generated from mwc/project_drawing
Added Chris's attempt at an ellipse function
This commit is contained in:
parent
882cedb841
commit
59ad818194
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
|
@ -0,0 +1,102 @@
|
|||
from math import pi, sqrt, sin, cos, atan
|
||||
from turtle import penup, pendown, forward, left, radians, degrees
|
||||
|
||||
π = pi
|
||||
|
||||
def ellipse(rx, ry, num_points, points_to_draw=None):
|
||||
"""
|
||||
Draws an ellipse with x-radius rx and y-radius ry,
|
||||
with num_points control points. Optionally specify
|
||||
points_to_draw if you want only a partial ellipse.
|
||||
Assumes the turtle starts at the center, pointed in
|
||||
the +x direction, and ends in the same position and heading.
|
||||
"""
|
||||
radians()
|
||||
fly(rx)
|
||||
left(π/2)
|
||||
for i in range(points_to_draw or num_points):
|
||||
φi = get_angle(rx, ry, num_points, i)
|
||||
di = get_distance(rx, ry, num_points, i)
|
||||
left(φi)
|
||||
forward(di)
|
||||
left(-π/2)
|
||||
fly(-rx)
|
||||
degrees()
|
||||
|
||||
def fly(distance):
|
||||
"""Like forward, but with the pen up.
|
||||
"""
|
||||
penup()
|
||||
forward(distance)
|
||||
pendown()
|
||||
|
||||
def get_angle(rx, ry, n, i):
|
||||
"""Returns the angle φi, or how far left the turtle should
|
||||
turn at point i of n.
|
||||
"""
|
||||
coords_prev = get_coordinates(rx, ry, n, i - 1)
|
||||
coords = get_coordinates(rx, ry, n, i)
|
||||
coords_next = get_coordinates(rx, ry, n, i + 1)
|
||||
vec_prev = get_vector(coords_prev, coords)
|
||||
vec_next = get_vector(coords, coords_next)
|
||||
vec_parallel, vec_perpendicular = project_onto_basis(vec_next, vec_prev)
|
||||
φi = atan(mag(vec_perpendicular) / mag(vec_parallel))
|
||||
return φi/3
|
||||
|
||||
def get_distance(rx, ry, n, i):
|
||||
"""
|
||||
Returns the distance from point i to point i + 1.
|
||||
"""
|
||||
coords = get_coordinates(rx, ry, n, i)
|
||||
coords_next = get_coordinates(rx, ry, n, i + 1)
|
||||
vec_next = get_vector(coords, coords_next)
|
||||
return mag(vec_next)
|
||||
|
||||
def get_coordinates(rx, ry, n, i):
|
||||
"""Returns the (x, y) coordinates of point i for the ellipse
|
||||
specified by rx, ry, and n.
|
||||
|
||||
Normally, we can get the coordinates of a point on the circle
|
||||
at angle θ as (r * cos(θ), r * sin(θ)). An ellipse is a circle
|
||||
scaled differently along the x- and y- axes, so we need to
|
||||
apply different scaling factors rx and ry.
|
||||
"""
|
||||
θi = 2*π*i/n
|
||||
xi = rx * cos(θi)
|
||||
yi = ry * sin(θi)
|
||||
return xi, yi
|
||||
|
||||
def get_vector(start, end):
|
||||
"""Returns a vector from the start point to the end point.
|
||||
"""
|
||||
x0, y0 = start
|
||||
x1, y1 = end
|
||||
return (x1 - x0, y1 - y0)
|
||||
|
||||
def project_onto_basis(vec, basis):
|
||||
"""Projects a vector onto a basis vector, returning two vectors:
|
||||
the component which is parallel to basis (vec_a) and the component which
|
||||
is perpendicular (vec_b).
|
||||
"""
|
||||
v0, v1 = vec
|
||||
b0, b1 = basis
|
||||
len_a = dot(vec, basis)
|
||||
vec_a = (len_a * v0, len_a * v1)
|
||||
vec_b = get_vector(vec_a, vec)
|
||||
return vec_a, vec_b
|
||||
|
||||
def dot(vec0, vec1):
|
||||
"""Computes the dot product of vec0 and vec1.
|
||||
The result is the magnitude of vec0 projected onto vec1.
|
||||
"""
|
||||
x0, y0 = vec0
|
||||
x1, y1 = vec1
|
||||
return x0 * x1 + y0 * y1
|
||||
|
||||
def mag(vec):
|
||||
"""Returns the magnitude, or length, of a vector.
|
||||
We can simplify the familiar formula sqrt(x*x + y*y)
|
||||
using the dot product.
|
||||
"""
|
||||
return sqrt(dot(vec, vec))
|
||||
|
|
@ -0,0 +1,5 @@
|
|||
from ellipse import ellipse
|
||||
|
||||
ellipse(100, 200, 1024)
|
||||
|
||||
input()
|
Loading…
Reference in New Issue