{ "cells": [ { "cell_type": "markdown", "id": "worldwide-blood", "metadata": {}, "source": [ "# Introduction" ] }, { "cell_type": "markdown", "id": "understanding-numbers", "metadata": {}, "source": [ "*✏️ Write 2-3 sentences describing your research.*" ] }, { "cell_type": "markdown", "id": "greater-circular", "metadata": {}, "source": [ "## Overarching Question: [How has the foundational implementation of government redlining had an effect on generational wealth by race and socioeconomic standing over time?]✏" ] }, { "cell_type": "markdown", "id": "appreciated-testimony", "metadata": {}, "source": [ "This is an important question as we look at our cities and, still today, see heavily segregated areas which must have a foundational reason. Hopefully through this data set we see an irrefutable pattern that brings clarity to the overarching question." ] }, { "cell_type": "markdown", "id": "permanent-pollution", "metadata": {}, "source": [ "# Data" ] }, { "cell_type": "code", "execution_count": 5, "id": "technical-evans", "metadata": {}, "outputs": [], "source": [ "#Include any import statements you will need\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 2, "id": "overhead-sigma", "metadata": {}, "outputs": [], "source": [ "### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n", "\n", "file_name = \"metro-grades.csv\"\n", "dataset_path = \"data/\" + file_name\n", "\n", "df = pd.read_csv(dataset_path)" ] }, { "cell_type": "code", "execution_count": 3, "id": "heated-blade", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | metro_area | \n", "holc_grade | \n", "white_pop | \n", "black_pop | \n", "hisp_pop | \n", "asian_pop | \n", "other_pop | \n", "total_pop | \n", "pct_white | \n", "pct_black | \n", "... | \n", "surr_area_white_pop | \n", "surr_area_black_pop | \n", "surr_area_hisp_pop | \n", "surr_area_asian_pop | \n", "surr_area_other_pop | \n", "surr_area_pct_white | \n", "surr_area_pct_black | \n", "surr_area_pct_hisp | \n", "surr_area_pct_asian | \n", "surr_area_pct_other | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "Akron, OH | \n", "A | \n", "24702 | \n", "8624 | \n", "956 | \n", "688 | \n", "1993 | \n", "36963 | \n", "66.83 | \n", "23.33 | \n", "... | \n", "304399 | \n", "70692 | \n", "11037 | \n", "17295 | \n", "23839 | \n", "71.24 | \n", "16.55 | \n", "2.58 | \n", "4.05 | \n", "5.58 | \n", "
1 | \n", "Akron, OH | \n", "B | \n", "41531 | \n", "16499 | \n", "2208 | \n", "3367 | \n", "4211 | \n", "67816 | \n", "61.24 | \n", "24.33 | \n", "... | \n", "304399 | \n", "70692 | \n", "11037 | \n", "17295 | \n", "23839 | \n", "71.24 | \n", "16.55 | \n", "2.58 | \n", "4.05 | \n", "5.58 | \n", "
2 | \n", "Akron, OH | \n", "C | \n", "73105 | \n", "22847 | \n", "3149 | \n", "6291 | \n", "7302 | \n", "112694 | \n", "64.87 | \n", "20.27 | \n", "... | \n", "304399 | \n", "70692 | \n", "11037 | \n", "17295 | \n", "23839 | \n", "71.24 | \n", "16.55 | \n", "2.58 | \n", "4.05 | \n", "5.58 | \n", "
3 | \n", "Akron, OH | \n", "D | \n", "6179 | \n", "6921 | \n", "567 | \n", "455 | \n", "1022 | \n", "15144 | \n", "40.80 | \n", "45.70 | \n", "... | \n", "304399 | \n", "70692 | \n", "11037 | \n", "17295 | \n", "23839 | \n", "71.24 | \n", "16.55 | \n", "2.58 | \n", "4.05 | \n", "5.58 | \n", "
4 | \n", "Albany-Schenectady-Troy, NY | \n", "A | \n", "16989 | \n", "1818 | \n", "1317 | \n", "1998 | \n", "1182 | \n", "23303 | \n", "72.91 | \n", "7.80 | \n", "... | \n", "387016 | \n", "68371 | \n", "42699 | \n", "41112 | \n", "40596 | \n", "66.75 | \n", "11.79 | \n", "7.36 | \n", "7.09 | \n", "7.00 | \n", "
5 rows × 28 columns
\n", "