Files
project_argument/argument.ipynb

367 lines
30 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "worldwide-blood",
"metadata": {},
"source": [
"# Introduction"
]
},
{
"cell_type": "markdown",
"id": "understanding-numbers",
"metadata": {},
"source": [
"Argument Project Research"
]
},
{
"cell_type": "markdown",
"id": "greater-circular",
"metadata": {},
"source": [
"## Overarching Question: \n",
"I want to know about what relationship exists, if any, between an adult (18 +) person's age and their weight (metric-kg.).\n"
]
},
{
"cell_type": "markdown",
"id": "permanent-pollution",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "technical-evans",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"sns.set_theme()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "overhead-sigma",
"metadata": {},
"outputs": [],
"source": [
"file_name = \"brfss_2020_cleaned.csv\"\n",
"dataset_path = \"data/brfss_2020_cleaned.csv\"\n",
"people = pd.read_csv(\"data/brfss_2020_cleaned.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "heated-blade",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: xlabel='age', ylabel='weight'>"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAG5CAYAAACKmu5sAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQUNJREFUeJzt3Xl4FFXe9vG7qyELCUkAkQBhCUEgIYGwGUAQEZTVDSejIosLgkpQcFBxfABhguCurAoosguoqCMRdBB5fEVRGIGHHdlBQSB7yNrd7x8M0TbBCZ0m3V35fq7La+w6VV2/PtMNt1WnzrE4HA6HAAAATMzwdAEAAABXGoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYXhVPF+AtHA6H7HYmnQYAwFcYhkUWi6VM+xJ4/sNudyg1NcfTZQAAgDKqWTNIVmvZAg+3tAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReADAwxYunK+BAwdo4cL5ni4FMC2Lw+FweLoIb2Cz2ZWamuPpMgB4gGFYZBgWj5w7Pz9fgwffJbvdLsMwtHjxCvn7+3ukFkmy2x2y2/lrAb6hZs0gWa1lu3ZT5QrXAsDEFi6cr3XrUtSrV18NHTrM0+W4xDAsqhFWTUYZ/9B0t+xsh+x2uyTJbrcrONhPwcFBHqlFkuw2u9LSzxN6YDoEHgAuyc/P19q1KXI47Fq3LkV33z3Yo1cmXGUYFhlWQ+vmfqTUX85V+PmLbEWyyCKHHLLIotUvLlUVq2f+aK5Zt5Z6Db9dhmEh8MB0CDyAD/PsrRibHI7frkxINlWp4pmrJO64DZP6yzmdOXbKTRVdnsjq9XU466Qiq9dX2smzHqkBMDsCD+CjDMOiGjWqyTA8EzKqVnUOGGFhQR67FWO325WW5ru3YeJqNVNcrWaeLgMwNQIP4KMuXN0xtPPTr5RzLqPCz19QVCiLxSKHwyHDYtGPK9bKr0rVCq8jqFaoYvvfwG0YAH+KwAP4uJxzGcr6teLHnkhSu4bNtPXYfrVt2Ez5qZnK90gVwG/MMJAeVwaBB4DLbopur5ui23u6DHgRTz/iv25diuz2CwPpBw0a6rGB9Dze730IPAAAtzAMi8LCAmW1Wj1y/rw85/OGhVVTQECAR2qx2WxKT88l9HgRAg8AwC0MwyKr1aq3pszXz0c988RbePV6+jnjpMKr19PUx172SA31GoVrxLPDGFfmZQg8AAC3+vnoKR09cMwj57bKXw3UREqTjqZ5pgZ4J9bSQqXDukUAUPkQeFCpXJwd+OKgxvx8nisCgMqAW1qocMwOrP+cn6c4AKCiEHhQoZgd+De+PjswAPgSAg8q1MXZgU9t26GC7OwKP39+QcFvswMbhn75fov8/fwqvA6/4GCFx7fiKQ4AqCAEHnhEQXa28jOzPHLu7m3a6qsf/60b4ttIefnKz2McDwCYHYEHlc5fu/fQX7v38HQZAIAKxFNaAADA9Ag8AADA9Ag8AADA9Ag8AADA9Lwu8Kxfv16JiYlq06aNunTposcff1zHjx8vsd+qVavUq1cvxcXF6dZbb9WGDRs8UC0AAPAFXhV4Nm/erKSkJDVt2lSzZs3S3//+d+3du1cPPPCA8vLyivdbs2aNxo8frz59+mjevHmKj49XUlKStm3b5rniAQCA1/Kqx9LXrFmjevXq6fnnn5fFcmHpgZo1a2ro0KHauXOn2rdvL0maPn26+vXrp9GjR0uSOnbsqP3792vWrFmaN2+ep8oHAABeyquu8BQVFSkoKKg47EhS9erVJUkOx4XZaI8fP64jR46oT58+Tsf27dtX3377rQoKCiquYAAA4BO86grPgAED9PHHH2vp0qW69dZblZ6erldffVUxMTFq27atJOnQoUOSpMjISKdjo6KiVFhYqOPHjysqKsql83tqEcnKxGqlj3+vPP1BXzpztT/ox5LoS/cob39YLJ5baFmS3n57rlJSPlXfvv314IPDPVaH3e4ovuhRHl4VeNq3b6+ZM2fqb3/7myZPnixJio6O1vz582W1WiVJGRkZkqSQkBCnYy++vth+uS4saumZRSRReYWEBHq6BNOgL92HvnSP8vajzWYr/ruvouXl5Skl5VPZ7XalpHyqRx4ZoYCAAI/U4q5+8KrA8+9//1tPPfWU/vrXv+qGG25Qenq6Zs+ereHDh2vZsmVXtLPtdocyM89fsffHBVarwR+mv5OZmSubze7SsfSlM1f7kn4sib50D3f8vseNmaTDB4+4t7AycDjsstsv1G632zUkcYQsloq/ghcZ1VjTXpt4yb4MCQks85U0rwo8ycnJ6tixo8aNG1e8LT4+XjfccIM+/vhj3XXXXQoNDZUkZWVlqXbt2sX7ZWZmSlJxuyuKilz7YgKustnsfO/chL50H/rSPdzRj4cPHtGeXfvdVNHlCapZRYHVrcrNsunMkZ88UsNF7uhLr7rhevDgQbVo0cJpW3h4uGrUqKFjx45Jkpo0aSLpt7E8Fx06dEhVq1ZVgwYNKqZYAABMLCe1SGeP5isntcjTpbiFVwWeevXqaffu3U7bTp48qbS0NNWvX1+S1KBBAzVu3Fhr16512i8lJUWdOnWSn59fhdULAAB8g1fd0rr77rv1/PPPKzk5WTfeeKPS09M1Z84c1apVy+kx9FGjRmns2LFq2LChEhISlJKSoh07dmjJkiUerB4AAHgrrwo8Q4YMkZ+fn5YvX64PPvhAQUFBio+P1+uvv64aNWoU79e/f3/l5uZq3rx5mjt3riIjIzVz5ky1adPGg9UDAABv5VWBx2Kx6J577tE999zzX/dNTExUYmJiBVQFAAB8nVeN4QEAALgSCDwAAMD0CDw+YuHC+Ro4cIAWLpzv6VIAAPA5BB4fkJ+fr7VrU2S327VuXYry8/M9XRIAAD7FqwYtezPD8Nwibvn5Njkcv03xLdk8utCp3e6Q3V7+hdwAAKgoBJ4yMAyLatYIksVDgadqVedwERYWpOBgzy106rA7lJqWQ+gBAPgMAk8ZGIZFFsOijBNHZfPA7aT8/AJZLBY5HA4ZhqGsY0dU4O+ZGaWt/v4KjWgkw7AQeAAAPoPAcxls+fkqysut8PNaJfW6vos+//ob3dz1OlkdNo/UAQCAryLw+Iihd96hoXfe4ekyAADwSTylBQAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATM8rA8/q1at1++23Ky4uTgkJCRo2bJjy8vKK27/88kvdeuutiouLU69evfTBBx94sFoAAODtqni6gD+aM2eO5s2bp4cffljx8fFKS0vTt99+K5vNJknasmWLkpKS9Je//EV///vf9d133+nZZ59VUFCQevfu7eHqAQCAN/KqwHPo0CHNnDlTs2fPVrdu3Yq39+rVq/jf58yZo1atWmny5MmSpI4dO+r48eOaPn06gQcAAJTKq25pffjhh4qIiHAKO79XUFCgzZs3lwg2ffv21cGDB3XixImKKBMAAPgYrwo827dvV7NmzTR79mx16tRJsbGxuvvuu7V9+3ZJ0rFjx1RYWKgmTZo4HRcVFSXpwhUiAACAP/KqW1pnzpzRzp07tX//fk2cOFGBgYF688039cADD+jzzz9XRkaGJCkkJMTpuIuvL7a7qkqV0vOf1epVudAruNon9KWz8vQHfemM76T70Jfuwe/bfdzRH14VeBwOh86fP6833nhDLVq0kCS1bt1aN954o5YsWaIuXbpcsXMbhkU1agRdsfc3m5CQQE+XYAr0o/vQl+5DX7oH/eg+7uhLrwo8ISEhCgsLKw47khQWFqaYmBj99NNP6tevnyQpKyvL6bjMzExJUmhoqMvnttsdysw8X2qb1Wrwxf2DzMxc2Wz2yz6OvnTmaj9K9OUf8Z10H/rSPfh9u8+l+jIkJLDMV3+8KvA0bdpUx44dK7UtPz9fDRs2VNWqVXXo0CF17dq1uO3i2J0/ju25XEVFrn0xKyObzU5/uQH96D70pfvQl+5BP7qPO/rSq24Sdu/eXenp6dqzZ0/xtrS0NO3atUstW7aUn5+fEhIStG7dOqfjUlJSFBUVpYiIiIouGQAA+ACvusLTs2dPxcXF6bHHHtOYMWPk7++vuXPnys/PTwMHDpQkPfLIIxoyZIiee+459enTR5s3b9ann36q1157zcPVAwAAb+VVV3gMw9DcuXMVHx+vCRMm6IknnlBwcLCWLl2q2rVrS5Lat2+vGTNmaOvWrXrwwQf16aefKjk5WX369PFw9QAAwFt51RUeSapZs6ZeeumlP92nR48e6tGjRwVVBAAAfJ1XXeEBAAC4Egg8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9FwOPM8884y2b99+yfYdO3bomWeecfXtAQAA3MblwLN69WodO3bsku0nTpzQRx995OrbAwAAuM0Vu6X166+/KiAg4Eq9PQAAQJlVuZyd//Wvf2n9+vXFr1euXKlNmzaV2C8rK0ubNm1SbGxs+SsEAAAop8sKPAcPHtTatWslSRaLRdu3b9fOnTud9rFYLKpWrZo6dOigcePGua9SAAAAF11W4BkxYoRGjBghSWrRooWmTJmiW2655YoUBgAA4C6XFXh+b+/eve6sAwAA4IpxOfD8Xk5OjjIzM+VwOEq01atXzx2nAAAAcJnLgSc/P18zZ87U+++/r/T09Evut2fPHldPAQAA4BYuB57nnntOH330kXr27Kl27dopNDTUnXUBAAC4jcuB54svvlBiYqImT57sznoAAADczuWJBy0Wi2JiYtxZCwAAwBXhcuDp0aNHqZMOAgAAeJsyB5709HSnfx599FGdOHFC48eP186dO5Wamlpinz8bzAwAAFBRyjyGp2PHjrJYLE7bHA6Hdu/erffff/+Sx/GUFgAA8LQyB56RI0eWCDwAAAC+oMyBZ9SoUVeyDgAAgCvG5UHLAAAAvsLleXhmzpz5p+0Wi0X+/v4KDw9Xhw4dVKdOHVdPBQAAUC7lCjwXx/T8cQ2tP263Wq1KTEzUhAkTZBhcVAIAABXL5cCzceNGjRgxQtHR0Ro8eLAaNmwoSTp69KiWLFmiffv26bXXXtP58+e1cOFCrVixQldffbUeffRRtxUPAABQFi5fbpk0aZKaNGmiqVOnKiYmRsHBwQoODlbLli01depUNWrUSK+88oqio6M1bdo0denSRR9//LE7awcAACgTlwPPd999pw4dOlyyvUOHDvrmm2+KX3fr1k0///yzq6cDAABwmcuBx8/PTzt27Lhk+/bt21W1atXi10VFRapWrZqrpwMAAHCZy2N4+vfvr6VLlyosLEz33HOPIiIiJEknTpzQsmXL9Mknn+jee+8t3n/z5s1q2rRp+SsGAAC4TC4HnieffFJnz57VggUL9O677xY/fWW32+VwOHTzzTfrySeflCTl5+erZcuWatu2rXuqBgAAuAwuBx5/f3+9/vrr2r17t77++mudPHlSklS/fn116dJFLVu2dNo3KSmp/NUCAAC4wOXAc1FMTIxiYmLcUQsAAMAVwSyAAADA9Mp8hadFixYyDEPbtm2Tn5+fWrRo8V9XT7dYLNq9e3e5iwQAACiPMgeekSNHymKxqEqVKk6vAQAAvF2ZA8+oUaP+9DUAAIC3YgwPAAAwvXIFnp9//lkTJkxQr1691KFDB/3www+SpNTUVCUnJzN+BwAAeAWXA89PP/2kO+64Q5999pkiIiKUnZ2toqIiSVLNmjW1detWLVmyxG2FAgAAuMrleXheeuklVa9eXStXrpQkde7c2am9W7du+uyzz8pXHQAAgBu4HHh++OEHjRw5UjVr1lRaWlqJ9nr16un06dPlKs4b2R0O2RyersJz7Dab8vLyVFCQL9vvOsJqrVK8vAgAAN7G5cDjcDgUEBBwyfbU1FT5+fm5+vZex+FwKC0vXzmFDqkSP45vyS3QuYOHZLfbS7QFBgYrJKQm0xUAALyOy4EnJiZGGzdudFoR/aKioiKtWbNGrVu3Lldx3uSXX37R+SKHqlevoapV/SrtX+oWi2T183e6uuNwOFRQkK/s7AtX+kJDa3mqPAAASuVy4Bk+fLgefvhhTZw4Uf369ZMknTt3Tps2bdKbb76pQ4cOacKECW4r1JPsdpvS09MVXD1UQQFBni7HoyyGRVX8/FVU5HyFx8/PX5KUnZ2m6tVrcHsLAOBVXA483bp109SpU/X8888XD1x+8skn5XA4FBwcrBdeeEEdOnRwW6GeVFRkk8Mh+VU1zy26K+Fi6LHZimQY9BUAwHuUa7X022+/XTfffLO++eYbHT16VHa7XQ0bNlSXLl0UHBzsrhq9wIXbN5XzJlbZVdbbfAAA7+dy4LnrrrvUoUMHtW/fXgkJCbrpppvcWZdycnLUp08fnT59Wu+//77i4uKK21atWqX58+fr559/VmRkpMaMGaPu3bu79fwAAMA8XA481atX13vvvaf58+fLMAxFRUWpffv26tChg9q1a6c6deqUq7DZs2fLZrOV2L5mzRqNHz9eDz/8sDp27KiUlBQlJSVp6dKlio+PL9c5AQCAObkceObPny+Hw6E9e/Zoy5Yt2rJli7744gstX75cFotF9evXV4cOHTR16tTLfu+DBw9q2bJlevrppzVx4kSntunTp6tfv34aPXq0JKljx47av3+/Zs2apXnz5rn6cQAAgImV61Eai8WimJgYDRkyRNOnT9eXX36pKVOmqFGjRjpx4oQ++ugjl943OTlZd999tyIjI522Hz9+XEeOHFGfPn2ctvft21fffvutCgoKXP0oAADAxMo1aDknJ0c//vijtmzZoq1bt2rHjh0qKChQkyZNdNddd6l9+/aX/Z5r167V/v37NWPGDO3atcup7dChQ5JUIghFRUWpsLBQx48fV1RUlOsfCAAAmJLLgWfAgAHat2+fLBaLmjdvrg4dOmjo0KFq166datSo4dJ75ubmatq0aRozZkypT3llZGRIkkJCQpy2X3x9sd1VVaqUfsHLZruyc8qcOnVKS5cv0dYft+j06dMKCAhQ2zbt9OjDI1U3vK7Tvj8d/EmvT39Ne/buVmhIqG679XZddVVtTXvxea1c/r7T/t9t/laLly7S/gP7ZbFY1LpVvB4d8agiI5uUu2aLRXJcYokNq9Vyyb60Wpmf5/fK0x/0pTNX+4N+LIm+dA9+3+7jjv5wOfDs3r1bhmGoR48e6tatm9q3b69GjRqVq5g5c+aoVq1auvPOO8v1Pq4wDItq1Ch9UsG8vDxdyWXB9uzbo527/k89uvdU7dpX69SpX/TRJ6v12OgkLX53afESHmfOnNHjT4ySRRYNGjhYgYGB+nTNP1W1atUS77n287V6flqyru2QoIeHP6K8vHx9/MlqPfrYo3pn3oISQepylfbls9stMgxDoaHV/nTZEfwmJCTQ0yWYBn3pPvSle9CP7uOOvnQ58HzwwQfFt7JeffVVpaamqlatWmrXrp3at2+v9u3bq0WLFmWem+XkyZN65513NGvWLGVlZUmSzp8/X/y/OTk5Cg0NlSRlZWWpdu3axcdmZmZKUnG7K+x2hzIzz5faZrMVuvy+ZdG5Y2d17+b8WP11na/TwyNH6Kv//Uq9b+4tSVq6fImysrL09tx3dE3TZpKkvr376Z7Bdzkdez73vN6Y8br6971FT419unh7n159dO+Qe7R4ySKn7a6w2ewlrvDYbA7Z7XZlZJxXbm7JJ+ykC0GJPwR+k5mZK5ut5LpkZUFfOnO1L+nHkuhL9+D37T6X6suQkMAyX/1xOfC0bNlSLVu21NChQyVJhw8fLg5ACxYs0PPPP6/g4GD98MMPZXq/EydOqLCwUMOHDy/RNmTIELVu3VqvvPKKpAtjeZo0+e22zKFDh1S1alU1aNDA1Y8jSSWWS7iotIUy3cnf3/93NRQpJydH9etHKDi4uvYf2FcceDb/sFktY2KLw4504XbeTT1u1ger3y/etmXLD8rOzlLPHj2VnpFevN2wGoqOjtGP2/5d7povdTtLuhB8LtWXcGaz2ekrN6Ev3Ye+dA/60X3c0ZflGrR8UV5enk6dOqVTp07p559/VmpqqhwOR/EVmrKIjo7WokWLnLbt2bNHU6dO1aRJkxQXF6cGDRqocePGWrt2rXr27Fm8X0pKijp16uSzq7Pn5+dr8dJF+mxtis6cPSPH79JETnZO8b+fPn1KsTEtSxwfUT/C6fXxEyckSY8/8Vip5wsKqtzrgQEAKh+XA8+GDRv0ww8/aOvWrdq1a5eKiork7++vVq1a6b777lP79u3Vpk2bMr9fSEiIEhISSm27eDVJkkaNGqWxY8eqYcOGSkhIUEpKinbs2KElS5a4+lE87rXpr+qztSlKvPOvatkyVsFBQbJYLHpu8kTZHZefaB3/OeZ//j5BtWrWLNFutVrLXTMAAL7E5cDzyCOPKCQkRG3bttXjjz+u9u3bKzY2ttQBtO7Uv39/5ebmat68eZo7d64iIyM1c+bMywpX3mbjxq/U++Y+Snp0VPG2/IJ8ZWdnO+1Xp064Tpw8WeL4EydPOL2uX6++JKlGWJjatzPHAq4AAJSHy4Hn448/VrNmza7ogpEJCQnat29fie2JiYlKTEy8YuetaIbVkEPOg2I++PB92ezOA3+v7XCtVn/0oQ78tL94HE9mZqa+WP/5H/ZLUFBQkBYvXay2bdqpShXn/5vT0tNUI8y1qQMAAPBFLgee5s2bu7OOSq1zx876/PN1Cg4KUuNGkdq5e6e2bt2i0BDnp84G3n2vPv/ic40ZO0Z33nFn8WPpda6uo8zMTFn+s557UFCQ/jZ6rJKn/kMPDr9fPW7sqbDQMJ3+9bS+/W6T4mLjNObxv3niowIA4BFuGbSM8nls1GgZhlWf/+sLFRTkKy62lV57+XX97aknnParc3UdTX9tut6Y8bqWLF2ssLAw3XH7AAUEBOiNGa87Ddq+qefNuuqqq7Rk2RItf2+ZCgoLVPuq2mrVqrX69u5X0R8RAACPIvB4gerB1fXM038vsX3Vex+U2HZN02aa+cZsp23TZ14IO3+ch6hNfFu1iW/r3mIBAPBBzF3tY/Lz851eZ2RkaN0X69QqrhVPXwEAcAlc4fExD48crjbxbdSoYWOlpqVqzWefKicnR0MH3+/p0gAA8FoEHh/TMaGTvvrfr/TJp5/IYrGo2TXNNO7JZxTfOt7TpQEA4LUIPD5mxEMPa8RDD3u6DAAAfApjeAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkxD085GVZDhmGp8PPa7Q7ZbfbLPu7EyRN6b8Uy7dq9S4cPH1bDhg21aMESp33y8vL07uIF+nLDl0pNPafata9Wn159NPCee1XVqOqujwAAQIUh8JSDYTVUq3aYLEbFXyhz2O06dyb9skPP4cOH9e133yo6OkZ2h0MOe8njX3vjVW38+isNf3CEGjdurJ27duqdBW8rLy9PI4Yz6SEAwPcQeMrBMCyyGIYyThyV7Q+Lel5JVn9/hUY0kmFYZLdd3rHXdb5OXbt0lSRNmZasffv2OrXb7XZ9+dV63XPXQA24405JUts27XT8+DGt3/AvAg8AwCcReNzAlp+vorxcT5dRJsZ/uRrlcDhks9kUFBTktD0oKFgOx5WsDACAK4dBy3BitVrVp1dfffjRB9qzd4/O557Xlq0/aN0X6zTg9js9XR4AAC7hCg9KeGL03/Tyay9p+CPDircNGjhYd//1bg9WBQCA6wg8KOHNeXP07Xeb9PTYcYqIaKBdu3fp3UXvqHr16rp34CBPlwcAwGUj8MDJocOH9N6K5Zo25QVd17mLJCm+dbxstiK9/c583XH7HQrxD/BwlQAAXB7G8MDJkSOHJUlNm17jtP2apteooLBAv/56xhNlAQBQLgQeOKlTJ1yStH//fqft+/bvk8ViUXh4uCfKAgCgXLil5QZWf3+fOV9eXp6+3fytJOn06VPKOX9eGzZukHTh1lWL5i3UonkLvfzqi0pLS1X9+hHavWeXlixbrL59+ikggNtZAADfQ+ApB7v9wkzFoRGNKvzcDrtddvvlT4yTlp6mCc/9j9O2i6+nvzZDbeLbatrzL2r+O/O0eOkipaWn6eqrr9bAu+/VvfcwYBkA4JsIPOVgt11Y3sGX1tKqG15XX2/45k/3qVWzlp4eO87V0gAA8DoEnnKy2+yXvbwDAACoWAxaBgAApkfgAQAApkfgAQAApkfgAQAApkfgAQAApkfgAQAApkfgAQAApkfgAQAApsfEg+VkWA2fmml5w1df6vMv1mnf/n3Kys5SRP0I/WVAovr26SeL5cLnGDU6Sdu2/1ji2CULl6lx48blLR0AgApH4CkHw2qoZu0wGUbFXyiz2+1KPZN+2aFnxar3FB5eVyMfSVJYWA39sPV7vfjKC/r1zK+6f+gDxfvFxbbSyEdGOh3LSukAAF9F4CkHw7DIMAyd2rZDBdnZFXZev+Bghce3kmFYLntZi2nPv6iw0LDi1+3atlNmRqZWrHpPQwffVxzegoOD1TIm1o1VAwDgOQQeNyjIzlZ+ZpanyyiT34edi665ppn+ueYT5eXlqlq1oIovCgCAK4zAA/3f/21X7atqO4Wdbdt/1E19eshusys6OkbDHnhI8a3jPVckAADlQOCp5Hb833at37BeIx9JKt4W3zpevW/urYiICJ09e1bvrVyuMWMf14zXZykuLs6D1QIA4BoCTyX265lfNXHyBLWJb6u/DEgs3v7g/cOc9uvc6ToNuX+QFi5eoJdffLWiywQAoNyYh6eSysrO0pNP/00hIaFKnjTlT580CwwMVKeOnbVv/74KrBAAAPfhCk8llJ+fr6efeUrZOTl6c+ZbCg4O9nRJAABcUQSeSqbIVqQJk8br6LEjmvnGbNWuXfu/HpObm6tN332jFs2jK6BCAADcj8BTybz62iva9O03GvnIKJ0/n6Ndu3cWt13TtJn27N2t5SuWqWuXbqobHn5h0PKq95SamqrJE5M9WDkAAK4j8LiBXwXfEirP+X7Y8r0kadacGSXaVi5/X7VqXaXCwiLNnf+WMjMzFBAQqNiWsRo75knFRMe4fF4AADyJwFMOdrtDdrtd4fGtPHBuu+x2x2Uft+q9D/7rPq/wJBYAwGQIPOVgt11Yz8qXFg8FAKAyIvCUk91mv+z1rAAAQMViHh4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6TDxYTobV8KmZlr/9bpOWLl+qI0eP6Pz5HF11VW11va6r7h/6gIL/s0bXlGnJWrvusxLHvvzCK+rYsVO5awcAoKIReMrBsBqqeVWYDGvFXyiz2+xKPZt+2aEnMytLMdEx+suAvyg0NFSHDh/Sgnff0eEjh/TqS68X71evXj1NeHai07GNGjZ2Q+UAAFQ8Ak85GIZFhtXQzk+/Us65jAo7b1CtUMX2v0GGYbnsZS163dRLuqlX8es28W1VtaqfXnrlBZ09e0ZXXVVbkuTv56+WMbHuLBsAAI8h8LhBzrkMZf16ztNluCw0JESSVFhU5OFKAAC4Mgg8lZTNZlORrUhHjhzRu4sWqEvnLqobXre4/eTJk+rd/2bl5+erSWSUhg65T9d3ud6DFQMA4DoCTyWVePedOnP2jCQp4dqOmvA/zxW3NWvaTNHNoxUZGams7Gx99PFqPTv+GU1+Llk3dr/RQxUDAOA6Ak8l9eK0l5WXl6fDRw5p0eKFGvfsU3r1pddltVqV+Je/Ou3bpXMXPZI0Qm8vmE/gAQD4JObhqaSaRjVVbMtY3dLvVk1NnqZ///hv/e//+99S9zUMQ92uv0FHjx5Rfn5+BVcKAED5EXigqKimqlKlik6ePOHpUgAAuCK8KvB89tlneuSRR3T99dcrPj5et912m95//305HA6n/VatWqVevXopLi5Ot956qzZs2OChis1h955dKioqUr269Uptt9vt+mrjBkU2jpS/v38FVwcAQPl51Ried999V/Xr19e4ceNUo0YNbdq0SePHj9epU6eUlJQkSVqzZo3Gjx+vhx9+WB07dlRKSoqSkpK0dOlSxcfHe/YD+IBnJzyj5s1aKCqqqfz9/PXTwZ+0fMUyRTVpqq5drtepU6c0ZVqyet7YU/XrRygrO0sffbxae/ftVfKkKZ4uHwAAl3hV4JkzZ45q1qxZ/LpTp05KT0/XggUL9Oijj8owDE2fPl39+vXT6NGjJUkdO3bU/v37NWvWLM2bN88jdQfVCvWZ80W3iNGXG9Zr6fIlctgdCg8P1y39btE9dw1U1apVVa1aNQUHBWnRkoVKS09TlSpV1KJ5C7007RUlXJvgxk8BAEDF8arA8/uwc1F0dLRWrlyp8+fPKy0tTUeOHNGTTz7ptE/fvn314osvqqCgQH5+fhVVbvF6VrH9b6iwcxaf22aX3e747zv+waCBgzVo4OBLtoeEhGjqlBfKUxoAAF7HqwJPabZu3ao6deooODhYW7dulSRFRkY67RMVFaXCwkIdP35cUVFRFVbbxfWsfGnxUAAAKiOvDjxbtmxRSkqKnn76aUlSRsaF9apC/rMUwkUXX19sd1WVKqWP4bbZLj22226zX/Z6VmZgsUiOS1xgslotl+xLqwcWWvVm5ekP+tKZq/1BP5ZEX7oHv2/3cUd/eG3gOXXqlMaMGaOEhAQNGTLkip/PMCyqUSOo1La8vDydPn3FS/AppX357HaLDMNQaGg1BQQEeKAq3xMSEujpEkyDvnQf+tI96Ef3cUdfemXgyczM1EMPPaSwsDDNmDFDhnHhL9fQ0AuDdbOyslS7dm2n/X/f7gq73aHMzPOlttlshS6/r1nZbPYSV3hsNofsdrsyMs4rN7f0y15Wq8EfAr+TmZkrm4u3JulLZ672Jf1YEn3pHvy+3edSfRkSEljmqz9eF3jy8vI0YsQIZWVlacWKFapevXpxW5MmTSRJhw4dKv73i6+rVq2qBg0alOvcRUWlfzHtdsbK/NGlbmdJF4LPpfoSzmw2O33lJvSl+9CX7kE/uo87+tKrbhIWFRVp9OjROnTokObPn686deo4tTdo0ECNGzfW2rVrnbanpKSoU6dOFfqEFgAA8B1edYVn0qRJ2rBhg8aNG6fs7Gxt27atuC0mJkZ+fn4aNWqUxo4dq4YNGyohIUEpKSnasWOHlixZ4rnCAQCAV/OqwPPNN99IkqZNm1aibf369YqIiFD//v2Vm5urefPmae7cuYqMjNTMmTPVpk2bii4XAAD4CK8KPF9++WWZ9ktMTFRiYuIVrgYAAJiFV43hAQAAuBK86gqPLzKshs/OtHw+97wGDRmoM2fPaN6b89WiebQkadToJG3b/mOJ/ZcsXKbGjRuX65wAAHgCgaccDKuhmleFyfDAjJgXl7UoT+hZuOhd2Wylz5cTF9tKIx8Z6bQtPDzc5XMBAOBJBJ5yMAyLDKuhdXM/Uuov5yrsvDXr1lKv4bfLMCwuL2tx9NhRrf7oQ418JEkvv/ZSifbg4GC1jIktZ6UAAHgHAo8bpP5yTmeOnfJ0GZfl9emv6rZbb1fDhg09XQoAAFccg5YroQ0bN+jQoUO6b8j9l9xn2/YfdVOfHupxc3clPT5S27Zvq7gCAQBwM67wVDJ5eXmaOXuGhg8boaCg0hdLjW8dr94391ZERITOnj2r91Yu15ixj2vG67MUFxdXwRUDAFB+BJ5KZuHid1WzRg317dPvkvs8eP8wp9edO12nIfcP0sLFC/Tyi69e6RIBAHA7bmlVIqdOndKKVe/pgfseVHZOtrKys3Q+N1eSlJubq/O5pa8WHxgYqE4dO2vf/n0VWS4AAG7DFZ5K5JdTP6uwsFBPPfNkibbHxoxSTHSM3po9zwOVAQBwZRF4KpGmTa/R9NdmOG078NMBzZg1XWPHPKkWLaJLPS43N1ebvvumeGJCAAB8DYHHDWrWreUT56seXF1t4tuW2ta8eXM1b9Zc23ds0/IVy9S1SzfVDQ+/MGh51XtKTU3V5InJ5SkbAACPIfCUw8XlHXoNv73iz22zy253uP19a9W6SoWFRZo7/y1lZmYoICBQsS1jNXbMk4qJjnH7+QAAqAgEnnK4uLyDr66lJUlt4tvq6w3fFL+OqB+hV3gSCwBgMgSecrLb7C4v7wAAACoGj6UDAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTY+LBcjKshk/NtJyydo2mvvB8ie333jNIDw9/RJI0anSStm3/scQ+SxYuU+PGjS/7nAAAeBqBpxwMq6EaV4XKarVW+LltNpvSzma4vLzEyy+8quDgoOLXV11V26k9LraVRj4y0mlbeHi4S+cCAMDTCDzlYBgWWa1WvTVlvn4+eqrCzluvUbhGPDtMhmFxeVmL5s2bKyw07JLtwcHBahkT69qbAwDgZQg8bvDz0VM6euCYp8sAAACXQOCppIbcP0gZGRmqUydct/S7RQPvvtfp1ty27T/qpj49ZLfZFR0do2EPPKT41vGeKxgAgHIg8FQytWpepQfue1Ax0S1lsUjfbPp/mv/OPJ09e0ZjHv+bJCm+dbx639xbEREROnv2rN5buVxjxj6uGa/PUlxcnIc/AQAAl4/AU8kkXJughGsTil9f2yFBfv7+WrVqpQYPGqqral2lB+8f5nRM507Xacj9g7Rw8QK9/OKrFV0yAADlxjw80I039JDNbtNPPx0otT0wMFCdOnbWvv37KrgyAADcg8ADAABMj8ADrf/yX7IaVl1zTbNS23Nzc7Xpu2/Uonl0BVcGAIB7MIanknniyTFq17admkQ2kXRh0PInn36iv9yZqFo1a2n7jm1avmKZunbpprrh4RcGLa96T6mpqZo8MdnD1QMA4BoCjxvUa1SxMxCX53yNGjbSpymf6syZX+WwOxTRoIEeG/m47hzwF0lSrVpXqbCwSHPnv6XMzAwFBAQqtmWsxo55UjHRMe76CAAAVCgCTznY7Q7ZbDaNeHbYf9/ZzWw2m+x2x2Uf9/io0Xr8T9oj6kfoFZ7EAgCYDIGnHOw2u9LOZvjU4qEAAFRGBJ5ystvsLq9nBQAAKgZPaQEAANMj8AAAANMj8AAAANMj8AAAANMj8AAAANMj8AAAANMj8AAAANMj8AAAANNj4sFyMqyGT860/NnaFK36YKWOHj2qwMBAtWgRrSmTn5e/v7+mTEvW2nWflTjm5RdeUceOncpTNgAAHkHgKQfDaqhGrVBZq1gr/Ny2IpvSzmW4FHoWLVmopcuXaPC9Q9QyJlYZGena+u+tsv1uyuh69eppwrMTnY5r1LBxecsGAMAjCDzlYBgWWatYNW7MJB0+eKTCzhsZ1VjTXpsow7Bc9rIWx44d1Tvvvq1pU15Qx4Tfrtbc0K27037+fv5qGRPrjnIBAPA4Ao8bHD54RHt27fd0GWWSsjZFdevWcwo7AACYHYGnktm1e5eiIpto4eJ39f6Hq5Sdna0WzaOV9OgotYxpWbzfyZMn1bv/zcrPz1eTyCgNHXKfru9yvQcrBwDAdQSeSiY19Zz27d+rg4cP6YnRYxXg76/FSxfrb0+N0fLFK1SjRg01a9pM0c2jFRkZqazsbH308Wo9O/4ZTX4uWTd2v9HTHwEAgMtG4Klk7A6HcnNz9Y/nktU0qqkkqWVMrBLvuVMfrH5fwx54SIl/+avTMV06d9EjSSP09oL5BB4AgE9iHp5KpnpwdYWGhBaHHUkKCQnRNU2b6ciRw6UeYxiGul1/g44ePaL8/PyKKhUAALch8FQykY0jL9mWX1BQgZUAAFBxCDyVTOdOnZWRmaEDP/32VFlGRob2H9in5s2al3qM3W7XVxs3KLJxpPz9/SuqVAAA3IYxPJVM1y7XK7pFtMZP/B899OBw+fv7a8myxfKr6qc7bh+gU6dOacq0ZPW8safq149QVnaWPvp4tfbu26vkSVM8XT4AAC4h8LhBZFRjnzmfYRh6cdrLmjFrul5+9SUVFhWqVVxrzXhjlmrVrKXMzEwFBwVp0ZKFSktPU5UqVdSieQu9NO0VJVyb4L4PAQBABSLwlIPd7pCtyKZpr0387zu7ma3IJrvd4dKxYaFhGv/3CaW2hYSEaOqUF8pTGgAAXofAUw52m11p5zJ8cvFQAAAqEwJPOdlt9stezwoAAFQsntICAACmR+ABAACmR+ABAACmR+ApkwuDkl17JqrycDjoIQCAdyLwlEGVKlZZLFJBIUsv/JmCggvrbFmtjIUHAHgX/mYqA8OwKiwsTOfOnJXsDlWt6ieLpeIfRfcGFotkt1hks/12NcfhcKigIF/Z2WkKDAyWYZCjAQDehcBTRnXr1lVu2jllZaVd+Fu/krJYLDKqVJXdXnIOoMDAYIWE1PRAVQAA/DkCTxlZLBbVCPBXkMMmWyUeqmL191NYw0hlZJx3uspjtVbhyg4AwGv5ZOA5ePCgkpOT9eOPPyooKEi33XabRo8eLT8/vyt+bsNikQcmVvYaVaxWBQQEKDfXpqIiZnoGAPgGnws8GRkZGjp0qBo3bqwZM2bo9OnTmjZtmvLy8jRhQunrQwEAgMrN5wLPe++9p5ycHM2cOVNhYWGSJJvNpkmTJmnEiBGqU6eOZwsEAABex+cGXfzv//6vOnXqVBx2JKlPnz6y2+365ptvPFcYAADwWhaHj80W16lTJ915550aO3as0/auXbvqtttuK7G9rBwOh+z20rvCYpEMw5C9qLDST673+6e0XOmKi31ZlJ8vl97ALCwWVfH3d7kf//MWMgxDBTm5pT41V1kYhiG/oMByfyfPZ+bIbqvcKwEbVquqhQSVuy8z0zJVVFR5+7JKFatCaoS45fd97lyaigoL3VugD6lStapq1apxyb40DEuZp4nxuVtamZmZCgkJKbE9NDRUGRkZLr+vxWKR1frnnWZUqery+5tNeZ/IquLv76ZKfJs7nmzzCwp0QyW+r7x9WS0kyE2V+L7y9mVIjZJ/RldG7vh916pVww2V+D539KXP3dICAAC4XD4XeEJCQpSVlVVie0ZGhkJDQz1QEQAA8HY+F3iaNGmiQ4cOOW3LysrSmTNn1KRJEw9VBQAAvJnPBZ7rr79emzZtUmZmZvG2tWvXyjAMXXfddR6sDAAAeCufe0orIyND/fr1U2RkpEaMGFE88eAtt9zCxIMAAKBUPhd4pAtLS/zjH/9wWlpizJgxFbK0BAAA8D0+GXgAAAAuh8+N4QEAALhcBB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6PrdautkdPXpUb7/9trZv364DBw6oSZMm+vTTT532yc3N1ezZs5WSkqKzZ88qPDxcd9xxh4YNG6YqVfi/VJI+++wzffLJJ9q1a5cyMzPVqFEjDR48WHfeeacsFoskafDgwfr+++9LHJuSkqKoqKiKLtkrbdy4UfPmzdNPP/2k7Oxs1alTRz179lRSUpKqV68uSRo3bpxWr15d4th58+bp+uuvr+iSfUZOTo769Omj06dP6/3331dcXJwkvpdl8eGHH+qZZ54psf2hhx7S2LFjJdGPl2P16tVauHChDh48qGrVqikuLk4zZ85UQECAqX7f/O3oZQ4cOKCNGzeqdevWstvtKm2apMmTJ+vzzz/XE088oaioKG3btk3Tp09Xbm6uxowZ44Gqvc+7776r+vXra9y4capRo4Y2bdqk8ePH69SpU0pKSirer23btnr66aedjo2IiKjocr1Wenq6WrVqpcGDByssLEwHDhzQjBkzdODAAb3zzjvF+zVo0EAvv/yy07H8pfLnZs+eLZvNVmob38uymT9/fnHwlqQ6deo4tdOP/92cOXM0b948Pfzww4qPj1daWpq+/fZbp++mWX7fBB4vc+ONN6pnz56SLvyX886dO53a7Xa7PvvsMz344IO69957JUkdO3bU4cOHtWbNGgLPf8yZM0c1a9Ysft2pUyelp6drwYIFevTRR2UYF+7mhoSEKD4+3kNVer/bbrvN6XVCQoL8/Pw0fvx4nT59uvgvmICAAPrxMhw8eFDLli3T008/rYkTJ5Zo53tZNi1btnT6nf8R/fjnDh06pJkzZ2r27Nnq1q1b8fZevXo57WeW3zdjeLzMxb+IL8XhcKioqMjpv2okqXr16qVeDaqsSvtDMDo6WtnZ2Tp//rwHKjKPsLAwSVJhYaFnC/FhycnJuvvuuxUZGenpUlCJffjhh4qIiHAKO2ZG4PExVqtVAwYM0JIlS7Rjxw7l5ORo06ZN+vjjjzVo0CBPl+fVtm7dqjp16ig4OLh42/fff6/4+HjFxcVp0KBB+uGHHzxYofey2WzKz8/Xrl27NGvWLN14441OtwaOHj2qdu3aKTY2VgMGDNC//vUvD1br3dauXav9+/dr5MiRl9yH72XZ9O/fX9HR0erRo4feeuutErcI6cc/t337djVr1kyzZ89Wp06dFBsbq7vvvlvbt2932s8sv29uafmgiRMnauLEiUpMTCzeNmLECN1///0erMq7bdmyRSkpKU738zt06KDbbrtNjRs31q+//qq3335b999/vxYvXqw2bdp4sFrv0717d50+fVqS1LVrV73yyivFbdHR0YqLi1PTpk2VlZWl5cuXa+TIkXrjjTfUu3dvT5XslXJzczVt2jSNGTPGKXj/Ht/L/6527doaNWqUWrduLYvFoi+//FKvv/66Tp8+rQkTJkiiH8vizJkz2rlzp/bv36+JEycqMDBQb775ph544AF9/vnnqlWrlrl+3w54raefftrRr1+/EtunTZvmuO666xwrV650fP/99465c+c6Wrdu7Zg3b54HqvR+v/zyi6NLly6OoUOHOmw22yX3y8nJcXTv3t0xbNiwCqzON+zZs8fx73//27Fy5UpH9+7dHYMHD3YUFRWVuq/NZnMkJiY6+vTpU8FVer9XXnnFMWDAAIfdbnc4HA7Hd99952jWrJljx44dlzyG72XZTJs2zREdHe04ffp0qe30Y0k333yzo1mzZo49e/YUb0tLS3O0adPG8frrr5d6jC//vrml5WP279+vd955R5MnT1ZiYqI6dOighx56SCNGjNAbb7yh7OxsT5foVTIzM/XQQw8pLCxMM2bM+NMxUtWqVVO3bt20a9euCqzQN7Ro0UJt2rRRYmKiZs+erc2bN+uLL74odV/DMHTzzTfr4MGDysvLq+BKvdfJkyf1zjvv6LHHHlNWVpYyMzOLx5OdP39eOTk5pR7H97Js+vTpI5vNpj179pTaTj+WFBISorCwMLVo0aJ4W1hYmGJiYvTTTz+Veowv/765peVjLn4Jo6OjnbbHxMSooKBAp0+fvuSl8somLy9PI0aMUFZWllasWFFioDdc07x5c1WtWlXHjh3zdCk+5cSJEyosLNTw4cNLtA0ZMkStW7fWypUrPVAZKqumTZte8necn59fwdVceQQeH1O/fn1J0q5du1S3bt3i7Tt37pTFYlG9evU8VZpXKSoq0ujRo3Xo0CEtXbq0xPwcpTl//ry++uqr4gngULrt27ersLDwkvOZ2O12rV27Vtdcc40CAgIquDrvFR0drUWLFjlt27Nnj6ZOnapJkyZd8nvH97JsUlJSZLVaFRMTU2o7/VhS9+7d9eGHH2rPnj3F/xGdlpamXbt26b777iv1GF/+fRN4vExubq42btwo6cIl8OzsbK1du1aSdO211yo2NlaxsbGaOHGizp07p4YNG2rHjh2aO3eu7rzzTgUGBnqyfK8xadIkbdiwQePGjVN2dra2bdtW3BYTE6MdO3Zo/vz5uummm1S/fn39+uuvWrBggc6cOaM33njDc4V7maSkJMXGxqp58+YKCAjQ3r179fbbb6t58+bq2bOnTp48qXHjxqlfv35q1KiRMjIytHz5cu3cuVMzZszwdPleJSQkRAkJCaW2tWzZUi1bttSWLVv4XpbBgw8+qISEBDVv3lyStH79eq1cuVJDhgxR7dq16ccy6tmzp+Li4vTYY49pzJgx8vf319y5c+Xn56eBAwea7vdtcTiYvMWbnDhxQj169Ci1bdGiRUpISCj+0W7atEnnzp1TeHi4+vfvr4ceesjnEveVcuONN+rkyZOltq1fv142m02TJ0/Wvn37lJ6ersDAQLVp00ZJSUlq1apVBVfrvebOnauUlBQdO3ZMDodD9evX10033aQHH3xQwcHBSk9P1zPPPKPdu3fr3Llzqlq1qmJjYzV8+HB17drV0+V7vc2bN2vIkCHFS0scPXqU72UZJCcn6+uvv9apU6dkt9vVuHFjJSYmavDgwbJYLPTjZUhNTdXUqVO1YcMGFRYWqn379nrmmWfUtGlT0/2+CTwAAMD0eEoLAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHgM84efKknnvuOfXq1UutWrVSQkKCHnvsMZ04caLEvnv37tWgQYPUqlUrXX/99Zo9e7Y++OADNW/evMT+Gzdu1MCBAxUfH682bdpo+PDhOnDgQEV9LAAVgMVDAfiMtWvXas6cOerRo4fCw8N18uRJLV++XMHBwVqzZo0CAwMlSadPn9att94qSRo8eLCqVaumVatWyc/PT3v37tX69esVEREhSfroo480btw4denSRTfccINyc3O1fPlyZWVlafXq1cX7AfBtBB4APiMvL08BAQFO27Zt26a77rpLL7zwgm6//XZJUnJyspYsWaLVq1crOjpakpSenq5evXopPT29OPDk5OTohhtuUO/evfWPf/yj+D3Pnj2r3r17q0+fPk7bAfgubmkB8Bm/DzuFhYVKS0tTw4YNFRISot27dxe3ff3114qPjy8OO5IUFhamW265xen9Nm3apMzMTPXr10+pqanF/xiGodatW2vz5s1X/kMBqBBVPF0AAJRVXl6e3nrrLX344Yc6ffq0fn+BOisrq/jfT548qfj4+BLHN2zY0On1kSNHJElDhw4t9XzBwcHlLxqAVyDwAPAZ//jHP/Thhx9q6NChio+PV/Xq1WWxWDRmzBi5cnf+4jEvvviiateuXaLdarWWu2YA3oHAA8BnrFu3TrfffrvGjRtXvC0/P9/p6o4k1a9fX0ePHi1x/LFjx5xeN2jQQJJUq1Ytde7c+QpUDMBbMIYHgM8o7YrL4sWLZbPZnLZ16dJF27Zt0549e4q3paen65///KfTfl27dlVwcLDeeustFRYWlnjv1NRUN1UOwNO4wgPAZ9xwww36+OOPFRwcrKZNm2rbtm3atGmTwsLCnPYbNmyYPvnkE91///0aNGhQ8WPpdevWVXp6uiwWi6QLY3See+45PfXUUxowYID69u2rmjVr6ueff9bGjRvVtm1bTZgwwQOfFIC7EXgA+Ixnn31WhmHon//8p/Lz89W2bVstWLBAw4YNc9qvbt26WrRokZKTk/XWW2+pZs2auvfeexUYGKjk5GT5+/sX73vLLbfo6quv1ty5c/X222+roKBAderUUfv27TVgwICK/ogArhDm4QFQaUyZMkUrVqzQjz/+yIBkoJJhDA8AU8rLy3N6nZaWpk8++UTt2rUj7ACVELe0AJjSXXfdpWuvvVZRUVE6e/asPvjgA2VnZ+vRRx/1dGkAPIBbWgBM6dVXX9W6det06tQpWSwWxcTEKCkpicfPgUqKwAMAAEyPMTwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0/j+7t10DoPpkoAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(data=people, x=\"age\", y=\"weight\", hue=\"age\")"
]
},
{
"cell_type": "markdown",
"id": "continental-franklin",
"metadata": {},
"source": [
"I'm trying to find out at what age, on average, do people experience a dramatic\n",
"weight gain or loss, if at all.\n",
"I'm curious to find out if such a dramatic increase or decrease in weight can\n",
"be captured in a one-time snapshot database, where individuals are NOT tracked \n",
"over a period of time, but ONLY once."
]
},
{
"cell_type": "markdown",
"id": "infinite-instrument",
"metadata": {},
"source": [
"# Methods and Results"
]
},
{
"cell_type": "markdown",
"id": "recognized-positive",
"metadata": {
"jp-MarkdownHeadingCollapsed": true
},
"source": [
"Since this chart of this dataset shows that an age 65+ person, on average, is closer in weight to an age 18 to 30 person, does that mean he or she is as healthy?"
]
},
{
"cell_type": "markdown",
"id": "graduate-palmer",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "endless-variation",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
" \n",
"✏️ *Write your answer below:*\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "portuguese-japan",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "negative-highlight",
"metadata": {},
"outputs": [],
"source": [
"#######################################################################\n",
"### 💻 YOUR WORK GOES HERE TO ANSWER THE FIRST RESEARCH QUESTION 💻 \n",
"### \n",
"### Your data analysis may include a statistic and/or a data visualization\n",
"#######################################################################"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "victorian-burning",
"metadata": {},
"outputs": [],
"source": [
"# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON "
]
},
{
"cell_type": "markdown",
"id": "collectible-puppy",
"metadata": {},
"source": [
"## Second Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n"
]
},
{
"cell_type": "markdown",
"id": "demographic-future",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "incorporate-roller",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
"\n",
"✏️ *Write your answer below:*\n"
]
},
{
"cell_type": "markdown",
"id": "juvenile-creation",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "pursuant-surrey",
"metadata": {},
"outputs": [],
"source": [
"#######################################################################\n",
"### 💻 YOUR WORK GOES HERE TO ANSWER THE SECOND RESEARCH QUESTION 💻 \n",
"###\n",
"### Your data analysis may include a statistic and/or a data visualization\n",
"#######################################################################"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "located-night",
"metadata": {},
"outputs": [],
"source": [
"# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON "
]
},
{
"cell_type": "markdown",
"id": "infectious-symbol",
"metadata": {},
"source": [
"# Discussion"
]
},
{
"cell_type": "markdown",
"id": "furnished-camping",
"metadata": {
"code_folding": []
},
"source": [
"## Considerations"
]
},
{
"cell_type": "markdown",
"id": "bearing-stadium",
"metadata": {},
"source": [
"*It's important to recognize the limitations of our research.\n",
"Consider the following:*\n",
"\n",
"- *Do the results give an accurate depiction of your research question? Why or why not?*\n",
"- *What were limitations of your datset?*\n",
"- *Are there any known biases in the data?*\n",
"\n",
"✏️ *Write your answer below:*"
]
},
{
"cell_type": "markdown",
"id": "beneficial-invasion",
"metadata": {},
"source": [
"## Summary"
]
},
{
"cell_type": "markdown",
"id": "about-raise",
"metadata": {},
"source": [
"*Summarize what you discovered through the research. Consider the following:*\n",
"\n",
"- *What did you learn about your media consumption/digital habits?*\n",
"- *Did the results make sense?*\n",
"- *What was most surprising?*\n",
"- *How will this project impact you going forward?*\n",
"\n",
"✏️ *Write your answer below:*"
]
}
],
"metadata": {
"jupytext": {
"cell_metadata_json": true,
"text_representation": {
"extension": ".Rmd",
"format_name": "rmarkdown",
"format_version": "1.2",
"jupytext_version": "1.9.1"
}
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}