{
"cells": [
{
"cell_type": "markdown",
"id": "worldwide-blood",
"metadata": {},
"source": [
"# A Data Science Investigation About Fatal Car Crashes in America "
]
},
{
"cell_type": "markdown",
"id": "understanding-numbers",
"metadata": {},
"source": [
"*✏️ Write 2-3 sentences describing your research.*\n",
"\n",
"It's a collection of data on the reasons fatal car crashes occur in every state of America, and it will be used to determine which region of America is the deadliest. "
]
},
{
"cell_type": "markdown",
"id": "greater-circular",
"metadata": {},
"source": [
"## Overarching Question: What is the deadliest region in America to drive on?"
]
},
{
"cell_type": "markdown",
"id": "appreciated-testimony",
"metadata": {},
"source": [
"*✏️ Write 2-3 sentences explaining why this question.*\n",
"\n",
"I am interested in this because I live on the Northeast Coast and we have a lot of car \n",
"accidents. People drive very fast here. The roads are not always paved properly and maintained. I want to know if it's just bad luck when people get into accidents or if it's their own fault. "
]
},
{
"cell_type": "markdown",
"id": "permanent-pollution",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "technical-evans",
"metadata": {},
"outputs": [],
"source": [
"#Include any import statements you will need\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "overhead-sigma",
"metadata": {},
"outputs": [],
"source": [
"### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n",
"\n",
"file_name = \"B_D - bad-drivers.csv\"\n",
"dataset_path = \"data/\" + file_name\n",
"\n",
"df = pd.read_csv(dataset_path)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "heated-blade",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
State
\n",
"
number_drivers_fatal_billion_miles
\n",
"
percentage_drivers_fatal_speeding
\n",
"
percentage_drivers_fatal_alcohol_impaired
\n",
"
percentage_drivers_fatal_not_distracted
\n",
"
percentage_drivers_fatal_no_previous_accidents
\n",
"
car_insurance_premiums
\n",
"
region
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
Alabama
\n",
"
18.8
\n",
"
39
\n",
"
30
\n",
"
96
\n",
"
80
\n",
"
784.55
\n",
"
Southeast
\n",
"
\n",
"
\n",
"
1
\n",
"
Alaska
\n",
"
18.1
\n",
"
41
\n",
"
25
\n",
"
90
\n",
"
94
\n",
"
1053.48
\n",
"
West
\n",
"
\n",
"
\n",
"
2
\n",
"
Arizona
\n",
"
18.6
\n",
"
35
\n",
"
28
\n",
"
84
\n",
"
96
\n",
"
899.47
\n",
"
Southeast
\n",
"
\n",
"
\n",
"
3
\n",
"
Arkansas
\n",
"
22.4
\n",
"
18
\n",
"
26
\n",
"
94
\n",
"
95
\n",
"
827.34
\n",
"
Southeast
\n",
"
\n",
"
\n",
"
4
\n",
"
California
\n",
"
12.0
\n",
"
35
\n",
"
28
\n",
"
91
\n",
"
89
\n",
"
878.41
\n",
"
West
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" State number_drivers_fatal_billion_miles \\\n",
"0 Alabama 18.8 \n",
"1 Alaska 18.1 \n",
"2 Arizona 18.6 \n",
"3 Arkansas 22.4 \n",
"4 California 12.0 \n",
"\n",
" percentage_drivers_fatal_speeding \\\n",
"0 39 \n",
"1 41 \n",
"2 35 \n",
"3 18 \n",
"4 35 \n",
"\n",
" percentage_drivers_fatal_alcohol_impaired \\\n",
"0 30 \n",
"1 25 \n",
"2 28 \n",
"3 26 \n",
"4 28 \n",
"\n",
" percentage_drivers_fatal_not_distracted \\\n",
"0 96 \n",
"1 90 \n",
"2 84 \n",
"3 94 \n",
"4 91 \n",
"\n",
" percentage_drivers_fatal_no_previous_accidents car_insurance_premiums \\\n",
"0 80 784.55 \n",
"1 94 1053.48 \n",
"2 96 899.47 \n",
"3 95 827.34 \n",
"4 89 878.41 \n",
"\n",
" region \n",
"0 Southeast \n",
"1 West \n",
"2 Southeast \n",
"3 Southeast \n",
"4 West "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"id": "continental-franklin",
"metadata": {},
"source": [
"**Data Overview**\n",
"\n",
"*✏️ Write 2-3 sentences describing this dataset. Be sure to include where the data comes from and what it contains.*\n",
"\n",
"### When is this data set from?\n",
"\n",
"I got the data set from FiveThirtyEight. It was used for an article called\n",
"\"Dear Mona, Which state has the worst drivers?\" in October 2014. The person who wrote the article is Mona Chalabi, they are a data editor at the Guardian US, \n",
"a columnist at New York Magazine, and a lead news writer for FiveThirtyEight.\n",
"\n",
"The date is about fatal collisions in each state. There are 8 rows:\n",
"\n",
"1. State\n",
"2. Number of drivers involved in fatal collisions per billion miles\n",
"3. Percentage Of Drivers Involved In Fatal Collisions Who Were Speeding\n",
"4. Percentage Of Drivers Involved In Fatal Collisions Who Were Alcohol-Impaired\n",
"5. Percentage Of Drivers Involved In Fatal Collisions Who Were Not Distracted\n",
"6. Percentage Of Drivers Involved In Fatal Collisions Who Had Not Been Involved In Any Previous Accidents\n",
"7. Car Insurance Premiums ($)\n",
"8. Region\n",
"\n",
"### How did this data set get clean?\n",
"\n",
"I did not need to do much cleaning of the data myself, but I did add a column called \"Region\" to separate the state into 5 different regions: Northwest, Midwest, Southeast, West, and Northeast. I also excluded data on Losses incurred by insurance companies for collisions per insured driver because insurance companies are well known for finding ways to get out of paying customers for collisions, thus it is not an accurate representation of fatal car crashes. \n",
"\n",
"## What specific research questions will you investigate?\n",
"\n",
"1. What region has the highest drinking and driving cause of fatal collisions?\n",
"\n",
"2. What region has the highest car insurance premiums?\n",
"\n",
"3. What region is the most unlucky state for fatal collisions?\n",
"\n",
"4. Is there a connection between the speed and the roads that are causing fatal collisions, that would make the Car Insurance Premiums more expensive?\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "f7bba5f3-5911-4a76-ad43-f6ce78cd4fb3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['State', 'number_drivers_fatal_billion_miles',\n",
" 'percentage_drivers_fatal_speeding',\n",
" 'percentage_drivers_fatal_alcohol_impaired',\n",
" 'percentage_drivers_fatal_not_distracted',\n",
" 'percentage_drivers_fatal_no_previous_accidents',\n",
" 'car_insurance_premiums', 'region'],\n",
" dtype='object')"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "markdown",
"id": "infinite-instrument",
"metadata": {},
"source": [
"# Methods and Results"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "basic-canadian",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import seaborn as sns\n",
"sns.set_theme"
]
},
{
"cell_type": "markdown",
"id": "recognized-positive",
"metadata": {},
"source": [
"## First Research Question: What region has the highest drinking and driving cause of fatal collisions?"
]
},
{
"cell_type": "markdown",
"id": "graduate-palmer",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "endless-variation",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
" \n",
"✏️ *Write your answer below:*\n",
"\n",
"To answer this question, I will organize the data for each state by the region it is in. Then, calculate the average percentage of drivers involved in fatal collisions who were alcohol-impaired. Finally, I will make a bar plot to compare the average number of fatal collisions that involved drinking and driving for each of the regions\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "portuguese-japan",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "negative-highlight",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"region\n",
"Southeast 29.687500\n",
"West 30.363636\n",
"Northwest 31.000000\n",
"Northeast 31.444444\n",
"Midwest 31.666667\n",
"Name: percentage_drivers_fatal_alcohol_impaired, dtype: float64"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#######################################################################\n",
"### 💻 YOUR WORK GOES HERE TO ANSWER THE FIRST RESEARCH QUESTION 💻 \n",
"### \n",
"### Your data analysis may include a statistic and/or a data visualization\n",
"#######################################################################\n",
"\n",
"region = df.groupby(\"region\").percentage_drivers_fatal_alcohol_impaired.mean().sort_values()\n",
"region\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "victorian-burning",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPm9JREFUeJzt3Qd4FFX7+P2bGggl9B5qkF6U3hEEBKXJTwEVUAGVhw7SFJQmICpNER9UQEQEacqDClJCld57DRCaERACoZP9X/d5r9k3SwKEzWazk3w/1zWwO7M7e7KzM3vvOfc5J5nD4XAIAACATSVP6AIAAADEBcEMAACwNYIZAABgawQzAADA1ghmAACArRHMAAAAWyOYAQAAtpZSErnIyEg5d+6cZMiQQZIlS5bQxQEAALGgw+Bdu3ZN8uTJI8mTJ0/awYwGMoGBgQldDAAA4IbQ0FDJly9f0g5mtEbGejMyZsyY0MUBAACxEB4ebiojrO/xJB3MWE1LGsgQzAAAYC+xSREhARgAANgawQwAALA1ghkAAGBrBDMAAMDWCGYAAICtEcwAAABbI5gBAAC2RjADAABsjWAGAADYGsEMAACwNYIZAABgawQzAADA1ghmAACArSX6WbMBT3I4HBIREeG8ny5duljN6AoAiD8EM8AT0ECmefPmzvu//vqrpE+fPkHLBABJHc1MAADA1ghmAACArRHMAAAAWyOYAQAAtkYwAwAAbI1gBgAA2BrBDAAAsDWCGQAAYGsEMwAAwNYIZgAAgK0xnQEAIE6YswwJjWAGABAnzFmGhEYzEwAAsDWCGQAAYGsEMwAAwNYIZgAAgK0RzAAAAFsjmAEAALZGMAMAAGyNYAYAANgag+YBsCVGnQVgIZgBYEuMOgvgiYOZ8PDw2D5UMmbMGOvHAgAAeCWYyZQpU6yrcO/fvx+XMgEAAHg+ATg4OFhWrVpllmnTpkmOHDmkf//+smjRIrPo7Zw5c5ptsTVlyhQpW7asqcnRpVq1avLHH384t9etW9cEUFGXd999N/Z/HQAASPRiXTNTp04d5+3hw4fLuHHjpG3bts51zZo1kzJlysjUqVOlQ4cOsdpnvnz5ZMyYMVK0aFGTzPf999+bNvCdO3dKqVKlzGM6d+5sXs/i7+8f2yIDAIAkwK0E4I0bN8rXX38dbX3FihWlU6dOsd5P06ZNXe5//PHHprZm06ZNzmBGg5dcuXLFep+3b982izu5PgAAIImMMxMYGCjffPNNtPXffvut2eYOzbOZM2eO6aGgzU2WH3/8UbJlyyalS5eWQYMGyY0bNx65n9GjR0tAQIBzcbc8AAAgEdfMjB8/Xlq1amXyW6pUqWLWbdmyRY4ePSoLFix4on3t3bvXBC+3bt0y3So1/6ZkyZJm26uvvioFChSQPHnyyJ49e2TAgAFy+PBhWbhw4UP3pwFPnz59XGpmCGgAAEi83ApmmjRpIkeOHDFNQocOHXI2GWly7pMGDsWKFZNdu3bJ1atXZf78+SbfZs2aNSagefvtt52P03yc3LlzS/369eX48eNSpEiRGPfn5+dnFgAAkhpHEh1M0u1B8zRoGTVqVJwLkDp1agkKCjK3K1SoIFu3bpWJEyfKf//732iPtWqBjh079tBgBgCApCoiiQ4m6fbcTOvWrZPXX39dqlevLmfPnjXrfvjhB1m/fn2cChQZGemSwBuV1uAoraEBAABwO5jRvJhGjRpJ2rRpZceOHc7gQ5uKnqS2RvNb1q5dKydPnjS5M3p/9erV8tprr5mmpBEjRsj27dvN9sWLF0v79u2ldu3aZmyapFZteP36deei9wEAQByamUaOHGm6ZmtwoT2QLDVq1DDbYissLMzs4/z586bnkQYpy5YtkwYNGkhoaKisWLFCJkyYYKrNtFlLk44HDx4sSU1SrTYEACDeghntUaQ1JA/SgOTKlSux3s9333330G0avGgiMAAAgMebmXQQO03CfZDmyxQuXNidXQIAAHgvmNEpBnr27CmbN282Xb7OnTtnBrd77733pEuXLu6VBAAAwFvNTAMHDjS9jnTMFx2RV5ucdGwXDWa6d+/uzi4BAAC8E8zotAMbNmyQrl27Sr9+/Uxzk/aw0UHuSEoFAAA+H8ykSJFCGjZsKAcPHpRMmTI5px4AAACwTc6MTvp44sQJz5cGAADAG8GMjiWj+TFLliwxY8ToZI5RFwAAAJ+faFI1a9bMZQIrHZlW72teDQAAgM8GM8HBwZ4vCQAAgLeCmTp16rjzNAAAgIQLZvbs2WMSf5MnT25uP0pSmwgSAADYIJgpX768XLhwQXLkyGFua25MTLM3kzMDAAB8MpgJCQmR7NmzO28DAADYKpgpUKBAjLcBAABslwBsOXDggJw+fVru3Lnjsl67bAMAAPhsMKOj/7Zs2VL27t3rkjtjjTlDzgwAAPDpEYB79uwphQoVkrCwMPH395f9+/fL2rVrpWLFirJ69WrPlxIAAMCTNTMbN26UVatWSbZs2UxXbV1q1qwpo0ePlh49esjOnTvd2S0AAIB3ama0GSlDhgzmtgY0586dcyYGHz582J1dAgAAeK9mRgfP2717t2lqqlKliowdO1ZSp04tU6dOlcKFC7tXEgAAAG8FM4MHD5aIiAhze/jw4fLiiy9KrVq1JGvWrDJ37lx3dgkAAOC9YKZRo0bO20FBQXLo0CG5fPmyZM6c2WUWbQAAAJ8eZ0aFhoaa/wMDAz1RHgAAgPgPZu7duyfDhg2TSZMmyfXr18269OnTS/fu3eWjjz6SVKlSubNbAMBjVOg3U3xNsnt3JCDK/bpD5ogjZWrxNds/bZ/QRYAvBTMatCxcuNAk/larVs3ZXXvo0KFy6dIlmTJliqfLCQAA4LlgZvbs2TJnzhxp3Lixc13ZsmVNU1Pbtm0JZgAAiR61ZL5TS+bWODN+fn5SsGDBaOu1q7Z20QYAAPAWt4KZbt26yYgRI+T27dvOdXr7448/NtsAAAB8uplJpytYuXKl5MuXT8qVK2fW6SB6Ont2/fr15aWXXnI+VnNrAAAAfCqYyZQpk7Rq1cplHV2zgcTJF/MCknJuAAAPBTPTp09352kAAAC+kTMDAABg65oZHUvmww8/lODgYAkLC5PIyEiX7Tq1AQAAgM8GM+3atZNjx45Jx44dJWfOnMzHBAAA7BXMrFu3TtavX+/syQQAAGCrYKZ48eJy8+bNOL+4jhSsy8mTJ839UqVKmeYra2ThW7duSd++fc1owzqOjc7W/dVXX5naICRu9KCJG3rQAEhK3EoA1oDigw8+kDVr1pj8mfDwcJcltnScmjFjxsj27dtl27ZtUq9ePWnevLns37/fbO/du7f873//k3nz5pnXOnfunMsYNgAAAG6PM6NBiwYfUTkcDpM/c//+/Vjtp2nTpi73dQRhranZtGmTCXS+++47Mw+U9TraJbxEiRJme9WqVd0pOgAASGTcCmZee+01SZUqlQk0PJUArAGQ1sBERESYmbi1tubu3bvy3HPPuTRv5c+f38zQ/bBgRpujok6z8CQ1RQAAIIkEM/v27TNTGhQrVizOBdi7d68JXjQ/Jn369LJo0SIpWbKk7Nq1y0xaqbVAUWnwdOHChYfub/To0TJs2LA4lwsAACTinJmKFStKaGioRwqgAZEGLps3b5YuXbpIhw4d5MCBA27vb9CgQXL16lXn4qlyAgCARFQz0717d+nZs6f069dPypQpY5qcoipbtmys96W1L0FBQeZ2hQoVZOvWrTJx4kRp3bq1mbjyypUrLrUzf//9t+TKleuh+/Pz8zMLAABIGtwKZjTQUG+99ZZznebNPGkCcEx0NGHNedHARoMknZ3bmtTy8OHDcvr0adMsFR/oDuw+ugIDAGwVzISEhHjkxbVJSMeU0aTea9eumYTi1atXy7JlyyQgIMCMMNynTx/JkiWLZMyY0dQIaSBDTyYAABCnYKZAgQLiCTqvU/v27eX8+fMmeNHmKQ1kGjRoYLaPHz9ekidPbmpmog6aBwAA8MTBzOLFi00tijb96O1HadasWaz2qePIPEqaNGlk8uTJZgEAAIhTMNOiRQvTJTpHjhzm9sPENWcGAAAgXoIZTcyN6TYAAIDtxpmJLe22zTgvAADAtsGMzoatUxIAAADYMpgBAACIbwQzAADA1ghmAACArRHMAAAAWyOYAQAAthavwcx///tfyZkzZ3y+BAAASOJiPWjepEmTYr3THj16mP9fffVV90oFAADg6WBGJ32MDZ3OwApmAACA9zhSpJKrZdu63E8KYh3MhISExG9JAABA3CRLJo6UqSWpiXPOjMPhMAsAAICtgpmZM2eauZfSpk1rlrJly8oPP/zg2dIBAAB4qpkpqnHjxsmQIUOkW7duUqNGDbNu/fr18u6778rFixeld+/e7uwWAADAO8HMF198IVOmTJH27ds71zVr1kxKlSolQ4cOJZgBAAC+3cx0/vx5qV69erT1uk63AQAA+HQwExQUJD///HO09XPnzpWiRYt6olwAAADx18w0bNgwad26taxdu9aZM7NhwwZZuXJljEEOAACAT9XMtGrVSjZv3izZsmWTX375xSx6e8uWLdKyZUvPlxIAAMCTNTOqQoUKMmvWLHefDgAAkLDBTGRkpBw7dkzCwsLM7ahq167tibIBAADETzCzadMmM4nkqVOnoo3+q3Mz3b9/353dAgAAeCeY0cHxKlasKL/99pvkzp3bBDAAAAC2CWaOHj0q8+fPN120AQBJW1KdqRk2781UpUoVky8DAIA1U7O16H3AJ2tm9uzZ47zdvXt36du3r1y4cMFMNpkqlWsUrpNOAgAA+FQwU758eZMbEzXh96233nLetraRAAzAG2jaAPDEwUxISEhsHwoAXmvaAIBYBzMFChSI35IAAAB4c9C848ePy4QJE+TgwYPmfsmSJaVnz55SpEgRd3cJAADgnd5My5YtM8GLzsWkyb666FxNpUqVkuXLl7uzSwAAAO/VzAwcOFB69+4tY8aMibZ+wIAB0qBBA/dKAwAA4I2aGW1a6tixY7T12rvpwIED7uwSAADAe8FM9uzZZdeuXdHW67ocOXLEej+jR4+WSpUqSYYMGczzWrRoIYcPH3Z5TN26dU1376iLTqcAAADgdjNT586d5e2335YTJ05I9erVzboNGzbIJ598In369In1ftasWSNdu3Y1Ac29e/fk/fffl4YNG5ranXTp0rm83vDhw533/f39OXoAAMD9YGbIkCGmNuXzzz+XQYMGmXV58uSRoUOHSo8ePWK9n6VLl7rcnzFjhqmh2b59u9SuXdsleMmVK5c7RQUAAImcW81M2tSjCcBnzpyRq1evmkVva9fsuMygrftRWbJkcVn/448/SrZs2aR06dImeLpx48ZD93H79m0JDw93WQAAQOLlVs2MjgaszUJFixY1NTRRZ9PWeZoKFiz4xPuMjIyUXr16SY0aNUzQYnn11VfNgH1a86PzQ2lvKc2rWbhw4UPzcIYNG+bOnwUAAJJKMPPGG2+YnksazESlY818++23snr16ifep+bO7Nu3T9avX++yXnNzLDqpZe7cuaV+/fpm0L6YBujTmpuoeTtaMxMYGCh2xhw0AAB4uJlp586dpgblQVWrVo2xl9PjdOvWTZYsWSLBwcGSL1++Rz62SpUq5v9jx47FuN3Pz08yZszosiSWOWisRe8DAIA41MxoXsy1a9dizHl5khmzdZbt7t27y6JFi0xtTqFChR77HCtY0hoaAAAAt2pmtKeR5qZEDVz0tq6rWbPmEzUtzZo1S2bPnm1yby5cuGCWmzdvmu3alDRixAjTu+nkyZOyePFiad++vXl9nUIBAADArZoZHU9GA4pixYpJrVq1zLp169aZ/JRVq1bFej9TpkxxDowX1fTp001eTurUqWXFihVmQsuIiAiT+9KqVSsZPHiwO8UGAACJkFvBjE4yqT2LvvzyS9m9e7ekTZvW1Jho7suD3aof18z0KBq86MB6AAAAHg1mlHaVHjVqlLtPBwAA8G4wozUxsUU+CwAA8Llgpnz58qYX0+OahvQxT9KjCQAAwCvBjI76CwAAYNtgRqcUAAAASDQJwOrAgQNy+vRpuXPnjsv6Zs2axbVcAAAA8RfMnDhxQlq2bCl79+51yaOxZswmZwYAAPj0CMA9e/Y0Uw+EhYWJv7+/7N+/X9auXSsVK1Z0a5JJAAAAr9bMbNy40Yz0my1bNkmePLlZdBoDnc6gR48eZiJKAAAAn62Z0WYknUtJaUBz7tw5Z5Lw4cOHPVtCAAAAT9fMlC5d2kxjoE1NVapUkbFjx5p5lKZOnSqFCxd2Z5cAAADeC2Z0oked+FENHz5cXnzxRTPhZNasWWXu3LnulQQAAMBbwUyjRo2ct4OCguTQoUNy+fJlyZw5s7NHkzpz5oyZw0lzagAAAOKDx6IMnS07aiBjza598uRJT70EAABANPFaZfK4eZwAAADiivYfAACQdKczAJIaR4pUcrVsW5f7AICERTADPAmdviNl6oQuBQDAW81MDyYEAwAAeBoJwAAAwNbitZnpwIEDZpwZAACABA9mXnrppVjvdOHCheb/wMBA90oFAADg6WAmICAgtg8FAADwvWBm+vTp8VsSAAAANzBoHgAASJoJwPPnz5eff/5ZTp8+LXfu3HHZtmPHDk+UDQAAIH5qZiZNmiRvvvmm5MyZU3bu3CmVK1eWrFmzyokTJ6Rx48bu7BIAAMB7wcxXX30lU6dOlS+++EJSp04t/fv3l+XLl0uPHj3k6tWr7pUEAADAW8GMNi1Vr17d3E6bNq1cu3bN3G7Xrp389NNP7uwSAADAe8FMrly55PLly+Z2/vz5ZdOmTeZ2SEgIo/4CAADfD2bq1asnixcvNrc1d6Z3797SoEEDad26tbRs2dLTZQQAAPBsbybNl4mMjDS3u3btapJ///rrL2nWrJm888477uwSAADAe8HMmTNnXKYqaNOmjVm0iSk0NNQ0PQEAAPhsM1OhQoXkn3/+ibZe82h0GwAAgE8HM1oDkyxZsmjrr1+/LmnSpPFEuQAAADzfzNSnTx/zvwYyQ4YMEX9/f+e2+/fvy+bNm6V8+fKeLyUAAIAnamZ0tF9dtGZm7969zvu6HDp0SMqVKyczZsyI9f5Gjx4tlSpVkgwZMkiOHDmkRYsWcvjwYZfH3Lp1y5lknD59emnVqpX8/fffT1JsAACQiD1RzUxwcLCzO/bEiRMlY8aMcXrxNWvWmEBFA5p79+7J+++/Lw0bNpQDBw5IunTpzGO02/dvv/0m8+bNk4CAAOnWrZu89NJLsmHDhji9NgAASMK9maZPn+6RF1+6dKnLfa3V0Rqa7du3S+3atc3UCN99953Mnj3bjG1jvXaJEiXMQH1Vq1aNts/bt2+bxRIeHu6RsgIAgEQ2a/a2bdseOmv2woUL3dqnNa9TlixZzP8a1Ny9e1eee+4552OKFy9uun5v3LgxxmBGm66GDRvm1usDAIAk0ptpzpw5Zm6mgwcPyqJFi0zAsX//flm1apVpCnKHDsLXq1cvqVGjhpQuXdqsu3DhgpnIMlOmTC6P1dm6dVtMBg0aZIIia9FxbwAAQOLlVs3MqFGjZPz48SbfRZN3NX9Gx5fR0X9z587tVkF0X/v27ZP169dLXPj5+ZkFAAAkDW7VzBw/flxeeOEFc1trTiIiIkx3bU3W1akOnpQm9S5ZssQkGOfLl89lQkttwrpy5YrL47U3k24DAABwK5jJnDmzXLt2zdzOmzevqVFRGnTcuHEj1vvRLt4ayGhTlTZRPTh6cIUKFSRVqlSycuVK5zrtuq15OtWqVXOn6AAAIJFxq5lJexotX75cypQpIy+//LL07NnTBCO6rn79+k/UtKQ9lX799VfTXGXlwWjeTdq0ac3/HTt2NIP1aVKwdgXv3r27CWRiSv4FAABJj1vBzJdffmkGs1MffPCBqT3RWbN1QLvBgwfHej9Tpkwx/9etW9dlvXa/fuONN8xtzc1Jnjy52bd2uW7UqJF89dVX7hQbAAAk5WBGa0dGjBhhBrPTZiXtzaQ00Bg4cKBbL67NTI+jcz1NnjzZLAAAAG7nzHzxxRdmIkn17LPPmhmyAQAAbFMzU7BgQZk0aZKZbkBrVHTQOk0EflhODQAAgE8FM59++qm8++67ZoRd7YbdsmXLGB+n23QGbQAAAJ8KZnRGa120qUl7FWkXaZ1HCQAAwFbjzKRPn94MbqdjwmjX6ZgWy5gxY6INeAcAAJDgg+bVqVNHUqZMGatpD0gUBgAAPhfMeLLrNQAAgM8GMwAAAPGNYAYAANgawQwAALA1ghkAAGBr8RrM1KpVy8x+DQAA4FPBzI4dO2Tv3r3O+7/++qsZUO/999+XO3fuONf//vvvkjt3bs+UFAAAwFPBzDvvvCNHjhwxt0+cOCFt2rQRf39/mTdvnvTv39+dXQIAAHgvmNFApnz58ua2BjA6seTs2bNlxowZsmDBAvdKAgAA4K1gRgfDi4yMNLdXrFghTZo0MbcDAwPl4sWL7uwSAADAe8FMxYoVZeTIkfLDDz/ImjVr5IUXXjDrQ0JCJGfOnO6VBAAAwFvBzIQJE0wScLdu3eSDDz6QoKAgs37+/PlSvXp1d3YJAADglsfPFvmA+/fvm5mw165dK5kzZ3bZ9umnn0qKFCncKwkAAIA3amY0WGnYsKEJaB6UJk0aSZUqlTvlAAAA8F4zU+nSpU2XbAAAAFsGM5r8+95778mSJUvk/PnzEh4e7rIAAAD4bM6MsrpiN2vWTJIlS+bSZVvva14NAACAzwYzwcHBni8JAACAt4KZOnXquPM0AAAA35k1e926dfL666+bcWXOnj1r1ukgeuvXr/dk+QAAADwfzOj8S40aNZK0adOawfNu375t1l+9elVGjRrlzi4BAAC825vp66+/lm+++cZlXJkaNWqY4AYAAMCng5nDhw+bmbIfFBAQEONgegAAAD4VzOTKlUuOHTsWbb3myxQuXNgT5QIAAIi/YKZz587Ss2dP2bx5sxlX5ty5c/Ljjz+agfS6dOnizi4BAAC81zV74MCBEhkZKfXr15cbN26YJic/Pz8TzHTv3t29kgAAAHgrmNHamA8++ED69etnmpuuX78uJUuWlPTp07uzOwAAAO82M82aNcvUyKROndoEMZUrVyaQAQAA9glmevfuLTly5JBXX31Vfv/9d+ZiAgAA9gpmdKbsOXPmmOamV155RXLnzi1du3aVv/7664n2s3btWmnatKnkyZPH7OuXX35x2f7GG2+Y9VGX559/3p0iAwCARMqtYCZlypTy4osvmh5MYWFhMn78eDl58qQ8++yzUqRIkVjvJyIiQsqVKyeTJ09+6GM0eNHgyVp++uknd4oMAAASKbcSgKPy9/c3Uxv8+++/curUKTl48GCsn9u4cWOzPIr2ktJxbQAAADw60aQmAGvNTJMmTSRv3rwyYcIEadmypezfv188afXq1SY/p1ixYmYMm0uXLj3y8TpPVHh4uMsCAAASL7dqZtq0aSNLliwxtTKaMzNkyBCpVq2axwunTUwvvfSSFCpUSI4fPy7vv/++qcnZuHGjpEiRIsbnjB49WoYNG+bxsgAAgEQUzGgg8fPPP5vmpYcFFZ6gQZOlTJkyUrZsWZOTo7U1OmBfTAYNGiR9+vRx3teamcDAwHgrIwAAsGEwo81LCUHnfcqWLZsZqO9hwYzm2OgCAACShlgHM5MmTZK3335b0qRJY24/So8ePSQ+nDlzxuTMaFdwAACAJwpmtPv1a6+9ZoKZcePGmTFfYqLrYxvM6DQIUWffDgkJkV27dkmWLFnMorkvrVq1Mr2ZNGemf//+EhQUZJq3AAAAniiY0UDDomPKeMK2bdvM2DQWK9elQ4cOMmXKFNmzZ498//33cuXKFTOwXsOGDWXEiBE0IwEAAPdzZu7evSvFixc3vZlKlCghcVG3bl1xOBwP3b5s2bI47R8AACR+TzzOTKpUqeTWrVvxUxoAAABvDJqn8zB98skncu/ePXeeDgAAkLBds7du3SorV66UP//804z/ki5dOpftCxcu9FT5AAAAPB/MZMqUyfQyAgAAsGUwM336dM+XBAAAwJsTTQIAANiqZubpp59+6EB5D9qxY0dcygQAAOD5YKZFixbO29o1+6uvvpKSJUs6Z8vetGmT7N+/X/7zn//E/tUBAAC8Fcx89NFHztudOnUyUxboaLwPPiY0NDSuZQIAAIjfnJl58+ZJ+/bto61//fXXZcGCBe7sEgAAwHvBTNq0aWXDhg3R1us6nYgSAADAp7tm9+rVS7p06WISfStXrmzWbd68WaZNmyZDhgzxdBkBAAA8G8wMHDhQChcuLBMnTpRZs2aZdTrppI4/88orr7izSwAAAO8FM0qDlscFLj/99JM0a9Ys2nQHAAAAthg075133pG///47Pl8CAAAkcfEazDgcjvjcPQAAANMZAAAAeyOYAQAAtkYwAwAAbI1gBgAA2Fq8BjMFChSQVKlSxedLAACAJM7tYObKlSvy7bffyqBBg+Ty5ctmnY4IfPbsWedj9u3bJ4GBgZ4pKQAAgKcGzduzZ48899xzEhAQICdPnpTOnTtLlixZZOHChXL69GmZOXOmO7sFAADwTs1Mnz595I033pCjR4+6TCzZpEkTWbt2rTu7BAAA8F4ws3XrVjO674Py5s0rFy5ccK8kAAAA3gpm/Pz8JDw8PNr6I0eOSPbs2d3ZJQAAgPeCGZ08cvjw4XL37l1zP1myZCZXZsCAAdKqVSv3SgIAAOCtYObzzz+X69evS44cOeTmzZtSp04dCQoKkgwZMsjHH3/szi4BAAC815tJezEtX75c1q9fb3o2aWDzzDPPmB5OAAAAPh/MWGrWrGkWAAAAWwUzkyZNinG95s5oV21tcqpdu7akSJEiruUDAADwfDAzfvx4+eeff+TGjRuSOXNms+7ff/8Vf39/SZ8+vYSFhUnhwoUlODiYEYABAIDvJQCPGjVKKlWqZAbNu3Tpklm0W3aVKlVk4sSJpmdTrly5pHfv3p4vMQAAQFxrZgYPHiwLFiyQIkWKONdp09Jnn31mumafOHFCxo4dSzdtAADgmzUz58+fl3v37kVbr+usEYDz5Mkj165di3sJAQAAPB3MPPvss2Y6g507dzrX6e0uXbpIvXr1zP29e/dKoUKFHrkfncepadOmJvDR5OFffvnFZbvD4ZAPP/xQcufOLWnTpjVdv7VpCwAAIE7BzHfffWdmya5QoYKZ2kCXihUrmnW6TWkisA6u9ygRERFSrlw5mTx5cozbtalKe059/fXXsnnzZkmXLp00atRIbt265U6xAQBAIuRWzowm9+qgeYcOHTKJv6pYsWJmiVp78ziNGzc2S0y0VmbChAkmP6d58+Zm3cyZMyVnzpymBqdNmzbuFB0AACQycRo0r3jx4maJDyEhISb/JuqowjrysPaY2rhx40ODmdu3b5vFEtOEmAAAIPFwO5g5c+aMLF682HTDvnPnjsu2cePGxblgViKx1sREpfetbTEZPXq0DBs2LM6vDwAAEnEws3LlSjNztg6Mp01NpUuXlpMnT5qmIZ2jKSENGjRI+vTp41Izw8B9AAAkXsndDRjee+8902NJpy/QMWdCQ0PN7Nkvv/yyRwqmeTnq77//dlmv961tMdFk5IwZM7osAAAg8XIrmDl48KC0b9/e3E6ZMqXcvHnT9F4aPny4fPLJJx4pmHbr1qBFa4Gi1rJor6Zq1ap55DUAAEASbWbSLtJWnoyOAXP8+HEpVaqUuX/x4sVY7+f69ety7Ngxl6TfXbt2mS7e+fPnl169esnIkSOlaNGiJrgZMmSIGZOmRYsW7hQbAAAkQm4FM1WrVpX169dLiRIlpEmTJtK3b1/T5LRw4UKzLba2bdvm0oXbynXp0KGDzJgxQ/r372/Gonn77bflypUrUrNmTVm6dKlp2gIAAHA7mNHeSlqrorTnkN6eO3euqUF5kp5MdevWNUnDD6OjAmvTlS4AAAAeC2a0F1PUJicdoRcAAMA2CcAazFy6dCnaem0KihroAAAA+GQwo2PK3L9/P9p6HXn37NmznigXAACA55uZdMRfy7Jly8z0AhYNbrQbdcGCBZ9klwAAAN4LZqwu0ZqYqz2OokqVKpUJZB43UzYAAECCBTORkZHmfx3zZevWrZItWzaPFgYAAMArvZl0cDsAAABbz5qt+TG6hIWFOWtsLNOmTfNE2QAAAOInmNGB8nQgu4oVK5rpDDSHBgAAwDbBjA6Sp9MNtGvXzvMlAgAAiO9xZnSSyerVq7vzVAAAgIQPZjp16iSzZ8/2bEkAAAC81cx069YtmTp1qqxYsULKli1rxpiJ6kkmmwQAAPB6MLNnzx4pX768ub1v3z6XbSQDAwAAnw9mgoODPV8SAAAAb+XMWI4dO2bmaLp586a573A44rI7AAAA7wQzly5dkvr168tTTz0lTZo0kfPnz5v1HTt2lL59+7qzSwAAAO8FM7179zZJv6dPnxZ/f3/n+tatW8vSpUvdKwkAAIC3cmb+/PNP07yUL18+l/VFixaVU6dOubNLAAAA79XMREREuNTIWC5fvix+fn7ulQQAAMBbwUytWrVk5syZLt2xdbLJsWPHyrPPPuvOLgEAALzXzKRBiyYAb9u2zUxt0L9/f9m/f7+pmdmwYYN7JQEAAPBWzUzp0qXlyJEjUrNmTWnevLlpdnrppZdk586dUqRIEXd2CQAA4L2aGRUQECAffPCBu08HAABIuJqZ6dOny7x586Kt13Xff/+9J8oFAAAQf8HM6NGjJVu2bNHW58iRQ0aNGuXOLgEAALwXzOhgeYUKFYq2vkCBAmYbAACATwczWgOjM2c/aPfu3ZI1a1ZPlAsAACD+gpm2bdtKjx49zOzZ9+/fN8uqVaukZ8+e0qZNG3d2CQAA4L3eTCNGjJCTJ0+asWZSpvz/dqGD5rVv356cGQAA4NvBjMPhkAsXLsiMGTNk5MiRsmvXLkmbNq2UKVPG5MwAAAD4fDATFBRkRvzViSV1AQAAsE3OTPLkyU0Ac+nSpfgpEQAAQHwnAI8ZM0b69esn+/btc+fpAAAACZsArIm+N27ckHLlyknq1KlNzkxUOuEkAACAzwYzEyZM8HxJAAAAvBXMdOjQQbxl6NChMmzYMJd1xYoVk0OHDnmtDAAAIBHOmn38+HEz4aT+P3HiRDMq8B9//CH58+eXUqVKebSQur8VK1Y471tj2wAAALiVALxmzRozrszmzZtl4cKFcv36ded0Bh999JGny2iCl1y5cjmXmCa5tNy+fVvCw8NdFgAAkHi5FcwMHDjQDJi3fPlykwBsqVevnmzatEk87ejRo5InTx4pXLiwvPbaa4+czFJn9A4ICHAugYGBHi8PAACweTCzd+9eadmyZbT12tR08eJF8aQqVaqY0YaXLl0qU6ZMkZCQEKlVq5Zcu3YtxscPGjRIrl696lxCQ0M9Wh4AAOBb3Eo+yZQpk5w/f14KFSrksn7nzp2SN29e8aTGjRs7b5ctW9YENzptws8//ywdO3aM9ng/Pz+zAACApMGtmhmdGXvAgAFmjqZkyZKZSSY3bNgg7733nhmDJj5pIPXUU0/JsWPH4vV1AABAIg5mdGbs4sWLm3wUTf4tWbKkafqpXr26DB48WOKTvp72oMqdO3e8vg4AAEjEzUya9PvNN9/Ihx9+aPJnIiIi5OmnnzYTUHqa1vY0bdrUNC2dO3fO9JZKkSKFtG3b1uOvBQAA7MftAVu+++47GT9+vOlppHTyyV69ekmnTp08WT45c+aMCVx0Ysvs2bNLzZo1TY8pvQ0AAOBWMKM1MuPGjZPu3btLtWrVzLqNGzdK7969Tbfp4cOHe6yAc+bM8di+AABA4uNWMKNdpLWZKWpTT7NmzUxvIw1wPBnMAAAAeDwB+O7du1KxYsVo6ytUqCD37t1zZ5cAAADeC2batWtnamceNHXqVDNCLwAAgC0SgP/880+pWrWqua/zNGm+jI4z06dPH+fjNLcGAADAp4KZffv2yTPPPGNu65gvSid/1EW3WXRAPQAAAJ8LZoKDgz1fEgAAAG/lzAAAAPgKghkAAGBrBDMAAMDWCGYAAICtEcwAAABbI5gBAAC2RjADAABsjWAGAADYGsEMAACwNYIZAABgawQzAADA1ghmAACArRHMAAAAWyOYAQAAtkYwAwAAbI1gBgAA2BrBDAAAsDWCGQAAYGsEMwAAwNYIZgAAgK0RzAAAAFsjmAEAALZGMAMAAGyNYAYAANgawQwAALA1ghkAAGBrBDMAAMDWCGYAAICtEcwAAABbs0UwM3nyZClYsKCkSZNGqlSpIlu2bEnoIgEAAB/h88HM3LlzpU+fPvLRRx/Jjh07pFy5ctKoUSMJCwtL6KIBAAAf4PPBzLhx46Rz587y5ptvSsmSJeXrr78Wf39/mTZtWkIXDQAA+ICUCV2AR7lz545s375dBg0a5FyXPHlyee6552Tjxo0xPuf27dtmsVy9etX8Hx4e/tjXu3/7pkfKnRTF5v19EhwL3zkeHIu44dzwHRwLex0L6zEOh+PxO3T4sLNnz+pf4Pjrr79c1vfr189RuXLlGJ/z0UcfmeewsLCwsLCwiO2X0NDQx8YLPl0z4w6txdEcG0tkZKRcvnxZsmbNKsmSJRO70gg1MDBQQkNDJWPGjAldnCSNY+E7OBa+g2PhO8ITybHQGplr165Jnjx5HvtYnw5msmXLJilSpJC///7bZb3ez5UrV4zP8fPzM0tUmTJlksRCP5h2/nAmJhwL38Gx8B0cC9+RMREci4CAAPsnAKdOnVoqVKggK1eudKlp0fvVqlVL0LIBAADf4NM1M0qbjDp06CAVK1aUypUry4QJEyQiIsL0bgIAAPD5YKZ169byzz//yIcffigXLlyQ8uXLy9KlSyVnzpySlGjTmY6182ATGryPY+E7OBa+g2PhO/yS4LFIplnACV0IAAAAd/l0zgwAAMDjEMwAAABbI5gBAAC2RjDj41avXm0G+7ty5UpCFwVIcG+88Ya0aNEioYuRaNWtW1d69er1yMcULFjQ9CqF73kjCZ8fBDOxpD2qunTpIvnz5zcZ4jpon87evWHDBq9eSBJCYguodLLSDBkyyL1795zrrl+/LqlSpTLHIKa//fjx426/3smTJ80+du3aJYntwql/15gxY1zW//LLL3Eebdsu75kdvtit4/Tuu+9G29a1a1ezTR+jFi5cKCNGjBBfpWXVz5cdJNXz440ECqgIZmKpVatWsnPnTvn+++/lyJEjsnjxYvPFd+nSpYQuGp7Qs88+a4KXbdu2OdetW7fOBKibN2+WW7duOdcHBwebALZIkSIJVFrfliZNGvnkk0/k33//9egEs/AsHdp+zpw5cvPm/z8xon7OZ8+ebT7flixZsphAH57B+eE9BDOxoDUS+mWnH0r9IixQoIAZwE/ngWrWrJl5zOnTp6V58+aSPn16M3z0K6+84jINQ0zRqtbCWDUBun3NmjUyceJEE3HrotG3RWcP14ED/f39pXr16nL48GGXff3666/yzDPPmJOncOHCMmzYMJeah3HjxkmZMmUkXbp05sL2n//8x3yhW06dOiVNmzaVzJkzm8eUKlVKfv/9d1MG/ZuVbov6K86uihUrJrlz5za1Lha9rcevUKFCsmnTJpf1+vfryNOjR48229OmTSvlypWT+fPnOx+nF6vXXntNsmfPbrYXLVpUpk+fbrbpc9TTTz9t3r8Ha3/sTGew1yBQ35uHWbBggfk8aY2m1mR8/vnnLtt1ndYGtG/f3pw7b7/99mPfs88++8wcQ51zTWsX7t69a9Z/+eWXUrp06Wi/grU2LmqZBw8eHKtzR0euGDp0qLNGVueI6dGjh9mmZdLzpnfv3s5z1lfp36fnvda8WPS2/l36Hj+sdjgsLMxcF/Qzrcfkxx9/dNnve++9Jy+++KLzvtZS6fugY4FZgoKC5Ntvv3Xe19slSpQw73fx4sXlq6++cvmi7tatmzm2ul2vtdZnSz8nqmXLluY1rPu+zNfOD3X79m1z3PLmzWuu9VWqVHG5FuoP9LZt25rt+n2j3xs//fSTRKXXPl2vnwt9Df07dTBbPVf0B7+eU9Y5EXXf8cpTM1wnZnfv3nWkT5/e0atXL8etW7eibb9//76jfPnyjpo1azq2bdvm2LRpk6NChQqOOnXqOB/ToUMHR/PmzV2e17NnT+djrly54qhWrZqjc+fOjvPnz5vl3r17juDgYDNraJUqVRyrV6927N+/31GrVi1H9erVnftZu3atI2PGjI4ZM2Y4jh8/7vjzzz8dBQsWdAwdOtT5mPHjxztWrVrlCAkJcaxcudJRrFgxR5cuXZzbX3jhBUeDBg0ce/bsMfv43//+51izZo0pw4IFC0wZDh8+bMqlZbW7V1991dGwYUPn/UqVKjnmzZvnePfddx0ffvihWXfjxg2Hn5+feV9HjhzpKF68uGPp0qXm/Zk+fbrZpsdEde3a1XwGtm7dat7j5cuXOxYvXmy2bdmyxbx/K1asMO/fpUuXHImB9ZleuHChI02aNM6ZbRctWmT+XqXnQ/LkyR3Dhw83nx9939KmTWv+txQoUMB8fj/77DPHsWPHzPKw90xfUx+rx+ngwYPmc+rv7++YOnWq2a6f32TJkjnCwsLMfT1ns2XL5mjdurW5f+fOHfN4PT6xOXf0M6Hbf//9d8epU6ccmzdvdr6Wlilfvnzmb7POWV8+TuPGjXPUr1/fuV5v63VBt+ljlF6P9Lpkady4saNcuXKOjRs3mmOp1x09fvo8pZ/xgIAAc51QLVq0MO/3gAEDzP0zZ86Y43j06FFzf9asWY7cuXOba8qJEyfM/1myZDHvv/r0008dgYGB5ricPHnSsW7dOsfs2bPNNj2mui/97Oh7bR1jX+WL54fq1KmTOY76Huu+9D3Xa9mRI0ecx0zX7dy505wTkyZNcqRIkcJ89tW5c+ccKVOmNJ8nvdbpOTd58mTHtWvXzPLKK684nn/+eec5cfv2bYc3EMzE0vz58x2ZM2c2H0r9IAwaNMixe/dus00vgHqwT58+7Xy8Bh36YdMPXWyCmZguJMoKZvRDa/ntt9/Mups3bzovSqNGjXJ53g8//GAuGg+jF+msWbM675cpU8Yl+ImpDP/++68jsfjmm28c6dKlM4FqeHi4OTn14qgXztq1a5vHaNCnf7deVPWC8Ndff7nso2PHjo62bdua202bNnW8+eabMb6WnvC6H704JCZRP9NVq1Z1vPXWW9Eu1ho0apAcVb9+/RwlS5Z0uVjrl2Bs3jN9TX289eWpXn75ZWewEhkZaT7X+vlWGmCOHj3akStXLnN//fr1jlSpUjkiIiJide58/vnnjqeeesoEQTHRslhf7L5+nPTzrV9a+nnWRa9l//zzz0ODGf1yjXoNU/oFqeusv1mvCfplrEG8vvcamOj7rT++rOAlb968zucXKVLEGZxYRowYYX7Iqe7duzvq1atn9hUTfW39fNmBL54fp06dMt9VZ8+edXmengf6nfYw+mO3b9++5vb27dud18XH/d3eRDPTE+TMnDt3zuTKPP/886bqTKtuZ8yYIQcPHjRVuLpYSpYsaWbr1m2eULZsWedtrT60qoDV7t27Zfjw4aaJy1o6d+4s58+flxs3bpjHrFixQurXr2+qDrVNvF27dqY60dquVecjR46UGjVqmGGw9+zZI4mZVstqtejWrVtNE+JTTz1lmojq1KnjzJvRY6zNDtocp+9TgwYNXN7jmTNnOhODNTlccxJ0uo3+/fvLX3/9JUmJNsFq9fKDn3e9r5+pqPT+0aNH5f79+8512oQaW1olnyJFCpfzwToXtFq7du3a5thp8/CBAwdMk6pWrR86dMg05VaqVMlUn8fm3Hn55ZdNnol+DnT9okWLXJpv7UQ/3y+88IK5ZmkTqN7Oli3bQx+vxy5lypRmsl+LNgvpdc2it7XJVd/vvXv3msmBtRlE8wv1vNH3W88ppeebni8dO3Z0eb/1umOdR9qErUmt2hSs16Q///xTEgNfOT/27t1r9qvXu6jHQI+TdQx0uzZraTOS5lDp9mXLlplUCqXHW79LdLueH998841Hc4LcRTDzBLQNV7/QhgwZYr6s9MTTL/7YSJ48uWl/jypqO+bjaE8bi9U2r3kcSi8a2s6vFwFr0Q+tnhBaZs170XZtDYi0fVbzbyZPnuySTNapUyc5ceKECXL0uXryfPHFF5JYaTt+vnz5TIKvLtYFV3MiNCjV46vr69Wr58wt+u2331zeY/2itPJmGjdu7Myf0KBXT3Ztl04qNIDQ3n2aR+YObbt351ywzgfrXLACVf1y1SBVcwo0z8AKcKJ+ucbm3NHPguanaV6H5gdoYKT7epJz15e89dZbJpjRL1a97QnW+229t/oFqDkx69evd3m/rfNIv/yivt/79u1z5qnpD8SQkBDzZapBpOYe/t///Z/Yna+cH9evXzeBjn4HRD0GGlRpvqb69NNPze0BAwaYa6Bu17Jb3xX6/OXLl8sff/xhfrTr94QGn3rcEpLPTzTpy/RAaoKhnrihoaFmsWpn9ItOfxnqY6xfRXrSRqUfkqgfPP1VEzUajy29AOgFV7+gY6IfXP0wa2KZBlXq559/jvY4Lbt239RFTzq96HTv3t2US7lTNl+mib16EdZfFf369XO58OiJumXLFlPjosdQk/P0l0nUL8IH6THWGd51qVWrltmnJuIl1vfvQdoFVWum9MJm0XPjweEL9L7+Moz66/FBcXnP9BhpEuu8efOciZH6v9ZO6mv37ds31ueO0iBGk2B10WRKrZ3QgEef6+45m1C0Vlm/lPQLTr+gHkX/Tq2F0uuH1mYpfa8eHKJB3+9p06aZWhzdv/V+a9Ko9vy0joFODqw/FvRHkybLP4wGnzrBsC4ayOg+L1++bIIkvV7a6f32tfPj6aefNs/Rmhq9RsVEX187Q7z++uvmvn536HG0vsuUfn60BkkXnQRaE7W11rJPnz4Jdk4QzMSCNsdodZr+ktHaDW2m0W69Y8eONQddM7m1yk1PUM3m1wuA/oLTk9yqHtRf+BrxatNEtWrVZNasWSa4idqTQLPWtYlDa1K0ak9P3tjQD5PWvGjPBD35NWDR6nPdv1bh6oVaf0lqBK0XZP2wRu3dofTir7ULehLpl7tG5HqiKf2g6od3yZIl0qRJE3Nx1/IlhmDGyvSPGqTobe1RoRd9fYweb61l0VoXPbFr1qwpV69eNe+jXng1eNFjoNXxWsWrTRr6XlnvX44cOcx7pj08tDZIf/EHBARIYmOdA5MmTXKu08BBvwj1l7Z+OW3cuNH0OIragyUmcXnP9BzVnnfa7ViPg9IvVD2G1kU4tueO1mLohVl7fGjTlJ63Wi49J6xzdu3atdKmTRsT8D6q2cYX6Bek1dTxqC9LpV+6Gki88847MmXKFBOs6HVC//6oNPi/du2aea+tMVX0/db3U5s49Jpi0VowbT7SY6n71nNFr6V6zdEvQu11qc/R66IeCw1ItTeQ1bSl7/fKlSvNMdT3W4+zXfjC+fHUU0+ZMmjPKP1xq++zjqGm76meN9r0qD0xtcZZa6f1/dVjoj1zrWBGv6P08Q0bNjTl0Pu6D+t6p8dIm6U08NWeTlquB2uL4oXXs3RsSHswDRw40PHMM8+YzH1NBtXeQIMHDzY9XqzEqmbNmpmk0gwZMpikqwsXLrjsR3vJ5MyZ0+yjd+/ejm7durkkAGvCnSaKaTa7HhpN8oop+VaTvqztFu1lY/U00Gz2ypUru2Swa+a5JjXq9kaNGjlmzpzpsl8tiybnaYJg9uzZHe3atXNcvHjR+XzNttckSu0pYiUL2p2VRKe9lKLSxDZdr8fYogmJEyZMMOs0gVTfI30ftceXlcRYokQJ8/5qEqQmwGlvjagJx9pLQ5Mlox5zO4sp0U/f09SpUzsTHK3keU1o1Pctf/78pqdEbJJoY3rPYpNIr/QxmtStvSusHoeawK/n14Mede5osqYms+p6Pbf1+VGT8bWXT9myZc1546uX08clZD6qN5P2RtHkT/379NjpdSOm46U9nqwka6W9a/Ra0aZNm2iv9+OPP5rEbP2c6DHRhHvt8aP0fddt+l7re66JqTt27HA+V3tPBQUFmWOr5fBlvnp+3Llzx3wXaa89fU39XmjZsqXplWQdO92H9uDNkSOH+Z5r3769c78HDhww1z69BurnQhPkv/jiC+f+NdFck5r1+fp36neYNyTTf+I/ZAIAAIgfJAADAABbI5gBAAC2RjADAABsjWAGAADYGsEMAACwNYIZAABgawQzAADA1ghmAACArRHMALA9HUJdpxIBkDQxAjAA29O5YXRmYZ0/CUDSQzADIMHoZJ7WDMAA4C6amQB4jc6mrDOS6+zLOsN0o0aNzAzVOmO7zsSeM2dOadeunVy8eNH5HJ2RWWf61ZoXnVF5/PjxZj+6j4c1M50+fdrMaK/71JnNX3nlFTPzr2Xo0KFSvnx5+eGHH8xzdWZfnflaXwuA/RDMAPCq77//3tTGbNiwQcaMGSP16tWTp59+WrZt2yZLly41QYcGH5Y+ffqYxy5evFiWL18u69atkx07djx0/5GRkSaQuXz5sqxZs8Y858SJE9K6dWuXxx0/flx++eUXWbJkiVn0sVoeAPaTMqELACBpKVq0qIwdO9bcHjlypAlkRo0a5dw+bdo0CQwMlCNHjpiaGA1+Zs+eLfXr1zfbp0+fLnny5Hno/leuXCl79+6VkJAQsx81c+ZMKVWqlGzdulUqVarkDHpmzJghGTJkMPe1Rkif+/HHH8fr3w/A8whmAHhVhQoVnLd3794twcHBpjnoQVpzcvPmTbl7965UrlzZuV6bhIoVK/bQ/R88eNAEMVYgo0qWLCmZMmUy26xgRpuXrEBGaeAUFhbmkb8RgHcRzADwKs19sVy/fl2aNm0qn3zySbTHaXBx7NixeCtHqlSpXO4nS5bM1NYAsB9yZgAkmGeeeUb2799vakmCgoJcFg16ChcubIIObR6yXL161TRBPUyJEiUkNDTULJYDBw7IlStXTA0NgMSHYAZAgunatatJ1G3btq0JWLRpadmyZfLmm2/K/fv3TTNQhw4dpF+/fqY5SgOfjh07SvLkyU1NSkyee+45KVOmjOkBpYnCW7Zskfbt20udOnWkYsWKXv8bAcQ/ghkACUYTebWnkgYuDRs2NEGIdrnW/BYNWNS4ceOkWrVq8uKLL5pApUaNGqb2JU2aNDHuU4OcX3/9VTJnziy1a9c2z9Eanrlz53r5rwPgLQyaB8BWIiIiJG/evPL555+bWhoAIAEYgE/buXOnHDp0yPRo0nyZ4cOHm/U6lgwAKIIZAD7vs88+k8OHD5vB9rRrtw6cpyMIA4CimQkAANgaCcAAAMDWCGYAAICtEcwAAABbI5gBAAC2RjADAABsjWAGAADYGsEMAACwNYIZAAAgdvb/AISBVf7XSJnXAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(data=df, x=\"region\", y=\"percentage_drivers_fatal_alcohol_impaired\", errorbar=\"sd\")"
]
},
{
"cell_type": "markdown",
"id": "collectible-puppy",
"metadata": {},
"source": [
"## Second Research Question: What region has the highest car insurance premiums?\n"
]
},
{
"cell_type": "markdown",
"id": "demographic-future",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "incorporate-roller",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
"\n",
"✏️ *Write your answer below:*\n",
"\n",
"To answer this question, I will organize the data for each state by the region it is in. Then, compare the average cost of car insurance and see which region is the highest.\n"
]
},
{
"cell_type": "markdown",
"id": "juvenile-creation",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "pursuant-surrey",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"region\n",
"Midwest 756.630833\n",
"West 855.624545\n",
"Southeast 905.472500\n",
"Northeast 975.038889\n",
"Northwest 1160.163333\n",
"Name: car_insurance_premiums, dtype: float64"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#######################################################################\n",
"### 💻 YOUR WORK GOES HERE TO ANSWER THE SECOND RESEARCH QUESTION 💻 \n",
"###\n",
"### Your data analysis may include a statistic and/or a data visualization\n",
"#######################################################################\n",
"\n",
"df.groupby(\"region\").car_insurance_premiums.mean().sort_values()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "located-night",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOtNJREFUeJzt3QucTfX+//HPjMEww7jfCl1ILuN+rUjIJbmUU7mEJJVQKDlTyK3kEiLlUIhDOUpIHce4hNyNa2goYipMxYxMYZj9f3y+j//av72ZkTNnm9l7f1/Px2PZe11m7+9ea6+1377r+10rxOVyuQQAAMBiodldAAAAgOxGIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsF5YdhcgUKSlpcnPP/8s+fLlk5CQkOwuDgAAuA56ucXff/9dSpUqJaGhGdcDEYiuk4ah0qVLZ3cxAABAJiQkJMjNN9+c4XwC0XXSmiFnhebPnz+7iwMAAK7D2bNnTYWG8zueEQLRdXJOk2kYIhABABBY/qq5C42qAQCA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPu90DsJrL5ZKUlBT3eERExF/eFRtA8CEQAbCahqF27dq5x5cuXSqRkZHZWiYAWY9TZgAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWy9ZAtH79emnTpo2UKlVKQkJCZMmSJe55qampMnjwYImOjpaIiAizTLdu3eTnn3/2eo3Tp09Lly5dJH/+/FKgQAHp2bOnnDt3zmuZvXv3SsOGDSU8PFxKly4t48aNy7LPCABAoHG5XOa31Bl0PNhlayBKSUmRatWqybRp066a98cff8jOnTtl6NCh5nHx4sUSHx8vbdu29VpOw9D+/fslNjZWli9fbkLW008/7Z5/9uxZad68uZQtW1bi4uJk/PjxMnz4cJkxY0aWfEYAAAJNSkqKtGvXzj3oeLALy843b9WqlRnSExUVZUKOp3feeUfq1q0rx48flzJlysjBgwdlxYoVsn37dqldu7ZZZurUqfLAAw/IhAkTTK3S/Pnz5eLFizJr1izJlSuXVK5cWXbv3i0TJ070Ck4AAMBeAdWGKDk52Zxa01NjavPmzea5E4ZUs2bNJDQ0VLZu3epeplGjRiYMOVq0aGFqm86cOZPhe124cMHULnkOAAAgOAVMIDp//rxpU9SpUyfTXkidPHlSihUr5rVcWFiYFCpUyMxzlilevLjXMs64s0x6xowZY2qpnEHbHgEAgOAUEIFIG1g/+uijplHXe++9lyXvGRMTY2qknCEhISFL3hcAAFjWhui/CUPHjh2TNWvWuGuHVIkSJSQxMdFr+UuXLpmeZzrPWebUqVNeyzjjzjLpyZ07txkAAEDwCw2EMHT48GFZtWqVFC5c2Gt+gwYNJCkpyfQec2hoSktLk3r16rmX0Z5n+loObaxdoUIFKViwYBZ+GgAA4K+yNRDptQ20x5cO6ujRo+a59iLTAPO3v/1NduzYYXqKXb582bT50UF7jamKFStKy5YtpVevXrJt2zbZuHGj9O3bVzp27Gh6mKnOnTubBtV6fSLtnr9w4UJ5++23ZeDAgdn50QEAgB/J1lNmGnbuu+8+97gTUrp3726uFbRs2TIzXr16da+/W7t2rTRu3Ng817CkIahp06amd1mHDh1kypQp7mW1QfTKlSulT58+UqtWLSlSpIgMGzaMLvcAAMA/ApGGmmtd/fJ6roypPcoWLFhwzWWqVq0qGzZsyFQZAQBA8PPrNkQAAABZgUAEAACsRyACAADWIxABAADr+f2FGQEEh1qD5oo/Crl0UaI8xhsP/VhcYf9370N/EDe+W3YXAQh61BABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6YdldAGQNl8slKSkp7vGIiAgJCQnJ1jIBAOAvCESW0DDUrl079/jSpUslMjIyW8sEAIC/4JQZAACwHjVEAKzmypFTkqt28hoHYB8CEQC7hYSIKyxXdpcCQDbjlBkAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYL1sDUTr16+XNm3aSKlSpcyNRpcsWXLVDUmHDRsmJUuWlDx58kizZs3k8OHDXsucPn1aunTpIvnz55cCBQpIz5495dy5c17L7N27Vxo2bCjh4eFSunRpGTduXJZ8PgAAEBhCs/uGo9WqVZNp06alO1+Dy5QpU2T69OmydetWc4f2Fi1ayPnz593LaBjav3+/xMbGyvLly03Ievrpp93zz549K82bN5eyZctKXFycjB8/XoYPHy4zZszIks8IAAD8X7beuqNVq1ZmSI/WDk2ePFmGDBnivkv73LlzpXjx4qYmqWPHjnLw4EFZsWKFbN++XWrXrm2WmTp1qjzwwAMyYcIEU/M0f/58uXjxosyaNUty5collStXlt27d8vEiRO9gtOVLly4YAbPYAUAAIKT37YhOnr0qJw8edKcJnNERUVJvXr1ZPPmzWZcH/U0mROGlC4fGhpqapScZRo1amTCkENrmeLj4+XMmTMZvv+YMWPM+zmDnmoDAADByW8DkYYhpTVCnnTcmaePxYoV85ofFhYmhQoV8lomvdfwfI/0xMTESHJysntISEjw0ScDAAD+hrvdZyB37txmAAAAwc9va4hKlChhHk+dOuU1XcedefqYmJjoNf/SpUum55nnMum9hud7AAAAu/ltILr11ltNYFm9erVXw2ZtG9SgQQMzro9JSUmm95hjzZo1kpaWZtoaOctoz7PU1FT3MtojrUKFClKwYMEs/UwAAMA/ZWsg0usFaY8vHZyG1Pr8+PHj5rpE/fv3l9GjR8uyZctk37590q1bN9NzrH379mb5ihUrSsuWLaVXr16ybds22bhxo/Tt29f0QNPlVOfOnU2Dar0+kXbPX7hwobz99tsycODA7PzoAADAj2RrG6IdO3bIfffd5x53Qkr37t1lzpw58vLLL5trFWn3eK0Juueee0w3e73AokO71WsIatq0qeld1qFDB3PtIof2EFu5cqX06dNHatWqJUWKFDEXe7xWl3sAAGCXEJde8Ad/SU/XabjSHmd6VexAo7VxzvWc1NKlSyUyMjJby2Qr3eU06Dv0gqNaIxrsag2am91FCFhx47tldxFg2X4RcumiRO39yD2eXLWTuML+7/I1gbRvXO/vN73MgCymYYhwCgD+xW8bVQMAAPh1INq5c6dp5Oz5P1xt6PzKK6+Y22QAAAAEfSB65pln5NChQ+b5kSNHTK+uvHnzyqJFi0xDaAAAgKAPRBqGqlevbp5rCNJ7hS1YsMD0DPv00099XUYAAAD/C0TaS0YvfqhWrVpl7i6v9Aaov/76q29LCAAA4I+BSO8urxdMnDdvnqxbt05at27tvrDilTdSBQAACMpANHnyZNOwWi+I+Oqrr0q5cuXM9E8++UTuuusuX5cRAADghsrUdYiqVq3q1cvMMX78eMmRI4cvygUAAJBlwnxxBWSnPZEjZ86c/+vLAgAA+PcpM20rpO2G9JYDejlsvWu8DgUKFOAO8gAAwI4aoscff9z0NJs1a5ZpRG3DfZgAAEDwylQg2rNnj8TFxUmFChV8XyIAAIBAOGVWp04dSUhI8H1pAAAAAqWG6P3335dnn31WfvrpJ6lSpcpVjai1FxoAAEBQB6JffvlFvv/+e+nRo4d7mrYj0nZF+nj58mVflhEAAMD/AtGTTz4pNWrUkI8++ohG1QAAwM5AdOzYMVm2bJn7CtUAAADWNapu0qSJ6WkGAAAQDDJVQ9SmTRsZMGCAuX1HdHT0VY2q27ZtK7aqNWiu+KOQSxclymO88dCPxRWWS/xN3Phu2V0EAICFMhWItIeZGjly5FXzaFQNAACsCERX3rsMAADAujZEAAAAYnsNUXqnyjwNGzYss+UBAAAIjED02WefeY2npqbK0aNHJSwsTG6//XYCEQDgv6YX901JSXGPR0REcJ07+Hcg2rVr11XTzp49K0888YQ89NBDvigXAMAyGobatWvnHl+6dKlERkZma5lgD5+1IcqfP7+MGDFChg4d6quXBAAACLxG1cnJyWYAAAAI+lNmU6ZMueq874kTJ2TevHnSqlUrX5UNAADAfwPRpEmTvMZDQ0OlaNGi0r17d4mJifFV2QAAAPw3EGmPMgAAgGDBhRkBAID1rruG6OGHH5Y5c+aY3mT6/FoWL17si7IBAAD4VyCKiopyXyBLnwOBoNagueJvQi5dFM89qPHQj8UVlkv8Tdz4btldBADwv0A0e/bsdJ8DAAAEOtoQAQAA62Wql9lvv/1m7le2du1aSUxMlLS0NK/5p0+f9lX5AAAA/DMQde3aVb777jvp2bOnFC9enJvvAQAA+wLRhg0b5Ouvv5Zq1ar5vkQAAACB0IbozjvvlD///NP3pQEAAAiUQPTuu+/Kq6++KuvWrTPtic6ePes1AAAABP0pswIFCpjg06RJk6tu8qrtiS5fvuyr8gEAAPhnIOrSpYvkzJlTFixYQKNqAABgZyD65ptvZNeuXVKhQgXflwgAACAQ2hDVrl1bEhIS5EbTU29Dhw6VW2+9VfLkySO33367jBo1ypyac+hzvSZSyZIlzTLNmjWTw4cPX3VdJK3V0vuw6ek+vVzAuXPnbnj5AQBAENcQ9evXT1544QUZNGiQREdHm9NnnqpWreqTwo0dO1bee+89+fDDD6Vy5cqyY8cO6dGjh7mX2vPPP2+WGTdunEyZMsUso8FJA1SLFi3kwIEDEh4ebpbRMHTixAmJjY2V1NRU8xpPP/20OeUHAACQqUD02GOPmccnn3zSPU3bEfm6UfWmTZukXbt20rp1azN+yy23yEcffSTbtm0z4/p+kydPliFDhpjl1Ny5c027piVLlkjHjh3l4MGDsmLFCtm+fbup2VJTp06VBx54QCZMmCClSpXySVkBAIBlp8yOHj161XDkyBH3o6/cddddsnr1ajl06JAZ37Nnj7kgZKtWrdzlOHnypDlN5tDao3r16snmzZvNuD7qaTInDCldPjQ0VLZu3Zrhe1+4cIHLCQAAYIlM1RCVLVtWssLf//53E0T0QpA5cuQwNU+vv/66OQWmNAwprRHypOPOPH0sVqyY1/ywsDApVKiQe5n0jBkzRkaMGHEDPhUAAAiau93PmzdP7r77bnPK6dixY2aanr5aunSpzwr3r3/9S+bPn2/a+uzcudO0E9LTXPp4o8XExEhycrJ7yIpG5AAAIIACkTZ0HjhwoGmHk5SU5G4zpKemNBT5ijba1loibQukjbf1prIDBgwwtTeqRIkS5vHUqVNef6fjzjx9TExM9Jp/6dIl0/PMWSY9uXPnNr3SPAcAABCcMhWItFHyzJkzze079FSWQ9vp7Nu3z2eF++OPP0xbH0/6fmlpaea59irTUKPtjBx6ik3bBjVo0MCM66OGtri4OPcya9asMa+hbY0AAAAy1YZIGzPXqFEj3VqVlJQU8ZU2bdqYNkNlypQx3e71YpATJ050927THm39+/eX0aNHS/ny5d3d7vU0Xvv27c0yFStWlJYtW0qvXr1k+vTpptt93759Ta0TPcwAAECmA5EGj927d1/VuFq7t2sA8RWtidKA89xzz5nTXhpgnnnmGXMhRsfLL79sQpheV0hrgu655x5TDucaRErbIWkIatq0qalx6tChg7l2EQAAQKYDkbYf6tOnj5w/f95cC0ivC6TXB9K2Pe+//77P1my+fPlMm6RrtUvSWqKRI0eaISPao4yLMAIAAJ8GoqeeesrcJkMviKjtfDp37mxqb95++21zKgoAACCoA5H20NLaFr09hl4PSAOR3hfsymv9AAAABG0vM72o4bPPPmtOl6m8efMShgAAgH3d7uvWrWt6fAEAAFjbhkh7fb344ovy448/Sq1atSQiIuKG3O0eAADAbwOR03D6+eefv6F3uwcA+F6tQXPFH4VcuihRHuONh34srrBc4k/ixnfL7iLA3y7MCAAAECz8+m738B1XjpySXLWT1zgAAPgfApGKj483V5I+ePCgGdcrVPfr108qVKiQ2ZfEjaSnNP2s6hkAgIDuZfbpp59KlSpVzA1Tq1WrZoadO3eaaToPAAAg6GuI9P5hMTExV90u47XXXjPz9F5hAAAAQR2ITpw4Id26Xd3S/vHHH5fx48f7olxA0KI9FwB/57LwOJWpU2aNGzeWDRs2XDX966+/loYNG/qiXEDQt+dyBh0HAL8SYt9xKlM1RG3btpXBgwebNkT169c307Zs2SKLFi2SESNGyLJly7yWBQAACMorVat3333XDOnNU1ykEQAABG0gSktL831JAAAAAqkN0fWKjo6WhISEG/kWAAAA/h2IfvjhB0lNTb2RbwEAAODfgQgAACAQEIgAAID1CEQAAMB6BCIAAGA9AhEAALDe/xyIzp8/n+G8f/zjH1K8ePH/9S0AAAD8LxDphRlHjRolN910k0RGRsqRI0fM9KFDh8oHH3zgXq5z584SERHhu9ICAAD4SyAaPXq0zJkzR8aNGye5cuVyT69SpYq8//77viwfAACAfwaiuXPnyowZM6RLly6SI0cO9/Rq1arJt99+68vyAQAA+Gcg+umnn6RcuXLpnkrjytQAAMCKQFSpUiXZsGHDVdM/+eQTqVGjhi/KBQAA4N93ux82bJh0797d1BRprdDixYslPj7enEpbvny570sJAADgbzVE7dq1k88//1xWrVplepFpQDp48KCZdv/99/u+lAAAAP5WQ6QaNmwosbGxvi0NAABAoNQQbd++XbZu3XrVdJ22Y8cOX5QLAADAvwNRnz59JCEh4arp2qZI5wEAAAR9IDpw4IDUrFnzqunaw0znAQAABH0gyp07t5w6deqq6SdOnJCwsEw3SwIAAAicQNS8eXOJiYmR5ORk97SkpCR55ZVX6GUGAAACTqaqcyZMmCCNGjWSsmXLui/EuHv3bnNn+3nz5vm6jAAAAP4XiPQu93v37pX58+fLnj17JE+ePNKjRw/p1KmT5MyZ0/elBAAAuIEy3eBHL8j49NNP+7Y0AAAAgRSIDh8+LGvXrpXExERz+w5PeuVqAACAoA5EM2fOlN69e0uRIkWkRIkSEhIS4p6nzwlEAID/litHTkmu2slrHPDrQDR69Gh5/fXXZfDgwb4vEQDATiEh4grLld2lgKUy1e3+zJkz8sgjj/i+NAAAAIESiDQMrVy50velAQAACJRAVK5cORk6dKg88cQT8tZbb8mUKVO8Bl/S+6M9/vjjUrhwYdO9Pzo62usGsi6Xy7RZKlmypJnfrFkz0+Db0+nTp6VLly6SP39+KVCggPTs2VPOnTvn03ICAADL2hDNmDFDIiMjZd26dWbwpI2qn3/+eZ8UTk/N3X333XLffffJv//9bylatKgJOwULFnQvM27cOBPCPvzwQ7n11ltNUGvRooW5p1p4eLhZRsOQ3lYkNjZWUlNTzTWT9JIBCxYs8Ek5AQCAhYHo6NGjkhXGjh0rpUuXltmzZ7unaejxrB2aPHmyDBkyRNq1a2emzZ0711wxe8mSJdKxY0c5ePCgrFixQrZv3y61a9c2y0ydOlUeeOABc8XtUqVKZclnAQAAQXbKLKssW7bMhBhts1SsWDFzmxDt8u8ZzE6ePGlOkzmioqKkXr16snnzZjOuj3qazAlDSpcPDQ2VrVu3ZvjeFy5ckLNnz3oNAAAgOGX6wow//vijCSzHjx+Xixcves2bOHGiL8omR44ckffee08GDhxobhyrtTx6Oi5XrlzSvXt3E4aU1gh50nFnnj5qmPIUFhYmhQoVci+TnjFjxsiIESN88jkAAEAQBqLVq1dL27Zt5bbbbpNvv/1WqlSpIj/88IM5hVWzZk2fFU6vgK01O2+88YYZ1xqib775RqZPn24C0Y0UExNjgphDa4j09B0AAAg+oZkNCy+99JLs27fPNFz+9NNPJSEhQe69916fXp9Ie45VqlTJa1rFihVNrZTSq2SrU6dOeS2j4848fdTbi3i6dOmS6XnmLJOe3Llzm15pngMAAAhOmQpE2lC5W7du7tNPf/75p+l1NnLkSNMQ2le0h1l8fLzXtEOHDknZsmXdDaw11GiNlWdNjrYNatCggRnXx6SkJImLi3Mvs2bNGlP7pG2NAAAAQjN7p3un3ZDW4nz//ffueb/++qvPCjdgwADZsmWLOWX23XffmW7y2uW/T58+7i7+/fv3N7cS0fZMWmOlQU17jrVv395do9SyZUvp1auXbNu2TTZu3Ch9+/Y1PdDoYQYAADLdhqh+/fry9ddfm7Ch3ddffPFFE0YWL15s5vlKnTp15LPPPjOn6LT2SWuEtJu9XlfI8fLLL0tKSoq5rpDWBN1zzz2mm71zDSI1f/58E4KaNm1qepd16NDB5xeQBAAAlgUi7UXmXOlZe2Lp84ULF0r58uV91sPM8eCDD5ohI1pLpGFJh4xojzIuwggAAHwWiC5fvmy63FetWtV9+kx7fQEAAFjThihHjhzSvHlzc1sNAAAAaxtV63WH9KKJAAAA1gYi7dWl1yFavny5uWkqt7gAAADWNarWnmVKr1atjZodeqVqHdd2RgAAAEEdiNauXev7kgAAAARSINJbdAAAAFgdiNavX3/N+Y0aNcpseQAAAAIjEDVu3PiqaZ5tiWhDBAAAgr6XmV6DyHPQu8nr7TL0VhsrV670fSkBAAD8rYYoKirqqmn333+/5MqVSwYOHOh1Z3kAAICgrCHKSPHixSU+Pt6XLwkAAOCfNUR79+71GtfrD+kFGt98802pXr26r8oGAADgv4FIQ482otYg5Kl+/foya9YsX5UNAADAfwPR0aNHvcZDQ0OlaNGiEh4e7qtyAQAA+HcgKlu27FXTkpKSCEQAAMCeRtVjx46VhQsXuscfffRRKVSokNx0002yZ88eX5YPAADAPwPR9OnTpXTp0uZ5bGysGfQ6RK1atZJBgwb5uowAAAD+d8rs5MmT7kC0fPlyU0PUvHlzueWWW6RevXq+LiMAAID/1RAVLFhQEhISzHOtGWrWrJl5rr3OuG0HAACwoobo4Ycfls6dO0v58uXlt99+M6fK1K5du6RcuXK+LiMAAID/BaJJkyaZ02NaSzRu3DiJjIw00/XijM8995yvywgAAOB/gShnzpzy0ksvXTV9wIABvigTAACA/wcidfjwYVm7dq25031aWprXvGHDhvmibAAAAP4biGbOnCm9e/eWIkWKSIkSJcxtPBz6nEAEAACCPhCNHj1aXn/9dRk8eLDvSwQAABAI3e7PnDkjjzzyiO9LAwAAECiBSMPQypUrfV8aAACAQDllptcaGjp0qGzZskWio6NNrzNPzz//vK/KBwAA4J+BaMaMGebaQ+vWrTODJ21UTSACAABBH4iOHj3q+5IAAAAEUhsiAAAAK2uIBg4cKKNGjZKIiAjz/FomTpzoi7IBAAD4VyDSG7empqa6n2fE8yKNAAAAQRWI9DYd6T2/lh9//FFKlSoloaGcmQMAAP7rhiaVSpUqyQ8//HAj3wIAAMC/A5HL5bqRLw8AAOATnMsCAADWIxABAADrEYgAAID1bmggogs+AAAIBDSqBgAA1vuvA5FenDEsLEy++eabv1z2wIEDUrZs2cyWDQAAwD9v7pozZ04pU6aMXL58+S+XLV26dGbLBQAA4N+nzF599VV55ZVX5PTp074vEQAAQCAEonfeeUfWr19vbstRoUIFqVmzptdwo7z55pumoXb//v3d086fPy99+vSRwoULS2RkpHTo0EFOnTrl9XfHjx+X1q1bS968eaVYsWIyaNAguXTp0g0rJwAACPJTZqp9+/aS1bZv3y7/+Mc/pGrVql7TBwwYIF988YUsWrRIoqKipG/fvvLwww/Lxo0bzXw9tadhqESJErJp0yY5ceKEdOvWzZz6e+ONN7L8cwAAgCAJRK+99ppkpXPnzkmXLl1k5syZMnr0aPf05ORk+eCDD2TBggXSpEkTM2327NlSsWJF2bJli9SvX19WrlxpGnevWrVKihcvLtWrV5dRo0bJ4MGDZfjw4ZIrV6503/PChQtmcJw9ezYLPikAAMgOAXFhRj0lprU8zZo185oeFxdner15Tr/zzjtNo+/NmzebcX2Mjo42YcjRokULE3D279+f4XuOGTPG1Dg5Aw3EAQAIXpkKRHoaasKECVK3bl1zKqpQoUJegy99/PHHsnPnThNQrnTy5ElTw1OgQAGv6Rp+dJ6zjGcYcuY78zISExNjaqCcISEhwUefCAAABEUgGjFihEycOFEee+wxExYGDhxo2u2Ehoaa01C+oiHkhRdekPnz50t4eLhkpdy5c0v+/Pm9BgAAEJwyFYg0oGh7nhdffNFcpLFTp07y/vvvy7Bhw0zbHV/RU2KJiYmm55q+jw7r1q2TKVOmmOda03Px4kVJSkry+jvtZaY1V0ofr+x15ow7ywAAALtlKhDpqSZtl6O0q7vWEqkHH3zQ9PjylaZNm8q+fftk9+7d7qF27dqmgbXzXHuLrV692v038fHxppt9gwYNzLg+6mtosHLExsaaGp9KlSr5rKwAAMCyXmY333yz6b6ujZdvv/1205NLa3G0a7yeavKVfPnySZUqVbymRUREmGsOOdN79uxpTtlp2yUNOf369TMhSHuYqebNm5vg07VrVxk3bpwJc0OGDDENtX1ZVgAAYFkgeuihh0ytTL169UwAefzxx033d62Z0esCZaVJkyaZtkt6QUbtJq89yN599133/Bw5csjy5culd+/eJihpoOrevbuMHDkyS8sJAACCLBDpFaMd2rBab+CqFz0sX768tGnTRm6kr776ymtcG1tPmzbNDBnR8n355Zc3tFwAAMCyNkTaBX7WrFnucT09paetfvnlFxk7dqwvywcAAOCfgUhvoaEXQLxS5cqVZfr06b4oFwAAgP/3MitZsuRV04sWLWoaWwMAAAR9INLbWDg3T/Wk00qVKuWLcgEAAPh3o+pevXpJ//79zX3EnJuqaq+zl19+2VysEQAAIOgD0aBBg+S3336T5557zlwp2untpXeQ13uAAQAABH0gCgkJMb3Jhg4dKgcPHpQ8efKYLvdc6BAAAFgTiBx62446der4rjQAAACB0qgaAAAgmBCIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9vw9EY8aMkTp16ki+fPmkWLFi0r59e4mPj/da5vz589KnTx8pXLiwREZGSocOHeTUqVNeyxw/flxat24tefPmNa8zaNAguXTpUhZ/GgAA4I/8PhCtW7fOhJ0tW7ZIbGyspKamSvPmzSUlJcW9zIABA+Tzzz+XRYsWmeV//vlnefjhh93zL1++bMLQxYsXZdOmTfLhhx/KnDlzZNiwYdn0qQAAgD8JEz+3YsUKr3ENMlrDExcXJ40aNZLk5GT54IMPZMGCBdKkSROzzOzZs6VixYomRNWvX19WrlwpBw4ckFWrVknx4sWlevXqMmrUKBk8eLAMHz5ccuXKlU2fDgAA+AO/ryG6kgYgVahQIfOowUhrjZo1a+Ze5s4775QyZcrI5s2bzbg+RkdHmzDkaNGihZw9e1b279+f7vtcuHDBzPccAABAcAqoQJSWlib9+/eXu+++W6pUqWKmnTx50tTwFChQwGtZDT86z1nGMww58515GbVdioqKcg+lS5e+QZ8KAABkt4AKRNqW6JtvvpGPP/74hr9XTEyMqY1yhoSEhBv+ngAAIHv4fRsiR9++fWX58uWyfv16ufnmm93TS5QoYRpLJyUledUSaS8znecss23bNq/Xc3qhOctcKXfu3GYAAADBz+9riFwulwlDn332maxZs0ZuvfVWr/m1atWSnDlzyurVq93TtFu+drNv0KCBGdfHffv2SWJionsZ7bGWP39+qVSpUhZ+GgAA4I/CAuE0mfYgW7p0qbkWkdPmR9v15MmTxzz27NlTBg4caBpaa8jp16+fCUHaw0xpN30NPl27dpVx48aZ1xgyZIh5bWqBAACA3wei9957zzw2btzYa7p2rX/iiSfM80mTJkloaKi5IKP2DtMeZO+++6572Rw5cpjTbb179zZBKSIiQrp37y4jR47M4k8DAAD8UVggnDL7K+Hh4TJt2jQzZKRs2bLy5Zdf+rh0AAAgGPh9GyIAAIAbjUAEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9awKRNOmTZNbbrlFwsPDpV69erJt27bsLhIAAPAD1gSihQsXysCBA+W1116TnTt3SrVq1aRFixaSmJiY3UUDAADZzJpANHHiROnVq5f06NFDKlWqJNOnT5e8efPKrFmzsrtoAAAgm4WJBS5evChxcXESExPjnhYaGirNmjWTzZs3p/s3Fy5cMIMjOTnZPJ49e/aa73X5wp8+K7eN/mr9/rfYHpnHtvAfbAv/wbYIvO3hLONyua69oMsCP/30k64F16ZNm7ymDxo0yFW3bt10/+a1114zf8PAwMDAwMAgAT8kJCRcMytYUUOUGVqbpG2OHGlpaXL69GkpXLiwhISESCDSlFy6dGlJSEiQ/PnzZ3dxrMa28C9sD//BtvAfZ4NkW2jN0O+//y6lSpW65nJWBKIiRYpIjhw55NSpU17TdbxEiRLp/k3u3LnN4KlAgQISDPSLHchf7mDCtvAvbA//wbbwH/mDYFtERUX95TJWNKrOlSuX1KpVS1avXu1V46PjDRo0yNayAQCA7GdFDZHS01/du3eX2rVrS926dWXy5MmSkpJiep0BAAC7WROIHnvsMfnll19k2LBhcvLkSalevbqsWLFCihcvLrbQU4B6HaYrTwUi67Et/Avbw3+wLfxHbsu2RYi2rM7uQgAAAGQnK9oQAQAAXAuBCAAAWI9ABAAArEcgssBXX31lLiaZlJSU3UUBst0TTzwh7du3z+5iBK3GjRtL//79r7nMLbfcYnr6wv88YfH+QSDKQtrLrXfv3lKmTBnTal8vCtmiRQvZuHFjlh6MskMwhjK9QXC+fPnk0qVL7mnnzp2TnDlzmu2Q3uf//vvvM/1+P/zwg3mN3bt3SzAdfPUzvfnmm17TlyxZ8j9fET5Q1lcghANnOz377LNXzevTp4+Zp8uoxYsXy6hRo8RfaVn1+xUIbN0/nsimUEYgykIdOnSQXbt2yYcffiiHDh2SZcuWmR/O3377LbuLhky47777TADasWOHe9qGDRtM0N26daucP3/ePX3t2rUmCN9+++3ZVFr/FR4eLmPHjpUzZ8749IbO8C29hcPHH38sf/75fzcj1e/4ggULzHfbUahQIfMfBfgG+0fWIRBlEa0Z0R9L/WLrD2nZsmXNBSL1nmlt27Y1yxw/flzatWsnkZGR5jLpjz76qNftRtJLzVob5NRG6Px169bJ22+/bZK/Dvq/AEdcXJy5MGXevHnlrrvukvj4eK/XWrp0qdSsWdPsgLfddpuMGDHCq/Zj4sSJEh0dLREREebg+Nxzz5lA4Dh27Ji0adNGChYsaJapXLmyfPnll6YM+pmVzvP832Qgq1ChgpQsWdLU/jj0uW7DW2+9VbZs2eI1XdeBXiF9zJgxZn6ePHmkWrVq8sknn7iX04Nely5dpGjRomZ++fLlZfbs2Wae/o2qUaOGWYdX1kIFqmbNmpkQqeslI59++qn5PmnNqtaovPXWW17zdZrWSnTr1s3sO08//fRfrq8JEyaY7af3J9RajtTUVDP9nXfekSpVqlz1v3GtEfQs85AhQ65r39ErmwwfPtxdM6z3U3r++efNPC2T7jcDBgxw77P+Sj+f7vdaA+TQ5/q5dB1nVEudmJhojgv6fdZtMn/+fK/Xfemll+TBBx90j2ttma4HvU6co1y5cvL++++7x/V5xYoVzfq+88475d133/X6se/bt6/Ztjpfj7XOd0u/J+qhhx4y7+GM+zN/2z/UhQsXzHa76aabzLG+Xr16XsdB/U9+p06dzHz9vdHfjY8++kg86XFPp+v3Qt9DP6deLFn3Fa000H3K2Sc8X/uG8uVd5ZGx1NRUV2RkpKt///6u8+fPXzX/8uXLrurVq7vuuece144dO1xbtmxx1apVy3Xvvfe6l+nevburXbt2Xn/3wgsvuJdJSkpyNWjQwNWrVy/XiRMnzHDp0iXX2rVrzZ1+69Wr5/rqq69c+/fvdzVs2NB11113uV9n/fr1rvz587vmzJnj+v77710rV6503XLLLa7hw4e7l5k0aZJrzZo1rqNHj7pWr17tqlChgqt3797u+a1bt3bdf//9rr1795rX+Pzzz13r1q0zZfj0009NGeLj4025tKzBoHPnzq7mzZu7x+vUqeNatGiR69lnn3UNGzbMTPvjjz9cuXPnNut29OjRrjvvvNO1YsUKs45mz55t5ul2UX369DHfg+3bt5v1HBsb61q2bJmZt23bNrMOV61aZdbhb7/95gp0znd68eLFrvDwcPfdqD/77DPzWZXuD6Ghoa6RI0ea74+uszx58phHR9myZc33d8KECa7vvvvODBmtL31PXVa30cGDB833NG/evK4ZM2aY+fr9DQkJcSUmJppx3WeLFCnieuyxx8z4xYsXzfK6ba5n39Hvg87/8ssvXceOHXNt3brV/V5apptvvtl8Nmef9eftNHHiRFfTpk3d0/W5Hhd0ni6j9HikxyVHq1atXNWqVXNt3rzZbEs97uj2079T+v2OiooyxwnVvn17s74HDx5sxn/88UezHQ8fPmzG//nPf7pKlixpjilHjhwxj4UKFTLrX40fP95VunRps11++OEH14YNG1wLFiww83Sb6mvpd0fXtbON/ZU/7h/qqaeeMttR17G+lq5zPY4dOnTIvc102q5du8w+MWXKFFeOHDnMd1/9/PPPrrCwMPN90uOc7nPTpk1z/f7772Z49NFHXS1btnTvExcuXHBlBQJRFvrkk09cBQsWNF9s/TLFxMS49uzZY+bpQVS/MMePH3cvr8FFv7D6xb2eQJTewUg5gUi/+I4vvvjCTPvzzz/dB7Y33njD6+/mzZtnDjwZ0QN94cKF3ePR0dFeASq9Mpw5c8YVTGbOnOmKiIgwgffs2bNmJ9eDrB6AGzVqZJbR8KifXQ/OemDZtGmT12v07NnT1alTJ/O8TZs2rh49eqT7Xnrg0NfRg0yw8PxO169f3/Xkk09edcDX0KlB29OgQYNclSpV8jrg6w/p9awvfU9d3vkBVo888og78KSlpZnvtX6/lQbUMWPGuEqUKGHGv/76a1fOnDldKSkp17XvvPXWW6477rjDBKn0aFmccODv20m/2/rDp99lHfRY9ssvv2QYiPQH2vMYpvRHVqc5n1mPCfqDrv8J0HWv4UbXt/4HzglAN910k/vvb7/9dnfAcYwaNcr8Z1D169fP1aRJE/Na6dH31u9XIPDH/ePYsWPmt+qnn37y+jvdD/Q3LSP6H+YXX3zRPI+Li3MfE//qc2clTpllcRuin3/+2bQdatmypakG1GroOXPmyMGDB011tA6OSpUqSYECBcw8X6hatar7uVaFOtXZas+ePTJy5Ehzus4ZevXqJSdOnJA//vjDLLNq1Spp2rSpqQbVNgJdu3Y1VaPOfD0NMHr0aLn77rvN5d737t0rwU6rmbWad/v27eaU6B133GFOd917773udkS6nfU0ip5e1HV1//33e63nuXPnuhtba6N7baeht5Z5+eWXZdOmTWILPZ2sVeVXft91XL9TnnT88OHDcvnyZfc0PR18vfT0Qo4cObz2B2df0Cr6Ro0ame2mp7oPHDhgTg/raYJvv/3WnJauU6eOORVwPfvOI488Ytrd6HdAp3/22Wdep6IDiX63W7dubY5ZeipXnxcpUiTD5XXbhYWFmZtrO/QUlx7XHPpcTx3r+t63b5+5Gbee0tH2lrrP6PrW/Unpvqb7Ss+ePb3Wtx53nH1IT8drQ2E9pa3HpJUrV0ow8Jf9Y9++feZ19VjnuQ10OznbQOfrKTo9JaZtynT+f/7zH9MsROn21t8Sna/7x8yZM33aRiqzCERZTM9p6w/i0KFDzY+d7rwaHq5HaGioaY/gyfO87l/R3k8Op62CtmlReuDRdg96IHEG/eLrTqVl1nZAep5fQ5Wer9b2SNOmTfNqoPfUU0/JkSNHTFDSv9UdcOrUqRLMtG3DzTffbBpN6+AcuLWdiIZb3cY6vUmTJu72Vl988YXXetYfXKcdUatWrdxtSjQ860FDz9XbQEOI9rrUdnWZoW0ZMrMvOPuDsy84QVd/oDXkahsLbXfhhCTPH+jr2Xf0e6Dt9bSdi7aX0HClr/Xf7Lv+5MknnzSBSH+c9bkvOOvbWbf6I6pthL7++muv9e3sQ/oD6rm+v/nmG3ebPf1P5tGjR80PsgZRbYv5t7/9TQKdv+wf586dM2FJfwM8t4EGM22/qsaPH2+eDx482Bz/dL6W3fmt0L+PjY2Vf//73+Y//vo7oQFWt1t2submrv5KvwzaaFN3/oSEBDM4tUT6Q6n/Q9VlnP+d6Y7vSb9onl9e/d+V5/8KrpceRPSgrT/w6dEvv+4Q2lhPg5n617/+ddVyWnbtmquD7rh64OrXr58pl8pM2fydNpbWg7n+D2fQoEFeBzDd4bdt22ZqfnQ7aqNH/V+S5w/qlXQ7d+/e3QwNGzY0r6kNHIN5HTq0e7HWjunB0aH7xpWXptBx/R+q5/9ir/S/rC/dPtoweNGiRe7GpvqotaT63i+++OJ17ztKg5A2LNZBG6hqLYmGJv3bzO6z2UVrt/WHTX8k9UfuWvRzam2YHj+0Vk3purry8hu6vmfNmmVqk/T1nfWtDXG1R66zDfRm3PqfDf2Pl3Y+yIgGWL2htw4ahvQ1T58+bYKWHi8DaX372/5Ro0YN8zdaY6THp/To+2vnkscff9yM62+Hbkfnt0zp90drsnTQm65r43etPR04cGC27RMEoiyip5a0alD/R6W1LHrKSbtrjxs3znxxtIW9Vh/qTq69LPQgov+T1AOFU9WptQyavPUUS4MGDeSf//ynCUiePTy0N4GeqtEaHa2m1APA9dAvpNYAaY8RPYBo6NFTAfr6Wh2tB3v9H60meT2o6xfes9eN0h8QreHQHVHDgf7PQHdWpV923QGWL18uDzzwgPmB0PIFSyByemF4Bh19rr1d9MdDl9FtrrU9WvujB4h77rlHkpOTzbrUA7gGIN0OenpBq6z1FI2uL2cdFitWzKw37X2jtVJa+xAVFSXBxNkHpkyZ4p6m4UN/TPV//PoDt3nzZtMTzLNnUXr+l/Wl+6j2iNQu5boNlP4o6/ZzDuTXu+9obYoe3LUnjp5m0/1Wy6X7hLPPrl+/Xjp27GgC87VOQfkD/ZF1Tttc6wdX6Q+3hpFnnnlG3nvvPRN49Dihn9+T/ufh999/N+vaueaOrm9dn3q6Ro8pDq2N01Nhui31tXU/0WOpHnP0x1R7w+rf6HFRt4WGWu2l5Zym0/W9evVqsw11fet2DhT+sH/ccccdpgzaY03/g6zrWa+xp+tU9xs9jaq9Y7XWW2vIdf3qNtEe004g0t8oXb558+amHDqur+Ec63Qb6Sk2Dc/aA03LdWWt1Q2R5a2WLKU9y/7+97+7atasaXpUaONa7aU1ZMgQ0wvJaazWtm1b00g3X758piHbyZMnvV5Hey4VL17cvMaAAQNcffv29WpUrY0YtfGd9jLQzasN59Jr0KwN6Zz5Du355PQA0V4GdevW9epZoD0CtKGozm/RooVr7ty5Xq+rZdEGj9rosmjRoq6uXbu6fv31V/ffay8IbZiqPXicBpjBwGmcqL3HPGmDQZ2u29mhDT0nT55spmnDXF1Pui61N57TOLRixYpmHWvjUm1YqD1pPBtxaw8abYTqud0DVXqNJ3V95sqVy91o1OmQoI1EdZ2VKVPG9GC5nobJ6a2v6+mcoHQZbSSvvV6cnqDaKUL3rytda9/RBrDaQFin676tf+/ZwUF7X1WtWtXsN/56SP6rRq7X6mWmvYS0Qa1+Pt12etxIb3tpTzSn4brSXk96rOjYseNV7zd//nzT2F2/J7pNtAOD9sRSut51nq5rXefa2Hfnzp3uv9VebeXKlTPbVsvhz/x1/7h48aL5LdLelPqe+rvw0EMPmd5izrbT19Ce1cWKFTO/c926dXO/7oEDB8xxT49/+r3QTgdTp051v7423teG4vr3+jn1NywrhOg/Nz52AQAA+C8aVQMAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAcD/p7cM0FvnALAPV6oGgP9P76ekdwXXe44BsAuBCEDA0xvoOnfvBoDM4JQZgICjd0Lv27evuXO63h2+RYsW5u7yrVq1ksjISClevLh07dpVfv31V/ff6N3U9S7dWgOkd0OfNGmSeR19jYxOmR0/flzatWtnXjN//vzy6KOPmrt2O4YPHy7Vq1eXefPmmb/Vu3LrXev1vQAEFgIRgID04YcfmlqhjRs3yptvvilNmjSRGjVqyI4dO2TFihUmuGiAcQwcONAsu2zZMomNjZUNGzbIzp07M3z9tLQ0E4ZOnz4t69atM39z5MgReeyxx7yW+/7772XJkiWyfPlyM+iyWh4AgSUsuwsAAJlRvnx5GTdunHk+evRoE4beeOMN9/xZs2ZJ6dKl5dChQ6ZGSAPUggULpGnTpmb+7NmzpVSpUhm+/urVq2Xfvn1y9OhR8zpq7ty5UrlyZdm+fbvUqVPHHZzmzJkj+fLlM+NaM6V/+/rrr9/Qzw/AtwhEAAJSrVq13M/37Nkja9euNae2rqQ1OH/++aekpqZK3bp13dP19FaFChUyfP2DBw+aIOSEIVWpUiUpUKCAmecEIj1V5oQhpeErMTHRJ58RQNYhEAEISNoWyHHu3Dlp06aNjB079qrlNKB89913N6wcOXPm9BoPCQkxtUYAAgttiAAEvJo1a8r+/ftNbU25cuW8Bg1Ot912mwkueqrLkZycbE6nZaRixYqSkJBgBseBAwckKSnJ1BQBCC4EIgABr0+fPqbxc6dOnUzo0dNk//nPf6RHjx5y+fJlc0qre/fuMmjQIHNqTcNTz549JTQ01NTopKdZs2YSHR1teqZp4+tt27ZJt27d5N5775XatWtn+WcEcGMRiAAEPG0crT3INPw0b97cBBntTq/tfTT0qIkTJ0qDBg3kwQcfNGHn7rvvNrVA4eHh6b6mBqWlS5dKwYIFpVGjRuZvtKZp4cKFWfzpAGQFLswIwEopKSly0003yVtvvWVqiwDYjUbVAKywa9cu+fbbb01PM20/NHLkSDNdrzUEAAQiANaYMGGCxMfHmws6ard9vTijXukaADhlBgAArEejagAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAABAbPf/ALD1DHH6CCCrAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(data=df, x=\"region\", y=\"car_insurance_premiums\", errorbar=\"sd\")"
]
},
{
"cell_type": "markdown",
"id": "8ab785a8-ac72-4fec-8d4b-7ad7f93de32d",
"metadata": {},
"source": [
"## Third Research Question: What region is the most unlucky state for fatal collisions?"
]
},
{
"cell_type": "markdown",
"id": "810dc600-da04-437d-a546-4d6c5bec01c6",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "be64d030-0f40-4c32-ac3e-be494e64b3a7",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
"\n",
"✏️ *Write your answer below:*\n",
"\n",
"To answer this question, I will organize the data for each state by the region it is in. Then, compare the average percentage of Drivers Involved In Fatal Collisions Who Were Not Distracted and the average percentage of Drivers Involved In Fatal Collisions Who Had Not Been Involved In Any Previous Accidents."
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "096fe314-2953-4644-86e0-cd717f77eb8f",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(data=region_mean, x=\"region\", y=\"percentage_drivers_fatal_no_previous_accidents\")"
]
},
{
"cell_type": "markdown",
"id": "d66967db-fe78-4889-824e-f7bce4e02cc8",
"metadata": {},
"source": [
"## Fourth Research Question: Is there a connection between the average Percentage Of Drivers Involved In Fatal Collisions Who Were Speeding and the region with the most expensive car insurance premiums?"
]
},
{
"cell_type": "markdown",
"id": "9661b6d4-3c4f-42a2-8916-b9df38375760",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "cc44ade7-3ae9-44a0-b821-29ecb1b66385",
"metadata": {},
"source": [
"Explain how you will approach this research question below. Consider the following:\n",
"\n",
"Which aspects of the dataset will you use?\n",
"How will you reorganize/store the data?\n",
"What data science tools/functions will you use and why?\n",
"✏️ Write your answer below:\n",
"\n",
"To answer this question, I will organize the data for each state by the region it is in. Then, compare the average Percentage Of Drivers Involved In Fatal Collisions Who Were Speeding to see if there is a connection with the region with the highest car insurance."
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "b921b74c-951a-4f30-a42e-292f011fd61a",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"