initial commit
This commit is contained in:
17
.commit_template
Normal file
17
.commit_template
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
|
||||||
|
|
||||||
|
# -----------------------------------------------------------------
|
||||||
|
# Write your entire commit message above this line.
|
||||||
|
#
|
||||||
|
# The first line should be a quick description of your latest progress.
|
||||||
|
# Then leave a blank line.
|
||||||
|
# Then, taking as many lines as you want, reflect on the current state
|
||||||
|
# of your data science project. Write about whatever you want; here are
|
||||||
|
# a few suggestions:
|
||||||
|
#
|
||||||
|
# - Which recent successes are you proud of?
|
||||||
|
# - What are you currently stuck on? Are there parts of this project
|
||||||
|
# that you're worried about, or which you don't know how to do?
|
||||||
|
# - Has your work sparked any new ideas or interests?
|
||||||
|
# - Have you learned any new skills?
|
||||||
|
|
360
argument.ipynb
Normal file
360
argument.ipynb
Normal file
@@ -0,0 +1,360 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "worldwide-blood",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Introduction"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "understanding-numbers",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"*✏️ Write 2-3 sentences describing your research.*"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "greater-circular",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Overarching Question: [✏️ PUT YOUR QUESTION HERE ✏️]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "appreciated-testimony",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"*✏️ Write 2-3 sentences explaining why this question.*"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "permanent-pollution",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Data"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "technical-evans",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"#Include any import statements you will need\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"import matplotlib.pyplot as plt"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "overhead-sigma",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n",
|
||||||
|
"\n",
|
||||||
|
"file_name = \"YOUR_DATASET_FILE_NAME.csv\"\n",
|
||||||
|
"dataset_path = \"data/\" + file_name\n",
|
||||||
|
"\n",
|
||||||
|
"df = pd.read_csv(dataset_path)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "heated-blade",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"df.head()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "continental-franklin",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Data Overview**\n",
|
||||||
|
"\n",
|
||||||
|
"*✏️ Write 2-3 sentences describing this dataset. Be sure to include where the data comes from and what it contains.*"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "infinite-instrument",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Methods and Results"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "basic-canadian",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"#Import any helper files you need here"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "recognized-positive",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## First Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "graduate-palmer",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Methods"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "endless-variation",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"*Explain how you will approach this research question below. Consider the following:* \n",
|
||||||
|
" - *Which aspects of the dataset will you use?* \n",
|
||||||
|
" - *How will you reorganize/store the data?* \n",
|
||||||
|
" - *What data science tools/functions will you use and why?* \n",
|
||||||
|
" \n",
|
||||||
|
"✏️ *Write your answer below:*\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "portuguese-japan",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Results "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 17,
|
||||||
|
"id": "negative-highlight",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"#######################################################################\n",
|
||||||
|
"### 💻 YOUR WORK GOES HERE TO ANSWER THE FIRST RESEARCH QUESTION 💻 \n",
|
||||||
|
"### \n",
|
||||||
|
"### Your data analysis may include a statistic and/or a data visualization\n",
|
||||||
|
"#######################################################################"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 16,
|
||||||
|
"id": "victorian-burning",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "collectible-puppy",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Second Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "demographic-future",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Methods"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "incorporate-roller",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"*Explain how you will approach this research question below. Consider the following:* \n",
|
||||||
|
" - *Which aspects of the dataset will you use?* \n",
|
||||||
|
" - *How will you reorganize/store the data?* \n",
|
||||||
|
" - *What data science tools/functions will you use and why?* \n",
|
||||||
|
"\n",
|
||||||
|
"✏️ *Write your answer below:*\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "juvenile-creation",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Results "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 14,
|
||||||
|
"id": "pursuant-surrey",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"#######################################################################\n",
|
||||||
|
"### 💻 YOUR WORK GOES HERE TO ANSWER THE SECOND RESEARCH QUESTION 💻 \n",
|
||||||
|
"###\n",
|
||||||
|
"### Your data analysis may include a statistic and/or a data visualization\n",
|
||||||
|
"#######################################################################"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 15,
|
||||||
|
"id": "located-night",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "infectious-symbol",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Discussion"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "furnished-camping",
|
||||||
|
"metadata": {
|
||||||
|
"code_folding": []
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Considerations"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "bearing-stadium",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"*It's important to recognize the limitations of our research.\n",
|
||||||
|
"Consider the following:*\n",
|
||||||
|
"\n",
|
||||||
|
"- *Do the results give an accurate depiction of your research question? Why or why not?*\n",
|
||||||
|
"- *What were limitations of your datset?*\n",
|
||||||
|
"- *Are there any known biases in the data?*\n",
|
||||||
|
"\n",
|
||||||
|
"✏️ *Write your answer below:*"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "beneficial-invasion",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Summary"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "about-raise",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"*Summarize what you discovered through the research. Consider the following:*\n",
|
||||||
|
"\n",
|
||||||
|
"- *What did you learn about your media consumption/digital habits?*\n",
|
||||||
|
"- *Did the results make sense?*\n",
|
||||||
|
"- *What was most surprising?*\n",
|
||||||
|
"- *How will this project impact you going forward?*\n",
|
||||||
|
"\n",
|
||||||
|
"✏️ *Write your answer below:*"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"jupytext": {
|
||||||
|
"cell_metadata_json": true,
|
||||||
|
"text_representation": {
|
||||||
|
"extension": ".Rmd",
|
||||||
|
"format_name": "rmarkdown",
|
||||||
|
"format_version": "1.2",
|
||||||
|
"jupytext_version": "1.9.1"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.7"
|
||||||
|
},
|
||||||
|
"toc": {
|
||||||
|
"base_numbering": 1,
|
||||||
|
"nav_menu": {},
|
||||||
|
"number_sections": false,
|
||||||
|
"sideBar": true,
|
||||||
|
"skip_h1_title": false,
|
||||||
|
"title_cell": "Table of Contents",
|
||||||
|
"title_sidebar": "Contents",
|
||||||
|
"toc_cell": false,
|
||||||
|
"toc_position": {},
|
||||||
|
"toc_section_display": true,
|
||||||
|
"toc_window_display": false
|
||||||
|
},
|
||||||
|
"varInspector": {
|
||||||
|
"cols": {
|
||||||
|
"lenName": 16,
|
||||||
|
"lenType": 16,
|
||||||
|
"lenVar": 40
|
||||||
|
},
|
||||||
|
"kernels_config": {
|
||||||
|
"python": {
|
||||||
|
"delete_cmd_postfix": "",
|
||||||
|
"delete_cmd_prefix": "del ",
|
||||||
|
"library": "var_list.py",
|
||||||
|
"varRefreshCmd": "print(var_dic_list())"
|
||||||
|
},
|
||||||
|
"r": {
|
||||||
|
"delete_cmd_postfix": ") ",
|
||||||
|
"delete_cmd_prefix": "rm(",
|
||||||
|
"library": "var_list.r",
|
||||||
|
"varRefreshCmd": "cat(var_dic_list()) "
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"types_to_exclude": [
|
||||||
|
"module",
|
||||||
|
"function",
|
||||||
|
"builtin_function_or_method",
|
||||||
|
"instance",
|
||||||
|
"_Feature"
|
||||||
|
],
|
||||||
|
"window_display": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
0
data/.hiddenfile
Normal file
0
data/.hiddenfile
Normal file
2531
poetry.lock
generated
Normal file
2531
poetry.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
39
proposal.md
Normal file
39
proposal.md
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
# Project proposal
|
||||||
|
|
||||||
|
This planning document will also form the introduction of your
|
||||||
|
argument.
|
||||||
|
|
||||||
|
## Overarching Question
|
||||||
|
|
||||||
|
### What central question are you interested in exploring? Why are you interested in exploring this question?
|
||||||
|
|
||||||
|
*This should be the big picture question that you ask; use at least 5
|
||||||
|
sentences to describe why you are interested in it.*
|
||||||
|
|
||||||
|
### What specific research questions will you investigate?
|
||||||
|
|
||||||
|
*List 2-4 specific research questions. Each should be answerable
|
||||||
|
using your data set.*
|
||||||
|
|
||||||
|
## Data source
|
||||||
|
|
||||||
|
### What data set will you use to answer your overarching question?
|
||||||
|
|
||||||
|
*Give the title of your data set and provide a link to your data.*
|
||||||
|
|
||||||
|
### Where is this data from?
|
||||||
|
|
||||||
|
*Describe the source of the data set--not just where you downloaded it, but
|
||||||
|
the person or organization who gathered the data. Explain why you trust them.*
|
||||||
|
|
||||||
|
### What is this data about?
|
||||||
|
|
||||||
|
*Describe the nature of the data in the dataset, including the number of rows
|
||||||
|
and some of the columns which will be important to you.*
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### How will you use your data set to answer your quantitative questions?
|
||||||
|
|
||||||
|
*For each research question, explain what you will do with the data set
|
||||||
|
to answer the question, and how you will present your answer (e.g. a chart or a table).*
|
@@ -8,6 +8,9 @@ packages = [{include = "project_argument"}]
|
|||||||
|
|
||||||
[tool.poetry.dependencies]
|
[tool.poetry.dependencies]
|
||||||
python = "^3.11"
|
python = "^3.11"
|
||||||
|
jupyter = "^1.0.0"
|
||||||
|
seaborn = "^0.12.2"
|
||||||
|
pandas = "^2.0.3"
|
||||||
|
|
||||||
|
|
||||||
[build-system]
|
[build-system]
|
||||||
|
Reference in New Issue
Block a user