{
"cells": [
{
"cell_type": "markdown",
"id": "worldwide-blood",
"metadata": {},
"source": [
"# A Data Science Investigation About Fatal Car Crashes in America "
]
},
{
"cell_type": "markdown",
"id": "understanding-numbers",
"metadata": {},
"source": [
"It's a collection of data on the reasons fatal car crashes occur in every state of America, and it will be used to determine which region of America is the deadliest. "
]
},
{
"cell_type": "markdown",
"id": "greater-circular",
"metadata": {},
"source": [
"## Overarching Question: What is the deadliest region in America to drive in?"
]
},
{
"cell_type": "markdown",
"id": "appreciated-testimony",
"metadata": {},
"source": [
"I am interested in this because I live on the Northeast Coast and we have a lot of car \n",
"accidents. People drive very fast here. The roads are not always paved properly and maintained. I want to know if it's just bad luck when people get into accidents or if it's their own fault. "
]
},
{
"cell_type": "markdown",
"id": "permanent-pollution",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "technical-evans",
"metadata": {},
"outputs": [],
"source": [
"#Include any import statements you will need\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "overhead-sigma",
"metadata": {},
"outputs": [],
"source": [
"### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n",
"\n",
"file_name = \"B_D2 - bad-drivers.csv\"\n",
"dataset_path = \"data/\" + file_name\n",
"\n",
"df = pd.read_csv(dataset_path)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "heated-blade",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
State
\n",
"
number_drivers_fatal_billion_miles
\n",
"
percentage_drivers_fatal_speeding
\n",
"
percentage_drivers_fatal_alcohol_impaired
\n",
"
percentage_drivers_fatal_not_distracted
\n",
"
percentage_drivers_fatal_no_previous_accidents
\n",
"
car_insurance_premiums
\n",
"
region
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Alabama
\n",
"
18.8
\n",
"
39
\n",
"
30
\n",
"
96
\n",
"
80
\n",
"
784.55
\n",
"
Southeast
\n",
"
\n",
"
\n",
"
1
\n",
"
Alaska
\n",
"
18.1
\n",
"
41
\n",
"
25
\n",
"
90
\n",
"
94
\n",
"
1053.48
\n",
"
West
\n",
"
\n",
"
\n",
"
2
\n",
"
Arizona
\n",
"
18.6
\n",
"
35
\n",
"
28
\n",
"
84
\n",
"
96
\n",
"
899.47
\n",
"
Southeast
\n",
"
\n",
"
\n",
"
3
\n",
"
Arkansas
\n",
"
22.4
\n",
"
18
\n",
"
26
\n",
"
94
\n",
"
95
\n",
"
827.34
\n",
"
Southeast
\n",
"
\n",
"
\n",
"
4
\n",
"
California
\n",
"
12.0
\n",
"
35
\n",
"
28
\n",
"
91
\n",
"
89
\n",
"
878.41
\n",
"
West
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" State number_drivers_fatal_billion_miles \\\n",
"0 Alabama 18.8 \n",
"1 Alaska 18.1 \n",
"2 Arizona 18.6 \n",
"3 Arkansas 22.4 \n",
"4 California 12.0 \n",
"\n",
" percentage_drivers_fatal_speeding \\\n",
"0 39 \n",
"1 41 \n",
"2 35 \n",
"3 18 \n",
"4 35 \n",
"\n",
" percentage_drivers_fatal_alcohol_impaired \\\n",
"0 30 \n",
"1 25 \n",
"2 28 \n",
"3 26 \n",
"4 28 \n",
"\n",
" percentage_drivers_fatal_not_distracted \\\n",
"0 96 \n",
"1 90 \n",
"2 84 \n",
"3 94 \n",
"4 91 \n",
"\n",
" percentage_drivers_fatal_no_previous_accidents car_insurance_premiums \\\n",
"0 80 784.55 \n",
"1 94 1053.48 \n",
"2 96 899.47 \n",
"3 95 827.34 \n",
"4 89 878.41 \n",
"\n",
" region \n",
"0 Southeast \n",
"1 West \n",
"2 Southeast \n",
"3 Southeast \n",
"4 West "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"id": "continental-franklin",
"metadata": {},
"source": [
"**Data Overview**\n",
"\n",
"### When is this data set from?\n",
"\n",
"I got the data set from FiveThirtyEight. It was used for an article called\n",
"\"Dear Mona, Which state has the worst drivers?\" in October 2014. The data they used for this article were gathered over different years between 2009 and 2012. The person who wrote the article is Mona Chalabi, they are a data editor at the Guardian US, a columnist at New York Magazine, and a lead news writer for FiveThirtyEight. \n",
"\n",
"The date is about fatal collisions in each state. There are 8 rows:\n",
"\n",
"1. State\n",
"2. Number of drivers involved in fatal collisions per billion miles\n",
"3. Percentage Of Drivers Involved In Fatal Collisions Who Were Speeding\n",
"4. Percentage Of Drivers Involved In Fatal Collisions Who Were Alcohol-Impaired\n",
"5. Percentage Of Drivers Involved In Fatal Collisions Who Were Not Distracted\n",
"6. Percentage Of Drivers Involved In Fatal Collisions Who Had Not Been Involved In Any Previous Accidents\n",
"7. Car Insurance Premiums ($)\n",
"8. Region\n",
"\n",
"### How did this data set get clean?\n",
"\n",
"I did not need to do much data cleaning myself, but I did add a \"Region\" column to split the states into 4 regions: Midwest, Southeast, West, and Northeast. I also excluded data on Losses incurred by insurance companies for collisions per insured driver because insurance companies are well known for finding ways to avoid paying customers for collisions, so this is not an accurate representation of fatal car crashes. \n",
"\n",
"## What specific research questions will you investigate?\n",
"\n",
"1. What region has the highest drinking and driving cause of fatal collisions?\n",
"\n",
"2. What region has the highest car insurance premiums?\n",
"\n",
"3. What region is the most unlucky state for fatal collisions?\n",
"\n",
"4. Is there a connection between the average Percentage Of Drivers Involved In Fatal Collisions Who Were Speeding and the Number of drivers involved in fatal collisions per billion miles?\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "f7bba5f3-5911-4a76-ad43-f6ce78cd4fb3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['State', 'number_drivers_fatal_billion_miles',\n",
" 'percentage_drivers_fatal_speeding',\n",
" 'percentage_drivers_fatal_alcohol_impaired',\n",
" 'percentage_drivers_fatal_not_distracted',\n",
" 'percentage_drivers_fatal_no_previous_accidents',\n",
" 'car_insurance_premiums', 'region'],\n",
" dtype='object')"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "markdown",
"id": "infinite-instrument",
"metadata": {},
"source": [
"# Methods and Results"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "basic-canadian",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import seaborn as sns\n",
"sns.set_theme"
]
},
{
"cell_type": "markdown",
"id": "recognized-positive",
"metadata": {},
"source": [
"## First Research Question: What region has the highest drinking and driving cause of fatal collisions?"
]
},
{
"cell_type": "markdown",
"id": "graduate-palmer",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "endless-variation",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
" \n",
"✏️ *Write your answer below:*\n",
"\n",
"To answer this question, I will organize the data for each state by the region it is in. Then, calculate the average percentage of drivers involved in fatal collisions who were alcohol-impaired. Finally, I will make a bar plot to compare the average number of fatal collisions that involved drinking and driving for each of the regions\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "portuguese-japan",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "negative-highlight",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"region\n",
"Southeast 29.687500\n",
"West 30.363636\n",
"Northeast 31.333333\n",
"Midwest 31.666667\n",
"Name: percentage_drivers_fatal_alcohol_impaired, dtype: float64"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#######################################################################\n",
"### 💻 YOUR WORK GOES HERE TO ANSWER THE FIRST RESEARCH QUESTION 💻 \n",
"### \n",
"### Your data analysis may include a statistic and/or a data visualization\n",
"#######################################################################\n",
"\n",
"region = df.groupby(\"region\").percentage_drivers_fatal_alcohol_impaired.mean().sort_values()\n",
"region\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "victorian-burning",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPPhJREFUeJzt3Qd4FNX6+PGXEkroEDqhBulF6R2pgtKvAiqgAiqXDoIgoDQBUWmKeFEBERGkCRcVpIQqvXcEgoRmBIRA6GR/z3v+/92bhQTCsNnsJN/P8wyZndmdPWRmJ++e855zkjgcDocAAADYVNL4LgAAAMCTIJgBAAC2RjADAABsjWAGAADYGsEMAACwNYIZAABgawQzAADA1pJLAhcZGSlnz56VdOnSSZIkSeK7OAAAIBZ0GLyrV69Krly5JGnSpIk7mNFAJjAwML6LAQAALAgNDZU8efIk7mBGa2Scv4z06dPHd3EAAEAshIeHm8oI59/xRB3MOJuWNJAhmAEAwF5ikyJCAjAAALA1ghkAAGBrBDMAAMDWCGYAAICtEcwAAABbI5gBAAC2RjADAABsjWAGAADYGsEMAACwNYIZAABgawQzAADA1ghmAACArRHMAAAAW0vws2YDCZ3D4ZCIiAjX4zRp0sRqllkASCgIZgCb00CmWbNmrseLFy+WtGnTxmuZAMCbaGYCAAC2RjADAABsjWAGAADYGsEMAACwNYIZAABgawQzAADA1ghmAACArRHMAAAAWyOYAQAAtkYwAwAAbI3pDAAA8FHMvRY7BDMAAPgo5l6LHZqZAACArRHMAAAAWyOYAQAAtkYwAwAAbI1gBgAA2BrBDAAAsDWCGQAAYGsEMwAAwNYIZgAAgK0RzAAAgMQxnUF4eHisD5o+fXqr5QEAAIibYCZjxoyxntzq3r17j1cKAACAuG5mCg4OltWrV5tl2rRpki1bNunfv78sWrTILLqePXt2sy+2pkyZIqVLlzY1ObpUqVJFfv31V9f+2rVrmwAq6vL2228//v8SAAAkWLGumalVq5Zrffjw4TJu3Dhp27ata1vTpk2lVKlSMnXqVOnQoUOsjpknTx4ZM2aMFC5c2Exz/u2335rZQXft2iUlSpQwz+ncubN5Pyd/f//YFhkAACQCsQ5motq0aZN8+eWXD2wvX768dOrUKdbHadKkidvjDz/80NTWbN682RXMaPCSI0eOWB/z1q1bZrGS6wMAABJJb6bAwED56quvHtj+9ddfm31WaJ7NnDlzJCIiwjQ3OX3//fcSEBAgJUuWlIEDB8r169cfepzRo0dLhgwZXIvV8gAAgARcMzN+/Hhp1aqVyW+pVKmS2bZ161b5448/ZMGCBY91rH379png5ebNm5I2bVqTf1O8eHGz7+WXX5Z8+fJJrly5ZO/evfLuu+/KkSNHZOHChTEeTwOePn36uNXMENAASCi0SV6/9DmlSZMm1p0zgITKUjDTuHFjOXr0qGkSOnz4sKvJSJNzHzdwKFKkiOzevVuuXLki8+fPN/k2a9euNQHNm2++6Xqe5uPkzJlT6tatK8ePH5dChQpFe7yUKVOaBQASIg1kNLfQafHixeaLIJCYWQpmlAYto0aNeuICpEiRQoKCgsx6uXLlZNu2bTJx4kT5z3/+88BznbVAx44dizGYAQAAiYvlEYDXr18vr776qlStWlXOnDljtn333XeyYcOGJypQZGSkWwJvVFqDo7SGBgAAwHIwo3kxDRs2lNSpU8vOnTtdwYc2FT1ObY3mt6xbt05Onjxpcmf08Zo1a+SVV14xTUkjRoyQHTt2mP1LliyR9u3bS82aNc3YNHh4m/q1a9dciz4GACChstTMNHLkSNM1W4ML7YHkVK1aNbMvtsLCwswxzp07Z3oeaZCyfPlyqV+/voSGhsrKlStlwoQJpo1Ym7U06Xjw4MFWipyo0KYOAEhMLAUz2qNIa0jupwHJ5cuXY32cb775JsZ9GrxoIjAAAIDHm5l0EDtNwr2f5ssULFjQyiEBAAC8F8zoFAM9e/aULVu2mPENzp49awa3e+edd6RLly7WSgIAAOCtZqYBAwaYXkc65ouOyKtNTjq2iwYz3bt3t3JIAAAA7wQzOu3Axo0bpWvXrtKvXz/T3KQ9ZnSQO5JMAQCAzwczyZIlkwYNGsihQ4ckY8aMrqkHAAAAbJMzo5M+njhxwvOlAQAA8EYwo2PJaH7M0qVLzRgxOplj1AUAAMDnJ5pUTZs2dZutVUea1ceaVwMAAOCzwUxwcLDnSwIAAOCtYKZWrVpWXgYAABB/wczevXtN4m/SpEnN+sMwESQAAPC5YKZs2bJy/vx5yZYtm1nX3JjoZmMmZwYAAPhkMBMSEiJZs2Z1rQMAANgqmMmXL1+06wAAALZLAHY6ePCgnDp1Sm7fvu22XbtsAwAA+Gwwo6P/tmjRQvbt2+eWO+Mcc4acGQAA4NMjAPfs2VMKFCggYWFh4u/vLwcOHJB169ZJ+fLlZc2aNZ4vJQAAgCdrZjZt2iSrV6+WgIAA01Vbl+rVq8vo0aOlR48esmvXLiuHBQAA8E7NjDYjpUuXzqxrQHP27FlXYvCRI0esHBIAAMB7NTM6eN6ePXtMU1OlSpVk7NixkiJFCpk6daoULFjQWkkAAAC8FcwMHjxYIiIizPrw4cPlhRdekBo1akiWLFlk7ty5Vg4JAADgvWCmYcOGrvWgoCA5fPiwXLp0STJlyuQ2izYAAIBPjzOjQkNDzc/AwEBPlAcAACDug5m7d+/KsGHDZNKkSXLt2jWzLW3atNK9e3f54IMPxM/Pz8phAQDwqHL9ZoqdJbl7WzJEeVx7yBxxJE8hdrXj4/a+E8xo0LJw4UKT+FulShVXd+2hQ4fKxYsXZcqUKZ4uJwAAgOeCmdmzZ8ucOXOkUaNGrm2lS5c2TU1t27YlmAEAAL4dzKRMmVLy58//wHbtqq1dtAHAV9HskDiaHZC4WBo0r1u3bjJixAi5deuWa5uuf/jhh2YfAACAT9fM6HQFq1atkjx58kiZMmXMNh1ET2fPrlu3rrRs2dL1XM2tAQAA8KlgJmPGjNKqVSu3bXTNBgAAtglmpk+f7vmSAAAAeCtnBgAAwNY1MzqWzPvvvy/BwcESFhYmkZGRbvt1agMAAACfDWbatWsnx44dk44dO0r27NmZjwkAANgrmFm/fr1s2LDB1ZMJAADAVsFM0aJF5caNG0/85jpSsC4nT540j0uUKGGar5wjC9+8eVP69u1rRhvWcWx0tu4vvvjC1AYBnsIgar6FQdQAeCUBWAOKQYMGydq1a03+THh4uNsSWzpOzZgxY2THjh2yfft2qVOnjjRr1kwOHDhg9vfu3Vv++9//yrx588x7nT171m0MGwAAAMvjzGjQosFHVA6Hw+TP3Lt3L1bHadKkidtjHUFYa2o2b95sAp1vvvnGzAPlfB/tEl6sWDGzv3LlylaKDgAAEhhLwcwrr7wifn5+JtDwVAKwBkBaAxMREWFm4tbamjt37ki9evXcmrfy5s1rZuiOKZjR5qio0yw8Tk0RAABIJMHM/v37zZQGRYoUeeIC7Nu3zwQvmh+TNm1aWbRokRQvXlx2795tJq3UWqCoNHg6f/58jMcbPXq0DBs27InLBQAAEnDOTPny5SU0NNQjBdCASAOXLVu2SJcuXaRDhw5y8OBBy8cbOHCgXLlyxbV4qpwAACAB1cx0795devbsKf369ZNSpUqZJqeoSpcuHetjae1LUFCQWS9Xrpxs27ZNJk6cKK1btzYTV16+fNmtduavv/6SHDlyxHi8lClTmgUAACQOloIZDTTUG2+84dqmeTOPmwAcHR1NWHNeNLDRIEln53ZOannkyBE5deqUaZaKS3TV9S101QUAeDyYCQkJEU/QJiEdU0aTeq9evWoSitesWSPLly+XDBkymBGG+/TpI5kzZ5b06dObGiENZOjJBAAAniiYyZcvn3iCzuvUvn17OXfunAletHlKA5n69eub/ePHj5ekSZOampmog+YBAAA8djCzZMkSU4uiTT+6/jBNmzaN1TF1HJmHSZUqlUyePNksAAAATxTMNG/e3HSJzpYtm1mPyZPmzAAAAMRJMKOJudGtAwAA2G6cmdjSbtuM8wIAAGwbzOhs2DolAQAAgC2DGQAAgLhGMAMAAGyNYAYAANgawQwAALA1ghkAAGBrcRrM/Oc//5Hs2bPH5VsAAIBELtaD5k2aNCnWB+3Ro4f5+fLLL1srFQAAgKeDGZ30MTZ0OgNnMAMAAOAzwUxISEjclgQAACAug5mYOBwOV40MACBuOZL5yZXSbd0eA4md5QTgmTNnmrmXUqdObZbSpUvLd99959nSAQDcJUkijuQpXIs+BhI7SzUz48aNkyFDhki3bt2kWrVqZtuGDRvk7bfflgsXLkjv3r09XU4AAADPBTOfffaZTJkyRdq3b+/a1rRpUylRooQMHTqUYAYAAPh2M9O5c+ekatWqD2zXbboPAADAp4OZoKAg+fHHHx/YPnfuXClcuLAnygUAABB3zUzDhg2T1q1by7p161w5Mxs3bpRVq1ZFG+QAAAD4VM1Mq1atZMuWLRIQECA//fSTWXR969at0qJFC8+XEgAAwNPjzJQrV05mzZpl9eUAAADxG8xERkbKsWPHJCwszKxHVbNmTU+UDQAAIG6Cmc2bN5tJJP/880/XCMBOOhLwvXv3rBwWAADAO8GMDo5Xvnx5+fnnnyVnzpxMZQAAAOwVzPzxxx8yf/5800UbAADEDebiisPeTJUqVTL5MgAAIA4xF5dna2b27t3rWu/evbv07dtXzp8/byab9PNzjxR10kkAAACfCmbKli1rcmOiJvy+8cYbrnXnPhKAAQCATwYzISEhcVsSAACAuAxm8uXLZ+X4AAAAvjlo3vHjx2XChAly6NAh87h48eLSs2dPKVSokCfLBwAA4PneTMuXLzfBi87FpMm+uuhcTSVKlJAVK1ZYOSQAAID3amYGDBggvXv3ljFjxjyw/d1335X69etbKw0AAIA3ama0aaljx44PbNfeTQcPHrRySAAAAO8FM1mzZpXdu3c/sF23ZcuWLdbHGT16tFSoUEHSpUtnXte8eXM5cuSI23Nq165tuntHXXQ6BQAAAMvNTJ07d5Y333xTTpw4IVWrVjXbNm7cKB999JH06dMn1sdZu3atdO3a1QQ0d+/elffee08aNGhganfSpEnj9n7Dhw93Pfb39+fsAQAA68HMkCFDTG3Kp59+KgMHDjTbcuXKJUOHDpUePXrE+jjLli1zezxjxgxTQ7Njxw6pWbOmW/CSI0cOK0UFAAAJnKVmJm3q0QTg06dPy5UrV8yi69o1+0lm0NbjqMyZM7tt//777yUgIEBKlixpgqfr16/HeIxbt25JeHi42wIAABIuSzUzOhqwNgsVLlzY1NBEnU1b52nKnz//Yx8zMjJSevXqJdWqVTNBi9PLL79sBuzTmh+dH0p7S2lezcKFC2PMwxk2bJiV/xYAAEgswcxrr71mei5pMBOVjjXz9ddfy5o1ax77mJo7s3//ftmwYYPbds3NcdJJLXPmzCl169Y1g/ZFN0Cf1txEzdvRmpnAwEBJTJgyHgCQmFhqZtq1a5epQblf5cqVo+3l9CjdunWTpUuXSnBwsOTJk+ehz61UqZL5eezYsWj3p0yZUtKnT++2JDpMGQ8ASEQs1cxoXszVq1ejzXl5nBmzdZbt7t27y6JFi0xtToECBR75GmewpDU0AAAAlmpmtKeR5qZEDVx0XbdVr179sZqWZs2aJbNnzza5N+fPnzfLjRs3zH5tShoxYoTp3XTy5ElZsmSJtG/f3ry/TqEAAABgqWZGx5PRgKJIkSJSo0YNs239+vUmP2X16tWxPs6UKVNcA+NFNX36dJOXkyJFClm5cqWZ0DIiIsLkvrRq1UoGDx5spdgAACABshTM6CST2rPo888/lz179kjq1KlNjYnmvtzfrfpRzUwPo8GLDqwHAADg0WBGaVfpUaNGWX05AACAd4MZrYmJLfJZAACAzwUzZcuWNb2YHtU0pM95nB5NAAAAXglmdNRfAAAA2wYzOqUAAABAgkkAVgcPHpRTp07J7du33bY3bdr0ScsFAAAQd8HMiRMnpEWLFrJv3z63PBrnjNnkzAAAAJ8eAbhnz55m6oGwsDDx9/eXAwcOyLp166R8+fKWJpkEAADwas3Mpk2bzEi/AQEBkjRpUrPoNAY6nUGPHj3MRJQAAAA+WzOjzUg6l5LSgObs2bOuJOEjR454toQAAACerpkpWbKkmcZAm5oqVaokY8eONfMoTZ06VQoWLGjlkAAAAN4LZnSiR534UQ0fPlxeeOEFM+FklixZZO7cudZKAgAA4K1gpmHDhq71oKAgOXz4sFy6dEkyZcrk6tGkTp8+beZw0pwaAACAuOCxKENny44ayDhn1z558qSn3gIAAOABcVpl8qh5nAAAAJ4U7T8AACDxTmcAIP45kvnJldJt3R4DQGJCMAPYnU4pkjxFfJcCABJmM9P9CcEAAACeRgIwAACwtThtZjp48KAZZwYAACDeg5mWLVvG+qALFy40PwMDA62VCgAAwNPBTIYMGWL7VAAAAN8LZqZPnx63JQEAALCAQfMAAEDiTACeP3++/Pjjj3Lq1Cm5ffu2276dO3d6omwAAABxUzMzadIkef311yV79uyya9cuqVixomTJkkVOnDghjRo1snJIAAAA7wUzX3zxhUydOlU+++wzSZEihfTv319WrFghPXr0kCtXrlgrCQAAgLeCGW1aqlq1qllPnTq1XL161ay3a9dOfvjhByuHBAAA8F4wkyNHDrl06ZJZz5s3r2zevNmsh4SEMOovAADw/WCmTp06smTJErOuuTO9e/eW+vXrS+vWraVFixaeLiMAAIBnezNpvkxkZKRZ79q1q0n+/f3336Vp06by1ltvWTkkAACA94KZ06dPu01V0KZNG7NoE1NoaKhpegIAAPDZZqYCBQrI33///cB2zaPRfQAAAD4dzGgNTJIkSR7Yfu3aNUmVKpUnygUAAOD5ZqY+ffqYnxrIDBkyRPz9/V377t27J1u2bJGyZct6vpQAAACeqJnR0X510ZqZffv2uR7rcvjwYSlTpozMmDEj1scbPXq0VKhQQdKlSyfZsmWT5s2by5EjR9yec/PmTVeScdq0aaVVq1by119/PU6xAQBAAvZYNTPBwcGu7tgTJ06U9OnTP9Gbr1271gQqGtDcvXtX3nvvPWnQoIEcPHhQ0qRJY56j3b5//vlnmTdvnmTIkEG6desmLVu2lI0bNz7RewMAgETcm2n69OkeefNly5a5PdZaHa2h2bFjh9SsWdNMjfDNN9/I7Nmzzdg2zvcuVqyYGaivcuXKDxzz1q1bZnEKDw/3SFkBAEACmzV7+/btMc6avXDhQkvHdM7rlDlzZvNTg5o7d+5IvXr1XM8pWrSo6fq9adOmaIMZbboaNmyYpfcHAACJpDfTnDlzzNxMhw4dkkWLFpmA48CBA7J69WrTFGSFDsLXq1cvqVatmpQsWdJsO3/+vJnIMmPGjG7P1dm6dV90Bg4caIIi56Lj3gAAgITLUs3MqFGjZPz48SbfRZN3NX9Gx5fR0X9z5sxpqSB6rP3798uGDRvkSaRMmdIsAAAgcbBUM3P8+HF5/vnnzbrWnERERJju2pqsq1MdPC5N6l26dKlJMM6TJ4/bhJbahHX58mW352tvJt0HAABgKZjJlCmTXL161aznzp3b1KgoDTquX78e6+NoF28NZLSpSpuo7h89uFy5cuLn5yerVq1ybdOu25qnU6VKFStFBwAACYylZibtabRixQopVaqUvPjii9KzZ08TjOi2unXrPlbTkvZUWrx4sWmucubBaN5N6tSpzc+OHTuawfo0KVi7gnfv3t0EMtEl/wIAgMTHUjDz+eefm8Hs1KBBg0ztic6arQPaDR48ONbHmTJlivlZu3Ztt+3a/fq1114z65qbkzRpUnNs7XLdsGFD+eKLL6wUGwAAJOZgRmtHRowYYQaz02Yl7c2kNNAYMGCApTfXZqZH0bmeJk+ebBYAAADLOTOfffaZmUhSPfvss2aGbAAAANvUzOTPn18mTZpkphvQGhUdtE4TgWPKqQEAAPCpYObjjz+Wt99+24ywq92wW7RoEe3zdJ/OoA0AAOBTwYzOaK2LNjVpryLtIq3zKAEAANhqnJm0adOawe10TBjtOh3d4jRmzJgHBrwDAACI90HzatWqJcmTJ4/VtAckCgMAAJ8LZjzZ9RoAAMBngxkAAIC4RjADAABsjWAGAADYGsEMAACwtTgNZmrUqGFmvwYAAPCpYGbnzp2yb98+1+PFixebAfXee+89uX37tmv7L7/8Ijlz5vRMSQEAADwVzLz11lty9OhRs37ixAlp06aN+Pv7y7x586R///5WDgkAAOC9YEYDmbJly5p1DWB0YsnZs2fLjBkzZMGCBdZKAgAA4K1gRgfDi4yMNOsrV66Uxo0bm/XAwEC5cOGClUMCAAB4L5gpX768jBw5Ur777jtZu3atPP/882Z7SEiIZM+e3VpJAAAAvBXMTJgwwSQBd+vWTQYNGiRBQUFm+/z586Vq1apWDgkAAGDJo2eLvM+9e/fMTNjr1q2TTJkyue37+OOPJVmyZNZKAgAA4I2aGQ1WGjRoYAKa+6VKlUr8/PyslAMAAMB7zUwlS5Y0XbIBAABsGcxo8u8777wjS5culXPnzkl4eLjbAgAA4LM5M8rZFbtp06aSJEkSty7b+ljzagAAAHw2mAkODvZ8SQAAALwVzNSqVcvKywAAAHxn1uz169fLq6++asaVOXPmjNmmg+ht2LDBk+UDAADwfDCj8y81bNhQUqdObQbPu3Xrltl+5coVGTVqlJVDAgAAeLc305dffilfffWV27gy1apVM8ENAACATwczR44cMTNl3y9DhgzRDqYHAADgU8FMjhw55NixYw9s13yZggULeqJcAAAAcRfMdO7cWXr27Clbtmwx48qcPXtWvv/+ezOQXpcuXawcEgAAwHtdswcMGCCRkZFSt25duX79umlySpkypQlmunfvbq0kAAAA3gpmtDZm0KBB0q9fP9PcdO3aNSlevLikTZvWyuEAAAC828w0a9YsUyOTIkUKE8RUrFiRQAYAANgnmOndu7dky5ZNXn75Zfnll1+YiwkAANgrmNGZsufMmWOam1566SXJmTOndO3aVX7//ffHOs66deukSZMmkitXLnOsn376yW3/a6+9ZrZHXZ577jkrRQYAAAmUpWAmefLk8sILL5geTGFhYTJ+/Hg5efKkPPvss1KoUKFYHyciIkLKlCkjkydPjvE5Grxo8ORcfvjhBytFBgAACZSlBOCo/P39zdQG//zzj/z5559y6NChWL+2UaNGZnkY7SWl49oAAAB4dKJJTQDWmpnGjRtL7ty5ZcKECdKiRQs5cOCAeNKaNWtMfk6RIkXMGDYXL1586PN1nqjw8HC3BQAAJFyWambatGkjS5cuNbUymjMzZMgQqVKliscLp01MLVu2lAIFCsjx48flvffeMzU5mzZtkmTJkkX7mtGjR8uwYcM8XhYAAJCAghkNJH788UfTvBRTUOEJGjQ5lSpVSkqXLm1ycrS2Rgfsi87AgQOlT58+rsdaMxMYGBhnZQQAADYMZrR5KT7ovE8BAQFmoL6YghnNsdEFAAAkDrEOZiZNmiRvvvmmpEqVyqw/TI8ePSQunD592uTMaFdwAACAxwpmtPv1K6+8YoKZcePGmTFfoqPbYxvM6DQIUWffDgkJkd27d0vmzJnNorkvrVq1Mr2ZNGemf//+EhQUZJq3AAAAHiuY0UDDSceU8YTt27ebsWmcnLkuHTp0kClTpsjevXvl22+/lcuXL5uB9Ro0aCAjRoygGQkAAFjPmblz544ULVrU9GYqVqyYPInatWuLw+GIcf/y5cuf6PgAACDhe+xxZvz8/OTmzZtxUxoAAABvDJqn8zB99NFHcvfuXSsvBwAAiN+u2du2bZNVq1bJb7/9ZsZ/SZMmjdv+hQsXeqp8AAAAng9mMmbMaHoZAQAA2DKYmT59uudLAgAA4M2JJgEAAGxVM/P000/HOFDe/Xbu3PkkZQIAAPB8MNO8eXPXunbN/uKLL6R48eKu2bI3b94sBw4ckH//+9+xf3cAAABvBTMffPCBa71Tp05mygIdjff+54SGhj5pmQAAAOI2Z2bevHnSvn37B7a/+uqrsmDBAiuHBAAA8F4wkzp1atm4ceMD23WbTkQJAADg012ze/XqJV26dDGJvhUrVjTbtmzZItOmTZMhQ4Z4uowAAACeDWYGDBggBQsWlIkTJ8qsWbPMNp10Usefeemll6wcEgAAwHvBjNKg5VGByw8//CBNmzZ9YLoDAAAAWwya99Zbb8lff/0Vl28BAAASuTgNZhwOR1weHgAAgOkMAACAvRHMAAAAWyOYAQAAtkYwAwAAbC1Og5l8+fKJn59fXL4FAABI5CwHM5cvX5avv/5aBg4cKJcuXTLbdETgM2fOuJ6zf/9+CQwM9ExJAQAAPDVo3t69e6VevXqSIUMGOXnypHTu3FkyZ84sCxculFOnTsnMmTOtHBYAAMA7NTN9+vSR1157Tf744w+3iSUbN24s69ats3JIAAAA7wUz27ZtM6P73i937txy/vx5ayUBAADwVjCTMmVKCQ8Pf2D70aNHJWvWrFYOCQAA4L1gRiePHD58uNy5c8c8TpIkicmVeffdd6VVq1bWSgIAAOCtYObTTz+Va9euSbZs2eTGjRtSq1YtCQoKknTp0smHH35o5ZAAAADe682kvZhWrFghGzZsMD2bNLB55plnTA8nAAAAnw9mnKpXr24WAAAAWwUzkyZNina75s5oV21tcqpZs6YkS5bsScsHAADg+WBm/Pjx8vfff8v169clU6ZMZts///wj/v7+kjZtWgkLC5OCBQtKcHAwIwADAADfSwAeNWqUVKhQwQyad/HiRbNot+xKlSrJxIkTTc+mHDlySO/evT1fYgAAgCetmRk8eLAsWLBAChUq5NqmTUuffPKJ6Zp94sQJGTt2LN20AQCAb9bMnDt3Tu7evfvAdt3mHAE4V65ccvXq1ScvIQAAgKeDmWeffdZMZ7Br1y7XNl3v0qWL1KlTxzzet2+fFChQ4KHH0XmcmjRpYgIfTR7+6aef3PY7HA55//33JWfOnJI6dWrT9VubtgAAAJ4omPnmm2/MLNnlypUzUxvoUr58ebNN9ylNBNbB9R4mIiJCypQpI5MnT452vzZVac+pL7/8UrZs2SJp0qSRhg0bys2bN60UGwAAJECWcmY0uVcHzTt8+LBJ/FVFihQxS9Tam0dp1KiRWaKjtTITJkww+TnNmjUz22bOnCnZs2c3NTht2rSxUnQAAJDAPNGgeUWLFjVLXAgJCTH5N1FHFdaRh7XH1KZNm2IMZm7dumUWp+gmxAQAAAmH5WDm9OnTsmTJEtMN+/bt2277xo0b98QFcyYSa01MVPrYuS86o0ePlmHDhj3x+wMAgAQczKxatcrMnK0D42lTU8mSJeXkyZOmaUjnaIpPAwcOlD59+rjVzDBwHwAACVdSqwHDO++8Y3os6fQFOuZMaGiomT37xRdf9EjBNC9H/fXXX27b9bFzX3Q0GTl9+vRuCwAASLgsBTOHDh2S9u3bm/XkyZPLjRs3TO+l4cOHy0cffeSRgmm3bg1atBYoai2L9mqqUqWKR94DAAAk0mYm7SLtzJPRMWCOHz8uJUqUMI8vXLgQ6+Ncu3ZNjh075pb0u3v3btPFO2/evNKrVy8ZOXKkFC5c2AQ3Q4YMMWPSNG/e3EqxAQBAAmQpmKlcubJs2LBBihUrJo0bN5a+ffuaJqeFCxeafbG1fft2ty7czlyXDh06yIwZM6R///5mLJo333xTLl++LNWrV5dly5aZpi0AAADLwYz2VtJaFaU9h3R97ty5pgblcXoy1a5d2yQNx0RHBdamK10AAAA8FsxoL6aoTU46Qi8AAIBtEoA1mLl48eID27UpKGqgAwAA4JPBjI4pc+/evQe268i7Z86c8US5AAAAPN/MpCP+Oi1fvtxML+CkwY12o86fP//jHBIAAMB7wYyzS7Qm5mqPo6j8/PxMIPOombIBAADiLZiJjIw0P3XMl23btklAQIBHCwMAAOCV3kw6uB0AAICtZ83W/BhdwsLCXDU2TtOmTfNE2QAAAOImmNGB8nQgu/Lly5vpDDSHBgAAwDbBjA6Sp9MNtGvXzvMlAgAAiOtxZnSSyapVq1p5KQAAQPwHM506dZLZs2d7tiQAAADeama6efOmTJ06VVauXCmlS5c2Y8xE9TiTTQIAAHg9mNm7d6+ULVvWrO/fv99tH8nAAADA54OZ4OBgz5cEAADAWzkzTseOHTNzNN24ccM8djgcT3I4AAAA7wQzFy9elLp168pTTz0ljRs3lnPnzpntHTt2lL59+1o5JAAAgPeCmd69e5uk31OnTom/v79re+vWrWXZsmXWSgIAAOCtnJnffvvNNC/lyZPHbXvhwoXlzz//tHJIAAAA79XMREREuNXIOF26dElSpkxprSQAAADeCmZq1KghM2fOdOuOrZNNjh07Vp599lkrhwQAAPBeM5MGLZoAvH37djO1Qf/+/eXAgQOmZmbjxo3WSgIAAOCtmpmSJUvK0aNHpXr16tKsWTPT7NSyZUvZtWuXFCpUyMohAQAAvFczozJkyCCDBg2y+nIAAID4q5mZPn26zJs374Htuu3bb7/1RLkAAADiLpgZPXq0BAQEPLA9W7ZsMmrUKCuHBAAA8F4wo4PlFShQ4IHt+fLlM/sAAAB8OpjRGhidOft+e/bskSxZsniiXAAAAHEXzLRt21Z69OhhZs++d++eWVavXi09e/aUNm3aWDkkAACA93ozjRgxQk6ePGnGmkme/P8dQgfNa9++PTkzAADAt4MZh8Mh58+flxkzZsjIkSNl9+7dkjp1ailVqpTJmQEAAPD5YCYoKMiM+KsTS+oCAABgm5yZpEmTmgDm4sWLcVMiAACAuE4AHjNmjPTr10/2799v5eUAAADxmwCsib7Xr1+XMmXKSIoUKUzOTFQ64SQAAIDPBjMTJkzwfEkAAAC8Fcx06NBBvGXo0KEybNgwt21FihSRw4cPe60MAAAgAc6affz4cTPhpP6cOHGiGRX4119/lbx580qJEiU8Wkg93sqVK12PnWPbAAAAWEoAXrt2rRlXZsuWLbJw4UK5du2aazqDDz74wNNlNMFLjhw5XEt0k1w63bp1S8LDw90WAACQcFkKZgYMGGAGzFuxYoVJAHaqU6eObN68WTztjz/+kFy5cknBggXllVdeeehkljqjd4YMGVxLYGCgx8sDAABsHszs27dPWrRo8cB2bWq6cOGCeFKlSpXMaMPLli2TKVOmSEhIiNSoUUOuXr0a7fMHDhwoV65ccS2hoaEeLQ8AAPAtlpJPMmbMKOfOnZMCBQq4bd+1a5fkzp1bPKlRo0au9dKlS5vgRqdN+PHHH6Vjx44PPD9lypRmAQAAiYOlmhmdGfvdd981czQlSZLETDK5ceNGeeedd8wYNHFJA6mnnnpKjh07FqfvAwAAEnAwozNjFy1a1OSjaPJv8eLFTdNP1apVZfDgwRKX9P20B1XOnDnj9H0AAEACbmbSpN+vvvpK3n//fZM/ExERIU8//bSZgNLTtLanSZMmpmnp7NmzprdUsmTJpG3bth5/LwAAYD+WB2z55ptvZPz48aankdLJJ3v16iWdOnXyZPnk9OnTJnDRiS2zZs0q1atXNz2mdB0AAMBSMKM1MuPGjZPu3btLlSpVzLZNmzZJ7969Tbfp4cOHe6yAc+bM8dixAABAwmMpmNEu0trMFLWpp2nTpqa3kQY4ngxmAAAAPJ4AfOfOHSlfvvwD28uVKyd37961ckgAAADvBTPt2rUztTP3mzp1qhmhFwAAwBYJwL/99ptUrlzZPNZ5mjRfRseZ6dOnj+t5mlsDAADgU8HM/v375ZlnnjHrOuaL0skfddF9TjqgHgAAgM8FM8HBwZ4vCQAAgLdyZgAAAHwFwQwAALA1ghkAAGBrBDMAAMDWCGYAAICtEcwAAABbI5gBAAC2RjADAABsjWAGAADYGsEMAACwNYIZAABgawQzAADA1ghmAACArRHMAAAAWyOYAQAAtkYwAwAAbI1gBgAA2BrBDAAAsDWCGQAAYGsEMwAAwNYIZgAAgK0RzAAAAFsjmAEAALZGMAMAAGyNYAYAANgawQwAALA1ghkAAGBrBDMAAMDWCGYAAICt2SKYmTx5suTPn19SpUollSpVkq1bt8Z3kQAAgI/w+WBm7ty50qdPH/nggw9k586dUqZMGWnYsKGEhYXFd9EAAIAP8PlgZty4cdK5c2d5/fXXpXjx4vLll1+Kv7+/TJs2Lb6LBgAAfEDy+C7Aw9y+fVt27NghAwcOdG1LmjSp1KtXTzZt2hTta27dumUWpytXrpif4eHhsX7fe7duPFG54VmPc+6s4Hz7Fs534sL5TlzCH+N8O5/rcDge/WSHDztz5oz+Dxy///672/Z+/fo5KlasGO1rPvjgA/MaFhYWFhYWFrH9Ehoa+sh4wadrZqzQWhzNsXGKjIyUS5cuSZYsWSRJkiSSWGhEGxgYKKGhoZI+ffr4Lg7iGOc7ceF8Jy6J9Xw7HA65evWq5MqV65HP9elgJiAgQJIlSyZ//fWX23Z9nCNHjmhfkzJlSrNElTFjRkms9MJPTBd/Ysf5Tlw434lLYjzfGTJksH8CcIoUKaRcuXKyatUqt5oWfVylSpV4LRsAAPANPl0zo7TJqEOHDlK+fHmpWLGiTJgwQSIiIkzvJgAAAJ8PZlq3bi1///23vP/++3L+/HkpW7asLFu2TLJnzx7fRfNp2tSmY/Pc3+SGhInznbhwvhMXzvejJdEs4Fg8DwAAwCf5dM4MAADAoxDMAAAAWyOYAQAAtkYwk8CsWbPGDA54+fLl+C4KAA967bXXpHnz5vFdDFhUu3Zt6dWr10Ofkz9/ftNjF4+PYCaOaA+sLl26SN68eU0Gug7yp7N9b9y40asfjvhAQPX4dALVdOnSyd27d13brl27Jn5+fuY8R/f7PX78uOX3O3nypDnG7t27n6jciTmw0N/fmDFj3Lb/9NNPTzzSuC+fGwKq6K+Dt99++4F9Xbt2Nfv0OWrhwoUyYsQI8VVJkiQx169dEczEkVatWsmuXbvk22+/laNHj8qSJUvMH6WLFy/Gd9Hgg5599lkTvGzfvt21bf369SYI3rJli9y8edO1PTg42ATJhQoViqfSQqVKlUo++ugj+eeffzw6uS7sRacZmDNnjty48b8JLfXzOnv2bPM5dcqcObP5woK4QTATB7RGQv8Q6Y1O/0jly5fPDPin80Y1bdrUPOfUqVPSrFkzSZs2rRme+qWXXnKbtiG6b0BaC+P8lq77165dKxMnTjQRtS76jc5JZxvXgQb9/f2latWqcuTIEbdjLV68WJ555hlzQy5YsKAMGzbMrVZg3LhxUqpUKUmTJo35sP773/82f2yd/vzzT2nSpIlkypTJPKdEiRLyyy+/mDLo/1npvqjfTBCzIkWKSM6cOU2ti5Ou6zVSoEAB2bx5s9t2/R3raNijR482+1OnTi1lypSR+fPnu56nf2RfeeUVyZo1q9lfuHBhmT59utmnr1FPP/20OUf31/7g0erVq2eCTT0HMVmwYIH5bGjtrDYhfPrpp277dZt+W2/fvr25D7z55puPPDeffPKJuVZ0vjn99n/nzh3Xvlu3bsk777wjuXPnNp/LSpUquV1T+mWqbdu2Zr/eG/Qz/sMPP7gdX68h3a7XjL6H/j91oNKhQ4eaL2d673Dec6IeO7HS+6jeI7XmxUnXNZDRcxhTTXpYWJi5h+rvWc/5999/73ZcPY8vvPCC67E2P+nvXMdZcwoKCpKvv/7a9VjXixUrZu7rRYsWlS+++MItUO7WrZu5dnS//l1yXrt6HaoWLVqY93A+thVPzXCN/7lz544jbdq0jl69ejlu3rz5wP579+45ypYt66hevbpj+/btjs2bNzvKlSvnqFWrlus5HTp0cDRr1sztdT179nQ95/Lly44qVao4Onfu7Dh37pxZ7t696wgODjazjFaqVMmxZs0ax4EDBxw1atRwVK1a1XWcdevWOdKnT++YMWOG4/jx447ffvvNkT9/fsfQoUNdzxk/frxj9erVjpCQEMeqVascRYoUcXTp0sW1//nnn3fUr1/fsXfvXnOM//73v461a9eaMixYsMCU4ciRI6ZcWlY82ssvv+xo0KCB63GFChUc8+bNc7z99tuO999/32y7fv26I2XKlObcjRw50lG0aFHHsmXLzDmYPn262afnXXXt2tVcZ9u2bTPnccWKFY4lS5aYfVu3bjXnaOXKleYcXbx4MZ7+1/bk/HwuXLjQkSpVKtesvosWLTK/V6Wf7aRJkzqGDx9uPgt6flKnTm1+OuXLl898Fj/55BPHsWPHzBLTudH31Ofq9XDo0CHzmfP393dMnTrVdbxOnTqZz7p+xvVYH3/8sbkmjh49avafPn3abNu1a5e5ZiZNmuRIliyZY8uWLWb/2bNnHcmTJ3eMGzfOXDP6+Z48ebLj6tWrZnnppZcczz33nOuec+vWLUdi5rwO9PdVt25d13Zd13uo7tPnKL136z3cqVGjRo4yZco4Nm3aZK4VPW96fejrlH5WM2TIYO6pqnnz5o6AgADHu+++6zqXep388ccf5vGsWbMcOXPmNPffEydOmJ+ZM2c29wql5z0wMNBcGydPnnSsX7/eMXv2bLMvLCzMHEuvTT2v+thuCGbiyPz58x2ZMmUyNzq9SAcOHOjYs2eP2afBg95ATp065Xq+Bh16MemNLDbBTHQfDuUMZvRG6PTzzz+bbTdu3HB90EaNGuX2uu+++858EGKif1SzZMnielyqVCm34Ce6Mvzzzz+P+C0hqq+++sqRJk0aEwyHh4ebPyp6U9EbTs2aNc1zNLDU363ejPQP2e+//+52jI4dOzratm1r1ps0aeJ4/fXXo30v/UOlx9E/anh8UT+flStXdrzxxhsPBDManGrAH1W/fv0cxYsXdwtm9I9UbM6Nvqc+3/nHTb344ouO1q1bm/U///zT3FfOnDnj9jr9vOv9Jyb6xaRv375mfceOHa7r61H/b/zv96GfUw0a9femi973//777xiDGQ1uo97vlQaous0ZzOj9U4Nh/TISGRlpApPRo0ebL6rO4CV37tyu1xcqVMgVnDiNGDHCfOlV3bt3d9SpU8ccKzr63nr92pXPT2dg55yZ559/3jQ3aRPBr7/+KmPHjjXVgM7p3HVxKl68uJnd+9ChQ1KhQoUnfv/SpUu71rVa0VmtqVWfe/bsMYnIH374oes59+7dM+28169fN9XPK1euNFWQhw8fNuXVJqio+3v06GESnH/77TdTDa3/36jvicen1dBanb9t2zbTRPTUU0+ZJqJatWqZucj096/V+tosqE1+ei7q16/vdgytSnZWbev50fOyc+dOadCggWm21CZHeJY2J9epU8c0C0Sln2VtJoyqWrVqprlAP2/JkiUz27Q5OLa0ycr5Oudne9++fWZdf+px9bqJSpuetLlI6f5Ro0bJjz/+KGfOnDHXi+7Xz7TSpsq6deuaZibtsKDXzb/+9S/TZIyY6edU7/czZszQSNasBwQExPh8vTaSJ09uJlJ20mYh/RvgpOt6PvQzr5Mu66LNkDqtgX7+Nc1A7w0qIiLCdAjo2LGjdO7c2XUMvW87Z53W5n69X2iT9nPPPWeasPT8JhQEM3FI2yX14tFlyJAh0qlTJ3Mh9u3b95GvTZo0qflQRBW1bfxRtBeMk7N3heZYKP0gaI5My5Ytoy2z5r3oha5/DDXg0cS1DRs2mA+K3vz0xqf/F73Z/fzzzyag0cBH8wG6d+8e6zLCnbZ/58mTxyT4ajDjvFHlypXLBL6///672ad/OJ35S/r71/yHqJzztzRq1MjkNmku04oVK8wfKc2x0JwLeE7NmjXNZ0Fz4qzkh2lui5XPtfOzHfVzrYGO5stFDXiU5uapjz/+2OTZaUDlzInTPA5n4rG+Tq8Vvdb0c/3ZZ5/JoEGDTBK6M5cH0XvjjTdMToqaPHmyx77gaDCjn2m9H+i9WHNi9H6swYzzb8m1/38/+Oqrr0yeVFTOa0Fze0JCQswXa/2yqnma+kU0ap6dnRHMeJHWvmjXN70YQ0NDzeKsnTl48KBJHNbnOCP9/fv3u71eu2pGvZlppK7ftB6XXtSaEKx/PKOjN0O9QWpwokGV0m9y99Oya5dEXfRGrh8kDWa0XMpK2RI7TezVm5cGM/369XP7g6k3oa1bt5ogU68TvcFpIrkz6ImOXkc667wuNWrUMMfUYIZz5FnaRVsnwdVvvU76Ob9/KAZ9rDUn9wcbUVk9N1ojp6/RGlg919HR99faoldffdU81s+59rZ03necAZLWIOmiE/xqouiiRYukT58+lu85iYHWdmhQqL8/DW4fRmthtNZE77XOmni9J98/nIV+tqdNm2ZqcfT4zgBHk7b1vDmTw7Nnz26+9Jw4ccIk/cdEk8x18mZdtMZNj3np0iUTJOnfFjufW4KZOKA9Bl588UUTqWvTi3bH0y632sykNxKNhvVbkV50+g1JL2rtLaQXrrPKWb9967eomTNnSpUqVWTWrFkmuImaHa8Z5/qNSWtS9JuXXpCxoTcorXnRJie9oDVg0aYnPf7IkSNNkKO1QPqtTLPt9Qao46BEpd/m9Ju/3pj1D6/WGOjNW+nNTz/QS5culcaNG5tsfec3Qzw6mHH2UIkapOi6fuvTm6U+R68pbdbo3bu3+YNUvXp1uXLlijlXesPS4EXPs1Zja9OENiXo+XCeo2zZspnzoj0jtDZIa+Sc1dF4fM7P86RJk1zb9Fuz/qHS3kr6x2PTpk3y+eefu/UwiY7Vc6OfRS2D9ozSLyJ6r9DxrlatWmXuQ9r0oT3a9Ju41rxo05H2WtRelM5gRu8n+nxtftBy6GM9hvO60XvO8uXLzR9ebbrSct1fW5RYaYCqzUfO9YdxNvW89dZbMmXKFBOs6D1Vz3tU+iXm6tWr5rPrHNNIAxi9b2sTY9QmxWHDhpnmfz0nemz9zOvfHb0/ayCq51pfo9eF3vPnzZtneuM5m7b03Oq51yBWvyjZrmkxvpN2EiLtwTRgwADHM888Y7LRNVFTewMNHjzY9EZxJus1bdrUJHymS5fOJPKdP3/e7TjagyV79uzmGL1793Z069bNLQFYk8g0+VAz4PVUauJgdMm3mkjo3O+kPWCc2fPaQ6JixYpuvSI0O18TgnV/w4YNHTNnznQ7rpZFE8406S1r1qyOdu3aOS5cuOB6vfbgyJEjhyNJkiSuBDg8mjP5U3spRaVJhbpdryMnTeSbMGGC2ebn52fOg54r7VXmTP4rVqyYOYeaPKjJiNrLIWrCsfZu0CTDqNcVHi26RFg9dylSpHAlADs7AmjCr56fvHnzmh4lUWlCrzPhM6rozk1sOgXcvn3b3De0d6K+p36GW7RoYXolKe0ZpcfQ3pbZsmUz96T27du7jnvw4EFzDem1pJ/tp556yvHZZ5+5jq+JrprUrK/X/6febxKzRyVEP6w3k/Ya0uRr/T3rtaH32OiuB+3xpPdSJz2Hel9t06bNA+/3/fffmx6Meh1qBxTtOKA97pTe33Wf/s3Re74mhu/cudP1Wu09FRQUZDoeaDnsJon+E98BFQAAgFUMmgcAAGyNYAYAANgawQwAALA1ghkAAGBrBDMAAMDWCGYAAICtEcwAAABbI5gBAAC2RjADwPZ0KHadGgRA4sQIwABsT+cP0hmgdUZ3AIkPwQyAeKMTZzpniQYAq2hmAuA1OuOvzv6tMwQHBARIw4YNzWztOgO7zqyePXt2adeunVy4cMH1Gp01WGeD1poXnfV3/Pjx5jh6jJiamU6dOmVmqNdj6iziL730kpkd2mno0KFStmxZ+e6778xrdabhNm3amPcCYD8EMwC86ttvvzW1MRs3bpQxY8ZInTp15Omnn5bt27fLsmXLTNChwYdTnz59zHOXLFkiK1askPXr18vOnTtjPH5kZKQJZC5duiRr1641rzlx4oS0bt3a7XnHjx+Xn376SZYuXWoWfa6WB4D9JI/vAgBIXAoXLixjx4416yNHjjSBzKhRo1z7p02bJoGBgXL06FFTE6PBz+zZs6Vu3bpm//Tp0yVXrlwxHn/VqlWyb98+CQkJMcdRM2fOlBIlSsi2bdukQoUKrqBnxowZki5dOvNYa4T0tR9++GGc/v8BeB7BDACvKleunGt9z549EhwcbJqD7qc1Jzdu3JA7d+5IxYoVXdu1SahIkSIxHv/QoUMmiHEGMqp48eKSMWNGs88ZzGjzkjOQURo4hYWFeeT/CMC7CGYAeJXmvjhdu3ZNmjRpIh999NEDz9Pg4tixY3FWDj8/P7fHSZIkMbU1AOyHnBkA8eaZZ56RAwcOmFqSoKAgt0WDnoIFC5qgQ5uHnK5cuWKaoGJSrFgxCQ0NNYvTwYMH5fLly6aGBkDCQzADIN507drVJOq2bdvWBCzatLR8+XJ5/fXX5d69e6YZqEOHDtKvXz/THKWBT8eOHSVp0qSmJiU69erVk1KlSpkeUJoovHXrVmnfvr3UqlVLypcv7/X/I4C4RzADIN5oIq/2VNLApUGDBiYI0S7Xmt+iAYsaN26cVKlSRV544QUTqFSrVs3UvqRKlSraY2qQs3jxYsmUKZPUrFnTvEZreObOnevl/x0Ab2HQPAC2EhERIblz55ZPP/3U1NIAAAnAAHzarl275PDhw6ZHk+bLDB8+3GzXsWQAQBHMAPB5n3zyiRw5csQMtqddu3XgPB1BGAAUzUwAAMDWSAAGAAC2RjADAABsjWAGAADYGsEMAACwNYIZAABgawQzAADA1ghmAACArRHMAAAAsbP/A0cb8o1qAQy2AAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(data=df, x=\"region\", y=\"percentage_drivers_fatal_alcohol_impaired\", errorbar=\"sd\")"
]
},
{
"cell_type": "markdown",
"id": "a4159a11-dde7-4756-949b-e12407d56af9",
"metadata": {},
"source": [
"This graph shows that the Midwest region has the highest percentage of drivers involved in fatal collisions who were alcohol-impaired in 2012"
]
},
{
"cell_type": "markdown",
"id": "collectible-puppy",
"metadata": {},
"source": [
"## Second Research Question: What region has the highest car insurance premiums?\n"
]
},
{
"cell_type": "markdown",
"id": "demographic-future",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "incorporate-roller",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
"\n",
"✏️ *Write your answer below:*\n",
"\n",
"To answer this question, I will organize the data for each state by the region it is in. Then, compare the average cost of car insurance and see which region is the highest.\n"
]
},
{
"cell_type": "markdown",
"id": "juvenile-creation",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "pursuant-surrey",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"region\n",
"Midwest 756.630833\n",
"West 855.624545\n",
"Southeast 905.472500\n",
"Northeast 1021.320000\n",
"Name: car_insurance_premiums, dtype: float64"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#######################################################################\n",
"### 💻 YOUR WORK GOES HERE TO ANSWER THE SECOND RESEARCH QUESTION 💻 \n",
"###\n",
"### Your data analysis may include a statistic and/or a data visualization\n",
"#######################################################################\n",
"\n",
"df.groupby(\"region\").car_insurance_premiums.mean().sort_values()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "located-night",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOWVJREFUeJzt3QmcjfX////XjDEGY5dBDS1kHftakZCxZEvJUiZJJUtMyUchW8kSIuVDIT6UjxJSHx9rKPtYsjUUZSpMZZkoDM7v9nr/v9f5n2Nm5DOdmTln3o/77XaZc67rmnPex3XONc/z3q4gl8vlEgAAAIsFZ3UBAAAAshqBCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAeiFZXYBAcfXqVfn5558lX758EhQUlNXFAQAAN0CnW/z999+lZMmSEhycdj0QgegGaRiKjIzM6mIAAIB0SEhIkFtuuSXN7QSiG6Q1Q85/aP78+bO6OAAA4AYkJSWZCg3n73haCEQ3yGkm0zBEIAIAILD8VXcXOlUDAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB5XuwcAC7lcLjl//rz7ft68ef/yauBAdkYgAgALaRhq27at+/7SpUslPDw8S8sEZCWazAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA62VpINqwYYO0bt1aSpYsaWZIXbJkiXtbcnKyDBo0SKKioswMqrpPt27d5Oeff/Z6jFOnTknXrl0lf/78UrBgQenRo4ecO3fOa5+vv/5aGjRoIGFhYRIZGSnjxo3LtNcIAAD8X3BWz5RatWpVmTZtWoptf/zxh+zcuVOGDh1qfi5evFji4+OlTZs2XvtpGNq/f7+sWrVKli9fbkLWU0895d6elJQkzZo1k9KlS0tcXJyMHz9ehg8fLjNmzMiU1wgAAPxfll66o0WLFmZJTYECBUzI8fTWW29JnTp15NixY1KqVCk5ePCgrFixQrZv3y61atUy+0ydOlVatmwpEyZMMLVK8+fPl0uXLsmsWbMkNDRUKlWqJLt375aJEyd6BadrXbx40SyewQoAAGRPAdWH6OzZs6ZpTZvG1ObNm81tJwyppk2bSnBwsGzdutW9T8OGDU0YckRHR5vaptOnT6f5XGPGjDGhzFm0qQ0AAGRPAROILly4YPoUde7c2fQXUidOnJBixYp57RcSEiKFCxc225x9IiIivPZx7jv7pGbw4MEmgDlLQkJCBrwqAADgDwLiavfawbpjx47icrnknXfeyZTnzJUrl1kAAED2FxIoYeiHH36QtWvXumuHVPHixSUxMdFr/8uXL5uRZ7rN2efkyZNe+zj3nX0AAIDdggMhDB0+fFhWr14tRYoU8dpev359OXPmjBk95tDQdPXqValbt657Hx15po/l0M7a5cqVk0KFCmXiqwEAAP4qSwORzhekI750UUePHjW3dRSZBpiHHnpIduzYYUaKXblyxfT50UVHjakKFSpI8+bNpWfPnrJt2zb56quvpE+fPtKpUyczwkx16dLFdKjW+Yl0eP7ChQvlzTfflNjY2Kx86QAAwI9kaZOZhp377rvPfd8JKTExMWauoGXLlpn71apV8/q9devWSaNGjcxtDUsagpo0aWJGl3Xo0EGmTJni3ldHiK1cuVJ69+4tNWvWlKJFi8qwYcOuO+QeAADYJUsDkYYa7Sidluttc+iIsgULFlx3nypVqsjGjRvTVUYAAJD9+XUfIgAAgMxAIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWC8kqwsA/+VyueT8+fPu+3nz5pWgoKAsLRMAABmBQIQ0aRhq27at+/7SpUslPDw8S8sEAEBGoMkMAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPmaoBIB1qDpwrgSzo8iUp4HG/0dAPxRUSKoEobny3rC4CsgFqiAAAgPUIRAAAwHpZGog2bNggrVu3lpIlS5qrqC9ZsiTF1daHDRsmJUqUkNy5c0vTpk3l8OHDXvucOnVKunbtKvnz55eCBQtKjx495Ny5c177fP3119KgQQMJCwuTyMhIGTduXKa8PgAAEBiCs/pq6lWrVpVp06alul2Dy5QpU2T69OmydetWyZs3r0RHR8uFCxfc+2gY2r9/v6xatUqWL19uQtZTTz3l3p6UlCTNmjWT0qVLS1xcnIwfP16GDx8uM2bMyJTXCAAA/F+Wdqpu0aKFWVKjtUOTJ0+WIUOGSNu2bc26uXPnSkREhKlJ6tSpkxw8eFBWrFgh27dvl1q1apl9pk6dKi1btpQJEyaYmqf58+fLpUuXZNasWRIaGiqVKlWS3bt3y8SJE72C07UuXrxoFs9gBQAAsie/7UN09OhROXHihGkmcxQoUEDq1q0rmzdvNvf1pzaTOWFI6f7BwcGmRsnZp2HDhiYMObSWKT4+Xk6fPp3m848ZM8Y8n7NoUxsAAMie/DYQaRhSWiPkSe872/RnsWLFvLaHhIRI4cKFvfZJ7TE8nyM1gwcPlrNnz7qXhIQEH70yAADgb5iHKA25cuUyCwAAyP78toaoePHi5ufJkye91ut9Z5v+TExM9Np++fJlM/LMc5/UHsPzOQAAgN38NhDddtttJrCsWbPGq2Oz9g2qX7++ua8/z5w5Y0aPOdauXStXr141fY2cfXTkWXJysnsfHZFWrlw5KVSoUKa+JgAA4J+yNBDpfEE64ksXpyO13j527JiZl6h///4yevRoWbZsmezdu1e6detmRo61a9fO7F+hQgVp3ry59OzZU7Zt2yZfffWV9OnTx4xA0/1Uly5dTIdqnZ9Ih+cvXLhQ3nzzTYmNjc3Klw4AAPxIlvYh2rFjh9x3333u+05IiYmJkTlz5siLL75o5irS4fFaE3TPPfeYYfY6waJDh9VrCGrSpIkZXdahQwczd5FDR4itXLlSevfuLTVr1pSiRYuayR6vN+QeAADYJUsDUaNGjcx8Q2nRWqKRI0eaJS06omzBggXXfZ4qVarIxo0b/1ZZgexOP4v6BcShE6HqZxAAbMAoMwCGhiFnElS1dOlSCQ8Pz9IyAYDY3qkaAAAgsxCIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYL12BaOfOnWbmaM/huTp79EsvvSSXLl3yZfkAAAD8MxA9/fTTcujQIXP7yJEj5lIZefLkkUWLFpnZpQEAALJ9INIwVK1aNXNbQ1DDhg3NbNF6uY2PP/7Y12UEAADwv0CkU/zrFeXV6tWrpWXLluZ2ZGSk/Prrr74tIQAAgD8Golq1apmr0M+bN0/Wr18vrVq1cl+tPiIiwtdlBAAA8L9ANHnyZNOxWq8y//LLL0uZMmXM+o8++kjuuusuX5cRAADA/y7uqleP9xxl5hg/frzkyJHDF+UCAAAInKvdnzt3zt2fyJEzZ86/+7AAAAD+3WSmfYW031DevHmlQIECUqhQIbMULFjQ/AQAAMj2NUSPPvqoGWk2a9Ys04k6KCjI9yUDAADw50C0Z88eiYuLk3Llyvm+RAAAAIHQZFa7dm1JSEjwfWkAAAACpYbo3XfflWeeeUZ++uknqVy5copO1DoKDSI1B86VQBZ0+ZIU8LjfaOiH4goJlUAUN75bVhcBAJDdAtEvv/wi3333nXTv3t29TvsRab8i/XnlyhVflhEAAMD/AtETTzwh1atXlw8++IBO1QAAwM5A9MMPP8iyZcvcM1QDAABY16m6cePGZqQZAABAdpCuGqLWrVvLgAEDzOU7oqKiUnSqbtOmja/KBwAA/ibt43v+/Hn3fZ1Yme4uPghEOsJMjRw5MsU2OlUDAOBfNAy1bdvWfX/p0qUSHh6epWXKFoHo2muXAQAAWNeHCAAAQGyvIUqtqczTsGHD0lseAACAwAhEn3zyidf95ORkOXr0qISEhMgdd9xBIAIAANk/EO3atSvFuqSkJHn88celffv2vigXAABA4PUhyp8/v4wYMUKGDh3qq4cEAAAIvE7VZ8+eNQsAAEC2bzKbMmVKigmfjh8/LvPmzZMWLVr4qmxAQKk5cK4EsqDLl6SAx/1GQz8UV0ioBKK48d2yuggAbAhEkyZN8rofHBwsN910k8TExMjgwYN9VTYAAAD/DUQ6ogwAACC7YGJGAABgvRuuIXrwwQdlzpw5ZjSZ3r6exYsX+6JsAAAA/hWIChQo4L4yrt4GAACwLhDNnj071dsAAACBjj5EAADAeukaZfbbb7+Z65WtW7dOEhMT5erVq17bT5065avyAQAA+Gcgeuyxx+Tbb7+VHj16SEREhLtvEQAAgDWBaOPGjfLll19K1apVfV8iAACAQOhDVL58efnzzz99XxoAAIBACURvv/22vPzyy7J+/XrTnygpKclr8ZUrV67I0KFD5bbbbpPcuXPLHXfcIaNGjTLXTnPobe3PVKJECbNP06ZN5fDhwyn6NHXt2tXMoVSwYEHT1Hfu3DmflRMAAFjYZKahQoNP48aNvdZrONH+RBpkfGHs2LHyzjvvyPvvvy+VKlWSHTt2SPfu3c08SP369TP7jBs3zlxsVvfR4KQBKjo6Wg4cOCBhYWFmHw1DevHZVatWSXJysnmMp556ShYsWOCTcgIAAAsDkQaMnDlzmkCRkZ2qN23aJG3btpVWrVqZ+7feeqt88MEHsm3bNncAmzx5sgwZMsTsp+bOnWvKtGTJEunUqZMcPHhQVqxYIdu3b5datWqZfaZOnSotW7aUCRMmSMmSJTOk7AAAIJsHon379smuXbukXLlykpHuuusumTFjhhw6dEjuvPNO2bNnj+nMPXHiRPdFZk+cOGGayRxae1S3bl3ZvHmzCUT6U2u0nDCkdP/g4GDZunWrtG/fPtXnvnjxolkcvmwKBAAA2SAQabhISEjI8ED0j3/8wwQR7cSdI0cO0xT36quvmhoqpWFIaY2QJ73vbNOfxYoV89oeEhIihQsXdu+TmjFjxsiIESMy4FUBAIBsEYj69u0rzz33nAwcOFCioqJM85mnKlWq+KRw//73v2X+/PmmaU77EO3evVv69+9vmrliYmIkIw0ePFhiY2Pd9zWYRUZGZuhzAkBmceXIKWerdPa6D9gsXYHokUceMT+feOIJ9zrtR+TrTtUauLSWSJu+lIavH374wdTeaCAqXry4WX/y5Ekzysyh96tVq2Zu6z46m7any5cvm5Fnzu+nJleuXGYBgGxJz9khoVldCiCwA5H23ckMf/zxh+nr40mbzpxLheioMg01a9ascQcgrcnRvkG9evUy9+vXry9nzpyRuLg4qVmzplm3du1a8xja1wgAACBdgah06dKSGVq3bm36DJUqVco0mWlHbu1Q7dRMaW2UNqGNHj1aypYt6x52r01q7dq1M/tUqFBBmjdvLj179pTp06ebYfd9+vQxtU6MMAMAAH/ravfz5s2Tu+++24QKbcZSOgR+6dKlPvuf1eHxDz30kDz77LMm2Lzwwgvy9NNPm8kZHS+++KLp06TzCtWuXdtMuKjD7J05iJT2Q9KO2U2aNDHD7e+55x4zeg0AACDdNUQ6WaLODq21M1qD4/QZ0uHtGoqcOYH+rnz58pnH0yUtWks0cuRIs6RFR5QxCSMAAPBpDZHW3MycOdNcvkP79HgOx9+7d296HhIAACCwApF2qq5evXqK9Toq6/z5874oFwAAgH8HIu28rHMCXUv77mhfHwAAgGzfh0gnLOzdu7dcuHDBzD2k1xbTa4zp/EDvvvuu70sJAADgb4HoySeflNy5c5uLqupcQV26dDGjzd588033JIoAAADZNhDpLM86Yis6OtpcU0wDkQ51v/Z6YQAAZBc1B86VQBZ0+ZIU8LjfaOiHATtTedz4bv7Rh0gvjPrMM8+Y5jKVJ08ewhAAALCvyaxOnTpm1ujMmrEaWYOLPwIAbJGuQKQzRz///PPy448/muuD5c2bN0Oudo8sxsUfAQCWSFcgcjpO9+vXL0Ovdg8AACC2X+0eAABAbL/aPYDMQ58xADZLVyBS8fHx5ppmBw8eNPd1hmq96ny5cuV8WT4AmYU+YwAslq5Ld3z88cdSuXJliYuLk6pVq5pl586dZp1uAwAAyPY1RC+++KIMHjxYRo4c6bX+lVdeMds6dOjgq/IBAAD4Zw3R8ePHpVu3lDNFPvroo2YbAABAtg9EjRo1ko0bN6ZY/+WXX0qDBg18US4AAAD/bjJr06aNDBo0yPQhqlevnlm3ZcsWWbRokYwYMUKWLVvmtS8AAEC2nKlavf3222ZJbZtikkYAAJBtA9HVq1d9XxIAAIBA6kN0o6KioiQhISEjnwIAAMC/A9H3338vycnJGfkUAAAA/h2IAAAAAgGBCAAAWI9ABAAArEcgAgAA1iMQAQAA6/3tQHThwoU0t/3zn/+UiIiIv/sUAAAA/heIdGLGUaNGyc033yzh4eFy5MgRs37o0KHy3nvvuffr0qWL5M2b13elBQAA8JdANHr0aJkzZ46MGzdOQkND3esrV64s7777ri/LBwAA4J+BaO7cuTJjxgzp2rWr5MiRw72+atWq8s033/iyfAAAAP4ZiH766ScpU6ZMqk1pzEwNAACsCEQVK1aUjRs3plj/0UcfSfXq1X1RLgAAAP++2v2wYcMkJibG1BRprdDixYslPj7eNKUtX77c96UEAADwtxqitm3byqeffiqrV682o8g0IB08eNCsu//++31fSgAAAH+rIVINGjSQVatW+bY0AAAAgVJDtH37dtm6dWuK9bpux44dvigXAACAfwei3r17S0JCQor12qdItwEAAGT7QHTgwAGpUaNGivU6wky3AQAAZPtAlCtXLjl58mSK9cePH5eQkHR3SwIAAAicQNSsWTMZPHiwnD171r3uzJkz8tJLLzHKDAAABJx0VedMmDBBGjZsKKVLl3ZPxLh7925zZft58+b5uowAAAD+F4j0Kvdff/21zJ8/X/bs2SO5c+eW7t27S+fOnSVnzpy+LyUAAEg3V46ccrZKZ6/78JbuDj86IeNTTz2V3l8HAACZJShIXCGhWV2K7BmIDh8+LOvWrZPExERz+Q5POnM1AABAtg5EM2fOlF69eknRokWlePHiEhQU5N6mtwlEAAAg248yGz16tLz66qty4sQJ05l6165d7mXnzp0+LaBO9vjoo49KkSJFTF+lqKgor9mwXS6XCWAlSpQw25s2bWpqrzydOnVKunbtKvnz55eCBQtKjx495Ny5cz4tJwAAsCwQnT59Wh5++GHflyaV57n77rtNR+3//Oc/ZtLHN954QwoVKuTeZ9y4cTJlyhSZPn26uXSI9m2Kjo6WCxcuuPfRMLR//35z7bXly5fLhg0b6P8EAAD+XpOZhqGVK1fKM888Ixlp7NixEhkZKbNnz3avu+2227xqhyZPnixDhgyRtm3bmnVz5841w/+XLFkinTp1koMHD8qKFSvM9ddq1apl9pk6daq0bNnSTB9QsmTJDH0NAAAgmwaiMmXKyNChQ2XLli2mCevaofb9+vXzSeGWLVtmans0gK1fv94M93/22WelZ8+eZvvRo0dNs502kzkKFCggdevWlc2bN5tApD+1mcwJQ0r3Dw4ONjVK7du3T/W5L168aBZHUlKST14TAADIJoFoxowZEh4ebkKKLp60U7WvAtGRI0fknXfekdjYWDMLttby6GOHhoZKTEyMCUNKa4Q86X1nm/4sVqyY13a9vEjhwoXd+6RmzJgxMmLECJ+8DgAAkA0DkdbMZAYdzq81O6+99pq5r7Ni79u3z/QX0kCUkfTSJBrEPGuItPkOAABkP+nqVJ1ZdORYxYoVvdZVqFBBjh07Zm7rkH917YVm9b6zTX/qXEmeLl++bEaeOfukdQFbHZXmuQAAgOwp3RMz/vjjj6aPj4aTS5cueW2bOHGiL8pmRpjFx8d7rTt06JC5hprTwVpDzZo1a6RatWrumhztG6TzJKn69eubC8/GxcVJzZo1zbq1a9ea2iftawQAAJCuQKQBpE2bNnL77bfLN998I5UrV5bvv//ejPqqUaOGzwo3YMAAueuuu0yTWceOHWXbtm2m/5IuTn+l/v37m3mRypYtawKSdvbWkWPt2rVz1yg1b97cdMTWprbk5GTp06eP6XDNCDMAAJDuJjPtX/PCCy/I3r17JSwsTD7++GNJSEiQe++916fzE9WuXVs++eQT+eCDD0zoGjVqlBlmr/MKOV588UXp27evmVdI99cJF3WYvZbLoRehLV++vDRp0sQMt7/nnnvcoQoAACBdNUQ6t4+GFPMAISHy559/mlFnI0eONPMBOc1VvvDAAw+YJS1aS6TPq0tadETZggULfFYmAACQvaSrhkhng3b6DWnH5++++8697ddff/Vd6QAAAPy1hqhevXry5Zdfmv452gT1/PPPm+azxYsXm20AAADZPhDpKDLn4qg6eaHeXrhwoenY7KsRZgAAAH4biK5cuWKG3FepUsXdfKajtwAAAKzpQ5QjRw5p1qyZuRI9AACAtZ2qdQi8XmcMAADA2kCkEyHqPETLly+X48ePm9mhPRcAAIBs36laR5Ypna1a5wFy6EzVel/7GQEAAGTrQLRu3TrflwQAACCQApFeogMAAMDqQLRhw4brbm/YsGF6ywMAABAYgahRo0Yp1nn2JaIPEQAAyPajzHQOIs8lMTHRXGFerza/cuVK35cSAADA32qIChQokGLd/fffL6GhoRIbGytxcXG+KBsAAID/1hClJSIiQuLj4335kAAAAP5ZQ/T111973df5h3SCxtdff12qVavmq7IBAAD4byDS0KOdqDUIeapXr57MmjXLV2UDAADw30B09OhRr/vBwcFy0003SVhYmK/KBQAA4N+BqHTp0inWnTlzhkAEAADs6VQ9duxYWbhwoft+x44dpXDhwnLzzTfLnj17fFk+AAAA/wxE06dPl8jISHN71apVZtF5iFq0aCEDBw70dRkBAAD8r8nsxIkT7kC0fPlyU0PUrFkzufXWW6Vu3bq+LiMAAID/1RAVKlRIEhISzG2tGWratKm5raPOuGwHAACwoobowQcflC5dukjZsmXlt99+M01lateuXVKmTBlflxEAAMD/AtGkSZNM85jWEo0bN07Cw8PNep2c8dlnn/V1GQEAAPwvEOXMmVNeeOGFFOsHDBjgizIBAAD4fyBShw8flnXr1pkr3V+9etVr27Bhw3xRNgAAAP8NRDNnzpRevXpJ0aJFpXjx4uYyHg69TSACAADZPhCNHj1aXn31VRk0aJDvSwQAABAIw+5Pnz4tDz/8sO9LAwAAECiBSMPQypUrfV8aAACAQGky07mGhg4dKlu2bJGoqCgz6sxTv379fFU+AAAA/wxEM2bMMHMPrV+/3iyetFM1gQgAAGT7QHT06FHflwQAACCQ+hABAABYWUMUGxsro0aNkrx585rb1zNx4kRflA0AAMC/ApFeuDU5Odl9Oy2ekzQCAABkq0Ckl+lI7fb1/Pjjj1KyZEkJDqZlDgAA+K8MTSoVK1aU77//PiOfAgAAwL8DkcvlysiHBwAA8AnasgAAgPUIRAAAwHoEIgAAYL0MDUQMwQcAAIGATtUAAMB6/3Mg0skZQ0JCZN++fX+574EDB6R06dLpLRsAAIB/BqKcOXNKqVKl5MqVK3+5b2RkpOTIkUN85fXXXzfNcP3793evu3DhgvTu3VuKFCki4eHh0qFDBzl58qTX7x07dkxatWolefLkkWLFisnAgQPl8uXLPisXAACwsMns5ZdflpdeeklOnTolmWX79u3yz3/+U6pUqeK1fsCAAfLpp5/KokWLZP369fLzzz/Lgw8+6N6uwU3D0KVLl2TTpk3y/vvvy5w5c2TYsGGZVnYAAJBNLt3h6a233pJvv/3WXJZDm8T0gq+edu7cKb507tw56dq1q8ycOVNGjx7tXn/27Fl57733ZMGCBdK4cWOzbvbs2VKhQgXZsmWL1KtXT1auXGma7lavXi0RERFSrVo1c5HaQYMGyfDhwyU0NDTV57x48aJZHElJST59TQAAIMADUbt27SQzaZOY1vI0bdrUKxDFxcWZPk263lG+fHnTpLd582YTiPRnVFSUCUOO6Oho6dWrl+zfv1+qV6+e6nOOGTNGRowYkcGvDAAABGwgeuWVVySzfPjhh6bGSZvMrnXixAlTw1OwYEGv9Rp+dJuzj2cYcrY729IyePBgiY2N9aoh0j5RAAAg+0lXIMosCQkJ8txzz8mqVaskLCwsU587V65cZgEAANlfujpVa0flCRMmSJ06daR48eJSuHBhr8VXtEksMTFRatSoYYb666Idp6dMmWJua02PdpY+c+aM1+/pKDMtl9Kf1446c+47+wAAALulKxBp35qJEyfKI488Yjo2a9OSjuwKDg42HZV9pUmTJrJ3717ZvXu3e6lVq5bpYO3c1mkA1qxZ4/6d+Ph4M8y+fv365r7+1MfQYOXQGqf8+fNLxYoVfVZWAABgWZPZ/PnzzYgv7eisAahz585yxx13mCHxOrqrX79+Pilcvnz5pHLlyl7rdESbzjnkrO/Ro4cJZFozpSGnb9++JgRph2rVrFkzE3wee+wxGTdunOk3NGTIENNRmyYxAACQ7hoiDRU6ckvpZIhaS6QeeOAB+eyzzzL1f3bSpEnmeXVCxoYNG5pmsMWLF7u368SQy5cvNz81KD366KPSrVs3GTlyZKaWEwAAZLMaoltuuUWOHz9uhrdrzZDO9aP9fHQkWEbXunzxxRde97Wz9bRp08ySFp0r6fPPP8/QcgEAAMtqiNq3b+/ut6NNVEOHDpWyZcuampcnnnjC12UEAADwvxoivaaYQztWaw2MXhZDQ1Hr1q19WT4AAAD/rCHSWZxnzZrlvq8dmLVj8y+//CJjx471ZfkAAAD8MxDpRVb1EhnXqlSpkkyfPt0X5QIAAPD/UWYlSpRIsf6mm24yna0BAACyfSDSa3p99dVXKdbrupIlS/qiXAAAAP7dqbpnz57Sv39/c6X5xo0bm3U66uzFF1+U559/3tdlBAAA8L9ANHDgQPntt9/k2WefNdcSc+YDGjRokLlKPAAAQLYPREFBQWY0mc4/dPDgQcmdO7cZcs+lMAAAgDWByKGX7ahdu7bvSgMAABAonaoBAACyEwIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFjP7wPRmDFjpHbt2pIvXz4pVqyYtGvXTuLj4732uXDhgvTu3VuKFCki4eHh0qFDBzl58qTXPseOHZNWrVpJnjx5zOMMHDhQLl++nMmvBgAA+CO/D0Tr1683YWfLli2yatUqSU5OlmbNmsn58+fd+wwYMEA+/fRTWbRokdn/559/lgcffNC9/cqVKyYMXbp0STZt2iTvv/++zJkzR4YNG5ZFrwoAAPiTEPFzK1as8LqvQUZreOLi4qRhw4Zy9uxZee+992TBggXSuHFjs8/s2bOlQoUKJkTVq1dPVq5cKQcOHJDVq1dLRESEVKtWTUaNGiWDBg2S4cOHS2hoaBa9OgAA4A/8voboWhqAVOHChc1PDUZaa9S0aVP3PuXLl5dSpUrJ5s2bzX39GRUVZcKQIzo6WpKSkmT//v2pPs/FixfNds8FAABkTwEViK5evSr9+/eXu+++WypXrmzWnThxwtTwFCxY0GtfDT+6zdnHMww5251tafVdKlCggHuJjIzMoFcFAACyWkAFIu1LtG/fPvnwww8z/LkGDx5saqOcJSEhIcOfEwAAZA2/70Pk6NOnjyxfvlw2bNggt9xyi3t98eLFTWfpM2fOeNUS6Sgz3ebss23bNq/Hc0ahOftcK1euXGYBAADZn9/XELlcLhOGPvnkE1m7dq3cdtttXttr1qwpOXPmlDVr1rjX6bB8HWZfv359c19/7t27VxITE9376Ii1/PnzS8WKFTPx1QAAAH8UEgjNZDqCbOnSpWYuIqfPj/bryZ07t/nZo0cPiY2NNR2tNeT07dvXhCAdYaZ0mL4Gn8cee0zGjRtnHmPIkCHmsakFAgAAfh+I3nnnHfOzUaNGXut1aP3jjz9ubk+aNEmCg4PNhIw6OkxHkL399tvufXPkyGGa23r16mWCUt68eSUmJkZGjhyZya8GAAD4o5BAaDL7K2FhYTJt2jSzpKV06dLy+eef+7h0AAAgO/D7PkQAAAAZjUAEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAelYFomnTpsmtt94qYWFhUrduXdm2bVtWFwkAAPgBawLRwoULJTY2Vl555RXZuXOnVK1aVaKjoyUxMTGriwYAALKYNYFo4sSJ0rNnT+nevbtUrFhRpk+fLnny5JFZs2ZlddEAAEAWCxELXLp0SeLi4mTw4MHudcHBwdK0aVPZvHlzqr9z8eJFszjOnj1rfiYlJd3w8165+OffKjd85385bunF8fYfHG+7cLztkvQ/Hm9nf5fLdf0dXRb46aef9H/BtWnTJq/1AwcOdNWpUyfV33nllVfM77CwsLCwsLBIwC8JCQnXzQpW1BClh9YmaZ8jx9WrV+XUqVNSpEgRCQoKEltoso6MjJSEhATJnz9/VhcHGYzjbReOt11sPd4ul0t+//13KVmy5HX3syIQFS1aVHLkyCEnT570Wq/3ixcvnurv5MqVyyyeChYsKLbSD49NHyDbcbztwvG2i43Hu0CBAn+5jxWdqkNDQ6VmzZqyZs0arxofvV+/fv0sLRsAAMh6VtQQKW3+iomJkVq1akmdOnVk8uTJcv78eTPqDAAA2M2aQPTII4/IL7/8IsOGDZMTJ05ItWrVZMWKFRIREZHVRfNr2myoczdd23yI7InjbReOt1043tcXpD2r/2IfAACAbM2KPkQAAADXQyACAADWIxABAADrEYiQwhdffGEmnzxz5kxWFwWAjz3++OPSrl27rC4G0qFRo0bSv3//6+5z6623mlHU+N8RiPyYjorr1auXlCpVyowK0Ekko6Oj5auvvsrUD1hWIJSlj160OF++fHL58mX3unPnzknOnDnNsU7t//i7775L9/N9//335jF27979t8ptczjR/7/XX3/da/2SJUv+9oz4/nxsCGUp3wPPPPNMim29e/c223QftXjxYhk1apT4q6CgIPPeDVQEIj/WoUMH2bVrl7z//vty6NAhWbZsmfmj9ttvv2V10eCn7rvvPhOAduzY4V63ceNGE6a3bt0qFy5ccK9ft26dCdt33HFHFpUWKiwsTMaOHSunT5/26QWtETj0choffvih/Pnn/38BWf2sLliwwHxGHYULFzZfeJAxCER+SmtG9A+Znij1j1zp0qXNhJJ6jbU2bdqYfY4dOyZt27aV8PBwMw17x44dvS5Pktq3MK0NcmoKdPv69evlzTffNMleF/1W6YiLizMTWebJk0fuuusuiY+P93qspUuXSo0aNcwJ/fbbb5cRI0Z41UxMnDhRoqKiJG/evOYD/+yzz5o/1o4ffvhBWrduLYUKFTL7VKpUST7//HNTBn3NSrd5fkPC9ZUrV05KlChhan8celvfJ7fddpts2bLFa73+P+us7WPGjDHbc+fOLVWrVpWPPvrIvZ/+oe7atavcdNNNZnvZsmVl9uzZZpv+jqpevbo5TtfWQuGvNW3a1ARWPQZp+fjjj83nQ2uKtUnkjTfe8Nqu67TmoFu3buZc8NRTT/3lsZkwYYJ5r+j1GbUmIjk52b3t4sWL8sILL8jNN99sPpt169b1ek/pl7LOnTub7Xp+0M/5Bx984PX4+h7S9fqe0efQ16mT4Q4fPtx8ydPzh3Pe8XxsG+l5VM+RWgPk0NsahvT4pVWjn5iYaM6h+n+sx3v+/Plej6vH8IEHHnDf16Y0/f/WOfgcZcqUkXfffdd9X29XqFDBnNfLly8vb7/9tlfQ7tOnj3nf6Hb9u+S8b/U9qNq3b2+ew7kfUHx5VXn4TnJysis8PNzVv39/14ULF1Jsv3LliqtatWque+65x7Vjxw7Xli1bXDVr1nTde++97n1iYmJcbdu29fq95557zr3PmTNnXPXr13f17NnTdfz4cbNcvnzZtW7dOnNl4Lp167q++OIL1/79+10NGjRw3XXXXe7H2bBhgyt//vyuOXPmuL777jvXypUrXbfeeqtr+PDh7n0mTZrkWrt2revo0aOuNWvWuMqVK+fq1auXe3urVq1c999/v+vrr782j/Hpp5+61q9fb8rw8ccfmzLEx8ebcmlZcWO6dOniatasmft+7dq1XYsWLXI988wzrmHDhpl1f/zxhytXrlzm+I0ePdpVvnx514oVK8xxmD17ttmmx1717t3bvNe2b99ujuWqVatcy5YtM9u2bdtmjtPq1avNcfrtt9+y6FUHJuczunjxYldYWJj7atyffPKJ+X9V+vkODg52jRw50nwe9Pjkzp3b/HSULl3afB4nTJjg+vbbb82S1rHR59R99f1w8OBB87nLkyePa8aMGe7He/LJJ83nXT/n+ljjx48374lDhw6Z7T/++KNZt2vXLvOemTJliitHjhyurVu3mu0///yzKyQkxDVx4kTzntHP+LRp01y///67WTp27Ohq3ry5+7xz8eJFl+3vAf2/atKkiXu93tZzqG7TfZSeu/Uc7mjRooWratWqrs2bN5v3iR4zfW/o7yn9nBYoUMCcU1W7du1cRYsWdQ0aNMh9HPU9cvjwYXP/X//6l6tEiRLm/HvkyBHzs3DhwuY8ofSYR0ZGmvfF999/79q4caNrwYIFZltiYqJ5LH1f6jHV+4GGQOTHPvroI1ehQoXMiVLf6IMHD3bt2bPHbNMAoiegY8eOuffX4KJvSD0R3kggSu0DppxApCdSx2effWbW/fnnn+4P62uvveb1e/PmzTMfprToH+UiRYq470dFRXkFqNTKcPr06b/4X8K1Zs6c6cqbN68J1UlJSeYPk56c9MTVsGFDs48GVP3/1ZOa/jHctGmT12P06NHD1blzZ3O7devWru7du6f6XPrHTh9H/zDif+f5Ga1Xr57riSeeSBGINODqFwdPAwcOdFWsWNErEOkfuxs5Nvqcur/zR1I9/PDDrkceecTc/uGHH8y55aeffvL6Pf3M6zkoLfoF5/nnnze34+Li3O+vv3rdtnP+L/QzqqFT/8900fP+L7/8kmYg0nDseb5XGnB1nROI9PypYVq/zFy9etWEmzFjxpgvu04Auvnmm92/f8cdd7gDjmPUqFHmi7Pq27evq3HjxuaxUqPPre/dQGXNpTsCtQ9Rq1atTNOZNnX85z//kXHjxpkqzaSkJFPFqoujYsWKUrBgQTl48KDUrl37bz9/lSpV3Le1itSpotVq3D179pjO3a+++qp7nytXrph27z/++MNUo69evdpUp37zzTemvNqc5rm9X79+ptP4ypUrTXW6vl7P50T6aLW6Nk1s377dNHfdeeedprnr3nvvNdfu02OgTRTazKlNmHo87r//fq/H0Kpxp6pej5Eem507d0qzZs1MM6w2ocK3tHm8cePGppnDk36etcnT0913322aP/QzlyNHDrNOm7dvlDa/Ob/nfL737t1rbutPfVx933jSZjRt+lK6/bXXXpN///vf8tNPP5n3i27Xz7XSZtcmTZqYJjMdCKLvm4ceesg0gSN1+hnV8/2cOXM0CZvbRYsWTXN/fV+EhISYC5c7tIlL/wY49LYeC/2860XOddHmVL18h372tcuEnhfU+fPnzQCLHj16SM+ePd2Poedt50rx2nVBzxXaNN+8eXPTHKfHNrsgEPk5bafVN6AuQ4cOlSeffNK8mZ9//vm//N3g4GDzwfLk2U/gr+jIJIcz4kX7myj9MGmfoQcffDDVMms/IP2w6B9TDU3aGfDLL780HzY9eeqJU1+Lniw/++wzE4o0PGnfiL59+95wGZGS9gm45ZZbTKdpDUTOCa9kyZImQG/atMls0z++Tp8uPQbaH8STc72jFi1amP5e2r9r1apV5g+d9jnRPijwnYYNG5rPg/YTTE+fOe3rk57PtvP59vxsa1jSPoSeoUlpf0U1fvx40/dQQ5nTT1D7tjidufX39L2i7zX9bE+dOlVefvll07Hf6duElJ544gnTR0dNmzbNZ1+QNBDp51nPBXou1j5Cej7WQOT8LTn3f+eCmTNnmj5jnpz3gfZ1Onr0qPlyrl94td+qfpn17HMYyAhEAUZrgXRYo76hExISzOLUEh04cMB0xtZ9nG8c+/bt8/p9HYLreTLUbwz6be9/pR8M7WStf3xToydTPcFqwNFgpvTb5LW07DrcVBf9Q6AfRg1EWi6VnrLh/xttpidBDUQDBw70+qOrJ7Nt27aZsKrvFT1Ragd9JzilRt9LMTExZmnQoIF5TA1EHCff0uH3euFp/Qbu0M/6tVNt6H2twbk2sHhK77HRmkH9Ha0N1mOdGn1+rbV69NFHzX39rOtIWOfc44QsrcnSRS+qrR1wP/nkE4mNjU33eSe701oXDZX6f6fh+Hq0Nkhrb/Rc67QI6Dn52qlK9HM9a9YsU5ukj++EJO0Er8fM6WwfERFhvjQdOXLEDKJIi3ba14ul66K1fvqYp06dMkFL/7YE8nElEPkpHcXx8MMPm28M2oykQy11KLU2memJSFO5fjPTN65+S9MPho7i0je/U3WuNQD6TW7u3LlSv359+de//mUCkueoBR0JoN/atEZHv/3pm/pG6AlOa4C0+Uw/FBp6tBlNH3/06NEmKGltlH4z1FEQegLVOXI86TdKrX3QE7v+4dZaCz35Kz156klh+fLl0rJlSzOKwvl2ihsLRM7IIc+go7f1G6iedHUffV9pE82AAQPMH7V77rlHzp49a46Xnvg0AOmx1mp5bWbRZhE9Js5xKlasmDk2OmpFa6W0dtCpXsf/zvlMT5kyxb1Ov8HrHzwdRaZ/hDZv3ixvvfWW1+if1KT32OjnUcugI9b0C42eL3ROtDVr1phzkTbl6EhDrRXQGiBtBtMRpTrC1QlEek7R/bU5Rcuh9/UxnPeNnnf++9//mj/g2gyn5bq21spGGnC1Kcy5fT1Os9XTTz8t77zzjgk8ek7VY+5JvwT9/vvv5nPrzHelIUjP29pU6tk0OmLECNOVQY+HPrZ+3vXvjp6fNcjqcdbf0feEnvMXLVpkRkg6zXR6XPW4awjWL1oB10Sa1Z2YkDodWfaPf/zDVaNGDTNKQDu+6iitIUOGmBFCTufHNm3amA60+fLlMx0jT5w44fU4OqooIiLCPMaAAQNcffr08epUrR3ztDOnjkzQt4N2xEytQ7N2zHS2O3RUkjOqQUet1KlTx2ukio6a0E7Wuj06Oto1d+5cr8fVsmgnPu1IeNNNN7kee+wx16+//ur+fR1VU7x4cVdQUJC7UyFujNOhVkePedLOmrpe30sO7SA5efJksy5nzpzmWOjx0hF/TqfKChUqmOOonTK1k6eOQPHsxK0jT7Tzpud7C38ttc7FeuxCQ0PdnaqdARbaiVqPT6lSpcxoH0/aSdrpSOsptWNzI4MtLl26ZM4dOnJUn1M/x+3btzejxZSOWNPH0JGwxYoVM+elbt26uR/3wIED5j2k7yX9fN95552uqVOnuh9fOxBrR3H9fX2des6x1V91ML/eKDMdzaWd2fX/WN8Xeo5N7b2gI9H0XOrQ46fn1U6dOqV4vvnz55tRpfoe1EE9OhBDR0EqPb/rNv2bo+d87Wi/c+dO9+/qqLYyZcqYgRxajkATpP9kdSgDAADISkzMCAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAP9HLz2gl8IBYB9mqgaA/6PX29Irt+fJkyeriwIgkxGIAAQ8vVitc3V3AEgPmswABBy9WnefPn3M1b2LFi0q0dHRsm/fPmnRooWEh4dLRESEPPbYY/Lrr7+6f0ev+K1XcdcaIL1i96RJk8zj6GOk1WR27Ngxadu2rXnM/PnzS8eOHc1V3R3Dhw+XatWqybx588zv6lXCO3XqZJ4LQGAhEAEISO+//76pFfrqq6/k9ddfl8aNG0v16tVlx44dsmLFChNcNMA4YmNjzb7Lli2TVatWycaNG2Xnzp1pPv7Vq1dNGDp16pSsX7/e/M6RI0fkkUce8drvu+++kyVLlsjy5cvNovtqeQAElpCsLgAApEfZsmVl3Lhx5vbo0aNNGHrttdfc22fNmiWRkZFy6NAhUyOkAWrBggXSpEkTs3327NlSsmTJNB9/zZo1snfvXjl69Kh5HDV37lypVKmSbN++XWrXru0OTnPmzJF8+fKZ+1ozpb/76quvZujrB+BbBCIAAalmzZru23v27JF169aZpq1raQ3On3/+KcnJyVKnTh33em3eKleuXJqPf/DgQROEnDCkKlasKAULFjTbnECkTWVOGFIavhITE33yGgFkHgIRgICkfYEc586dk9atW8vYsWNT7KcB5dtvv82wcuTMmdPrflBQkKk1AhBY6EMEIODVqFFD9u/fb2prypQp47VocLr99ttNcNGmLsfZs2dNc1paKlSoIAkJCWZxHDhwQM6cOWNqigBkLwQiAAGvd+/epvNz586dTejRZrL//ve/0r17d7ly5Ypp0oqJiZGBAweapjUNTz169JDg4GBTo5Oapk2bSlRUlBmZpp2vt23bJt26dZN7771XatWqlemvEUDGIhABCHjaOVpHkGn4adasmQkyOpxe+/to6FETJ06U+vXrywMPPGDCzt13321qgcLCwlJ9TA1KS5culUKFCknDhg3N72hN08KFCzP51QHIDEzMCMBK58+fl5tvvlneeOMNU1sEwG50qgZghV27dsk333xjRppp/6GRI0ea9TrXEAAQiABYY8KECRIfH28mdNRh+zo5o850DQA0mQEAAOvRqRoAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAENv9PykGaMh3Te3BAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(data=df, x=\"region\", y=\"car_insurance_premiums\", errorbar=\"sd\")"
]
},
{
"cell_type": "markdown",
"id": "8e330a3f-3da7-4a1a-ab73-f7c528dfb809",
"metadata": {},
"source": [
"The graph shows that the region with the highest premium car insurance is the Northwest "
]
},
{
"cell_type": "markdown",
"id": "e998c4c9-6d26-45fc-86f9-1362761c2b46",
"metadata": {},
"source": [
"## Third Research Question: What region is the most unlucky for fatal collisions? "
]
},
{
"cell_type": "markdown",
"id": "810dc600-da04-437d-a546-4d6c5bec01c6",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "be64d030-0f40-4c32-ac3e-be494e64b3a7",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
"\n",
"✏️ *Write your answer below:*\n",
"\n",
"To answer this question, I will organize the data for each state by the region it is in. Then, compare the average percentage of Drivers Involved In Fatal Collisions Who Were Not Distracted and the average percentage of Drivers Involved In Fatal Collisions Who Had Not Been Involved In Any Previous Accidents."
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "096fe314-2953-4644-86e0-cd717f77eb8f",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(data=region_mean, x=\"region\", y=\"percentage_drivers_fatal_no_previous_accidents\")"
]
},
{
"cell_type": "markdown",
"id": "8f0aafcf-d9d4-4840-be7f-6e84d97efbcf",
"metadata": {},
"source": [
"After looking at the two bar graphs about the percentage of drivers involved in fatal collisions who were not distracted and the percentage of drivers involved in fatal collisions who had not been involved in any previous accidents, it seems that the Midwest region has the highest percentage in Fatal Collisions Who Were Not Distracted and the West region had more drivers in Fatal Collisions Who Had Not Been Involved In Any Previous Accidents both categories."
]
},
{
"cell_type": "markdown",
"id": "d66967db-fe78-4889-824e-f7bce4e02cc8",
"metadata": {},
"source": [
"## Fourth Research Question: Is there a connection between the average Percentage Of Drivers Involved In Fatal Collisions Who Were Speeding and the Number of drivers involved in fatal collisions per billion miles?"
]
},
{
"cell_type": "markdown",
"id": "9661b6d4-3c4f-42a2-8916-b9df38375760",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "cc44ade7-3ae9-44a0-b821-29ecb1b66385",
"metadata": {},
"source": [
"Explain how you will approach this research question below. Consider the following:\n",
"\n",
"Which aspects of the dataset will you use?\n",
"How will you reorganize/store the data?\n",
"What data science tools/functions will you use and why?\n",
"✏️ Write your answer below:\n",
"\n",
"To answer this question, I will organize the data for each state by the region it is in. Then, compare the average Percentage Of Drivers Involved In Fatal Collisions Who Were Speeding to see if there is a connection with the region with the highest car insurance."
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "b921b74c-951a-4f30-a42e-292f011fd61a",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(data=region_speed_insur, x=\"region\", y=\"number_drivers_fatal_billion_miles\")"
]
},
{
"cell_type": "markdown",
"id": "98b34885-aa61-4950-a951-6fb131fc2b99",
"metadata": {},
"source": [
"Comparing these two plots, it seems that there is no connection between the average Percentage Of Drivers Involved In Fatal Collisions Who Were Speeding and the Number of drivers involved in fatal collisions per billion miles. What we did learn is that the West region has the highest speeding-related fatal collisions, and the Southeast has the highest number of fatal collisions per billion miles."
]
},
{
"cell_type": "markdown",
"id": "infectious-symbol",
"metadata": {},
"source": [
"# Discussion"
]
},
{
"cell_type": "markdown",
"id": "furnished-camping",
"metadata": {
"code_folding": []
},
"source": [
"## Considerations"
]
},
{
"cell_type": "markdown",
"id": "bearing-stadium",
"metadata": {},
"source": [
"*It's important to recognize the limitations of our research.\n",
"Consider the following:*\n",
"\n",
"- *Do the results give an accurate depiction of your research question? Why or why not?*\n",
"- *What were the limitations of your dataset?*\n",
"- *Are there any known biases in the data?*\n",
"\n",
"✏️ *Write your answer below:*\n",
"\n",
"I believe that the results do give an accurate depiction of my research question because it takes 6 different causes of fatal collisions and averages them between the 5 regions of the USA. The limitations of the dataset are that it isn't up to date. The data was collected between 2009 and 2012, and some of the collisions are from different years in that time frame. Some biases that could be in this data are how they determined if someone was Alcohol-Impaired, the weather in each region, the maintenance of the roads, and the population."
]
},
{
"cell_type": "markdown",
"id": "beneficial-invasion",
"metadata": {},
"source": [
"## Summary"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "dc9fd133-418b-4f32-b1f6-0efd3578051b",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
number_drivers_fatal_billion_miles
\n",
"
percentage_drivers_fatal_speeding
\n",
"
percentage_drivers_fatal_alcohol_impaired
\n",
"
percentage_drivers_fatal_not_distracted
\n",
"
percentage_drivers_fatal_no_previous_accidents
\n",
"
car_insurance_premiums
\n",
"
\n",
"
\n",
"
region
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
Midwest
\n",
"
15.558333
\n",
"
27.166667
\n",
"
31.666667
\n",
"
88.833333
\n",
"
86.666667
\n",
"
756.630833
\n",
"
\n",
"
\n",
"
Northeast
\n",
"
12.225000
\n",
"
34.166667
\n",
"
31.333333
\n",
"
88.666667
\n",
"
87.250000
\n",
"
1021.320000
\n",
"
\n",
"
\n",
"
Southeast
\n",
"
19.200000
\n",
"
27.687500
\n",
"
29.687500
\n",
"
83.000000
\n",
"
89.312500
\n",
"
905.472500
\n",
"
\n",
"
\n",
"
West
\n",
"
14.972727
\n",
"
39.909091
\n",
"
30.363636
\n",
"
84.000000
\n",
"
91.727273
\n",
"
855.624545
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" number_drivers_fatal_billion_miles \\\n",
"region \n",
"Midwest 15.558333 \n",
"Northeast 12.225000 \n",
"Southeast 19.200000 \n",
"West 14.972727 \n",
"\n",
" percentage_drivers_fatal_speeding \\\n",
"region \n",
"Midwest 27.166667 \n",
"Northeast 34.166667 \n",
"Southeast 27.687500 \n",
"West 39.909091 \n",
"\n",
" percentage_drivers_fatal_alcohol_impaired \\\n",
"region \n",
"Midwest 31.666667 \n",
"Northeast 31.333333 \n",
"Southeast 29.687500 \n",
"West 30.363636 \n",
"\n",
" percentage_drivers_fatal_not_distracted \\\n",
"region \n",
"Midwest 88.833333 \n",
"Northeast 88.666667 \n",
"Southeast 83.000000 \n",
"West 84.000000 \n",
"\n",
" percentage_drivers_fatal_no_previous_accidents \\\n",
"region \n",
"Midwest 86.666667 \n",
"Northeast 87.250000 \n",
"Southeast 89.312500 \n",
"West 91.727273 \n",
"\n",
" car_insurance_premiums \n",
"region \n",
"Midwest 756.630833 \n",
"Northeast 1021.320000 \n",
"Southeast 905.472500 \n",
"West 855.624545 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"region = df.groupby(\"region\")\n",
"region_collision = region[[\"number_drivers_fatal_billion_miles\", \"percentage_drivers_fatal_speeding\", \"percentage_drivers_fatal_alcohol_impaired\", \"percentage_drivers_fatal_not_distracted\", \"percentage_drivers_fatal_no_previous_accidents\", \"car_insurance_premiums\"]].mean().sort_values(\"region\")\n",
"region_collision"
]
},
{
"cell_type": "markdown",
"id": "about-raise",
"metadata": {},
"source": [
"*Summarize what you discovered through the research. Consider the following:*\n",
"\n",
"- *What did you learn about your media consumption/digital habits?*\n",
"- *Did the results make sense?*\n",
"- *What was most surprising?*\n",
"- *How will this project impact you going forward?*\n",
"\n",
"✏️ *Write your answer below:*\n",
"\n",
"Through my research on the deadliest regions to drive in across America, I discovered how much my media consumption shapes what I believe about road safety. I realized that I tend to rely on quick social media clips or headlines that focus on shocking accidents instead of looking at real data or credible reports. Once I analyzed official statistics and news articles, I noticed how different the reality was from what I often see online.\n",
"\n",
"It was surprising to find that the West and Midwest regions both were the highest for 2 out of the six fatal collision categories. Especially since the Midwest is a less populated area than the other regions. \n",
"\n",
"This project made me more aware of how easily digital content can oversimplify serious issues. Going forward, I’ll be more intentional about checking sources, looking at data before forming opinions, and being more cautious when driving or traveling in high-risk regions. It reminded me that media can influence not just what we think, but how safely we act in real life."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "16df71b2-5dc7-4602-9c08-3236dcd4c06f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"jupytext": {
"cell_metadata_json": true,
"text_representation": {
"extension": ".Rmd",
"format_name": "rmarkdown",
"format_version": "1.2",
"jupytext_version": "1.9.1"
}
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.7"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}