generated from mwc/lab_scatter
updated transform
The first several one went very well, I also enjoy solving the problems. I was stuck with 6 a bit, trying to understand the meaning of it. I took longer time on the last two tasks, my initial plan is to redefine [x,y] = value, then let it return x Then I found that there was a problem of return a list, i asked ChatGpt's help when I was stuck on it it gave me a great suggestions on how to fix it. It also provides a much concise way to solve the problem: return [point[0] for point in points] I thinl the thinking way is different especially for 6. I also think the concise coding might be better to adpot in the future
This commit is contained in:
parent
84820d66c4
commit
e45505fe9a
49
transform.py
49
transform.py
|
@ -6,38 +6,71 @@
|
|||
|
||||
def maximum(data):
|
||||
"Returns the largest number in data"
|
||||
raise NotImplementedError
|
||||
biggest = None
|
||||
for number in data:
|
||||
if biggest is None:
|
||||
biggest = number
|
||||
if number > biggest:
|
||||
biggest = number
|
||||
return biggest
|
||||
|
||||
def minimum(data):
|
||||
"Returns the smallest number in data"
|
||||
raise NotImplementedError
|
||||
lowest = None
|
||||
for number in data:
|
||||
if lowest is None:
|
||||
lowest = number
|
||||
if number < lowest:
|
||||
lowest = number
|
||||
return lowest
|
||||
|
||||
def bounds(data):
|
||||
"Returns a list of the smallest and largest numbers in data"
|
||||
raise NotImplementedError
|
||||
return [minimum(data), maximum(data)]
|
||||
|
||||
|
||||
def clamp(value, low, high):
|
||||
"""Clamps a value to a range from low to high.
|
||||
Returns value if it is between low and high.
|
||||
If value is lower than low, returns low. If value is higher than high, returns high.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
if value < low:
|
||||
return low
|
||||
if value > high:
|
||||
return high
|
||||
if value > low and value < high:
|
||||
return value
|
||||
|
||||
|
||||
def ratio(value, start, end):
|
||||
"""Returns a number from 0.0 to 1.0, representing how far along value is from start to end.
|
||||
The return value is clamped to [0, 1], so even if value is lower than start, the return
|
||||
value will not be lower than 0.0.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
if (value - start)/(end - start) < 0:
|
||||
return 0
|
||||
if (value - start)/(end - start) > 0:
|
||||
return (value - start)/(end - start)
|
||||
|
||||
def scale(value, domain_min, domain_max, range_min, range_max):
|
||||
"Given a value within a domain, returns the scaled equivalent within range."
|
||||
raise NotImplementedError
|
||||
ratio = (value - domain_min) / (domain_max - domain_min)
|
||||
"caculate the ratio first"
|
||||
return range_min + ratio * (range_max - range_min)
|
||||
|
||||
|
||||
def get_x_values(points):
|
||||
"Returns the first value for each point in points."
|
||||
raise NotImplementedError
|
||||
x_values = []
|
||||
for point in points:
|
||||
[x, y] = point
|
||||
x_values.append(x)
|
||||
return x_values
|
||||
|
||||
def get_y_values(points):
|
||||
"Returns the second value for each point in points."
|
||||
raise NotImplementedError
|
||||
y_values = []
|
||||
for point in points:
|
||||
[x, y] = point
|
||||
y_values.append(y)
|
||||
return y_values
|
||||
|
|
Loading…
Reference in New Issue