project_argument/argument.ipynb

753 lines
64 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"id": "worldwide-blood",
"metadata": {},
"source": [
"# Introduction"
]
},
{
"cell_type": "markdown",
"id": "understanding-numbers",
"metadata": {},
"source": [
"*✏️ Write 2-3 sentences describing your research.*"
]
},
{
"cell_type": "markdown",
"id": "greater-circular",
"metadata": {},
"source": [
"## Overarching Question: [✏️ PUT YOUR QUESTION HERE ✏️]"
]
},
{
"cell_type": "markdown",
"id": "appreciated-testimony",
"metadata": {},
"source": [
"*✏️ Write 2-3 sentences explaining why this question.*"
]
},
{
"cell_type": "markdown",
"id": "permanent-pollution",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "technical-evans",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "overhead-sigma",
"metadata": {},
"outputs": [],
"source": [
"file_name = \"US_births_2000-2014_SSA.csv\"\n",
"dataset_path = \"data/\" + file_name\n",
"\n",
"df = pd.read_csv(dataset_path)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "heated-blade",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>year</th>\n",
" <th>month</th>\n",
" <th>date_of_month</th>\n",
" <th>day_of_week</th>\n",
" <th>births</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2000</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>6</td>\n",
" <td>9083</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2000</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>7</td>\n",
" <td>8006</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2000</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>11363</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2000</td>\n",
" <td>1</td>\n",
" <td>4</td>\n",
" <td>2</td>\n",
" <td>13032</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2000</td>\n",
" <td>1</td>\n",
" <td>5</td>\n",
" <td>3</td>\n",
" <td>12558</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" year month date_of_month day_of_week births\n",
"0 2000 1 1 6 9083\n",
"1 2000 1 2 7 8006\n",
"2 2000 1 3 1 11363\n",
"3 2000 1 4 2 13032\n",
"4 2000 1 5 3 12558"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"id": "continental-franklin",
"metadata": {},
"source": [
"**Data Overview**\n",
"\n",
"*This data set contains U.S. births data for the years 2000 to 2014, as provided by the Social Security Administration. The columns include the year, month, date of month, day of weeks, and the number of births on each one of these days.*"
]
},
{
"cell_type": "markdown",
"id": "infinite-instrument",
"metadata": {},
"source": [
"# Methods and Results"
]
},
{
"cell_type": "markdown",
"id": "recognized-positive",
"metadata": {},
"source": [
"## First Research Question: On average, are less children born on the 13th of the month?\n"
]
},
{
"cell_type": "markdown",
"id": "graduate-palmer",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "endless-variation",
"metadata": {},
"source": [
"In order to research this question, I will use the aspects of date_of_month and births. \n",
"\n",
"In order to reorganize the data, I will have to create a new chart that will look at the average of each day individually. To do this I will have to regroup the data by the date_of_month and then find the mean for each date.\n",
"\n",
"I will then create a barplot using this new data to show a visual representation of the average number of births for each numbered day of the month. \n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "portuguese-japan",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "negative-highlight",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"date_of_month\n",
"1 11131.261111\n",
"2 11280.261111\n",
"3 11346.894444\n",
"4 11137.694444\n",
"5 11312.138889\n",
"6 11320.716667\n",
"7 11463.422222\n",
"8 11453.622222\n",
"9 11358.888889\n",
"10 11478.633333\n",
"11 11411.655556\n",
"12 11513.794444\n",
"13 11111.466667\n",
"14 11534.950000\n",
"15 11483.327778\n",
"16 11436.950000\n",
"17 11508.733333\n",
"18 11542.627778\n",
"19 11474.044444\n",
"20 11573.594444\n",
"21 11551.100000\n",
"22 11394.511111\n",
"23 11241.972222\n",
"24 11073.350000\n",
"25 10958.522222\n",
"26 11118.394444\n",
"27 11308.238889\n",
"28 11397.377778\n",
"29 11354.822485\n",
"30 11393.484848\n",
"31 11074.933333\n",
"Name: births, dtype: float64"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_births = df.groupby('date_of_month')['births'].mean()\n",
"average_births"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "victorian-burning",
"metadata": {},
"outputs": [],
"source": [
"import seaborn as sns \n",
"sns.set_theme()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "affd0a87-f44b-47d9-829f-7015f815f3ba",
"metadata": {},
"outputs": [],
"source": [
"average_births_df = average_births.reset_index()\n",
"average_births_df.columns = [\"date_of_month\", \"average_births\"]"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "7ea67a24-008f-45e6-9082-96a13804b45f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='date_of_month', ylabel='Count'>"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAG2CAYAAACwF7hHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/IklEQVR4nO3deXhU5d3/8c9M9gChASGh8lAwGhANCUtY+hPE1FJ8RK8H0bZKsLKLIgplFapVBFEiorgRAUEBcQF3qxY3qoVAUMAaEFlFaxKWQFiykJnz+wMyZsgyc2aGnBl4v66LK8k5577v77lnkvPhnDMzNsMwDAEAAMBrdqsLAAAACDUEKAAAAJMIUAAAACYRoAAAAEwiQAEAAJhEgAIAADCJAAUAAGASAQoAAMAkAhQAAIBJ4VYXUNX8+fP1xRdf6KWXXnIt++STT/T0009r165dio+P1x/+8Afdfffdio6OliSVlZVp1qxZ+uCDD1RaWqqMjAxNnTpVTZo0cfWxdu1azZ49Wzt37lSLFi1011136dprr3Wt96YPswzDkNNZ+5u82+22OtfjF8yV95gr7zFX3mOuzGG+vBdsc2W322Sz2bza1hYsH+WybNkyPfTQQ+rSpYsrQOXm5urWW2/VmDFj1LdvX+3du1f33Xeffvvb3+rhhx+WJE2ZMkW5ubl6+OGHFRkZqfvvv18NGjTQ0qVLJUk7d+5U//79NXjwYF1//fX67LPPNGfOHC1YsEA9evTwqg9fOBxOHTp0vMZ14eF2xcc3UFHRcVVUOH0e43zAXHmPufIec+U95soc5st7wThXTZo0UFiYdxfnLD8DVVBQoPvvv185OTlq3bq127oVK1aoW7duuv322yVJrVu31tixYzVt2jQ98MADKioq0ptvvqnnnntOXbp0kSTNmTNHffv21ddff62OHTtqyZIlatu2rcaOHStJSkpKUl5enitAFRQUeOwDAACgKsvvgfr2228VERGht99+W6mpqW7rhgwZokmTJrkts9vtOnnypI4dO6aNGzdKkrp37+5a36ZNGyUkJGjDhg2STp3FqjzTVKl79+7auHGjDMPwqg8AAICqLD8DlZGRoYyMjBrXtW/f3u3nkydPavHixbr88svVpEkTFRQUKD4+XlFRUW7bNW/eXPn5+ZKk/Px8JSYmVltfUlKioqIir/rwVXh4zfm08vSgt6cJz2fMlfeYK+8xV95jrsxhvrwX6nNleYDyVkVFhSZOnKjvv/9ey5YtkySVlJQoMjKy2rZRUVEqKyuTJJWWllbbpvLn8vJyr/rwhd1uU3x8gzq3iYuL8bn/8w1z5T3mynvMlfeYK3OYL++F6lyFRIA6duyY7rnnHq1fv15PPfWUOnToIEmKjo5WeXl5te3LysoUE3PqAYmKiqq2TeXPMTExXvXhC6fTUHHxiRrXhYXZFRcXo+LiEjkcwXHjXLBirrzHXHmPufIec2UO8+W9YJyruLiY0LmJ3JPCwkINHz5cP/30kxYuXKj09HTXusTERB0+fFjl5eVuZ5EKCwuVkJAgSWrRooUKCwur9RkbG6tGjRp51YevPL2qwOFwBs0rD4Idc+U95sp7zJX3mCtzmC/vhepcBfWFxyNHjugvf/mLDh06pGXLlrmFJ0nq3LmznE6n60ZwSdq9e7cKCgpc23bp0kXr1693a7du3Tp16tRJdrvdqz4AAACqCuoA9fDDD2vfvn2aPXu2mjRpov3797v+ORwOJSQk6Nprr9W0adOUk5OjLVu2aNy4ceratavS0tIkSYMGDdKWLVuUlZWlnTt3atGiRfrggw80bNgwSfKqDwAAgKqC9hKew+HQ+++/r5MnT+ovf/lLtfUff/yxWrZsqenTp2vmzJkaPXq0JKlXr16aNm2aa7tLLrlEzzzzjGbPnq0lS5aoZcuWmj17tttbG3jqAwAAoKqgeSfycw3vRB4YzJX3mCvvMVfeY67MYb68F4xzZeadyIP6Eh4AAEAwIkABAACYRIACAAAwiQAFAABgEgEKAADApKB9GwMAwNlnt9tkt9tqXV/XB746nYacTl7IjfMTAQpA0PN0kK9NqB3gfd1Pybd9tdtt+lV8rMLsni9G1PSBrw6nU0eLS2X23XBC7XEBakKAAmBKfYcZMwf5MzmcTh0uOlHvB2tf5shms6lRXLRP+yn5tq92u01hdruWf7BVhYdq/vBzm82msDC7HA6nW1Bq/es4Xd/rYv3qV7H1UisQbAhQQBX1fQbAX1XrretSy5lCKcx4c5CvSfMmsbql76WKiAir9knv3syVFXMkyfR+SnXva10q97/w0An9tP9YjdvYbDaFh4eposLhFqCaxcfIbrfp5Q+3qeBgzW8aXFetdruNAIWQRoACTvP3wFfflzNqq7emSy1nsirM+HPQrOsgX5NGsRFyOo0656Oudb4+nmFhdp/mqG3rJrrmt220v6jE1H5K3u3r2WL2cQHOFQQo4DRfw4FkzeWMM+ut7VLLmXw9WyF5d8YiWERHhdd6hsTTXPnzeFYyO0fN4n0PP3Xta10qQ5vN5ttZV394+3EZZ+L+Kc+suGfQlzF9fQ4ECwIUcAZfwoG/lzMCEWZqu9RyJivPVlihpsfT01z5+nhK1oaS+gxtvvL3+cf9U3Wz6jK7r2M6nYYlvyuBQICCV86XV0H562xcZgo0X89WSNaGAyv4GqZRO3+ef9w/5dnZuGfQE18vWyc0baCb/9DO5/tOrUaAgkdWvQrKbreZujHaX1acTrYyzBAOYKVQuAxsJV//0+rrZfZA/GfO7Jih/h8xAtR5xJ9fyPq+cfjM0Gb2l9rpNELqfzWEGQCV/H1Biy84M20eAeo8EYhfyPr8H2PlaeiXP9ymg0dKPd4YXVXlL3Mo3VALwHu+nC0OpdsJ/HlBC2em6w8B6jxh5S+kPwoPnVBBUYnHG6OrqvxlDoUbagF4z5/LTKF48zlhJrgRoM4z/EICCFW+Xmbi5nOcDQSoEBRq77fhy9ih/v4gAM4ebkBHMCBAhRgrbi701fn2fkPwjDCN84m/r6RDcCNAhRhf72Wy4j6mQLyqQ9zPfU4gTCMY1Oe7n9tsNv0qPiYk/rNrNbvdpvDw0HthAAEqRIXSDdLcdwVeIg0rWfHu56H6wp36VPm4NGwY7VN7q18YQIACUG8I07CCle9+znO+dqH+rvQEKADAeYGbz4NTYVFoPi4EKAAAPPD2/qnK7ULpkxDgGwIUAAC18PX+KV/v60HoIEABAFALs/fp2GynPgT94paN1fc8uBH8fEaAAgDAA2/vn7LZbAoPD1OTuKh6qApW4g0qAAAATCJAAQAAmESAAgAAMIkABQAAYBIBCgAAwCQCFAAAgEkEKAAAAJMIUAAAACYRoAAAAEwiQAEAAJhEgAIAADCJAAUAAGASAQoAAMAkAhQAAIBJBCgAAACTCFAAAAAmEaAAAABMIkABAACYRIACAAAwiQAFAABgEgEKAADApKAKUPPnz9egQYPclm3dulWZmZlKS0tTRkaGXnzxRbf1TqdTTz75pHr27Km0tDQNHz5c+/btC3gfAAAAlYImQC1btkxz5851W1ZUVKTBgwerVatWWrlype68805lZWVp5cqVrm2eeeYZLV++XNOnT9eKFSvkdDo1bNgwlZeXB6wPAACAqsKtLqCgoED333+/cnJy1Lp1a7d1r776qiIiIvTggw8qPDxcSUlJ2rt3r7KzszVgwACVl5dr0aJFGj9+vHr37i1Jevzxx9WzZ0999NFH6tevX0D6AAAAqMryM1DffvutIiIi9Pbbbys1NdVtXW5urrp27arw8F9yXvfu3bVnzx4dOHBA27Zt0/Hjx9WjRw/X+ri4OLVv314bNmwIWB8AAABVWX4GKiMjQxkZGTWuy8/PV3Jystuy5s2bS5J+/vln5efnS5JatGhRbZvKdYHow1fh4TXn07Awu9tXMyrb2Gw22Ww2r9u5trXJVDt/2gZkTNcCySbv+rC0XivHrGzuYa5Cfj8D0c7DXAVdvVaOWctcnXP7Gai2tupf62s//WlrxZhVf/V8HdOX42igWB6g6lJaWqrIyEi3ZVFRUZKksrIylZSUSFKN2xw5ciRgffjCbrcpPr5BndvExcX43H9YmF3h4WHeb2+3u76aaedP20CNKUnhYWd/3FCeo6ptPc3VubKfgWhX21wFa71WjnnmXJ2r+xmwMW31P6Y/bUNujk4HJ3+Oo/4K6gAVHR1d7UbusrIySVJsbKyio6MlSeXl5a7vK7eJiYkJWB++cDoNFRefqHFdWJhdcXExKi4ukcPhNNVvZVuHw6mKCofX7RxOp+urmXb+tA3UmJJU4XBIxtkdN5TnqKLCIdlOHeQ8zVXI72cg2nmYq6Cr18oxa5mrc24/A9X29Hw5jPrfT3/aWjKmP3N0+tjpy3G0LnFxMV6f1QrqAJWYmKjCwkK3ZZU/JyQkqKKiwrWsVatWbtu0bds2YH34qqKi7gf1VAjy7YE3DEOG4WWiOL39qW9kqp0/bQMypmuB931YWq+FY7our3joK9T3MxDtPM1VsNVr5Zi1zdW5tp+Balt1vuprzEC0tWLMqoHc1zH9OY76y/KbyOuSnp6ujRs3yuH4JZmuW7dObdq0UdOmTdWuXTs1bNhQOTk5rvXFxcXKy8tTenp6wPoAAACoKqgD1IABA3Ts2DFNnTpVO3bs0KpVq7R48WKNHDlS0qn7ljIzM5WVlaWPP/5Y27Zt09ixY5WYmKg+ffoErA8AAICqgvoSXtOmTbVgwQLNmDFD/fv3V7NmzTRx4kT179/ftc2YMWNUUVGhadOmqbS0VOnp6Vq4cKEiIiIC1gcAAEBVQRWgZs2aVW1Zhw4d9Morr9TaJiwsTBMmTNCECRNq3SYQfQAAAFQK6kt4AAAAwYgABQAAYBIBCgAAwCQCFAAAgEkEKAAAAJMIUAAAACYRoAAAAEwiQAEAAJhEgAIAADCJAAUAAGASAQoAAMAkAhQAAIBJBCgAAACTCFAAAAAmEaAAAABMIkABAACYRIACAAAwiQAFAABgEgEKAADAJAIUAACASQQoAAAAkwhQAAAAJhGgAAAATCJAAQAAmESAAgAAMIkABQAAYBIBCgAAwCQCFAAAgEkEKAAAAJMIUAAAACYRoAAAAEwiQAEAAJhEgAIAADCJAAUAAGASAQoAAMAkAhQAAIBJBCgAAACTCFAAAAAmEaAAAABMIkABAACYRIACAAAwiQAFAABgEgEKAADAJAIUAACASQQoAAAAkwhQAAAAJhGgAAAATCJAAQAAmESAAgAAMCkkAlRFRYWeeOIJXXXVVerYsaMGDhyoTZs2udZv3bpVmZmZSktLU0ZGhl588UW39k6nU08++aR69uyptLQ0DR8+XPv27XPbxlMfAAAAlUIiQD377LN67bXXNH36dL355ptq06aNhg0bpsLCQhUVFWnw4MFq1aqVVq5cqTvvvFNZWVlauXKlq/0zzzyj5cuXa/r06VqxYoWcTqeGDRum8vJySfKqDwAAgErhVhfgjdWrV6tfv3664oorJEmTJ0/Wa6+9pk2bNmn37t2KiIjQgw8+qPDwcCUlJWnv3r3Kzs7WgAEDVF5erkWLFmn8+PHq3bu3JOnxxx9Xz5499dFHH6lfv3569dVX6+wDAACgqpA4A9W0aVN9+umn+vHHH+VwOPTKK68oMjJS7dq1U25urrp27arw8F+yYPfu3bVnzx4dOHBA27Zt0/Hjx9WjRw/X+ri4OLVv314bNmyQJI99AAAAVBUSZ6CmTp2qu+++W7/73e8UFhYmu92uefPmqVWrVsrPz1dycrLb9s2bN5ck/fzzz8rPz5cktWjRoto2les89XHBBRf4VHd4eM35NCzM7vbVjMo2NptNNpvN63aubW0y1c6ftgEZ07VAssm7Piyt18oxK5t7mKuQ389AtPMwV0FXr5Vj1jJX59x+BqqtrfrX+tpPf9paMWbVXz1fx/TlOBooIRGgduzYoUaNGunpp59WQkKCXnvtNY0fP15Lly5VaWmpIiMj3baPioqSJJWVlamkpESSatzmyJEjkuSxD1/Y7TbFxzeoc5u4uBif+pZOPWnCw8O8395ud301086ftoEaU5LCw87+uKE8R1Xbepqrc2U/A9GutrkK1nqtHPPMuTpX9zNgY9rqf0x/2obcHJ0OTv4cR/0V9AHq559/1l//+lctXrxYXbp0kSSlpKRox44dmjdvnqKjo103g1eqDD2xsbGKjo6WJJWXl7u+r9wmJubUxHvqwxdOp6Hi4hM1rgsLsysuLkbFxSVyOJym+q1s63A4VVHh8Lqdw+l0fTXTzp+2gRpTkiocDsk4u+OG8hxVVDgk26mDnKe5Cvn9DEQ7D3MVdPVaOWYtc3XO7Weg2p6eL4dR//vpT1tLxvRnjk4fO305jtYlLi7G67NaQR+gNm/erJMnTyolJcVteWpqqtasWaNf//rXKiwsdFtX+XNCQoIqKipcy1q1auW2Tdu2bSVJiYmJdfbhq4qKuh/UUyHItwfeMAwZhpeJ4vT2p76RqXb+tA3ImK4F3vdhab0Wjum6vOKhr1Dfz0C08zRXwVavlWPWNlfn2n4Gqm3V+aqvMQPR1ooxqwZyX8f05zjqr6C/iTwxMVGS9N1337kt3759u1q3bq309HRt3LhRDscv6XXdunVq06aNmjZtqnbt2qlhw4bKyclxrS8uLlZeXp7S09MlyWMfAAAAVQV9gOrQoYM6d+6sSZMmad26ddqzZ4/mzp2rtWvXasSIERowYICOHTumqVOnaseOHVq1apUWL16skSNHSjp171NmZqaysrL08ccfa9u2bRo7dqwSExPVp08fSfLYBwAAQFVBfwnPbrfr2Wef1dy5czVlyhQdOXJEycnJWrx4sVJTUyVJCxYs0IwZM9S/f381a9ZMEydOVP/+/V19jBkzRhUVFZo2bZpKS0uVnp6uhQsXKiIiQtKpt0nw1AcAAECloA9QktS4cWPdf//9uv/++2tc36FDB73yyiu1tg8LC9OECRM0YcKEWrfx1AcAAECloL+EBwAAEGwIUAAAACYRoAAAAEwiQAEAAJhEgAIAADCJAAUAAGASAQoAAMAkAhQAAIBJBCgAAACTCFAAAAAmEaAAAABMIkABAACYRIACAAAwiQAFAABgEgEKAADAJAIUAACASQQoAAAAkwhQAAAAJhGgAAAATCJAAQAAmESAAgAAMIkABQAAYBIBCgAAwCQCFAAAgEkEKAAAAJMIUAAAACYRoAAAAEwiQAEAAJhEgAIAADCJAAUAAGASAQoAAMCksxKg8vPzz0a3AAAAQcGnAHXppZdqy5YtNa7Lzc3VNddc41dRAAAAwSzc2w0XLVqkEydOSJIMw9Brr72mNWvWVNvu66+/VmRkZOAqBAAACDJeB6iysjI99dRTkiSbzabXXnut2jZ2u12NGjXSqFGjAlchAABAkPE6QI0aNcoVjNq1a6dXX31VHTp0OGuFAQAABCuvA1RV27ZtC3QdAAAAIcOnACVJX375pT799FOVlJTI6XS6rbPZbJo5c6bfxQEAAAQjnwLUokWL9OijjyoqKkpNmjSRzWZzW3/mzwAAAOcSnwLU0qVLdd1112nGjBm84g4AAJx3fHofqAMHDujGG28kPAEAgPOSTwGqffv2+v777wNdCwAAQEjw6RLevffeq3vuuUexsbFKTU1VTExMtW1+/etf+10cAABAMPIpQN18881yOp269957a71hfOvWrX4VBgAAEKx8ClDTp0/nlXYAAOC85VOAuuGGGwJdBwAAQMjwKUBt2LDB4zbp6em+dA0AABD0fApQgwYNks1mk2EYrmVnXtLjHigAAHCu8ilAvfjii9WWnThxQrm5uXrrrbc0b948vws705tvvqns7Gzt27dPrVq10ujRo3XNNddIkn788UdNnz5dGzZsUGxsrG688UbdddddCgsLc7VftmyZFi1apP379+vyyy/XtGnT1L59e9d6b/oAAACQfAxQXbt2rXF57969FRsbq2effVbz58/3q7Cq3nrrLU2dOlX33nuvevbsqffee0/jxo1TYmKiLr/8cg0dOlStW7fWihUr9MMPP2jq1Kmy2+0aM2aMJOmNN97Qo48+qunTp6t9+/bKzs7W4MGD9Y9//ENNmjTRyZMnPfYBAABQyecPE65Nly5d9PzzzwesP8Mw9MQTT+jWW2/VwIEDJUmjRo1Sbm6u1q9fr59++kn//e9/9eqrr6px48ZKTk7WwYMH9eijj+r2229XZGSknnvuOWVmZur666+XJM2cOVNXX321XnvtNY0cOVIffvihxz4AAAAq+fRO5HX55JNP1KBBg4D1t3v3bv3000+67rrr3JYvXLhQI0eOVG5uri677DI1btzYta579+46duyYtm7dqoMHD2rPnj3q0aOHa314eLi6dOniuhneUx8AAABV+XQG6tZbb622zOl0Kj8/Xz/99JOGDx/ud2GVdu/eLenUPVZDhw5VXl6eWrZsqVGjRikjI0P5+flKTEx0a9O8eXNJ0s8//6zw8FO72KJFi2rbbNu2TZI89pGamupT7eHhNefTsDC721czKtvYbDZT78Xl2tZW/Yb/s9U2IGO6Fkg2edeHpfVaOWZlcw9zFfL7GYh2HuYq6Oq1csxa5uqc289AtbVV/1pf++lPWyvGrPqr5+uYvhxHA8WnAFX11XeV7Ha7kpOTNXLkSA0YMMDvwiodO3ZMkjRp0iSNHj1a48eP14cffqg77rhDL7zwgkpLSxUXF+fWJioqSpJUVlamkpISSap2GS4qKkplZWWS5LEPX9jtNsXH130mLi6u+kfgeCsszK7wcO9vcA+z211fzbTzp22gxpSkcBM381tdr9Vjepqrc2U/A9GutrkK1nqtHPPMuTpX9zNgY9rqf0x/2obcHJ0OTv4cR/3lU4B66aWXAl1HrSIiIiRJQ4cOVf/+/SVJl156qfLy8vTCCy8oOjpa5eXlbm0qQ09sbKyio6MlqcZtKj/Dz1MfvnA6DRUXn6hxXViYXXFxMSouLpHD4TTVb2Vbh8OpigqH1+0cTqfrq5l2/rQN1JiSVOFwSNVze0DHDeU5qqhwSLZTBzlPcxXy+xmIdh7mKujqtXLMWubqnNvPQLU9PV8Oo/7305+2lozpzxydPnb6chytS1xcjNdntfy6iXzNmjVav369iouL1aRJE3Xu3Fk9e/b0p8tqEhISJEnJycluyy+++GJ99tln6tq1q7Zv3+62rrCw0NW28tJdYWGhkpKS3Lap7DsxMbHOPnxVUVH3g3oqBPn2wBuGUeOZwLq2P/VNzWcQz0bbgIzpWuB9H5bWa+GYrssrHvoK9f0MRDtPcxVs9Vo5Zm1zda7tZ6DaVp2v+hozEG2tGLNqIPd1TH+Oo/7y6eJheXm5hg0bphEjRuiFF17QJ598oueff14jRozQ4MGDq53N8cdll12mBg0aaPPmzW7Lt2/frlatWik9PV15eXmuS32StG7dOjVo0EDt2rVT06ZN1aZNG+Xk5LjWV1RUKDc31/Vu6Z76AAAAqMqnADVv3jxt3LhRjz76qLZs2aIvvvhCmzdv1sMPP6xNmzbp2WefDViB0dHRGjZsmJ5++mm9++67+uGHH/Tss8/qyy+/1ODBg3X11VerWbNmuueee7Rt2zatXr1ac+bM0ZAhQ1z3PQ0ZMkQvvPCC3njjDe3YsUP33nuvSktLdeONN0qSV30AAABU8ukS3rvvvqvRo0e73ldJOvXWAP/3f/+ngwcP6uWXX9bdd98dsCLvuOMOxcTE6PHHH1dBQYGSkpI0b948devWTZK0YMECPfDAA/rjH/+oxo0b65ZbbtEdd9zhav/HP/5RR48e1dy5c3X48GFdfvnleuGFF9SkSRNJp24Y99QHAABAJZ8C1KFDh9w+BqWq9u3bq6CgwK+iajJ48GANHjy4xnW/+c1vtGjRojrbDx06VEOHDq11vTd9AAAASD5ewmvVqpU2btxY47oNGzZUe88lAACAc4lPZ6D+/Oc/a9asWYqOjta1116rCy64QAcOHNC7776r559/XqNHjw50nQAAAEHDpwB18803Ky8vT1lZWXrsscdcyw3DUP/+/TVixIiAFQgAABBsfApQ5eXlmjFjhoYMGaL169fryJEjstlsuvrqq93eawkAAOBcZOoeqO+++04DBgzQCy+8IElKSkrSzTffrFtuuUVPPPGExo0b5/rsOgAAgHOV1wHqxx9/1K233qoDBw6oTZs2busiIiI0ceJEHT58WLfccstZeRUeAABAsPA6QGVnZ+tXv/qV3njjDfXt29dtXUxMjG677Ta9/vrrioqK0vz58wNeKAAAQLDwOkCtXbtWw4YNc735ZE2aNWumIUOG6MsvvwxIcQAAAMHI6wBVWFio1q1be9wuOTlZ+fn5/tQEAAAQ1LwOUE2aNFFhYaHH7YqKitS4cWO/igIAAAhmXgeo9PR0rVq1yuN2b775Zq0f8wIAAHAu8DpADRo0SDk5OZo1a5bKysqqrS8vL9ejjz6qNWvWaODAgQEtEgAAIJh4/UaaKSkpmjJlimbOnKm33npLPXr0UMuWLeVwOPTf//5XOTk5Kioq0t13362ePXuezZoBAAAsZeqdyAcOHKh27dpp4cKF+vjjj11noho0aKArrrhCQ4YMUWpq6lkpFAAAIFiY/iiXzp07q3PnzpKkQ4cOKTw8XHFxcQEvDAAAIFj59Fl4lep6TygAAIBzlanPwgMAAAABCgAAwDQCFAAAgEkEKAAAAJMIUAAAACYRoAAAAEwiQAEAAJhEgAIAADCJAAUAAGASAQoAAMAkAhQAAIBJBCgAAACTCFAAAAAmEaAAAABMIkABAACYRIACAAAwiQAFAABgEgEKAADAJAIUAACASQQoAAAAkwhQAAAAJhGgAAAATCJAAQAAmESAAgAAMIkABQAAYBIBCgAAwCQCFAAAgEkEKAAAAJMIUAAAACYRoAAAAEwiQAEAAJhEgAIAADCJAAUAAGBSSAWo3bt3q2PHjlq1apVr2datW5WZmam0tDRlZGToxRdfdGvjdDr15JNPqmfPnkpLS9Pw4cO1b98+t2089QEAAFBVyASokydPavz48Tpx4oRrWVFRkQYPHqxWrVpp5cqVuvPOO5WVlaWVK1e6tnnmmWe0fPlyTZ8+XStWrJDT6dSwYcNUXl7udR8AAABVhVtdgLfmzZunhg0bui179dVXFRERoQcffFDh4eFKSkrS3r17lZ2drQEDBqi8vFyLFi3S+PHj1bt3b0nS448/rp49e+qjjz5Sv379PPYBAABwppA4A7Vhwwa98sormjVrltvy3Nxcde3aVeHhv+TA7t27a8+ePTpw4IC2bdum48ePq0ePHq71cXFxat++vTZs2OBVHwAAAGcK+jNQxcXFmjhxoqZNm6YWLVq4rcvPz1dycrLbsubNm0uSfv75Z+Xn50tStXbNmzd3rfPUxwUXXOBz7eHhNefTsDC721czKtvYbDbZbDav27m2tclUO3/aBmRM1wLJJu/6sLReK8esbO5hrkJ+PwPRzsNcBV29Vo5Zy1ydc/sZqLa26l/raz/9aWvFmFV/9Xwd05fjaKAEfYD6+9//ro4dO+q6666rtq60tFSRkZFuy6KioiRJZWVlKikpkaQatzly5IhXffjKbrcpPr5BndvExcX43H9YmF3h4WHeb2+3u76aaedP20CNKUnhYWd/3FCeo6ptPc3VubKfgWhX21wFa71WjnnmXJ2r+xmwMW31P6Y/bUNujk4HJ3+Oo/4K6gD15ptvKjc3V++8806N66Ojo103g1eqDD2xsbGKjo6WJJWXl7u+r9wmJibGqz585XQaKi4+UeO6sDC74uJiVFxcIofDaarfyrYOh1MVFQ6v2zmcTtdXM+38aRuoMSWpwuGQjLM7bijPUUWFQ7KdOsh5mquQ389AtPMwV0FXr5Vj1jJX59x+Bqrt6flyGPW/n/60tWRMf+bo9LHTl+NoXeLiYrw+qxXUAWrlypU6ePCg6wbwSvfff7/ef/99JSYmqrCw0G1d5c8JCQmqqKhwLWvVqpXbNm3btpUkj334o6Ki7gf1VAjy7YE3DEOG4WWiOL39qW9kqp0/bQMypmuB931YWq+FY7our3joK9T3MxDtPM1VsNVr5Zi1zdW5tp+Balt1vuprzEC0tWLMqoHc1zH9OY76K6gDVFZWlkpLS92W9enTR2PGjNH111+vt956SytWrJDD4VDY6dPL69atU5s2bdS0aVM1atRIDRs2VE5OjitAFRcXKy8vT5mZmZKk9PT0OvsAAAA4U1C/Ci8hIUG/+c1v3P5JUtOmTZWQkKABAwbo2LFjmjp1qnbs2KFVq1Zp8eLFGjlypKRT9z5lZmYqKytLH3/8sbZt26axY8cqMTFRffr0kSSPfQAAAJwpqM9AedK0aVMtWLBAM2bMUP/+/dWsWTNNnDhR/fv3d20zZswYVVRUaNq0aSotLVV6eroWLlyoiIgIr/sAAACoKuQC1Hfffef2c4cOHfTKK6/Uun1YWJgmTJigCRMm1LqNpz4AAACqCupLeAAAAMGIAAUAAGASAQoAAMAkAhQAAIBJBCgAAACTCFAAAAAmEaAAAABMIkABAACYRIACAAAwiQAFAABgEgEKAADAJAIUAACASQQoAAAAkwhQAAAAJhGgAAAATCJAAQAAmESAAgAAMIkABQAAYBIBCgAAwCQCFAAAgEkEKAAAAJMIUAAAACYRoAAAAEwiQAEAAJhEgAIAADCJAAUAAGASAQoAAMAkAhQAAIBJBCgAAACTCFAAAAAmEaAAAABMIkABAACYRIACAAAwiQAFAABgEgEKAADAJAIUAACASQQoAAAAkwhQAAAAJhGgAAAATCJAAQAAmESAAgAAMIkABQAAYBIBCgAAwCQCFAAAgEkEKAAAAJMIUAAAACYRoAAAAEwiQAEAAJhEgAIAADApJALU4cOHdd9996lXr17q1KmTbr75ZuXm5rrWr127VjfccINSU1PVt29fvffee27ty8rK9MADD6hHjx7q2LGj/vrXv+rQoUNu23jqAwAAoFJIBKhx48bp66+/1pw5c7Ry5UpdeumlGjp0qHbt2qWdO3dq5MiR6tmzp1atWqWbbrpJEydO1Nq1a13t//73v+uLL77QvHnztGTJEu3atUtjxoxxrfemDwAAgErhVhfgyd69e/Xll19q+fLl6ty5syTpb3/7m/71r3/pnXfe0cGDB9W2bVuNHTtWkpSUlKS8vDwtWLBAPXr0UEFBgd58800999xz6tKliyRpzpw56tu3r77++mt17NhRS5YsqbMPAACAqoL+DFR8fLyys7OVkpLiWmaz2WSz2VRcXKzc3NxqIad79+7auHGjDMPQxo0bXcsqtWnTRgkJCdqwYYMkeewDAACgqqA/AxUXF6crr7zSbdmHH36ovXv36t5779Ubb7yhxMREt/XNmzdXSUmJioqKVFBQoPj4eEVFRVXbJj8/X5KUn59fZx9NmjTxqfbw8JrzaViY3e2rGZVtKkOkt1zb2mSqnT9tAzKma4Fkk3d9WFqvlWNWNvcwVyG/n4Fo52Gugq5eK8esZa7Ouf0MVFtb9a/1tZ/+tLVizKq/er6O6ctxNFCCPkCd6auvvtKUKVPUp08f9e7dW6WlpYqMjHTbpvLn8vJylZSUVFsvSVFRUSorK5Mkj334wm63KT6+QZ3bxMXF+NS3dOpJEx4e5v32drvrq5l2/rQN1JiSFB529scN5Tmq2tbTXJ0r+xmIdrXNVbDWa+WYZ87VubqfARvTVv9j+tM25ObodHDy5zjqr5AKUKtXr9b48ePVqVMnZWVlSToVhM4MOZU/x8TEKDo6usYQVFZWppiYGK/68IXTaai4+ESN68LC7IqLi1FxcYkcDqepfivbOhxOVVQ4vG7ncDpdX82086dtoMaUpAqHQ/LyaqrV9Vo2pu3UQc7TXIX8fgainYe5Crp6rRyzlrk65/YzUG1Pz5fDqP/99KetJWP6M0enj52+HEfrEhcX4/VZrZAJUEuXLtWMGTPUt29fPfLII64zRC1atFBhYaHbtoWFhYqNjVWjRo2UmJiow4cPq7y83O0sU2FhoRISErzqw1cVFXU/qKdCkG8PvGEYpu7Pcm1ryPR9Xb62DciYrgXe92FpvRaO6bq84qGvUN/PQLTzNFfBVq+VY9Y2V+fafgaqbdX5qq8xA9HWijGrBnJfx/TnOOqvoL+JXJKWL1+u6dOna+DAgZozZ45bEOrSpYvWr1/vtv26devUqVMn2e12de7cWU6n03UzuSTt3r1bBQUFSk9P96oPAACAqoI+HezevVszZ87U73//e40cOVIHDhzQ/v37tX//fh09elSDBg3Sli1blJWVpZ07d2rRokX64IMPNGzYMElSQkKCrr32Wk2bNk05OTnasmWLxo0bp65duyotLU2SPPYBAABQVdBfwvvwww918uRJ/fOf/9Q///lPt3X9+/fXrFmz9Mwzz2j27NlasmSJWrZsqdmzZ7u9LcH06dM1c+ZMjR49WpLUq1cvTZs2zbX+kksu8dgHAABApaAPULfffrtuv/32Orfp1auXevXqVev62NhYPfTQQ3rooYd87gMAAKBS0F/CAwAACDYEKAAAAJMIUAAAACYRoAAAAEwiQAEAAJhEgAIAADCJAAUAAGASAQoAAMAkAhQAAIBJBCgAAACTCFAAAAAmEaAAAABMIkABAACYRIACAAAwiQAFAABgEgEKAADAJAIUAACASQQoAAAAkwhQAAAAJhGgAAAATCJAAQAAmESAAgAAMIkABQAAYBIBCgAAwCQCFAAAgEkEKAAAAJMIUAAAACYRoAAAAEwiQAEAAJhEgAIAADCJAAUAAGASAQoAAMAkAhQAAIBJBCgAAACTCFAAAAAmEaAAAABMIkABAACYRIACAAAwiQAFAABgEgEKAADAJAIUAACASQQoAAAAkwhQAAAAJhGgAAAATCJAAQAAmESAAgAAMIkABQAAYBIBCgAAwCQCFAAAgEkEqNOcTqeefPJJ9ezZU2lpaRo+fLj27dtndVkAACAIEaBOe+aZZ7R8+XJNnz5dK1askNPp1LBhw1ReXm51aQAAIMgQoCSVl5dr0aJFGjNmjHr37q127drp8ccfV35+vj766COrywMAAEGGACVp27ZtOn78uHr06OFaFhcXp/bt22vDhg0WVgYAAIKRzTAMw+oirPbRRx/prrvu0ubNmxUdHe1afvfdd6u0tFTz58833adhGHI6a55am02y2+1yOp0yO/uVbY+dKJejlv5rEhFuV2x0hOl2/rS1YsxQq5cxz60xQ61exjy3xgy1ev0ZM8xuU8PYSJ+Oo3Wx222y2WxebRseuGFDV0lJiSQpMjLSbXlUVJSOHDniU582m01hYXU/CHa77ycAG8ZGet4ogO1CbUx/2jImY1rZljEZ08q2oTamP8dRf3EJT3KddTrzhvGysjLFxMRYURIAAAhiBChJLVq0kCQVFha6LS8sLFRCQoIVJQEAgCBGgJLUrl07NWzYUDk5Oa5lxcXFysvLU3p6uoWVAQCAYMQ9UDp171NmZqaysrLUpEkTXXjhhZo9e7YSExPVp08fq8sDAABBhgB12pgxY1RRUaFp06aptLRU6enpWrhwoSIiIqwuDQAABBnexgAAAMAk7oECAAAwiQAFAABgEgEKAADAJAIUAACASQQoAAAAkwhQAAAAJhGgAAAATCJA1SOn06knn3xSPXv2VFpamoYPH659+/ZZXVZQKigoUNu2bav9W7VqldWlBZX58+dr0KBBbsu2bt2qzMxMpaWlKSMjQy+++KJF1QWXmuZq2rRp1Z5jGRkZFlVorcOHD+u+++5Tr1691KlTJ918883Kzc11rV+7dq1uuOEGpaamqm/fvnrvvfcsrNZ6nuZr8ODB1Z5bZz7/zhcHDx7UhAkT1L17d3Xs2FEjRozQzp07XetD9m+WgXozb948o1u3bsann35qbN261RgyZIjRp08fo6yszOrSgs5nn31mpKSkGAUFBUZhYaHrX0lJidWlBY2lS5ca7dq1MzIzM13LDh06ZHTr1s2YMmWKsWPHDuP11183UlJSjNdff93CSq1X01wZhmHceOONxpw5c9yeYwcPHrSoSmsNHjzY6Nevn7FhwwZj165dxgMPPGB06NDB2Llzp7Fjxw4jJSXFmDNnjrFjxw5jwYIFRvv27Y1///vfVpdtmbrmyzAMo0ePHsby5cvdnltFRUXWFm2RP/3pT8ZNN91kbN682dixY4dx1113GVdccYVx4sSJkP6bRYCqJ2VlZUbHjh2NZcuWuZYdOXLE6NChg/HOO+9YWFlwys7ONq677jqrywhK+fn5xsiRI420tDSjb9++bqHgueeeM6644grj5MmTrmWPPfaY0adPHytKtVxdc+V0Oo20tDTjo48+srDC4LBnzx4jOTnZyM3NdS1zOp3G1VdfbcydO9f429/+Ztx4441ubcaNG2cMGTKkvksNCp7m68CBA0ZycrLx7bffWlhlcDh8+LAxbtw447vvvnMt27p1q5GcnGxs3rw5pP9mcQmvnmzbtk3Hjx9Xjx49XMvi4uLUvn17bdiwwcLKgtN3332npKQkq8sISt9++60iIiL09ttvKzU11W1dbm6uunbtqvDwXz7msnv37tqzZ48OHDhQ36Varq65+uGHH3TixAlddNFFFlUXPOLj45Wdna2UlBTXMpvNJpvNpuLiYuXm5rr97ZJOPa82btwo4zz8NDBP8/Xdd9/JZrOpTZs2FlYZHBo3bqzHHntMycnJkqRDhw5p8eLFSkxM1MUXXxzSf7MIUPUkPz9fktSiRQu35c2bN3etwy+2b9+uQ4cOaeDAgfrtb3+rm2++WWvWrLG6rKCQkZGhefPm6X/+53+qrcvPz1diYqLbsubNm0uSfv7553qpL5jUNVfbt2+XJL300kvKyMjQ1VdfrQcffFBHjx6t7zItFxcXpyuvvFKRkZGuZR9++KH27t2rnj171vq8KikpUVFRUX2XazlP87V9+3Y1atRIDz74oHr16qW+fftq7ty5Ki8vt7Bq6/3tb39Tjx499N5772nGjBmKjY0N6b9ZBKh6UlJSIkluv3CSFBUVpbKyMitKCloVFRXatWuXjhw5orvuukvZ2dlKS0vTiBEjtHbtWqvLC2qlpaU1Psck8Tw7w/bt22W329W8eXM999xzmjx5sr744gvdcccdcjqdVpdnqa+++kpTpkxRnz591Lt37xqfV5U/n++hQKo+X9u3b1dZWZk6dOigBQsWaNSoUXrttdc0bdo0q0u11F/+8hetXLlS/fr105133qlvv/02pP9mhXveBIEQHR0t6dQfm8rvpVNPkJiYGKvKCkrh4eHKyclRWFiYa64uv/xyff/991q4cGG1Swn4RXR0dLUDWuUfodjYWCtKClqjRo3SLbfcovj4eElScnKymjVrpj/+8Y/65ptvql3yO1+sXr1a48ePV6dOnZSVlSXp1AHtzOdV5c/n+9+vmubrwQcf1KRJk9S4cWNJp55bERERGjt2rCZOnKgLLrjAypItc/HFF0uSZsyYoc2bN2vp0qUh/TeLM1D1pPLSXWFhodvywsJCJSQkWFFSUGvQoIFb0JSkSy65RAUFBRZVFBoSExNrfI5J4nl2Brvd7gpPlS655BJJOm8vqy9dulR33XWXrrrqKj333HOuMwEtWrSo8XkVGxurRo0aWVFqUKhtvsLDw13hqdL5+tw6dOiQ3nvvPVVUVLiW2e12XXzxxSosLAzpv1kEqHrSrl07NWzYUDk5Oa5lxcXFysvLU3p6uoWVBZ/vv/9enTp1cpsrSfrPf/7j+h8Mapaenq6NGzfK4XC4lq1bt05t2rRR06ZNLaws+EycOFG33Xab27JvvvlGks7L59ny5cs1ffp0DRw4UHPmzHG7rNKlSxetX7/ebft169apU6dOstvPz8NIXfM1aNAgTZkyxW37b775RhEREWrdunU9V2qtAwcOaNy4cW63X5w8eVJ5eXlKSkoK6b9Z5+cz3wKRkZHKzMxUVlaWPv74Y23btk1jx45VYmKi+vTpY3V5QSUpKUkXXXSRHnzwQeXm5mrnzp16+OGHtWnTJo0aNcrq8oLagAEDdOzYMU2dOlU7duzQqlWrtHjxYo0cOdLq0oLOH/7wB61du1ZPPfWUfvjhB33++ee699571a9fv/PuFaC7d+/WzJkz9fvf/14jR47UgQMHtH//fu3fv19Hjx7VoEGDtGXLFmVlZWnnzp1atGiRPvjgAw0bNszq0i3hab7+8Ic/6K233tLLL7+sffv26f3339ejjz6qoUOHqmHDhlaXX6+Sk5PVq1cvPfTQQ9qwYYO2b9+uyZMnq7i4WLfddltI/82yGefja1At4nA4NGfOHK1atUqlpaVKT0/Xfffdp5YtW1pdWtA5cOCAHnvsMf3rX/9ScXGx2rdvr/Hjx6tLly5WlxZUJk+erJ9++kkvvfSSa9mWLVs0Y8YM5eXlqVmzZhoyZIgyMzMtrDI41DRX//jHP5Sdna1du3apUaNGuu6663TPPfe4LsWcL5577jk9/vjjNa7r37+/Zs2apTVr1mj27Nnas2ePWrZsqbvuukv/+7//W8+VBgdv5mvZsmVatmyZ9u3b57q3bsSIEeflGbujR4/qscce0+rVq3X06FF16dJFkydPdl3WDNW/WQQoAAAAk86/KAwAAOAnAhQAAIBJBCgAAACTCFAAAAAmEaAAAABMIkABAACYRIACEBJ4xxXfMXdA4BGgANSrVatWqW3btvrxxx+92r68vFwzZ87UO++8c5Yrq11+fr4GDhyolJQU9ejRQyUlJZbVYkZ+fr5GjBihn376ybUsIyNDkydPtrAq4NxAgAIQ1AoLC7VkyRK3DyOtb0uWLNGmTZv0yCOP6KmnnlJMTIxltZjx73//W59//rnVZQDnpHCrCwCAYHf48GE1b978vP3oEgDVcQYKwFnjdDr1zDPPqHfv3kpNTdUdd9yhI0eOuG2zevVq3XLLLerYsaMuv/xy9e3bV8uWLZMk/fjjj/rd734nSZoyZYoyMjJc7XJzc5WZmanU1FR17dpVkyZN0qFDh0zXePToUT388MO6+uqrlZKSon79+un11193rc/IyNCqVav03//+V23bttW8efO87rtt27Z6+eWXNXnyZHXu3Fldu3bVQw89pNLSUj3yyCPq3r27unXrpqlTp6qsrMzVrqysTE8//bT69u2rlJQU9enTR9nZ2XI6na5tBg0apKlTpyo7O1u9e/dWSkqK/vznP2vLli2STl0qnTJliiTpd7/7ndtlu5MnT+rRRx/V//t//09paWkaMmSI9u7da3rugPMZn4UH4Kx55JFH9OKLL2rUqFFKTU3VP/7xD7399ts6efKkPv74Y+3YsUMjR47UrbfeqoyMDJWWlmr58uVas2aNXn31VV166aX6/PPPNXr0aI0aNUp9+vRR+/bttWHDBg0ePFjdu3fXwIEDdeTIET3xxBNq0KCBXn/9dUVHR3tVX2lpqW666SYdPHhQY8aM0YUXXqjVq1drxYoVGjt2rG6//Xbl5eVp7ty5ysvL01NPPaXExEQlJiZ61X/btm3VoEED9evXT9dcc40+/fRTLVmyRG3atFG7du104403atOmTZo3b54mTJigYcOGyTAMDRkyRJs2bdLo0aPVrl075eTkaMGCBRowYICmT58u6VSA2rp1q5KSkjR8+HAZhqFHHnlEJ0+e1CeffKIjR47oxRdf1LPPPqunnnpKbdu2VatWrZSRkaGff/5ZV1xxhW699VYdOHBADz/8sFq2bKlVq1b5/FgD5x0DAM6CI0eOGJdddpkxe/Zst+VDhw41kpOTjX379hnPP/+8MWnSJLf1RUVFRnJysjF//nzDMAxj3759RnJysrFy5UrXNn/605+Mfv36GRUVFa5lu3btMi699FJj6dKlXte4bNkyIzk52fjqq6/clt97771GSkqKUVRUZBiGYUyaNMm46qqrvO63UnJysnHTTTe5fq6oqDDS0tKMjIwM4+TJk67l/fr1M0aNGmUYhmF89tlnRnJysvHuu++69fX0008bycnJxvbt2w3DMIzMzEwjNTXVOHr0qGubN954w0hOTja++eYbwzAMY+XKla65rnTVVVcZV155pVFeXu5a9vjjjxvJyclufQGoG5fwAJwVmzZt0smTJ3XVVVe5Lb/mmmtc3w8bNkyzZs3S8ePH9Z///Efvv/++5s+fL+nUq+9qUlJSos2bN+vKK6+UYRiqqKhQRUWF/ud//kdJSUn68ssvva5x/fr1uvDCC9WxY0e35ddff73Kysq0efNmr/uqTdW+w8LCFB8fr8suu0zh4b/cgvqrX/1KR48eddUUHh6uvn37Vqupcn2liy++WA0bNnT9nJCQIEkeXyXYoUMHRUREuH5u2bKlJKm4uNjUvgHnM24iB3BWVN7rFB8f77a8WbNmru8PHTqk+++/X6tXr5bNZtNvfvMbdenSRVLt711UXFwsp9Op559/Xs8//3y19VFRUaZqrFpPpQsuuMA1lr+qBpxKsbGxddYUHx+vsLAwt+WVdVYGLUnVXg1ot5/6P3HVe6Vqcub43rYD8AsCFICzojI4HTx4UBdddJFr+eHDh13fjx8/Xrt27dLixYvVsWNHRUZGqqSkRK+++mqt/TZo0EA2m0233Xabrr322mrrzbzFQOPGjWu8eXr//v1u+1CfGjdurKKiIjkcDrcQVVhYaFlNAKrjEh6As6Jjx46Kjo7WBx984Lb8008/dX2/ceNG9enTR926dVNkZKQkac2aNZJ+ORty5pmYhg0bqn379tq1a5dSUlJc/y655BLNmzdPOTk5XteYnp6un376SV9//bXb8rffflsRERHq0KGD9zscIF27dlVFRUW1eXv77bclSZ07d/a6r8ozSwACjzNQAM6KBg0a6I477tDcuXMVExOj7t276/PPP3cLUB06dNA777yjyy67TImJifrqq6+UnZ0tm83muo+nUaNGkqS1a9cqKSlJqampGjdunEaMGKG//vWvuv766+VwOLRo0SJt3rxZd9xxh9c13nDDDVq+fLnuvPNOjRkzRi1bttQnn3yilStXavTo0YqLiwvspHihV69e6tatm6ZNm6aCggK1a9dO69ev1/PPP6/+/fvr4osv9rqvyvr/+c9/qlevXkpKSjpbZQPnHQIUgLNm5MiRio2N1ZIlS7RkyRJ17NhRkyZN0t///ndJ0qxZszR9+nTXS/Nbt26tBx54QG+//bZyc3MlnTrjNHjwYL3yyiv6/PPP9eWXX+qKK67QwoUL9dRTT2nMmDGKiIjQZZddphdeeEFpaWle1xcTE6OXXnpJjz32mJ544gkdO3ZMF110kWbMmKEbb7wx0NPhFZvNpvnz5+vJJ5/U4sWLdejQIbVs2VLjxo3T4MGDTfXVrVs3/fa3v9Vjjz2mtWvXKjs7+yxVDZx/eB8oAAAAkzgDBeCc43A4an0VXyWbzVbt/ipvOJ1Or16tVvVtCgCcezgDBeCcM2jQILf3S6rJhRdeqE8++cR035MnT9Ybb7zhcbvvvvvOdN8AQgcBCsA5Z9euXTp+/Hid20RGRqpt27am+/7xxx9VVFTkcbuUlBTTfQMIHQQoAAAAk3iTEAAAAJMIUAAAACYRoAAAAEwiQAEAAJhEgAIAADCJAAUAAGASAQoAAMAkAhQAAIBJ/x/GUJmf3WvkZgAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.histplot(data=average_births_df, x=\"date_of_month\", weights=\"average_births\", bins=31)"
]
},
{
"cell_type": "markdown",
"id": "69a032ce-31ec-4613-8f21-d31d52d02fa2",
"metadata": {},
"source": [
"Looking at these results, the average number of births for each date of the month is within 1,000 births of each other, which is not a huge difference, but the 13th of each month is on the lower end. The only 2 dates of the month that has a lower average are the 25th and the 31st. Overall, there are less babies being born on the 13th than the majority of other dates"
]
},
{
"cell_type": "markdown",
"id": "collectible-puppy",
"metadata": {},
"source": [
"## Second Research Question: Of babies being born on the 13th of the month, which day of the week is the least common on average?\n"
]
},
{
"cell_type": "markdown",
"id": "demographic-future",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "incorporate-roller",
"metadata": {},
"source": [
"I will now use three different columns to organize and show my data: date_of_month, day_of_week, and births. \n",
"First, i will have to organize my data by extracting only the data with a date_of_month equal to 13. This will then allow me to look at the average day_of_week for this new data set, which I will then turn into a bar plot in order to easily see which day_of_week is the most and least common. "
]
},
{
"cell_type": "markdown",
"id": "juvenile-creation",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "pursuant-surrey",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 False\n",
"1 False\n",
"2 False\n",
"3 False\n",
"4 False\n",
" ... \n",
"5474 False\n",
"5475 False\n",
"5476 False\n",
"5477 False\n",
"5478 False\n",
"Name: date_of_month, Length: 5479, dtype: bool"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.date_of_month==13"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "located-night",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>year</th>\n",
" <th>month</th>\n",
" <th>date_of_month</th>\n",
" <th>day_of_week</th>\n",
" <th>births</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>2000</td>\n",
" <td>1</td>\n",
" <td>13</td>\n",
" <td>4</td>\n",
" <td>11815</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43</th>\n",
" <td>2000</td>\n",
" <td>2</td>\n",
" <td>13</td>\n",
" <td>7</td>\n",
" <td>7933</td>\n",
" </tr>\n",
" <tr>\n",
" <th>72</th>\n",
" <td>2000</td>\n",
" <td>3</td>\n",
" <td>13</td>\n",
" <td>1</td>\n",
" <td>11157</td>\n",
" </tr>\n",
" <tr>\n",
" <th>103</th>\n",
" <td>2000</td>\n",
" <td>4</td>\n",
" <td>13</td>\n",
" <td>4</td>\n",
" <td>11907</td>\n",
" </tr>\n",
" <tr>\n",
" <th>133</th>\n",
" <td>2000</td>\n",
" <td>5</td>\n",
" <td>13</td>\n",
" <td>6</td>\n",
" <td>8747</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5338</th>\n",
" <td>2014</td>\n",
" <td>8</td>\n",
" <td>13</td>\n",
" <td>3</td>\n",
" <td>12817</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5369</th>\n",
" <td>2014</td>\n",
" <td>9</td>\n",
" <td>13</td>\n",
" <td>6</td>\n",
" <td>8903</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5399</th>\n",
" <td>2014</td>\n",
" <td>10</td>\n",
" <td>13</td>\n",
" <td>1</td>\n",
" <td>11241</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5430</th>\n",
" <td>2014</td>\n",
" <td>11</td>\n",
" <td>13</td>\n",
" <td>4</td>\n",
" <td>12103</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5460</th>\n",
" <td>2014</td>\n",
" <td>12</td>\n",
" <td>13</td>\n",
" <td>6</td>\n",
" <td>8596</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>180 rows × 5 columns</p>\n",
"</div>"
],
"text/plain": [
" year month date_of_month day_of_week births\n",
"12 2000 1 13 4 11815\n",
"43 2000 2 13 7 7933\n",
"72 2000 3 13 1 11157\n",
"103 2000 4 13 4 11907\n",
"133 2000 5 13 6 8747\n",
"... ... ... ... ... ...\n",
"5338 2014 8 13 3 12817\n",
"5369 2014 9 13 6 8903\n",
"5399 2014 10 13 1 11241\n",
"5430 2014 11 13 4 12103\n",
"5460 2014 12 13 6 8596\n",
"\n",
"[180 rows x 5 columns]"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"thirteen=df[df.date_of_month==13]\n",
"thirteen"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "4e2a89c4-5686-4865-94e6-ac30f5366e0d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"day_of_week\n",
"1 11805.541667\n",
"2 12865.000000\n",
"3 12736.040000\n",
"4 12563.714286\n",
"5 11949.960000\n",
"6 8550.760000\n",
"7 7390.296296\n",
"Name: births, dtype: float64"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"average_day = thirteen.groupby('day_of_week')['births'].mean()\n",
"average_day"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "75b165fc-375b-4144-bf86-f85f04653cc3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='day_of_week', ylabel='Count'>"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG1CAYAAAAlVIodAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBr0lEQVR4nO3df3zN9f//8fv5sZ9mGmZTfb1pbFJkmKj3tLd3b6n0ebf0rrdQlCyUd4RK+oVJDEUJISqrvJv08x3x6f0uPixT6cfM76Syze+F/XB2zvcP73M4EefMa3udM7fr5eJyttfr+Xqc5/MxtrvX67VzLC6XyyUAAAAYxmr2BAAAAGobAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGMxu9gTOZy6XS06n8a/zarVaqqVubUSv/EO/fEevfEevfEevfFddvbJaLbJYLGcdR8AykdPp0v79RwytabdbFRNTRyUlR+VwOA2tXdvQK//QL9/RK9/RK9/RK99VZ6/q168jm+3sAYtLhAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYzPWDt27dPI0eOVKdOnZScnKyBAwdq27Ztnv1jxoxRUlKS15+uXbt69judTk2fPl2pqalq27at7r33Xu3atcvrOTZu3Kg+ffqobdu26tq1q1599VWv/UbUAAAAcDM9YA0ZMkQ7d+7UnDlz9Pbbbys8PFz9+vVTaWmpJGnTpk267777tGrVKs+ft99+23P8zJkzlZ2drXHjxunNN9+U0+nUgAEDVFFRIUk6cOCA+vfvryZNmignJ0dDhgxRVlaWcnJyDK0BAADgZjfzyQ8dOqSLLrpIGRkZSkxMlCQNHjxYf/3rX7Vlyxa1bt1aW7du1cCBAxUbG3vK8RUVFZo/f75GjBihtLQ0SdK0adOUmpqq5cuXq0ePHlq8eLFCQkI0duxY2e12JSQkeAJdz549DakBIPBYrRZZrRZTnttms3o9msHpdMnpdJn2/MD5ztSAVa9ePU2ZMsXz+f79+7VgwQLFx8erefPm+vHHH3X06FFdcsklpz2+oKBAR44cUefOnT3boqOj1apVK61bt049evRQXl6eOnbsKLv9xFI7deqk2bNna+/evfrll1/OuUbDhg2NbAuAc2S1WnRBTKRsVnNP0kdHR5j23JVOpw4eOErIAkxiasA62eOPP67FixcrNDRUL730kiIjI7V582ZJ0muvvabPPvtMVqtVXbp00bBhw1S3bl0VFhZKkho3buxVq1GjRp59hYWFnrNjJ++XpN27dxtS41wClt1u7A+AQPifc7CgV/4Jpn7ZbFbZrFa9saxAxfuP1vwELJLNalWl0ymZkG8a1Y9Ur+taKiTEpspKZ81PwA/B9PfKbPTKd4HQq4AJWHfddZduv/12LVq0SEOGDFF2drY2b94sq9WqRo0aadasWfrxxx81adIkbdmyRQsXLvTcpxUaGupVKywsTIcOHZIklZWVnXa/JJWXlxtSo6qsVotiYupU+fgzMfN/zsGGXvknmPq171CZig6Umj2NGuf+oRJMX6tgmqvZ6JXvzOxVwASs5s2bS5IyMzO1YcMGvf7668rMzNQdd9yhmJgYSVJiYqJiY2N122236dtvv1V4eLik4/diuT+WjoeeiIjjTQ0PD/fcrH7yfkmKjIw0pEZVOZ0ulZQY+79rm82q6OgIlZSUBvz/XM1Gr/wTTP1yz7Wy0imHo7LmJ2CR7DabHJWVppzBcn99gulrFQxzNRu98l119io6OsKnM2OmBqz9+/drzZo1uu666zz3N1mtVjVv3lzFxcWyWq2ecOXWokULSccv27kv6xUXF6tJkyaeMcXFxUpKSpIkxcfHq7i42KuG+/O4uDg5HI5zrnEuHI7q+Udy/AcL/wB9Qa/8E0z9crlccrlqPuFY9N+b610y5fndzxlMX6tgmqvZ6JXvzOyVqRdy9+7dq+HDh2vNmjWebceOHVN+fr4SEhI0atQo9evXz+uYb7/9VtLxM14tW7ZUVFSUcnNzPftLSkqUn5+vlJQUSVJKSorWr1+vysoT/4tdu3atmjVrpgYNGhhSAwAA4GSmBqzExER16dJF48eP17p167R582Y98sgjKikpUb9+/XTddddpzZo1euGFF/Tjjz/qP//5j0aPHq0ePXooISFBoaGh6tOnj7KysrRy5UoVFBRo2LBhio+PV7du3SRJPXv21OHDh/XYY49p69atWrJkiRYsWKCMjAxJMqQGAADAyUy/B2vq1KmaMmWKhg0bpl9//VUdOnTQokWLdOGFF+rCCy/Uc889pzlz5ujll19W3bp1ddNNN+nBBx/0HD906FA5HA6NGTNGZWVlSklJ0bx58xQSEiJJatCggebOnavMzEylp6crNjZWo0aNUnp6uqE1AAAA3CwuM24QgKTj14b37z9iaE273aqYmDo6cOAI1+jPgl75J5j65Z7rc9nr9fOewzX+/BaLRXa7TQ5HpSn3YF0UG6UH72gfVF+rYJir2eiV76qzV/Xr1/HpJndeTAMAAMBgBCwAAACDEbAAAAAMRsACAAAwGAELAADAYAQsAAAAgxGwAAAADGb6C40C1cFqtchqtZxxjPt1THx5PZNg43S65HTyEncAYBYCFmodq9WiC2IiZbP6FpyioyOqeUY1r9Lp1MEDRwlZAGASAhZqHavVIpvVquyPN6p4/9HfHWexWGSzWVVZ6TTl1barS6P6kbqj+6WyWi0ELAAwCQELtVbx/qNnfJsUs9/OBABQe9W+m08AAABMRsACAAAwGAELAADAYAQsAAAAgxGwAAAADEbAAgAAMBgBCwAAwGAELAAAAIMRsAAAAAxGwAIAADAYAQsAAMBgBCwAAACD8WbPQC1lsxn7/yd3PaPrVodgmCOA2o2ABdQydSND5HS6FB0dUS31q6suANQmBCyglgkPs8tqteiNZQUq2nfEsLoWi0U2m1WVlU65XC7D6laHpKb1df1VzWSxWMyeCoDzFAELqKWK9x/Vz3sOG1bPYrHIbrfJ4agM+IAVG8NZNgDm4kYFAAAAgxGwAAAADEbAAgAAMBgBCwAAwGAELAAAAIMRsAAAAAxGwAIAADAYAQsAAMBgBCwAAACDEbAAAAAMRsACAAAwmOkBa9++fRo5cqQ6deqk5ORkDRw4UNu2bfPs37hxo/r06aO2bduqa9euevXVV72Odzqdmj59ulJTU9W2bVvde++92rVrl9eYmqgBAADgZnrAGjJkiHbu3Kk5c+bo7bffVnh4uPr166fS0lIdOHBA/fv3V5MmTZSTk6MhQ4YoKytLOTk5nuNnzpyp7OxsjRs3Tm+++aacTqcGDBigiooKSaqxGgAAAG52M5/80KFDuuiii5SRkaHExERJ0uDBg/XXv/5VW7Zs0Zo1axQSEqKxY8fKbrcrISHBE8Z69uypiooKzZ8/XyNGjFBaWpokadq0aUpNTdXy5cvVo0cPLV68uNprAAAAnMzUM1j16tXTlClTPOFq//79WrBggeLj49W8eXPl5eWpY8eOsttP5MBOnTrphx9+0N69e1VQUKAjR46oc+fOnv3R0dFq1aqV1q1bJ0k1UgMAAOBkpp7BOtnjjz+uxYsXKzQ0VC+99JIiIyNVWFjoCV9ujRo1kiTt3r1bhYWFkqTGjRufMsa9ryZqNGzYsGqLlmS3G5txbTar1+P5yL12i8Uii8Xy+wMtJx4tOsO4IONZs0VnXr/fhU88Bnq/qq0HPk/gxKMZvXKvORi+D/A9y3f0yneB0KuACVh33XWXbr/9di1atEhDhgxRdna2ysrKFBoa6jUuLCxMklReXq7S0lJJOu2YQ4cOSVKN1Kgqq9WimJg6VT7+TKKjI6qlbjCx2ayy221nHWe3nX1MMLFZrZ5HX9bvr2DoV3X3wFdm9cr9QyWYvg8E01zNRq98Z2avAiZgNW/eXJKUmZmpDRs26PXXX1d4eLjnRnM3d6CJjIxUeHi4JKmiosLzsXtMRMTxptZEjapyOl0qKTla5eNPx2azKjo6QiUlpaqsdBpaO1i4e1BZ6ZTDUfn7Ay3HfwA6KislV83Nr7pVOp2exzOu319B1K9q64GvTO5VZJhNTqdLVmtgn2msTpVOp34tKZPLFeB/Wf3A93ffVWevoqMjfDozZmrA2r9/v9asWaPrrrvOc3+T1WpV8+bNVVxcrPj4eBUXF3sd4/48Li5ODofDs61JkyZeY5KSkiSpRmqcC4ejev6RHA8X5/c/QJfLdcZvrp5LNy7Vqm/CnrUYvK5g6ld19cBXZvcqLNQmq9WiN5YVqGjfkRp/fn9YLBbZbFZVVjoN61Wj+pG6o/ulcrlctfL7IN/ffWdmr0wNWHv37tXw4cM1d+5cpaamSpKOHTum/Px8de3aVQ0bNtSbb76pyspK2f57qn3t2rVq1qyZGjRooLp16yoqKkq5ubmecFRSUqL8/Hz16dNHkpSSklLtNQAgEBXvP6qf9xw2expnZLFYZLfb5HBUBnxwB/xh6p1yiYmJ6tKli8aPH69169Zp8+bNeuSRR1RSUqJ+/fqpZ8+eOnz4sB577DFt3bpVS5Ys0YIFC5SRkSHp+H1Tffr0UVZWllauXKmCggINGzZM8fHx6tatmyTVSA0AAICTmX4P1tSpUzVlyhQNGzZMv/76qzp06KBFixbpwgsvlCTNnTtXmZmZSk9PV2xsrEaNGqX09HTP8UOHDpXD4dCYMWNUVlamlJQUzZs3TyEhIZKkBg0a1EgNAAAAN4uLc7Kmqax0av9+Y++PsNutiompowMHjpy31+jdPXgue/0ZL4/U1ksTbRNj1fv6Vnr+jS/1U/GvhtUNpn5VVw98ZXavzF6/P6qjVxfFRunBO9rXuu+DfH/3XXX2qn79Oj7d5M6LaQAAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGMz0t8pB9fDlVWZrq/N57QCAwEDAqmUsFoucTpeioyPMngoAAOctAlYtY7VaZLVa9MayAhXtM/Z9DoNFUtP6uv6qZrJYLGZPBQBwniJg1VLF+4+e8Y2Oa7PYGM7eAQDMxc0qAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABjM9YB08eFBPPPGEunTponbt2qlXr17Ky8vz7O/fv7+SkpK8/vTt29ezv7y8XE8//bQ6d+6s5ORkPfTQQ9q/f7/Xc6xZs0a33HKLrrjiCnXv3l0ffvih134jagAAALiZHrCGDx+ur776SlOnTlVOTo4uvfRS3XPPPdq+fbskadOmTXrqqae0atUqz58ZM2Z4jnfvmzFjhhYuXKjt27dr6NChnv3btm1TRkaGUlNTtWTJEv3tb3/TqFGjtGbNGkNrAAAAuNnNfPKdO3dq9erVys7OVvv27SVJjz/+uD7//HO9//776tOnj/bt26crrrhCsbGxpxxfVFSkpUuXatasWerQoYMkaerUqerevbu++uorJScna+HChUpKStKwYcMkSQkJCcrPz9fcuXPVuXNnQ2oAAACczNQzWDExMZozZ45at27t2WaxWGSxWFRSUqJNmzbJYrGoWbNmpz1+/fr1kqROnTp5tjVr1kxxcXFat26dJCkvL++UENSpUyetX79eLpfLkBoAAAAnM/UMVnR0tK655hqvbcuWLdPOnTs1evRobd68WXXr1tXYsWO1evVqRUZGqnv37ho8eLBCQ0NVVFSkmJgYhYWFedVo1KiRCgsLJUmFhYWKj48/ZX9paakOHDhgSI369etXuQd2u7EZ12q1HP/Acjysno886z5bDywnHi2qPb3yef1+Fz7xGOj9qrYe+DyBE49m9Mr09fujGnrlXrPNZvpdMIZyr6e2ras6BEKvTA1Yv/Xll1/q0UcfVbdu3ZSWlqbRo0ervLxcbdq0Uf/+/bVx40ZNmjRJv/zyiyZNmqTS0lKFhoaeUicsLEzl5eWSpLKyslPGuD+vqKgwpEZVWa0WxcTUqfLxZ2KzWmW326qldqCzWa2eR196YLfVrj75u35/BUO/qrsHvjKrV4Gyfn8Y2Sv3D9Xo6AjDagaS2rqu6mBmrwImYK1YsUIjRoxQu3btlJWVJUkaO3asHn74YdWrV0+SlJiYqJCQEA0bNkyjRo1SeHj4aQNOeXm5IiKONzUsLOyUMe7PIyIiDKlRVU6nSyUlR6t8/OmEhNgUFRWuSqdTDkelobWDRaXT6Xk8Yw8sx7+pOyorpVp0pdfn9fsriPpVbT3wlcm9Mn39/qiGXlVWHl9/SUmp5+PawGazKjo6otatqzpUZ6+ioyN8OjMWEAHr9ddfV2Zmprp3765nn33Wc3bIbrd7wpVbixYtJJ24bHfw4EFVVFR4nWEqLi5WXFycJKlx48YqLi72qlFcXKzIyEjVrVvXkBrnwuEw9gvv+aK7dN7eH+ZZ91l64LkcUct65ev6/RVM/aquHvjK7F6ZvX5/VEev3HUqK52Gf48NBLV1XdXBzF6ZfiE3Oztb48aNU+/evTV16lSvkNO3b189+uijXuO//fZbhYSEqGnTpmrfvr2cTqfnRnVJ2rFjh4qKipSSkiJJ6tChg7744guvGmvXrlW7du1ktVoNqQEAAHAyU9PBjh07NGHCBP3lL39RRkaG9u7dqz179mjPnj369ddfdd111+ndd9/VG2+8oV27dumjjz7SpEmTdM899ygqKkpxcXG68cYbNWbMGOXm5uqbb77R8OHD1bFjR7Vt21bS8ZD2zTffKCsrS9u2bdP8+fP18ccfa8CAAZJkSA0AAICTmXqJcNmyZTp27Jg++eQTffLJJ1770tPTNXHiRFksFr322muaMGGCYmNj1a9fPw0cONAzbty4cZowYYLuv/9+SVKXLl00ZswYz/4WLVpo5syZmjx5shYuXKiLL75YkydP9nrZBSNqAAAAuJkasO677z7dd999ZxzTu3dv9e7d+3f3R0ZGavz48Ro/fvzvjunSpYu6dOlSrTUAAADcuIEIAADAYAQsAAAAgxGwAAAADEbAAgAAMBgBCwAAwGAELAAAAIMRsAAAAAxGwAIAADAYAQsAAMBgBCwAAACDEbAAAAAMRsACAAAwGAELAADAYAQsAAAAgxGwAAAADEbAAgAAMBgBCwAAwGAELAAAAIMRsAAAAAxGwAIAADAYAQsAAMBgBCwAAACDEbAAAAAMRsACAAAwGAELAADAYAQsAAAAgxGwAAAADEbAAgAAMJjd7AkAAFAdbLbadQ7BvR5f1+V0uuR0uqpzSjgDAhYAoFapGxkip9Ol6OgIs6dSLXxdV6XTqYMHjhKyTELAAgDUKuFhdlmtFr2xrEBF+46YPR3DWCwW2WxWVVY65XKdOTQ1qh+pO7pfKqvVQsAyCQELAFArFe8/qp/3HDZ7GoaxWCyy221yOCrPGrBgvtp1gRoAACAAELAAAAAMRsACAAAwGAELAADAYAQsAAAAgxGwAAAADFYtAauwsNDnsQcPHtQTTzyhLl26qF27durVq5fy8vI8+9esWaNbbrlFV1xxhbp3764PP/zQ6/jy8nI9/fTT6ty5s5KTk/XQQw9p//79XmNqogYAAIBblQLWpZdeqm+++ea0+/Ly8nT99df7XGv48OH66quvNHXqVOXk5OjSSy/VPffco+3bt2vbtm3KyMhQamqqlixZor/97W8aNWqU1qxZ4zn+qaee0qpVqzRjxgwtXLhQ27dv19ChQz37a6oGAACAm88vNDp//nwdPXpUkuRyufTPf/5Tn3322SnjvvrqK4WGhvpUc+fOnVq9erWys7PVvn17SdLjjz+uzz//XO+//7727dunpKQkDRs2TJKUkJCg/Px8zZ07V507d1ZRUZGWLl2qWbNmqUOHDpKkqVOnqnv37vrqq6+UnJyshQsXVnsNAACAk/kcsMrLy/XCCy9IOv5qsv/85z9PGWO1WlW3bl0NGjTIp5oxMTGaM2eOWrdu7dlmsVhksVhUUlKivLw8XXvttV7HdOrUSZmZmXK5XFq/fr1nm1uzZs0UFxendevWKTk5uUZqWCwWn9YLAADODz4HrEGDBnmCU8uWLbV48WK1adPmnJ48Ojpa11xzjde2ZcuWaefOnRo9erTeeecdxcfHe+1v1KiRSktLdeDAARUVFSkmJkZhYWGnjHHfB1ZYWFjtNerXr1/lHtjtxt4GZ7X+N+xZdN4GP8+6z9YDy4lHi2pPr3xev9+FTzwGer+qrQc+T+DEoxm9Mn39/qiGXgXV+v3hR6/c6w4JsclmO/9+n839s9DMtVfpvQgLCgqMnock6csvv9Sjjz6qbt26KS0tTWVlZadcbnR/XlFRodLS0tNejgwLC1N5ebkk1UiNqrJaLYqJqVPl48/EZrXKbrdVS+1AZ7NaPY++9MBuq1198nf9/gqGflV3D3xlVq8CZf3+MLJXwbh+f/jSq3p1w+R0uhQVFV4DMwpMTqdL0dERpj1/ld/sefXq1fr0009VWloqp9Pptc9isWjChAl+1VuxYoVGjBihdu3aKSsrS9LxkPPbAOP+PCIiQuHh4acNOOXl5YqIiKixGlXldLpUUnK0ysefTkiITVFR4ap0OuVwVBpaO1hU/vfv41l7YDn+jcpRWSnVovdN9Xn9/gqiflVbD3xlcq9MX78/qqFXQbV+f/jRq1C7VVarRW8sK1DxfmN/zgSDRvUj1eu6ljp8uEzHjhn7dyA6OsKnM2NVCljz58/XpEmTFBYWpvr1659yCtbfU7Kvv/66MjMz1b17dz377LOes0ONGzdWcXGx19ji4mJFRkaqbt26io+P18GDB1VRUeF1hqm4uFhxcXE1VuNcOBzOsw/yg+eL7tJ5+27rnnWfpQeeU+y1rFe+rt9fwdSv6uqBr8zuldnr90d19CqY1u8Pf3rl3l+8/6h+Kv61uqcWsJxOl+E/Z31VpYD1+uuv66abblJmZqbPvzH4e7KzszVu3Dj17dtXjz32mFc469Chg7744guv8WvXrlW7du1ktVrVvn17OZ1OrV+/3vPbfDt27FBRUZFSUlJqrAYAAMDJqpQO9u7dq1tvvfWcw9WOHTs0YcIE/eUvf1FGRob27t2rPXv2aM+ePfr111/Vt29fffPNN8rKytK2bds0f/58ffzxxxowYIAkKS4uTjfeeKPGjBmj3NxcffPNNxo+fLg6duyotm3bSlKN1AAAADhZlc5gtWrVSlu2bNGVV155Tk++bNkyHTt2TJ988ok++eQTr33p6emaOHGiZs6cqcmTJ2vhwoW6+OKLNXnyZK/Xnho3bpwmTJig+++/X5LUpUsXjRkzxrO/RYsWNVIDAADArUoBa/To0XrwwQcVGRmpK6644rQ3el944YVnrXPffffpvvvuO+OYLl26qEuXLr+7PzIyUuPHj9f48eNNrQEAAOBWpYDVq1cvOZ1OjR49+ndvaN+4ceM5TQwAACBYVSlgjRs3rna9eBsAAICBqhSwbrnlFqPnAQAAUGtUKWCtW7furGPcL3EAAABwvqlSwOrbt68sFovXC5399pIh92ABAIDzVZUC1quvvnrKtqNHjyovL0/vvvuuZsyYcc4TAwAACFZVClgdO3Y87fa0tDRFRkbqpZde0uzZs89pYgAAAMHK8Pd5Od3bygAAAJxPDA9Y//u//6s6deoYXRYAACBoVOkS4Z133nnKNqfTqcLCQv3888+69957z3liAAAAwapKAevk3x50s1qtSkxMVEZGhnr27HnOEwMAAAhWVQpYr732mtHzAAAAqDWqFLDcPvvsM33xxRcqKSlR/fr11b59e6Wmpho1NwAAgKBUpYBVUVGhwYMHa9WqVbLZbIqJidGBAwc0e/ZsderUSbNnz1ZoaKjRcwUAAAgKVfotwhkzZmj9+vWaNGmSvvnmG61atUobNmzQM888o6+//lovvfSS0fMEAAAIGlUKWB988IHuv/9+/c///I9sNpskyW636+abb9b999+v999/39BJAgAABJMqBaz9+/erVatWp93XqlUrFRUVndOkAAAAglmVAlaTJk20fv360+5bt26dGjdufE6TAgAACGZVusn973//uyZOnKjw8HDdeOONatiwofbu3asPPvhAL7/8su6//36j5wkAABA0qhSwevXqpfz8fGVlZWnKlCme7S6XS+np6Ro4cKBhEwQAAAg2VX6ZhszMTN1999364osvdOjQIVksFl177bVKSEgweo4AAABBxa97sDZt2qSePXvqlVdekSQlJCSoV69euuOOO/T8889r+PDh2rFjR7VMFAAAIFj4HLB++ukn3Xnnndq7d6+aNWvmtS8kJESjRo3SwYMHdccdd/BbhAAA4Lzmc8CaM2eOLrjgAr3zzjvq3r27176IiAj169dPb7/9tsLCwjR79mzDJwoAABAsfA5Ya9as0YABA1S/fv3fHRMbG6u7775bq1evNmRyAAAAwcjngFVcXKymTZuedVxiYqIKCwvPZU4AAABBzeeAVb9+fRUXF5913IEDB1SvXr1zmhQAAEAw8zlgpaSkaMmSJWcdt3Tp0t99Gx0AAIDzgc8Bq2/fvsrNzdXEiRNVXl5+yv6KigpNmjRJn332mXr37m3oJAEAAIKJzy802rp1az366KOaMGGC3n33XXXu3FkXX3yxKisr9csvvyg3N1cHDhzQP/7xD6WmplbnnAEAAAKaX6/k3rt3b7Vs2VLz5s3TypUrPWey6tSpoz/+8Y+6++67dcUVV1TLRAEAAIKF32+V0759e7Vv316StH//ftntdkVHRxs+MQAAgGBVpfcidDvTa2IBAACcr/x6L0IAAACcHQELAADAYAQsAAAAgxGwAAAADEbAAgAAMFhABazZs2erb9++XtvGjBmjpKQkrz9du3b17Hc6nZo+fbpSU1PVtm1b3Xvvvdq1a5dXjY0bN6pPnz5q27atunbtqldffdVrvxE1AAAA3AImYC1atEjPPffcKds3bdqk++67T6tWrfL8efvttz37Z86cqezsbI0bN05vvvmmnE6nBgwYoIqKCknH33y6f//+atKkiXJycjRkyBBlZWUpJyfH0BoAAABu5/Q6WEYoKirSk08+qdzcXDVt2tRrn8vl0tatWzVw4EDFxsaecmxFRYXmz5+vESNGKC0tTZI0bdo0paamavny5erRo4cWL16skJAQjR07Vna7XQkJCdq5c6fmzJmjnj17GlIDAADgZKafwfr+++8VEhKi995775S32fnxxx919OhRXXLJJac9tqCgQEeOHFHnzp0926Kjo9WqVSutW7dOkpSXl6eOHTvKbj+RJTt16qQffvhBe/fuNaQGAADAyUw/g9W1a1eve6pOtnnzZknSa6+9ps8++0xWq1VdunTRsGHDVLduXRUWFkqSGjdu7HVco0aNPPsKCwuVmJh4yn5J2r17tyE1GjZs6N+iT2K3G5txrVbL8Q8sksViMbR2sPCs+2w9sJx4tKj29Mrn9ftd+MRjoPer2nrg8wROPJrRK9PX749q6FVQrd8ffvSq1vbAV/9dstVqMfznrK9MD1hnsnnzZlmtVjVq1EizZs3Sjz/+qEmTJmnLli1auHChSktLJUmhoaFex4WFhenQoUOSpLKystPul6Ty8nJDalSV1WpRTEydKh9/JjarVXa7rVpqBzqb1ep59KUHdlvt6pO/6/dXMPSrunvgK7N6FSjr94eRvQrG9fvDl17V9h6cjXv9UVHhps0hoAPWoEGDdMcddygmJkaSlJiYqNjYWN1222369ttvFR5+vHEVFRWej6XjoSciIkKSFB4e7rlZ/eT9khQZGWlIjapyOl0qKTla5eNPJyTEpqiocFU6nXI4Kg2tHSwqnU7P4xl7YDn+jcpRWSm5amhyNcDn9fsriPpVbT3wlcm9Mn39/qiGXgXV+v3hR69qbQ985F7/4cNlOnbM2PVHR0fIZjv7WbGADlhWq9UTrtxatGgh6fhlO/dlveLiYjVp0sQzpri4WElJSZKk+Ph4FRcXe9Vwfx4XFyeHw3HONc6Fw+E8p+N/y/NFdx3/JYHzkWfdZ+mB5xR7LeuVr+v3VzD1q7p64Cuze2X2+v1RHb0KpvX7w59e1dYe+Oy/S3Y6XYb/nPWV6Te5n8moUaPUr18/r23ffvutJKl58+Zq2bKloqKilJub69lfUlKi/Px8paSkSJJSUlK0fv16VVaeSLBr165Vs2bN1KBBA0NqAAAAnCygA9Z1112nNWvW6IUXXtCPP/6o//znPxo9erR69OihhIQEhYaGqk+fPsrKytLKlStVUFCgYcOGKT4+Xt26dZMk9ezZU4cPH9Zjjz2mrVu3asmSJVqwYIEyMjIkyZAaAAAAJwvoS4R//vOf9dxzz2nOnDl6+eWXVbduXd1000168MEHPWOGDh0qh8OhMWPGqKysTCkpKZo3b55CQkIkSQ0aNNDcuXOVmZmp9PR0xcbGatSoUUpPTze0BgAAgFtABayJEyeesu3666/X9ddf/7vH2Gw2jRw5UiNHjvzdMW3atNFbb71VrTUAAADcAvoSIQAAQDAiYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABgsoALW7Nmz1bdvX69tGzduVJ8+fdS2bVt17dpVr776qtd+p9Op6dOnKzU1VW3bttW9996rXbt21XgNAAAAt4AJWIsWLdJzzz3nte3AgQPq37+/mjRpopycHA0ZMkRZWVnKycnxjJk5c6ays7M1btw4vfnmm3I6nRowYIAqKipqtAYAAICb3ewJFBUV6cknn1Rubq6aNm3qtW/x4sUKCQnR2LFjZbfblZCQoJ07d2rOnDnq2bOnKioqNH/+fI0YMUJpaWmSpGnTpik1NVXLly9Xjx49aqQGAADAyUw/g/X9998rJCRE7733nq644gqvfXl5eerYsaPs9hM5sFOnTvrhhx+0d+9eFRQU6MiRI+rcubNnf3R0tFq1aqV169bVWA0AAICTmX4Gq2vXruratetp9xUWFioxMdFrW6NGjSRJu3fvVmFhoSSpcePGp4xx76uJGg0bNvRhpadntxubca1Wy/EPLJLFYjG0drDwrPtsPbCceLSo9vTK5/X7XfjEY6D3q9p64PMETjya0SvT1++PauhVUK3fH370qtb2wFf/XbLVajH856yvTA9YZ1JWVqbQ0FCvbWFhYZKk8vJylZaWStJpxxw6dKjGalSV1WpRTEydKh9/JjarVXa7rVpqBzqb1ep59KUHdlvt6pO/6/dXMPSrunvgK7N6FSjr94eRvQrG9fvDl17V9h6cjXv9UVHhps0hoANWeHi450ZzN3egiYyMVHj48cZVVFR4PnaPiYiIqLEaVeV0ulRScrTKx59OSIhNUVHhqnQ65XBUGlo7WFQ6nZ7HM/bAcvwblaOyUnLV0ORqgM/r91cQ9avaeuArk3tl+vr9UQ29Cqr1+8OPXtXaHvjIvf7Dh8t07Jix64+OjpDNdvazYgEdsOLj41VcXOy1zf15XFycHA6HZ1uTJk28xiQlJdVYjXPhcDjP6fjf8nzRXZLLFeA/BauJZ91n6YHnFHst65Wv6/dXMPWrunrgK7N7Zfb6/VEdvQqm9fvDn17V1h747L9Ldjpdhv+c9ZXpN7mfSUpKitavX6/KyhPpc+3atWrWrJkaNGigli1bKioqSrm5uZ79JSUlys/PV0pKSo3VAAAAOFlAB6yePXvq8OHDeuyxx7R161YtWbJECxYsUEZGhqTj90316dNHWVlZWrlypQoKCjRs2DDFx8erW7duNVYDAADgZAF9ibBBgwaaO3euMjMzlZ6ertjYWI0aNUrp6emeMUOHDpXD4dCYMWNUVlamlJQUzZs3TyEhITVaAwAAwC2gAtbEiRNP2damTRu99dZbv3uMzWbTyJEjNXLkyN8dUxM1AAAA3AL6EiEAAEAwImABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYLCgCVlFRkZKSkk75s2TJEknSxo0b1adPH7Vt21Zdu3bVq6++6nW80+nU9OnTlZqaqrZt2+ree+/Vrl27vMYYUQMAAEAKkoBVUFCgsLAwff7551q1apXnzw033KADBw6of//+atKkiXJycjRkyBBlZWUpJyfHc/zMmTOVnZ2tcePG6c0335TT6dSAAQNUUVEhSYbUAAAAcLObPQFfbN68WU2bNlWjRo1O2bdw4UKFhIRo7NixstvtSkhI0M6dOzVnzhz17NlTFRUVmj9/vkaMGKG0tDRJ0rRp05Samqrly5erR48eWrx48TnXAAAAcAuKM1ibNm1SQkLCaffl5eWpY8eOsttPZMVOnTrphx9+0N69e1VQUKAjR46oc+fOnv3R0dFq1aqV1q1bZ1gNAAAAt6A5gxUTE6PevXtrx44d+sMf/qBBgwapS5cuKiwsVGJiotd495mu3bt3q7CwUJLUuHHjU8a49xlRo6rsdmMzrtVqOf6BRbJYLIbWDhaedZ+tB5YTjxbVnl75vH6/C594DPR+VVsPfJ7AiUczemX6+v1RDb0KqvX7w49e1doe+Oq/S7ZaLYb/nPVVwAcsh8Oh7du3q3nz5nrkkUcUFRWlDz/8UAMHDtQrr7yisrIyhYaGeh0TFhYmSSovL1dpaakknXbMoUOHJMmQGlVhtVoUE1Onysefic1qld1uq5bagc5mtXoefemB3Va7+uTv+v0VDP2q7h74yqxeBcr6/WFkr4Jx/f7wpVe1vQdn415/VFS4aXMI+IBlt9uVm5srm82m8PDjjbr88su1ZcsWzZs3T+Hh4afcaF5eXi5JioyM9BxTUVHh+dg9JiIiQpIMqVEVTqdLJSVHq3z86YSE2BQVFa5Kp1MOR6WhtYNFpdPpeTxjDyzHv1E5KislVw1Nrgb4vH5/BVG/qq0HvjK5V6av3x/V0KugWr8//OhVre2Bj9zrP3y4TMeOGbv+6OgI2WxnPysW8AFLkurUOfUsT4sWLbRq1SrFx8eruLjYa5/787i4ODkcDs+2Jk2aeI1JSkqSJENqVJXD4Tyn43/L80V3SS5XgP8UrCaedZ+lB55T7LWsV76u31/B1K/q6oGvzO6V2ev3R3X0KpjW7w9/elVbe+Cz/y7Z6XQZ/nPWVwF/k/uWLVvUrl075ebmem3/7rvv1Lx5c6WkpGj9+vWqrDyRUNeuXatmzZqpQYMGatmypaKioryOLykpUX5+vlJSUiTJkBoAAABuAR+wEhISdMkll2js2LHKy8vTtm3b9Mwzz+jrr7/WoEGD1LNnTx0+fFiPPfaYtm7dqiVLlmjBggXKyMiQdPy+qT59+igrK0srV65UQUGBhg0bpvj4eHXr1k2SDKkBAADgFvCXCK1Wq2bNmqUpU6bowQcfVElJiVq1aqVXXnnF85t/c+fOVWZmptLT0xUbG6tRo0YpPT3dU2Po0KFyOBwaM2aMysrKlJKSonnz5ikkJESS1KBBg3OuAQAA4BbwAUuSGjZsqGeeeeZ397dp00ZvvfXW7+632WwaOXKkRo4cWa01AAAApCC4RAgAABBsCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYAAAABiNgAQAAGIyABQAAYDACFgAAgMEIWAAAAAYjYAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2D5wel0avr06UpNTVXbtm117733ateuXWZPCwAABBgClh9mzpyp7OxsjRs3Tm+++aacTqcGDBigiooKs6cGAAACCAHLRxUVFZo/f76GDh2qtLQ0tWzZUtOmTVNhYaGWL19u9vQAAEAAIWD5qKCgQEeOHFHnzp0926Kjo9WqVSutW7fOxJkBAIBAY3G5XC6zJxEMli9frgceeEAbNmxQeHi4Z/s//vEPlZWVafbs2X7XdLlccjqNbb/FIlmtVh0+WqFKg2sHixC7VZHhIedtD8739Uv0gPWf3+uX6IHNalFUZKicTqeMTjlWq0UWi+Ws4+zGPm3tVVpaKkkKDQ312h4WFqZDhw5VqabFYpHNdvYvUlVERYaefVAtd7734Hxfv0QPWP/5vX6JHlit5l2o4xKhj9xnrX57Q3t5ebkiIiLMmBIAAAhQBCwfNW7cWJJUXFzstb24uFhxcXFmTAkAAAQoApaPWrZsqaioKOXm5nq2lZSUKD8/XykpKSbODAAABBruwfJRaGio+vTpo6ysLNWvX18XXXSRJk+erPj4eHXr1s3s6QEAgABCwPLD0KFD5XA4NGbMGJWVlSklJUXz5s1TSEiI2VMDAAABhJdpAAAAMBj3YAEAABiMgAUAAGAwAhYAAIDBCFgAAAAGI2ABAAAYjIAFAABgMAIWAACAwQhYtdTs2bPVt29fs6cRsA4ePKgnnnhCXbp0Ubt27dSrVy/l5eWZPa2AtG/fPo0cOVKdOnVScnKyBg4cqG3btpk9rYC3Y8cOJScna8mSJWZPJSAVFRUpKSnplD/06/SWLl2qG264Qa1bt9aNN96of/3rX2ZPKSDl5uae9u9VUlKS/vznP9foXHgl91po0aJFeu6559ShQwezpxKwhg8frj179mjq1Klq0KCBXnvtNd1zzz165513dMkll5g9vYAyZMgQOZ1OzZkzR3Xq1NHzzz+vfv36afny5YqIiDB7egHp2LFjGjFihI4ePWr2VAJWQUGBwsLCtGLFClksFs/2unXrmjirwPTuu+/qscce0+jRo5WamqoPP/xQw4cPV3x8vJKTk82eXkBJTk7WqlWrvLZ9/fXXeuCBBzR48OAanQsBqxYpKirSk08+qdzcXDVt2tTs6QSsnTt3avXq1crOzlb79u0lSY8//rg+//xzvf/++/rHP/5h8gwDx6FDh3TRRRcpIyNDiYmJkqTBgwfrr3/9q7Zs2aI2bdqYPMPANGPGDEVFRZk9jYC2efNmNW3aVI0aNTJ7KgHN5XLp+eef15133qnevXtLkgYNGqS8vDx98cUXBKzfCA0NVWxsrOfzo0eP6plnnlF6erp69uxZo3MhYNUi33//vUJCQvTee+/pxRdf1M8//2z2lAJSTEyM5syZo9atW3u2WSwWWSwWlZSUmDizwFOvXj1NmTLF8/n+/fu1YMECxcfHq3nz5ibOLHCtW7dOb731lpYuXaq0tDSzpxOwNm3apISEBLOnEfB27Nihn3/+WTfddJPX9nnz5pk0o+Aya9YslZaW6uGHH67x5yZg1SJdu3ZV165dzZ5GwIuOjtY111zjtW3ZsmXauXOnRo8ebdKsAt/jjz+uxYsXKzQ0VC+99JIiIyPNnlLAKSkp0ahRozRmzBg1btzY7OkEtM2bNysmJka9e/fWjh079Ic//EGDBg1Sly5dzJ5aQNmxY4ek42di7rnnHuXn5+viiy/WoEGD+H5/Fu7/ED700EO64IILavz5uckd570vv/xSjz76qLp168YZhzO46667lJOTox49emjIkCH6/vvvzZ5SwHnqqaeUnJx8ytkGeHM4HNq+fbsOHTqkBx54QHPmzFHbtm01cOBArVmzxuzpBZTDhw9Lkh5++GH16NFD8+fP19VXX63BgwfTq7PIzs5W3bp1dfvtt5vy/JzBwnltxYoVGjFihNq1a6esrCyzpxPQ3JcEMzMztWHDBr3++ut65plnTJ5V4Fi6dKny8vL0/vvvmz2VgGe325Wbmyubzabw8HBJ0uWXX64tW7Zo3rx56ty5s8kzDBwhISGSpHvuuUfp6emSpEsvvVT5+fl65ZVX6NUZLF26VDfffLPn71hN4wwWzluvv/66HnjgAf3pT3/SrFmzFBYWZvaUAs7+/fv14YcfyuFweLZZrVY1b95cxcXFJs4s8OTk5Gjfvn1KS0tTcnKy5+bjJ598UgMGDDB5doGnTp06p/zga9GihYqKikyaUWCKi4uTJM8vmbg1b95cP/30kxlTCgoFBQXatWuXqWeTCVg4L2VnZ2vcuHHq3bu3pk6dqtDQULOnFJD27t2r4cOHe12KOHbsmPLz87lB+TeysrL00UcfaenSpZ4/kjR06FBlZmaaO7kAs2XLFrVr1065uble27/77jt+eeI3LrvsMtWpU0cbNmzw2r5582Y1adLEpFkFvry8PDVo0EAtW7Y0bQ5cIsR5Z8eOHZowYYL+8pe/KCMjQ3v37vXsCw8P53V4TpKYmKguXbpo/PjxGj9+vOrVq6fZs2erpKRE/fr1M3t6AcV9puG3GjRo8Lv7zlcJCQm65JJLNHbsWD399NOKiYnR4sWL9fXXXysnJ8fs6QWU8PBwDRgwQC+++KLi4uLUpk0bffjhh1q9erUWLFhg9vQCVn5+vpKSkkydAwEL551ly5bp2LFj+uSTT/TJJ5947UtPT9fEiRNNmllgmjp1qqZMmaJhw4bp119/VYcOHbRo0SJdeOGFZk8NQcpqtWrWrFmaMmWKHnzwQZWUlKhVq1Z65ZVXTrkUhuOvPRcREaFp06apqKhICQkJmjFjhq688kqzpxaw9uzZY8pvDp7M4nK5XKbOAAAAoJbhHiwAAACDEbAAAAAMRsACAAAwGAELAADAYAQsAAAAgxGwAAAADEbAAgAAMBgBCwAAwGAELABBY8mSJUpKSgrYN7ldsGCBrr76arVp00YzZ840ezpnlZSUpBkzZpg9DaBW4q1yAMAAhw8f1rPPPqu0tDTdfffduvjii82eEgATEbAAwACHDh2S0+nUtddeq5SUFLOnA8BkXCIEEJCcTqdmzpyptLQ0XXHFFRo8eLAOHTrkNWbFihW64447lJycrMsvv1zdu3fXokWLJEkOh0N//OMf9dBDD51Su1u3bhozZoxf81m9erXuuOMOtW/fXldeeaUeeugh7d69W9LxS5ddu3aVJI0ePVpJSUk+1Xz11VfVsmVLHThwwLPtxRdfVFJSktasWeO1zpYtW6qoqEiStHnzZmVkZKhdu3Zq166dhgwZol27dnnVPnjwoJ544gldddVVat26tW677Tavmqczffp0XXrppXrnnXd8mj+A30fAAhCQJk+erBdffFG33nqrXnjhBV1wwQWaMmWKZ/+///1vDRkyRJdddplmzpypGTNm6P/9v/+nsWPHasOGDbLb7br55pu1YsUKHT582HPc+vXrtXPnTt1yyy0+z2Xp0qW6++671bhxY02dOlWPPvqovvrqK91+++3at2+f0tLS9MILL0iSBg0apLfeesunumlpaXK5XFq7dq1nm/vjdevWebZ99tlnatWqleLi4rRjxw79/e9/1759+/Tss88qMzNTu3btUq9evbRv3z5JUnl5ue666y6tXLlSw4YN0wsvvKD4+HgNGDDgd0PWvHnzNHPmTI0bN07p6ek+9wbA73ABQIA5dOiQ67LLLnNNnjzZa/s999zjSkxMdO3atcv18ssvux5++GGv/QcOHHAlJia6Zs+e7XK5XK7t27e7EhMTXW+//bZnzJgxY1zdunXzeS6VlZWuq6++2nX33Xd7bd+5c6frsssucz377LMul8vl2rVrlysxMdGVk5Pj11qvu+461+OPP+5yuVyuo0ePui677DJXenq6q0+fPp4xaWlprunTp7tcLpdr+PDhrquuusr166+/eq27ffv2rokTJ7pcLpfrrbfeciUmJrq+/vprzxin0+nq3bu365ZbbvFsS0xMdE2fPt2VnZ3tSkpKcr311lt+zR3A7+MMFoCA8/XXX+vYsWP605/+5LX9+uuv93w8YMAATZw4UUeOHNF3332njz76SLNnz5YkVVRUSJKaNWum9u3b691335UklZWV6V//+pdfZ6927NihPXv2qEePHl7bmzRpouTkZH3xxRdVWqNbWlqa/u///k/S8bNrISEhuvPOO7VhwwZVVFRo69at+uWXX5SWlibp+Bmujh07Kjw8XA6HQw6HQ1FRUerQoYOnzpo1axQbG6vLLrvMM6ayslJ/+tOf9N1333ldav3000/19NNPq0OHDrrtttvOaS0ATuAmdwABxx0AYmJivLbHxsZ6Pt6/f7+efPJJrVixQhaLRX/4wx/UoUMHSZLL5fKMu/XWWzV69Gjt3r1b69ev15EjR3TzzTf7PJeDBw9Kkho2bHjKvoYNGyo/P9/nWqdzzTXX6JVXXtFPP/2kNWvWqF27durcubPKy8u1YcMGfffdd4qNjdXll1/umc9HH32kjz766JRa9evX94zZs2ePLrvsstM+5549e1SvXj1J0vfff6+0tDT9+9//1v/+7/967iUDcG4IWAACjjtY7du3T5dccolnuzvsSNKIESO0fft2LViwQMnJyQoNDVVpaakWL17sVat79+4aP368Pv74Y+Xl5enqq69WXFycz3O54IILJEl79+49Zd+ePXtOCYH+6tChg6KiorRmzRqtXbtW1113neLi4tS0aVPl5uZq/fr1SktLk8VikSTVrVtXV111lfr3739KLbvd7hnTtGlTZWVlnfY5T34Jidtvv11PP/20evXqpaefflodO3ZUVFTUOa0JADe5AwhAycnJCg8P18cff+y1/dNPP/V8vH79enXr1k1XXnmlQkNDJR2/GVw6/huIbpGRkbrhhhv0wQcfaPXq1X5dHpSOX2aMjY3VBx984LV9165d+vrrr9WuXTu/6v1WSEiIrr76aq1cuVIbN25Ux44dJUmdOnXSv//9b+Xl5XldKu3YsaO2bt2qSy+9VK1bt1br1q11+eWXa8GCBfrkk088Y3bv3q0GDRp4xrRu3VqrV6/W3LlzZbPZPPViY2NlsVj01FNPae/evV6/SACg6ghYAAJOnTp1NHjwYGVnZysrK0urVq1SZmamV8Bq06aN3n//fb377rvKzc3VSy+9pEceeUQWi0WlpaVe9W699VZ99913Cg0N1bXXXuvXXKxWq4YPH65Vq1bpoYce0n/+8x8tXbpU/fv3V7169U57Jslf11xzjT799FOFhYV5LgVeeeWV+vbbb2WxWHTVVVd5xg4ePFg//vijMjIytGLFCn3++ed64IEH9OGHH6ply5aSpFtuuUUXXnih+vfvr3feeUdr167V1KlT9fzzz6tRo0YKCQk5ZQ4tW7bUXXfdpTfeeENffvnlOa8JON9xiRBAQMrIyFBkZKQWLlyohQsXKjk5WQ8//LCeeuopSdLEiRM1btw4jRs3TpLUtGlTPf3003rvvfeUl5fnVatt27a64IILdMMNN3jOdvnjlltuUZ06dTR79mwNGTJEUVFRSk1N1fDhw73uC6uqa665RhaLRe3atfNc5rvyyitlsVh05ZVXKiIiwjO2ZcuWWrRokaZNm6ZRo0bJ5XIpMTFRL774ov785z9LOn7WbtGiRZoyZYomT56sX3/9VRdddJEeeugh3X333b87jwceeEAff/yxxowZo6VLl1apVwCOs7hOvhsUAGqhDRs26LbbbtO7777rOcsDANWJM1gAaq3c3Fzl5uZq6dKl+uMf/+gVrlwulyorK89aw2azeW4w94fD4TjrGKvVKquVOzWA2oiABaDWOnDggF555RW1aNFC48eP99r3xRdf6M477zxrjWeeecbvG+N/+uknz+W6M7n//vv1wAMP+FUbQHDgEiGA89Lhw4e1Y8eOs467+OKL/X4phoqKCm3atOms4xo1auTXS0YACB4ELAAAAINx8R8AAMBgBCwAAACDEbAAAAAMRsACAAAwGAELAADAYAQsAAAAgxGwAAAADPb/AdPnfX+vGmS5AAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.histplot(data=thirteen, x=\"day_of_week\", weights=\"births\", bins=7)"
]
},
{
"cell_type": "markdown",
"id": "97dbf4e7-d3d2-4320-be82-0b0df1e47369",
"metadata": {},
"source": [
"Based on the chart and graph I have created here, it is obvious that Friday is not the least common day for children to be born on the 13th. It sits right around the middle which proves that the myth of less children being born on Friday the 13th to be false."
]
},
{
"cell_type": "markdown",
"id": "infectious-symbol",
"metadata": {},
"source": [
"# Discussion"
]
},
{
"cell_type": "markdown",
"id": "furnished-camping",
"metadata": {
"code_folding": []
},
"source": [
"## Considerations"
]
},
{
"cell_type": "markdown",
"id": "bearing-stadium",
"metadata": {},
"source": [
"I think that my results give a fairly accurate depiction of my research questions because it looks at the births in the U.S. over a series of 14 years. I believe this is a large enough sample size to make the assumptions we have made. If we wanted an even better example of this data and to expand upon the research we have a few different options:\n",
"1. We could look at the data over a longer period of time to see if that has any impact.\n",
"2. We could look at the data in terms of locations to see if the superstition exists more in different areas of the country.\n",
"3. We could expand the data to other countries to see if this superstition shows in their data.\n",
"\n",
"The fact that our data was only taken from the early 2000s in the United States could potentially show a bias. "
]
},
{
"cell_type": "markdown",
"id": "beneficial-invasion",
"metadata": {},
"source": [
"## Summary"
]
},
{
"cell_type": "markdown",
"id": "about-raise",
"metadata": {},
"source": [
"I believe that the results did make sense based on my predictions but doesn't follow the traditions of the superstition of Friday the 13th. It is often assumed that mothers avoid having their children on Friday the 13th as it comes with bad luck, but it is often impossible to plan ahead for such specifics when it comes to birth. Our results don't lead us to any conclusions where Friday the 13th is uncommon to the point where it is statistically significant. The date of the month is on the lower end, but only by a few hundred births. The date of the month data was very evenly distributed to where no one date was very different from another. In terms of day of the week, Friday the 13th fell right in the middle, with less births occuring on the weekends. As someone who was born on Friday the 13th, I always assumed I had a rare birth date but going forward I am able to see that it is just the same as any other birth date."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9cfbdbeb-48a8-4f15-a1f7-e07e9e7846c4",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"jupytext": {
"cell_metadata_json": true,
"text_representation": {
"extension": ".Rmd",
"format_name": "rmarkdown",
"format_version": "1.2",
"jupytext_version": "1.9.1"
}
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}