From d199b194884cb00be09182c0b7dc6ff96313c168 Mon Sep 17 00:00:00 2001 From: njmason2 Date: Tue, 4 Nov 2025 04:05:17 -0500 Subject: [PATCH] proposal.md argument.ipynb --- .ipynb_checkpoints/argument-checkpoint.ipynb | 93 +++++++------------- argument.ipynb | 93 +++++++------------- proposal.md | 7 +- 3 files changed, 64 insertions(+), 129 deletions(-) diff --git a/.ipynb_checkpoints/argument-checkpoint.ipynb b/.ipynb_checkpoints/argument-checkpoint.ipynb index 4c937bb..a56fb0e 100644 --- a/.ipynb_checkpoints/argument-checkpoint.ipynb +++ b/.ipynb_checkpoints/argument-checkpoint.ipynb @@ -10,10 +10,10 @@ }, { "cell_type": "markdown", - "id": "fabbf3b9-fd14-4b2d-917d-1f6fee08784c", + "id": "95683a23-56f0-4077-b631-94e456daa8f4", "metadata": {}, "source": [ - "Argument Project Research - Nelson Mason - November 3, 2025" + "Argument Project Research - Nelson Mason - November 4, 2025" ] }, { @@ -58,6 +58,14 @@ "people = pd.read_csv(\"data/brfss_2020_cleaned.csv\")" ] }, + { + "cell_type": "markdown", + "id": "77e81e19-a1dd-43f1-bf6a-69ffa08add94", + "metadata": {}, + "source": [ + "There is a progression of age in terms of the numbers of persons participating in this survey." + ] + }, { "cell_type": "code", "execution_count": 10, @@ -91,11 +99,10 @@ }, { "cell_type": "markdown", - "id": "92404f8d-3c67-4d7b-8781-2f8725609eed", + "id": "376d050c-1088-414a-9a33-037e9d8a97cc", "metadata": {}, "source": [ - "I want to see a count of people by every age group.\n", - "Is this distribution of any significance?" + "Most persons weigh around 75 kgs. in this survey." ] }, { @@ -131,10 +138,10 @@ }, { "cell_type": "markdown", - "id": "40a0464f-92b4-4a09-9264-15ababbe8591", + "id": "7fbdae7b-c7c0-472a-a52f-87d158129e25", "metadata": {}, "source": [ - "I want to see a count of people by weight (kg). Is this distribution of any significance?" + "There is no individual timeline in this dataset, and therefore no direct relationship between age and weight." ] }, { @@ -155,7 +162,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAG5CAYAAACKmu5sAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQUZJREFUeJzt3Xl4FFXe9vG7qyELCUkAkQBhCUEgIYGwGUAQERQQ3HAyKrK4ICgEBQdHHB9AmCC4K6sCiuwCKupIAB1EHl9RFEbgYUd2UBDIHrJ29/sHQ8Y2wQmdJt1d+X6uy2vsOlVdvz7TDbdVp86xOBwOhwAAAEzM8HQBAAAAVxuBBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmF4VTxfgLRwOh+x2Jp0GAMBXGIZFFoulTPsSeP7NbncoNTXH02UAAIAyqlkzSFZr2QIPt7QAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAwMMWLpyvAQP6a+HC+Z4uBTAti8PhcHi6CG9gs9mVmprj6TIAeIBhWGQYFo+cOz8/X4MG3Su73S7DMLR48Qr5+/t7pBZJstsdstv5awG+oWbNIFmtZbt2U+Uq1wLAxBYunK/161PUq9dtGjJkqKfLcYlhWFQjrJqMMv6h6W7Z2Q7Z7XZJkt1uV3Cwn4KDgzxSiyTZbXalpV8g9MB0CDwAXJKfn69161LkcNi1fn2K7rtvkEevTLjKMCwyrIbWz/1Yqb+cr/DzF9mKZJFFDjlkkUWrX1qqKlbP/NFcs24t9Rp2lwzDQuCB6RB4AB/m2VsxNjkc/7kyIdlUpYpnrpK44zZM6i/ndfb4aTdVdGUiq9fXkaxTiqxeX2mnznmkBsDsCDyAjzIMi2rUqCbD8EzIqFrVOWCEhQV57FaM3W5XWprv3oaJq9VMcbWaeboMwNQIPICPunh1x9Cuz75SzvmMCj9/QVGhLBaLHA6HDItFP65YJ78qVSu8jqBaoYrtdxO3YQD8IQIP4ONyzmco69eKH3siSe0aNtO24wfUtmEz5admKt8jVQD/YYaB9Lg6CDwAXHZLdHvdEt3e02XAi3j6Ef/161Nkt18cSD9w4BCPDaTn8X7vQ+ABALiFYVgUFhYoq9XqkfPn5TmfNyysmgICAjxSi81mU3p6LqHHixB4AABuYRgWWa1WvT1lvn4+5pkn3sKr19PPGacUXr2epj7xikdqqNcoXMOfG8q4Mi9D4AEAuNXPx07r2MHjHjm3Vf5qoCZSmnQszTM1wDuxlhYqHdYtAoDKh8CDSuXS7MCXBjXm5/NcEQBUBtzSQoVjdmD9+/w8xQEAFYXAgwrF7MD/4euzAwOALyHwoEJdmh349PadKsjOrvDz5xcU/Gd2YMPQL99vlb+fX4XX4RccrPD4VjzFAQAVhMADjyjIzlZ+ZpZHzt29TVt99eO/dFN8GykvX/l5jOMBALMj8KDS+XP3Hvpz9x6eLgMAUIF4SgsAAJgegQcAAJgegQcAAJgegQcAAJie1wWeDRs2KDExUW3atFGXLl305JNP6sSJEyX2W7VqlXr16qW4uDjdcccd2rhxoweqBQAAvsCrAs+WLVuUlJSkpk2batasWfrb3/6mffv26eGHH1ZeXl7xfmvWrNH48ePVp08fzZs3T/Hx8UpKStL27ds9VzwAAPBaXvVY+po1a1SvXj298MILslguLj1Qs2ZNDRkyRLt27VL79u0lSdOnT1ffvn01evRoSVLHjh114MABzZo1S/PmzfNU+QAAwEt51RWeoqIiBQUFFYcdSapevbokyeG4OBvtiRMndPToUfXp08fp2Ntuu03ffvutCgoKKq5gAADgE7zqCk///v31ySefaOnSpbrjjjuUnp6u1157TTExMWrbtq0k6fDhw5KkyMhIp2OjoqJUWFioEydOKCoqqsJrBwDAnTy50LIkLVgwT2vXrlGfPn310EOPeqwOdy207FWBp3379po5c6b+8pe/aPLkyZKk6OhozZ8/X1arVZKUkZEhSQoJCXE69tLrS+2u8NSq2ZWJ1Uof/1Z5+oO+dOZqf9CPJdGX7lGe/rBYLKpe3b/4776KlpeXp7Vr18hut2vt2jUaMeIxBQQEeKQWm82mrKz84js9rvKqwPOvf/1Lf/3rX/XnP/9ZN910k9LT0zV79mwNGzZMy5Ytu6qdfXEVb8+smo3KKyQk0NMlmAZ96T70pXu4ox/HjZmkI4eOlr+YK+Rw2GW32yVJdrtdgxOHy2Kp+EAbGdVY016fqLCwauV+L68KPMnJyerYsaPGjRtXvC0+Pl433XSTPvnkE917770KDQ2VJGVlZal27drF+2VmZkpScfuVstsdysy8UI7qURZWq8Efpr+RmZkrm83u0rH0pTNX+5J+LIm+dA93/L6PHDqqvbsPuLmysgmqWUWB1a3KzbLp7NGfPFLDJZfry5CQwDJfSfOqwHPo0CH16OG8qGN4eLhq1Kih48ePS5KaNGki6eJYnkv/ful11apV1aBBA5fPX1Tk2hcTcJXNZud75yb0pfvQl+7h6/2Yk1qknNQiT5chyT196VU3XOvVq6c9e/Y4bTt16pTS0tJUv359SVKDBg3UuHFjrVu3zmm/lJQUderUSX5+fhVWLwAA8A1edYXnvvvu0wsvvKDk5GTdfPPNSk9P15w5c1SrVi2nx9BHjRqlsWPHqmHDhkpISFBKSop27typJUuWeLB6AADgrbwq8AwePFh+fn5avny5PvzwQwUFBSk+Pl5vvPGGatSoUbxfv379lJubq3nz5mnu3LmKjIzUzJkz1aZNGw9WDwAAvJVXBR6LxaL7779f999//3/dNzExUYmJiRVQFQAA8HVeNYYHAADgaiDwAAAA0yPw+IiFC+drwID+WrhwvqdLAQDA5xB4fEB+fr7WrUuR3W7X+vUpys/P93RJAAD4FK8atOzNPLmIW36+TQ7Hf6b4lmweXffLXQu5AQBQUQg8ZWAYFtWsESSLhwJP1arO4SIsLEjBwZ5b98thdyg1LYfQAwDwGQSeMjAMiyyGRRknj8nmgdtJ+fkFslgscjgcMgxDWcePqsDfMzNKW/39FRrRSIZhIfAAAHwGgecK2PLzVZSXW+HntUrqdWMXff71N7q16w2yOmweqQMAAF9F4PERQ+65W0PuudvTZQAA4JN4SgsAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJieVwae1atX66677lJcXJwSEhI0dOhQ5eXlFbd/+eWXuuOOOxQXF6devXrpww8/9GC1AADA21XxdAG/N2fOHM2bN0+PPfaY4uPjlZaWpm+//VY2m02StHXrViUlJelPf/qT/va3v+m7777Tc889p6CgIPXu3dvD1QMAAG/kVYHn8OHDmjlzpmbPnq1u3boVb+/Vq1fxv8+ZM0etWrXS5MmTJUkdO3bUiRMnNH36dAIPAAAolVfd0vroo48UERHhFHZ+q6CgQFu2bCkRbG677TYdOnRIJ0+erIgyAQCAj/GqwLNjxw41a9ZMs2fPVqdOnRQbG6v77rtPO3bskCQdP35chYWFatKkidNxUVFRki5eIQIAAPg9r7qldfbsWe3atUsHDhzQxIkTFRgYqLfeeksPP/ywPv/8c2VkZEiSQkJCnI679PpSu6uqVCk9/1mtXpULvYKrfUJfOitPf9CXzvhOug996R78vt3HHf3hVYHH4XDowoULevPNN9WiRQtJUuvWrXXzzTdryZIl6tKly1U7t2FYVKNG0FV7f7MJCQn0dAmmQD+6D33pPvSle9CP7uOOvvSqwBMSEqKwsLDisCNJYWFhiomJ0U8//aS+fftKkrKyspyOy8zMlCSFhoa6fG673aHMzAultlmtBl/c38nMzJXNZr/i4+hLZ672o0Rf/h7fSfehL92D37f7XK4vQ0ICy3z1x6sCT9OmTXX8+PFS2/Lz89WwYUNVrVpVhw8fVteuXYvbLo3d+f3YnitVVOTaF7Mystns9Jcb0I/uQ1+6D33pHvSj+7ijL73qJmH37t2Vnp6uvXv3Fm9LS0vT7t271bJlS/n5+SkhIUHr1693Oi4lJUVRUVGKiIio6JIBAIAP8KorPD179lRcXJyeeOIJjRkzRv7+/po7d678/Pw0YMAASdLjjz+uwYMH6/nnn1efPn20ZcsWffbZZ3r99dc9XD0AAPBWXnWFxzAMzZ07V/Hx8ZowYYKeeuopBQcHa+nSpapdu7YkqX379poxY4a2bdumRx55RJ999pmSk5PVp08fD1cPAAC8lVdd4ZGkmjVr6uWXX/7DfXr06KEePXpUUEUAAMDXedUVHgAAgKuBwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEzP5cDz7LPPaseOHZdt37lzp5599llX3x4AAMBtXA48q1ev1vHjxy/bfvLkSX388ceuvj0AAIDbXLVbWr/++qsCAgKu1tsDAACUWZUr2fmf//ynNmzYUPx65cqV2rx5c4n9srKytHnzZsXGxpa/QgAAgHK6osBz6NAhrVu3TpJksVi0Y8cO7dq1y2kfi8WiatWqqUOHDho3bpz7KgUAAHDRFQWe4cOHa/jw4ZKkFi1aaMqUKbr99tuvSmEAAADuckWB57f27dvnzjoAAACuGpcDz2/l5OQoMzNTDoejRFu9evXccQoAAACXuRx48vPzNXPmTH3wwQdKT0+/7H579+519RQAAABu4XLgef755/Xxxx+rZ8+eateunUJDQ91ZFwAAgNu4HHi++OILJSYmavLkye6sBwAAwO1cnnjQYrEoJibGnbUAAABcFS4Hnh49epQ66SAAAIC3KXPgSU9Pd/pnxIgROnnypMaPH69du3YpNTW1xD5/NJgZAACgopR5DE/Hjh1lsVictjkcDu3Zs0cffPDBZY/jKS0AAOBpZQ48I0eOLBF4AAAAfEGZA8+oUaOuZh0AAABXjcuDlgEAAHyFy/PwzJw58w/bLRaL/P39FR4erg4dOqhOnTqungoAAKBcyhV4Lo3p+f0aWr/fbrValZiYqAkTJsgwuKgEAAAqlsuBZ9OmTRo+fLiio6M1aNAgNWzYUJJ07NgxLVmyRPv379frr7+uCxcuaOHChVqxYoWuvfZajRgxwm3FAwAAlIXLl1smTZqkJk2aaOrUqYqJiVFwcLCCg4PVsmVLTZ06VY0aNdKrr76q6OhoTZs2TV26dNEnn3ziztoBAADKxOXA891336lDhw6Xbe/QoYO++eab4tfdunXTzz//7OrpAAAAXOZy4PHz89POnTsv275jxw5VrVq1+HVRUZGqVavm6ukAAABc5vIYnn79+mnp0qUKCwvT/fffr4iICEnSyZMntWzZMn366ad64IEHivffsmWLmjZtWv6KAQAArpDLgefpp5/WuXPntGDBAr333nvFT1/Z7XY5HA7deuutevrppyVJ+fn5atmypdq2beueqgEAAK6Ay4HH399fb7zxhvbs2aOvv/5ap06dkiTVr19fXbp0UcuWLZ32TUpKKn+1AAAALnA58FwSExOjmJgYd9QCAABwVTALIAAAML0yX+Fp0aKFDMPQ9u3b5efnpxYtWvzX1dMtFov27NlT7iIBAADKo8yBZ+TIkbJYLKpSpYrTawAAAG9X5sAzatSoP3wNAADgrRjDAwAATK9cgefnn3/WhAkT1KtXL3Xo0EE//PCDJCk1NVXJycmM3wEAAF7B5cDz008/6e6779batWsVERGh7OxsFRUVSZJq1qypbdu2acmSJW4rFAAAwFUuz8Pz8ssvq3r16lq5cqUkqXPnzk7t3bp109q1a8tXHQAAgBu4HHh++OEHjRw5UjVr1lRaWlqJ9nr16unMmTPlKs4b2R0O2RyersJz7Dab8vLyVFCQL9tvOsJqrVK8vAgAAN7G5cDjcDgUEBBw2fbU1FT5+fm5+vZex+FwKC0vXzmFDqkSP45vyS3Q+UOHZbfbS7QFBgYrJKQm0xUAALyOy4EnJiZGmzZtcloR/ZKioiKtWbNGrVu3Lldx3uSXX37RhSKHqlevoapV/SrtX+oWi2T183e6uuNwOFRQkK/s7ItX+kJDa3mqPAAASuVy4Bk2bJgee+wxTZw4UX379pUknT9/Xps3b9Zbb72lw4cPa8KECW4r1JPsdpvS09MVXD1UQQFBni7HoyyGRVX8/FVU5HyFx8/PX5KUnZ2m6tVrcHsLAOBVXA483bp109SpU/XCCy8UD1x++umn5XA4FBwcrBdffFEdOnRwW6GeVFRkk8Mh+VU1zy26q+FS6LHZimQY9BUAwHuUa7X0u+66S7feequ++eYbHTt2THa7XQ0bNlSXLl0UHBzsrhq9wMXbN5XzJlbZVdbbfAAA7+dy4Ln33nvVoUMHtW/fXgkJCbrlllvcWZdycnLUp08fnTlzRh988IHi4uKK21atWqX58+fr559/VmRkpMaMGaPu3bu79fwAAMA8XA481atX1/vvv6/58+fLMAxFRUWpffv26tChg9q1a6c6deqUq7DZs2fLZrOV2L5mzRqNHz9ejz32mDp27KiUlBQlJSVp6dKlio+PL9c5AQCAObkceObPny+Hw6G9e/dq69at2rp1q7744gstX75cFotF9evXV4cOHTR16tQrfu9Dhw5p2bJleuaZZzRx4kSntunTp6tv374aPXq0JKljx446cOCAZs2apXnz5rn6cQAAgImV61Eai8WimJgYDR48WNOnT9eXX36pKVOmqFGjRjp58qQ+/vhjl943OTlZ9913nyIjI522nzhxQkePHlWfPn2ctt9222369ttvVVBQ4OpHAQAAJlauQcs5OTn68ccftXXrVm3btk07d+5UQUGBmjRponvvvVft27e/4vdct26dDhw4oBkzZmj37t1ObYcPH5akEkEoKipKhYWFOnHihKKiolz/QAAAwJRcDjz9+/fX/v37ZbFY1Lx5c3Xo0EFDhgxRu3btVKNGDZfeMzc3V9OmTdOYMWNKfcorIyNDkhQSEuK0/dLrS+2uqlKl9AteNtvVnVPm9OnTWrp8ibb9uFVnzpxRQECA2rZppxGPjVTd8LpO+/506Ce9Mf117d23R6Ehobrzjrt0zTW1Ne2lF7Ry+QdO+3+35VstXrpIBw4ekMViUetW8RoxfIQiI5uUu2aLRXJcZokNq9Vy2b60Wpmf57fK0x/0pTNX+4N+LIm+dA9+3+7jjv5wOfDs2bNHhmGoR48e6tatm9q3b69GjRqVq5g5c+aoVq1auueee8r1Pq4wDItq1Ch9UsG8vDxdzWXB9u7fq127/089uvdU7drX6vTpX/Txp6v1xOgkLX5vafESHmfPntWTT42SRRYNHDBIgYGB+mzNP1S1atUS77nu83V6YVqyru+QoMeGPa68vHx98ulqjXhihN6dt6BEkLpSpX357HaLDMNQaGi1P1x2BP8REhLo6RJMg750H/rSPehH93FHX7oceD788MPiW1mvvfaaUlNTVatWLbVr107t27dX+/bt1aJFizLPzXLq1Cm9++67mjVrlrKysiRJFy5cKP7fnJwchYaGSpKysrJUu3bt4mMzMzMlqbjdFXa7Q5mZF0pts9kKXX7fsujcsbO6d3N+rP6GzjfosZHD9dX/fqXet/aWJC1dvkRZWVl6Z+67uq5pM0nSbb376v5B9zodeyH3gt6c8Yb63Xa7/jr2meLtfXr10QOD79fiJYuctrvCZrOXuMJjszlkt9uVkXFBubkln7CTLgYl/hD4j8zMXNlsJdclKwv60pmrfUk/lkRfuge/b/e5XF+GhASW+eqPy4GnZcuWatmypYYMGSJJOnLkSHEAWrBggV544QUFBwfrhx9+KNP7nTx5UoWFhRo2bFiJtsGDB6t169Z69dVXJV0cy9OkyX9uyxw+fFhVq1ZVgwYNXP04klRiuYRLSlso0538/f1/U0ORcnJyVL9+hIKDq+vAwf3FgWfLD1vUMia2OOxIF2/n3dLjVn24+oPibVu3/qDs7Cz17NFT6RnpxdsNq6Ho6Bj9uP1f5a75crezpIvB53J9CWc2m52+chP60n3oS/egH93HHX1ZrkHLl+Tl5en06dM6ffq0fv75Z6WmpsrhcBRfoSmL6OhoLVq0yGnb3r17NXXqVE2aNElxcXFq0KCBGjdurHXr1qlnz57F+6WkpKhTp04+uzp7fn6+Fi9dpLXrUnT23Fk5fpMmcrJziv/9zJnTio1pWeL4iPoRTq9PnDwpSXryqSdKPV9QUOVeDwwAUPm4HHg2btyoH374Qdu2bdPu3btVVFQkf39/tWrVSg8++KDat2+vNm3alPn9QkJClJCQUGrbpatJkjRq1CiNHTtWDRs2VEJCglJSUrRz504tWbLE1Y/ica9Pf01r16Uo8Z4/q2XLWAUHBclisej5yRNld1x5onX8+5j/+dsE1apZs0S71Wotd80AAPgSlwPP448/rpCQELVt21ZPPvmk2rdvr9jY2FIH0LpTv379lJubq3nz5mnu3LmKjIzUzJkzryhceZtNm75S71v7KGnEqOJt+QX5ys7OdtqvTp1wnTx1qsTxJ0+ddHpdv159SVKNsDC1b2eOBVwBACgPlwPPJ598ombNml3VBSMTEhK0f//+EtsTExOVmJh41c5b0QyrIYecB8V8+NEHstmdB/5e3+F6rf74Ix386UDxOJ7MzEx9seHz3+2XoKCgIC1eulht27RTlSrO/zenpaepRphrUwcAAOCLXA48zZs3d2cdlVrnjp31+efrFRwUpMaNIrVrzy5t27ZVoSHOT50NuO8Bff7F5xozdozuufue4sfS61xbR5mZmbL8ez33oKAg/WX0WCVP/bseGfaQetzcU2GhYTrz6xl9+91mxcXGacyTf/HERwUAwCPcMmgZ5fPEqNEyDKs+/+cXKijIV1xsK73+yhv6y1+fctqvzrV1NP316XpzxhtasnSxwsLCdPdd/RUQEKA3Z7zhNGj7lp636pprrtGSZUu0/P1lKigsUO1raqtVq9a6rXffiv6IAAB4FIHHC1QPrq5nn/lbie2r3v+wxLbrmjbTzDdnO22bPvNi2Pn9PERt4tuqTXxb9xYLAIAPYu5qH5Ofn+/0OiMjQ+u/WK9Wca14+goAgMvgCo+PeWzkMLWJb6NGDRsrNS1Va9Z+ppycHA0Z9JCnSwMAwGsReHxMx4RO+up/v9Knn30qi8WiZtc107inn1V863hPlwYAgNci8PiY4Y8+puGPPubpMgAA8CmM4QEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKbHPDzlZFgNGYalws9rtztkt9mv+LiTp07q/RXLtHvPbh05ckQNGzbUogVLnPbJy8vTe4sX6MuNXyo19bxq175WfXr10YD7H1BVo6q7PgIAABWGwFMOhtVQrdphshgVf6HMYbfr/Nn0Kw49R44c0bfffavo6BjZHQ457CWPf/3N17Tp66807JHhaty4sXbt3qV3F7yjvLw8DR/GpIcAAN9D4CkHw7DIYhjKOHlMtt8t6nk1Wf39FRrRSIZhkd12Zcfe0PkGde3SVZI0ZVqy9u/f59Rut9v15VcbdP+9A9T/7nskSW3btNOJE8e1YeM/CTwAAJ9E4HEDW36+ivJyPV1GmRj/5WqUw+GQzWZTUFCQ0/agoGA5HFezMgAArh4GLcOJ1WpVn1636aOPP9TefXt1IfeCtm77Qeu/WK/+d93j6fIAAHAJV3hQwlOj/6JXXn9Zwx4fWrxt4IBBuu/P93mwKgAAXEfgQQlvzZujb7/brGfGjlNERAPt3rNb7y16V9WrV9cDAwZ6ujwAAK4YgQdODh85rPdXLNe0KS/qhs5dJEnxreNlsxXpnXfn6+677laIf4CHqwQA4MowhgdOjh49Iklq2vQ6p+3XNb1OBYUF+vXXs54oCwCAciHwwEmdOuGSpAMHDjht339gvywWi8LDwz1RFgAA5cItLTew+vv7zPny8vL07ZZvJUlnzpxWzoUL2rhpo6SLt65aNG+hFs1b6JXXXlJaWqrq14/Qnr27tWTZYt3Wp68CAridBQDwPQSecrDbL85UHBrRqMLP7bDbZbdf+cQ4aelpmvD8/zhtu/R6+usz1Ca+raa98JLmvztPi5cuUlp6mq699loNuO8BPXA/A5YBAL6JwFMOdtvF5R18aS2tuuF19fXGb/5wn1o1a+mZseNcLQ0AAK9D4Cknu81+xcs7AACAisWgZQAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHpMPFhOhtXwqZmWN371pT7/Yr32H9ivrOwsRdSP0J/6J+q2Pn1lsVz8HKNGJ2n7jh9LHLtk4TI1bty4vKUDAFDhCDzlYFgN1awdJsOo+AtldrtdqWfTrzj0rFj1vsLD62rk40kKC6uhH7Z9r5defVG/nv1VDw15uHi/uNhWGvn4SKdjWSkdAOCrCDzlYBgWGYah09t3qiA7u8LO6xccrPD4VjIMyxUvazHthZcUFhpW/Lpd23bKzMjUilXva8igB4vDW3BwsFrGxLqxagAAPIfA4wYF2dnKz8zydBll8tuwc8l11zXTP9Z8qry8XFWrFlTxRQEAcJUReKD/+78dqn1Nbaews33Hj7qlTw/ZbXZFR8do6MOPKr51vOeKBACgHAg8ldzO/9uhDRs3aOTjScXb4lvHq/etvRUREaFz587p/ZXLNWbsk5rxxizFxcV5sFoAAFxD4KnEfj37qyZOnqA28W31p/6JxdsfeWio036dO92gwQ8N1MLFC/TKS69VdJkAAJQb8/BUUlnZWXr6mb8oJCRUyZOm/OGTZoGBgerUsbP2H9hfgRUCAOA+XOGphPLz8/XMs39Vdk6O3pr5toKDgz1dEgAAVxWBp5IpshVpwqTxOnb8qGa+OVu1a9f+r8fk5uZq83ffqEXz6AqoEAAA9yPwVDKvvf6qNn/7jUY+PkoXLuRo955dxW3XNW2mvfv2aPmKZerapZvqhodfHLS86n2lpqZq8sRkD1YOAIDrCDxu4FfBt4TKc74ftn4vSZo1Z0aJtpXLP1CtWteosLBIc+e/rczMDAUEBCq2ZazGjnlaMdExLp8XAABPIvCUg93ukN1uV3h8Kw+c2y673XHFx616/8P/us+rPIkFADAZAk852G0X17PypcVDAQCojAg85WS32a94PSsAAFCxmIcHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHhMPlpNhNXxqpuVvv9uspcuX6uixo7pwIUfXXFNbXW/oqoeGPKzgf6/RNWVastatX1vi2FdefFUdO3Yqd+0AAFQ0Ak85GFZDNa8Jk2Gt+AtldptdqefSrzj0ZGZlKSY6Rn/q/yeFhobq8JHDWvDeuzpy9LBee/mN4v3q1aunCc9NdDq2UcPGbqgcAICKR+ApB8OwyLAa2vXZV8o5n1Fh5w2qFarYfjfJMCxXvKxFr1t6Sbf0Kn7dJr6tqlb108uvvqhz587qmmtqS5L8/fzVMibWnWUDAOAxBB43yDmfoaxfz3u6DJeFhoRIkgqLijxcCQAAVweBp5Ky2WwqshXp6NGjem/RAnXp3EV1w+sWt586dUq9+92q/Px8NYmM0pDBD+rGLjd6sGIAAFxH4KmkEu+7R2fPnZUkJVzfURP+5/nitmZNmym6ebQiIyOVlZ2tjz9ZrefGP6vJzyfr5u43e6hiAABcR+CppF6a9ory8vJ05OhhLVq8UOOe+6tee/kNWa1WJf7pz077duncRY8nDdc7C+YTeAAAPol5eCqpplFNFdsyVrf3vUNTk6fpXz/+S//7//631H0Nw1C3G2/SsWNHlZ+fX8GVAgBQfgQeKCqqqapUqaJTp056uhQAAK4Krwo8a9eu1eOPP64bb7xR8fHxuvPOO/XBBx/I4XA47bdq1Sr16tVLcXFxuuOOO7Rx40YPVWwOe/buVlFRkerVrVdqu91u11ebNiqycaT8/f0ruDoAAMrPq8bwvPfee6pfv77GjRunGjVqaPPmzRo/frxOnz6tpKQkSdKaNWs0fvx4PfbYY+rYsaNSUlKUlJSkpUuXKj4+3rMfwAc8N+FZNW/WQlFRTeXv56+fDv2k5SuWKapJU3XtcqNOnz6tKdOS1fPmnqpfP0JZ2Vn6+JPV2rd/n5InTfF0+QAAuMSrAs+cOXNUs2bN4tedOnVSenq6FixYoBEjRsgwDE2fPl19+/bV6NGjJUkdO3bUgQMHNGvWLM2bN88jdQfVCvWZ80W3iNGXGzdo6fIlctgdCg8P1+19b9f99w5Q1apVVa1aNQUHBWnRkoVKS09TlSpV1KJ5C7087VUlXJ/gxk8BAEDF8arA89uwc0l0dLRWrlypCxcuKC0tTUePHtXTTz/ttM9tt92ml156SQUFBfLz86uocovXs4rtd1OFnbP43Da77HbHf9/xdwYOGKSBAwZdtj0kJERTp7xYntIAAPA6XhV4SrNt2zbVqVNHwcHB2rZtmyQpMjLSaZ+oqCgVFhbqxIkTioqKqrDaLq1n5UuLhwIAUBl5deDZunWrUlJS9Mwzz0iSMjIurlcV8u+lEC659PpSu6uqVCl9DLfNdvmx3Xab/YrXszIDi0VyXOYCk9VquWxfWj2w0Ko3K09/0JfOXO0P+rEk+tI9+H27jzv6w2sDz+nTpzVmzBglJCRo8ODBV/18hmFRjRpBpbbl5eXpzJmrXoJPKe3LZ7dbZBiGQkOrKSAgwANV+Z6QkEBPl2Aa9KX70JfuQT+6jzv60isDT2Zmph599FGFhYVpxowZMoyLf7mGhl4crJuVlaXatWs77f/bdlfY7Q5lZl4otc1mK3T5fc3KZrOXuMJjszlkt9uVkXFBubmlX/ayWg3+EPiNzMxc2Vy8NUlfOnO1L+nHkuhL9+D37T6X68uQkMAyX/3xusCTl5en4cOHKysrSytWrFD16tWL25o0aSJJOnz4cPG/X3pdtWpVNWjQoFznLioq/YtptzNW5vcudztLuhh8LteXcGaz2ekrN6Ev3Ye+dA/60X3c0ZdedZOwqKhIo0eP1uHDhzV//nzVqVPHqb1BgwZq3Lix1q1b57Q9JSVFnTp1qtAntAAAgO/wqis8kyZN0saNGzVu3DhlZ2dr+/btxW0xMTHy8/PTqFGjNHbsWDVs2FAJCQlKSUnRzp07tWTJEs8VDgAAvJpXBZ5vvvlGkjRt2rQSbRs2bFBERIT69eun3NxczZs3T3PnzlVkZKRmzpypNm3aVHS5AADAR3hV4Pnyyy/LtF9iYqISExOvcjUAAMAsvGoMDwAAwNXgVVd4fJFhNXx2puULuRc0cPAAnT13VvPemq8WzaMlSaNGJ2n7jh9L7L9k4TI1bty4XOcEAMATCDzlYFgN1bwmTIYHZsS8tKxFeULPwkXvyWYrfb6cuNhWGvn4SKdt4eHhLp8LAABPIvCUg2FYZFgNrZ/7sVJ/OV9h561Zt5Z6DbtLhmFxeVmLY8ePafXHH2nk40l65fWXS7QHBwerZUxsOSsFAMA7EHjcIPWX8zp7/LSny7gib0x/TXfecZcaNmzo6VIAALjqGLRcCW3ctFGHDx/Wg4Mfuuw+23f8qFv69FCPW7sr6cmR2r5je8UVCACAm3GFp5LJy8vTzNkzNGzocAUFlb5YanzrePW+tbciIiJ07tw5vb9yucaMfVIz3piluLi4Cq4YAIDyI/BUMgsXv6eaNWrotj59L7vPIw8NdXrdudMNGvzQQC1cvECvvPTa1S4RAAC345ZWJXL69GmtWPW+Hn7wEWXnZCsrO0sXcnMlSbm5ubqQW/pq8YGBgerUsbP2H9hfkeUCAOA2XOGpRH45/bMKCwv112efLtH2xJhRiomO0duz53mgMgAAri4CTyXStOl1mv76DKdtB386qBmzpmvsmKfVokV0qcfl5uZq83ffFE9MCACAryHwuEHNurV84nzVg6urTXzbUtuaN2+u5s2aa8fO7Vq+Ypm6dummuuHhFwctr3pfqampmjwxuTxlAwDgMQSecri0vEOvYXdV/LltdtntDre/b61a16iwsEhz57+tzMwMBQQEKrZlrMaOeVox0TFuPx8AABWBwFMOl5Z38NW1tCSpTXxbfb3xm+LXEfUj9CpPYgEATIbAU052m93l5R0AAEDF4LF0AABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgekw8WE6G1fCpmZZT1q3R1BdfKLH9gfsH6rFhj0uSRo1O0vYdP5bYZ8nCZWrcuPEVnxMAAE8j8JSDYTVU45pQWa3WCj+3zWZT2rkMl5eXeOXF1xQcHFT8+ppraju1x8W20sjHRzptCw8Pd+lcAAB4GoGnHAzDIqvVqrenzNfPx05X2HnrNQrX8OeGyjAsLi9r0bx5c4WFhl22PTg4WC1jYl17cwAAvAyBxw1+PnZaxw4e93QZAADgMgg8ldTghwYqIyNDdeqE6/a+t2vAfQ843ZrbvuNH3dKnh+w2u6KjYzT04UcV3zrecwUDAFAOBJ5KplbNa/Twg48oJrqlLBbpm83/T/Pfnadz585qzJN/kSTFt45X71t7KyIiQufOndP7K5drzNgnNeONWYqLi/PwJwAA4MoReCqZhOsTlHB9QvHr6zskyM/fX6tWrdSggUN0Ta1r9MhDQ52O6dzpBg1+aKAWLl6gV156raJLBgCg3JiHB7r5ph6y2W366aeDpbYHBgaqU8fO2n9gfwVXBgCAexB4AACA6RF4oA1f/lNWw6rrrmtWantubq42f/eNWjSPruDKAABwD8bwVDJPPT1G7dq2U5PIJpIuDlr+9LNP9ad7ElWrZi3t2Lldy1csU9cu3VQ3PPzioOVV7ys1NVWTJyZ7uHoAAFxD4HGDeo0qdgbi8pyvUcNG+izlM509+6scdociGjTQEyOf1D39/yRJqlXrGhUWFmnu/LeVmZmhgIBAxbaM1dgxTysmOsZdHwEAgApF4CkHu90hm82m4c8N/e87u5nNZpPd7rji454cNVpP/kF7RP0IvcqTWAAAkyHwlIPdZlfauQyfWjwUAIDKiMBTTnab3eX1rAAAQMXgKS0AAGB6BB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6TDxYTobV8MmZlteuS9GqD1fq2LFjCgwMVIsW0Zoy+QX5+/tryrRkrVu/tsQxr7z4qjp27FSesgEA8AgCTzkYVkM1aoXKWsVa4ee2FdmUdj7DpdCzaMlCLV2+RIMeGKyWMbHKyEjXtn9tk+03U0bXq1dPE56b6HRco4aNy1s2AAAeQeApB8OwyFrFqnFjJunIoaMVdt7IqMaa9vpEGYblipe1OH78mN597x1Nm/KiOib852rNTd26O+3n7+evljGx7igXAACPI/C4wZFDR7V39wFPl1EmKetSVLduPaewAwCA2RF4Kpnde3YrKrKJFi5+Tx98tErZ2dlq0TxaSSNGqWVMy+L9Tp06pd79blV+fr6aREZpyOAHdWOXGz1YOQAAriPwVDKpqee1/8A+HTpyWE+NHqsAf38tXrpYf/nrGC1fvEI1atRQs6bNFN08WpGRkcrKztbHn6zWc+Of1eTnk3Vz95s9/REAALhiBJ5Kxu5wKDc3V39/PllNo5pKklrGxCrx/nv04eoPNPThR5X4pz87HdOlcxc9njRc7yyYT+ABAPgk5uGpZKoHV1doSGhx2JGkkJAQXde0mY4ePVLqMYZhqNuNN+nYsaPKz8+vqFIBAHAbAk8lE9k48rJt+QUFFVgJAAAVh8BTyXTu1FkZmRk6+NN/nirLyMjQgYP71bxZ81KPsdvt+mrTRkU2jpS/v39FlQoAgNswhqeS6drlRkW3iNb4if+jRx8ZJn9/fy1Ztlh+Vf109139dfr0aU2ZlqyeN/dU/foRysrO0sefrNa+/fuUPGmKp8sHAMAlBB43iIxq7DPnMwxDL017RTNmTdcrr72swqJCtYprrRlvzlKtmrWUmZmp4KAgLVqyUGnpaapSpYpaNG+hl6e9qoTrE9z3IQAAqEAEnnKw2x2yFdk07fWJ/31nN7MV2WS3O1w6Niw0TOP/NqHUtpCQEE2d8mJ5SgMAwOsQeMrBbrMr7XyGTy4eCgBAZULgKSe7zX7F61kBAICKxVNaAADA9Ag8AADA9Ag8AADA9Ag8ZXJxULJrz0RVHg4HPQQA8E4EnjKoUsUqi0UqKGTphT9SUHBxnS2rlbHwAADvwt9MZWAYVoWFhen82XOS3aGqVf1ksVT8o+jewGKR7BaLbLb/XM1xOBwqKMhXdnaaAgODZRjkaACAdyHwlFHdunWVm3ZeWVlpF//Wr6QsFouMKlVlt5ecAygwMFghITU9UBUAAH+MwFNGFotFNQL8FeSwyVaJh6pY/f0U1jBSGRkXnK7yWK1VuLIDAPBaPhl4Dh06pOTkZP34448KCgrSnXfeqdGjR8vPz++qn9uwWOSBiZW9RhWrVQEBAcrNtamoiJmeAQC+wecCT0ZGhoYMGaLGjRtrxowZOnPmjKZNm6a8vDxNmFD6+lAAAKBy87nA8/777ysnJ0czZ85UWFiYJMlms2nSpEkaPny46tSp49kCAQCA1/G5QRf/+7//q06dOhWHHUnq06eP7Ha7vvnmG88VBgAAvJbF4WOzxXXq1En33HOPxo4d67S9a9euuvPOO0tsLyuHwyG7vfSusFgkwzBkLyqs9JPr/fYpLVe64lJfFuXny6U3MAuLRVX8/V3ux3+/hQzDUEFObqlPzVUWhmHILyiw3N/JC5k5stsq90rAhtWqaiFB5e7LzLRMFRVV3r6sUsWqkBohbvl9nz+fpqLCQvcW6EOqVK2qWrVqXLYvDcNS5mlifO6WVmZmpkJCQkpsDw0NVUZGhsvva7FYZLX+cacZVaq6/P5mU94nsqr4+7upEt/mjifb/IIC3VCJ7ytvX1YLCXJTJb6vvH0ZUqPkn9GVkTt+37Vq1XBDJb7PHX3pc7e0AAAArpTPBZ6QkBBlZWWV2J6RkaHQ0FAPVAQAALydzwWeJk2a6PDhw07bsrKydPbsWTVp0sRDVQEAAG/mc4Hnxhtv1ObNm5WZmVm8bd26dTIMQzfccIMHKwMAAN7K557SysjIUN++fRUZGanhw4cXTzx4++23M/EgAAAolc8FHuni0hJ///vfnZaWGDNmTIUsLQEAAHyPTwYeAACAK+FzY3gAAACuFIEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYns+tlm52x44d0zvvvKMdO3bo4MGDatKkiT777DOnfXJzczV79mylpKTo3LlzCg8P1913362hQ4eqShX+L5WktWvX6tNPP9Xu3buVmZmpRo0aadCgQbrnnntksVgkSYMGDdL3339f4tiUlBRFRUVVdMleadOmTZo3b55++uknZWdnq06dOurZs6eSkpJUvXp1SdK4ceO0evXqEsfOmzdPN954Y0WX7DNycnLUp08fnTlzRh988IHi4uIk8b0si48++kjPPvtsie2PPvqoxo4dK4l+vBKrV6/WwoULdejQIVWrVk1xcXGaOXOmAgICTPX75m9HL3Pw4EFt2rRJrVu3lt1uV2nTJE2ePFmff/65nnrqKUVFRWn79u2aPn26cnNzNWbMGA9U7X3ee+891a9fX+PGjVONGjW0efNmjR8/XqdPn1ZSUlLxfm3bttUzzzzjdGxERERFl+u10tPT1apVKw0aNEhhYWE6ePCgZsyYoYMHD+rdd98t3q9BgwZ65ZVXnI7lL5U/Nnv2bNlstlLb+F6Wzfz584uDtyTVqVPHqZ1+/O/mzJmjefPm6bHHHlN8fLzS0tL07bffOn03zfL7JvB4mZtvvlk9e/aUdPG/nHft2uXUbrfbtXbtWj3yyCN64IEHJEkdO3bUkSNHtGbNGgLPv82ZM0c1a9Ysft2pUyelp6drwYIFGjFihAzj4t3ckJAQxcfHe6hK73fnnXc6vU5ISJCfn5/Gjx+vM2fOFP8FExAQQD9egUOHDmnZsmV65plnNHHixBLtfC/LpmXLlk6/89+jH//Y4cOHNXPmTM2ePVvdunUr3t6rVy+n/czy+2YMj5e59Bfx5TgcDhUVFTn9V40kVa9evdSrQZVVaX8IRkdHKzs7WxcuXPBAReYRFhYmSSosLPRsIT4sOTlZ9913nyIjIz1dCiqxjz76SBEREU5hx8wIPD7GarWqf//+WrJkiXbu3KmcnBxt3rxZn3zyiQYOHOjp8rzatm3bVKdOHQUHBxdv+/777xUfH6+4uDgNHDhQP/zwgwcr9F42m035+fnavXu3Zs2apZtvvtnp1sCxY8fUrl07xcbGqn///vrnP//pwWq927p163TgwAGNHDnysvvwvSybfv36KTo6Wj169NDbb79d4hYh/fjHduzYoWbNmmn27Nnq1KmTYmNjdd9992nHjh1O+5nl980tLR80ceJETZw4UYmJicXbhg8froceesiDVXm3rVu3KiUlxel+focOHXTnnXeqcePG+vXXX/XOO+/ooYce0uLFi9WmTRsPVut9unfvrjNnzkiSunbtqldffbW4LTo6WnFxcWratKmysrK0fPlyjRw5Um+++aZ69+7tqZK9Um5urqZNm6YxY8Y4Be/f4nv539WuXVujRo1S69atZbFY9OWXX+qNN97QmTNnNGHCBEn0Y1mcPXtWu3bt0oEDBzRx4kQFBgbqrbfe0sMPP6zPP/9ctWrVMtfv2wGv9cwzzzj69u1bYvu0adMcN9xwg2PlypWO77//3jF37lxH69atHfPmzfNAld7vl19+cXTp0sUxZMgQh81mu+x+OTk5ju7duzuGDh1agdX5hr179zr+9a9/OVauXOno3r27Y9CgQY6ioqJS97XZbI7ExERHnz59KrhK7/fqq686+vfv77Db7Q6Hw+H47rvvHM2aNXPs3LnzssfwvSybadOmOaKjox1nzpwptZ1+LOnWW291NGvWzLF3797ibWlpaY42bdo43njjjVKP8eXfN7e0fMyBAwf07rvvavLkyUpMTFSHDh306KOPavjw4XrzzTeVnZ3t6RK9SmZmph599FGFhYVpxowZfzhGqlq1aurWrZt2795dgRX6hhYtWqhNmzZKTEzU7NmztWXLFn3xxRel7msYhm699VYdOnRIeXl5FVyp9zp16pTeffddPfHEE8rKylJmZmbxeLILFy4oJyen1OP4XpZNnz59ZLPZtHfv3lLb6ceSQkJCFBYWphYtWhRvCwsLU0xMjH766adSj/Hl3ze3tHzMpS9hdHS00/aYmBgVFBTozJkzl71UXtnk5eVp+PDhysrK0ooVK0oM9IZrmjdvrqpVq+r48eOeLsWnnDx5UoWFhRo2bFiJtsGDB6t169ZauXKlBypDZdW0adPL/o7z8/MruJqrj8DjY+rXry9J2r17t+rWrVu8fdeuXbJYLKpXr56nSvMqRUVFGj16tA4fPqylS5eWmJ+jNBcuXNBXX31VPAEcSrdjxw4VFhZedj4Tu92udevW6brrrlNAQEAFV+e9oqOjtWjRIqdte/fu1dSpUzVp0qTLfu/4XpZNSkqKrFarYmJiSm2nH0vq3r27PvroI+3du7f4P6LT0tK0e/duPfjgg6Ue48u/bwKPl8nNzdWmTZskXbwEnp2drXXr1kmSrr/+esXGxio2NlYTJ07U+fPn1bBhQ+3cuVNz587VPffco8DAQE+W7zUmTZqkjRs3aty4ccrOztb27duL22JiYrRz507Nnz9ft9xyi+rXr69ff/1VCxYs0NmzZ/Xmm296rnAvk5SUpNjYWDVv3lwBAQHat2+f3nnnHTVv3lw9e/bUqVOnNG7cOPXt21eNGjVSRkaGli9frl27dmnGjBmeLt+rhISEKCEhodS2li1bqmXLltq6dSvfyzJ45JFHlJCQoObNm0uSNmzYoJUrV2rw4MGqXbs2/VhGPXv2VFxcnJ544gmNGTNG/v7+mjt3rvz8/DRgwADT/b4tDgeTt3iTkydPqkePHqW2LVq0SAkJCcU/2s2bN+v8+fMKDw9Xv3799Oijj/pc4r5abr75Zp06darUtg0bNshms2ny5Mnav3+/0tPTFRgYqDZt2igpKUmtWrWq4Gq919y5c5WSkqLjx4/L4XCofv36uuWWW/TII48oODhY6enpevbZZ7Vnzx6dP39eVatWVWxsrIYNG6auXbt6unyvt2XLFg0ePLh4aYljx47xvSyD5ORkff311zp9+rTsdrsaN26sxMREDRo0SBaLhX68AqmpqZo6dao2btyowsJCtW/fXs8++6yaNm1qut83gQcAAJgeT2kBAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AA8BmnTp3S888/r169eqlVq1ZKSEjQE088oZMnT5bYd9++fRo4cKBatWqlG2+8UbNnz9aHH36o5s2bl9h/06ZNGjBggOLj49WmTRsNGzZMBw8erKiPBaACsHgoAJ+xbt06zZkzRz169FB4eLhOnTql5cuXKzg4WGvWrFFgYKAk6cyZM7rjjjskSYMGDVK1atW0atUq+fn5ad++fdqwYYMiIiIkSR9//LHGjRunLl266KabblJubq6WL1+urKwsrV69ung/AL6NwAPAZ+Tl5SkgIMBp2/bt23XvvffqxRdf1F133SVJSk5O1pIlS7R69WpFR0dLktLT09WrVy+lp6cXB56cnBzddNNN6t27t/7+978Xv+e5c+fUu3dv9enTx2k7AN/FLS0APuO3YaewsFBpaWlq2LChQkJCtGfPnuK2r7/+WvHx8cVhR5LCwsJ0++23O73f5s2blZmZqb59+yo1NbX4H8Mw1Lp1a23ZsuXqfygAFaKKpwsAgLLKy8vT22+/rY8++khnzpzRby9QZ2VlFf/7qVOnFB8fX+L4hg0bOr0+evSoJGnIkCGlni84OLj8RQPwCgQeAD7j73//uz766CMNGTJE8fHxql69uiwWi8aMGSNX7s5fOuall15S7dq1S7RbrdZy1wzAOxB4APiM9evX66677tK4ceOKt+Xn5ztd3ZGk+vXr69ixYyWOP378uNPrBg0aSJJq1aqlzp07X4WKAXgLxvAA8BmlXXFZvHixbDab07YuXbpo+/bt2rt3b/G29PR0/eMf/3Dar2vXrgoODtbbb7+twsLCEu+dmprqpsoBeBpXeAD4jJtuukmffPKJgoOD1bRpU23fvl2bN29WWFiY035Dhw7Vp59+qoceekgDBw4sfiy9bt26Sk9Pl8VikXRxjM7zzz+vv/71r+rfv79uu+021axZUz///LM2bdqktm3basKECR74pADcjcADwGc899xzMgxD//jHP5Sfn6+2bdtqwYIFGjp0qNN+devW1aJFi5ScnKy3335bNWvW1AMPPKDAwEAlJyfL39+/eN/bb79d1157rebOnat33nlHBQUFqlOnjtq3b6/+/ftX9EcEcJUwDw+ASmPKlClasWKFfvzxRwYkA5UMY3gAmFJeXp7T67S0NH366adq164dYQeohLilBcCU7r33Xl1//fWKiorSuXPn9OGHHyo7O1sjRozwdGkAPIBbWgBM6bXXXtP69et1+vRpWSwWxcTEKCkpicfPgUqKwAMAAEyPMTwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0/j9pGl4pLE6rsQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAG5CAYAAACKmu5sAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQS1JREFUeJzt3Xl4FFXe9vG7qyELCUkAkQBhCUEgIYGwGUAQERQQ3HAyKrK4ICgEBQdHHB9AmCC4K6sCiuwCKupIAB1EHl9RFEbgYUd2UBDIHrJ29/sHQ8Y2wQmdJt1d+X6uy2vsOlVdvz7TDbdVp86xOBwOhwAAAEzM8HQBAAAAVxuBBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmF4VTxfgLRwOh+x2Jp0GAMBXGIZFFoulTPsSeP7NbncoNTXH02UAAIAyqlkzSFZr2QIPt7QAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAwMMWLpyvAQP6a+HC+Z4uBTAti8PhcHi6CG9gs9mVmprj6TIAeIBhWGQYFo+cOz8/X4MG3Su73S7DMLR48Qr5+/t7pBZJstsdstv5awG+oWbNIFmtZbt2U+Uq1wIAXs0wLKoRVk1GGf/QdLfsbIfsdrskyW63KzjYT8HBQR6pRZLsNrvS0i8QemA6BB4ALlu4cL7Wr09Rr163aciQoZ4uxyWGYZFhNbR+7sdK/eV8hZ+/yFYkiyxyyCGLLFr90lJVsXrmj+aadWup17C7ZBgWAg9Mh8AD+DBP34pZvz5Fdrtd69enaODAIR67FeOO2zCpv5zX2eOn3VTRlYmsXl9Hsk4psnp9pZ0655EaALMj8AA+yjAsqlGjmgyDWzF2u11pab57GyauVjPF1Wrm6TIAUyPwAD7q4tUdQ7s++0o55zMq/PwFRYWyWCxyOBwyLBb9uGKd/KpUrfA6gmqFKrbfTdyGAfCHCDyAj8s5n6GsXyt+7IkktWvYTNuOH1Dbhs2Un5qpfI9UAfyHGcaV4eog8ABw2S3R7XVLdHtPlwEvwriyi3i83/sQeAAAbmEYFoWFBcpqtXrk/Hl5zucNC6umgIAAj9Ris9mUnp5L6PEiBB4AgFsYhkVWq1VvT5mvn4955om38Or19HPGKYVXr6epT7zikRrqNQrX8OeGMq7MyxB4AABu9fOx0zp28LhHzm2VvxqoiZQmHUvzTA3wTqylhUqHdYsAoPIh8KBSyc/P17p1/xnUmJ/Pc0UAUBlwSwsVzrNPcdjkcPxnsjzJpipVPJP7eYoDACoOgQcVytOzA1et6hwwwsKCmB0YACoBAg8q1KXZgU9v36mC7OwKP39+QcF/Zgc2DP3y/Vb5+/lVeB1+wcEKj2/FUxwAUEEIPPCIguxs5WdmeeTc3du01Vc//ks3xbeR8vKVn8c4HgAwOwIPKp0/d++hP3fv4ekyAAAViKe0AACA6RF4AACA6RF4AACA6RF4AACA6Xld4NmwYYMSExPVpk0bdenSRU8++aROnDhRYr9Vq1apV69eiouL0x133KGNGzd6oFoAAOALvCrwbNmyRUlJSWratKlmzZqlv/3tb9q3b58efvhh5eXlFe+3Zs0ajR8/Xn369NG8efMUHx+vpKQkbd++3XPFAwAAr+VVj6WvWbNG9erV0wsvvCCL5eLSAzVr1tSQIUO0a9cutW/fXpI0ffp09e3bV6NHj5YkdezYUQcOHNCsWbM0b948T5UPAAC8lFdd4SkqKlJQUFBx2JGk6tWrS5Icjouz0Z44cUJHjx5Vnz59nI697bbb9O2336qgoKDiCgYAAD7Bq67w9O/fX5988omWLl2qO+64Q+np6XrttdcUExOjtm3bSpIOHz4sSYqMjHQ6NioqSoWFhTpx4oSioqIqvHYAANzJkwstS9KCBfO0du0a9enTVw899KjH6nDXQsteFXjat2+vmTNn6i9/+YsmT54sSYqOjtb8+fNltVolSRkZGZKkkJAQp2Mvvb7U7gpPrZpdmVit9PFvlac/6EtnrvYH/VgSfeke5ekPi8Wi6tX9i//uq2h5eXlau3aN7Ha71q5doxEjHlNAQIBHarHZbMrKyi++0+Mqrwo8//rXv/TXv/5Vf/7zn3XTTTcpPT1ds2fP1rBhw7Rs2bKr2tkXV/H2zKrZqLxCQgI9XYJp0JfuQ1+6hzv6cdyYSTpy6Gj5i7lCDodddrtdkmS32zU4cbgslooPtJFRjTXt9YkKC6tW7vfyqsCTnJysjh07aty4ccXb4uPjddNNN+mTTz7Rvffeq9DQUElSVlaWateuXbxfZmamJBW3Xym73aHMzAvlqB5lYbUa/GH6G5mZubLZ7C4dS186c7Uv6ceS6Ev3cMfv+8iho9q7+4CbKyuboJpVFFjdqtwsm84e/ckjNVxyub4MCQks85U0rwo8hw4dUo8ezos6hoeHq0aNGjp+/LgkqUmTJpIujuW59O+XXletWlUNGjRw+fxFRa59MQFX2Wx2vnduQl+6D33pHr7ejzmpRcpJLfJ0GZLc05dedcO1Xr162rNnj9O2U6dOKS0tTfXr15ckNWjQQI0bN9a6deuc9ktJSVGnTp3k5+dXYfUCAADf4FVXeO677z698MILSk5O1s0336z09HTNmTNHtWrVcnoMfdSoURo7dqwaNmyohIQEpaSkaOfOnVqyZIkHqwcAAN7KqwLP4MGD5efnp+XLl+vDDz9UUFCQ4uPj9cYbb6hGjRrF+/Xr10+5ubmaN2+e5s6dq8jISM2cOVNt2rTxYPUAAMBbeVXgsVgsuv/++3X//ff/130TExOVmJhYAVUBAABf51VjeAAAAK4GAg8AADA9Ao+PWLhwvgYM6K+FC+d7uhQAAHwOgccH5Ofna926FNntdq1fn6L8/HxPlwQAgE/xqkHL3syTi7jl59vkcPxnim/J5tF1v9y1kBsAABWFwFMGhmFRzRpBsngo8FSt6hwuwsKCFBzsuXW/HHaHUtNyCD0AAJ9B4CkDw7DIYliUcfKYbB64nZSfXyCLxSKHwyHDMJR1/KgK/D0zo7TV31+hEY1kGBYCDwDAZxB4roAtP19FebkVfl6rpF43dtHnX3+jW7veIKvD5pE6AADwVQQeHzHknrs15J67PV0GAAA+iae0AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6Xll4Fm9erXuuusuxcXFKSEhQUOHDlVeXl5x+5dffqk77rhDcXFx6tWrlz788EMPVgsAALxdFU8X8Htz5szRvHnz9Nhjjyk+Pl5paWn69ttvZbPZJElbt25VUlKS/vSnP+lvf/ubvvvuOz333HMKCgpS7969PVw9AADwRl4VeA4fPqyZM2dq9uzZ6tatW/H2Xr16Ff/7nDlz1KpVK02ePFmS1LFjR504cULTp08n8AAAgFJ51S2tjz76SBEREU5h57cKCgq0ZcuWEsHmtttu06FDh3Ty5MmKKBMAAPgYrwo8O3bsULNmzTR79mx16tRJsbGxuu+++7Rjxw5J0vHjx1VYWKgmTZo4HRcVFSXp4hUiAACA3/OqW1pnz57Vrl27dODAAU2cOFGBgYF666239PDDD+vzzz9XRkaGJCkkJMTpuEuvL7W7qkqV0vOf1epVudAruNon9KWz8vQHfemM76T70Jfuwe/bfdzRH14VeBwOhy5cuKA333xTLVq0kCS1bt1aN998s5YsWaIuXbpctXMbhkU1agRdtfc3m5CQQE+XYAr0o/vQl+5DX7oH/eg+7uhLrwo8ISEhCgsLKw47khQWFqaYmBj99NNP6tu3ryQpKyvL6bjMzExJUmhoqMvnttsdysy8UGqb1Wrwxf2dzMxc2Wz2Kz6OvnTmaj9K9OXv8Z10H/rSPfh9u8/l+jIkJLDMV3+8KvA0bdpUx48fL7UtPz9fDRs2VNWqVXX48GF17dq1uO3S2J3fj+25UkVFrn0xKyObzU5/uQH96D70pfvQl+5BP7qPO/rSq24Sdu/eXenp6dq7d2/xtrS0NO3evVstW7aUn5+fEhIStH79eqfjUlJSFBUVpYiIiIouGQAA+ACvusLTs2dPxcXF6YknntCYMWPk7++vuXPnys/PTwMGDJAkPf744xo8eLCef/559enTR1u2bNFnn32m119/3cPVAwAAb+VVV3gMw9DcuXMVHx+vCRMm6KmnnlJwcLCWLl2q2rVrS5Lat2+vGTNmaNu2bXrkkUf02WefKTk5WX369PFw9QAAwFt51RUeSapZs6ZefvnlP9ynR48e6tGjRwVVBAAAfJ1XXeEBAAC4Ggg8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9FwOPM8++6x27Nhx2fadO3fq2WefdfXtAQAA3MblwLN69WodP378su0nT57Uxx9/7OrbAwAAuM1Vu6X166+/KiAg4Gq9PQAAQJlVuZKd//nPf2rDhg3Fr1euXKnNmzeX2C8rK0ubN29WbGxs+SsEAAAopysKPIcOHdK6deskSRaLRTt27NCuXbuc9rFYLKpWrZo6dOigcePGua9SAAAAF11R4Bk+fLiGDx8uSWrRooWmTJmi22+//aoUBgAA4C5XFHh+a9++fe6sAwAA4KpxOfD8Vk5OjjIzM+VwOEq01atXzx2nAAAAcJnLgSc/P18zZ87UBx98oPT09Mvut3fvXldPAQAA4BYuB57nn39eH3/8sXr27Kl27dopNDTUnXUBAAC4jcuB54svvlBiYqImT57sznoAAADczuWJBy0Wi2JiYtxZCwAAwFXhcuDp0aNHqZMOAgAAeJsyB5709HSnf0aMGKGTJ09q/Pjx2rVrl1JTU0vs80eDmQEAACpKmcfwdOzYURaLxWmbw+HQnj179MEHH1z2OJ7SAgAAnlbmwDNy5MgSgQcAAMAXlDnwjBo16mrWAQAAcNW4PGgZAADAV7g8D8/MmTP/sN1iscjf31/h4eHq0KGD6tSp4+qpAAAAyqVcgefSmJ7fr6H1++1Wq1WJiYmaMGGCDIOLSgAAoGK5HHg2bdqk4cOHKzo6WoMGDVLDhg0lSceOHdOSJUu0f/9+vf7667pw4YIWLlyoFStW6Nprr9WIESPcVjwAAEBZuHy5ZdKkSWrSpImmTp2qmJgYBQcHKzg4WC1bttTUqVPVqFEjvfrqq4qOjta0adPUpUsXffLJJ+6sHQAAoExcDjzfffedOnTocNn2Dh066Jtvvil+3a1bN/3888+ung4AAMBlLgcePz8/7dy587LtO3bsUNWqVYtfFxUVqVq1aq6eDgAAwGUuj+Hp16+fli5dqrCwMN1///2KiIiQJJ08eVLLli3Tp59+qgceeKB4/y1btqhp06blrxgAAOAKuRx4nn76aZ07d04LFizQe++9V/z0ld1ul8Ph0K233qqnn35akpSfn6+WLVuqbdu27qkaAADgCrgcePz9/fXGG29oz549+vrrr3Xq1ClJUv369dWlSxe1bNnSad+kpKTyVwsAAOAClwPPJTExMYqJiXFHLQAAAFcFswACAADTK/MVnhYtWsgwDG3fvl1+fn5q0aLFf1093WKxaM+ePeUuEgAAoDzKHHhGjhwpi8WiKlWqOL0GAADwdmUOPKNGjfrD1wAAAN6KMTwAAMD0yhV4fv75Z02YMEG9evVShw4d9MMPP0iSUlNTlZyczPgdAADgFVwOPD/99JPuvvturV27VhEREcrOzlZRUZEkqWbNmtq2bZuWLFnitkIBAABc5fI8PC+//LKqV6+ulStXSpI6d+7s1N6tWzetXbu2fNUBAAC4gcuB54cfftDIkSNVs2ZNpaWllWivV6+ezpw5U67ivJHd4ZDN4ekqPMdusykvL08FBfmy/aYjrNYqxcuLAADgbVwOPA6HQwEBAZdtT01NlZ+fn6tv73UcDofS8vKVU+iQKvHj+JbcAp0/dFh2u71EW2BgsEJCajJdAQDA67gceGJiYrRp0yanFdEvKSoq0po1a9S6detyFedNfvnlF10ocqh69RqqWtWv0v6lbrFIVj9/p6s7DodDBQX5ys6+eKUvNLSWp8oDAKBULgeeYcOG6bHHHtPEiRPVt29fSdL58+e1efNmvfXWWzp8+LAmTJjgtkI9yW63KT09XcHVQxUUEOTpcjzKYlhUxc9fRUXOV3j8/PwlSdnZaapevQa3twAAXsXlwNOtWzdNnTpVL7zwQvHA5aeffloOh0PBwcF68cUX1aFDB7cV6klFRTY5HJJfVfPcorsaLoUem61IhkFfAQC8R7lWS7/rrrt066236ptvvtGxY8dkt9vVsGFDdenSRcHBwe6q0QtcvH1TOW9ilV1lvc0HAPB+Lgeee++9Vx06dFD79u2VkJCgW265xZ11KScnR3369NGZM2f0wQcfKC4urrht1apVmj9/vn7++WdFRkZqzJgx6t69u1vPDwAAzMPlwFO9enW9//77mj9/vgzDUFRUlNq3b68OHTqoXbt2qlOnTrkKmz17tmw2W4nta9as0fjx4/XYY4+pY8eOSklJUVJSkpYuXar4+PhynRMAAJiTy4Fn/vz5cjgc2rt3r7Zu3aqtW7fqiy++0PLly2WxWFS/fn116NBBU6dOveL3PnTokJYtW6ZnnnlGEydOdGqbPn26+vbtq9GjR0uSOnbsqAMHDmjWrFmaN2+eqx8HAACYWLkepbFYLIqJidHgwYM1ffp0ffnll5oyZYoaNWqkkydP6uOPP3bpfZOTk3XfffcpMjLSafuJEyd09OhR9enTx2n7bbfdpm+//VYFBQWufhQAAGBi5Rq0nJOTox9//FFbt27Vtm3btHPnThUUFKhJkya699571b59+yt+z3Xr1unAgQOaMWOGdu/e7dR2+PBhSSoRhKKiolRYWKgTJ04oKirK9Q8EAABMyeXA079/f+3fv18Wi0XNmzdXhw4dNGTIELVr1041atRw6T1zc3M1bdo0jRkzptSnvDIyMiRJISEhTtsvvb7U7qoqVUq/4GWzXd05ZU6fPq2ly5do249bdebMGQUEBKhtm3Ya8dhI1Q2v67TvT4d+0hvTX9fefXsUGhKqO++4S9dcU1vTXnpBK5d/4LT/d1u+1eKli3Tg4AFZLBa1bhWvEcNHKDKySblrtlgkx2WW2LBaLZftS6uV+Xl+qzz9QV86c7U/6MeS6Ev34PftPu7oD5cDz549e2QYhnr06KFu3bqpffv2atSoUbmKmTNnjmrVqqV77rmnXO/jCsOwqEaN0icVzMvL09VcFmzv/r3atfv/1KN7T9Wufa1On/5FH3+6Wk+MTtLi95YWL+Fx9uxZPfnUKFlk0cABgxQYGKjP1vxDVatWLfGe6z5fpxemJev6Dgl6bNjjysvL1yefrtaIJ0bo3XkLSgSpK1Xal89ut8gwDIWGVvvDZUfwHyEhgZ4uwTToS/ehL92DfnQfd/Sly4Hnww8/LL6V9dprryk1NVW1atVSu3bt1L59e7Vv314tWrQo89wsp06d0rvvvqtZs2YpKytLknThwoXi/83JyVFoaKgkKSsrS7Vr1y4+NjMzU5KK211htzuUmXmh1DabrdDl9y2Lzh07q3s358fqb+h8gx4bOVxf/e9X6n1rb0nS0uVLlJWVpXfmvqvrmjaTJN3Wu6/uH3Sv07EXci/ozRlvqN9tt+uvY58p3t6nVx89MPh+LV6yyGm7K2w2e4krPDabQ3a7XRkZF5SbW/IJO+liUOIPgf/IzMyVzVZyXbKyoC+dudqX9GNJ9KV78Pt2n8v1ZUhIYJmv/rgceFq2bKmWLVtqyJAhkqQjR44UB6AFCxbohRdeUHBwsH744Ycyvd/JkydVWFioYcOGlWgbPHiwWrdurVdffVXSxbE8TZr857bM4cOHVbVqVTVo0MDVjyNJJZZLuKS0hTLdyd/f/zc1FCknJ0f160coOLi6DhzcXxx4tvywRS1jYovDjnTxdt4tPW7Vh6s/KN62desPys7OUs8ePZWekV683bAaio6O0Y/b/1Xumi93O0u6GHwu15dwZrPZ6Ss3oS/dh750D/rRfdzRl+UatHxJXl6eTp8+rdOnT+vnn39WamqqHA5H8RWasoiOjtaiRYuctu3du1dTp07VpEmTFBcXpwYNGqhx48Zat26devbsWbxfSkqKOnXq5LOrs+fn52vx0kVauy5FZ8+dleM3aSInO6f438+cOa3YmJYljo+oH+H0+sTJk5KkJ596otTzBQVV7vXAAACVj8uBZ+PGjfrhhx+0bds27d69W0VFRfL391erVq304IMPqn379mrTpk2Z3y8kJEQJCQmltl26miRJo0aN0tixY9WwYUMlJCQoJSVFO3fu1JIlS1z9KB73+vTXtHZdihLv+bNatoxVcFCQLBaLnp88UXbHlSdax7+P+Z+/TVCtmjVLtFut1nLXDACAL3E58Dz++OMKCQlR27Zt9eSTT6p9+/aKjY0tdQCtO/Xr10+5ubmaN2+e5s6dq8jISM2cOfOKwpW32bTpK/W+tY+SRowq3pZfkK/s7Gyn/erUCdfJU6dKHH/y1Emn1/Xr1Zck1QgLU/t25ljAFQCA8nA58HzyySdq1qzZVV0wMiEhQfv37y+xPTExUYmJiVftvBXNsBpyyHlQzIcffSCb3Xng7/Udrtfqjz/SwZ8OFI/jyczM1BcbPv/dfgkKCgrS4qWL1bZNO1Wp4vx/c1p6mmqEuTZ1AAAAvsjlwNO8eXN31lGpde7YWZ9/vl7BQUFq3ChSu/bs0rZtWxUa4vzU2YD7HtDnX3yuMWPH6J677yl+LL3OtXWUmZkpy7/Xcw8KCtJfRo9V8tS/65FhD6nHzT0VFhqmM7+e0bffbVZcbJzGPPkXT3xUAAA8wi2DllE+T4waLcOw6vN/fqGCgnzFxbbS66+8ob/89Smn/epcW0fTX5+uN2e8oSVLFyssLEx339VfAQEBenPGG06Dtm/peauuueYaLVm2RMvfX6aCwgLVvqa2WrVqrdt6963ojwgAgEcReLxA9eDqevaZv5XYvur9D0tsu65pM818c7bTtukzL4ad389D1Ca+rdrEt3VvsQAA+CDmrvYx+fn5Tq8zMjK0/ov1ahXXiqevAAC4DK7w+JjHRg5Tm/g2atSwsVLTUrVm7WfKycnRkEEPebo0AAC8FoHHx3RM6KSv/vcrffrZp7JYLGp2XTONe/pZxbeO93RpAAB4LQKPjxn+6GMa/uhjni4DAACfwhgeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgeszDU06G1ZBhWCr8vHa7Q3ab/YqPO3nqpN5fsUy79+zWkSNH1LBhQy1asMRpn7y8PL23eIG+3PilUlPPq3bta9WnVx8NuP8BVTWquusjAABQYQg85WBYDdWqHSaLUfEXyhx2u86fTb/i0HPkyBF9+923io6Okd3hkMNe8vjX33xNm77+SsMeGa7GjRtr1+5denfBO8rLy9PwYUx6CADwPQSecjAMiyyGoYyTx2T73aKeV5PV31+hEY1kGBbZbVd27A2db1DXLl0lSVOmJWv//n1O7Xa7XV9+tUH33ztA/e++R5LUtk07nThxXBs2/pPAAwDwSQQeN7Dl56soL9fTZZSJ8V+uRjkcDtlsNgUFBTltDwoKlsNxNSsDAODqYdAynFitVvXpdZs++vhD7d23VxdyL2jrth+0/ov16n/XPZ4uDwAAl3CFByU8NfoveuX1lzXs8aHF2wYOGKT7/nyfB6sCAMB1BB6U8Na8Ofr2u816Zuw4RUQ00O49u/XeondVvXp1PTBgoKfLAwDgihF44OTwkcN6f8VyTZvyom7o3EWSFN86XjZbkd55d77uvutuhfgHeLhKAACuDGN44OTo0SOSpKZNr3Pafl3T61RQWKBffz3ribIAACgXAg+c1KkTLkk6cOCA0/b9B/bLYrEoPDzcE2UBAFAu3NJyA6u/v8+cLy8vT99u+VaSdObMaeVcuKCNmzZKunjrqkXzFmrRvIVeee0lpaWlqn79CO3Zu1tLli3WbX36KiCA21kAAN9D4CkHu/3iTMWhEY0q/NwOu112+5VPjJOWnqYJz/+P07ZLr6e/PkNt4ttq2gsvaf6787R46SKlpafp2muv1YD7HtAD9zNgGQDgmwg85WC3XVzewZfW0qobXldfb/zmD/epVbOWnhk7ztXSAADwOgSecrLb7Fe8vAMAAKhYDFoGAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmx8SD5WRYDZ+aaXnjV1/q8y/Wa/+B/crKzlJE/Qj9qX+ibuvTVxbLxc8xanSStu/4scSxSxYuU+PGjctbOgAAFY7AUw6G1VDN2mEyjIq/UGa325V6Nv2KQ8+KVe8rPLyuRj6epLCwGvph2/d66dUX9evZX/XQkIeL94uLbaWRj490OpaV0gEAvorAUw6GYZFhGDq9facKsrMr7Lx+wcEKj28lw7Bc8bIW0154SWGhYcWv27Vtp8yMTK1Y9b6GDHqwOLwFBwerZUysG6sGAMBzCDxuUJCdrfzMLE+XUSa/DTuXXHddM/1jzafKy8tVtWpBFV8UAABXGYEH+r//26Ha19R2Cjvbd/yoW/r0kN1mV3R0jIY+/KjiW8d7rkgAAMqBwFPJ7fy/HdqwcYNGPp5UvC2+dbx639pbEREROnfunN5fuVxjxj6pGW/MUlxcnAerBQDANQSeSuzXs79q4uQJahPfVn/qn1i8/ZGHhjrt17nTDRr80EAtXLxAr7z0WkWXCQBAuTEPTyWVlZ2lp5/5i0JCQpU8acofPmkWGBioTh07a/+B/RVYIQAA7sMVnkooPz9fzzz7V2Xn5OitmW8rODjY0yUBAHBVEXgqmSJbkSZMGq9jx49q5puzVbt27f96TG5urjZ/941aNI+ugAoBAHA/Ak8l89rrr2rzt99o5OOjdOFCjnbv2VXcdl3TZtq7b4+Wr1imrl26qW54+MVBy6veV2pqqiZPTPZg5QAAuI7A4wZ+FXxLqDzn+2Hr95KkWXNmlGhbufwD1ap1jQoLizR3/tvKzMxQQECgYlvGauyYpxUTHePyeQEA8CQCTznY7Q7Z7XaFx7fywLntstsdV3zcqvc//K/7vMqTWAAAkyHwlIPddnE9K19aPBQAgMqIwFNOdpv9itezAgAAFYt5eAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkx8WA5GVbDp2Za/va7zVq6fKmOHjuqCxdydM01tdX1hq56aMjDCv73Gl1TpiVr3fq1JY595cVX1bFjp3LXDgBARSPwlINhNVTzmjAZ1oq/UGa32ZV6Lv2KQ09mVpZiomP0p/5/UmhoqA4fOawF772rI0cP67WX3yjer169eprw3ESnYxs1bOyGygEAqHgEnnIwDIsMq6Fdn32lnPMZFXbeoFqhiu13kwzDcsXLWvS6pZd0S6/i123i26pqVT+9/OqLOnfurK65prYkyd/PXy1jYt1ZNgAAHkPgcYOc8xnK+vW8p8twWWhIiCSpsKjIw5UAAHB1EHgqKZvNpiJbkY4ePar3Fi1Ql85dVDe8bnH7qVOn1LvfrcrPz1eTyCgNGfygbuxyowcrBgDAdQSeSirxvnt09txZSVLC9R014X+eL25r1rSZoptHKzIyUlnZ2fr4k9V6bvyzmvx8sm7ufrOHKgYAwHUEnkrqpWmvKC8vT0eOHtaixQs17rm/6rWX35DValXin/7stG+Xzl30eNJwvbNgPoEHAOCTmIenkmoa1VSxLWN1e987NDV5mv7147/0v//vf0vd1zAMdbvxJh07dlT5+fkVXCkAAOVH4IGiopqqSpUqOnXqpKdLAQDgqvCqwLN27Vo9/vjjuvHGGxUfH68777xTH3zwgRwOh9N+q1atUq9evRQXF6c77rhDGzdu9FDF5rBn724VFRWpXt16pbbb7XZ9tWmjIhtHyt/fv4KrAwCg/LxqDM97772n+vXra9y4capRo4Y2b96s8ePH6/Tp00pKSpIkrVmzRuPHj9djjz2mjh07KiUlRUlJSVq6dKni4+M9+wF8wHMTnlXzZi0UFdVU/n7++unQT1q+YpmimjRV1y436vTp05oyLVk9b+6p+vUjlJWdpY8/Wa19+/cpedIUT5cPAIBLvCrwzJkzRzVr1ix+3alTJ6Wnp2vBggUaMWKEDMPQ9OnT1bdvX40ePVqS1LFjRx04cECzZs3SvHnzPFJ3UK1QnzlfdIsYfblxg5YuXyKH3aHw8HDd3vd23X/vAFWtWlXVqlVTcFCQFi1ZqLT0NFWpUkUtmrfQy9NeVcL1CW78FAAAVByvCjy/DTuXREdHa+XKlbpw4YLS0tJ09OhRPf3000773HbbbXrppZdUUFAgPz+/iiq3eD2r2H43Vdg5i89ts8tud/z3HX9n4IBBGjhg0GXbQ0JCNHXKi+UpDQAAr+NVgac027ZtU506dRQcHKxt27ZJkiIjI532iYqKUmFhoU6cOKGoqKgKq+3Sela+tHgoAACVkVcHnq1btyolJUXPPPOMJCkj4+J6VSH/XgrhkkuvL7W7qkqV0sdw22yXH9ttt9mveD0rM7BYJMdlLjBZrZbL9qXVAwuterPy9Ad96czV/qAfS6Iv3YPft/u4oz+8NvCcPn1aY8aMUUJCggYPHnzVz2cYFtWoEVRqW15ens6cueol+JTSvnx2u0WGYSg0tJoCAgI8UJXvCQkJ9HQJpkFfug996R70o/u4oy+9MvBkZmbq0UcfVVhYmGbMmCHDuPiXa2joxcG6WVlZql27ttP+v213hd3uUGbmhVLbbLZCl9/XrGw2e4krPDabQ3a7XRkZF5SbW/plL6vV4A+B38jMzJXNxVuT9KUzV/uSfiyJvnQPft/uc7m+DAkJLPPVH68LPHl5eRo+fLiysrK0YsUKVa9evbitSZMmkqTDhw8X//ul11WrVlWDBg3Kde6iotK/mHY7Y2V+73K3s6SLwedyfQlnNpudvnIT+tJ96Ev3oB/dxx196VU3CYuKijR69GgdPnxY8+fPV506dZzaGzRooMaNG2vdunVO21NSUtSpU6cKfUILAAD4Dq+6wjNp0iRt3LhR48aNU3Z2trZv317cFhMTIz8/P40aNUpjx45Vw4YNlZCQoJSUFO3cuVNLlizxXOEAAMCreVXg+eabbyRJ06ZNK9G2YcMGRUREqF+/fsrNzdW8efM0d+5cRUZGaubMmWrTpk1FlwsAAHyEVwWeL7/8skz7JSYmKjEx8SpXAwAAzMKrxvAAAABcDV51hccXGVbDZ2davpB7QQMHD9DZc2c17635atE8WpI0anSStu/4scT+SxYuU+PGjct1TgAAPIHAUw6G1VDNa8JkeGBGzEvLWpQn9Cxc9J5sttLny4mLbaWRj4902hYeHu7yuQAA8CQCTzkYhkWG1dD6uR8r9ZfzFXbemnVrqdewu2QYFpeXtTh2/JhWf/yRRj6epFdef7lEe3BwsFrGxJazUgAAvAOBxw1Sfzmvs8dPe7qMK/LG9Nd05x13qWHDhp4uBQCAq45By5XQxk0bdfjwYT04+KHL7rN9x4+6pU8P9bi1u5KeHKntO7ZXXIEAALgZV3gqmby8PM2cPUPDhg5XUFDpi6XGt45X71t7KyIiQufOndP7K5drzNgnNeONWYqLi6vgigEAKD8CTyWzcPF7qlmjhm7r0/ey+zzy0FCn15073aDBDw3UwsUL9MpLr13tEgEAcDtuaVUip0+f1opV7+vhBx9Rdk62srKzdCE3V5KUm5urC7mlrxYfGBioTh07a/+B/RVZLgAAbsMVnkrkl9M/q7CwUH999ukSbU+MGaWY6Bi9PXueByoDAODqIvBUIk2bXqfpr89w2nbwp4OaMWu6xo55Wi1aRJd6XG5urjZ/903xxIQAAPgaAo8b1KxbyyfOVz24utrEty21rXnz5mrerLl27Nyu5SuWqWuXbqobHn5x0PKq95WamqrJE5PLUzYAAB5D4CmHS8s79Bp2V8Wf22aX3e5w+/vWqnWNCguLNHf+28rMzFBAQKBiW8Zq7JinFRMd4/bzAQBQEQg85XBpeQdfXUtLktrEt9XXG78pfh1RP0Kv8iQWAMBkCDzlZLfZXV7eAQAAVAweSwcAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKbHxIPlZFgNn5ppOWXdGk198YUS2x+4f6AeG/a4JGnU6CRt3/FjiX2WLFymxo0bX/E5AQDwNAJPORhWQzWuCZXVaq3wc9tsNqWdy3B5eYlXXnxNwcFBxa+vuaa2U3tcbCuNfHyk07bw8HCXzgUAgKcReMrBMCyyWq16e8p8/XzsdIWdt16jcA1/bqgMw+LyshbNmzdXWGjYZduDg4PVMibWtTcHAMDLEHjc4Odjp3Xs4HFPlwEAAC6DwFNJDX5ooDIyMlSnTrhu73u7Btz3gNOtue07ftQtfXrIbrMrOjpGQx9+VPGt4z1XMAAA5UDgqWRq1bxGDz/4iGKiW8pikb7Z/P80/915OnfurMY8+RdJUnzrePW+tbciIiJ07tw5vb9yucaMfVIz3piluLg4D38CAACuHIGnkkm4PkEJ1ycUv76+Q4L8/P21atVKDRo4RNfUukaPPDTU6ZjOnW7Q4IcGauHiBXrlpdcqumQAAMqNeXigm2/qIZvdpp9+Olhqe2BgoDp17Kz9B/ZXcGUAALgHgQcAAJgegQfa8OU/ZTWsuu66ZqW25+bmavN336hF8+gKrgwAAPdgDE8l89TTY9SubTs1iWwi6eKg5U8/+1R/uidRtWrW0o6d27V8xTJ17dJNdcPDLw5aXvW+UlNTNXlisoerBwDANQQeN6jXqGJnIC7P+Ro1bKTPUj7T2bO/ymF3KKJBAz0x8knd0/9PkqRata5RYWGR5s5/W5mZGQoICFRsy1iNHfO0YqJj3PURAACoUASecrDbHbLZbBr+3ND/vrOb2Ww22e2OKz7uyVGj9eQftEfUj9CrPIkFADAZAk852G12pZ3L8KnFQwEAqIwIPOVkt9ldXs8KAABUDJ7SAgAApkfgAQAApkfgAQAApkfgAQAApkfgAQAApkfgAQAApkfgAQAApkfgAQAApsfEg+VkWA2fnGl57boUrfpwpY4dO6bAwEC1aBGtKZNfkL+/v6ZMS9a69WtLHPPKi6+qY8dO5SkbAACPIPCUg2E1VKNWqKxVrBV+bluRTWnnM1wKPYuWLNTS5Us06IHBahkTq4yMdG371zbZfjNldL169TThuYlOxzVq2Li8ZQMA4BEEnnIwDIusVawaN2aSjhw6WmHnjYxqrGmvT5RhWK54WYvjx4/p3ffe0bQpL6pjwn+u1tzUrbvTfv5+/moZE+uOcgEA8DgCjxscOXRUe3cf8HQZZZKyLkV169ZzCjsAAJgdgaeS2b1nt6Iim2jh4vf0wUerlJ2drRbNo5U0YpRaxrQs3u/UqVPq3e9W5efnq0lklIYMflA3drnRg5UDAOA6Ak8lk5p6XvsP7NOhI4f11OixCvD31+Kli/WXv47R8sUrVKNGDTVr2kzRzaMVGRmprOxsffzJaj03/llNfj5ZN3e/2dMfAQCAK0bgqWTsDodyc3P19+eT1TSqqSSpZUysEu+/Rx+u/kBDH35UiX/6s9MxXTp30eNJw/XOgvkEHgCAT2IenkqmenB1hYaEFocdSQoJCdF1TZvp6NEjpR5jGIa63XiTjh07qvz8/IoqFQAAtyHwVDKRjSMv25ZfUFCBlQAAUHEIPJVM506dlZGZoYM//eepsoyMDB04uF/NmzUv9Ri73a6vNm1UZONI+fv7V1SpAAC4DWN4KpmuXW5UdItojZ/4P3r0kWHy9/fXkmWL5VfVT3ff1V+nT5/WlGnJ6nlzT9WvH6Gs7Cx9/Mlq7du/T8mTpni6fAAAXELgcYPIqMY+cz7DMPTStFc0Y9Z0vfLayyosKlSruNaa8eYs1apZS5mZmQoOCtKiJQuVlp6mKlWqqEXzFnp52qtKuD7BfR8CAIAKROApB7vdIVuRTdNen/jfd3YzW5FNdrvDpWPDQsM0/m8TSm0LCQnR1Ckvlqc0AAC8DoGnHOw2u9LOZ/jk4qEAAFQmBJ5ystvsV7yeFQAAqFg8pQUAAEyPwAMAAEyPwAMAAEyPwFMmFwclu/ZMVOXhcNBDAADvROApgypVrLJYpIJCll74IwUFF9fZsloZCw8A8C78zVQGhmFVWFiYzp89J9kdqlrVTxZLxT+K7g0sFsluschm+8/VHIfDoYKCfGVnpykwMFiGQY4GAHgXAk8Z1a1bV7lp55WVlXbxb/1KymKxyKhSVXZ7yTmAAgODFRJS0wNVAQDwxwg8ZWSxWFQjwF9BDptslXioitXfT2ENI5WRccHpKo/VWoUrOwAAr+WTgefQoUNKTk7Wjz/+qKCgIN15550aPXq0/Pz8rvq5DYtFHphY2WtUsVoVEBCg3FybioqY6RkA4Bt8LvBkZGRoyJAhaty4sWbMmKEzZ85o2rRpysvL04QJpa8PBQAAKjefCzzvv/++cnJyNHPmTIWFhUmSbDabJk2apOHDh6tOnTqeLRAAAHgdnxt08b//+7/q1KlTcdiRpD59+shut+ubb77xXGEAAMBrWRw+Nltcp06ddM8992js2LFO27t27ao777yzxPaycjgcsttL7wqLRTIMQ/aiwko/ud5vn9JypSsu9WVRfr5cegOzsFhUxd/f5X7891vIMAwV5OSW+tRcZWEYhvyCAsv9nbyQmSO7rXKvBGxYraoWElTuvsxMy1RRUeXtyypVrAqpEeKW3/f582kqKix0b4E+pErVqqpVq8Zl+9IwLGWeJsbnbmllZmYqJCSkxPbQ0FBlZGS4/L4Wi0VW6x93mlGlqsvvbzblfSKrir+/myrxbe54ss0vKNANlfi+8vZltZAgN1Xi+8rblyE1Sv4ZXRm54/ddq1YNN1Ti+9zRlz53SwsAAOBK+VzgCQkJUVZWVontGRkZCg0N9UBFAADA2/lc4GnSpIkOHz7stC0rK0tnz55VkyZNPFQVAADwZj4XeG688UZt3rxZmZmZxdvWrVsnwzB0ww03eLAyAADgrXzuKa2MjAz17dtXkZGRGj58ePHEg7fffjsTDwIAgFL5XOCRLi4t8fe//91paYkxY8ZUyNISAADA9/hk4AEAALgSPjeGBwAA4EoReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOn53GrpZnfs2DG988472rFjhw4ePKgmTZros88+c9onNzdXs2fPVkpKis6dO6fw8HDdfffdGjp0qKpU4f9SSVq7dq0+/fRT7d69W5mZmWrUqJEGDRqke+65RxaLRZI0aNAgff/99yWOTUlJUVRUVEWX7JU2bdqkefPm6aefflJ2drbq1Kmjnj17KikpSdWrV5ckjRs3TqtXry5x7Lx583TjjTdWdMk+IycnR3369NGZM2f0wQcfKC4uThLfy7L46KOP9Oyzz5bY/uijj2rs2LGS6McrsXr1ai1cuFCHDh1StWrVFBcXp5kzZyogIMBUv2/+dvQyBw8e1KZNm9S6dWvZ7XaVNk3S5MmT9fnnn+upp55SVFSUtm/frunTpys3N1djxozxQNXe57333lP9+vU1btw41ahRQ5s3b9b48eN1+vRpJSUlFe/Xtm1bPfPMM07HRkREVHS5Xis9PV2tWrXSoEGDFBYWpoMHD2rGjBk6ePCg3n333eL9GjRooFdeecXpWP5S+WOzZ8+WzWYrtY3vZdnMnz+/OHhLUp06dZza6cf/bs6cOZo3b54ee+wxxcfHKy0tTd9++63Td9Msv28Cj5e5+eab1bNnT0kX/8t5165dTu12u11r167VI488ogceeECS1LFjRx05ckRr1qwh8PzbnDlzVLNmzeLXnTp1Unp6uhYsWKARI0bIMC7ezQ0JCVF8fLyHqvR+d955p9PrhIQE+fn5afz48Tpz5kzxXzABAQH04xU4dOiQli1bpmeeeUYTJ04s0c73smxatmzp9Dv/Pfrxjx0+fFgzZ87U7Nmz1a1bt+LtvXr1ctrPLL9vxvB4mUt/EV+Ow+FQUVGR03/VSFL16tVLvRpUWZX2h2B0dLSys7N14cIFD1RkHmFhYZKkwsJCzxbiw5KTk3XfffcpMjLS06WgEvvoo48UERHhFHbMjMDjY6xWq/r3768lS5Zo586dysnJ0ebNm/XJJ59o4MCBni7Pq23btk116tRRcHBw8bbvv/9e8fHxiouL08CBA/XDDz94sELvZbPZlJ+fr927d2vWrFm6+eabnW4NHDt2TO3atVNsbKz69++vf/7znx6s1rutW7dOBw4c0MiRIy+7D9/LsunXr5+io6PVo0cPvf322yVuEdKPf2zHjh1q1qyZZs+erU6dOik2Nlb33XefduzY4bSfWX7f3NLyQRMnTtTEiROVmJhYvG348OF66KGHPFiVd9u6datSUlKc7ud36NBBd955pxo3bqxff/1V77zzjh566CEtXrxYbdq08WC13qd79+46c+aMJKlr16569dVXi9uio6MVFxenpk2bKisrS8uXL9fIkSP15ptvqnfv3p4q2Svl5uZq2rRpGjNmjFPw/i2+l/9d7dq1NWrUKLVu3VoWi0Vffvml3njjDZ05c0YTJkyQRD+WxdmzZ7Vr1y4dOHBAEydOVGBgoN566y09/PDD+vzzz1WrVi1z/b4d8FrPPPOMo2/fviW2T5s2zXHDDTc4Vq5c6fj+++8dc+fOdbRu3doxb948D1Tp/X755RdHly5dHEOGDHHYbLbL7peTk+Po3r27Y+jQoRVYnW/Yu3ev41//+pdj5cqVju7duzsGDRrkKCoqKnVfm83mSExMdPTp06eCq/R+r776qqN///4Ou93ucDgcju+++87RrFkzx86dOy97DN/Lspk2bZojOjracebMmVLb6ceSbr31VkezZs0ce/fuLd6WlpbmaNOmjeONN94o9Rhf/n1zS8vHHDhwQO+++64mT56sxMREdejQQY8++qiGDx+uN998U9nZ2Z4u0atkZmbq0UcfVVhYmGbMmPGHY6SqVaumbt26affu3RVYoW9o0aKF2rRpo8TERM2ePVtbtmzRF198Ueq+hmHo1ltv1aFDh5SXl1fBlXqvU6dO6d1339UTTzyhrKwsZWZmFo8nu3DhgnJycko9ju9l2fTp00c2m0179+4ttZ1+LCkkJERhYWFq0aJF8bawsDDFxMTop59+KvUYX/59c0vLx1z6EkZHRzttj4mJUUFBgc6cOXPZS+WVTV5enoYPH66srCytWLGixEBvuKZ58+aqWrWqjh8/7ulSfMrJkydVWFioYcOGlWgbPHiwWrdurZUrV3qgMlRWTZs2vezvOD8/v4KrufoIPD6mfv36kqTdu3erbt26xdt37doli8WievXqeao0r1JUVKTRo0fr8OHDWrp0aYn5OUpz4cIFffXVV8UTwKF0O3bsUGFh4WXnM7Hb7Vq3bp2uu+46BQQEVHB13is6OlqLFi1y2rZ3715NnTpVkyZNuuz3ju9l2aSkpMhqtSomJqbUdvqxpO7du+ujjz7S3r17i/8jOi0tTbt379aDDz5Y6jG+/Psm8HiZ3Nxcbdq0SdLFS+DZ2dlat26dJOn6669XbGysYmNjNXHiRJ0/f14NGzbUzp07NXfuXN1zzz0KDAz0ZPleY9KkSdq4caPGjRun7Oxsbd++vbgtJiZGO3fu1Pz583XLLbeofv36+vXXX7VgwQKdPXtWb775pucK9zJJSUmKjY1V8+bNFRAQoH379umdd95R8+bN1bNnT506dUrjxo1T37591ahRI2VkZGj58uXatWuXZsyY4enyvUpISIgSEhJKbWvZsqVatmyprVu38r0sg0ceeUQJCQlq3ry5JGnDhg1auXKlBg8erNq1a9OPZdSzZ0/FxcXpiSee0JgxY+Tv76+5c+fKz89PAwYMMN3v2+JwMHmLNzl58qR69OhRatuiRYuUkJBQ/KPdvHmzzp8/r/DwcPXr10+PPvqozyXuq+Xmm2/WqVOnSm3bsGGDbDabJk+erP379ys9PV2BgYFq06aNkpKS1KpVqwqu1nvNnTtXKSkpOn78uBwOh+rXr69bbrlFjzzyiIKDg5Wenq5nn31We/bs0fnz51W1alXFxsZq2LBh6tq1q6fL93pbtmzR4MGDi5eWOHbsGN/LMkhOTtbXX3+t06dPy263q3HjxkpMTNSgQYNksVjoxyuQmpqqqVOnauPGjSosLFT79u317LPPqmnTpqb7fRN4AACA6fGUFgAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwCfcerUKT3//PPq1auXWrVqpYSEBD3xxBM6efJkiX337dungQMHqlWrVrrxxhs1e/Zsffjhh2revHmJ/Tdt2qQBAwYoPj5ebdq00bBhw3Tw4MGK+lgAKgCLhwLwGevWrdOcOXPUo0cPhYeH69SpU1q+fLmCg4O1Zs0aBQYGSpLOnDmjO+64Q5I0aNAgVatWTatWrZKfn5/27dunDRs2KCIiQpL08ccfa9y4cerSpYtuuukm5ebmavny5crKytLq1auL9wPg2wg8AHxGXl6eAgICnLZt375d9957r1588UXdddddkqTk5GQtWbJEq1evVnR0tCQpPT1dvXr1Unp6enHgycnJ0U033aTevXvr73//e/F7njt3Tr1791afPn2ctgPwXdzSAuAzfht2CgsLlZaWpoYNGyokJER79uwpbvv6668VHx9fHHYkKSwsTLfffrvT+23evFmZmZnq27evUlNTi/8xDEOtW7fWli1brv6HAlAhqni6AAAoq7y8PL399tv66KOPdObMGf32AnVWVlbxv586dUrx8fEljm/YsKHT66NHj0qShgwZUur5goODy180AK9A4AHgM/7+97/ro48+0pAhQxQfH6/q1avLYrFozJgxcuXu/KVjXnrpJdWuXbtEu9VqLXfNALwDgQeAz1i/fr3uuusujRs3rnhbfn6+09UdSapfv76OHTtW4vjjx487vW7QoIEkqVatWurcufNVqBiAt2AMDwCfUdoVl8WLF8tmszlt69Kli7Zv3669e/cWb0tPT9c//vEPp/26du2q4OBgvf322yosLCzx3qmpqW6qHICncYUHgM+46aab9Mknnyg4OFhNmzbV9u3btXnzZoWFhTntN3ToUH366ad66KGHNHDgwOLH0uvWrav09HRZLBZJF8foPP/88/rrX/+q/v3767bbblPNmjX1888/a9OmTWrbtq0mTJjggU8KwN0IPAB8xnPPPSfDMPSPf/xD+fn5atu2rRYsWKChQ4c67Ve3bl0tWrRIycnJevvtt1WzZk098MADCgwMVHJysvz9/Yv3vf3223Xttddq7ty5euedd1RQUKA6deqoffv26t+/f0V/RABXCfPwAKg0pkyZohUrVujHH39kQDJQyTCGB4Ap5eXlOb1OS0vTp59+qnbt2hF2gEqIW1oATOnee+/V9ddfr6ioKJ07d04ffvihsrOzNWLECE+XBsADuKUFwJRee+01rV+/XqdPn5bFYlFMTIySkpJ4/ByopAg8AADA9BjDAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATO//A/kdXAxtDcOxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -170,41 +177,19 @@ }, { "cell_type": "markdown", - "id": "continental-franklin", + "id": "1503d38c-8fe9-4b12-b8f9-ed3c51550c08", "metadata": {}, "source": [ - "I'm trying to find out at what age, on average, do people experience a dramatic\n", - "weight gain or loss, if at all.\n", - "I'm curious to find out if such a dramatic increase or decrease in weight can\n", - "be captured in a one-time snapshot database, where individuals are NOT tracked \n", - "over a period of time, but ONLY once." - ] - }, - { - "cell_type": "markdown", - "id": "6ac075dc-abfd-49eb-a2b9-b13220c4e850", - "metadata": {}, - "source": [ - "Results" - ] - }, - { - "cell_type": "markdown", - "id": "7bac8b8f-10b6-49d2-8870-038e6e65ae0e", - "metadata": { - "jp-MarkdownHeadingCollapsed": true - }, - "source": [ - "Since this chart of this dataset shows that an age 65+ person, on average, is closer in weight to an age 18 to 30 person, is that of any significance?" + "I want to see a distribution of persons by age by weight, with outliers.\n", + "There are many outliers on the upside for all age groups.\n", + "There are very few outliers on the downside for all age groups." ] }, { "cell_type": "code", "execution_count": 13, "id": "pursuant-surrey", - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -233,19 +218,17 @@ }, { "cell_type": "markdown", - "id": "c2aa144e-ba69-4e8e-a744-5ebbdb54ba89", + "id": "14aec0ff-b030-4916-8ce3-3ad8c56aa08f", "metadata": {}, "source": [ - "I want to see a distribution of people by age by weight, with outliers." + "I want to see the main distribution of persons by age by weight." ] }, { "cell_type": "code", "execution_count": 14, "id": "located-night", - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -272,14 +255,6 @@ "sns.violinplot(data=people, x=\"age\", y=\"weight\")" ] }, - { - "cell_type": "markdown", - "id": "922844f3-5f2c-4efd-96d2-23dcc959d70c", - "metadata": {}, - "source": [ - "I want to see the main distribution of people by age by weight." - ] - }, { "cell_type": "markdown", "id": "infectious-symbol", @@ -300,17 +275,17 @@ }, { "cell_type": "markdown", - "id": "a6127b6f-d244-48e2-8993-fcb4143ae7df", + "id": "a912ec72-35a8-4325-8520-4a47d806c287", "metadata": {}, "source": [ - "- Do the results give an accurate depiction of your research question? Yes. Why or why not? The dataset is a valid cross-section of U.S. people. There are 166,426 records in this database. \"This dataset includes data from 50 states, the District of Columbia, Guam, and Puerto Rico, collected through a combination of landline and cell phone interviews.\" - 2020 Behavioral Risk Factor Surveillance System (BRFSS) annual survey data from the Centers for Disease Control and Prevention (CDC).\n", - "- What were limitations of your datset? The person answering the survey has a telephone, and voluntarily and accurately answers the survey questions.\n", + "- Do the results give an accurate depiction of your research question? Yes. Why or why not? The dataset is a valid cross-section of U.S. persons. There are 166,426 records in this database. \"This dataset includes data from 50 states, the District of Columbia, Guam, and Puerto Rico, collected through a combination of landline and cell phone interviews.\" - 2020 Behavioral Risk Factor Surveillance System (BRFSS) annual survey data from the Centers for Disease Control and Prevention (CDC).\n", + "- What were limitations of your dataset? The person answering the survey has a telephone, and voluntarily and accurately answers the survey questions.\n", "- Are there any known biases in the data? No. " ] }, { "cell_type": "markdown", - "id": "dd3a598d-b808-4209-bb4d-55f6877f1cf5", + "id": "4c170ecf-38a3-484b-8188-af144918199d", "metadata": { "editable": true, "slideshow": { @@ -319,8 +294,7 @@ "tags": [] }, "source": [ - "Conclusions - people, on average, gain weight from age 18 to roughly age 50, \n", - "then lose weight after age 50." + "Conclusions - There is no significant relationship between many persons age and weight because this dataset has no individual timeline. It's only a one-time snapshot." ] }, { @@ -339,17 +313,10 @@ }, { "cell_type": "markdown", - "id": "a4af7f6f-9e21-4ec2-8b32-b14b0e7cd60b", + "id": "b2b17e2e-0d75-4865-ab30-08250f5c8427", "metadata": {}, "source": [ - "1) What is the count of people by age? 1st chart. Is this distribution of any significance? No known biases.\n", - "2) What is the count of people by weight? 2nd chart. Is this distribution of any significance? No known biases.\n", - "3) What number or percentage can be used to accurately indicate a \n", - "dramatic change in weight by age? 3rd chart. No dramatic change in weight by age. How do I determine what \"dramatic\" is? It's subjective.\n", - "4) I want to see the main distribution of weight by age. I want to see where\n", - "the probable outliers are (Box Plot). 4th chart. There are many outliers on the upside for all age groups. There are very few outliers on the downside for all age groups.\n", - "5) I want to see the main distribution of weight by age. I want to see the\n", - "probability density (Violin Plot). 5th chart." + "I found out that a snapshot dataset cannot discern a direct relationship between many persons age and weight, since there's no timeline in the dataset. What I learned is to be careful in drawing conclusions about datasets based on limited information. " ] } ], diff --git a/argument.ipynb b/argument.ipynb index 4c937bb..a56fb0e 100644 --- a/argument.ipynb +++ b/argument.ipynb @@ -10,10 +10,10 @@ }, { "cell_type": "markdown", - "id": "fabbf3b9-fd14-4b2d-917d-1f6fee08784c", + "id": "95683a23-56f0-4077-b631-94e456daa8f4", "metadata": {}, "source": [ - "Argument Project Research - Nelson Mason - November 3, 2025" + "Argument Project Research - Nelson Mason - November 4, 2025" ] }, { @@ -58,6 +58,14 @@ "people = pd.read_csv(\"data/brfss_2020_cleaned.csv\")" ] }, + { + "cell_type": "markdown", + "id": "77e81e19-a1dd-43f1-bf6a-69ffa08add94", + "metadata": {}, + "source": [ + "There is a progression of age in terms of the numbers of persons participating in this survey." + ] + }, { "cell_type": "code", "execution_count": 10, @@ -91,11 +99,10 @@ }, { "cell_type": "markdown", - "id": "92404f8d-3c67-4d7b-8781-2f8725609eed", + "id": "376d050c-1088-414a-9a33-037e9d8a97cc", "metadata": {}, "source": [ - "I want to see a count of people by every age group.\n", - "Is this distribution of any significance?" + "Most persons weigh around 75 kgs. in this survey." ] }, { @@ -131,10 +138,10 @@ }, { "cell_type": "markdown", - "id": "40a0464f-92b4-4a09-9264-15ababbe8591", + "id": "7fbdae7b-c7c0-472a-a52f-87d158129e25", "metadata": {}, "source": [ - "I want to see a count of people by weight (kg). Is this distribution of any significance?" + "There is no individual timeline in this dataset, and therefore no direct relationship between age and weight." ] }, { @@ -155,7 +162,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAG5CAYAAACKmu5sAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQUZJREFUeJzt3Xl4FFXe9vG7qyELCUkAkQBhCUEgIYGwGUAQERQQ3HAyKrK4ICgEBQdHHB9AmCC4K6sCiuwCKupIAB1EHl9RFEbgYUd2UBDIHrJ29/sHQ8Y2wQmdJt1d+X6uy2vsOlVdvz7TDbdVp86xOBwOhwAAAEzM8HQBAAAAVxuBBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmF4VTxfgLRwOh+x2Jp0GAMBXGIZFFoulTPsSeP7NbncoNTXH02UAAIAyqlkzSFZr2QIPt7QAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAwMMWLpyvAQP6a+HC+Z4uBTAti8PhcHi6CG9gs9mVmprj6TIAeIBhWGQYFo+cOz8/X4MG3Su73S7DMLR48Qr5+/t7pBZJstsdstv5awG+oWbNIFmtZbt2U+Uq1wLAxBYunK/161PUq9dtGjJkqKfLcYlhWFQjrJqMMv6h6W7Z2Q7Z7XZJkt1uV3Cwn4KDgzxSiyTZbXalpV8g9MB0CDwAXJKfn69161LkcNi1fn2K7rtvkEevTLjKMCwyrIbWz/1Yqb+cr/DzF9mKZJFFDjlkkUWrX1qqKlbP/NFcs24t9Rp2lwzDQuCB6RB4AB/m2VsxNjkc/7kyIdlUpYpnrpK44zZM6i/ndfb4aTdVdGUiq9fXkaxTiqxeX2mnznmkBsDsCDyAjzIMi2rUqCbD8EzIqFrVOWCEhQV57FaM3W5XWprv3oaJq9VMcbWaeboMwNQIPICPunh1x9Cuz75SzvmMCj9/QVGhLBaLHA6HDItFP65YJ78qVSu8jqBaoYrtdxO3YQD8IQIP4ONyzmco69eKH3siSe0aNtO24wfUtmEz5admKt8jVQD/YYaB9Lg6CDwAXHZLdHvdEt3e02XAi3j6Ef/161Nkt18cSD9w4BCPDaTn8X7vQ+ABALiFYVgUFhYoq9XqkfPn5TmfNyysmgICAjxSi81mU3p6LqHHixB4AABuYRgWWa1WvT1lvn4+5pkn3sKr19PPGacUXr2epj7xikdqqNcoXMOfG8q4Mi9D4AEAuNXPx07r2MHjHjm3Vf5qoCZSmnQszTM1wDuxlhYqHdYtAoDKh8CDSuXS7MCXBjXm5/NcEQBUBtzSQoVjdmD9+/w8xQEAFYXAgwrF7MD/4euzAwOALyHwoEJdmh349PadKsjOrvDz5xcU/Gd2YMPQL99vlb+fX4XX4RccrPD4VjzFAQAVhMADjyjIzlZ+ZpZHzt29TVt99eO/dFN8GykvX/l5jOMBALMj8KDS+XP3Hvpz9x6eLgMAUIF4SgsAAJgegQcAAJgegQcAAJgegQcAAJie1wWeDRs2KDExUW3atFGXLl305JNP6sSJEyX2W7VqlXr16qW4uDjdcccd2rhxoweqBQAAvsCrAs+WLVuUlJSkpk2batasWfrb3/6mffv26eGHH1ZeXl7xfmvWrNH48ePVp08fzZs3T/Hx8UpKStL27ds9VzwAAPBaXvVY+po1a1SvXj298MILslguLj1Qs2ZNDRkyRLt27VL79u0lSdOnT1ffvn01evRoSVLHjh114MABzZo1S/PmzfNU+QAAwEt51RWeoqIiBQUFFYcdSapevbokyeG4OBvtiRMndPToUfXp08fp2Ntuu03ffvutCgoKKq5gAADgE7zqCk///v31ySefaOnSpbrjjjuUnp6u1157TTExMWrbtq0k6fDhw5KkyMhIp2OjoqJUWFioEydOKCoqqsJrBwDAnTy50LIkLVgwT2vXrlGfPn310EOPeqwOdy207FWBp3379po5c6b+8pe/aPLkyZKk6OhozZ8/X1arVZKUkZEhSQoJCXE69tLrS+2u8NSq2ZWJ1Uof/1Z5+oO+dOZqf9CPJdGX7lGe/rBYLKpe3b/4776KlpeXp7Vr18hut2vt2jUaMeIxBQQEeKQWm82mrKz84js9rvKqwPOvf/1Lf/3rX/XnP/9ZN910k9LT0zV79mwNGzZMy5Ytu6qdfXEVb8+smo3KKyQk0NMlmAZ96T70pXu4ox/HjZmkI4eOlr+YK+Rw2GW32yVJdrtdgxOHy2Kp+EAbGdVY016fqLCwauV+L68KPMnJyerYsaPGjRtXvC0+Pl433XSTPvnkE917770KDQ2VJGVlZal27drF+2VmZkpScfuVstsdysy8UI7qURZWq8Efpr+RmZkrm83u0rH0pTNX+5J+LIm+dA93/L6PHDqqvbsPuLmysgmqWUWB1a3KzbLp7NGfPFLDJZfry5CQwDJfSfOqwHPo0CH16OG8qGN4eLhq1Kih48ePS5KaNGki6eJYnkv/ful11apV1aBBA5fPX1Tk2hcTcJXNZud75yb0pfvQl+7h6/2Yk1qknNQiT5chyT196VU3XOvVq6c9e/Y4bTt16pTS0tJUv359SVKDBg3UuHFjrVu3zmm/lJQUderUSX5+fhVWLwAA8A1edYXnvvvu0wsvvKDk5GTdfPPNSk9P15w5c1SrVi2nx9BHjRqlsWPHqmHDhkpISFBKSop27typJUuWeLB6AADgrbwq8AwePFh+fn5avny5PvzwQwUFBSk+Pl5vvPGGatSoUbxfv379lJubq3nz5mnu3LmKjIzUzJkz1aZNGw9WDwAAvJVXBR6LxaL7779f999//3/dNzExUYmJiRVQFQAA8HVeNYYHAADgaiDwAAAA0yPw+IiFC+drwID+WrhwvqdLAQDA5xB4fEB+fr7WrUuR3W7X+vUpys/P93RJAAD4FK8atOzNPLmIW36+TQ7Hf6b4lmweXffLXQu5AQBQUQg8ZWAYFtWsESSLhwJP1arO4SIsLEjBwZ5b98thdyg1LYfQAwDwGQSeMjAMiyyGRRknj8nmgdtJ+fkFslgscjgcMgxDWcePqsDfMzNKW/39FRrRSIZhIfAAAHwGgecK2PLzVZSXW+HntUrqdWMXff71N7q16w2yOmweqQMAAF9F4PERQ+65W0PuudvTZQAA4JN4SgsAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJgegQcAAJieVwae1atX66677lJcXJwSEhI0dOhQ5eXlFbd/+eWXuuOOOxQXF6devXrpww8/9GC1AADA21XxdAG/N2fOHM2bN0+PPfaY4uPjlZaWpm+//VY2m02StHXrViUlJelPf/qT/va3v+m7777Tc889p6CgIPXu3dvD1QMAAG/kVYHn8OHDmjlzpmbPnq1u3boVb+/Vq1fxv8+ZM0etWrXS5MmTJUkdO3bUiRMnNH36dAIPAAAolVfd0vroo48UERHhFHZ+q6CgQFu2bCkRbG677TYdOnRIJ0+erIgyAQCAj/GqwLNjxw41a9ZMs2fPVqdOnRQbG6v77rtPO3bskCQdP35chYWFatKkidNxUVFRki5eIQIAAPg9r7qldfbsWe3atUsHDhzQxIkTFRgYqLfeeksPP/ywPv/8c2VkZEiSQkJCnI679PpSu6uqVCk9/1mtXpULvYKrfUJfOitPf9CXzvhOug996R78vt3HHf3hVYHH4XDowoULevPNN9WiRQtJUuvWrXXzzTdryZIl6tKly1U7t2FYVKNG0FV7f7MJCQn0dAmmQD+6D33pPvSle9CP7uOOvvSqwBMSEqKwsLDisCNJYWFhiomJ0U8//aS+fftKkrKyspyOy8zMlCSFhoa6fG673aHMzAultlmtBl/c38nMzJXNZr/i4+hLZ672o0Rf/h7fSfehL92D37f7XK4vQ0ICy3z1x6sCT9OmTXX8+PFS2/Lz89WwYUNVrVpVhw8fVteuXYvbLo3d+f3YnitVVOTaF7Mystns9Jcb0I/uQ1+6D33pHvSj+7ijL73qJmH37t2Vnp6uvXv3Fm9LS0vT7t271bJlS/n5+SkhIUHr1693Oi4lJUVRUVGKiIio6JIBAIAP8KorPD179lRcXJyeeOIJjRkzRv7+/po7d678/Pw0YMAASdLjjz+uwYMH6/nnn1efPn20ZcsWffbZZ3r99dc9XD0AAPBWXnWFxzAMzZ07V/Hx8ZowYYKeeuopBQcHa+nSpapdu7YkqX379poxY4a2bdumRx55RJ999pmSk5PVp08fD1cPAAC8lVdd4ZGkmjVr6uWXX/7DfXr06KEePXpUUEUAAMDXedUVHgAAgKuBwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEyPwAMAAEzP5cDz7LPPaseOHZdt37lzp5599llX3x4AAMBtXA48q1ev1vHjxy/bfvLkSX388ceuvj0AAIDbXLVbWr/++qsCAgKu1tsDAACUWZUr2fmf//ynNmzYUPx65cqV2rx5c4n9srKytHnzZsXGxpa/QgAAgHK6osBz6NAhrVu3TpJksVi0Y8cO7dq1y2kfi8WiatWqqUOHDho3bpz7KgUAAHDRFQWe4cOHa/jw4ZKkFi1aaMqUKbr99tuvSmEAAADuckWB57f27dvnzjoAAACuGpcDz2/l5OQoMzNTDoejRFu9evXccQoAAACXuRx48vPzNXPmTH3wwQdKT0+/7H579+519RQAAABu4XLgef755/Xxxx+rZ8+eateunUJDQ91ZFwAAgNu4HHi++OILJSYmavLkye6sBwAAwO1cnnjQYrEoJibGnbUAAABcFS4Hnh49epQ66SAAAIC3KXPgSU9Pd/pnxIgROnnypMaPH69du3YpNTW1xD5/NJgZAACgopR5DE/Hjh1lsVictjkcDu3Zs0cffPDBZY/jKS0AAOBpZQ48I0eOLBF4AAAAfEGZA8+oUaOuZh0AAABXjcuDlgEAAHyFy/PwzJw58w/bLRaL/P39FR4erg4dOqhOnTqungoAAKBcyhV4Lo3p+f0aWr/fbrValZiYqAkTJsgwuKgEAAAqlsuBZ9OmTRo+fLiio6M1aNAgNWzYUJJ07NgxLVmyRPv379frr7+uCxcuaOHChVqxYoWuvfZajRgxwm3FAwAAlIXLl1smTZqkJk2aaOrUqYqJiVFwcLCCg4PVsmVLTZ06VY0aNdKrr76q6OhoTZs2TV26dNEnn3ziztoBAADKxOXA891336lDhw6Xbe/QoYO++eab4tfdunXTzz//7OrpAAAAXOZy4PHz89POnTsv275jxw5VrVq1+HVRUZGqVavm6ukAAABc5vIYnn79+mnp0qUKCwvT/fffr4iICEnSyZMntWzZMn366ad64IEHivffsmWLmjZtWv6KAQAArpDLgefpp5/WuXPntGDBAr333nvFT1/Z7XY5HA7deuutevrppyVJ+fn5atmypdq2beueqgEAAK6Ay4HH399fb7zxhvbs2aOvv/5ap06dkiTVr19fXbp0UcuWLZ32TUpKKn+1AAAALnA58FwSExOjmJgYd9QCAABwVTALIAAAML0yX+Fp0aKFDMPQ9u3b5efnpxYtWvzX1dMtFov27NlT7iIBAADKo8yBZ+TIkbJYLKpSpYrTawAAAG9X5sAzatSoP3wNAADgrRjDAwAATK9cgefnn3/WhAkT1KtXL3Xo0EE//PCDJCk1NVXJycmM3wEAAF7B5cDz008/6e6779batWsVERGh7OxsFRUVSZJq1qypbdu2acmSJW4rFAAAwFUuz8Pz8ssvq3r16lq5cqUkqXPnzk7t3bp109q1a8tXHQAAgBu4HHh++OEHjRw5UjVr1lRaWlqJ9nr16unMmTPlKs4b2R0O2RyersJz7Dab8vLyVFCQL9tvOsJqrVK8vAgAAN7G5cDjcDgUEBBw2fbU1FT5+fm5+vZex+FwKC0vXzmFDqkSP45vyS3Q+UOHZbfbS7QFBgYrJKQm0xUAALyOy4EnJiZGmzZtcloR/ZKioiKtWbNGrVu3Lldx3uSXX37RhSKHqlevoapV/SrtX+oWi2T183e6uuNwOFRQkK/s7ItX+kJDa3mqPAAASuVy4Bk2bJgee+wxTZw4UX379pUknT9/Xps3b9Zbb72lw4cPa8KECW4r1JPsdpvS09MVXD1UQQFBni7HoyyGRVX8/FVU5HyFx8/PX5KUnZ2m6tVrcHsLAOBVXA483bp109SpU/XCCy8UD1x++umn5XA4FBwcrBdffFEdOnRwW6GeVFRkk8Mh+VU1zy26q+FS6LHZimQY9BUAwHuUa7X0u+66S7feequ++eYbHTt2THa7XQ0bNlSXLl0UHBzsrhq9wMXbN5XzJlbZVdbbfAAA7+dy4Ln33nvVoUMHtW/fXgkJCbrlllvcWZdycnLUp08fnTlzRh988IHi4uKK21atWqX58+fr559/VmRkpMaMGaPu3bu79fwAAMA8XA481atX1/vvv6/58+fLMAxFRUWpffv26tChg9q1a6c6deqUq7DZs2fLZrOV2L5mzRqNHz9ejz32mDp27KiUlBQlJSVp6dKlio+PL9c5AQCAObkceObPny+Hw6G9e/dq69at2rp1q7744gstX75cFotF9evXV4cOHTR16tQrfu9Dhw5p2bJleuaZZzRx4kSntunTp6tv374aPXq0JKljx446cOCAZs2apXnz5rn6cQAAgImV61Eai8WimJgYDR48WNOnT9eXX36pKVOmqFGjRjp58qQ+/vhjl943OTlZ9913nyIjI522nzhxQkePHlWfPn2ctt9222369ttvVVBQ4OpHAQAAJlauQcs5OTn68ccftXXrVm3btk07d+5UQUGBmjRponvvvVft27e/4vdct26dDhw4oBkzZmj37t1ObYcPH5akEkEoKipKhYWFOnHihKKiolz/QAAAwJRcDjz9+/fX/v37ZbFY1Lx5c3Xo0EFDhgxRu3btVKNGDZfeMzc3V9OmTdOYMWNKfcorIyNDkhQSEuK0/dLrS+2uqlKl9AteNtvVnVPm9OnTWrp8ibb9uFVnzpxRQECA2rZppxGPjVTd8LpO+/506Ce9Mf117d23R6Ehobrzjrt0zTW1Ne2lF7Ry+QdO+3+35VstXrpIBw4ekMViUetW8RoxfIQiI5uUu2aLRXJcZokNq9Vy2b60Wpmf57fK0x/0pTNX+4N+LIm+dA9+3+7jjv5wOfDs2bNHhmGoR48e6tatm9q3b69GjRqVq5g5c+aoVq1auueee8r1Pq4wDItq1Ch9UsG8vDxdzWXB9u7fq127/089uvdU7drX6vTpX/Txp6v1xOgkLX5vafESHmfPntWTT42SRRYNHDBIgYGB+mzNP1S1atUS77nu83V6YVqyru+QoMeGPa68vHx98ulqjXhihN6dt6BEkLpSpX357HaLDMNQaGi1P1x2BP8REhLo6RJMg750H/rSPehH93FHX7oceD788MPiW1mvvfaaUlNTVatWLbVr107t27dX+/bt1aJFizLPzXLq1Cm9++67mjVrlrKysiRJFy5cKP7fnJwchYaGSpKysrJUu3bt4mMzMzMlqbjdFXa7Q5mZF0pts9kKXX7fsujcsbO6d3N+rP6GzjfosZHD9dX/fqXet/aWJC1dvkRZWVl6Z+67uq5pM0nSbb376v5B9zodeyH3gt6c8Yb63Xa7/jr2meLtfXr10QOD79fiJYuctrvCZrOXuMJjszlkt9uVkXFBubkln7CTLgYl/hD4j8zMXNlsJdclKwv60pmrfUk/lkRfuge/b/e5XF+GhASW+eqPy4GnZcuWatmypYYMGSJJOnLkSHEAWrBggV544QUFBwfrhx9+KNP7nTx5UoWFhRo2bFiJtsGDB6t169Z69dVXJV0cy9OkyX9uyxw+fFhVq1ZVgwYNXP04klRiuYRLSlso0538/f1/U0ORcnJyVL9+hIKDq+vAwf3FgWfLD1vUMia2OOxIF2/n3dLjVn24+oPibVu3/qDs7Cz17NFT6RnpxdsNq6Ho6Bj9uP1f5a75crezpIvB53J9CWc2m52+chP60n3oS/egH93HHX1ZrkHLl+Tl5en06dM6ffq0fv75Z6WmpsrhcBRfoSmL6OhoLVq0yGnb3r17NXXqVE2aNElxcXFq0KCBGjdurHXr1qlnz57F+6WkpKhTp04+uzp7fn6+Fi9dpLXrUnT23Fk5fpMmcrJziv/9zJnTio1pWeL4iPoRTq9PnDwpSXryqSdKPV9QUOVeDwwAUPm4HHg2btyoH374Qdu2bdPu3btVVFQkf39/tWrVSg8++KDat2+vNm3alPn9QkJClJCQUGrbpatJkjRq1CiNHTtWDRs2VEJCglJSUrRz504tWbLE1Y/ica9Pf01r16Uo8Z4/q2XLWAUHBclisej5yRNld1x5onX8+5j/+dsE1apZs0S71Wotd80AAPgSlwPP448/rpCQELVt21ZPPvmk2rdvr9jY2FIH0LpTv379lJubq3nz5mnu3LmKjIzUzJkzryhceZtNm75S71v7KGnEqOJt+QX5ys7OdtqvTp1wnTx1qsTxJ0+ddHpdv159SVKNsDC1b2eOBVwBACgPlwPPJ598ombNml3VBSMTEhK0f//+EtsTExOVmJh41c5b0QyrIYecB8V8+NEHstmdB/5e3+F6rf74Ix386UDxOJ7MzEx9seHz3+2XoKCgIC1eulht27RTlSrO/zenpaepRphrUwcAAOCLXA48zZs3d2cdlVrnjp31+efrFRwUpMaNIrVrzy5t27ZVoSHOT50NuO8Bff7F5xozdozuufue4sfS61xbR5mZmbL8ez33oKAg/WX0WCVP/bseGfaQetzcU2GhYTrz6xl9+91mxcXGacyTf/HERwUAwCPcMmgZ5fPEqNEyDKs+/+cXKijIV1xsK73+yhv6y1+fctqvzrV1NP316XpzxhtasnSxwsLCdPdd/RUQEKA3Z7zhNGj7lp636pprrtGSZUu0/P1lKigsUO1raqtVq9a6rXffiv6IAAB4FIHHC1QPrq5nn/lbie2r3v+wxLbrmjbTzDdnO22bPvNi2Pn9PERt4tuqTXxb9xYLAIAPYu5qH5Ofn+/0OiMjQ+u/WK9Wca14+goAgMvgCo+PeWzkMLWJb6NGDRsrNS1Va9Z+ppycHA0Z9JCnSwMAwGsReHxMx4RO+up/v9Knn30qi8WiZtc107inn1V863hPlwYAgNci8PiY4Y8+puGPPubpMgAA8CmM4QEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKbHPDzlZFgNGYalws9rtztkt9mv+LiTp07q/RXLtHvPbh05ckQNGzbUogVLnPbJy8vTe4sX6MuNXyo19bxq175WfXr10YD7H1BVo6q7PgIAABWGwFMOhtVQrdphshgVf6HMYbfr/Nn0Kw49R44c0bfffavo6BjZHQ457CWPf/3N17Tp66807JHhaty4sXbt3qV3F7yjvLw8DR/GpIcAAN9D4CkHw7DIYhjKOHlMtt8t6nk1Wf39FRrRSIZhkd12Zcfe0PkGde3SVZI0ZVqy9u/f59Rut9v15VcbdP+9A9T/7nskSW3btNOJE8e1YeM/CTwAAJ9E4HEDW36+ivJyPV1GmRj/5WqUw+GQzWZTUFCQ0/agoGA5HFezMgAArh4GLcOJ1WpVn1636aOPP9TefXt1IfeCtm77Qeu/WK/+d93j6fIAAHAJV3hQwlOj/6JXXn9Zwx4fWrxt4IBBuu/P93mwKgAAXEfgQQlvzZujb7/brGfGjlNERAPt3rNb7y16V9WrV9cDAwZ6ujwAAK4YgQdODh85rPdXLNe0KS/qhs5dJEnxreNlsxXpnXfn6+677laIf4CHqwQA4MowhgdOjh49Iklq2vQ6p+3XNb1OBYUF+vXXs54oCwCAciHwwEmdOuGSpAMHDjht339gvywWi8LDwz1RFgAA5cItLTew+vv7zPny8vL07ZZvJUlnzpxWzoUL2rhpo6SLt65aNG+hFs1b6JXXXlJaWqrq14/Qnr27tWTZYt3Wp68CAridBQDwPQSecrDbL85UHBrRqMLP7bDbZbdf+cQ4aelpmvD8/zhtu/R6+usz1Ca+raa98JLmvztPi5cuUlp6mq699loNuO8BPXA/A5YBAL6JwFMOdtvF5R18aS2tuuF19fXGb/5wn1o1a+mZseNcLQ0AAK9D4Cknu81+xcs7AACAisWgZQAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHoEHgAAYHpMPFhOhtXwqZmWN371pT7/Yr32H9ivrOwsRdSP0J/6J+q2Pn1lsVz8HKNGJ2n7jh9LHLtk4TI1bty4vKUDAFDhCDzlYFgN1awdJsOo+AtldrtdqWfTrzj0rFj1vsLD62rk40kKC6uhH7Z9r5defVG/nv1VDw15uHi/uNhWGvn4SKdjWSkdAOCrCDzlYBgWGYah09t3qiA7u8LO6xccrPD4VjIMyxUvazHthZcUFhpW/Lpd23bKzMjUilXva8igB4vDW3BwsFrGxLqxagAAPIfA4wYF2dnKz8zydBll8tuwc8l11zXTP9Z8qry8XFWrFlTxRQEAcJUReKD/+78dqn1Nbaews33Hj7qlTw/ZbXZFR8do6MOPKr51vOeKBACgHAg8ldzO/9uhDRs3aOTjScXb4lvHq/etvRUREaFz587p/ZXLNWbsk5rxxizFxcV5sFoAAFxD4KnEfj37qyZOnqA28W31p/6JxdsfeWio036dO92gwQ8N1MLFC/TKS69VdJkAAJQb8/BUUlnZWXr6mb8oJCRUyZOm/OGTZoGBgerUsbP2H9hfgRUCAOA+XOGphPLz8/XMs39Vdk6O3pr5toKDgz1dEgAAVxWBp5IpshVpwqTxOnb8qGa+OVu1a9f+r8fk5uZq83ffqEXz6AqoEAAA9yPwVDKvvf6qNn/7jUY+PkoXLuRo955dxW3XNW2mvfv2aPmKZerapZvqhodfHLS86n2lpqZq8sRkD1YOAIDrCDxu4FfBt4TKc74ftn4vSZo1Z0aJtpXLP1CtWteosLBIc+e/rczMDAUEBCq2ZazGjnlaMdExLp8XAABPIvCUg93ukN1uV3h8Kw+c2y673XHFx616/8P/us+rPIkFADAZAk852G0X17PypcVDAQCojAg85WS32a94PSsAAFCxmIcHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYHhMPlpNhNXxqpuVvv9uspcuX6uixo7pwIUfXXFNbXW/oqoeGPKzgf6/RNWVastatX1vi2FdefFUdO3Yqd+0AAFQ0Ak85GFZDNa8Jk2Gt+AtldptdqefSrzj0ZGZlKSY6Rn/q/yeFhobq8JHDWvDeuzpy9LBee/mN4v3q1aunCc9NdDq2UcPGbqgcAICKR+ApB8OwyLAa2vXZV8o5n1Fh5w2qFarYfjfJMCxXvKxFr1t6Sbf0Kn7dJr6tqlb108uvvqhz587qmmtqS5L8/fzVMibWnWUDAOAxBB43yDmfoaxfz3u6DJeFhoRIkgqLijxcCQAAVweBp5Ky2WwqshXp6NGjem/RAnXp3EV1w+sWt586dUq9+92q/Px8NYmM0pDBD+rGLjd6sGIAAFxH4KmkEu+7R2fPnZUkJVzfURP+5/nitmZNmym6ebQiIyOVlZ2tjz9ZrefGP6vJzyfr5u43e6hiAABcR+CppF6a9ory8vJ05OhhLVq8UOOe+6tee/kNWa1WJf7pz077duncRY8nDdc7C+YTeAAAPol5eCqpplFNFdsyVrf3vUNTk6fpXz/+S//7//631H0Nw1C3G2/SsWNHlZ+fX8GVAgBQfgQeKCqqqapUqaJTp056uhQAAK4Krwo8a9eu1eOPP64bb7xR8fHxuvPOO/XBBx/I4XA47bdq1Sr16tVLcXFxuuOOO7Rx40YPVWwOe/buVlFRkerVrVdqu91u11ebNiqycaT8/f0ruDoAAMrPq8bwvPfee6pfv77GjRunGjVqaPPmzRo/frxOnz6tpKQkSdKaNWs0fvx4PfbYY+rYsaNSUlKUlJSkpUuXKj4+3rMfwAc8N+FZNW/WQlFRTeXv56+fDv2k5SuWKapJU3XtcqNOnz6tKdOS1fPmnqpfP0JZ2Vn6+JPV2rd/n5InTfF0+QAAuMSrAs+cOXNUs2bN4tedOnVSenq6FixYoBEjRsgwDE2fPl19+/bV6NGjJUkdO3bUgQMHNGvWLM2bN88jdQfVCvWZ80W3iNGXGzdo6fIlctgdCg8P1+19b9f99w5Q1apVVa1aNQUHBWnRkoVKS09TlSpV1KJ5C7087VUlXJ/gxk8BAEDF8arA89uwc0l0dLRWrlypCxcuKC0tTUePHtXTTz/ttM9tt92ml156SQUFBfLz86uocovXs4rtd1OFnbP43Da77HbHf9/xdwYOGKSBAwZdtj0kJERTp7xYntIAAPA6XhV4SrNt2zbVqVNHwcHB2rZtmyQpMjLSaZ+oqCgVFhbqxIkTioqKqrDaLq1n5UuLhwIAUBl5deDZunWrUlJS9Mwzz0iSMjIurlcV8u+lEC659PpSu6uqVCl9DLfNdvmx3Xab/YrXszIDi0VyXOYCk9VquWxfWj2w0Ko3K09/0JfOXO0P+rEk+tI9+H27jzv6w2sDz+nTpzVmzBglJCRo8ODBV/18hmFRjRpBpbbl5eXpzJmrXoJPKe3LZ7dbZBiGQkOrKSAgwANV+Z6QkEBPl2Aa9KX70JfuQT+6jzv60isDT2Zmph599FGFhYVpxowZMoyLf7mGhl4crJuVlaXatWs77f/bdlfY7Q5lZl4otc1mK3T5fc3KZrOXuMJjszlkt9uVkXFBubmlX/ayWg3+EPiNzMxc2Vy8NUlfOnO1L+nHkuhL9+D37T6X68uQkMAyX/3xusCTl5en4cOHKysrSytWrFD16tWL25o0aSJJOnz4cPG/X3pdtWpVNWjQoFznLioq/YtptzNW5vcudztLuhh8LteXcGaz2ekrN6Ev3Ye+dA/60X3c0ZdedZOwqKhIo0eP1uHDhzV//nzVqVPHqb1BgwZq3Lix1q1b57Q9JSVFnTp1qtAntAAAgO/wqis8kyZN0saNGzVu3DhlZ2dr+/btxW0xMTHy8/PTqFGjNHbsWDVs2FAJCQlKSUnRzp07tWTJEs8VDgAAvJpXBZ5vvvlGkjRt2rQSbRs2bFBERIT69eun3NxczZs3T3PnzlVkZKRmzpypNm3aVHS5AADAR3hV4Pnyyy/LtF9iYqISExOvcjUAAMAsvGoMDwAAwNXgVVd4fJFhNXx2puULuRc0cPAAnT13VvPemq8WzaMlSaNGJ2n7jh9L7L9k4TI1bty4XOcEAMATCDzlYFgN1bwmTIYHZsS8tKxFeULPwkXvyWYrfb6cuNhWGvn4SKdt4eHhLp8LAABPIvCUg2FYZFgNrZ/7sVJ/OV9h561Zt5Z6DbtLhmFxeVmLY8ePafXHH2nk40l65fWXS7QHBwerZUxsOSsFAMA7EHjcIPWX8zp7/LSny7gib0x/TXfecZcaNmzo6VIAALjqGLRcCW3ctFGHDx/Wg4Mfuuw+23f8qFv69FCPW7sr6cmR2r5je8UVCACAm3GFp5LJy8vTzNkzNGzocAUFlb5YanzrePW+tbciIiJ07tw5vb9yucaMfVIz3piluLi4Cq4YAIDyI/BUMgsXv6eaNWrotj59L7vPIw8NdXrdudMNGvzQQC1cvECvvPTa1S4RAAC345ZWJXL69GmtWPW+Hn7wEWXnZCsrO0sXcnMlSbm5ubqQW/pq8YGBgerUsbP2H9hfkeUCAOA2XOGpRH45/bMKCwv112efLtH2xJhRiomO0duz53mgMgAAri4CTyXStOl1mv76DKdtB386qBmzpmvsmKfVokV0qcfl5uZq83ffFE9MCACAryHwuEHNurV84nzVg6urTXzbUtuaN2+u5s2aa8fO7Vq+Ypm6dummuuHhFwctr3pfqampmjwxuTxlAwDgMQSecri0vEOvYXdV/LltdtntDre/b61a16iwsEhz57+tzMwMBQQEKrZlrMaOeVox0TFuPx8AABWBwFMOl5Z38NW1tCSpTXxbfb3xm+LXEfUj9CpPYgEATIbAU052m93l5R0AAEDF4LF0AABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgekw8WE6G1fCpmZZT1q3R1BdfKLH9gfsH6rFhj0uSRo1O0vYdP5bYZ8nCZWrcuPEVnxMAAE8j8JSDYTVU45pQWa3WCj+3zWZT2rkMl5eXeOXF1xQcHFT8+ppraju1x8W20sjHRzptCw8Pd+lcAAB4GoGnHAzDIqvVqrenzNfPx05X2HnrNQrX8OeGyjAsLi9r0bx5c4WFhl22PTg4WC1jYl17cwAAvAyBxw1+PnZaxw4e93QZAADgMgg8ldTghwYqIyNDdeqE6/a+t2vAfQ843ZrbvuNH3dKnh+w2u6KjYzT04UcV3zrecwUDAFAOBJ5KplbNa/Twg48oJrqlLBbpm83/T/Pfnadz585qzJN/kSTFt45X71t7KyIiQufOndP7K5drzNgnNeONWYqLi/PwJwAA4MoReCqZhOsTlHB9QvHr6zskyM/fX6tWrdSggUN0Ta1r9MhDQ52O6dzpBg1+aKAWLl6gV156raJLBgCg3JiHB7r5ph6y2W366aeDpbYHBgaqU8fO2n9gfwVXBgCAexB4AACA6RF4oA1f/lNWw6rrrmtWantubq42f/eNWjSPruDKAABwD8bwVDJPPT1G7dq2U5PIJpIuDlr+9LNP9ad7ElWrZi3t2Lldy1csU9cu3VQ3PPzioOVV7ys1NVWTJyZ7uHoAAFxD4HGDeo0qdgbi8pyvUcNG+izlM509+6scdociGjTQEyOf1D39/yRJqlXrGhUWFmnu/LeVmZmhgIBAxbaM1dgxTysmOsZdHwEAgApF4CkHu90hm82m4c8N/e87u5nNZpPd7rji454cNVpP/kF7RP0IvcqTWAAAkyHwlIPdZlfauQyfWjwUAIDKiMBTTnab3eX1rAAAQMXgKS0AAGB6BB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6BB4AAGB6TDxYTobV8MmZlteuS9GqD1fq2LFjCgwMVIsW0Zoy+QX5+/tryrRkrVu/tsQxr7z4qjp27FSesgEA8AgCTzkYVkM1aoXKWsVa4ee2FdmUdj7DpdCzaMlCLV2+RIMeGKyWMbHKyEjXtn9tk+03U0bXq1dPE56b6HRco4aNy1s2AAAeQeApB8OwyFrFqnFjJunIoaMVdt7IqMaa9vpEGYblipe1OH78mN597x1Nm/KiOib852rNTd26O+3n7+evljGx7igXAACPI/C4wZFDR7V39wFPl1EmKetSVLduPaewAwCA2RF4Kpnde3YrKrKJFi5+Tx98tErZ2dlq0TxaSSNGqWVMy+L9Tp06pd79blV+fr6aREZpyOAHdWOXGz1YOQAAriPwVDKpqee1/8A+HTpyWE+NHqsAf38tXrpYf/nrGC1fvEI1atRQs6bNFN08WpGRkcrKztbHn6zWc+Of1eTnk3Vz95s9/REAALhiBJ5Kxu5wKDc3V39/PllNo5pKklrGxCrx/nv04eoPNPThR5X4pz87HdOlcxc9njRc7yyYT+ABAPgk5uGpZKoHV1doSGhx2JGkkJAQXde0mY4ePVLqMYZhqNuNN+nYsaPKz8+vqFIBAHAbAk8lE9k48rJt+QUFFVgJAAAVh8BTyXTu1FkZmRk6+NN/nirLyMjQgYP71bxZ81KPsdvt+mrTRkU2jpS/v39FlQoAgNswhqeS6drlRkW3iNb4if+jRx8ZJn9/fy1Ztlh+Vf109139dfr0aU2ZlqyeN/dU/foRysrO0sefrNa+/fuUPGmKp8sHAMAlBB43iIxq7DPnMwxDL017RTNmTdcrr72swqJCtYprrRlvzlKtmrWUmZmp4KAgLVqyUGnpaapSpYpaNG+hl6e9qoTrE9z3IQAAqEAEnnKw2x2yFdk07fWJ/31nN7MV2WS3O1w6Niw0TOP/NqHUtpCQEE2d8mJ5SgMAwOsQeMrBbrMr7XyGTy4eCgBAZULgKSe7zX7F61kBAICKxVNaAADA9Ag8AADA9Ag8AADA9Ag8ZXJxULJrz0RVHg4HPQQA8E4EnjKoUsUqi0UqKGTphT9SUHBxnS2rlbHwAADvwt9MZWAYVoWFhen82XOS3aGqVf1ksVT8o+jewGKR7BaLbLb/XM1xOBwqKMhXdnaaAgODZRjkaACAdyHwlFHdunWVm3ZeWVlpF//Wr6QsFouMKlVlt5ecAygwMFghITU9UBUAAH+MwFNGFotFNQL8FeSwyVaJh6pY/f0U1jBSGRkXnK7yWK1VuLIDAPBaPhl4Dh06pOTkZP34448KCgrSnXfeqdGjR8vPz++qn9uwWOSBiZW9RhWrVQEBAcrNtamoiJmeAQC+wecCT0ZGhoYMGaLGjRtrxowZOnPmjKZNm6a8vDxNmFD6+lAAAKBy87nA8/777ysnJ0czZ85UWFiYJMlms2nSpEkaPny46tSp49kCAQCA1/G5QRf/+7//q06dOhWHHUnq06eP7Ha7vvnmG88VBgAAvJbF4WOzxXXq1En33HOPxo4d67S9a9euuvPOO0tsLyuHwyG7vfSusFgkwzBkLyqs9JPr/fYpLVe64lJfFuXny6U3MAuLRVX8/V3ux3+/hQzDUEFObqlPzVUWhmHILyiw3N/JC5k5stsq90rAhtWqaiFB5e7LzLRMFRVV3r6sUsWqkBohbvl9nz+fpqLCQvcW6EOqVK2qWrVqXLYvDcNS5mlifO6WVmZmpkJCQkpsDw0NVUZGhsvva7FYZLX+cacZVaq6/P5mU94nsqr4+7upEt/mjifb/IIC3VCJ7ytvX1YLCXJTJb6vvH0ZUqPkn9GVkTt+37Vq1XBDJb7PHX3pc7e0AAAArpTPBZ6QkBBlZWWV2J6RkaHQ0FAPVAQAALydzwWeJk2a6PDhw07bsrKydPbsWTVp0sRDVQEAAG/mc4Hnxhtv1ObNm5WZmVm8bd26dTIMQzfccIMHKwMAAN7K557SysjIUN++fRUZGanhw4cXTzx4++23M/EgAAAolc8FHuni0hJ///vfnZaWGDNmTIUsLQEAAHyPTwYeAACAK+FzY3gAAACuFIEHAACYHoEHAACYHoEHAACYHoEHAACYHoEHAACYns+tlm52x44d0zvvvKMdO3bo4MGDatKkiT777DOnfXJzczV79mylpKTo3LlzCg8P1913362hQ4eqShX+L5WktWvX6tNPP9Xu3buVmZmpRo0aadCgQbrnnntksVgkSYMGDdL3339f4tiUlBRFRUVVdMleadOmTZo3b55++uknZWdnq06dOurZs6eSkpJUvXp1SdK4ceO0evXqEsfOmzdPN954Y0WX7DNycnLUp08fnTlzRh988IHi4uIk8b0si48++kjPPvtsie2PPvqoxo4dK4l+vBKrV6/WwoULdejQIVWrVk1xcXGaOXOmAgICTPX75m9HL3Pw4EFt2rRJrVu3lt1uV2nTJE2ePFmff/65nnrqKUVFRWn79u2aPn26cnNzNWbMGA9U7X3ee+891a9fX+PGjVONGjW0efNmjR8/XqdPn1ZSUlLxfm3bttUzzzzjdGxERERFl+u10tPT1apVKw0aNEhhYWE6ePCgZsyYoYMHD+rdd98t3q9BgwZ65ZVXnI7lL5U/Nnv2bNlstlLb+F6Wzfz584uDtyTVqVPHqZ1+/O/mzJmjefPm6bHHHlN8fLzS0tL07bffOn03zfL7JvB4mZtvvlk9e/aUdPG/nHft2uXUbrfbtXbtWj3yyCN64IEHJEkdO3bUkSNHtGbNGgLPv82ZM0c1a9Ysft2pUyelp6drwYIFGjFihAzj4t3ckJAQxcfHe6hK73fnnXc6vU5ISJCfn5/Gjx+vM2fOFP8FExAQQD9egUOHDmnZsmV65plnNHHixBLtfC/LpmXLlk6/89+jH//Y4cOHNXPmTM2ePVvdunUr3t6rVy+n/czy+2YMj5e59Bfx5TgcDhUVFTn9V40kVa9evdSrQZVVaX8IRkdHKzs7WxcuXPBAReYRFhYmSSosLPRsIT4sOTlZ9913nyIjIz1dCiqxjz76SBEREU5hx8wIPD7GarWqf//+WrJkiXbu3KmcnBxt3rxZn3zyiQYOHOjp8rzatm3bVKdOHQUHBxdv+/777xUfH6+4uDgNHDhQP/zwgwcr9F42m035+fnavXu3Zs2apZtvvtnp1sCxY8fUrl07xcbGqn///vrnP//pwWq927p163TgwAGNHDnysvvwvSybfv36KTo6Wj169NDbb79d4hYh/fjHduzYoWbNmmn27Nnq1KmTYmNjdd9992nHjh1O+5nl980tLR80ceJETZw4UYmJicXbhg8froceesiDVXm3rVu3KiUlxel+focOHXTnnXeqcePG+vXXX/XOO+/ooYce0uLFi9WmTRsPVut9unfvrjNnzkiSunbtqldffbW4LTo6WnFxcWratKmysrK0fPlyjRw5Um+++aZ69+7tqZK9Um5urqZNm6YxY8Y4Be/f4nv539WuXVujRo1S69atZbFY9OWXX+qNN97QmTNnNGHCBEn0Y1mcPXtWu3bt0oEDBzRx4kQFBgbqrbfe0sMPP6zPP/9ctWrVMtfv2wGv9cwzzzj69u1bYvu0adMcN9xwg2PlypWO77//3jF37lxH69atHfPmzfNAld7vl19+cXTp0sUxZMgQh81mu+x+OTk5ju7duzuGDh1agdX5hr179zr+9a9/OVauXOno3r27Y9CgQY6ioqJS97XZbI7ExERHnz59KrhK7/fqq686+vfv77Db7Q6Hw+H47rvvHM2aNXPs3LnzssfwvSybadOmOaKjox1nzpwptZ1+LOnWW291NGvWzLF3797ibWlpaY42bdo43njjjVKP8eXfN7e0fMyBAwf07rvvavLkyUpMTFSHDh306KOPavjw4XrzzTeVnZ3t6RK9SmZmph599FGFhYVpxowZfzhGqlq1aurWrZt2795dgRX6hhYtWqhNmzZKTEzU7NmztWXLFn3xxRel7msYhm699VYdOnRIeXl5FVyp9zp16pTeffddPfHEE8rKylJmZmbxeLILFy4oJyen1OP4XpZNnz59ZLPZtHfv3lLb6ceSQkJCFBYWphYtWhRvCwsLU0xMjH766adSj/Hl3ze3tHzMpS9hdHS00/aYmBgVFBTozJkzl71UXtnk5eVp+PDhysrK0ooVK0oM9IZrmjdvrqpVq+r48eOeLsWnnDx5UoWFhRo2bFiJtsGDB6t169ZauXKlBypDZdW0adPL/o7z8/MruJqrj8DjY+rXry9J2r17t+rWrVu8fdeuXbJYLKpXr56nSvMqRUVFGj16tA4fPqylS5eWmJ+jNBcuXNBXX31VPAEcSrdjxw4VFhZedj4Tu92udevW6brrrlNAQEAFV+e9oqOjtWjRIqdte/fu1dSpUzVp0qTLfu/4XpZNSkqKrFarYmJiSm2nH0vq3r27PvroI+3du7f4P6LT0tK0e/duPfjgg6Ue48u/bwKPl8nNzdWmTZskXbwEnp2drXXr1kmSrr/+esXGxio2NlYTJ07U+fPn1bBhQ+3cuVNz587VPffco8DAQE+W7zUmTZqkjRs3aty4ccrOztb27duL22JiYrRz507Nnz9ft9xyi+rXr69ff/1VCxYs0NmzZ/Xmm296rnAvk5SUpNjYWDVv3lwBAQHat2+f3nnnHTVv3lw9e/bUqVOnNG7cOPXt21eNGjVSRkaGli9frl27dmnGjBmeLt+rhISEKCEhodS2li1bqmXLltq6dSvfyzJ45JFHlJCQoObNm0uSNmzYoJUrV2rw4MGqXbs2/VhGPXv2VFxcnJ544gmNGTNG/v7+mjt3rvz8/DRgwADT/b4tDgeTt3iTkydPqkePHqW2LVq0SAkJCcU/2s2bN+v8+fMKDw9Xv3799Oijj/pc4r5abr75Zp06darUtg0bNshms2ny5Mnav3+/0tPTFRgYqDZt2igpKUmtWrWq4Gq919y5c5WSkqLjx4/L4XCofv36uuWWW/TII48oODhY6enpevbZZ7Vnzx6dP39eVatWVWxsrIYNG6auXbt6unyvt2XLFg0ePLh4aYljx47xvSyD5ORkff311zp9+rTsdrsaN26sxMREDRo0SBaLhX68AqmpqZo6dao2btyowsJCtW/fXs8++6yaNm1qut83gQcAAJgeT2kBAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AAAADTI/AA8BmnTp3S888/r169eqlVq1ZKSEjQE088oZMnT5bYd9++fRo4cKBatWqlG2+8UbNnz9aHH36o5s2bl9h/06ZNGjBggOLj49WmTRsNGzZMBw8erKiPBaACsHgoAJ+xbt06zZkzRz169FB4eLhOnTql5cuXKzg4WGvWrFFgYKAk6cyZM7rjjjskSYMGDVK1atW0atUq+fn5ad++fdqwYYMiIiIkSR9//LHGjRunLl266KabblJubq6WL1+urKwsrV69ung/AL6NwAPAZ+Tl5SkgIMBp2/bt23XvvffqxRdf1F133SVJSk5O1pIlS7R69WpFR0dLktLT09WrVy+lp6cXB56cnBzddNNN6t27t/7+978Xv+e5c+fUu3dv9enTx2k7AN/FLS0APuO3YaewsFBpaWlq2LChQkJCtGfPnuK2r7/+WvHx8cVhR5LCwsJ0++23O73f5s2blZmZqb59+yo1NbX4H8Mw1Lp1a23ZsuXqfygAFaKKpwsAgLLKy8vT22+/rY8++khnzpzRby9QZ2VlFf/7qVOnFB8fX+L4hg0bOr0+evSoJGnIkCGlni84OLj8RQPwCgQeAD7j73//uz766CMNGTJE8fHxql69uiwWi8aMGSNX7s5fOuall15S7dq1S7RbrdZy1wzAOxB4APiM9evX66677tK4ceOKt+Xn5ztd3ZGk+vXr69ixYyWOP378uNPrBg0aSJJq1aqlzp07X4WKAXgLxvAA8BmlXXFZvHixbDab07YuXbpo+/bt2rt3b/G29PR0/eMf/3Dar2vXrgoODtbbb7+twsLCEu+dmprqpsoBeBpXeAD4jJtuukmffPKJgoOD1bRpU23fvl2bN29WWFiY035Dhw7Vp59+qoceekgDBw4sfiy9bt26Sk9Pl8VikXRxjM7zzz+vv/71r+rfv79uu+021axZUz///LM2bdqktm3basKECR74pADcjcADwGc899xzMgxD//jHP5Sfn6+2bdtqwYIFGjp0qNN+devW1aJFi5ScnKy3335bNWvW1AMPPKDAwEAlJyfL39+/eN/bb79d1157rebOnat33nlHBQUFqlOnjtq3b6/+/ftX9EcEcJUwDw+ASmPKlClasWKFfvzxRwYkA5UMY3gAmFJeXp7T67S0NH366adq164dYQeohLilBcCU7r33Xl1//fWKiorSuXPn9OGHHyo7O1sjRozwdGkAPIBbWgBM6bXXXtP69et1+vRpWSwWxcTEKCkpicfPgUqKwAMAAEyPMTwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0/j9pGl4pLE6rsQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAG5CAYAAACKmu5sAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQS1JREFUeJzt3Xl4FFXe9vG7qyELCUkAkQBhCUEgIYGwGUAQERQQ3HAyKrK4ICgEBQdHHB9AmCC4K6sCiuwCKupIAB1EHl9RFEbgYUd2UBDIHrJ29/sHQ8Y2wQmdJt1d+X6uy2vsOlVdvz7TDbdVp86xOBwOhwAAAEzM8HQBAAAAVxuBBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmB6BBwAAmF4VTxfgLRwOh+x2Jp0GAMBXGIZFFoulTPsSeP7NbncoNTXH02UAAIAyqlkzSFZr2QIPt7QAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAAIDpEXgAwMMWLpyvAQP6a+HC+Z4uBTAti8PhcHi6CG9gs9mVmprj6TIAeIBhWGQYFo+cOz8/X4MG3Su73S7DMLR48Qr5+/t7pBZJstsdstv5awG+oWbNIFmtZbt2U+Uq1wIAXs0wLKoRVk1GGf/QdLfsbIfsdrskyW63KzjYT8HBQR6pRZLsNrvS0i8QemA6BB4ALlu4cL7Wr09Rr163aciQoZ4uxyWGYZFhNbR+7sdK/eV8hZ+/yFYkiyxyyCGLLFr90lJVsXrmj+aadWup17C7ZBgWAg9Mh8AD+DBP34pZvz5Fdrtd69enaODAIR67FeOO2zCpv5zX2eOn3VTRlYmsXl9Hsk4psnp9pZ0655EaALMj8AA+yjAsqlGjmgyDWzF2u11pab57GyauVjPF1Wrm6TIAUyPwAD7q4tUdQ7s++0o55zMq/PwFRYWyWCxyOBwyLBb9uGKd/KpUrfA6gmqFKrbfTdyGAfCHCDyAj8s5n6GsXyt+7IkktWvYTNuOH1Dbhs2Un5qpfI9UAfyHGcaV4eog8ABw2S3R7XVLdHtPlwEvwriyi3i83/sQeAAAbmEYFoWFBcpqtXrk/Hl5zucNC6umgIAAj9Ris9mUnp5L6PEiBB4AgFsYhkVWq1VvT5mvn4955om38Or19HPGKYVXr6epT7zikRrqNQrX8OeGMq7MyxB4AABu9fOx0zp28LhHzm2VvxqoiZQmHUvzTA3wTqylhUqHdYsAoPIh8KBSyc/P17p1/xnUmJ/Pc0UAUBlwSwsVzrNPcdjkcPxnsjzJpipVPJP7eYoDACoOgQcVytOzA1et6hwwwsKCmB0YACoBAg8q1KXZgU9v36mC7OwKP39+QcF/Zgc2DP3y/Vb5+/lVeB1+wcEKj2/FUxwAUEEIPPCIguxs5WdmeeTc3du01Vc//ks3xbeR8vKVn8c4HgAwOwIPKp0/d++hP3fv4ekyAAAViKe0AACA6RF4AACA6RF4AACA6RF4AACA6Xld4NmwYYMSExPVpk0bdenSRU8++aROnDhRYr9Vq1apV69eiouL0x133KGNGzd6oFoAAOALvCrwbNmyRUlJSWratKlmzZqlv/3tb9q3b58efvhh5eXlFe+3Zs0ajR8/Xn369NG8efMUHx+vpKQkbd++3XPFAwAAr+VVj6WvWbNG9erV0wsvvCCL5eLSAzVr1tSQIUO0a9cutW/fXpI0ffp09e3bV6NHj5YkdezYUQcOHNCsWbM0b948T5UPAAC8lFdd4SkqKlJQUFBx2JGk6tWrS5Icjouz0Z44cUJHjx5Vnz59nI697bbb9O2336qgoKDiCgYAAD7Bq67w9O/fX5988omWLl2qO+64Q+np6XrttdcUExOjtm3bSpIOHz4sSYqMjHQ6NioqSoWFhTpx4oSioqIqvHYAANzJkwstS9KCBfO0du0a9enTVw899KjH6nDXQsteFXjat2+vmTNn6i9/+YsmT54sSYqOjtb8+fNltVolSRkZGZKkkJAQp2Mvvb7U7gpPrZpdmVit9PFvlac/6EtnrvYH/VgSfeke5ekPi8Wi6tX9i//uq2h5eXlau3aN7Ha71q5doxEjHlNAQIBHarHZbMrKyi++0+Mqrwo8//rXv/TXv/5Vf/7zn3XTTTcpPT1ds2fP1rBhw7Rs2bKr2tkXV/H2zKrZqLxCQgI9XYJp0JfuQ1+6hzv6cdyYSTpy6Gj5i7lCDodddrtdkmS32zU4cbgslooPtJFRjTXt9YkKC6tW7vfyqsCTnJysjh07aty4ccXb4uPjddNNN+mTTz7Rvffeq9DQUElSVlaWateuXbxfZmamJBW3Xym73aHMzAvlqB5lYbUa/GH6G5mZubLZ7C4dS186c7Uv6ceS6Ev3cMfv+8iho9q7+4CbKyuboJpVFFjdqtwsm84e/ckjNVxyub4MCQks85U0rwo8hw4dUo8ezos6hoeHq0aNGjp+/LgkqUmTJpIujuW59O+XXletWlUNGjRw+fxFRa59MQFX2Wx2vnduQl+6D33pHr7ejzmpRcpJLfJ0GZLc05dedcO1Xr162rNnj9O2U6dOKS0tTfXr15ckNWjQQI0bN9a6deuc9ktJSVGnTp3k5+dXYfUCAADf4FVXeO677z698MILSk5O1s0336z09HTNmTNHtWrVcnoMfdSoURo7dqwaNmyohIQEpaSkaOfOnVqyZIkHqwcAAN7KqwLP4MGD5efnp+XLl+vDDz9UUFCQ4uPj9cYbb6hGjRrF+/Xr10+5ubmaN2+e5s6dq8jISM2cOVNt2rTxYPUAAMBbeVXgsVgsuv/++3X//ff/130TExOVmJhYAVUBAABf51VjeAAAAK4GAg8AADA9Ao+PWLhwvgYM6K+FC+d7uhQAAHwOgccH5Ofna926FNntdq1fn6L8/HxPlwQAgE/xqkHL3syTi7jl59vkcPxnim/J5tF1v9y1kBsAABWFwFMGhmFRzRpBsngo8FSt6hwuwsKCFBzsuXW/HHaHUtNyCD0AAJ9B4CkDw7DIYliUcfKYbB64nZSfXyCLxSKHwyHDMJR1/KgK/D0zo7TV31+hEY1kGBYCDwDAZxB4roAtP19FebkVfl6rpF43dtHnX3+jW7veIKvD5pE6AADwVQQeHzHknrs15J67PV0GAAA+iae0AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6RF4AACA6Xll4Fm9erXuuusuxcXFKSEhQUOHDlVeXl5x+5dffqk77rhDcXFx6tWrlz788EMPVgsAALxdFU8X8Htz5szRvHnz9Nhjjyk+Pl5paWn69ttvZbPZJElbt25VUlKS/vSnP+lvf/ubvvvuOz333HMKCgpS7969PVw9AADwRl4VeA4fPqyZM2dq9uzZ6tatW/H2Xr16Ff/7nDlz1KpVK02ePFmS1LFjR504cULTp08n8AAAgFJ51S2tjz76SBEREU5h57cKCgq0ZcuWEsHmtttu06FDh3Ty5MmKKBMAAPgYrwo8O3bsULNmzTR79mx16tRJsbGxuu+++7Rjxw5J0vHjx1VYWKgmTZo4HRcVFSXp4hUiAACA3/OqW1pnz57Vrl27dODAAU2cOFGBgYF666239PDDD+vzzz9XRkaGJCkkJMTpuEuvL7W7qkqV0vOf1epVudAruNon9KWz8vQHfemM76T70Jfuwe/bfdzRH14VeBwOhy5cuKA333xTLVq0kCS1bt1aN998s5YsWaIuXbpctXMbhkU1agRdtfc3m5CQQE+XYAr0o/vQl+5DX7oH/eg+7uhLrwo8ISEhCgsLKw47khQWFqaYmBj99NNP6tu3ryQpKyvL6bjMzExJUmhoqMvnttsdysy8UGqb1Wrwxf2dzMxc2Wz2Kz6OvnTmaj9K9OXv8Z10H/rSPfh9u8/l+jIkJLDMV3+8KvA0bdpUx48fL7UtPz9fDRs2VNWqVXX48GF17dq1uO3S2J3fj+25UkVFrn0xKyObzU5/uQH96D70pfvQl+5BP7qPO/rSq24Sdu/eXenp6dq7d2/xtrS0NO3evVstW7aUn5+fEhIStH79eqfjUlJSFBUVpYiIiIouGQAA+ACvusLTs2dPxcXF6YknntCYMWPk7++vuXPnys/PTwMGDJAkPf744xo8eLCef/559enTR1u2bNFnn32m119/3cPVAwAAb+VVV3gMw9DcuXMVHx+vCRMm6KmnnlJwcLCWLl2q2rVrS5Lat2+vGTNmaNu2bXrkkUf02WefKTk5WX369PFw9QAAwFt51RUeSapZs6ZefvnlP9ynR48e6tGjRwVVBAAAfJ1XXeEBAAC4Ggg8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9Ag8AADA9FwOPM8++6x27Nhx2fadO3fq2WefdfXtAQAA3MblwLN69WodP378su0nT57Uxx9/7OrbAwAAuM1Vu6X166+/KiAg4Gq9PQAAQJlVuZKd//nPf2rDhg3Fr1euXKnNmzeX2C8rK0ubN29WbGxs+SsEAAAopysKPIcOHdK6deskSRaLRTt27NCuXbuc9rFYLKpWrZo6dOigcePGua9SAAAAF11R4Bk+fLiGDx8uSWrRooWmTJmi22+//aoUBgAA4C5XFHh+a9++fe6sAwAA4KpxOfD8Vk5OjjIzM+VwOEq01atXzx2nAAAAcJnLgSc/P18zZ87UBx98oPT09Mvut3fvXldPAQAA4BYuB57nn39eH3/8sXr27Kl27dopNDTUnXUBAAC4jcuB54svvlBiYqImT57sznoAAADczuWJBy0Wi2JiYtxZCwAAwFXhcuDp0aNHqZMOAgAAeJsyB5709HSnf0aMGKGTJ09q/Pjx2rVrl1JTU0vs80eDmQEAACpKmcfwdOzYURaLxWmbw+HQnj179MEHH1z2OJ7SAgAAnlbmwDNy5MgSgQcAAMAXlDnwjBo16mrWAQAAcNW4PGgZAADAV7g8D8/MmTP/sN1iscjf31/h4eHq0KGD6tSp4+qpAAAAyqVcgefSmJ7fr6H1++1Wq1WJiYmaMGGCDIOLSgAAoGK5HHg2bdqk4cOHKzo6WoMGDVLDhg0lSceOHdOSJUu0f/9+vf7667pw4YIWLlyoFStW6Nprr9WIESPcVjwAAEBZuHy5ZdKkSWrSpImmTp2qmJgYBQcHKzg4WC1bttTUqVPVqFEjvfrqq4qOjta0adPUpUsXffLJJ+6sHQAAoExcDjzfffedOnTocNn2Dh066Jtvvil+3a1bN/3888+ung4AAMBlLgcePz8/7dy587LtO3bsUNWqVYtfFxUVqVq1aq6eDgAAwGUuj+Hp16+fli5dqrCwMN1///2KiIiQJJ08eVLLli3Tp59+qgceeKB4/y1btqhp06blrxgAAOAKuRx4nn76aZ07d04LFizQe++9V/z0ld1ul8Ph0K233qqnn35akpSfn6+WLVuqbdu27qkaAADgCrgcePz9/fXGG29oz549+vrrr3Xq1ClJUv369dWlSxe1bNnSad+kpKTyVwsAAOAClwPPJTExMYqJiXFHLQAAAFcFswACAADTK/MVnhYtWsgwDG3fvl1+fn5q0aLFf1093WKxaM+ePeUuEgAAoDzKHHhGjhwpi8WiKlWqOL0GAADwdmUOPKNGjfrD1wAAAN6KMTwAAMD0yhV4fv75Z02YMEG9evVShw4d9MMPP0iSUlNTlZyczPgdAADgFVwOPD/99JPuvvturV27VhEREcrOzlZRUZEkqWbNmtq2bZuWLFnitkIBAABc5fI8PC+//LKqV6+ulStXSpI6d+7s1N6tWzetXbu2fNUBAAC4gcuB54cfftDIkSNVs2ZNpaWllWivV6+ezpw5U67ivJHd4ZDN4ekqPMdusykvL08FBfmy/aYjrNYqxcuLAADgbVwOPA6HQwEBAZdtT01NlZ+fn6tv73UcDofS8vKVU+iQKvHj+JbcAp0/dFh2u71EW2BgsEJCajJdAQDA67gceGJiYrRp0yanFdEvKSoq0po1a9S6detyFedNfvnlF10ocqh69RqqWtWv0v6lbrFIVj9/p6s7DodDBQX5ys6+eKUvNLSWp8oDAKBULgeeYcOG6bHHHtPEiRPVt29fSdL58+e1efNmvfXWWzp8+LAmTJjgtkI9yW63KT09XcHVQxUUEOTpcjzKYlhUxc9fRUXOV3j8/PwlSdnZaapevQa3twAAXsXlwNOtWzdNnTpVL7zwQvHA5aeffloOh0PBwcF68cUX1aFDB7cV6klFRTY5HJJfVfPcorsaLoUem61IhkFfAQC8R7lWS7/rrrt066236ptvvtGxY8dkt9vVsGFDdenSRcHBwe6q0QtcvH1TOW9ilV1lvc0HAPB+Lgeee++9Vx06dFD79u2VkJCgW265xZ11KScnR3369NGZM2f0wQcfKC4urrht1apVmj9/vn7++WdFRkZqzJgx6t69u1vPDwAAzMPlwFO9enW9//77mj9/vgzDUFRUlNq3b68OHTqoXbt2qlOnTrkKmz17tmw2W4nta9as0fjx4/XYY4+pY8eOSklJUVJSkpYuXar4+PhynRMAAJiTy4Fn/vz5cjgc2rt3r7Zu3aqtW7fqiy++0PLly2WxWFS/fn116NBBU6dOveL3PnTokJYtW6ZnnnlGEydOdGqbPn26+vbtq9GjR0uSOnbsqAMHDmjWrFmaN2+eqx8HAACYWLkepbFYLIqJidHgwYM1ffp0ffnll5oyZYoaNWqkkydP6uOPP3bpfZOTk3XfffcpMjLSafuJEyd09OhR9enTx2n7bbfdpm+//VYFBQWufhQAAGBi5Rq0nJOTox9//FFbt27Vtm3btHPnThUUFKhJkya699571b59+yt+z3Xr1unAgQOaMWOGdu/e7dR2+PBhSSoRhKKiolRYWKgTJ04oKirK9Q8EAABMyeXA079/f+3fv18Wi0XNmzdXhw4dNGTIELVr1041atRw6T1zc3M1bdo0jRkzptSnvDIyMiRJISEhTtsvvb7U7qoqVUq/4GWzXd05ZU6fPq2ly5do249bdebMGQUEBKhtm3Ya8dhI1Q2v67TvT4d+0hvTX9fefXsUGhKqO++4S9dcU1vTXnpBK5d/4LT/d1u+1eKli3Tg4AFZLBa1bhWvEcNHKDKySblrtlgkx2WW2LBaLZftS6uV+Xl+qzz9QV86c7U/6MeS6Ev34PftPu7oD5cDz549e2QYhnr06KFu3bqpffv2atSoUbmKmTNnjmrVqqV77rmnXO/jCsOwqEaN0icVzMvL09VcFmzv/r3atfv/1KN7T9Wufa1On/5FH3+6Wk+MTtLi95YWL+Fx9uxZPfnUKFlk0cABgxQYGKjP1vxDVatWLfGe6z5fpxemJev6Dgl6bNjjysvL1yefrtaIJ0bo3XkLSgSpK1Xal89ut8gwDIWGVvvDZUfwHyEhgZ4uwTToS/ehL92DfnQfd/Sly4Hnww8/LL6V9dprryk1NVW1atVSu3bt1L59e7Vv314tWrQo89wsp06d0rvvvqtZs2YpKytLknThwoXi/83JyVFoaKgkKSsrS7Vr1y4+NjMzU5KK211htzuUmXmh1DabrdDl9y2Lzh07q3s358fqb+h8gx4bOVxf/e9X6n1rb0nS0uVLlJWVpXfmvqvrmjaTJN3Wu6/uH3Sv07EXci/ozRlvqN9tt+uvY58p3t6nVx89MPh+LV6yyGm7K2w2e4krPDabQ3a7XRkZF5SbW/IJO+liUOIPgf/IzMyVzVZyXbKyoC+dudqX9GNJ9KV78Pt2n8v1ZUhIYJmv/rgceFq2bKmWLVtqyJAhkqQjR44UB6AFCxbohRdeUHBwsH744Ycyvd/JkydVWFioYcOGlWgbPHiwWrdurVdffVXSxbE8TZr857bM4cOHVbVqVTVo0MDVjyNJJZZLuKS0hTLdyd/f/zc1FCknJ0f160coOLi6DhzcXxx4tvywRS1jYovDjnTxdt4tPW7Vh6s/KN62desPys7OUs8ePZWekV683bAaio6O0Y/b/1Xumi93O0u6GHwu15dwZrPZ6Ss3oS/dh750D/rRfdzRl+UatHxJXl6eTp8+rdOnT+vnn39WamqqHA5H8RWasoiOjtaiRYuctu3du1dTp07VpEmTFBcXpwYNGqhx48Zat26devbsWbxfSkqKOnXq5LOrs+fn52vx0kVauy5FZ8+dleM3aSInO6f438+cOa3YmJYljo+oH+H0+sTJk5KkJ596otTzBQVV7vXAAACVj8uBZ+PGjfrhhx+0bds27d69W0VFRfL391erVq304IMPqn379mrTpk2Z3y8kJEQJCQmltl26miRJo0aN0tixY9WwYUMlJCQoJSVFO3fu1JIlS1z9KB73+vTXtHZdihLv+bNatoxVcFCQLBaLnp88UXbHlSdax7+P+Z+/TVCtmjVLtFut1nLXDACAL3E58Dz++OMKCQlR27Zt9eSTT6p9+/aKjY0tdQCtO/Xr10+5ubmaN2+e5s6dq8jISM2cOfOKwpW32bTpK/W+tY+SRowq3pZfkK/s7Gyn/erUCdfJU6dKHH/y1Emn1/Xr1Zck1QgLU/t25ljAFQCA8nA58HzyySdq1qzZVV0wMiEhQfv37y+xPTExUYmJiVftvBXNsBpyyHlQzIcffSCb3Xng7/Udrtfqjz/SwZ8OFI/jyczM1BcbPv/dfgkKCgrS4qWL1bZNO1Wp4vx/c1p6mmqEuTZ1AAAAvsjlwNO8eXN31lGpde7YWZ9/vl7BQUFq3ChSu/bs0rZtWxUa4vzU2YD7HtDnX3yuMWPH6J677yl+LL3OtXWUmZkpy7/Xcw8KCtJfRo9V8tS/65FhD6nHzT0VFhqmM7+e0bffbVZcbJzGPPkXT3xUAAA8wi2DllE+T4waLcOw6vN/fqGCgnzFxbbS66+8ob/89Smn/epcW0fTX5+uN2e8oSVLFyssLEx339VfAQEBenPGG06Dtm/peauuueYaLVm2RMvfX6aCwgLVvqa2WrVqrdt6963ojwgAgEcReLxA9eDqevaZv5XYvur9D0tsu65pM818c7bTtukzL4ad389D1Ca+rdrEt3VvsQAA+CDmrvYx+fn5Tq8zMjK0/ov1ahXXiqevAAC4DK7w+JjHRg5Tm/g2atSwsVLTUrVm7WfKycnRkEEPebo0AAC8FoHHx3RM6KSv/vcrffrZp7JYLGp2XTONe/pZxbeO93RpAAB4LQKPjxn+6GMa/uhjni4DAACfwhgeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgegQeAABgeszDU06G1ZBhWCr8vHa7Q3ab/YqPO3nqpN5fsUy79+zWkSNH1LBhQy1asMRpn7y8PL23eIG+3PilUlPPq3bta9WnVx8NuP8BVTWquusjAABQYQg85WBYDdWqHSaLUfEXyhx2u86fTb/i0HPkyBF9+923io6Okd3hkMNe8vjX33xNm77+SsMeGa7GjRtr1+5denfBO8rLy9PwYUx6CADwPQSecjAMiyyGoYyTx2T73aKeV5PV31+hEY1kGBbZbVd27A2db1DXLl0lSVOmJWv//n1O7Xa7XV9+tUH33ztA/e++R5LUtk07nThxXBs2/pPAAwDwSQQeN7Dl56soL9fTZZSJ8V+uRjkcDtlsNgUFBTltDwoKlsNxNSsDAODqYdAynFitVvXpdZs++vhD7d23VxdyL2jrth+0/ov16n/XPZ4uDwAAl3CFByU8NfoveuX1lzXs8aHF2wYOGKT7/nyfB6sCAMB1BB6U8Na8Ofr2u816Zuw4RUQ00O49u/XeondVvXp1PTBgoKfLAwDgihF44OTwkcN6f8VyTZvyom7o3EWSFN86XjZbkd55d77uvutuhfgHeLhKAACuDGN44OTo0SOSpKZNr3Pafl3T61RQWKBffz3ribIAACgXAg+c1KkTLkk6cOCA0/b9B/bLYrEoPDzcE2UBAFAu3NJyA6u/v8+cLy8vT99u+VaSdObMaeVcuKCNmzZKunjrqkXzFmrRvIVeee0lpaWlqn79CO3Zu1tLli3WbX36KiCA21kAAN9D4CkHu/3iTMWhEY0q/NwOu112+5VPjJOWnqYJz/+P07ZLr6e/PkNt4ttq2gsvaf6787R46SKlpafp2muv1YD7HtAD9zNgGQDgmwg85WC3XVzewZfW0qobXldfb/zmD/epVbOWnhk7ztXSAADwOgSecrLb7Fe8vAMAAKhYDFoGAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmR+ABAACmx8SD5WRYDZ+aaXnjV1/q8y/Wa/+B/crKzlJE/Qj9qX+ibuvTVxbLxc8xanSStu/4scSxSxYuU+PGjctbOgAAFY7AUw6G1VDN2mEyjIq/UGa325V6Nv2KQ8+KVe8rPLyuRj6epLCwGvph2/d66dUX9evZX/XQkIeL94uLbaWRj490OpaV0gEAvorAUw6GYZFhGDq9facKsrMr7Lx+wcEKj28lw7Bc8bIW0154SWGhYcWv27Vtp8yMTK1Y9b6GDHqwOLwFBwerZUysG6sGAMBzCDxuUJCdrfzMLE+XUSa/DTuXXHddM/1jzafKy8tVtWpBFV8UAABXGYEH+r//26Ha19R2Cjvbd/yoW/r0kN1mV3R0jIY+/KjiW8d7rkgAAMqBwFPJ7fy/HdqwcYNGPp5UvC2+dbx639pbEREROnfunN5fuVxjxj6pGW/MUlxcnAerBQDANQSeSuzXs79q4uQJahPfVn/qn1i8/ZGHhjrt17nTDRr80EAtXLxAr7z0WkWXCQBAuTEPTyWVlZ2lp5/5i0JCQpU8acofPmkWGBioTh07a/+B/RVYIQAA7sMVnkooPz9fzzz7V2Xn5OitmW8rODjY0yUBAHBVEXgqmSJbkSZMGq9jx49q5puzVbt27f96TG5urjZ/941aNI+ugAoBAHA/Ak8l89rrr2rzt99o5OOjdOFCjnbv2VXcdl3TZtq7b4+Wr1imrl26qW54+MVBy6veV2pqqiZPTPZg5QAAuI7A4wZ+FXxLqDzn+2Hr95KkWXNmlGhbufwD1ap1jQoLizR3/tvKzMxQQECgYlvGauyYpxUTHePyeQEA8CQCTznY7Q7Z7XaFx7fywLntstsdV3zcqvc//K/7vMqTWAAAkyHwlIPddnE9K19aPBQAgMqIwFNOdpv9itezAgAAFYt5eAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOkx8WA5GVbDp2Za/va7zVq6fKmOHjuqCxdydM01tdX1hq56aMjDCv73Gl1TpiVr3fq1JY595cVX1bFjp3LXDgBARSPwlINhNVTzmjAZ1oq/UGa32ZV6Lv2KQ09mVpZiomP0p/5/UmhoqA4fOawF772rI0cP67WX3yjer169eprw3ESnYxs1bOyGygEAqHgEnnIwDIsMq6Fdn32lnPMZFXbeoFqhiu13kwzDcsXLWvS6pZd0S6/i123i26pqVT+9/OqLOnfurK65prYkyd/PXy1jYt1ZNgAAHkPgcYOc8xnK+vW8p8twWWhIiCSpsKjIw5UAAHB1EHgqKZvNpiJbkY4ePar3Fi1Ql85dVDe8bnH7qVOn1LvfrcrPz1eTyCgNGfygbuxyowcrBgDAdQSeSirxvnt09txZSVLC9R014X+eL25r1rSZoptHKzIyUlnZ2fr4k9V6bvyzmvx8sm7ufrOHKgYAwHUEnkrqpWmvKC8vT0eOHtaixQs17rm/6rWX35DValXin/7stG+Xzl30eNJwvbNgPoEHAOCTmIenkmoa1VSxLWN1e987NDV5mv7147/0v//vf0vd1zAMdbvxJh07dlT5+fkVXCkAAOVH4IGiopqqSpUqOnXqpKdLAQDgqvCqwLN27Vo9/vjjuvHGGxUfH68777xTH3zwgRwOh9N+q1atUq9evRQXF6c77rhDGzdu9FDF5rBn724VFRWpXt16pbbb7XZ9tWmjIhtHyt/fv4KrAwCg/LxqDM97772n+vXra9y4capRo4Y2b96s8ePH6/Tp00pKSpIkrVmzRuPHj9djjz2mjh07KiUlRUlJSVq6dKni4+M9+wF8wHMTnlXzZi0UFdVU/n7++unQT1q+YpmimjRV1y436vTp05oyLVk9b+6p+vUjlJWdpY8/Wa19+/cpedIUT5cPAIBLvCrwzJkzRzVr1ix+3alTJ6Wnp2vBggUaMWKEDMPQ9OnT1bdvX40ePVqS1LFjRx04cECzZs3SvHnzPFJ3UK1QnzlfdIsYfblxg5YuXyKH3aHw8HDd3vd23X/vAFWtWlXVqlVTcFCQFi1ZqLT0NFWpUkUtmrfQy9NeVcL1CW78FAAAVByvCjy/DTuXREdHa+XKlbpw4YLS0tJ09OhRPf3000773HbbbXrppZdUUFAgPz+/iiq3eD2r2H43Vdg5i89ts8tud/z3HX9n4IBBGjhg0GXbQ0JCNHXKi+UpDQAAr+NVgac027ZtU506dRQcHKxt27ZJkiIjI532iYqKUmFhoU6cOKGoqKgKq+3Sela+tHgoAACVkVcHnq1btyolJUXPPPOMJCkj4+J6VSH/XgrhkkuvL7W7qkqV0sdw22yXH9ttt9mveD0rM7BYJMdlLjBZrZbL9qXVAwuterPy9Ad96czV/qAfS6Iv3YPft/u4oz+8NvCcPn1aY8aMUUJCggYPHnzVz2cYFtWoEVRqW15ens6cueol+JTSvnx2u0WGYSg0tJoCAgI8UJXvCQkJ9HQJpkFfug996R70o/u4oy+9MvBkZmbq0UcfVVhYmGbMmCHDuPiXa2joxcG6WVlZql27ttP+v213hd3uUGbmhVLbbLZCl9/XrGw2e4krPDabQ3a7XRkZF5SbW/plL6vV4A+B38jMzJXNxVuT9KUzV/uSfiyJvnQPft/uc7m+DAkJLPPVH68LPHl5eRo+fLiysrK0YsUKVa9evbitSZMmkqTDhw8X//ul11WrVlWDBg3Kde6iotK/mHY7Y2V+73K3s6SLwedyfQlnNpudvnIT+tJ96Ev3oB/dxx196VU3CYuKijR69GgdPnxY8+fPV506dZzaGzRooMaNG2vdunVO21NSUtSpU6cKfUILAAD4Dq+6wjNp0iRt3LhR48aNU3Z2trZv317cFhMTIz8/P40aNUpjx45Vw4YNlZCQoJSUFO3cuVNLlizxXOEAAMCreVXg+eabbyRJ06ZNK9G2YcMGRUREqF+/fsrNzdW8efM0d+5cRUZGaubMmWrTpk1FlwsAAHyEVwWeL7/8skz7JSYmKjEx8SpXAwAAzMKrxvAAAABcDV51hccXGVbDZ2davpB7QQMHD9DZc2c17635atE8WpI0anSStu/4scT+SxYuU+PGjct1TgAAPIHAUw6G1VDNa8JkeGBGzEvLWpQn9Cxc9J5sttLny4mLbaWRj4902hYeHu7yuQAA8CQCTzkYhkWG1dD6uR8r9ZfzFXbemnVrqdewu2QYFpeXtTh2/JhWf/yRRj6epFdef7lEe3BwsFrGxJazUgAAvAOBxw1Sfzmvs8dPe7qMK/LG9Nd05x13qWHDhp4uBQCAq45By5XQxk0bdfjwYT04+KHL7rN9x4+6pU8P9bi1u5KeHKntO7ZXXIEAALgZV3gqmby8PM2cPUPDhg5XUFDpi6XGt45X71t7KyIiQufOndP7K5drzNgnNeONWYqLi6vgigEAKD8CTyWzcPF7qlmjhm7r0/ey+zzy0FCn15073aDBDw3UwsUL9MpLr13tEgEAcDtuaVUip0+f1opV7+vhBx9Rdk62srKzdCE3V5KUm5urC7mlrxYfGBioTh07a/+B/RVZLgAAbsMVnkrkl9M/q7CwUH999ukSbU+MGaWY6Bi9PXueByoDAODqIvBUIk2bXqfpr89w2nbwp4OaMWu6xo55Wi1aRJd6XG5urjZ/903xxIQAAPgaAo8b1KxbyyfOVz24utrEty21rXnz5mrerLl27Nyu5SuWqWuXbqobHn5x0PKq95WamqrJE5PLUzYAAB5D4CmHS8s79Bp2V8Wf22aX3e5w+/vWqnWNCguLNHf+28rMzFBAQKBiW8Zq7JinFRMd4/bzAQBQEQg85XBpeQdfXUtLktrEt9XXG78pfh1RP0Kv8iQWAMBkCDzlZLfZXV7eAQAAVAweSwcAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKZH4AEAAKbHxIPlZFgNn5ppOWXdGk198YUS2x+4f6AeG/a4JGnU6CRt3/FjiX2WLFymxo0bX/E5AQDwNAJPORhWQzWuCZXVaq3wc9tsNqWdy3B5eYlXXnxNwcFBxa+vuaa2U3tcbCuNfHyk07bw8HCXzgUAgKcReMrBMCyyWq16e8p8/XzsdIWdt16jcA1/bqgMw+LyshbNmzdXWGjYZduDg4PVMibWtTcHAMDLEHjc4Odjp3Xs4HFPlwEAAC6DwFNJDX5ooDIyMlSnTrhu73u7Btz3gNOtue07ftQtfXrIbrMrOjpGQx9+VPGt4z1XMAAA5UDgqWRq1bxGDz/4iGKiW8pikb7Z/P80/915OnfurMY8+RdJUnzrePW+tbciIiJ07tw5vb9yucaMfVIz3piluLg4D38CAACuHIGnkkm4PkEJ1ycUv76+Q4L8/P21atVKDRo4RNfUukaPPDTU6ZjOnW7Q4IcGauHiBXrlpdcqumQAAMqNeXigm2/qIZvdpp9+Olhqe2BgoDp17Kz9B/ZXcGUAALgHgQcAAJgegQfa8OU/ZTWsuu66ZqW25+bmavN336hF8+gKrgwAAPdgDE8l89TTY9SubTs1iWwi6eKg5U8/+1R/uidRtWrW0o6d27V8xTJ17dJNdcPDLw5aXvW+UlNTNXlisoerBwDANQQeN6jXqGJnIC7P+Ro1bKTPUj7T2bO/ymF3KKJBAz0x8knd0/9PkqRata5RYWGR5s5/W5mZGQoICFRsy1iNHfO0YqJj3PURAACoUASecrDbHbLZbBr+3ND/vrOb2Ww22e2OKz7uyVGj9eQftEfUj9CrPIkFADAZAk852G12pZ3L8KnFQwEAqIwIPOVkt9ldXs8KAABUDJ7SAgAApkfgAQAApkfgAQAApkfgAQAApkfgAQAApkfgAQAApkfgAQAApkfgAQAApsfEg+VkWA2fnGl57boUrfpwpY4dO6bAwEC1aBGtKZNfkL+/v6ZMS9a69WtLHPPKi6+qY8dO5SkbAACPIPCUg2E1VKNWqKxVrBV+bluRTWnnM1wKPYuWLNTS5Us06IHBahkTq4yMdG371zbZfjNldL169TThuYlOxzVq2Li8ZQMA4BEEnnIwDIusVawaN2aSjhw6WmHnjYxqrGmvT5RhWK54WYvjx4/p3ffe0bQpL6pjwn+u1tzUrbvTfv5+/moZE+uOcgEA8DgCjxscOXRUe3cf8HQZZZKyLkV169ZzCjsAAJgdgaeS2b1nt6Iim2jh4vf0wUerlJ2drRbNo5U0YpRaxrQs3u/UqVPq3e9W5efnq0lklIYMflA3drnRg5UDAOA6Ak8lk5p6XvsP7NOhI4f11OixCvD31+Kli/WXv47R8sUrVKNGDTVr2kzRzaMVGRmprOxsffzJaj03/llNfj5ZN3e/2dMfAQCAK0bgqWTsDodyc3P19+eT1TSqqSSpZUysEu+/Rx+u/kBDH35UiX/6s9MxXTp30eNJw/XOgvkEHgCAT2IenkqmenB1hYaEFocdSQoJCdF1TZvp6NEjpR5jGIa63XiTjh07qvz8/IoqFQAAtyHwVDKRjSMv25ZfUFCBlQAAUHEIPJVM506dlZGZoYM//eepsoyMDB04uF/NmzUv9Ri73a6vNm1UZONI+fv7V1SpAAC4DWN4KpmuXW5UdItojZ/4P3r0kWHy9/fXkmWL5VfVT3ff1V+nT5/WlGnJ6nlzT9WvH6Gs7Cx9/Mlq7du/T8mTpni6fAAAXELgcYPIqMY+cz7DMPTStFc0Y9Z0vfLayyosKlSruNaa8eYs1apZS5mZmQoOCtKiJQuVlp6mKlWqqEXzFnp52qtKuD7BfR8CAIAKROApB7vdIVuRTdNen/jfd3YzW5FNdrvDpWPDQsM0/m8TSm0LCQnR1Ckvlqc0AAC8DoGnHOw2u9LOZ/jk4qEAAFQmBJ5ystvsV7yeFQAAqFg8pQUAAEyPwAMAAEyPwAMAAEyPwFMmFwclu/ZMVOXhcNBDAADvROApgypVrLJYpIJCll74IwUFF9fZsloZCw8A8C78zVQGhmFVWFiYzp89J9kdqlrVTxZLxT+K7g0sFsluschm+8/VHIfDoYKCfGVnpykwMFiGQY4GAHgXAk8Z1a1bV7lp55WVlXbxb/1KymKxyKhSVXZ7yTmAAgODFRJS0wNVAQDwxwg8ZWSxWFQjwF9BDptslXioitXfT2ENI5WRccHpKo/VWoUrOwAAr+WTgefQoUNKTk7Wjz/+qKCgIN15550aPXq0/Pz8rvq5DYtFHphY2WtUsVoVEBCg3FybioqY6RkA4Bt8LvBkZGRoyJAhaty4sWbMmKEzZ85o2rRpysvL04QJpa8PBQAAKjefCzzvv/++cnJyNHPmTIWFhUmSbDabJk2apOHDh6tOnTqeLRAAAHgdnxt08b//+7/q1KlTcdiRpD59+shut+ubb77xXGEAAMBrWRw+Nltcp06ddM8992js2LFO27t27ao777yzxPaycjgcsttL7wqLRTIMQ/aiwko/ud5vn9JypSsu9WVRfr5cegOzsFhUxd/f5X7891vIMAwV5OSW+tRcZWEYhvyCAsv9nbyQmSO7rXKvBGxYraoWElTuvsxMy1RRUeXtyypVrAqpEeKW3/f582kqKix0b4E+pErVqqpVq8Zl+9IwLGWeJsbnbmllZmYqJCSkxPbQ0FBlZGS4/L4Wi0VW6x93mlGlqsvvbzblfSKrir+/myrxbe54ss0vKNANlfi+8vZltZAgN1Xi+8rblyE1Sv4ZXRm54/ddq1YNN1Ti+9zRlz53SwsAAOBK+VzgCQkJUVZWVontGRkZCg0N9UBFAADA2/lc4GnSpIkOHz7stC0rK0tnz55VkyZNPFQVAADwZj4XeG688UZt3rxZmZmZxdvWrVsnwzB0ww03eLAyAADgrXzuKa2MjAz17dtXkZGRGj58ePHEg7fffjsTDwIAgFL5XOCRLi4t8fe//91paYkxY8ZUyNISAADA9/hk4AEAALgSPjeGBwAA4EoReAAAgOkReAAAgOkReAAAgOkReAAAgOkReAAAgOn53GrpZnfs2DG988472rFjhw4ePKgmTZros88+c9onNzdXs2fPVkpKis6dO6fw8HDdfffdGjp0qKpU4f9SSVq7dq0+/fRT7d69W5mZmWrUqJEGDRqke+65RxaLRZI0aNAgff/99yWOTUlJUVRUVEWX7JU2bdqkefPm6aefflJ2drbq1Kmjnj17KikpSdWrV5ckjRs3TqtXry5x7Lx583TjjTdWdMk+IycnR3369NGZM2f0wQcfKC4uThLfy7L46KOP9Oyzz5bY/uijj2rs2LGS6McrsXr1ai1cuFCHDh1StWrVFBcXp5kzZyogIMBUv2/+dvQyBw8e1KZNm9S6dWvZ7XaVNk3S5MmT9fnnn+upp55SVFSUtm/frunTpys3N1djxozxQNXe57333lP9+vU1btw41ahRQ5s3b9b48eN1+vRpJSUlFe/Xtm1bPfPMM07HRkREVHS5Xis9PV2tWrXSoEGDFBYWpoMHD2rGjBk6ePCg3n333eL9GjRooFdeecXpWP5S+WOzZ8+WzWYrtY3vZdnMnz+/OHhLUp06dZza6cf/bs6cOZo3b54ee+wxxcfHKy0tTd9++63Td9Msv28Cj5e5+eab1bNnT0kX/8t5165dTu12u11r167VI488ogceeECS1LFjRx05ckRr1qwh8PzbnDlzVLNmzeLXnTp1Unp6uhYsWKARI0bIMC7ezQ0JCVF8fLyHqvR+d955p9PrhIQE+fn5afz48Tpz5kzxXzABAQH04xU4dOiQli1bpmeeeUYTJ04s0c73smxatmzp9Dv/Pfrxjx0+fFgzZ87U7Nmz1a1bt+LtvXr1ctrPLL9vxvB4mUt/EV+Ow+FQUVGR03/VSFL16tVLvRpUWZX2h2B0dLSys7N14cIFD1RkHmFhYZKkwsJCzxbiw5KTk3XfffcpMjLS06WgEvvoo48UERHhFHbMjMDjY6xWq/r3768lS5Zo586dysnJ0ebNm/XJJ59o4MCBni7Pq23btk116tRRcHBw8bbvv/9e8fHxiouL08CBA/XDDz94sELvZbPZlJ+fr927d2vWrFm6+eabnW4NHDt2TO3atVNsbKz69++vf/7znx6s1rutW7dOBw4c0MiRIy+7D9/LsunXr5+io6PVo0cPvf322yVuEdKPf2zHjh1q1qyZZs+erU6dOik2Nlb33XefduzY4bSfWX7f3NLyQRMnTtTEiROVmJhYvG348OF66KGHPFiVd9u6datSUlKc7ud36NBBd955pxo3bqxff/1V77zzjh566CEtXrxYbdq08WC13qd79+46c+aMJKlr16569dVXi9uio6MVFxenpk2bKisrS8uXL9fIkSP15ptvqnfv3p4q2Svl5uZq2rRpGjNmjFPw/i2+l/9d7dq1NWrUKLVu3VoWi0Vffvml3njjDZ05c0YTJkyQRD+WxdmzZ7Vr1y4dOHBAEydOVGBgoN566y09/PDD+vzzz1WrVi1z/b4d8FrPPPOMo2/fviW2T5s2zXHDDTc4Vq5c6fj+++8dc+fOdbRu3doxb948D1Tp/X755RdHly5dHEOGDHHYbLbL7peTk+Po3r27Y+jQoRVYnW/Yu3ev41//+pdj5cqVju7duzsGDRrkKCoqKnVfm83mSExMdPTp06eCq/R+r776qqN///4Ou93ucDgcju+++87RrFkzx86dOy97DN/Lspk2bZojOjracebMmVLb6ceSbr31VkezZs0ce/fuLd6WlpbmaNOmjeONN94o9Rhf/n1zS8vHHDhwQO+++64mT56sxMREdejQQY8++qiGDx+uN998U9nZ2Z4u0atkZmbq0UcfVVhYmGbMmPGHY6SqVaumbt26affu3RVYoW9o0aKF2rRpo8TERM2ePVtbtmzRF198Ueq+hmHo1ltv1aFDh5SXl1fBlXqvU6dO6d1339UTTzyhrKwsZWZmFo8nu3DhgnJycko9ju9l2fTp00c2m0179+4ttZ1+LCkkJERhYWFq0aJF8bawsDDFxMTop59+KvUYX/59c0vLx1z6EkZHRzttj4mJUUFBgc6cOXPZS+WVTV5enoYPH66srCytWLGixEBvuKZ58+aqWrWqjh8/7ulSfMrJkydVWFioYcOGlWgbPHiwWrdurZUrV3qgMlRWTZs2vezvOD8/v4KrufoIPD6mfv36kqTdu3erbt26xdt37doli8WievXqeao0r1JUVKTRo0fr8OHDWrp0aYn5OUpz4cIFffXVV8UTwKF0O3bsUGFh4WXnM7Hb7Vq3bp2uu+46BQQEVHB13is6OlqLFi1y2rZ3715NnTpVkyZNuuz3ju9l2aSkpMhqtSomJqbUdvqxpO7du+ujjz7S3r17i/8jOi0tTbt379aDDz5Y6jG+/Psm8HiZ3Nxcbdq0SdLFS+DZ2dlat26dJOn6669XbGysYmNjNXHiRJ0/f14NGzbUzp07NXfuXN1zzz0KDAz0ZPleY9KkSdq4caPGjRun7Oxsbd++vbgtJiZGO3fu1Pz583XLLbeofv36+vXXX7VgwQKdPXtWb775pucK9zJJSUmKjY1V8+bNFRAQoH379umdd95R8+bN1bNnT506dUrjxo1T37591ahRI2VkZGj58uXatWuXZsyY4enyvUpISIgSEhJKbWvZsqVatmyprVu38r0sg0ceeUQJCQlq3ry5JGnDhg1auXKlBg8erNq1a9OPZdSzZ0/FxcXpiSee0JgxY+Tv76+5c+fKz89PAwYMMN3v2+JwMHmLNzl58qR69OhRatuiRYuUkJBQ/KPdvHmzzp8/r/DwcPXr10+PPvqozyXuq+Xmm2/WqVOnSm3bsGGDbDabJk+erP379ys9PV2BgYFq06aNkpKS1KpVqwqu1nvNnTtXKSkpOn78uBwOh+rXr69bbrlFjzzyiIKDg5Wenq5nn31We/bs0fnz51W1alXFxsZq2LBh6tq1q6fL93pbtmzR4MGDi5eWOHbsGN/LMkhOTtbXX3+t06dPy263q3HjxkpMTNSgQYNksVjoxyuQmpqqqVOnauPGjSosLFT79u317LPPqmnTpqb7fRN4AACA6fGUFgAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwAAMD0CDwCfcerUKT3//PPq1auXWrVqpYSEBD3xxBM6efJkiX337dungQMHqlWrVrrxxhs1e/Zsffjhh2revHmJ/Tdt2qQBAwYoPj5ebdq00bBhw3Tw4MGK+lgAKgCLhwLwGevWrdOcOXPUo0cPhYeH69SpU1q+fLmCg4O1Zs0aBQYGSpLOnDmjO+64Q5I0aNAgVatWTatWrZKfn5/27dunDRs2KCIiQpL08ccfa9y4cerSpYtuuukm5ebmavny5crKytLq1auL9wPg2wg8AHxGXl6eAgICnLZt375d9957r1588UXdddddkqTk5GQtWbJEq1evVnR0tCQpPT1dvXr1Unp6enHgycnJ0U033aTevXvr73//e/F7njt3Tr1791afPn2ctgPwXdzSAuAzfht2CgsLlZaWpoYNGyokJER79uwpbvv6668VHx9fHHYkKSwsTLfffrvT+23evFmZmZnq27evUlNTi/8xDEOtW7fWli1brv6HAlAhqni6AAAoq7y8PL399tv66KOPdObMGf32AnVWVlbxv586dUrx8fEljm/YsKHT66NHj0qShgwZUur5goODy180AK9A4AHgM/7+97/ro48+0pAhQxQfH6/q1avLYrFozJgxcuXu/KVjXnrpJdWuXbtEu9VqLXfNALwDgQeAz1i/fr3uuusujRs3rnhbfn6+09UdSapfv76OHTtW4vjjx487vW7QoIEkqVatWurcufNVqBiAt2AMDwCfUdoVl8WLF8tmszlt69Kli7Zv3669e/cWb0tPT9c//vEPp/26du2q4OBgvf322yosLCzx3qmpqW6qHICncYUHgM+46aab9Mknnyg4OFhNmzbV9u3btXnzZoWFhTntN3ToUH366ad66KGHNHDgwOLH0uvWrav09HRZLBZJF8foPP/88/rrX/+q/v3767bbblPNmjX1888/a9OmTWrbtq0mTJjggU8KwN0IPAB8xnPPPSfDMPSPf/xD+fn5atu2rRYsWKChQ4c67Ve3bl0tWrRIycnJevvtt1WzZk098MADCgwMVHJysvz9/Yv3vf3223Xttddq7ty5euedd1RQUKA6deqoffv26t+/f0V/RABXCfPwAKg0pkyZohUrVujHH39kQDJQyTCGB4Ap5eXlOb1OS0vTp59+qnbt2hF2gEqIW1oATOnee+/V9ddfr6ioKJ07d04ffvihsrOzNWLECE+XBsADuKUFwJRee+01rV+/XqdPn5bFYlFMTIySkpJ4/ByopAg8AADA9BjDAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATI/AAwAATO//A/kdXAxtDcOxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -170,41 +177,19 @@ }, { "cell_type": "markdown", - "id": "continental-franklin", + "id": "1503d38c-8fe9-4b12-b8f9-ed3c51550c08", "metadata": {}, "source": [ - "I'm trying to find out at what age, on average, do people experience a dramatic\n", - "weight gain or loss, if at all.\n", - "I'm curious to find out if such a dramatic increase or decrease in weight can\n", - "be captured in a one-time snapshot database, where individuals are NOT tracked \n", - "over a period of time, but ONLY once." - ] - }, - { - "cell_type": "markdown", - "id": "6ac075dc-abfd-49eb-a2b9-b13220c4e850", - "metadata": {}, - "source": [ - "Results" - ] - }, - { - "cell_type": "markdown", - "id": "7bac8b8f-10b6-49d2-8870-038e6e65ae0e", - "metadata": { - "jp-MarkdownHeadingCollapsed": true - }, - "source": [ - "Since this chart of this dataset shows that an age 65+ person, on average, is closer in weight to an age 18 to 30 person, is that of any significance?" + "I want to see a distribution of persons by age by weight, with outliers.\n", + "There are many outliers on the upside for all age groups.\n", + "There are very few outliers on the downside for all age groups." ] }, { "cell_type": "code", "execution_count": 13, "id": "pursuant-surrey", - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -233,19 +218,17 @@ }, { "cell_type": "markdown", - "id": "c2aa144e-ba69-4e8e-a744-5ebbdb54ba89", + "id": "14aec0ff-b030-4916-8ce3-3ad8c56aa08f", "metadata": {}, "source": [ - "I want to see a distribution of people by age by weight, with outliers." + "I want to see the main distribution of persons by age by weight." ] }, { "cell_type": "code", "execution_count": 14, "id": "located-night", - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -272,14 +255,6 @@ "sns.violinplot(data=people, x=\"age\", y=\"weight\")" ] }, - { - "cell_type": "markdown", - "id": "922844f3-5f2c-4efd-96d2-23dcc959d70c", - "metadata": {}, - "source": [ - "I want to see the main distribution of people by age by weight." - ] - }, { "cell_type": "markdown", "id": "infectious-symbol", @@ -300,17 +275,17 @@ }, { "cell_type": "markdown", - "id": "a6127b6f-d244-48e2-8993-fcb4143ae7df", + "id": "a912ec72-35a8-4325-8520-4a47d806c287", "metadata": {}, "source": [ - "- Do the results give an accurate depiction of your research question? Yes. Why or why not? The dataset is a valid cross-section of U.S. people. There are 166,426 records in this database. \"This dataset includes data from 50 states, the District of Columbia, Guam, and Puerto Rico, collected through a combination of landline and cell phone interviews.\" - 2020 Behavioral Risk Factor Surveillance System (BRFSS) annual survey data from the Centers for Disease Control and Prevention (CDC).\n", - "- What were limitations of your datset? The person answering the survey has a telephone, and voluntarily and accurately answers the survey questions.\n", + "- Do the results give an accurate depiction of your research question? Yes. Why or why not? The dataset is a valid cross-section of U.S. persons. There are 166,426 records in this database. \"This dataset includes data from 50 states, the District of Columbia, Guam, and Puerto Rico, collected through a combination of landline and cell phone interviews.\" - 2020 Behavioral Risk Factor Surveillance System (BRFSS) annual survey data from the Centers for Disease Control and Prevention (CDC).\n", + "- What were limitations of your dataset? The person answering the survey has a telephone, and voluntarily and accurately answers the survey questions.\n", "- Are there any known biases in the data? No. " ] }, { "cell_type": "markdown", - "id": "dd3a598d-b808-4209-bb4d-55f6877f1cf5", + "id": "4c170ecf-38a3-484b-8188-af144918199d", "metadata": { "editable": true, "slideshow": { @@ -319,8 +294,7 @@ "tags": [] }, "source": [ - "Conclusions - people, on average, gain weight from age 18 to roughly age 50, \n", - "then lose weight after age 50." + "Conclusions - There is no significant relationship between many persons age and weight because this dataset has no individual timeline. It's only a one-time snapshot." ] }, { @@ -339,17 +313,10 @@ }, { "cell_type": "markdown", - "id": "a4af7f6f-9e21-4ec2-8b32-b14b0e7cd60b", + "id": "b2b17e2e-0d75-4865-ab30-08250f5c8427", "metadata": {}, "source": [ - "1) What is the count of people by age? 1st chart. Is this distribution of any significance? No known biases.\n", - "2) What is the count of people by weight? 2nd chart. Is this distribution of any significance? No known biases.\n", - "3) What number or percentage can be used to accurately indicate a \n", - "dramatic change in weight by age? 3rd chart. No dramatic change in weight by age. How do I determine what \"dramatic\" is? It's subjective.\n", - "4) I want to see the main distribution of weight by age. I want to see where\n", - "the probable outliers are (Box Plot). 4th chart. There are many outliers on the upside for all age groups. There are very few outliers on the downside for all age groups.\n", - "5) I want to see the main distribution of weight by age. I want to see the\n", - "probability density (Violin Plot). 5th chart." + "I found out that a snapshot dataset cannot discern a direct relationship between many persons age and weight, since there's no timeline in the dataset. What I learned is to be careful in drawing conclusions about datasets based on limited information. " ] } ], diff --git a/proposal.md b/proposal.md index eb0e231..41c209c 100644 --- a/proposal.md +++ b/proposal.md @@ -2,14 +2,15 @@ Argument Project -Nelson Mason - Date: 11/3/2025 +Nelson Mason - Date: 11/4/2025 ## Overarching Question +I want to know about what relationship exists, if any, between an adult (18 +) +person's age and their weight (metric). + ### What central question are you interested in exploring? Why are you interested in exploring this question? -I want to know about what relationship exists, if any, between an adult (18 +) -person's age and their weight (I'll use metric). I'm trying to find out at what age, on average, do people experience a dramatic weight gain or loss, if at all? I'm curious to find out if such a dramatic increase or decrease in weight can