvhC//M//8On/QIAANv5dJopLi5OlsXTWgEAgP18KjMLFy7U7NmzdeTIkUaOAwAAcHkafJqpXbt2XtfGVFdXq0uXLmrVqpWCgoK89j116lTjJQQAALiIBpeZhQsXNmEMAAAA3zS4zGRkZDRlDknS888/r5ycHGVlZXnKU01NjWbNmqUVK1bI7XYrLS1NixcvVnR0dJPnAQAA/s+na2YmTZqkgoICfffdd40WZPv27frP//xP9enTx2t85syZ+uCDD7Rq1Spt2rRJR48eveSzoQAAwLXDpzITHBys3NxcdevWTXFxcZo4caJef/11HTx40KcQVVVVmjBhgl577TW1a9fOM15RUaH8/Hy9+OKLGjZsmJKTk1VQUKA///nP2rJli0/fCwAAXF18KjOvv/66vv32W5WWlmrevHkKCwvT/PnzlZiYqI4dO172fJmZmRo5cqRSU1O9xouLi3XmzBmv8cTERMXHx6uoqMiX6AAA4Crj04fm/aJdu3aKjIxUu3bt1LZtWwUGBioqKuqy5lixYoV27typ7du3n7OtrKxMwcHBatu2rdd4dHS0ysrKzjuf2+2W2+32rFdWVl5WHgAAYBafjsz8/ve/169+9StFRkZq9uzZqqmp0ezZs1VWVqZdu3Y1eJ7S0lJlZWXp7bffVmhoqC9RzpGbmyun0+lZ4uLiGmVeAADgn3w6MvP8888rKipKc+bM0bhx49S9e3efvnlxcbGOHz+uW2+91TNWV1enzz//XC+//LLWrVun2tpalZeXex2dcblciomJOe+cOTk5ys7O9qxXVlZSaAAAuIr5VGZ27dqlTZs2aePGjZo/f76Cg4M1ePBgDRkyREOGDGlwuRk+fLj27t3rNXb//fcrMTFRjz32mOLi4hQUFKTCwkKlp6dLkg4cOKCSkhKlpKScd86QkBCFhIT48mMBAAAD+VRmkpKSlJSUpIceekiS9OWXX2rBggXKzMxUfX296urqGjRPmzZtdOONN3qNtW7dWpGRkZ7xqVOnKjs7WxEREQoPD9f06dOVkpKiAQMG+BIdAHAN2XTHYLsjXJGawADpb5++X1NWZvzPM/jzTU0yr09lxrIs7dq1Sxs3btTGjRv1xRdfqLKyUn369NHgwY37B71gwQK1aNFC6enpXh+aBwAAIPlYZiIiIlRVVaWkpCQNHjxYv/nNbzRo0KBz7jryxcaNG73WQ0NDlZeXp7y8vCueGwAAXH18KjNvvfWWBg0apPDw8Ivu99e//lWxsbFq0cKnm6YAAAAuyaeWMXLkyEsWGUnq1auXjhw54su3AAAAaJAmPWRiWVZTTg8AANC0ZQYAAKCpUWYAAIDRKDMAAMBoTVpmHH/7oB8AAICmwgXAAADAaD6VmSlTpuj06dPnjFdXV2vKlCme9a+//lqdOnXyPR0AAMAl+FRm3nzzTf3000/njP/0009atmyZZz0uLk4BAQG+pwMAALiEy/oE4MrKSlmWJcuydPr0aYWGhnq21dXV6b//+7/Vvn37Rg8JAABwIZdVZtq2bSuHwyGHw6Hu3bufs93hcOiZZ55ptHAAAACXclll5rPPPpNlWRo2bJj+67/+SxEREZ5twcHB6tSpk2JjYxs9JAAAwIVcVpkZPHiwJOnw4cOKj4/n1msAAJpQuCVJ1t99jfPx6anZGzZsUFhYmO6++26v8VWrVun//u//lJGR0SjhAAC4lt1fV2d3BCP4dDdTbm6urrvuunPG27dvr+eee+6KQwEAADSUT2WmpKRECQkJ54x36tRJJSUlVxwKAACgoXwqM+3bt9eePXvOGf/yyy8VGRl5xaEAAAAayqcyM378eD300EP67LPPVFdXp7q6Om3YsEFZWVm69957GzsjAADABfl0AfC///u/68iRIxo+fLgCA3+eoq6uThkZGVwzAwAAmpVPZSY4OFgrV67Us88+q127dqlly5bq06cPz2ECAADNzqcyI0n5+flasGCBDh48KEnq1q2bZsyYoQceeKDRwgEAAFyKT2Xmqaee0osvvqjp06crJSVFklRUVKSZM2eqpKREc+fObdSQAAAAF+JTmVmyZIlee+01jR8/3jP2L//yL+rTp4+mT59OmQEAAM3Gp7uZzpw5o759+54znpycrLNnz15xKAAAgIbyqczcd999WrJkyTnjr776qiZMmHDFoQAAABrqii4A/uSTTzRgwABJ0tatW1VSUqJJkyYpOzvbs9+LL7545SkBAAAuwKcys2/fPt16662SpO+++06SdN111+m6667Tvn37PPvxVG0AANDUfCozn332WWPnAAAA8IlP18wAAAD4C8oMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACj2VpmlixZoj59+ig8PFzh4eFKSUnRxx9/7NleU1OjzMxMRUZGKiwsTOnp6XK5XDYmBgAA/sbWMtOxY0c9//zzKi4u1o4dOzRs2DCNGTNGX331lSRp5syZ+uCDD7Rq1Spt2rRJR48e1bhx4+yMDAAA/IzPjzNoDKNHj/Za/8Mf/qAlS5Zoy5Yt6tixo/Lz87V8+XINGzZMklRQUKCePXtqy5YtnscoAACAa5vfXDNTV1enFStWqLq6WikpKSouLtaZM2eUmprq2ScxMVHx8fEqKiqyMSkAAPAnth6ZkaS9e/cqJSVFNTU1CgsL0+rVq9WrVy/t3r1bwcHBatu2rdf+0dHRKisru+B8brdbbrfbs15ZWdlU0QEAgB+w/chMjx49tHv3bm3dulW/+93vlJGRoa+//trn+XJzc+V0Oj1LXFxcI6YFAAD+xvYyExwcrK5duyo5OVm5ublKSkrSokWLFBMTo9raWpWXl3vt73K5FBMTc8H5cnJyVFFR4VlKS0ub+CcAAAB2sr3M/KP6+nq53W4lJycrKChIhYWFnm0HDhxQSUmJUlJSLvj6kJAQz63evywAAODqZes1Mzk5ORoxYoTi4+N1+vRpLV++XBs3btS6devkdDo1depUZWdnKyIiQuHh4Zo+fbpSUlK4kwkAAHjYWmaOHz+uSZMm6dixY3I6nerTp4/WrVunO++8U5K0YMECtWjRQunp6XK73UpLS9PixYvtjAwAAPyMrWUmPz//ottDQ0OVl5envLy8ZkoEAABM43fXzAAAAFwOygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjGZrmcnNzVW/fv3Upk0btW/fXmPHjtWBAwe89qmpqVFmZqYiIyMVFham9PR0uVwumxIDAAB/Y2uZ2bRpkzIzM7VlyxatX79eZ86c0T/90z+purras8/MmTP1wQcfaNWqVdq0aZOOHj2qcePG2ZgaAAD4k0A7v/natWu91pcuXar27duruLhYd9xxhyoqKpSfn6/ly5dr2LBhkqSCggL17NlTW7Zs0YABA+yIDQAA/IhfXTNTUVEhSYqIiJAkFRcX68yZM0pNTfXsk5iYqPj4eBUVFZ13DrfbrcrKSq8FAABcvfymzNTX12vGjBm6/fbbdeONN0qSysrKFBwcrLZt23rtGx0drbKysvPOk5ubK6fT6Vni4uKaOjoAALCR35SZzMxM7du3TytWrLiieXJyclRRUeFZSktLGykhAADwR7ZeM/OLadOm6cMPP9Tnn3+ujh07esZjYmJUW1ur8vJyr6MzLpdLMTEx550rJCREISEhTR0ZAAD4CVuPzFiWpWnTpmn16tXasGGDEhISvLYnJycrKChIhYWFnrEDBw6opKREKSkpzR0XAAD4IVuPzGRmZmr58uV677331KZNG891ME6nUy1btpTT6dTUqVOVnZ2tiIgIhYeHa/r06UpJSeFOJgAAIMnmMrNkyRJJ0pAhQ7zGCwoKNHnyZEnSggUL1KJFC6Wnp8vtdistLU2LFy9u5qQAAMBf2VpmLMu65D6hoaHKy8tTXl5eMyQCAACm8Zu7mQAAAHxBmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo9laZj7//HONHj1asbGxcjgcWrNmjdd2y7L01FNPqUOHDmrZsqVSU1N18OBBe8ICAAC/ZGuZqa6uVlJSkvLy8s67fd68eXrppZf0yiuvaOvWrWrdurXS0tJUU1PTzEkBAIC/CrTzm48YMUIjRow47zbLsrRw4UI98cQTGjNmjCRp2bJlio6O1po1a3Tvvfc2Z1QAAOCn/PaamcOHD6usrEypqameMafTqf79+6uoqOiCr3O73aqsrPRaAADA1ctvy0xZWZkkKTo62ms8Ojras+18cnNz5XQ6PUtcXFyT5gQAAPby2zLjq5ycHFVUVHiW0tJSuyMBAIAm5LdlJiYmRpLkcrm8xl0ul2fb+YSEhCg8PNxrAQAAVy+/LTMJCQmKiYlRYWGhZ6yyslJbt25VSkqKjckAAIA/sfVupqqqKh06dMizfvjwYe3evVsRERGKj4/XjBkz9Oyzz6pbt25KSEjQk08+qdjYWI0dO9a+0AAAwK/YWmZ27NihoUOHetazs7MlSRkZGVq6dKkeffRRVVdX68EHH1R5ebkGDhyotWvXKjQ01K7IAADAz9haZoYMGSLLsi643eFwaO7cuZo7d24zpgIAACbx22tmAAAAGoIyAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGo8wAAACjUWYAAIDRKDMAAMBolBkAAGA0ygwAADAaZQYAABiNMgMAAIxGmQEAAEajzAAAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAYjTIDAACMRpkBAABGM6LM5OXl6YYbblBoaKj69++vbdu22R0JAAD4Cb8vMytXrlR2drbmzJmjnTt3KikpSWlpaTp+/Ljd0QAAgB/w+zLz4osv6je/+Y3uv/9+9erVS6+88opatWqlN954w+5oAADAD/h1mamtrVVxcbFSU1M9Yy1atFBqaqqKiopsTAYAAPxFoN0BLuZ///d/VVdXp+joaK/x6OhoffPNN+d9jdvtltvt9qxXVFRIkiorKxv8fevcP/mQFk3lct47X5yuqWvS+XF5mvr9PvvT2SadH5enqd/v6rO83/7kct7vX/a1LOuS+/p1mfFFbm6unnnmmXPG4+LibEiDxuD842/tjoDmlOu0OwGakfMx3u9rivPy3+/Tp0/LeYnX+XWZue666xQQECCXy+U17nK5FBMTc97X5OTkKDs727NeX1+vU6dOKTIyUg6Ho0nz+pPKykrFxcWptLRU4eHhdsdBE+P9vrbwfl9brtX327IsnT59WrGxsZfc16/LTHBwsJKTk1VYWKixY8dK+rmcFBYWatq0aed9TUhIiEJCQrzG2rZt28RJ/Vd4ePg19R//tY73+9rC+31tuRbf70sdkfmFX5cZScrOzlZGRob69u2r2267TQsXLlR1dbXuv/9+u6MBAAA/4Pdl5p577tGJEyf01FNPqaysTDfffLPWrl17zkXBAADg2uT3ZUaSpk2bdsHTSji/kJAQzZkz55xTbrg68X5fW3i/ry2835fmsBpyzxMAAICf8usPzQMAALgUygwAADAaZQYAABiNMnMVKioqUkBAgEaOHGl3FDSxyZMny+FweJbIyEjddddd2rNnj93R0ETKyso0ffp0de7cWSEhIYqLi9Po0aNVWFhodzQ0or//3Q4KClJ0dLTuvPNOvfHGG6qvr7c7nt+hzFyF8vPzNX36dH3++ec6evSo3XHQxO666y4dO3ZMx44dU2FhoQIDAzVq1Ci7Y6EJHDlyRMnJydqwYYNeeOEF7d27V2vXrtXQoUOVmZlpdzw0sl9+t48cOaKPP/5YQ4cOVVZWlkaNGqWzPHPKixG3ZqPhqqqqtHLlSu3YsUNlZWVaunSpfv/739sdC00oJCTE83iPmJgYzZ49W4MGDdKJEycUFRVlczo0pn/7t3+Tw+HQtm3b1Lp1a8947969NWXKFBuToSn8/e/29ddfr1tvvVUDBgzQ8OHDtXTpUj3wwAM2J/QfHJm5yrzzzjtKTExUjx49NHHiRL3xxhsNeuIorg5VVVV666231LVrV0VGRtodB43o1KlTWrt2rTIzM72KzC+u5ce2XEuGDRumpKQkvfvuu3ZH8SuUmatMfn6+Jk6cKOnnQ5QVFRXatGmTzanQlD788EOFhYUpLCxMbdq00fvvv6+VK1eqRQt+va8mhw4dkmVZSkxMtDsKbJaYmKgjR47YHcOv8LfdVeTAgQPatm2bxo8fL0kKDAzUPffco/z8fJuToSkNHTpUu3fv1u7du7Vt2zalpaVpxIgR+v777+2OhkbEEVb8wrIsORwOu2P4Fa6ZuYrk5+fr7NmzXo9LtyxLISEhevnllxv89FGYpXXr1uratatn/fXXX5fT6dRrr72mZ5991sZkaEzdunWTw+HQN998Y3cU2Gz//v1KSEiwO4Zf4cjMVeLs2bNatmyZ5s+f7/m/9N27d+vLL79UbGys/vSnP9kdEc3E4XCoRYsW+umnn+yOgkYUERGhtLQ05eXlqbq6+pzt5eXlzR8KzW7Dhg3au3ev0tPT7Y7iVzgyc5X48MMP9eOPP2rq1KnnHIFJT09Xfn6+fvvb39qUDk3J7XarrKxMkvTjjz/q5ZdfVlVVlUaPHm1zMjS2vLw83X777brttts0d+5c9enTR2fPntX69eu1ZMkS7d+/3+6IaES//G7X1dXJ5XJp7dq1ys3N1ahRozRp0iS74/kVysxVIj8/X6mpqec9lZSenq558+Zpz5496tOnjw3p0JTWrl2rDh06SJLatGmjxMRErVq1SkOGDLE3GBpd586dtXPnTv3hD3/QrFmzdOzYMUVFRSk5OVlLliyxOx4a2S+/24GBgWrXrp2SkpL00ksvKSMjgwv8/wFPzQYAAEaj2gEAAKNRZgAAgNEoMwAAwGiUGQAAYDTKDAAAMBplBgAAGI0yAwAAjEaZAQAARqPMAGiwIUOGaMaMGT6//umnn9bNN9/caHma05X+7ACaDmUGAAAYjTID4Jpx5swZuyMAaAKUGQCXpb6+Xo8++qgiIiIUExOjp59+2rOtpKREY8aMUVhYmMLDw/XrX/9aLpfrovO98cYb6t27t0JCQtShQwdNmzatQTm++eYbDRw4UKGhoerVq5c+/fRTORwOrVmzRpJ05MgRORwOrVy5UoMHD1ZoaKjefvttnTx5UuPHj9f111+vVq1a6aabbtKf/vQnr7mrq6s1adIkhYWFqUOHDpo/f/4539/tduvhhx/W9ddfr9atW6t///7auHFjg7IDaFyUGQCX5c0331Tr1q21detWzZs3T3PnztX69etVX1+vMWPG6NSpU9q0aZPWr1+vv/zlL7rnnnsuONeSJUuUmZmpBx98UHv37tX777+vrl27XjJDXV2dxo4dq1atWmnr1q169dVX9fjjj59339mzZysrK0v79+9XWlqaampqlJycrI8++kj79u3Tgw8+qPvuu0/btm3zvOaRRx7Rpk2b9N577+mTTz7Rxo0btXPnTq95p02bpqKiIq1YsUJ79uzR3XffrbvuuksHDx5s4J8kgEZjAUADDR482Bo4cKDXWL9+/azHHnvM+uSTT6yAgACrpKTEs+2rr76yJFnbtm2zLMuy5syZYyUlJXm2x8bGWo8//vhl5/j444+twMBA69ixY56x9evXW5Ks1atXW5ZlWYcPH7YkWQsXLrzkfCNHjrRmzZplWZZlnT592goODrbeeecdz/aTJ09aLVu2tLKysizLsqzvv//eCggIsH744QeveYYPH27l5ORc9s8D4MoE2tylABimT58+XusdOnTQ8ePHtX//fsXFxSkuLs6zrVevXmrbtq3279+vfv36eb3u+PHjOnr0qIYPH37ZGQ4cOKC4uDjFxMR4xm677bbz7tu3b1+v9bq6Oj333HN655139MMPP6i2tlZut1utWrWSJH333Xeqra1V//79Pa+JiIhQjx49POt79+5VXV2dunfv7jW32+1WZGTkZf88AK4MZQbAZQkKCvJadzgcqq+vv+x5WrZs2ViRLqp169Ze6y+88IIWLVqkhQsX6qabblLr1q01Y8YM1dbWNnjOqqoqBQQEqLi4WAEBAV7bwsLCGiU3gIbjmhkAjaJnz54qLS1VaWmpZ+zrr79WeXm5evXqdc7+bdq00Q033KDCwsLL/l49evRQaWmp18XF27dvb9BrN2/erDFjxmjixIlKSkpS586d9e2333q2d+nSRUFBQdq6datn7Mcff/Ta55ZbblFdXZ2OHz+url27ei1/f7QIQPOgzABoFKmpqbrppps0YcIE7dy5U9u2bdOkSZM0ePDgc071/OLpp5/W/Pnz9dJLL+ngwYPauXOn/vjHP17ye915553q0qWLMjIytGfPHm3evFlPPPGEpJ+PFF1Mt27dtH79ev35z3/W/v379a//+q9epSgsLExTp07VI488og0bNmjfvn2aPHmyWrT4/39ddu/eXRMmTNCkSZP07rvv6vDhw9q2bZtyc3P10UcfNeSPC0AjoswAaBQOh0Pvvfee2rVrpzvuuEOpqanq3LmzVq5cecHXZGRkaOHChVq8eLF69+6tUaNGNehuoICAAK1Zs0ZVVVXq16+fHnjgAc/dTKGhoRd97RNPPKFbb71VaWlpGjJkiGJiYjR27FivfV544QUNGjRIo0ePVmpqqgYOHKjk5GSvfQoKCjRp0iTNmjVLPXr00NixY7V9+3bFx8dfMj+AxuWwLMuyOwQAXKnNmzdr4MCBOnTokLp06WJ3HADNiDIDwEirV69WWFiYunXrpkOHDikrK0vt2rXTF198YXc0AM2M00wA/M7bb7+tsLCw8y69e/eWJJ0+fVqZmZlKTEzU5MmT1a9fP7333ns2JwdgB47MAPA7p0+fvuBjEIKCgtSpU6dmTgTAn1FmAACA0TjNBAAAjEaZAQAARqPMAAAAo1FmAACA0SgzAADAaJQZAABgNMoMAAAwGmUGAAAY7f8Br7g9P2kGtIoAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"sns.barplot (data=df, y=\"pct_white\", x=\"holc_grade\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 34,
|
||
"id": "f71bb640-ea17-43c5-ba5e-0b785b7c1e63",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<Axes: xlabel='holc_grade', ylabel='pct_other'>"
|
||
]
|
||
},
|
||
"execution_count": 34,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABM0AAADeCAYAAAAuJ/feAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3JUlEQVR4nO3de1RVdd7H8c9RLqIIiiKCg4iKt/KS1zEvWDKRo5ljU2amZlo9kxle0jJTkyxLx1vmZTSsfKpRyy5OF0dD09EMzcx0MrtpMCnIUhFxFBT284d5ng6gwuHA3vvwfq211zrnt8/58d3K5whf9/5th2EYhgAAAAAAAAA4VTG7AAAAAAAAAMBqaJoBAAAAAAAAhdA0AwAAAAAAAAqhaQYAAAAAAAAUQtMMAAAAAAAAKISmGQAAAAAAAFAITTMAAAAAAACgEJpmAAAAAAAAQCE0zQAAAAAAAIBCaJoBAAAAAAAAhZjaNMvPz9fUqVMVHR2tgIAANWnSRM8884wMw3C+xjAMTZs2TeHh4QoICFBcXJy+//57E6sGAAAAAACAtzO1afbCCy9o6dKleumll3Tw4EG98MILmj17thYtWuR8zezZs/Xiiy9q2bJlSklJUY0aNRQfH6/z58+bWDkAAAAAAAC8mcP47WldFaxfv34KCwtTUlKSc+yOO+5QQECAXn/9dRmGoYiICE2YMEGPPfaYJOn06dMKCwvTq6++qrvvvtus0gEAAAAAAODFfMz84jfeeKOWL1+u7777Ts2aNdO+ffu0fft2zZs3T5J0+PBhpaenKy4uzvme4OBgdenSRTt37iy2aZabm6vc3Fzn84KCAp08eVJ16tSRw+Eo/4MCbMQwDJ05c0YRERGqUsUaSxySYaDkrJZh8guUDhkG7Iv8AvZW4gwbJsrPzzcef/xxw+FwGD4+PobD4TCee+455/4dO3YYkoyjR4+6vO/OO+807rrrrmLnnD59uiGJjY2tFFtaWlq5Zr00yDAbW+k3q2SY/LKxubeRYTY2+27kl43N3tu1Mmzq5ZmrV6/WxIkTNWfOHF133XX66quvNHbsWM2bN0/Dhw/XZ599pm7duuno0aMKDw93vu+uu+6Sw+HQmjVrisxZuMN++vRpNWzYUGlpaQoKCqqQ4wLsIjs7W5GRkcrKylJwcLDZ5Ugiw0BpWC3D5BcoHTIM2Bf5BeytpBk29fLMiRMn6oknnnBeZtm6dWv9/PPPmjVrloYPH6769etLkjIyMlyaZhkZGWrXrl2xc/r7+8vf37/IeFBQEB8WwBVY6ZRtMgyUnlUyTH4B95BhwL7IL2Bv18qwqRdf//e//y1y7WjVqlVVUFAgSYqOjlb9+vWVnJzs3J+dna2UlBR17dq1QmsFAAAAAABA5WHqmWa33Xabnn32WTVs2FDXXXed9u7dq3nz5un++++XdKnjN3bsWM2cOVMxMTGKjo7W1KlTFRERoQEDBphZOgAAAAAAALyYqU2zRYsWaerUqXr44Yd1/PhxRURE6KGHHtK0adOcr5k0aZLOnj2rBx98UFlZWerevbs2bNigatWqmVj5/0tISFBmZqYkKTQ0VAsXLjS5IgAAAAAAAJSVqU2zmjVrasGCBVqwYMEVX+NwOJSYmKjExMSKK6wUMjMzlZGRYXYZAAAAAAAA8CBT1zQDAAAAAAAArIimGQAAAAAAAFAITTMAAAAAAACgEJpmAAAAAAAAQCE0zQAAAAAAAIBCTL17ppk6TFzlkXmCTuU4O4/HTuV4bN49c4Z5ZB4AAAAAAACUHmeaAQAAAAAAAIXQNAMAAAAAAAAKoWkGAAAAAAAAFELTDAAAAAAAACiEphkAAAAAAABQSKW9e6anFPjWKPYxAAAAAAAA7IumWRnlNO9jdgkAAAAAAADwMC7PBAAAAAAAAAqhaQYAAAAAAAAUQtMMAAAAAAAAKISmGQAAAAAAAFAITTMAAAAAAACgEJpmAAAAAAAAQCE0zQAAAAAAAIBCaJoBAAAAAAAAhdA0AwAAAAAAAAqhaQYAAAAAAAAUQtMMAAAAAAAAKMTH7AJgDQkJCcrMzJQkhYaGauHChSZXBAAAAAAAYB6aZpAkZWZmKiMjw+wyAAAAAAAALIHLMwEAAAAAAIBCTG+a/fLLL7r33ntVp04dBQQEqHXr1vriiy+c+w3D0LRp0xQeHq6AgADFxcXp+++/N7FiAAAAAAAAeDtTm2anTp1St27d5Ovrq48//ljffPON5s6dq9q1aztfM3v2bL344otatmyZUlJSVKNGDcXHx+v8+fMmVg4AAAAAAABvZuqaZi+88IIiIyP1yiuvOMeio6Odjw3D0IIFC/TUU0/p9ttvlyStWrVKYWFheu+993T33XdXeM0AAAAAAADwfqaeabZ+/Xp17NhRd955p+rVq6cbbrhBK1ascO4/fPiw0tPTFRcX5xwLDg5Wly5dtHPnzmLnzM3NVXZ2tssGwD7IMGBf5BewNzIM2Bf5BcqHqWea/fTTT1q6dKnGjx+vJ598Urt379ajjz4qPz8/DR8+XOnp6ZKksLAwl/eFhYU59xU2a9YszZgxo9xrt4rUxNYemediVh1JVX99fNRj8zactt8j86DyqGwZBrwJ+QXsjQwD9kV+gfJh6plmBQUFat++vZ577jndcMMNevDBB/XAAw9o2bJlbs85efJknT592rmlpaV5sGIA5Y0MA/ZFfgF7I8OAfZFfoHyYeqZZeHi4WrVq5TLWsmVLrVu3TpJUv359SVJGRobCw8Odr8nIyFC7du2KndPf31/+/v7lUzCAckeGAfsiv4C9kWHAvsgvUD5MPdOsW7duOnTokMvYd999p6ioKEmXbgpQv359JScnO/dnZ2crJSVFXbt2rdBaAQAAAAAAUHmYeqbZuHHjdOONN+q5557TXXfdpV27dmn58uVavny5JMnhcGjs2LGaOXOmYmJiFB0dralTpyoiIkIDBgwws3QAAAAAAAB4MVObZp06ddK7776ryZMnKzExUdHR0VqwYIGGDBnifM2kSZN09uxZPfjgg8rKylL37t21YcMGVatWzcTKAQAAAAAA4M1MbZpJUr9+/dSvX78r7nc4HEpMTFRiYmIFVgUAAAAAAIDKzPSmGawhxD+/2McAAAAAAACVEU0zSJKevCHL7BIAAAAAAAAso0x3z/zhhx/0z3/+U+fOnZMkGYbhkaIAAAAAAKgMLly4IB8fHx04cMDsUgAU4lbT7MSJE4qLi1OzZs30xz/+UceOHZMkjRw5UhMmTPBogQDs4+9///sV902cOLECKwEAoHI5e/aspk6dqhtvvFFNmzZV48aNXTYA1uXr66uGDRsqP59lcgCrcevyzHHjxsnHx0epqalq2bKlc3zQoEEaP3685s6d67ECAdjHX/7yF9WqVUt9+vRxGR83bpxWr16tOXPmmFQZAADebdSoUdq6dauGDh2q8PBwORwOs0sCUApTpkzRk08+qf/93/9VSEiI2eUA+JVbTbONGzfqn//8p373u9+5jMfExOjnn3/2SGEA7OeNN97Q4MGD9cEHH6h79+6SpDFjxuidd97Rli1bTK4OAADv9fHHH+vDDz9Ut27dzC4FgBteeukl/fDDD4qIiFBUVJRq1Kjhsv/LL780qTKgcnOraXb27FlVr169yPjJkyfl7+9f5qIA2FPfvn21ZMkS9e/fX5s2bVJSUpLef/99bdmyRc2aNTO7PAAAvFbt2rU5OwWwsQEDBphdAoBiuNU069Gjh1atWqVnnnlGkuRwOFRQUKDZs2frpptu8miBQGkkJCQoMzNTkhQaGqqFCxeaXFHlc8899ygrK0vdunVTaGiotm7dqqZNm5pdFoASOnTokBYtWqSDBw9Kklq2bKkxY8aoefPmJlcG4GqeeeYZTZs2Ta+99lqx/7kNwNqmT59udgkAiuFW02z27Nnq3bu3vvjiC+Xl5WnSpEn697//rZMnT2rHjh2erhEosczMTGVkZJhdRqUyfvz4YsdDQ0PVvn17LVmyxDk2b968iioLgBvWrVunu+++Wx07dlTXrl0lSZ9//rmuv/56rV69WnfccYfJFQK4krlz5+rHH39UWFiYGjVqJF9fX5f9XNoFWF9WVpbefvtt/fjjj5o4caJCQkL05ZdfKiwsTA0aNDC7PKBScqtpdv311+u7777TSy+9pJo1ayonJ0cDBw7U6NGjFR4e7ukaAVjY3r17ix1v2rSpsrOznftZkBiwvkmTJmny5MlKTEx0GZ8+fbomTZpE0wywMC7tAuzt66+/VlxcnIKDg3XkyBE98MADCgkJ0TvvvKPU1FStWrXK7BKBSsmtpllqaqoiIyM1ZcqUYvc1bNiwzIUBsAcW+Ae8x7FjxzRs2LAi4/feey93vwUsjku7AHsbP3687rvvPs2ePVs1a9Z0jv/xj3/UPffcY2JlQOVWxZ03RUdHO9eN+q0TJ04oOjq6zEUBsKfTp0/r5MmTRcZPnjyp7OxsEyoCUBq9evXSv/71ryLj27dvV48ePUyoCACAymH37t166KGHiow3aNBA6enpJlQEQHLzTDPDMIq91ConJ0fVqlUrc1EA7Onuu+/WbbfdpocffthlfO3atVq/fr0++ugjkyoDUBL9+/fX448/rj179uj3v/+9pEtrmr311luaMWOG1q9f7/JaANaRn5+v+fPna+3atUpNTVVeXp7L/uL+UwuAdfj7+xf7n8zfffedQkNDTagIgFTKptnlBb8dDoemTp3qcmee/Px8paSkqF27dh4tEIB9pKSkFLvYf69evYq9nBuAtVxueC9ZssTlJh6/3Sdd+jkgPz+/QmsDcHUzZszQyy+/rAkTJuipp57SlClTdOTIEb333nuaNm2a2eUBuIb+/fsrMTFRa9eulXTp39rU1FQ9/vjjrCkKmKhUTbPLC3obhqH9+/fLz8/Puc/Pz09t27bVY4895tkKAdhGbm6uLl68WGT8woULOnfunAkVASiNgoICs0sA4KY33nhDK1asUN++ffX0009r8ODBatKkidq0aaPPP/9cjz76qNklAriKuXPn6s9//rPq1aunc+fOKTY2Vunp6erataueffZZs8sDKq1SNc0uL/g9YsQILVy4UEFBQeVSFCqfbou6eWQe/2x/OXTp0uH07HSPzbtjzA6PzOPtOnfurOXLl2vRokUu48uWLVOHDh1MqgpAWWRlZalWrVpmlwHgGtLT09W6dWtJUmBgoE6fPi1J6tevn6ZOnWpmaQBKIDg4WJs2bdL27dv19ddfKycnR+3bt1dcXJzZpQGVmltrmr3yyiuergOAF5g5c6bi4uK0b98+9e7dW5KUnJys3bt3a+PGjSZXB+BaXnjhBTVq1EiDBg2SJN15551at26dwsPD9dFHH6lt27YmVwjgSn73u9/p2LFjatiwoZo0aaKNGzeqffv22r17t/z9/c0uD0AJde/eXd27dze7DAC/KnHTbODAgXr11VcVFBSkgQMHXvW177zzTpkLA2A/3bp1086dOzVnzhytXbtWAQEBatOmjZKSkhQTE2N2eQCuYdmyZXrjjTckSZs2bdInn3yiDRs2aO3atZo4cSLNb8DC/vSnPyk5OVldunTRmDFjdO+99yopKUmpqakaN26c2eUBKIHk5GQlJyfr+PHjRZZMWLlypUlVAZVbiZtmwcHBzjtmBgcHl1tBAOytXbt2zl+6AdhLenq6IiMjJUkffPCB7rrrLt1yyy1q1KiRunTpYnJ1AK7m+eefdz4eNGiQGjZsqJ07dyomJka33XabiZUBKIkZM2YoMTFRHTt2VHh4uPN3bwDmKnHT7LeXZHJ5JoBrOX/+fJHb3bMOImBttWvXVlpamiIjI7VhwwbNnDlT0qUbAHG3TMBeunbtqq5du5pdBoASWrZsmV599VUNHTrU7FIA/IZba5oBQHH++9//atKkSVq7dq1OnDhRZD+/dAPWNnDgQN1zzz2KiYnRiRMn1KdPH0mX7p7dtGlTk6sDUNj69evVp08f+fr6av369Vd9bf/+/SuoKgDuyMvL04033mh2GQAKcatplpGRoccee8x5vbVhGC77+cUYqJwmTpyoLVu2aOnSpRo6dKgWL16sX375RX/7299cLhsBYE3z589Xo0aNlJaWptmzZyswMFCSdOzYMT388MMmVwegsAEDBig9PV316tXTgAEDrvg6h8PBz+eAxY0aNUpvvvkmd7sFLMatptl9992n1NRUTZ06leutYSlGgFHsY1SMf/zjH1q1apV69eqlESNGqEePHmratKmioqL0xhtvaMiQIWaXCOAqfH199dhjjxUZZxFxwJp+u1B44UXDAVjf+PHjnY8LCgq0fPlyffLJJ2rTpo18fX1dXjtv3ryKLg+A3Gyabd++Xf/617/Url07D5cDlE1ez7xrvwjl5uTJk2rcuLGkS+uXnTx5UtKlW2f/5S9/MbM0AFfA5V2A98rKylKtWrXMLgPAFezdu9fl+eXfrw8cOGBCNQCK41bTLDIyssglmQA8JyEhQZmZmZKk0NBQLVy40OSKSqZx48Y6fPiwGjZsqBYtWmjt2rXq3Lmz/vGPf/BDO2BRXN4FeIcXXnhBjRo10qBBgyRJd955p9atW6fw8HB99NFHatu2rckVAihsy5YtZpcA4BqquPOmBQsW6IknntCRI0c8XA4AScrMzFRGRoYyMjKczTM7GDFihPbt2ydJeuKJJ7R48WJVq1ZN48aN08SJE02uDkBxCgoKVK9ePefjK200zABrW7ZsmSIjIyVJmzZt0ieffKINGzaoT58+/BsM2MD999+vM2fOFBk/e/as7r//fhMqAiCV4kyz2rVru6xddvbsWTVp0kTVq1cvcr315UuyAFQuv133KC4uTt9++6327Nmjpk2bqk2bNiZWBgCAd0tPT3c2zT744APddddduuWWW9SoUSN16dLF5OoAXMtrr72m559/XjVr1nQZP3funFatWqWVK1eaVBlQuZW4abZgwYJyLAOAN4qKilJUVJTZZQAoheTkZOfdsQsvLM4P7IB11a5dW2lpaYqMjNSGDRs0c+ZMSZJhGJwpClhYdna2DMOQYRg6c+aMqlWr5tyXn5+vjz76yHlGOICKV+Km2fDhw8uzDknS888/r8mTJyshIcHZpDt//rwmTJig1atXKzc3V/Hx8VqyZInCwsLKvR4A1/biiy+W+LWPPvpoOVYCoKxmzJihxMREdezYkbtjAzYzcOBA3XPPPYqJidGJEyfUp08fSZcWGm/atKnJ1QG4klq1asnhcMjhcKhZs2ZF9jscDs2YMcOEygBIbt4IYNiwYbrpppvUs2dPNWnSxCOF7N69W3/729+KXMI1btw4ffjhh3rrrbcUHBysRx55RAMHDtSOHTs88nUBlM38+fNL9DqHw0HTDLC4ZcuW6dVXX9XQoUPNLgVAKc2fP1+NGjVSWlqaZs+ercDAQEnSsWPH9PDDD5tcHYAr2bJliwzD0M0336x169YpJCTEuc/Pz09RUVGKiIgwsUKgcnOraebn56dZs2Zp5MiRatCggWJjY9WrVy/FxsYqJiam1PPl5ORoyJAhWrFihfNUckk6ffq0kpKS9Oabb+rmm2+WJL3yyitq2bKlPv/8c/3+9793p3wAHnT48GGzSwDgIXl5ebrxxhvNLgOAG3x9ffXYY48VGf/teqMArCc2NlbSpZ+pIyMjVaWKW/fqA1BO3Gqavfzyy5KkX375Rdu2bdPWrVs1d+5cPfTQQwoPD9d//vOfUs03evRo9e3bV3FxcS5Nsz179ujChQuKi4tzjrVo0UINGzbUzp07i22a5ebmKjc31/k8Ozu7tIcHwAMMw5CkUl/eRYYB84waNUpvvvmmpk6d6tb7yS9gvm+++UapqanKy8tzGe/fv/8130uGAfNERUUpKytLSUlJOnjwoCTpuuuu0/3336/g4OBrvp/8AuXDrabZZbVr11adOnVUu3Zt1apVSz4+PgoNDS3VHKtXr9aXX36p3bt3F9mXnp4uPz8/1apVy2U8LCxM6enpxc43a9YsrvkGTJSUlKT58+fr+++/lyTFxMRo7NixGjVqVIneT4aBijV+/Hjn44KCAi1fvlyffPKJ2rRpU+Tu2PPmzbvqXOQXMM9PP/2kP/3pT9q/f78cDkeR/7wqyc0AyDBgni+++ELx8fEKCAhQ586dJV36d/fZZ5/Vxo0b1b59+6u+n/wC5cOtptmTTz6pTz/9VHv37lXLli0VGxurJ554Qj179lTt2rVLPE9aWpoSEhK0adMml7uElMXkyZNdfgHIzs523n4bKG9be8Z6ZJ7zPlWlX3/IPZ+e7rF5Y7dt9cg8VzJt2jTNmzdPY8aMUdeuXSVJO3fu1Lhx45SamqrExMRrzkGGgYq1d+9el+ft2rWTJB04cMBlvCRnjZJfwDwJCQmKjo5WcnKyoqOjtWvXLp04cUITJkzQX//61xLNQYYB84wbN079+/fXihUr5ONz6df0ixcvatSoURo7dqy2bdt21feTX6B8uNU0e/755xUaGqrp06dr4MCBxd7loyT27Nmj48ePu3TN8/PztW3bNr300kv65z//qby8PGVlZbmcbZaRkaH69esXO6e/v7/8/f3dqgdA2SxdulQrVqzQ4MGDnWP9+/dXmzZtNGbMmBI1zcgwULG2bNlS6vf85z//UURERJF1V8gvYJ6dO3dq8+bNqlu3rqpUqaIqVaqoe/fumjVrlh599NEiDfLikGHAPF988YVLw0ySfHx8NGnSJHXs2PGa7ye/QPlwa5XBvXv3asqUKdq1a5e6deumBg0a6J577tHy5cv13XfflXie3r17a//+/frqq6+cW8eOHTVkyBDnY19fXyUnJzvfc+jQIaWmpjrPYgFgHRcuXCj2H/UOHTro4sWLJlQEoDy0atVKR44cMbsMAL+Rn5+vmjVrSpLq1q2ro0ePSrq0TtKhQ4fMLA1ACQQFBSk1NbXIeFpamjPbACqeW2eatW3bVm3bttWjjz4qSdq3b5/mz5+v0aNHq6CgoERrJkhSzZo1df3117uM1ahRQ3Xq1HGOjxw5UuPHj1dISIiCgoKcl31x50zAeoYOHaqlS5cWWfdo+fLlGjJkiElVAfC0y2slAbCO66+/Xvv27VN0dLS6dOmi2bNny8/PT8uXL1fjxo3NLg/ANQwaNEgjR47UX//6V+edrHfs2KGJEye6XMUBoGK51TQzDEN79+7Vp59+qk8//VTbt29Xdna22rRp47xlrqfMnz9fVapU0R133KHc3FzFx8dryZIlHv0aANz327UTHA6HXn75ZW3cuNHZ2E5JSVFqaqqGDRtmVokAAHi9p556SmfPnpUkJSYmql+/furRo4fq1KmjNWvWmFwdgGv561//KofDoWHDhjmv0PD19dVf/vIXPf/88yZXB1RebjXNQkJClJOTo7Zt2yo2NlYPPPCAevToUeQul+749NNPXZ5Xq1ZNixcv1uLFi8s8NwDPK7xGSocOHSRJP/74o6RLl4jUrVtX//73vyu8NgAAKov4+Hjn46ZNm+rbb7/VyZMnVbt2bZcbeVxpTUIA5vLz89PChQs1a9Ys58/RTZo0UfXq1V1eR4aBiuVW0+z1119Xjx49FBQUdNXXEWjA+3lyEXHAWyQkJCgzM1OSFBoaqoULF5pcEYDKKCQkpMhYq1at9NVXX3HJJmBR1atXV+vWra+4nwwDFcut31j79u17zYaZxELBgLuCDCnYMBRsGArywqWD+GyAt8vMzFRGRoYyMjKczTNv8tuzVgDYC2sSAvZGhoGK5daZZiVFoAH3jCjhzTTsis8GwN7IMAAAACoDro0CAACSpPvvv19nzpwpMn727Fndf//9zufffPONoqKiKrI0AAAAoMLRNAMAAJKk1157TefOnSsyfu7cOa1atcr5PDIyUlWrVq3I0gAAAIAKV66XZwIAAOvLzs6WYRgyDENnzpxRtWrVnPvy8/P10UcfqV69eiZWCMBTWJMQsDcyDFSscm2aEWgAxeGzAbCWWrVqyeFwyOFwqFmzZkX2OxwOzZgxw4TKAHgaaxIC9kaGgYpVrpdnEmgAxeGzAbCWLVu2KDk5WYZh6O2339bmzZud2/bt25WamqopU6aYXSaAq2BNQsDeyDBgTW41zQg0gOLw2QDYU2xsrHr16qXDhw9rwIABio2NdW5du3ZVRESE2SUCuAbWJATsjQwD1uTW5Zmvvfaann/+edWsWdNl/HKgV65cKelSoAFUHnw2wO629oz1yDznfapKv16GfD493WPzxm7b6pF5rmTz5s0KDAzUnXfe6TL+1ltv6b///a+GDx9erl8fQOmxJiFgb2QYsLZSNc0INIDi8NkAeIdZs2bpb3/7W5HxevXq6cEHH6RpBlgQaxIC9kaGAWsrVdOMQAMoDp8NgHdITU1VdHR0kfGoqCilpqaaUBGAa9myZYsMw9DNN9+sdevWKSQkxLnPz89PUVFRXGINWBgZBqytVE0zAg2gOHw2AN6hXr16+vrrr9WoUSOX8X379qlOnTrmFAXgqmJjL13+ffjwYTVs2JA7VAM2Q4YBaytV04xAAygOnw2Adxg8eLAeffRR1axZUz179pQkbd26VQkJCbr77rtNrg7A1bAmIWBvZBiwJrfunrl582a9/fbbRcbfeustvfbaa2UuCoA98dkA2NszzzyjLl26qHfv3goICFBAQID+8Ic/6Oabb9Zzzz1ndnkArmLWrFmqW7dukfF69eqRX8AGyDBgTW41zQg0gOLw2QDYm5+fn9asWaNDhw7p9ddf17p16/TTTz9p5cqV8vPzM7s8AFfBmoSAvZFhwJrcapoRaADF4bMBsL+kpCT96U9/0tChQ/XnP/9Zffv21csvv2x2WQCu4fKahIWxJiFgD2QYsKZSrWl2GQsFAygOnw0oq4SEBGVmZkqSQkNDtXDhQpMrck+QIUnGbx7bw7Rp0zRv3jyNGTNGXbt2lSTt3LlT48aNU2pqqhITE02uEMCVsCYhYG9kGLAmt5pmBBpAcfhsQFllZmYqIyPD7DLKbER+vtkluGXp0qVasWKFBg8e7Bzr37+/2rRpozFjxtA0AyzsmWee0ZEjR9S7d2/5+Fz6ET8/P1/Dhw9niQTABsgwYE1uNc0INIDi8NkA2NuFCxfUsWPHIuMdOnTQxYsXTagIQEldXpNw5syZ2rt3rwICAtSmTRtFRUWZXRqAEiDDgDW51TQj0ACKw2cDYG9Dhw7V0qVLNW/ePJfx5cuXa8iQISZVBaCkkpKSNH/+fH3//feSpJiYGI0dO1ajRo0yuTIAJUGGAetxq2kmEWgAxeOzAbC3pKQkbdy4Ub///e8lSSkpKUpNTdWwYcM0fvx45+sKN9YAmIs1CQF7I8OANbnVNCPQAIrDZwNgbwcOHFD79u0lST/++KMkqW7duqpbt64OHDjgfJ3D4TClPgBXxpqEgL2RYcCa3GqaEWgAxeGzAbC3LVu2mF0CYDq73sWXNQkBeyPDgDVVcedNBBpAcfhsAADY3eW7+GZkZDibZ3ZweU3CwliTELAHMgxYk1tnmrFQMIDi8NlQeXVb1M0j8/hn+8uhS5f+pWene2zeHWN2eGQeAFdm1zO0vAlrEgL2RoYB6ynTjQAINIDC+GwAgMrp8hlaMAdrEgL2RoYBa3KraeapQM+aNUvvvPOOvv32WwUEBOjGG2/UCy+8oObNmztfc/78eU2YMEGrV69Wbm6u4uPjtWTJEoWFhblTOoByxD/2AACYgzUJAXsjw4A1udU081Sgt27dqtGjR6tTp066ePGinnzySd1yyy365ptvVKNGDUnSuHHj9OGHH+qtt95ScHCwHnnkEQ0cOFA7dnCpDWA1/GMPAAAAAPAWbl+e6QkbNmxwef7qq6+qXr162rNnj3r27KnTp08rKSlJb775pm6++WZJ0iuvvKKWLVvq888/d17+BQAAAAAAAHiSqU2zwk6fPi1JCgkJkSTt2bNHFy5cUFxcnPM1LVq0UMOGDbVz585im2a5ubnKzc11Ps/Ozi7nqgF4EhkG7Iv8AvZGhgH7Ir9A+bBM06ygoEBjx45Vt27ddP3110uS0tPT5efnp1q1arm8NiwsTOnp6cXOM2vWLM2YMaO8ywVQTsiwe7hrHayA/MJMW3vGemSe8z5VpV/X3jyfnu6xeWO3bfXIPOWJDAP2RX6B8lHF7AIuGz16tA4cOKDVq1eXaZ7Jkyfr9OnTzi0tLc1DFQKoCGTYPZfvWpeRkeFsntmREWC4bLAX8gvYGxkG7Iv8AuXDEmeaPfLII/rggw+0bds2/e53v3OO169fX3l5ecrKynI52ywjI0P169cvdi5/f3/5+/uXd8kAygkZrtzyeuaZXQLKgPzaU7dF3Twyj3+2vxy6dIZWena6x+bdMYabP1UUMgzYF/kFyoepZ5oZhqFHHnlE7777rjZv3qzo6GiX/R06dJCvr6+Sk5OdY4cOHVJqaqq6du1a0eUCAAAAAACgkjD1TLPRo0frzTff1Pvvv6+aNWs61ykLDg5WQECAgoODNXLkSI0fP14hISEKCgrSmDFj1LVrV+6cCQAAvAJrEgIAAFiTqU2zpUuXSpJ69erlMv7KK6/ovvvukyTNnz9fVapU0R133KHc3FzFx8dryZIlFVwpAABA+bi8JiEAAACsxdSmmWFce5HnatWqafHixVq8eHEFVAQAAAAAAABY5EYAAFBZpSa29sg8F7PqSKr66+OjHpu34bT9HpkHAOwiyJAk4zePAQBAZUXTDAAAAPjViPx8s0sAAAAWQdMMAAAAZWYEGMU+BgAAsCuaZgAAACizvJ55ZpcAAADgUTTNAAAA3MCahAAAAN6NphkAeIEQ//xiHwMAAAAA3EPTDAC8wJM3ZJldAgAAAAB4lSpmFwAAAAAAAABYDU0zAAAAAAAAoBAuzwRQqSUkJCgzM1OSFBoaqoULF5pcEYCSIr8AAAAoTzTNAFRqmZmZysjIMLsMAG7wlvxyIw8AAABromkGAABgIm7kAQAAYE2saQYAAAAAAAAUQtMMAAAAAAAAKITLMwHYUoeJqzwyT9CpHOf/Hhw7leOxeffMGeaReQBvRH4BAABgB5xpBgAAAAAAABRC0wwAAAAAAAAohMszAQAAAAAAbCohIUGZmZmSpNDQUC1cuNDkitxjxeOgaQYAAAAAACodKzZp3JGZmamMjAyzyygzKx4HTTMAlVqBb41iHwOwPvILAIA5aDahsqBpBqBSy2nex+wSALiJ/AIAYA6zm02pia09Ms/FrDqSqv76+KjH5m04bX+JXtdtUTePfD3/bH855JAkpWene2zeHWN2lOh1W3vGeuTrnfepKjkuHcf59HSPzStJsdu2uvU+mmYAAAAAAFQCHSau8sg8QadynHcVPHYqx2Pz7pkzzCPzAJ5C0wwAAAAA3OQtl6lxHKiMQvzzi31sN0aAUexjuwkyJMn4zWPz0TQDAAAAUOG8pblh9mVqnsJxoDS8ZV3RJ2/IMrsEj8jrmWd2CR4xIt96jUuaZgAAAAAqHM0NwL5YVxSVBU0zAAAAAJUOC4m7MnshcQCwIppmAAAAAEqMhcRRHqx+9z1377wHwN5omgEAAACAm1hIHAC8ly2aZosXL9acOXOUnp6utm3batGiRercubPZZQEAAABwEwuJW4u3LCRuxbvvAbAvyzfN1qxZo/Hjx2vZsmXq0qWLFixYoPj4eB06dEj16tUzuzwAAAAAbmAhcZQHK959D4B9Vbn2S8w1b948PfDAAxoxYoRatWqlZcuWqXr16lq5cqXZpQEAAAAAAMBLWfpMs7y8PO3Zs0eTJ092jlWpUkVxcXHauXNnse/Jzc1Vbm6u8/np06clSdnZ2S6vy889Vw4Ve07heq/kzHlr/09KSY/j4rmL5VxJ2ZT0OM5etNdxXH5uGNY5d50MWwsZtharZ5j8Wgv5tZbijoMMlw8ybC3emmHyWz7Ir7V4S36lMmTYsLBffvnFkGR89tlnLuMTJ040OnfuXOx7pk+fbujSRexsbGwl3NLS0ioi0iVChtnYSr9ZJcPkl43NvY0Ms7HZdyO/bGz23q6VYYdhWKQ1XoyjR4+qQYMG+uyzz9S1a1fn+KRJk7R161alpKQUeU/hDntBQYFOnjypOnXqyPHrrYc9LTs7W5GRkUpLS1NQUFC5fI2KwHFYS0Uch2EYOnPmjCIiIlSlijWu1ibD7uM4rKUyZpj8uo/jsJaKOg4yzPeM1XAcJUd++X6xGo6jdEqaYUtfnlm3bl1VrVpVGRkZLuMZGRmqX79+se/x9/eXv7+/y1itWrXKq0QXQUFBtv7mvIzjsJbyPo7g4OBym9sdZLjsOA5rqUwZJr9lx3FYS0UcBxm+hO8Za+E4Sob8XsL3i7VwHCVXkgyb3xK/Cj8/P3Xo0EHJycnOsYKCAiUnJ7uceQYAAAAAAAB4kqXPNJOk8ePHa/jw4erYsaM6d+6sBQsW6OzZsxoxYoTZpQEAAAAAAMBLWb5pNmjQIGVmZmratGlKT09Xu3bttGHDBoWFhZldmpO/v7+mT59e5HRYu+E4rMVbjsMOvOXPmuOwFm85Dqvzlj9njsNavOU47MBb/qw5DmvxluOwOm/5c+Y4rMVqx2HpGwEAAAAAAAAAZrD0mmYAAAAAAACAGWiaAQAAAAAAAIXQNAMAAAAAAAAKoWkGAAAAAAAAFELTrIx27typqlWrqm/fvmaX4rb77rtPDofDudWpU0e33nqrvv76a7NLK7X09HSNGTNGjRs3lr+/vyIjI3XbbbcpOTnZ7NJK5Ld/F76+vgoLC9Mf/vAHrVy5UgUFBWaX55XsnmFvyq9EhlE6ds+v5F0ZJr8oLbtn2JvyK5FhlB4Ztg7yW35ompVRUlKSxowZo23btuno0aNml+O2W2+9VceOHdOxY8eUnJwsHx8f9evXz+yySuXIkSPq0KGDNm/erDlz5mj//v3asGGDbrrpJo0ePdrs8krs8t/FkSNH9PHHH+umm25SQkKC+vXrp4sXL5pdntfxhgx7Q34lMozS84b8St6RYfILd3hDhr0hvxIZhnvIsDWQ33JmwG1nzpwxAgMDjW+//dYYNGiQ8eyzz5pdkluGDx9u3H777S5j//rXvwxJxvHjx80pyg19+vQxGjRoYOTk5BTZd+rUqYovyA3F/V0YhmEkJycbkowVK1ZUfFFezBsy7C35NQwyjNLxhvwahvdkmPyitLwhw96SX8Mgwyg9Mmwd5Ld8caZZGaxdu1YtWrRQ8+bNde+992rlypUyDMPsssosJydHr7/+upo2bao6deqYXU6JnDx5Uhs2bNDo0aNVo0aNIvtr1apV8UV50M0336y2bdvqnXfeMbsUr+KNGbZjfiUyjNLzxvxK9sww+YU7vDHDdsyvRIbhHjJsDeS3/NE0K4OkpCTde++9ki6dSnj69Glt3brV5Krc88EHHygwMFCBgYGqWbOm1q9frzVr1qhKFXt8i/zwww8yDEMtWrQwu5Ry06JFCx05csTsMryKt2TY7vmVyDBKz1vyK9k/w+QX7vCWDNs9vxIZhnvIsDWQ3/Jnj+8ECzp06JB27dqlwYMHS5J8fHw0aNAgJSUlmVyZe2666SZ99dVX+uqrr7Rr1y7Fx8erT58++vnnn80urUTs/r8aJWEYhhwOh9lleA1vyrDd8yuRYZSON+VXsn+GyS9Ky5sybPf8SmQYpUeGrYP8lj8f076yzSUlJenixYuKiIhwjhmGIX9/f7300ksKDg42sbrSq1Gjhpo2bep8/vLLLys4OFgrVqzQzJkzTaysZGJiYuRwOPTtt9+aXUq5OXjwoKKjo80uw2t4U4btnl+JDKN0vCm/kv0zTH5RWt6UYbvnVyLDKD0ybB3kt/xxppkbLl68qFWrVmnu3LnOrvRXX32lffv2KSIiQn//+9/NLrHMHA6HqlSponPnzpldSomEhIQoPj5eixcv1tmzZ4vsz8rKqviiPGjz5s3av3+/7rjjDrNL8QrenmG75Vciwyg5b8+vZL8Mk1+Uhrdn2G75lcgwSocMWwv5LX+caeaGDz74QKdOndLIkSOLdNHvuOMOJSUl6X/+539Mqs49ubm5Sk9PlySdOnVKL730knJycnTbbbeZXFnJLV68WN26dVPnzp2VmJioNm3a6OLFi9q0aZOWLl2qgwcPml1iiVz+u8jPz1dGRoY2bNigWbNmqV+/fho2bJjZ5XkFb8uwN+RXIsMoGW/Lr+QdGSa/KClvy7A35Fciwyg5Mmw95LecVdh9Or1Iv379jD/+8Y/F7ktJSTEkGfv27avgqtw3fPhwQ5Jzq1mzptGpUyfj7bffNru0Ujt69KgxevRoIyoqyvDz8zMaNGhg9O/f39iyZYvZpZXIb/8ufHx8jNDQUCMuLs5YuXKlkZ+fb3Z5XsObMuxN+TUMMoxr86b8GoZ3ZZj8oiS8KcPelF/DIMMoGTJsTeS3/DgMoxKsHAcAAAAAAACUAmuaAQAAAAAAAIXQNAMAAAAAAAAKoWkGAAAAAAAAFELTDAAAAAAAACiEphkAAAAAAABQCE0zAAAAAAAAoBCaZgAAAAAAAEAhNM0AAAAAAACAQmiaeblevXpp7Nixbr//6aefVrt27TxWT0Uq67EDVkCGx5pdBuA28jvW7DKAMiHDY80uA3Ab+R1rdhleg6YZAAAAAAAAUAhNM1jahQsXzC4BQBmQYcC+yC9gb2QYsC/yax00zSqBgoICTZo0SSEhIapfv76efvpp577U1FTdfvvtCgwMVFBQkO666y5lZGRcdb6VK1fquuuuk7+/v8LDw/XII4+UqI5vv/1W3bt3V7Vq1dSqVSt98skncjgceu+99yRJR44ckcPh0Jo1axQbG6tq1arpjTfe0IkTJzR48GA1aNBA1atXV+vWrfX3v//dZe6zZ89q2LBhCgwMVHh4uObOnVvk6+fm5uqxxx5TgwYNVKNGDXXp0kWffvppiWoHzESGLyHDsCPyewn5hV2R4UvIMOyI/F5CfsuGplkl8Nprr6lGjRpKSUnR7NmzlZiYqE2bNqmgoEC33367Tp48qa1bt2rTpk366aefNGjQoCvOtXTpUo0ePVoPPvig9u/fr/Xr16tp06bXrCE/P18DBgxQ9erVlZKSouXLl2vKlCnFvvaJJ55QQkKCDh48qPj4eJ0/f14dOnTQhx9+qAMHDujBBx/U0KFDtWvXLud7Jk6cqK1bt+r999/Xxo0b9emnn+rLL790mfeRRx7Rzp07tXr1an399de68847deutt+r7778v4Z8kYA4yfAkZhh2R30vIL+yKDF9ChmFH5PcS8ltGBrxabGys0b17d5exTp06GY8//rixceNGo2rVqkZqaqpz37///W9DkrFr1y7DMAxj+vTpRtu2bZ37IyIijClTppS6jo8//tjw8fExjh075hzbtGmTIcl49913DcMwjMOHDxuSjAULFlxzvr59+xoTJkwwDMMwzpw5Y/j5+Rlr16517j9x4oQREBBgJCQkGIZhGD///LNRtWpV45dffnGZp3fv3sbkyZNLfTxARSHDCYZhkGHYE/lNMAyD/MK+yHCCYRhkGPZEfhMMwyC/nuBjQp8OFaxNmzYuz8PDw3X8+HEdPHhQkZGRioyMdO5r1aqVatWqpYMHD6pTp04u7zt+/LiOHj2q3r17l7qGQ4cOKTIyUvXr13eOde7cudjXduzY0eV5fn6+nnvuOa1du1a//PKL8vLylJubq+rVq0uSfvzxR+Xl5alLly7O94SEhKh58+bO5/v371d+fr6aNWvmMndubq7q1KlT6uMBKhIZJsOwL/JLfmFvZJgMw77IL/n1BJpmlYCvr6/Lc4fDoYKCglLPExAQ4KmSrqpGjRouz+fMmaOFCxdqwYIFat26tWrUqKGxY8cqLy+vxHPm5OSoatWq2rNnj6pWreqyLzAw0CN1A+WFDJNh2Bf5Jb+wNzJMhmFf5Jf8egJrmlViLVu2VFpamtLS0pxj33zzjbKystSqVasir69Zs6YaNWqk5OTkUn+t5s2bKy0tzWVxxd27d5fovTt27NDtt9+ue++9V23btlXjxo313XffOfc3adJEvr6+SklJcY6dOnXK5TU33HCD8vPzdfz4cTVt2tRl+23XH7ATMkyGYV/kl/zC3sgwGYZ9kV/yWxo0zSqxuLg4tW7dWkOGDNGXX36pXbt2adiwYYqNjS1yauhlTz/9tObOnasXX3xR33//vb788kstWrToml/rD3/4g5o0aaLhw4fr66+/1o4dO/TUU09JutTxv5qYmBht2rRJn332mQ4ePKiHHnrI5UMnMDBQI0eO1MSJE7V582YdOHBA9913n6pU+f9v72bNmmnIkCEaNmyY3nnnHR0+fFi7du3SrFmz9OGHH5bkjwuwHDJMhmFf5Jf8wt7IMBmGfZFf8lsaNM0qMYfDoffff1+1a9dWz549FRcXp8aNG2vNmjVXfM/w4cO1YMECLVmyRNddd5369etXortuVK1aVe+9955ycnLUqVMnjRo1ynnXkGrVql31vU899ZTat2+v+Ph49erVS/Xr19eAAQNcXjNnzhz16NFDt912m+Li4tS9e3d16NDB5TWvvPKKhg0bpgkTJqh58+YaMGCAdu/erYYNG16zfsCKyDAZhn2RX/ILeyPDZBj2RX7Jb2k4DMMwzC4CldOOHTvUvXt3/fDDD2rSpInZ5QAoJTIM2Bf5BeyNDAP2RX7thaYZKsy7776rwMBAxcTE6IcfflBCQoJq166t7du3m10agBIgw4B9kV/A3sgwYF/k1964PBMe8cYbbygwMLDY7brrrpMknTlzRqNHj1aLFi103333qVOnTnr//fdNrhyARIYBOyO/gL2RYcC+yK/340wzeMSZM2dcFiX8LV9fX0VFRVVwRQBKgwwD9kV+AXsjw4B9kV/vR9MMAAAAAAAAKITLMwEAAAAAAIBCaJoBAAAAAAAAhdA0AwAAAAAAAAqhaQYAAAAAAAAUQtMMAAAAAAAAKISmGQAAAAAAAFAITTMAAAAAAACgkP8DBGSF4cUvT9oAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 1500x200 with 5 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"figure, (ax0, ax1, ax2, ax3, ax4) = plt.subplots (1,5, figsize = (15, 2), sharey=True)\n",
|
||
"sns.barplot (data=df, y=\"pct_white\", x=\"holc_grade\", ax=ax0) \n",
|
||
"sns.barplot (data=df, y=\"pct_black\", x=\"holc_grade\", ax=ax1) \n",
|
||
"sns.barplot (data=df, y=\"pct_hisp\", x=\"holc_grade\", ax=ax2) \n",
|
||
"sns.barplot (data=df, y=\"pct_asian\", x=\"holc_grade\", ax=ax3) \n",
|
||
"sns.barplot (data=df, y=\"pct_other\", x=\"holc_grade\", ax=ax4) \n",
|
||
"\n",
|
||
"\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 35,
|
||
"id": "84231de8-ce69-4909-b69e-62a1744bad01",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<Axes: xlabel='holc_grade'>"
|
||
]
|
||
},
|
||
"execution_count": 35,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGtCAYAAAC2txYyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA60klEQVR4nO3deVRV9f7/8ddhVpADODAUgwqilkPO/LIgo8yb3vzmbVoWaJbdlNL4llOZw703vd6rKEbagEN9TdMsSiuLMOhagqZplkZqGHxT0DRATQ9eOL8/Wp7vPYrDgXM2oM/HWnst996f/fm8OacVLz57MlmtVqsAAAAM4tbQBQAAgKsL4QMAABiK8AEAAAxF+AAAAIYifAAAAEMRPgAAgKEIHwAAwFAeDV3AuWpqanTw4EG1aNFCJpOpocsBAACXwWq16vjx4woLC5Ob28XnNhpd+Dh48KDCw8MbugwAAFAHJSUluvbaay/aptGFjxYtWkj6vXh/f/8GrgYAAFyOyspKhYeH236PX0yjCx9nT7X4+/sTPgAAaGIu55IJLjgFAACGInwAAABDET4AAIChGt01HwCAK091dbXOnDnT0GWgnry8vC55G+3lIHwAAFzGarWqtLRU5eXlDV0KnMDNzU1t27aVl5dXvfohfAAAXOZs8GjTpo2aN2/OwyObsLMPAT106JAiIiLq9V0SPgAALlFdXW0LHi1btmzocuAErVu31sGDB/Xvf/9bnp6ede6HC04BAC5x9hqP5s2bN3AlcJazp1uqq6vr1Q/hAwDgUpxquXI467skfAAAAEMRPgAAgKG44BQAYLioSR8YOt6B2XcaOp4rLVu2TOPHj7/o7csjRoxQeXm5srKyDKvLEcx8AADgRLm5uTKZTA36bJMFCxZo2bJltvWEhASNHz++weo5FzMfAABcYcxmc0OXcFHMfAAAcI6EhASlpKQoJSVFZrNZrVq10tSpU2W1WiVJFotFEydOVHh4uLy9vRUdHa3MzEwdOHBAt9xyiyQpMDBQJpNJI0aMuOhY69evV0BAgO321R07dshkMmnSpEm2No888ogefPBBu+M+/vhjderUSX5+frrjjjt06NAh274RI0Zo6NChtn/n5eVpwYIFMplMMplMOnDggCTp22+/1aBBg+Tn56fg4GA99NBD+uWXX+rz0V0WZj7OUZfzkFfSuUQAwO+WL1+uUaNGacuWLfrqq680evRoRURE6NFHH1VSUpI2b96s9PR0devWTUVFRfrll18UHh6utWvXatiwYSosLJS/v7+aNWt20XFuuukmHT9+XF9//bV69eqlvLw8tWrVSrm5ubY2eXl5mjhxom39t99+0z//+U+98cYbcnNz04MPPqinn35aK1asOK//BQsW6IcfftD111+vmTNnSvr9YWHl5eUaMGCAHnnkEaWlpenUqVOaOHGi7r33Xm3cuNE5H+IFED4AAKhFeHi40tLSZDKZFBsbq127diktLU3x8fFavXq1srOzlZiYKElq166d7bigoCBJUps2bRQQEHDJccxms7p3767c3Fz16tVLubm5euqppzRjxgydOHFCFRUV2rdvn+Lj423HnDlzRosXL1b79u0lSSkpKbZgUVv/Xl5eat68uUJCQmzbX3zxRd1www164YUXbNuWLFmi8PBw/fDDD+rQocPlf1gO4rQLAAC16Nevn91DteLi4rR37159/fXXcnd3twsD9RUfH6/c3FxZrVb961//0t13361OnTpp06ZNysvLU1hYmGJiYmztmzdvbgsekhQaGqrDhw87NObOnTv12Wefyc/Pz7Z07NhRkrR//37n/GAXwMwHAAAO8PHxcXqfCQkJWrJkiXbu3ClPT0917NhRCQkJys3N1a+//npe0Dn3vSomk8l2PcrlOnHihIYMGaK///3v5+0LDQ11/IdwADMfAADUoqCgwG49Pz9fMTEx6tatm2pqapSXl1frcXV5/8nZ6z7OntaRZAsfubm5SkhIqNsP8R81nVtPjx499N133ykqKkrR0dF2i6+vb73GuxTCBwAAtSguLlZqaqoKCwu1cuVKLVy4UOPGjVNUVJSSk5P18MMPKysrS0VFRcrNzdXq1aslSZGRkTKZTFq/fr2OHDmiEydOXHKswMBAde3aVStWrLAFjZtvvlnbt2/XDz/8UO9TPFFRUSooKNCBAwf0yy+/qKamRmPHjtWxY8f0wAMPaOvWrdq/f78+/vhjjRw5st4vjrsUTrsAAAzXFO4STEpK0qlTp9SnTx+5u7tr3LhxGj16tCRp0aJFmjJlisaMGaOjR48qIiJCU6ZMkSRdc801mjFjhiZNmqSRI0cqKSnJ7oFfFxIfH68dO3bYwkdQUJA6d+6ssrIyxcbG1utnefrpp5WcnKzOnTvr1KlTKioqUlRUlL744gtNnDhRt99+uywWiyIjI3XHHXfIzc21cxMmq6MniVyssrJSZrNZFRUV8vf3N3x8brUFAOc4ffq0ioqK1LZtW5dcJ+FKCQkJ6t69u+bPn9/QpTQqF/tOHfn9zWkXAABgKMIHAAAuVFxcbHc767lLcXFxQ5doOK75AADgHP/5dNH6CgsL044dOy66/2pD+AAAwIU8PDwUHR3d0GU0Kpx2AQAAhiJ8AAAAQzkUPqKiomyv4/3PZezYsZJ+vwVn7Nixatmypfz8/DRs2DCVlZW5pHAAANA0ORQ+tm7dqkOHDtmW7OxsSdI999wjSXrqqae0bt06rVmzRnl5eTp48KDuvvtu51cNAACaLIcuOG3durXd+uzZs9W+fXvFx8eroqJCmZmZevPNNzVgwABJ0tKlS9WpUyfl5+erX79+zqsaAAA0WXW+26Wqqkr/8z//o9TUVJlMJm3btk1nzpxRYmKirU3Hjh0VERGhzZs3XzB8WCwWWSwW23plZWVdSwIANBXTzQaPV2HseA66nCeqRkVFafz48Ro/frxhY7pKnS84zcrKUnl5uUaMGCFJKi0tlZeXlwICAuzaBQcHq7S09IL9zJo1S2az2baEh4fXtSQAABpcbm6uTCaTysvLG7qURqvO4SMzM1ODBg2q98NRJk+erIqKCttSUlJSr/4AAEDjVqfw8dNPP+nTTz/VI488YtsWEhKiqqqq85JeWVmZQkJCLtiXt7e3/P397RYAABpSQkKCUlJSlJKSIrPZrFatWmnq1Kk6+y5Wi8WiiRMnKjw8XN7e3oqOjlZmZqYOHDigW265RZIUGBgok8lkO0NwKf/+978vOF5t5s2bpy5dusjX11fh4eEaM2aMTpw4Ydfmiy++UEJCgpo3b67AwEANHDhQv/76a639ffDBBzKbzVqxYsVl1VsfdQofS5cuVZs2bXTnnf/3NteePXvK09NTOTk5tm2FhYUqLi5WXFxc/SsFAMBAy5cvl4eHh7Zs2aIFCxZo3rx5eu211yRJSUlJWrlypdLT07Vnzx69/PLL8vPzU3h4uNauXSvp99+Bhw4d0oIFC+o9Xm3c3NyUnp6u7777TsuXL9fGjRs1YcIE2/4dO3bo1ltvVefOnbV582Zt2rRJQ4YMUXV19Xl9vfnmm3rggQe0YsUKDR8+3JGPqU4cvuC0pqZGS5cuVXJysjw8/u9ws9msUaNGKTU1VUFBQfL399cTTzyhuLg47nQBADQ54eHhSktLk8lkUmxsrHbt2qW0tDTFx8dr9erVys7Ott1k0a5dO9txQUFBkqQ2bdqcdx1kXcZ79NFHa23/nxeeRkVF6a9//av+/Oc/66WXXpIkzZkzR7169bKtS9J11113Xj8ZGRl69tlntW7dOsXHx192vfXhcPj49NNPVVxcrIcffvi8fWlpaXJzc9OwYcNksVg0cOBAux8aAICmol+/fjKZTLb1uLg4zZ07V19//bXc3d2d/ov6QuNVV1fL3d39vPaffvqpZs2ape+//16VlZX697//rdOnT+u3335T8+bNtWPHDttzuC7k7bff1uHDh/XFF1+od+/eTv15Lsbh0y633367rFarOnTocN4+Hx8fZWRk6NixYzp58qTeeeedi17vAQBAU+Pj49PQJejAgQMaPHiwunbtqrVr12rbtm3KyMiQ9PujMCSpWbNml+znhhtuUOvWrbVkyZKLXl/ibLzbBQCAWhQUFNit5+fnKyYmRt26dVNNTY3y8vJqPc7Ly0uSar22oi7j1TbrsW3bNtXU1Gju3Lnq16+fOnTooIMHD9q16dq1q911mLVp3769PvvsM7333nt64oknHKq3PggfAADUori4WKmpqSosLNTKlSu1cOFCjRs3TlFRUUpOTtbDDz+srKwsFRUVKTc3V6tXr5YkRUZGymQyaf369Tpy5Mh5d6A4Ol5toqOjdebMGS1cuFA//vij3njjDS1evNiuzeTJk7V161aNGTNG33zzjb7//nstWrRIv/zyi127Dh066LPPPtPatWud9gCzS6nzE04BAKizRv7EUen3O1pOnTqlPn36yN3dXePGjdPo0aMlSYsWLdKUKVM0ZswYHT16VBEREZoyZYok6ZprrtGMGTM0adIkjRw5UklJSVq2bFm9xjtXt27dNG/ePP3973/X5MmTdfPNN2vWrFlKSkqytenQoYM++eQTTZkyRX369FGzZs3Ut29fPfDAA+f1Fxsbq40bNyohIUHu7u6aO3duHT6xy2eyGnmS5zJUVlbKbDaroqKiQZ75ETXpA4ePOTD7zks3AoCrzOnTp1VUVKS2bds2iuskHNGQjx5vzC72nTry+5vTLgAAwFCEDwAAXKi4uFh+fn4XXIqLixu6RMNxzQcAAOfIzc11Wl9hYWHasWPHRfdfbQgfAAC4kIeHh6Kjoxu6jEaF0y4AAMBQhA8AAGAowgcAADAU4QMAABiK8AEAAAzF3S4AAMN1Wd7F0PF2Je8ydDxHXc4TVU0mk959910NHTrUsLpchZkPAACcKDc3VyaTSeXl5U7t99ChQxo0aJBT+2wozHwAANAEhISENHQJTsPMBwAA50hISFBKSopSUlJkNpvVqlUrTZ06VWffxWqxWDRx4kSFh4fL29tb0dHRyszM1IEDB3TLLbdIkgIDA2UymTRixIjLGrOmpkYTJkxQUFCQQkJCNH36dLv9JpNJWVlZkqSqqiqlpKQoNDRUPj4+ioyM1KxZs+zaLlq0SIMGDVKzZs3Url07vf322/X+XJyF8AEAQC2WL18uDw8PbdmyRQsWLNC8efP02muvSZKSkpK0cuVKpaena8+ePXr55Zfl5+en8PBwrV27VpJUWFioQ4cOacGCBZc9nq+vrwoKCjRnzhzNnDlT2dnZtbZNT0/X+++/r9WrV6uwsFArVqxQVFSUXZupU6dq2LBh2rlzp4YPH677779fe/bsqfsH4kScdgEAoBbh4eFKS0uTyWRSbGysdu3apbS0NMXHx2v16tXKzs5WYmKiJKldu3a244KCgiRJbdq0UUBAwGWP17VrV02bNk2SFBMToxdffFE5OTm67bbbzmtbXFysmJgY9e/fXyaTSZGRkee1ueeee/TII49Ikv7yl78oOztbCxcu1EsvvXTZNbkKMx8AANSiX79+MplMtvW4uDjt3btXX3/9tdzd3RUfH+/U8bp27Wq3HhoaqsOHD9fadsSIEdqxY4diY2P15JNP6pNPPjmvTVxc3HnrjWXmg/ABAIADfHx8XNKvp6en3brJZFJNTU2tbXv06KGioiL95S9/0alTp3TvvffqT3/6k0vqcgXCBwAAtSgoKLBbz8/PV0xMjLp166aamhrl5eXVepyXl5ckqbq62qX1+fv767777tOrr76qt956S2vXrtWxY8fs6v1P+fn56tSpk0trulxc8wEAQC2Ki4uVmpqqxx57TNu3b9fChQs1d+5cRUVFKTk5WQ8//LDS09PVrVs3/fTTTzp8+LDuvfdeRUZGymQyaf369frDH/6gZs2ayc/Pz6m1zZs3T6Ghobrhhhvk5uamNWvWKCQkxO4akzVr1qhXr17q37+/VqxYoS1btigzM9OpddQV4QMAYLjG/sRR6fc7Wk6dOqU+ffrI3d1d48aN0+jRoyVJixYt0pQpUzRmzBgdPXpUERERmjJliiTpmmuu0YwZMzRp0iSNHDlSSUlJWrZsmVNra9GihebMmaO9e/fK3d1dvXv31ocffig3t/87oTFjxgytWrVKY8aMUWhoqFauXKnOnTs7tY66MlnP3rTcSFRWVspsNquiokL+/v6Gjx816QOHjzkw+04XVAIATdvp06dVVFSktm3buuw6CVe5nMedN2auehT7xb5TR35/c80HAAAwFOEDAAAXKi4ulp+f3wWX4uLihi7RcFzzAQDAOXJzc53WV1hYmHbs2HHR/c7WyK6oOA/hAwAAF/Lw8FB0dHRDl9GocNoFAAAYivABAAAMRfgAAACGInwAAABDET4AAIChuNsFAGC4PR2NfcFZp+8bx6vkXcVVTzR1FWY+AABwotzcXJlMJpWXlxs25qFDhzRo0CDDxqsvZj4AAGjiQkJCGroEhzg88/Hzzz/rwQcfVMuWLdWsWTN16dJFX331lW2/1WrV888/r9DQUDVr1kyJiYnau3evU4sGAMCVEhISlJKSopSUFJnNZrVq1UpTp061PTnUYrFo4sSJCg8Pl7e3t6Kjo5WZmakDBw7olltukSQFBgbKZDJpxIgRlxxvw4YN6t+/vwICAtSyZUsNHjxY+/fvt+2vqqpSSkqKQkND5ePjo8jISM2aNcu232QyKSsry7Y+ceJEdejQQc2bN1e7du00depUnTlzxrZ/+vTp6t69u9544w1FRUXJbDbr/vvv1/Hjx+v5yV0eh8LHr7/+qhtvvFGenp766KOPtHv3bs2dO1eBgYG2NnPmzFF6eroWL16sgoIC+fr6auDAgTp9+rTTiwcAwFWWL18uDw8PbdmyRQsWLNC8efP02muvSZKSkpK0cuVKpaena8+ePXr55Zfl5+en8PBwrV27VpJUWFioQ4cOacGCBZcc6+TJk0pNTdVXX32lnJwcubm56b/+679UU1MjSUpPT9f777+v1atXq7CwUCtWrFBUVNQF+2vRooWWLVum3bt3a8GCBXr11VeVlpZm12b//v3KysrS+vXrtX79euXl5Wn27Nl1/LQc49Bpl7///e8KDw/X0qVLbdvatm1r+7fVatX8+fP13HPP6a677pIkvf766woODlZWVpbuv/9+J5UNAIBrhYeHKy0tTSaTSbGxsdq1a5fS0tIUHx+v1atXKzs7W4mJiZKkdu3a2Y4LCgqSJLVp00YBAQGXNdawYcPs1pcsWaLWrVtr9+7duv7661VcXKyYmBj1799fJpNJkZGRF+3vueees/07KipKTz/9tFatWqUJEybYttfU1GjZsmVq0aKFJOmhhx5STk6O/va3v11WzfXh0MzH+++/r169eumee+5RmzZtdMMNN+jVV1+17S8qKlJpaanty5Aks9msvn37avPmzbX2abFYVFlZabcAANDQ+vXrJ5PJZFuPi4vT3r179fXXX8vd3V3x8fFOG2vv3r164IEH1K5dO/n7+9tmNc6+8XbEiBHasWOHYmNj9eSTT+qTTz65aH9vvfWWbrzxRoWEhMjPz0/PPffceW/PjYqKsgUPSQoNDdXhw4ed9jNdjEMzHz/++KMWLVqk1NRUTZkyRVu3btWTTz4pLy8vJScnq7S0VJIUHBxsd1xwcLBt37lmzZqlGTNm1LF8oH6iJn3g8DEHZt/pgkoANBU+Pj5O73PIkCGKjIzUq6++qrCwMNXU1Oj6669XVVWVJKlHjx4qKirSRx99pE8//VT33nuvEhMT9fbbb5/X1+bNmzV8+HDNmDFDAwcOlNls1qpVqzR37ly7dp6ennbrJpPJdprH1RwKHzU1NerVq5deeOEFSdINN9ygb7/9VosXL1ZycnKdCpg8ebJSU1Nt65WVlQoPD69TXwAAOEtBQYHden5+vmJiYtStWzfV1NQoLy/Pbqb/LC8vL0lSdXX1ZY1z9OhRFRYW6tVXX9VNN90kSdq0adN57fz9/XXffffpvvvu05/+9CfdcccdOnbsmO00z1lffvmlIiMj9eyzz9q2/fTTT5dVi1EcOu0SGhqqzp07223r1KmTbSrn7K0+ZWVldm3KysoueBuQt7e3/P397RYAABpacXGxUlNTVVhYqJUrV2rhwoUaN26coqKilJycrIcfflhZWVkqKipSbm6uVq9eLUmKjIyUyWTS+vXrdeTIEZ04ceKi4wQGBqply5Z65ZVXtG/fPm3cuNHuj3JJmjdvnlauXKnvv/9eP/zwg9asWaOQkJBarymJiYlRcXGxVq1apf379ys9PV3vvvuu0z4XZ3Bo5uPGG29UYWGh3bYffvjBduFL27ZtFRISopycHHXv3l3S7zMZBQUFevzxx51TMQCgyWsKTxxNSkrSqVOn1KdPH7m7u2vcuHEaPXq0JGnRokWaMmWKxowZo6NHjyoiIkJTpkyRJF1zzTWaMWOGJk2apJEjRyopKUnLli274Dhubm5atWqVnnzySV1//fWKjY1Venq6EhISbG1atGihOXPmaO/evXJ3d1fv3r314Ycfys3t/DmEP/7xj3rqqaeUkpIii8WiO++8U1OnTtX06dOd+fHUi8l69qbly7B161b9v//3/zRjxgzde++92rJlix599FG98sorGj58uKTf74iZPXu2li9frrZt22rq1Kn65ptvtHv37ss6T1ZZWSmz2ayKiooGmQXhGoCrC9834DqnT59WUVGR2rZt65LrJFwpISFB3bt31/z58xu6lEblYt+pI7+/HZr56N27t959911NnjxZM2fOVNu2bTV//nxb8JCkCRMm6OTJkxo9erTKy8vVv39/bdiwocn9hwcAAFzD4cerDx48WIMHD77gfpPJpJkzZ2rmzJn1KgwAgCtBcXHxeddL/qfdu3crIiLCwIoaHu92AQDgHLm5uU7rKywsTDt27Ljo/qsN4QMAABfy8PBQdHR0Q5fRqDj8YjkAAID6IHwAAABDET4AAIChCB8AAMBQhA8AAGAo7nYBABgu488bDR1v7OIBho5nlKb6JFZmPgAAcKLc3FyZTCaVl5c36j4bEuEDAADYVFVVuXwMwgcAAOdISEhQSkqKUlJSZDab1apVK02dOlVn38VqsVg0ceJEhYeHy9vbW9HR0crMzNSBAwd0yy23SJICAwNlMpk0YsSIS45nsVj05JNPqk2bNvLx8VH//v21detWSbpknzU1NZowYYKCgoIUEhJy3ttry8vL9cgjj6h169by9/fXgAEDtHPnTtv+6dOnq3v37nrttdcMewkg4QMAgFosX75cHh4e2rJlixYsWKB58+bptddekyQlJSVp5cqVSk9P1549e/Tyyy/Lz89P4eHhWrt2rSSpsLBQhw4d0oIFCy451oQJE7R27VotX75c27dvV3R0tAYOHKhjx45dss/ly5fL19dXBQUFmjNnjmbOnKns7Gzb/nvuuUeHDx/WRx99pG3btqlHjx669dZbdezYMVubffv2ae3atXrnnXcu+ih4Z+GCUwAAahEeHq60tDSZTCbFxsZq165dSktLU3x8vFavXq3s7GwlJiZKktq1a2c7LigoSJLUpk0bBQQEXHKckydPatGiRVq2bJkGDRokSXr11VeVnZ2tzMxMPfPMMxfts2vXrpo2bZokKSYmRi+++KJycnJ02223adOmTdqyZYsOHz4sb29vSdI///lPZWVl6e2339bo0aMl/X6q5fXXX1fr1q3r/oE5gJkPAABq0a9fP5lMJtt6XFyc9u7dq6+//lru7u6Kj493yjj79+/XmTNndOONN9q2eXp6qk+fPtqzZ88lj+/atavdemhoqA4fPixJ2rlzp06cOKGWLVvKz8/PthQVFWn//v22YyIjIw0LHhIzHwAAOMSIayIc4enpabduMplUU1MjSTpx4oRCQ0NrfUvvf86g+Pr6urLE8zDzAQBALQoKCuzW8/PzFRMTo27duqmmpkZ5eXm1Hufl5SVJqq6uvqxx2rdvLy8vL33xxRe2bWfOnNHWrVvVuXPnOvV5Vo8ePVRaWmp7s+5/Lq1atXKoL2cifAAAUIvi4mKlpqaqsLBQK1eu1MKFCzVu3DhFRUUpOTlZDz/8sLKyslRUVKTc3FytXr1a0u+nMEwmk9avX68jR47oxIkTFx3H19dXjz/+uJ555hlt2LBBu3fv1qOPPqrffvtNo0aNqlOfZyUmJiouLk5Dhw7VJ598ogMHDujLL7/Us88+q6+++qp+H1A9cNoFAGC4pvDE0aSkJJ06dUp9+vSRu7u7xo0bZ7tAc9GiRZoyZYrGjBmjo0ePKiIiQlOmTJEkXXPNNZoxY4YmTZqkkSNHKikpScuWLbvoWLNnz1ZNTY0eeughHT9+XL169dLHH3+swMDAOvcp/X4K5sMPP9Szzz6rkSNH6siRIwoJCdHNN9+s4ODgen0+9WGynr1puZGorKyU2WxWRUWF/P39DR8/atIHDh9zYPadLqgERuD7Blzn9OnTKioqMuzZEc7UVB9b7moX+04d+f3NaRcAAGAowgcAAC5UXFxsd5vruUtxcXFDl2g4rvkAAOActd2aWldhYWEXfWpoWFiY08ZqKggfAAC40NnbXPF/OO0CAHCpRnZfA+rBWd8l4QMA4BJnn7z522+/NXAlcJaqqipJkru7e7364bQLAMAl3N3dFRAQYHvPSPPmze3elYKmpaamRkeOHFHz5s3l4VG/+ED4AAC4TEhIiCTZAgiaNjc3N0VERNQ7RBI+AAAuYzKZFBoaqjZt2ujMmTMNXQ7qycvLS25u9b9ig/ABAHA5d3f3el8ngCsHF5wCAABDET4AAIChCB8AAMBQhA8AAGAowgcAADAU4QMAABiK8AEAAAxF+AAAAIZyKHxMnz5dJpPJbunYsaNt/+nTpzV27Fi1bNlSfn5+GjZsmMrKypxeNAAAaLocnvm47rrrdOjQIduyadMm276nnnpK69at05o1a5SXl6eDBw/q7rvvdmrBAACgaXP48eoeHh62FwX9p4qKCmVmZurNN9/UgAEDJElLly5Vp06dlJ+fr379+tXan8VikcVisa1XVlY6WhIAAGhCHJ752Lt3r8LCwtSuXTsNHz5cxcXFkqRt27bpzJkzSkxMtLXt2LGjIiIitHnz5gv2N2vWLJnNZtsSHh5ehx8DAAA0FQ6Fj759+2rZsmXasGGDFi1apKKiIt100006fvy4SktL5eXlpYCAALtjgoODVVpaesE+J0+erIqKCttSUlJSpx8EAAA0DQ6ddhk0aJDt3127dlXfvn0VGRmp1atXq1mzZnUqwNvbW97e3nU6FgAAND31utU2ICBAHTp00L59+xQSEqKqqiqVl5fbtSkrK6v1GhEAAHB1qlf4OHHihPbv36/Q0FD17NlTnp6eysnJse0vLCxUcXGx4uLi6l0oAAC4Mjh02uXpp5/WkCFDFBkZqYMHD2ratGlyd3fXAw88ILPZrFGjRik1NVVBQUHy9/fXE088obi4uAve6QIAAK4+DoWP//3f/9UDDzygo0ePqnXr1urfv7/y8/PVunVrSVJaWprc3Nw0bNgwWSwWDRw4UC+99JJLCgcAAE2TQ+Fj1apVF93v4+OjjIwMZWRk1KsoAHCFqEkfOHzMgdl3uqAS4OrGu10AAIChCB8AAMBQhA8AAGAowgcAADAU4QMAABiK8AEAAAxF+AAAAIYifAAAAEMRPgAAgKEIHwAAwFCEDwAAYCjCBwAAMBThAwAAGIrwAQAADEX4AAAAhiJ8AAAAQxE+AACAoQgfAADAUIQPAABgKMIHAAAwFOEDAAAYivABAAAMRfgAAACGInwAAABDET4AAIChCB8AAMBQhA8AAGAowgcAADAU4QMAABiK8AEAAAxF+AAAAIYifAAAAEMRPgAAgKEIHwAAwFCEDwAAYCjCBwAAMFS9wsfs2bNlMpk0fvx427bTp09r7Nixatmypfz8/DRs2DCVlZXVt04AAHCFqHP42Lp1q15++WV17drVbvtTTz2ldevWac2aNcrLy9PBgwd1991317tQAABwZahT+Dhx4oSGDx+uV199VYGBgbbtFRUVyszM1Lx58zRgwAD17NlTS5cu1Zdffqn8/HynFQ0AAJquOoWPsWPH6s4771RiYqLd9m3btunMmTN22zt27KiIiAht3ry51r4sFosqKyvtFgAAcOXycPSAVatWafv27dq6det5+0pLS+Xl5aWAgAC77cHBwSotLa21v1mzZmnGjBmOlgEAAJooh2Y+SkpKNG7cOK1YsUI+Pj5OKWDy5MmqqKiwLSUlJU7pFwAANE4OhY9t27bp8OHD6tGjhzw8POTh4aG8vDylp6fLw8NDwcHBqqqqUnl5ud1xZWVlCgkJqbVPb29v+fv72y0AAODK5dBpl1tvvVW7du2y2zZy5Eh17NhREydOVHh4uDw9PZWTk6Nhw4ZJkgoLC1VcXKy4uDjnVQ0AwCVETfrA4WMOzL7TBZXgXA6FjxYtWuj666+32+br66uWLVvato8aNUqpqakKCgqSv7+/nnjiCcXFxalfv37OqxoAADRZDl9weilpaWlyc3PTsGHDZLFYNHDgQL300kvOHgYAADRR9Q4fubm5dus+Pj7KyMhQRkZGfbsGAABXIN7tAgAADEX4AAAAhiJ8AAAAQxE+AACAoQgfAADAUIQPAABgKMIHAAAwFOEDAAAYivABAAAMRfgAAACGInwAAABDET4AAIChCB8AAMBQhA8AAGAowgcAADAU4QMAABiK8AEAAAxF+AAAAIYifAAAAEMRPgAAgKEIHwAAwFCEDwAAYCjCBwAAMBThAwAAGIrwAQAADEX4AAAAhiJ8AAAAQxE+AACAoQgfAADAUIQPAABgKMIHAAAwFOEDAAAYivABAAAMRfgAAACG8mjoAgAAaDSmmx1sX+GaOq5wzHwAAABDET4AAIChHAofixYtUteuXeXv7y9/f3/FxcXpo48+su0/ffq0xo4dq5YtW8rPz0/Dhg1TWVmZ04sGAABNl0Ph49prr9Xs2bO1bds2ffXVVxowYIDuuusufffdd5Kkp556SuvWrdOaNWuUl5engwcP6u6773ZJ4QAAoGly6ILTIUOG2K3/7W9/06JFi5Sfn69rr71WmZmZevPNNzVgwABJ0tKlS9WpUyfl5+erX79+zqsaAAA0WXW+5qO6ulqrVq3SyZMnFRcXp23btunMmTNKTEy0tenYsaMiIiK0efPmC/ZjsVhUWVlptwAAgCuXw+Fj165d8vPzk7e3t/785z/r3XffVefOnVVaWiovLy8FBATYtQ8ODlZpaekF+5s1a5bMZrNtCQ8Pd/iHAAAATYfD4SM2NlY7duxQQUGBHn/8cSUnJ2v37t11LmDy5MmqqKiwLSUlJXXuCwAANH4OP2TMy8tL0dHRkqSePXtq69atWrBgge677z5VVVWpvLzcbvajrKxMISEhF+zP29tb3t7ejlcOAACapHo/56OmpkYWi0U9e/aUp6encnJybPsKCwtVXFysuLi4+g4DAACuEA7NfEyePFmDBg1SRESEjh8/rjfffFO5ubn6+OOPZTabNWrUKKWmpiooKEj+/v564oknFBcXx50uAADAxqHwcfjwYSUlJenQoUMym83q2rWrPv74Y912222SpLS0NLm5uWnYsGGyWCwaOHCgXnrpJZcUDgAAmiaHwkdmZuZF9/v4+CgjI0MZGRn1KgoAAFy5eLcLAAAwFOEDAAAYivABAAAMRfgAAACGInwAAABDET4AAIChCB8AAMBQhA8AAGAowgcAADAU4QMAABiK8AEAAAxF+AAAAIYifAAAAEMRPgAAgKEIHwAAwFCEDwAAYCjCBwAAMBThAwAAGIrwAQAADEX4AAAAhiJ8AAAAQxE+AACAoQgfAADAUIQPAABgKMIHAAAwFOEDAAAYyqOhCwCARm262cH2Fa6pA7iCMPMBAAAMRfgAAACGInwAAABDET4AAIChCB8AAMBQhA8AAGAowgcAADAU4QMAABiK8AEAAAxF+AAAAIZyKHzMmjVLvXv3VosWLdSmTRsNHTpUhYWFdm1Onz6tsWPHqmXLlvLz89OwYcNUVlbm1KIBAEDT5VD4yMvL09ixY5Wfn6/s7GydOXNGt99+u06ePGlr89RTT2ndunVas2aN8vLydPDgQd19991OLxwAADRNDr1YbsOGDXbry5YtU5s2bbRt2zbdfPPNqqioUGZmpt58800NGDBAkrR06VJ16tRJ+fn56tev33l9WiwWWSwW23plZWVdfg4AANBE1OutthUVv7+9MSgoSJK0bds2nTlzRomJibY2HTt2VEREhDZv3lxr+Jg1a5ZmzJhRnzIAAGgQXZZ3cfiYXcm7XFBJ01LnC05ramo0fvx43Xjjjbr++uslSaWlpfLy8lJAQIBd2+DgYJWWltbaz+TJk1VRUWFbSkpK6loSAABoAuo88zF27Fh9++232rRpU70K8Pb2lre3d736AAAATUedZj5SUlK0fv16ffbZZ7r22mtt20NCQlRVVaXy8nK79mVlZQoJCalXoQAA4MrgUPiwWq1KSUnRu+++q40bN6pt27Z2+3v27ClPT0/l5OTYthUWFqq4uFhxcXHOqRgAADRpDp12GTt2rN5880299957atGihe06DrPZrGbNmslsNmvUqFFKTU1VUFCQ/P399cQTTyguLq7Wi00BAMDVx6HwsWjRIklSQkKC3falS5dqxIgRkqS0tDS5ublp2LBhslgsGjhwoF566SWnFAsAjR13PwCX5lD4sFqtl2zj4+OjjIwMZWRk1LkoAABw5eLdLgAAwFCEDwAAYCjCBwAAMBThAwAAGIrwAQAADEX4AAAAhiJ8AAAAQxE+AACAoQgfAADAUA494RSApOlmB9tXuKYOAGiimPkAAACGInwAAABDET4AAIChCB8AAMBQhA8AAGAowgcAADAU4QMAABiK8AEAAAxF+AAAAIYifAAAAEPxeHXAxbos7+LwMbuSd7mgEgBoHJj5AAAAhiJ8AAAAQxE+AACAoQgfAADAUIQPAABgKMIHAAAwFOEDAAAYivABAAAMRfgAAACGInwAAABDET4AAIChCB8AAMBQhA8AAGAowgcAADAU4QMAABjK4fDx+eefa8iQIQoLC5PJZFJWVpbdfqvVqueff16hoaFq1qyZEhMTtXfvXmfVCwAAmjiHw8fJkyfVrVs3ZWRk1Lp/zpw5Sk9P1+LFi1VQUCBfX18NHDhQp0+frnexAACg6fNw9IBBgwZp0KBBte6zWq2aP3++nnvuOd11112SpNdff13BwcHKysrS/fffX79qAQBAk+fUaz6KiopUWlqqxMRE2zaz2ay+fftq8+bNtR5jsVhUWVlptwAAgCuXU8NHaWmpJCk4ONhue3BwsG3fuWbNmiWz2WxbwsPDnVkSAABoZBr8bpfJkyeroqLCtpSUlDR0SQAAwIWcGj5CQkIkSWVlZXbby8rKbPvO5e3tLX9/f7sFAABcuZwaPtq2bauQkBDl5OTYtlVWVqqgoEBxcXHOHAoAADRRDt/tcuLECe3bt8+2XlRUpB07digoKEgREREaP368/vrXvyomJkZt27bV1KlTFRYWpqFDhzqzbgAA0EQ5HD6++uor3XLLLbb11NRUSVJycrKWLVumCRMm6OTJkxo9erTKy8vVv39/bdiwQT4+Ps6rurGZbnaoeZe2EQ4PsSt5l8PHAADQGDkcPhISEmS1Wi+432QyaebMmZo5c2a9CgMAAFemBr/bBQAAXF0IHwAAwFCEDwAAYCjCBwAAMBThAwAAGIrwAQAADEX4AAAAhiJ8AAAAQxE+AACAoQgfAADAUIQPAABgKMIHAAAwlMMvlgMANKyMP290qP3YxQNcVAmMcCV+34QP4ApwJf7PCcCVi9MuAADAUIQPAABgKE67XKGYhgcANFbMfAAAAEMRPgAAgKEIHwAAwFCEDwAAYCjCBwAAMBThAwAAGIrwAQAADMVzPgCgge3p2MmxAxIyXFMIYBDCB9AI8csIwJWM8NFE8MsIAK4M/P+caz4AAIDBCB8AAMBQhA8AAGAowgcAADAU4QMAABiK8AEAAAxF+AAAAIYifAAAAEMRPgAAgKEIHwAAwFAuCx8ZGRmKioqSj4+P+vbtqy1btrhqKAAA0IS4JHy89dZbSk1N1bRp07R9+3Z169ZNAwcO1OHDh10xHAAAaEJcEj7mzZunRx99VCNHjlTnzp21ePFiNW/eXEuWLHHFcAAAoAlx+lttq6qqtG3bNk2ePNm2zc3NTYmJidq8efN57S0WiywWi229oqJCklRZWens0i5LjeU3h4+pNFkdal99qtrhMU5UO3bMqaqTDrVvqM+7ofF9X134vq8ufN/GOjuu1XoZn6HVyX7++WerJOuXX35pt/2ZZ56x9unT57z206ZNs0piYWFhYWFhuQKWkpKSS2YFp898OGry5MlKTU21rdfU1OjYsWNq2bKlTCZTA1ZmrMrKSoWHh6ukpET+/v4NXQ5cjO/76sL3fXW5Wr9vq9Wq48ePKyws7JJtnR4+WrVqJXd3d5WVldltLysrU0hIyHntvb295e3tbbctICDA2WU1Gf7+/lfVf6xXO77vqwvf99Xlavy+zWbzZbVz+gWnXl5e6tmzp3JycmzbampqlJOTo7i4OGcPBwAAmhiXnHZJTU1VcnKyevXqpT59+mj+/Pk6efKkRo4c6YrhAABAE+KS8HHffffpyJEjev7551VaWqru3btrw4YNCg4OdsVwVwRvb29NmzbtvFNQuDLxfV9d+L6vLnzfl2ayWi/nnhgAAADn4N0uAADAUIQPAABgKMIHAAAwFOEDAAAYivDRCH377bcNXQIAAC5D+Ggkjh8/rldeeUV9+vRRt27dGrocAHW0ceNGde7cudaXe1VUVOi6667Tv/71rwaoDGg8CB8N7PPPP1dycrJCQ0P1z3/+UwMGDFB+fn5DlwUXOXr0qO3fJSUlev755/XMM8/wy+gKMn/+fD366KO1PlbbbDbrscce07x58xqgMrhSTU2NlixZosGDB+v6669Xly5d9Mc//lGvv/765b3l9SrDcz4aQGlpqZYtW6bMzExVVlbq3nvv1eLFi7Vz50517ty5ocuDC+zatUtDhgxRSUmJYmJitGrVKt1xxx06efKk3NzcdPLkSb399tsaOnRoQ5eKeoqMjNSGDRvUqVOnWvd///33uv3221VcXGxwZXAVq9WqIUOG6MMPP1S3bt3UsWNHWa1W7dmzR7t27dIf//hHZWVlNXSZjQozHwYbMmSIYmNj9c0332j+/Pk6ePCgFi5c2NBlwcUmTJigLl266PPPP1dCQoIGDx6sO++8UxUVFfr111/12GOPafbs2Q1dJpygrKxMnp6eF9zv4eGhI0eOGFgRXG3ZsmX6/PPPlZOTo6+//lorV67UqlWrtHPnTn366afauHGjXn/99YYus1Fh5sNgHh4eevLJJ/X4448rJibGtt3T05OZjytYq1attHHjRnXt2lUnTpyQv7+/tm7dqp49e0r6/a/hfv36qby8vGELRb21b99ec+fOveAs1jvvvKOnn35aP/74o7GFwWVuv/12DRgwQJMmTap1/wsvvKC8vDx9/PHHBlfWeDHzYbBNmzbp+PHj6tmzp/r27asXX3xRv/zyS0OXBRc7duyYQkJCJEl+fn7y9fVVYGCgbX9gYKCOHz/eUOXBif7whz9o6tSpOn369Hn7Tp06pWnTpmnw4MENUBlc5ZtvvtEdd9xxwf2DBg3Szp07Dayo8WPmo4GcPHlSb731lpYsWaItW7aourpa8+bN08MPP6wWLVo0dHlwMjc3N5WVlal169aSpBYtWuibb75R27ZtJf0+VR8WFqbq6uqGLBNOUFZWph49esjd3V0pKSmKjY2V9PvsVkZGhqqrq7V9+3ZetHkF8fLy0k8//aTQ0NBa9x88eFBt27aVxWIxuLLGi/DRCBQWFiozM1NvvPGGysvLddttt+n9999v6LLgRG5ubho0aJDtLZfr1q3TgAED5OvrK0myWCzasGED4eMK8dNPP+nxxx/Xxx9/bLvTwWQyaeDAgcrIyLCFTlwZ3N3dVVpaavvj4lz8cXE+wkcjUl1drXXr1mnJkiWEjyvMyJEjL6vd0qVLXVwJjPTrr79q3759slqtiomJsTvVhivHuX9cnIs/Ls5H+AAAoB7448JxhA8AAGAo7nYBAACGInwAAABDET4AAIChCB8AAMBQhA/gCpaQkKDx48fX+fjp06ere/fuTqvHSPX92QG4DuEDAAAYivABoNE6c+ZMQ5cAwAUIH8AVrqamRhMmTFBQUJBCQkI0ffp0277i4mLddddd8vPzk7+/v+69916VlZVdtL8lS5bouuuuk7e3t0JDQ5WSknJZdXz//ffq37+/fHx81LlzZ3366acymUzKysqSJB04cEAmk0lvvfWW4uPj5ePjoxUrVujo0aN64IEHdM0116h58+bq0qWLVq5cadf3yZMnlZSUJD8/P4WGhmru3LnnjW+xWPT000/rmmuuka+vr/r27avc3NzLqh2AcxE+gCvc8uXL5evrq4KCAs2ZM0czZ85Udna2ampqdNddd+nYsWPKy8tTdna2fvzxR913330X7GvRokUaO3asRo8erV27dun9999XdHT0JWuorq7W0KFD1bx5cxUUFOiVV17Rs88+W2vbSZMmady4cdqzZ48GDhyo06dPq2fPnvrggw/07bffavTo0XrooYe0ZcsW2zHPPPOM8vLy9N577+mTTz5Rbm6utm/fbtdvSkqKNm/erFWrVumbb77RPffcozvuuEN79+69zE8SgNNYAVyx4uPjrf3797fb1rt3b+vEiROtn3zyidXd3d1aXFxs2/fdd99ZJVm3bNlitVqt1mnTplm7detm2x8WFmZ99tlnHa7jo48+snp4eFgPHTpk25adnW2VZH333XetVqvVWlRUZJVknT9//iX7u/POO63//d//bbVardbjx49bvby8rKtXr7btP3r0qLVZs2bWcePGWa1Wq/Wnn36yuru7W3/++We7fm699Vbr5MmTHf55ANSPRwNnHwAu1rVrV7v10NBQHT58WHv27FF4eLjCw8Nt+zp37qyAgADt2bNHvXv3tjvu8OHDOnjwoG699VaHaygsLFR4eLhCQkJs2/r06VNr2169etmtV1dX64UXXtDq1av1888/q6qqShaLRc2bN5ck7d+/X1VVVerbt6/tmKCgINur7CVp165dqq6uVocOHez6tlgsatmypcM/D4D6IXwAVzhPT0+7dZPJpJqaGof7adasmbNKuihfX1+79X/84x9asGCB5s+fry5dusjX11fjx49XVVXVZfd54sQJubu7a9u2bXJ3d7fb5+fn55S6AVw+rvkArlKdOnVSSUmJSkpKbNt2796t8vJyde7c+bz2LVq0UFRUlHJychweKzY2ViUlJXYXs27duvWyjv3iiy9011136cEHH1S3bt3Url07/fDDD7b97du3l6enpwoKCmzbfv31V7s2N9xwg6qrq3X48GFFR0fbLf85GwPAGIQP4CqVmJioLl26aPjw4dq+fbu2bNmipKQkxcfHn3fq46zp06dr7ty5Sk9P1969e7V9+3YtXLjwkmPddtttat++vZKTk/XNN9/oiy++0HPPPSfp95mYi4mJiVF2dra+/PJL7dmzR4899phdiPHz89OoUaP0zDPPaOPGjfr22281YsQIubn93//eOnTooOHDhyspKUnvvPOOioqKtGXLFs2aNUsffPDB5XxcAJyI8AFcpUwmk9577z0FBgbq5ptvVmJiotq1a6e33nrrgsckJydr/vz5eumll3Tddddp8ODBl3W3iLu7u7KysnTixAn17t1bjzzyiO1uFx8fn4se+9xzz6lHjx4aOHCgEhISFBISoqFDh9q1+cc//qGbbrpJQ4YMUWJiovr376+ePXvatVm6dKmSkpL03//934qNjdXQoUO1detWRUREXLJ+AM5lslqt1oYuAsDV54svvlD//v21b98+tW/fvqHLAWAgwgcAQ7z77rvy8/NTTEyM9u3bp3HjxikwMFCbNm1q6NIAGIzTLgDqbcWKFfLz86t1ue666yRJx48f19ixY9WxY0eNGDFCvXv31nvvvdfAlQNoCMx8AKi348ePX/Cx7J6enoqMjDS4IgCNGeEDAAAYitMuAADAUIQPAABgKMIHAAAwFOEDAAAYivABAAAMRfgAAACGInwAAABD/X8/N4vJyFikOwAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"racial_perct = df.groupby (\"holc_grade\")[[\"pct_white\", \"pct_black\", \"pct_hisp\", \"pct_asian\", \"pct_other\"]].mean()\n",
|
||
"racial_perct.plot.bar()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "continental-franklin",
|
||
"metadata": {},
|
||
"source": [
|
||
"**Data Overview**\n",
|
||
"\n",
|
||
"The data above comes from a 2020 data set using the original redlining data maps from the 1930s. Simply put, do these maps which were deemed illegal in 1967 still show that the damage over the years that they were used still exists today. The data is relatively straight forward in that the drawing of these maps created zones, A being the most favorable, and D being the least favorable. In the 1930s, the maps clearly show racial bias and those in the D zones are heavily people of color who are unable to obtain mortgages, thus being subjected to having no way to gain equity in property, which most consider the best way to wealth over generations within a family. Because of this practice, the question is really whether or not this has an effect on the current look of communities. Using racial population information from 2020 and combining this with the 1930s maps, we can see whether or not things have changed."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"id": "a1614a90-f412-43a2-a246-eeb4df9ee9eb",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([<Axes: >, <Axes: >, <Axes: >, <Axes: >, <Axes: >], dtype=object)"
|
||
]
|
||
},
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"axes"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "infinite-instrument",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Methods and Results"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "basic-canadian",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"#Import any helper files you need here"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "recognized-positive",
|
||
"metadata": {},
|
||
"source": [
|
||
"## First Research Question: [What can we interpret from the data set regarding the percentage of whites and blacks living in various graded zones?]\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "graduate-palmer",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Methods"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "endless-variation",
|
||
"metadata": {},
|
||
"source": [
|
||
"*Explain how you will approach this research question below. Consider the following:* \n",
|
||
" - *Which aspects of the dataset will you use?*\n",
|
||
" We will graph the percentages of whites and blacks living in specific zones (A, B, C, D)\n",
|
||
" - *How will you reorganize/store the data?*\n",
|
||
" This data will be organized into two bar plots, side by side, to show the current state of whites and blacks in regard to where they live as it pertains to the zoning from the 1930s map\n",
|
||
" - *What data science tools/functions will you use and why?* \n",
|
||
" We will use seaborn barplot to run this data. One important note is that we will make sure the y-axis in uniform to allow us to interpret the data appropriately. This will allow us to avoid skewing the data.\n",
|
||
"✏"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "d33c1cd3-a4a3-4f17-ad5f-3d27fdc29022",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "portuguese-japan",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Results "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 41,
|
||
"id": "negative-highlight",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"#The thing to note as we look at the graphing done above is that there is a clear distinction between whites\n",
|
||
"#and blacks when it comes to today's residents various zones. While things have certainly changed, the A zone \n",
|
||
"#is still predominately white, and you can see by the data that as the zones go from A-D, the white population in \n",
|
||
"#each decreases, while the black population over the same area increases. This shows that while there are some improvements, \n",
|
||
"#we are still 90 years later, living in a very racially segregated society,"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 42,
|
||
"id": "victorian-burning",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "collectible-puppy",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Second Research Question: [What does this data show regarding generational wealth between all involved?]\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "demographic-future",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Methods"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "incorporate-roller",
|
||
"metadata": {},
|
||
"source": [
|
||
"*Explain how you will approach this research question below. Consider the following:* \n",
|
||
" - *Which aspects of the dataset will you use?*\n",
|
||
" We will take a look again at the A-D zones and consider those in the most sought after zones as being the most economically viable. Given that the data set is from 2020, and the maps were first created 90 years prior, it is fair to determine how well groups outside the white population are fairing in the A or B zones.\n",
|
||
" - *How will you reorganize/store the data?*\n",
|
||
" - Barplot with all groups/races side by side to see the distinctions\n",
|
||
" - *What data science tools/functions will you use and why?*\n",
|
||
" The mean of racial disparity between races both within separated bar plots, and one combined one to see patterns between zones\n",
|
||
"\n",
|
||
"✏️ *Write your answer below:*\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "juvenile-creation",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Results "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 43,
|
||
"id": "pursuant-surrey",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Immediately, one can tell that population percentage of whites goes down as the lettered zones get further in the alphabet\n",
|
||
"# whereas the opposite is true witb the black and hispanic zones. The inference that can be made from this data is that because\n",
|
||
"# redlining created an inequitable system within the cities on the US, those in charge made it easier for those in certain areas to gain\n",
|
||
"# easy access to things like home ownership. Given that home ownership in considered a great tool in obtaining generational wealth, it can\n",
|
||
"# also be seen that 90 years after the racially biased maps were implemented, that their effects are still here today. Because this wealth\n",
|
||
"# is in fact generational, it clear that those in zones A and B have had an easier time growing this wealth than those in zones C and D -- the\n",
|
||
"# racial obviousness of said zones shows this as well."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 44,
|
||
"id": "located-night",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "infectious-symbol",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Discussion"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "furnished-camping",
|
||
"metadata": {
|
||
"code_folding": []
|
||
},
|
||
"source": [
|
||
"## Considerations"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "bearing-stadium",
|
||
"metadata": {},
|
||
"source": [
|
||
"*It's important to recognize the limitations of our research.\n",
|
||
"Consider the following:*\n",
|
||
"\n",
|
||
"- *Do the results give an accurate depiction of your research question? Why or why not?*\n",
|
||
"- The results do show an accurate answer to this question. The major focus is the 90 year gap between the original map and the data that now incorporates it.\n",
|
||
"- *What were limitations of your datset?*\n",
|
||
" It would be nice to have the same figures from the 1930 map to see a side-by-side comparison\n",
|
||
"- *Are there any known biases in the data?*\n",
|
||
" Certainly my answer above adds some limitation to this and could create a greater bias of racial segregation given that we are guessing as to the original data and could be further of than we would like.\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "beneficial-invasion",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Summary"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "about-raise",
|
||
"metadata": {},
|
||
"source": [
|
||
"*Summarize what you discovered through the research. Consider the following:*\n",
|
||
"\n",
|
||
"- *What did you learn about your media consumption/digital habits?*\n",
|
||
" I enjoy when data that is compiled so cleanly. It is really interesting to be able to take such various pieces of the given data and plot it. While I enjoyed putting this together, I can only imagine the complexities that are truly able to be used here.\n",
|
||
"- *Did the results make sense?*\n",
|
||
" The results made sense, and while I needed some help putting them together, I enjoyed the different looks and avenues that could be assembled quickly and efficiently \n",
|
||
"- *What was most surprising?*\n",
|
||
" I am not sure if the results of my data were very suprising but I was surpirsed by how panda will just take data if not given specifics and graph it how \"it\" sees fit. \n",
|
||
"- *How will this project impact you going forward?*\n",
|
||
" I have always liked FiveThirtyEight's analytical data for certain things and I enjoy that we are able to take that data and make more sense of it. I would like to learn more about complexities within this data to see how we can go so much deeper with it.\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "6ee86a83-ccb5-47c0-9b44-6f0be3ef4c68",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"jupytext": {
|
||
"cell_metadata_json": true,
|
||
"text_representation": {
|
||
"extension": ".Rmd",
|
||
"format_name": "rmarkdown",
|
||
"format_version": "1.2",
|
||
"jupytext_version": "1.9.1"
|
||
}
|
||
},
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.10.12"
|
||
},
|
||
"toc": {
|
||
"base_numbering": 1,
|
||
"nav_menu": {},
|
||
"number_sections": false,
|
||
"sideBar": true,
|
||
"skip_h1_title": false,
|
||
"title_cell": "Table of Contents",
|
||
"title_sidebar": "Contents",
|
||
"toc_cell": false,
|
||
"toc_position": {},
|
||
"toc_section_display": true,
|
||
"toc_window_display": false
|
||
},
|
||
"varInspector": {
|
||
"cols": {
|
||
"lenName": 16,
|
||
"lenType": 16,
|
||
"lenVar": 40
|
||
},
|
||
"kernels_config": {
|
||
"python": {
|
||
"delete_cmd_postfix": "",
|
||
"delete_cmd_prefix": "del ",
|
||
"library": "var_list.py",
|
||
"varRefreshCmd": "print(var_dic_list())"
|
||
},
|
||
"r": {
|
||
"delete_cmd_postfix": ") ",
|
||
"delete_cmd_prefix": "rm(",
|
||
"library": "var_list.r",
|
||
"varRefreshCmd": "cat(var_dic_list()) "
|
||
}
|
||
},
|
||
"types_to_exclude": [
|
||
"module",
|
||
"function",
|
||
"builtin_function_or_method",
|
||
"instance",
|
||
"_Feature"
|
||
],
|
||
"window_display": false
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|