From d3a68801a1ffd8bafed006f9c380f628535b09ab Mon Sep 17 00:00:00 2001 From: mdecker6 Date: Thu, 23 Oct 2025 09:36:34 -0400 Subject: [PATCH] This planning document will also form the introduction of your argument. DO PEOPLE WHO EXIBIT RISKY BEHAVIORS (SMOKING, GAMBLING, DRINKING) ORDER THEIR STEAK IN THE SAME RISKY MANNER AS THEIR BEAHVIORS (RARE). IS THERE A RELATIONSHIP BETWEEN THE TWO. THE CENTRAL QUESTION WOULD ASK DO PEOPLE WHO HAVE AN AFFINITY FOR RISKY BEHAVIORS, SPECIFICALLY (SMOKING, DRINKING, GAMBLING) ALSO HAVE A RISKY BEHAVIOR WHEN IT COMES TO EATING THEIR FOOD. SPECIFICALLY IN THIS STUDY, IT IS ABOUT ORDERING STEAK. I AM INTERESTED IN THIS QUESTION BECASUE IT IS INTERESTING TO SEE IF FOOD RISK BEHAVIORS ARE ASSOCIATED WITH ACTIVITY RISK BEHAVIORS. I ALSO AM INTERESTED TO SEE IN THIS STUDY HOW INCOME LEVELS EFFECT THESE DECISIONS AS WELL AS EDUCATION LEVELS, WHICH IS ALSO IN THE STUDY. *List 2-4 specific research questions. Each should be answerable using your data set.* 1. DO MORE MALES THAN FEMALES ORDER RARE STEAK? 2. DO PEOPLE WITH A BACHELORS DEGREE GAMBLE MORE THAN PEOPLE WITH A GRADUATE DEGREE? 3. DO PEOPLE WHO ORDER RARE STEAK ALSO DRINK? 4. DO ALL FEMALES WHO ORDER RARE STEAK ALSO SMOKE? 5. DO ALL MALES WHO ORDER RARE STEAK ALSO DRINK 6. Are males more likely to order their steak rare than females 538 WEBSITE *Give the title of your data set and provide a link to your data.* TITLE OF STUDY IS: STEAK-RISK-SURVEY WEBSITES: https://github.com/fivethirtyeight/data/tree/master/steak-survey https://fivethirtyeight.com/features/how-americans-like-their-steak/ https://docs.google.com/spreadsheets/d/125buas5LwUrDXEgQh0DPniGkA6-fWeupBgaXgUqXoOI/edit?gid=1253281910#gid=1253281910 *Describe the source of the data set--not just where you downloaded it, but the person or organization who gathered the data. Explain why you trust them.* May 16, 2014, at 5:08 PM How Americans Like Their Steak By Walt Hickey Filed under FiveThirtyAte DATA LAB https://github.com/fivethirtyeight/data/tree/master/steak-survey https://fivethirtyeight.com/features/how-americans-like-their-steak/ *Describe the nature of the data in the dataset, including the number of rows and some of the columns which will be important to you.* number of rows= 433 COLUMNS= 8 COLUMNS WHIC HARE IMPORTANT ARE: 1.gender 2.how do you like steak 3.income level 4. degree 5. gamble 6. drink 7. smoke *For each research question, explain what you will do with the data set to answer the question, and how you will present your answer (e.g. a chart or a table).* 1. DO MORE MALES THAN FEMALES ORDER RARE STEAK? table 2. DO PEOPLE WITH A BACHELORS DEGREE GAMBLE MORE THAN PEOPLE WITH A GRADUATE DEGREE? chart 3. DO PEOPLE WHO ORDER RARE STEAK ALSO DRINK? 4. DO ALL FEMALES WHO ORDER RARE STEAK ALSO SMOKE? 5. DO ALL MALES WHO ORDER RARE STEAK ALSO DRINK 6. Are males more likely to order their steak rare than females --- .ipynb_checkpoints/Untitled-checkpoint.ipynb | 6 + .ipynb_checkpoints/Untitled1-checkpoint.ipynb | 6 + .ipynb_checkpoints/argument-checkpoint.ipynb | 1278 +++++++++ .../lab_pokemon-checkpoint.ipynb | 2308 +++++++++++++++++ .ipynb_checkpoints/proposal-checkpoint.md | 88 + .ipynb_checkpoints/steak-checkpoint.csv | 433 ++++ .ipynb_checkpoints/untitled-checkpoint.txt | 0 538.jpg | Bin 0 -> 28931 bytes Untitled.ipynb | 6 + Untitled1.ipynb | 6 + argument.ipynb | 1140 +++++++- lab_pokemon.ipynb | 2307 ++++++++++++++++ proposal.md | 69 +- r.jpg | Bin 0 -> 10096 bytes ra.webp | Bin 0 -> 322850 bytes rare.jpg | Bin 0 -> 6766 bytes risk.jpg | Bin 0 -> 7731 bytes steak.csv | 433 ++++ untitled.txt | 0 19 files changed, 7944 insertions(+), 136 deletions(-) create mode 100644 .ipynb_checkpoints/Untitled-checkpoint.ipynb create mode 100644 .ipynb_checkpoints/Untitled1-checkpoint.ipynb create mode 100644 .ipynb_checkpoints/argument-checkpoint.ipynb create mode 100644 .ipynb_checkpoints/lab_pokemon-checkpoint.ipynb create mode 100644 .ipynb_checkpoints/proposal-checkpoint.md create mode 100644 .ipynb_checkpoints/steak-checkpoint.csv create mode 100644 .ipynb_checkpoints/untitled-checkpoint.txt create mode 100644 538.jpg create mode 100644 Untitled.ipynb create mode 100644 Untitled1.ipynb create mode 100644 lab_pokemon.ipynb create mode 100644 r.jpg create mode 100644 ra.webp create mode 100644 rare.jpg create mode 100644 risk.jpg create mode 100644 steak.csv create mode 100644 untitled.txt diff --git a/.ipynb_checkpoints/Untitled-checkpoint.ipynb b/.ipynb_checkpoints/Untitled-checkpoint.ipynb new file mode 100644 index 0000000..363fcab --- /dev/null +++ b/.ipynb_checkpoints/Untitled-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.ipynb_checkpoints/Untitled1-checkpoint.ipynb b/.ipynb_checkpoints/Untitled1-checkpoint.ipynb new file mode 100644 index 0000000..363fcab --- /dev/null +++ b/.ipynb_checkpoints/Untitled1-checkpoint.ipynb @@ -0,0 +1,6 @@ +{ + "cells": [], + "metadata": {}, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.ipynb_checkpoints/argument-checkpoint.ipynb b/.ipynb_checkpoints/argument-checkpoint.ipynb new file mode 100644 index 0000000..aaf5cc1 --- /dev/null +++ b/.ipynb_checkpoints/argument-checkpoint.ipynb @@ -0,0 +1,1278 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "42901bdc-1637-4bad-b7fd-d901aaa7488b", + "metadata": {}, + "source": [ + "## **OVERARCHING QUESTION:** *DO PEOPLE WHO EXIBIT RISKY BEHAVIORS (SMOKING, GAMBLING, DRINKING) ORDER THEIR STEAK IN THE SAME RISKY MANNER AS THEIR BEAHVIORS (RARE). IS THERE A RELATIONSHIP BETWEEN THE TWO.*\n", + "![alt text](risk.jpg)\n", + "\n", + "**Why this question**\n", + "\n", + "THE CENTRAL QUESTION WOULD ASK DO PEOPLE (males and females) WHO HAVE AN AFFINITY FOR RISKY BEHAVIORS, SPECIFICALLY (SMOKING, DRINKING, GAMBLING) ALSO HAVE A RISKY BEHAVIOR WHEN IT COMES TO EATING THEIR FOOD. SPECIFICALLY IN THIS STUDY, IT IS ABOUT ORDERING STEAK.\n", + "I AM INTERESTED IN THIS QUESTION BECASUE IT IS INTERESTING TO SEE IF FOOD RISK BEHAVIORS ARE ASSOCIATED WITH ACTIVITY RISK BEHAVIORS. I ALSO AM INTERESTED TO SEE IN THIS STUDY HOW INCOME LEVELS EFFECT THESE DECISIONS AS WELL AS EDUCATION LEVELS, WHICH IS ALSO IN THE STUDY.\n", + "\n", + "![alt text](r.jpg)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "technical-evans", + "metadata": {}, + "outputs": [], + "source": [ + "#Include any import statements you will need\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set_theme()\n", + "steak = pd.read_csv(\"steak.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "overhead-sigma", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
smokedrinkgamblecookedGenderAgeHousehold IncomeEducation
0YesYesYesMediumMale> 60$50,000 - $99,999Bachelor degree
1NoYesNoMediumMale> 60$50,000 - $99,999Graduate degree
2YesYesYesMediumMale18-29$50,000 - $99,999Bachelor degree
3NoYesYesMediumMale18-29$50,000 - $99,999Bachelor degree
4NoYesYesMediumMale18-29$50,000 - $99,999Bachelor degree
...........................
427NoYesYesWellFemale45-60$150,000+High school degree
428NaNNoNoWellMale45-60$50,000 - $99,999Bachelor degree
429NoYesNoWellMale30-44$0 - $24,999Some college or Associate degree
430NoNoYesWellFemale30-44NaNSome college or Associate degree
431NoYesYesWellFemale> 60$100,000 - $149,999Bachelor degree
\n", + "

432 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " smoke drink gamble cooked Gender Age Household Income \\\n", + "0 Yes Yes Yes Medium Male > 60 $50,000 - $99,999 \n", + "1 No Yes No Medium Male > 60 $50,000 - $99,999 \n", + "2 Yes Yes Yes Medium Male 18-29 $50,000 - $99,999 \n", + "3 No Yes Yes Medium Male 18-29 $50,000 - $99,999 \n", + "4 No Yes Yes Medium Male 18-29 $50,000 - $99,999 \n", + ".. ... ... ... ... ... ... ... \n", + "427 No Yes Yes Well Female 45-60 $150,000+ \n", + "428 NaN No No Well Male 45-60 $50,000 - $99,999 \n", + "429 No Yes No Well Male 30-44 $0 - $24,999 \n", + "430 No No Yes Well Female 30-44 NaN \n", + "431 No Yes Yes Well Female > 60 $100,000 - $149,999 \n", + "\n", + " Education \n", + "0 Bachelor degree \n", + "1 Graduate degree \n", + "2 Bachelor degree \n", + "3 Bachelor degree \n", + "4 Bachelor degree \n", + ".. ... \n", + "427 High school degree \n", + "428 Bachelor degree \n", + "429 Some college or Associate degree \n", + "430 Some college or Associate degree \n", + "431 Bachelor degree \n", + "\n", + "[432 rows x 8 columns]" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steak" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "8d7c325c-ef3f-4072-a51c-1e87325a3c96", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Gender\n", + "Male 212\n", + "Female 200\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steak.Gender.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "2899053c-9446-4772-8cc2-113a238b967a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAANRJJREFUeJzt3Xl8VNX9//HXzCRgQAahZaksQtDiBiS2AmEvigqClra4VbQuFOuCoH4LVURoq9BqBcUdIqLYVviivyrECCJCRSvUr2LRVtGgBSyFyhJCAMnM/P5IMzUGBbJNLn09Hw8fk7n3zLmf4Xoyb849cwklEokEkiRJ/+XCqS5AkiSpLjAUSZIkYSiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEhLdQFBk0gkiMe9CbgqCodD/r8hpZBjUF8mHA4RCoUO2M5QdIji8QRbt+5KdRmqY9LSwjRp0pDCwmJKSuKpLkf6r+MY1Fdp2rQhkciBQ5GXzyRJkjAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRIAaakuQKXC4RDhcCjVZaiSIpFwuUcFUzyeIB5PpLoMSSliKKoDwuEQRzVpQCTsB2rQRaMZqS5BVRCLx9m+rdhgJP2XMhTVAeFwiEg4zG/z/8rmrcWpLkeVEAqFiETCxGJxEgk/UIOoedMGXHTWCYTDIUOR9F/KUFSHbN5azMYtRakuQ5UQCoVIS4tQUhIzFElSQHm9RpIkCUORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJElAHQtFzz//PD/5yU/o06cPWVlZnHvuufzv//5vhX9gc968eZx55pl06tSJc845h6VLl1boa+fOndx888107dqV7OxsRo0axebNm2vrrUiSpICpU6HoscceIyMjg3HjxvHggw/Sp08fbr31Vu6///5km4ULF3LrrbcycOBAZsyYQVZWFtdeey1vvfVWub5Gjx7NihUrmDhxInfddRfr1q1jxIgRlJSU1PK7kiRJQZCW6gI+78EHH6Rp06bJ5zk5OWzfvp1Zs2Zx9dVXEw6Huffeezn77LMZPXo0AN27d+f999/n/vvvZ8aMGQC8+eabvPLKK+Tm5tKrVy8A2rdvz6BBg1i0aBGDBg2q9fcmSZLqtjo1U/T5QFTmhBNOoKioiOLiYtavX89HH33EwIEDy7UZNGgQr732Gp999hkAy5cvJxqN0rNnz2SbzMxMTjjhBJYvX16zb0KSJAVSnZop2p833niDFi1acOSRR/LGG28ApbM+n9ehQwf27dvH+vXr6dChAwUFBbRv355QKFSuXWZmJgUFBVWuKS2terNkJFLaXygUqlCzAiL0n8cQnsMgKht76emR5JhUcITDnr/DQTyeqLCOuDbV6VD05z//mby8PMaOHQvAjh07AIhGo+XalT0v219YWEijRo0q9Ne4cWPWrFlTpZrC4RBNmjSsUh9fJhIJk5YWqZG+VTvSIp6/oGrcqD7xeIIjjzwi1aWoCjx/wRaPJ5IBNxXqbCjatGkTY8aMoVu3blxyySWpLicpHk9QWFhcrX1GImGi0QxisTglJbFq7Vu1JFQaiEpiMUjdX3JUBfXSwoTDIX73wt/YvLV6x7hqQQgi4TCxeNwxGFDNmzbgwjOPp7BwN7FYvFr7jkYzDmoGsU6GosLCQkaMGMFRRx3F9OnTCYdL30jjxo2B0q/bN2vWrFz7z++PRqNs2rSpQr87duxItqmKkpLqPVllEonUThuq8pKXzBJ4DgOq7Lxt3lrMhs07U1yNDlUoFCItLUJJScwxGFBl5610gqBmPmcPpM5deN2zZw8jR45k586dzJw5s9xlsMzMTIAK64IKCgpIT0+nTZs2yXbr1q2rMDDWrVuX7EOSJOnz6lQoKikpYfTo0RQUFDBz5kxatGhRbn+bNm1o164d+fn55bbn5eWRk5NDvXr1AOjTpw87duzgtddeS7ZZt24d7777Ln369Kn5NyJJkgKnTl0+mzRpEkuXLmXcuHEUFRWVuyHjiSeeSL169bjuuuu46aabaNu2Ld26dSMvL4+3336bOXPmJNtmZ2fTq1cvbr75ZsaOHUv9+vWZOnUqHTt25IwzzkjBO5MkSXVdnQpFK1asAGDKlCkV9i1ZsoTWrVszePBgdu/ezYwZM3jkkUdo37499913H9nZ2eXaT5s2jcmTJzNhwgRKSkro1asX48ePJy2tTr1lSZJUR9SphPDSSy8dVLthw4YxbNiwr2zTqFEj7rjjDu64447qKE2SJB3m6tSaIkmSpFQxFEmSJGEokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJAKSluoDP+/jjj8nNzWX16tWsXbuWzMxMFixYkNy/YcMGTjvttP2+tl69evzlL3/5ynZdunRh7ty5NVO8JEkKtDoVitauXcuyZcvo0qUL8XicRCJRbn/z5s156qmnym1LJBJceeWVdO/evUJ/N9xwA926dUs+b9iwYc0ULkmSAq9OhaL+/ftz+umnAzBu3DjWrFlTbn+9evXIysoqt+3111+nqKiIwYMHV+jvmGOOqdBekiRpf+rUmqJw+NDLWbBgAUceeST9+/evgYokSdJ/izoVig7Vvn37WLRoEQMGDKB+/foV9k+cOJETTjiBnJwcxo8fz/bt22u/SEmSFAh16vLZoVq+fDnbt2+vcOmsXr16XHjhhfTq1YtoNMrq1at56KGHWLNmDfPmzSM9Pb1Kx01Lq94sGYmU9hcKhQiFQtXat2pJ6D+PITyHQZQceyEch0HkGAy8snFX9pmYCoEORc899xxf//rXycnJKbe9efPmTJw4Mfm8a9euHHfccYwcOZLFixczaNCgSh8zHA7RpEnNLNiORMKkpUVqpG/VjrSI5y+oIv++fB8JOw6DzDEYXGVhKBrNSFkNgQ1Fu3btYunSpQwbNozIQQyCvn370qBBA955550qhaJ4PEFhYXGlX78/kUiYaDSDWCxOSUmsWvtWLQmV/jIuicUgceDmqnti8Xjy0XEYQI7BwIvFSsdgYeHu5M/VJRrNOKgZqMCGosWLF7Nnzx6GDBlS68cuKanek1UmkUhUuA2BgiE5XZ/AcxhQyfPmOQwkx2DwlZ230gmCmvmcPZDALrResGABbdu2pUuXLgfVfunSpRQXF9OpU6carkySJAVRnZop2r17N8uWLQNg48aNFBUVkZ+fD5SuC2ratCkAW7du5bXXXmPEiBH77WfKlCmEQiGysrKIRqO8/fbbPPzww5x88snJ+yBJkiR9Xp0KRZ9++inXX399uW1lzx9//PHk3amff/55SkpKvvTSWYcOHfjd737H3Llz2bNnDy1atOAHP/gBo0aNIi2tTr1lSZJUR9SphNC6dWvee++9A7b74Q9/yA9/+MMv3T9s2DCGDRtWnaVJkqTDXGDXFEmSJFUnQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEhLdQGf9/HHH5Obm8vq1atZu3YtmZmZLFiwoFyb4cOHs3LlygqvzcvLo0OHDsnnO3fuZPLkybz44ovs27eP3r17M378eJo3b17j70OSJAVPnQpFa9euZdmyZXTp0oV4PE4ikdhvu1NOOYWxY8eW29a6detyz0ePHs0HH3zAxIkTqV+/PtOmTWPEiBHMnz+ftLQ69bYlSVIdUKfSQf/+/Tn99NMBGDduHGvWrNlvu2g0SlZW1pf28+abb/LKK6+Qm5tLr169AGjfvj2DBg1i0aJFDBo0qNprlyRJwVan1hSFw9VTzvLly4lGo/Ts2TO5LTMzkxNOOIHly5dXyzEkSdLhpU7NFB2slStXkpWVRSwWo0uXLlx//fWceuqpyf0FBQW0b9+eUChU7nWZmZkUFBRU+fhpadWbJSOR0v5CoVCFmhUQof88hvAcBlFy7IVwHAaRYzDwysZd2WdiKgQuFJ166qmce+65tGvXjs2bN5Obm8tll13GE088QXZ2NgCFhYU0atSowmsbN278pZfkDlY4HKJJk4ZV6uPLRCJh0tIiNdK3akdaxPMXVJF/z1RHwo7DIHMMBldZGIpGM1JWQ+BC0ahRo8o979evH4MHD+aBBx5gxowZNX78eDxBYWFxtfYZiYSJRjOIxeKUlMSqtW/VklDpL+OSWAz2//0A1XGxeDz56DgMIMdg4MVipWOwsHB38ufqEo1mHNQMVOBC0Rc1aNCAvn378sILLyS3RaNRNm3aVKHtjh07aNy4cZWPWVJSvSerTCKR+NJv3KluS07XJ/AcBlTyvHkOA8kxGHxl5610gqBmPmcPpE4ttK4umZmZrFu3rsLAWLduHZmZmSmqSpIk1WWBD0XFxcW8/PLLdOrUKbmtT58+7Nixg9deey25bd26dbz77rv06dMnFWVKkqQ6rk5dPtu9ezfLli0DYOPGjRQVFZGfnw9A165dKSgoYObMmQwYMIBWrVqxefNmZs2axZYtW7jnnnuS/WRnZ9OrVy9uvvlmxo4dS/369Zk6dSodO3bkjDPOSMl7kyRJdVudCkWffvop119/fbltZc8ff/xxWrZsyb59+5g6dSrbt28nIyOD7OxsJk2aROfOncu9btq0aUyePJkJEyZQUlJCr169GD9+vHezliRJ+1WnEkLr1q157733vrJNbm7uQfXVqFEj7rjjDu64447qKE2SJB3mAr+mSJIkqToYiiRJkjAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkANJSXcDnffzxx+Tm5rJ69WrWrl1LZmYmCxYsSO4vKipi1qxZLFu2jI8++oh69erRuXNnxowZQ8eOHZPtNmzYwGmnnVah/y5dujB37txaeS+SJClY6lQoWrt2LcuWLaNLly7E43ESiUS5/Z988glPPfUU3//+9xk9ejR79+7l0Ucf5fzzz2f+/Pl06NChXPsbbriBbt26JZ83bNiwVt6HJEkKnjoVivr378/pp58OwLhx41izZk25/a1bt2bx4sVkZGQkt3Xv3p3+/fvz29/+lltvvbVc+2OOOYasrKwar1uSJAVfnQpF4fBXL3Fq0KBBhW0NGzakbdu2bN68uabKkiRJ/wUCv9C6sLAwuf7oiyZOnMgJJ5xATk4O48ePZ/v27bVfoCRJCoQ6NVNUGXfeeSehUIgLL7wwua1evXpceOGF9OrVi2g0yurVq3nooYdYs2YN8+bNIz09vUrHTEur3iwZiZT2FwqFCIVC1dq3aknoP48hPIdBlBx7IRyHQeQYDLyycVf2mZgKlQ5Fl1xyCT/5yU/IycnZ7/4//elPPPDAAzz++OOVLu5A5s+fz9y5c5kyZQotW7ZMbm/evDkTJ05MPu/atSvHHXccI0eOZPHixQwaNKjSxwyHQzRpUjMLtiORMGlpkRrpW7UjLeL5C6rIvy/fR8KOwyBzDAZXWRiKRjMO0LLmVDoUrVy5kmHDhn3p/q1bt7Jq1arKdn9Ay5YtY8KECVx99dUMHTr0gO379u1LgwYNeOedd6oUiuLxBIWFxZV+/f5EImGi0QxisTglJbFq7Vu1JFT6y7gkFoPEgZur7onF48lHx2EAOQYDLxYrHYOFhbuTP1eXaDTjoGagqnT57KummD/++OMa+wr8W2+9xfXXX893v/tdrr/++ho5xlcpKanek1UmkUhUuA2BgiE5XZ/AcxhQyfPmOQwkx2DwlZ230gmCmvmcPZBDCkXPPPMMzzzzTPL5gw8+uN+bIe7cuZP33nuPPn36VL3CL/jggw8YOXIk3bt3Z9KkSQf9uqVLl1JcXEynTp2qvSZJkhR8hxSKdu/ezbZt25LPd+3atd+v0Tdo0IALLriAa6655pCK2b17N8uWLQNg48aNFBUVkZ+fD5SuC0okElxxxRXUr1+fSy+9tNx9jI488kiOPfZYAKZMmUIoFCIrK4toNMrbb7/Nww8/zMknn5y8D5IkSdLnHVIouuiii7jooouA0hst3nLLLfv95zQq69NPP61wOazsedmC7U2bNgHwox/9qFy7rl278sQTTwDQoUMHfve73zF37lz27NlDixYt+MEPfsCoUaNISwv8F+4kSVINqHRCeOmll6qzDqD0jtXvvffeV7Y50H6AYcOGfeUicEmSpC+q8rRJUVERn3zyCYWFhftd3HbqqadW9RCSJEk1rtKhaOvWrfzyl79k0aJFxGIVv76aSCQIhUL89a9/rVKBkiRJtaHSoWjChAksXbqU4cOH8+1vf5toNFqddUmSJNWqSoeiFStWcOmll/LTn/60OuuRJElKiUr/AyNHHHEErVq1qs5aJEmSUqbSoeicc87hxRdfrM5aJEmSUqbSl8/OPPNMVq1axRVXXMH5559Py5YtieznH+I76aSTqlSgJElSbah0KCq7iSPAq6++WmG/3z6TJElBUulQNHny5OqsQ5IkKaUqHYqGDh1anXVIkiSlVKUXWkuSJB1OKj1T9LOf/eyAbUKhEHfccUdlDyFJklRrKh2KXn/99Qrb4vE4W7ZsIRaL0bRpUzIyMqpUnCRJUm2pdCh66aWX9rt93759PPXUU8yePZtHH3200oVJkiTVpmpfU5Sens7FF19Mz549+cUvflHd3UuSJNWIGltoffzxx7Nq1aqa6l6SJKla1VgoevXVV11TJEmSAqPSa4ruu+++/W7fuXMnq1at4t133+XHP/5xpQuTJEmqTdUeiho3bkybNm2YNGkS5513XqULkyRJqk2VDkV/+9vfqrMOSZKklPKO1pIkSVRhpqjMypUrefnll/nkk08AOProo+nXrx9du3atcnGSJEm1pdKh6LPPPuPGG2/kxRdfJJFIEI1GASgsLGTWrFkMGDCA3/zmN6Snp1dbsZIkSTWl0pfP7r//fhYvXsxll13GK6+8wsqVK1m5ciUrVqzg8ssvZ9GiRdx///3VWaskSVKNqXQoeu655xg6dCg//elP+frXv57c/rWvfY3/+Z//4bvf/S7PPvtstRQpSZJU0yodirZs2ULnzp2/dH/nzp3ZsmVLZbuXJEmqVZUORS1btmTlypVfun/VqlW0bNmyst1LkiTVqkqHou9+97s8//zzTJgwgYKCAmKxGPF4nIKCAm677Tby8/MZOnRoddYqSZJUYyr97bOrrrqK9evXM3fuXObNm0c4XJqv4vE4iUSCoUOHctVVV1VboZIkSTWp0qEoEokwZcoUfvSjH7F8+XI2btwIQKtWrejTpw/HH3/8Iff58ccfk5uby+rVq1m7di2ZmZksWLCgQrt58+Yxc+ZMPvnkE9q3b8+YMWP4zne+U67Nzp07mTx5Mi+++CL79u2jd+/ejB8/nubNm1fuDUuSpMPaIYWivXv3cvvtt3PccccxfPhwAI4//vgKAejxxx/n97//Pbfccssh3ado7dq1LFu2jC5duiRnnL5o4cKF3HrrrVx11VV0796dvLw8rr32Wp588kmysrKS7UaPHs0HH3zAxIkTqV+/PtOmTWPEiBHMnz+ftLQq37NSkiQdZg4pHTz11FM888wz5OXlfWW7fv36ceedd/LNb36Tiy666KD779+/P6effjoA48aNY82aNRXa3HvvvZx99tmMHj0agO7du/P+++9z//33M2PGDADefPNNXnnlFXJzc+nVqxcA7du3Z9CgQSxatIhBgwYddE2SJOm/wyEttH7++ec544wzaNOmzVe2a9u2LWeddRYLFy48tGLCX13O+vXr+eijjxg4cGC57YMGDeK1117js88+A2D58uVEo1F69uyZbJOZmckJJ5zA8uXLD6kmSZL03+GQZoref/99hgwZclBts7OzWbp0aaWK+jIFBQVA6azP53Xo0IF9+/axfv16OnToQEFBAe3btycUCpVrl5mZmeyjKtLSqvff0Y1ESvsLhUIValZAhP7zGMJzGETJsRfCcRhEjsHAKxt3ZZ+JqXBIoWjfvn0HvUYoPT09OXNTXXbs2AGQ/HfWypQ9L9tfWFhIo0aNKry+cePG+70kdyjC4RBNmjSsUh9fJhIJk5YWqZG+VTvSIp6/oIr8e6Y6EnYcBpljMLjKwlA0mpGyGg4pFDVv3py1a9ceVNu1a9celt/0iscTFBYWV2ufkUiYaDSDWCxOSUmsWvtWLQmV/jIuicWg4vcDFACxeDz56DgMIMdg4MVipWOwsHB38ufqEo1mHNQM1CGFoh49evCHP/yBkSNH8rWvfe1L23366af84Q9/4MwzzzyU7g+ocePGQOnX7Zs1a5bcXlhYWG5/NBpl06ZNFV6/Y8eOZJuqKCmp3pNVJpFI7Pcbd6r7ktP1CTyHAZU8b57DQHIMBl/ZeSudIKiZz9kDOaQLdyNGjGDv3r1ceumlrF69er9tVq9ezY9+9CP27t3LlVdeWS1FlsnMzASosC6ooKCA9PT05ALwzMxM1q1bV2FgrFu3LtmHJEnS5x3STFGbNm2YNm0aN9xwAxdccAFt2rThm9/8Jg0bNmTXrl2sXbuWv//97xxxxBHcfffdtG3btlqLbdOmDe3atSM/Pz/51X2AvLw8cnJyqFevHgB9+vThgQce4LXXXqNHjx5AaSB69913qz2oSZKkw8Mh38WwX79+PPvss8yYMYOXX36ZF198MbmvefPmDBs2jBEjRhzwa/v7s3v3bpYtWwbAxo0bKSoqIj8/H4CuXbvStGlTrrvuOm666Sbatm1Lt27dyMvL4+2332bOnDnJfrKzs+nVqxc333wzY8eOpX79+kydOpWOHTtyxhlnHHJdkiTp8FepWzu3bt2aSZMmAVBUVMSuXbto2LAhRx55ZJWK+fTTT7n++uvLbSt7/vjjj9OtWzcGDx7M7t27mTFjBo888gjt27fnvvvuIzs7u9zrpk2bxuTJk5kwYQIlJSX06tWL8ePHezdrSZK0X6GEK9IOSSwWZ+vWXdXaZ1pamCZNGjLtt2+wcUtRtfat2hEKhUhLi1BSEnORZ0BlfbMZPxx4Ivf87v/YsHlnqsvRIXIMBl+rZkcy+qJvsW3brmpfaN20acOD+vZZ6u6QJEmSVIcYiiRJkjAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkANJSXcChGj58OCtXrtzvvrvvvpuzzz77S9vk5eXRoUOHmi5RkiQFUOBC0W233UZRUVG5bbNnz2bRokXk5OQkt51yyimMHTu2XLvWrVvXSo2SJCl4AheKjj322ArbbrzxRnr27EnTpk2T26LRKFlZWbVYmSRJCrLAryn6v//7PzZs2MCQIUNSXYokSQqwwIeiBQsW0KBBA0477bRy21euXElWVhadOnXi4osvZtWqVSmqUJIkBUHgLp99XklJCc8//zz9+/enQYMGye2nnnoq5557Lu3atWPz5s3k5uZy2WWX8cQTT5CdnV3l46alVW+WjERK+wuFQoRCoWrtW7Uk9J/HEJ7DIEqOvRCOwyByDAZe2bgr+0xMhUCHohUrVrB161YGDx5cbvuoUaPKPe/Xrx+DBw/mgQceYMaMGVU6ZjgcokmThlXq48tEImHS0iI10rdqR1rE8xdUkXA4+eg4DC7HYHCVhaFoNCNlNQQ6FC1YsICjjjqKXr16fWW7Bg0a0LdvX1544YUqHzMeT1BYWFzlfj4vEgkTjWYQi8UpKYlVa9+qJaHSX8YlsRgkUl2MKiMWjycfHYcB5BgMvFisdAwWFu5O/lxdotGMg5qBCmwo2rNnDy+++CLnnHMO6enptXrskpLqPVllEokEiYSjOYiS0/UJPIcBlTxvnsNAcgwGX9l5K50gqJnP2QMJ7ELrl156ieLi4oP61llxcTEvv/wynTp1qoXKJElSEAV2pui5557j6KOP5lvf+la57X/+85+ZOXMmAwYMoFWrVmzevJlZs2axZcsW7rnnnhRVK0mS6rpAhqIdO3bwxz/+kUsvvbTCt0SaNWvGvn37mDp1Ktu3bycjI4Ps7GwmTZpE586dU1SxJEmq6wIZiho3bsyaNWv2u++YY44hNze3liuSJElBF9g1RZIkSdXJUCRJkoShSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkIICh6Omnn6Zjx44V/rvrrrvKtZs3bx5nnnkmnTp14pxzzmHp0qUpqliSJAVBWqoLqKyZM2fSqFGj5PMWLVokf164cCG33norV111Fd27dycvL49rr72WJ598kqysrBRUK0mS6rrAhqKTTjqJpk2b7nffvffey9lnn83o0aMB6N69O++//z73338/M2bMqMUqJUlSUATu8tmBrF+/no8++oiBAweW2z5o0CBee+01PvvssxRVJkmS6rLAzhQNHjyYbdu2cfTRR3Peeedx5ZVXEolEKCgoAKB9+/bl2nfo0IF9+/axfv16OnToUKVjp6VVb5aMREr7C4VChEKhau1btST0n8cQnsMgSo69EI7DIHIMBl7ZuCv7TEyFwIWiZs2acd1119GlSxdCoRAvvfQS06ZN45///CcTJkxgx44dAESj0XKvK3tetr+ywuEQTZo0rFIfXyYSCZOWFqmRvlU70iKev6CKhMPJR8dhcDkGg6ssDEWjGSmrIXChqHfv3vTu3Tv5vFevXtSvX5/Zs2dz1VVX1fjx4/EEhYXF1dpnJBImGs0gFotTUhKr1r5VS0Klv4xLYjFIpLoYVUYsHk8+Og4DyDEYeLFY6RgsLNyd/Lm6RKMZBzUDFbhQtD8DBw7k0Ucf5a9//SuNGzcGYOfOnTRr1izZprCwECC5vypKSqr3ZJVJJBIkEo7mIEpO1yfwHAZU8rx5DgPJMRh8ZeetdIKgZj5nD+SwW2idmZkJkFxbVKagoID09HTatGmTirIkSVIdd1iEory8PCKRCCeeeCJt2rShXbt25OfnV2iTk5NDvXr1UlSlJEmqywJ3+eyKK66gW7dudOzYEYAlS5Ywd+5cLrnkkuTlsuuuu46bbrqJtm3b0q1bN/Ly8nj77beZM2dOKkuXJEl1WOBCUfv27Zk/fz6bNm0iHo/Trl07br75ZoYPH55sM3jwYHbv3s2MGTN45JFHaN++Pffddx/Z2dkprFySJNVlgQtF48ePP6h2w4YNY9iwYTVcjSRJOlwcFmuKJEmSqspQJEmShKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBkJbqAg7V888/z7PPPss777xDYWEhxxxzDMOHD+f73/8+oVAIgOHDh7Ny5coKr83Ly6NDhw61XbIkSQqAwIWixx57jFatWjFu3DiaNGnCq6++yq233sqmTZu49tprk+1OOeUUxo4dW+61rVu3ru1yJUlSQAQuFD344IM0bdo0+TwnJ4ft27cza9Ysrr76asLh0iuC0WiUrKysFFUpSZKCJnBrij4fiMqccMIJFBUVUVxcnIKKJEnS4SBwoWh/3njjDVq0aMGRRx6Z3LZy5UqysrLo1KkTF198MatWrUphhZIkqa4L3OWzL/rzn/9MXl5eufVDp556Kueeey7t2rVj8+bN5Obmctlll/HEE0+QnZ1d5WOmpVVvloxESvsLhULJxeIKmNB/HkN4DoMoOfZCOA6DyDEYeGXjruwzMRUCHYo2bdrEmDFj6NatG5dcckly+6hRo8q169evH4MHD+aBBx5gxowZVTpmOByiSZOGVerjy0QiYdLSIjXSt2pHWsTzF1SRf69HjIQdh0HmGAyusjAUjWakrIbAhqLCwkJGjBjBUUcdxfTp05MLrPenQYMG9O3blxdeeKHKx43HExQWVu/apUgkTDSaQSwWp6QkVq19q5aESn8Zl8RikEh1MaqMWDyefHQcBpBjMPBisdIxWFi4O/lzdYlGMw5qBiqQoWjPnj2MHDmSnTt38tRTT9GoUaNaPX5JSfWerDKJRIJEwtEcRMnp+gSew4BKnjfPYSA5BoOv7LyVThDUzOfsgQQuFJWUlDB69GgKCgp48sknadGixQFfU1xczMsvv0ynTp1qoUJJkhREgQtFkyZNYunSpYwbN46ioiLeeuut5L4TTzyRt99+m5kzZzJgwABatWrF5s2bmTVrFlu2bOGee+5JXeGSJKlOC1woWrFiBQBTpkypsG/JkiU0a9aMffv2MXXqVLZv305GRgbZ2dlMmjSJzp0713a5kiQpIAIXil566aUDtsnNza2FSiRJ0uHksLh5oyRJUlUZiiRJkjAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEHOah6MMPP+Syyy4jKyuLnj178utf/5rPPvss1WVJkqQ6KC3VBdSUHTt2cOmll9KuXTumT5/OP//5T6ZMmcKePXuYMGFCqsuTJEl1zGEbin7/+9+za9cu7rvvPo466igAYrEYkyZNYuTIkbRo0SK1BUqSpDrlsL18tnz5cnJycpKBCGDgwIHE43FWrFiRusIkSVKddNjOFBUUFPD973+/3LZoNEqzZs0oKCiodL/hcIimTRtWtbxyQqHSxyu/24lYPFGtfUs6OOlppX9HvOLckx2HUgpEwqUfho0bZ5Co5iEY/nffB3LYhqLCwkKi0WiF7Y0bN2bHjh2V7jcUChGJHNwf7qE6skG9GulX0sFzHEqpFQ6n7iLWYXv5TJIk6VActqEoGo2yc+fOCtt37NhB48aNU1CRJEmqyw7bUJSZmVlh7dDOnTvZsmULmZmZKapKkiTVVYdtKOrTpw+vvvoqhYWFyW35+fmEw2F69uyZwsokSVJdFEokqnuNd92wY8cOzj77bNq3b8/IkSOTN28cMmSIN2+UJEkVHLahCEr/mY9f/OIXvPnmmzRs2JBzzz2XMWPGUK+e3y6RJEnlHdahSJIk6WAdtmuKJEmSDoWhSJIkCUORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEkATJ8+nY4dO9K7d2/i8XiF/RdccAEdO3Zk3LhxB93nhg0b6NixI/n5+dVZqhQ4ZePri/8NHjw41aUldezYkdzc3FSXoRRLS3UBUl2Rnp7Otm3bWLVqFd26dUtu37hxI2+99RYNGjRIYXVSsB1xxBHMnj27wjapLjEUSf+Wnp5OTk4OCxcuLBeKFi5cyHHHHUc47MSqVFnhcJisrKxUlyF9JX/LS58zePBgXnjhBfbt25fctmDBggrT/B9++CFjxoyhb9++dOnShUGDBvHoo4/u99LbFz399NMMGTKETp060bt3b6ZOnUosFqv29yIFxcsvv8ywYcPo3Lkz3bt357bbbqO4uDi5//XXX6djx4788Y9/5Prrryc7O5t+/frx3HPPAfD444/Tr18/unbtyi233MJnn32WfO3mzZv52c9+xmmnnUbnzp0544wzuPvuu8u1qWxdOvw4UyR9zne+8x1uueUWVqxYQb9+/fjggw947733uP/++8nLy0u227x5M+3bt2fIkCE0bNiQv/71r0yfPp3i4mKuvfbaL+1/1qxZ3HnnnVx66aWMGzeODz/8MBmKbrrpptp4i1LKlJSUlHseiUR44YUXGDNmDN/73ve47rrr2LJlC7/5zW8oLCxk6tSp5dpPnDiRoUOHct555zF37lx++tOf8re//Y21a9cyadIk1q9fz5QpU2jTpg1XXXUVANu2beOoo47iZz/7GdFolI8++ojp06ezZcsWJk+e/KW15ufnH3RdOnwYiqTPycjIoH///ixcuJB+/fqxYMECsrOzadOmTbl2OTk55OTkAJBIJPjWt77Fnj17mDNnzpeGoqKiIu69916uvPJKbrjhBgB69uxJeno6U6ZM4YorrqBJkyY1+walFCkuLuakk04qt+1Xv/oV9957L4MGDeL2229Pbm/WrBk//vGPufrqqznuuOOS288666zk+OrcuTOLFy9m4cKFLF68mPT0dABWrlxJfn5+MhR17NiRsWPHJvs45ZRTyMjIYNy4cUyYMIGMjIwKtSYSCX79618fdF06fBiKpC8YPHgwN954I3v27CEvL4/hw4dXaLN3714efvhhnnvuOf7xj3+Uu9y2a9cuGjZsWOE1b775JsXFxZx11lnl/sbco0cP9uzZw9q1a+natWvNvCkpxY444gjmzJlTbls8Hmfjxo3cfPPN5cZE165dCYfDrFmzplz46NmzZ/LnRo0a0bRpU7797W8nAxFAu3bteP3115PPE4kEs2fPZu7cuWzYsIG9e/cm961fv55vfvObFWpdt27dIdWlw4ehSPqCXr16kZ6ezj333MOGDRsYOHBghTZ33nkn8+bN45prruHkk0+mUaNGLFmyhAcffJC9e/fuNxRt27YNgKFDh+73uP/4xz+q941IdUg4HKZTp07ltr3xxhsAXHPNNft9zRfHRKNGjco9r1evHtFotNy29PT0cuuFZs+eza9+9SuuvPJKunXrRjQa5S9/+Qs///nPywWkzysbqwdblw4fhiLpC9LT0znjjDN47LHHyMnJ4etf/3qFNvn5+Zx//vn8+Mc/Tm5btmzZV/bbuHFjAO677z5atmxZYX/r1q2rWLkULEcddRQAEyZMoHPnzhX2N2/evMrHyM/Pp3///tx4443JbR9++GHK61LdZCiS9mPYsGF8+umnnHfeefvdv3fv3nJT9rFYjIULF35ln9nZ2WRkZLBp0yYGDBhQrfVKQZSZmUnLli1Zv349P/zhD2vkGHv27Ck3VoHkt9ZSWZfqJkORtB+dO3fmgQce+NL9PXr0YN68eRx77LE0adKE3/72twf8im80GmXUqFHceeedbNq0ia5duxKJRFi/fj1Llixh+vTp+130KR2uQqEQ48aN46abbqK4uJh+/fqRkZHBJ598wrJlyxgzZgzt27ev0jF69OjB448/zpw5c2jXrh3PPvssH3/8ccrrUt1kKJIq4dZbb+W2227jF7/4BRkZGQwdOpQBAwYwfvz4r3zd5ZdfTosWLZg1axZz5swhLS2Ntm3b0q9fvwp/m5X+GwwcOJBoNMpDDz2UnMFp1aoVvXv33u+l60N1zTXXsG3bNu69914AzjzzTMaPH5/8dlqq6lLdFEokEolUFyFJkpRq3tFakiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSYesf//+jBs3LtVlSKpm3tFaUp22fv16Zs2axYoVK9i0aRNQemfhbt26cf7553P88cenuEJJhwtDkaQ6a+nSpYwZM4ZIJMKQIUM4/vjjCYfDFBQUsGjRIn73u9+xZMkSWrVqlepSJR0GDEWS6qS///3v3HDDDRx99NE89thjNG/evNz+m266id/+9reEw8FeBVBSUkI8HqdevXqpLkX6rxfs3yaSDlszZ86kuLiYyZMnVwhEAGlpaVxyySV84xvfSG778MMPGTVqFF27dqVTp05873vfY8mSJeVe9/TTT9OxY0feeOMNJk+eTPfu3cnKyuKaa65h69at5domEgkeeOAB+vTpQ5cuXRg+fDhr167db72FhYXcfvvt9O3bl5NPPpkBAwbwyCOPEI/Hk202bNhAx44dyc3N5bHHHuP000+nU6dOfPjhh1X5o5JUTZwpklQnLV26lGOOOYYuXbocVPu1a9dy4YUX0qJFC0aMGEGDBg14/vnnueaaa5g+fToDBgwo1/6Xv/wl0WiUa6+9lo0bNzJ79mx+/vOfM23atGSbe+65hwcffJC+ffvSt29f3nnnHS6//HL27dtXrq/du3dz8cUX889//pMLLriAb3zjG7z55pvcfffdbNmyhVtuuaVc+6effpq9e/dy3nnnUa9ePRo3bly5PyRJ1cpQJKnOKSoqYvPmzZx++ukV9hUWFlJSUpJ83qBBA4444ghuv/12vvGNbzB//vzkpaiLLrqICy+8kLvuuqtCKDrqqKN49NFHCYVCAMTjcZ544gl27txJo0aN2Lp1KzNnzqRfv3489NBDyXZTp07loYceKtfXrFmzWL9+Pc888wzt2rUD4IILLqB58+bk5uZy+eWXl5vR2rRpE4sXL6Zp06ZV/8OSVG28fCapzikqKgJKA88XDR8+nJycnOR/Tz75JNu3b+dPf/oTAwcOpKioiK1bt7J161a2bdtGr169+Oijj/jnP/9Zrp/zzjsvGXQAvv3tbxOLxdi4cSMAr776Kvv27ePiiy8u1+7SSy+tUFN+fj7f+ta3iEajyWNv3bqVHj16EIvFWLVqVbn2Z5xxhoFIqoOcKZJU5zRs2BCA4uLiCvt+/vOfs2vXLv71r3/xP//zP0DpouxEIsE999zDPffcs98+P/30U1q0aJF8fvTRR5fbH41GgdKZKIBPPvkEIDnzU6Zp06YVLnd9/PHHvPfee+Tk5Oz32F9cq9S6dev9tpOUWoYiSXVOo0aNaNas2X4XNZetMdqwYUNyW9li5ssvv5zevXvvt8+2bduWe/5l31pLJBKHXG88Hqdnz55ceeWV+93/xWB1xBFHHPIxJNU8Q5GkOqlfv37MmzePt99+m86dO39l2zZt2gCQnp5Ojx49quX4ZTNJH330UbJ/KJ312bFjR7m2bdu2pbi4uNqOLSk1XFMkqU668sorycjI4Oabb+Zf//pXhf2fn9H52te+RteuXXnqqafYvHlzhbZfvHx1MHr06EF6ejpz5swpd6zZs2dXaDtw4EDefPNN/vjHP1bY98WF4ZLqLmeKJNVJ7dq146677uLGG2/krLPOSt7ROpFIsGHDBhYsWEA4HKZly5YA3HbbbVx00UUMGTKE8847jzZt2vCvf/2Lt956i02bNvHss88e0vGbNm3K5ZdfzsMPP8zIkSPp27cv7777LsuXL6dJkybl2l5xxRW89NJLXHXVVQwdOpSTTjqJ3bt38/777/PCCy+wZMkSF1ZLAWAoklRnnX766Tz33HM8+uijrFixgvnz5xMKhTj66KPp27cvF154YfLfPjv22GOZP38+9913H8888wzbt2+nadOmnHjiiVxzzTWVOv7o0aOpV68ev//973n99dfp3Lkzjz76KCNHjizXLiMjgyeeeIKHH36Y/Px8/t//+38ceeSRtGvXjuuuu45GjRpV+c9CUs0LJSqzqlCSJOkw45oiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJAD+P57COIPl6HJEAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=steak, x=\"Gender\")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "continental-franklin", + "metadata": {}, + "source": [ + "**What is the data about and where is it from?**\n", + "\n", + "![alt text](538.jpg)\n", + "\n", + "This is a data set from the website 538. It was a data set collected by Walt Hickey. It is a steak risky survey. The data examines how people value and interpret risk in life, and does this have a correlation to how they order their steak. 550 people were surveyed. It seeks to interpret if people who do risky behaviors (smoke, gamble, drink) order their steak in the same manner (rare) and risk food borne illness." + ] + }, + { + "cell_type": "markdown", + "id": "infinite-instrument", + "metadata": {}, + "source": [ + "# Methods and Results" + ] + }, + { + "cell_type": "markdown", + "id": "recognized-positive", + "metadata": {}, + "source": [ + "## First Research Question: *Do people (males and females) who drink also order their steak rare?*\n" + ] + }, + { + "cell_type": "markdown", + "id": "graduate-palmer", + "metadata": {}, + "source": [ + "### Methods" + ] + }, + { + "cell_type": "markdown", + "id": "endless-variation", + "metadata": {}, + "source": [ + "*Explain how you will approach this research question below. Consider the following:* \n", + " - *Which aspects of the dataset will you use?* \n", + " - *How will you reorganize/store the data?* \n", + " - *What data science tools/functions will you use and why?*\n", + "\n", + "\n", + "**I will use the columns Drink/Cooked to answer this question.\n", + "I will...\n", + "\n", + "-get the value of people who drink\n", + "-get the value of people who order steak rare\n", + "-get the value of people who do both drinking and order their steak rare\n", + "\n", + "I will use pandas to handle my data (as data frames), seaborne to create visualizations\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "portuguese-japan", + "metadata": {}, + "source": [ + "# Results " + ] + }, + { + "cell_type": "markdown", + "id": "68678a65-6dd4-4fff-bb4e-70492249e021", + "metadata": {}, + "source": [ + "### Number of people who Drink" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "negative-highlight", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "drink\n", + "Yes 339\n", + "No 93\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steak.drink.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "victorian-burning", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMPNJREFUeJzt3Xt8VNW9///XzISbgQmXIh4uSpJqQA0SEREJqSBKASvVao8PFZSjKLaA6NcKpUDF2mJbPSAIKJHitdWitbU1IqIIBamox8tRqqKhingQKpBJACGZmd8f/DI1TVTIdQZfz8fDRzJ7r1nz2S72zDt7rZkJxOPxOJIkSV9zwaYuQJIkKRkYiiRJkjAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSQCkNXUBn7dq1SoKCwt57733KCsro1OnTgwZMoTx48fTpk0bAKZMmcLjjz9e7b6FhYUUFBQkbu/fv5/Zs2fzxBNPsHv3bvLy8pg+fTpZWVl1qjEejxOL+SHgqi4YDPhvQ2pCnoP6IsFggEAg8JXtkioU7dq1i169ejFq1Cjatm3Lxo0bmTdvHhs3buQ3v/lNol23bt247bbbqtw3Ozu7yu1bbrmFoqIipkyZQqdOnbjrrru4/PLLefLJJxMBqzZisTg7duyu9f11eEpLC9KuXTqRyB4qKmJNXY70teM5qC/Tvn06oVCKhaKRI0dWud2vXz+aN2/O9OnT+eSTT+jUqRMALVu2pHfv3l/Yz9atW3n00Uf56U9/ygUXXABAbm4ugwYN4uGHH2bs2LENdgySJCk1Jf2aorZt2wJQXl5+0PdZs2YNsViMb3/721X6GTBgAKtXr67vEiVJ0mEgKUNRNBpl3759vPXWW8yfP5/BgwfTtWvXxP4PPviAPn36cOKJJ3L++eezYsWKKvcvLi6mQ4cOZGRkVNmenZ1NcXFxoxyDJElKLUk1fVZp0KBBfPLJJwAMHDiQ22+/PbGvZ8+e5Obm8s1vfpPS0lJ+97vf8cMf/pA77rgjcWUoEonUuG4oHA5TUlJS5/rS0pIyS6oJhULBKj8lNS7PQdWHpAxFixYtYu/evbz33nssXLiQcePGsWTJEkKhEJdddlmVtoMHD+aiiy5i7ty5VabLGkowGKBdu/QGfxylpnC4VVOXIH2teQ6qLpIyFPXo0QOAvLw8cnNzGTlyJM8880yNoScYDHL22Wfz61//ms8++4yWLVsSDocpKyur1jYSiVSbUjtUsVicSGRPnfrQ4ScUChIOtyIS2Us06jtfpMbmOagvEw63OqiriEkZij4vJyeHZs2a8eGHHx70fbKysvjnP/9JSUlJlRBUXFxc588pAny7p75QNBrz34fUhDwHVRdJP/n6+uuvU15eXmWh9efFYjGWLVvGscceS8uWLQHIz88nGAyyfPnyRLuSkhLWrFlT5QMeJUmSKiXVlaLx48dz4oknkpOTQ8uWLXn77bdZvHgxOTk5DBkyhC1btjBlyhRGjBjBMcccQ0lJCb/73e948803mTdvXqKfo446igsuuIBf/epXBINBOnXqxN13302bNm246KKLmvAIJUlSskqqUNSrVy+KiopYtGgR8XicLl26cOGFF3LFFVfQvHlz0tPTad26NQsXLuTTTz+lWbNmnHjiiRQWFjJw4MAqfU2bNo309HRuv/12du/ezcknn8ySJUvq9GnWkiTp8BWIx+N+UcwhiEZjfs2Hqqn8ioGdO3e7nkFqAp6D+jIHvubjq1cMJf2aIkmSpMZgKJIkScJQJEmSBCTZQuuvs2AwQDAYaOoyVEt+xcDhIRaLE4u5zFL6ujIUJYFgMEDbdkcQCvqCmur8ioHUFo3F2LVzj8FI+poyFCWBYDBAKBjkt8v+zrYdfoVIKgoEAoRCQaLRGL6hMzUd2f4ILv52T4LBgKFI+poyFCWRbTv2sGV79e9sU/ILBAKkpYWoqIgaiiQpRTlfI0mShKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJApIsFK1atYpLL72U0047jRNPPJEzzzyTWbNmUVpaWqXdc889x7nnnktubi5Dhw7lscceq9bX/v37+eUvf8mAAQPo3bs3Y8aMobi4uLEORZIkpZikCkW7du2iV69ezJw5k8WLFzNmzBj++Mc/cu211ybavPzyy4wfP57evXtTWFjIsGHD+MlPfsKyZcuq9HXLLbewdOlSrrvuOubNm8f+/fu5/PLLqwUsSZIkgLSmLuDzRo4cWeV2v379aN68OdOnT+eTTz6hU6dOLFy4kF69enHzzTcDcNppp7F582bmzp3Lt7/9bQC2bt3Ko48+yk9/+lMuuOACAHJzcxk0aBAPP/wwY8eObdwDkyRJSS+prhTVpG3btgCUl5ezf/9+XnzxxUT4qTR8+HDef/99PvroIwDWrFlDLBar0q5t27YMGDCA1atXN1rtkiQpdSRlKIpGo+zbt4+33nqL+fPnM3jwYLp27cqHH35IeXk5WVlZVdpnZ2cDJNYMFRcX06FDBzIyMqq1c12RJEmqSVJNn1UaNGgQn3zyCQADBw7k9ttvB6CkpASAcDhcpX3l7cr9kUiENm3aVOs3HA4n2tRFWlr9ZslQ6EB/gUCAQCBQr32rkQT+9TOAY5iKKs+9yvNRqaVy3Bw/1UVShqJFixaxd+9e3nvvPRYuXMi4ceNYsmRJU5cFQDAYoF279AbpOxQKkpYWapC+1TjSQo5fqqp8MQ2HWzVxJaoLx091kZShqEePHgDk5eWRm5vLyJEjeeaZZ/jmN78JUO0dZJFIBCAxXRYOhykrK6vWbyQSqTaldqhisTiRyJ469fHvQqEg4XArotEYFRXReu1bjSRwIBBVRKMQb+piVBvRaAyASGRv4neljsrnUcdPNQmHWx3UVcSkDEWfl5OTQ7Nmzfjwww8ZPHgwzZo1o7i4mIEDBybaVK4TqlxrlJWVxT//+U9KSkqqhKDi4uJq65Fqo6KiYU64eDxOPO4raipKTJnFcQxTVOW4HfjjxBfVVOX4qS6SfvL19ddfp7y8nK5du9K8eXP69evH008/XaVNUVER2dnZdO3aFYD8/HyCwSDLly9PtCkpKWHNmjUUFBQ0av2SJCk1JNWVovHjx3PiiSeSk5NDy5Ytefvtt1m8eDE5OTkMGTIEgGuuuYbRo0dz0003MWzYMF588UX+8pe/MHv27EQ/Rx11FBdccAG/+tWvCAaDdOrUibvvvps2bdpw0UUXNdXhSZKkJJZUoahXr14UFRWxaNEi4vE4Xbp04cILL+SKK66gefPmAJxyyinMmzePOXPm8Oijj9K5c2duueUWhg0bVqWvadOmkZ6ezu23387u3bs5+eSTWbJkSY3vSpMkSQrEXQBxSKLRGDt27K7XPtPSgrRrl86c377Clu3VF4gr+QUCAdLSQlRURF1TlKK6dGzNpIv7sHPnbtekpKDK51HHTzVp3z79oBZaJ/2aIkmSpMZgKJIkScJQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEkApDV1AZ/31FNP8cQTT/DWW28RiUQ45phjGDVqFN/73vcIBAIAjBo1ivXr11e7b1FREdnZ2YnbpaWlzJo1ixUrVlBeXs7AgQOZNm0aRx55ZKMdjyRJSh1JFYruvfdeunTpwpQpU2jXrh0vvPAC06dPZ+vWrYwfPz7R7uSTT2by5MlV7tu1a9cqtydNmsR7773HTTfdRIsWLZgzZw5jx47lscceIy0tqQ5bkiQlgaRKBwsXLqR9+/aJ2/3792fXrl0sWbKEH/zgBwSDB2b7wuEwvXv3/sJ+Xn31VdasWcPixYvJz88HIDMzk+HDh7N8+XKGDx/eoMchSZJST1KtKfp8IKrUs2dPysrK2LNnz0H3s3r1asLhMAMGDEhsy8rKomfPnqxevbpeapUkSYeXpApFNXnllVfo1KkTrVu3Tmxbv349vXv3Jjc3l0svvZSXXnqpyn2Ki4vJzMxMrEOqlJWVRXFxcaPULUmSUktSTZ/9u5dffpmioqIq64f69u3LyJEj6d69O9u2bWPx4sWMGTOGBx54gLy8PAAikQht2rSp1l9GRgZvvvlmnetKS6vfLBkKHegvEAhUC3JKEYF//QzgGKaiynOv8nxUaqkcN8dPdZG0oWjr1q1cd9119OvXj9GjRye2T5w4sUq7M844g3POOYcFCxZQWFjY4HUFgwHatUtvkL5DoSBpaaEG6VuNIy3k+KWqyhfTcLhVE1eiunD8VBdJGYoikQhjx46lbdu2zJs3L7HAuiZHHHEE3/rWt3j66acT28LhMFu3bq3WtqSkhIyMjDrVFovFiUQOfn3TwQiFgoTDrYhGY1RUROu1bzWSwIFAVBGNQrypi1FtRKMxACKRvYnflToqn0cdP9UkHG51UFcRky4UffbZZ1x99dWUlpbyyCOP1DgN9lWysrJYt24d8Xi8ynTUpk2bOO644+pcY0VFw5xw8XiceNxX1FSUmDKL4ximqMpxO/DHiS+qqcrxU10k1eRrRUUFkyZNori4mHvuuYdOnTp95X327NnD888/T25ubmJbQUEBJSUlrFu3LrFt06ZNbNiwgYKCggapXZIkpbakulI0c+ZMVq5cyZQpUygrK+O1115L7Dv++ON54403uOeeezjrrLPo0qUL27ZtY8mSJWzfvp077rgj0TYvL4/8/HymTp3K5MmTadGiBbNnzyYnJ4ezzz67CY5MkiQlu6QKRWvXrgXg1ltvrbbv2WefpWPHjpSXlzN79mx27dpFq1atyMvLY+bMmfTq1atK+zlz5jBr1ixmzJhBRUUF+fn5TJs2zU+zliRJNQrEXQBxSKLRGDt27K7XPtPSgrRrl86c377Clu1l9dq3GkcgECAtLURFRdQ1RSmqS8fWTLq4Dzt37nZNSgqqfB51/FST9u3TD2qhdVKtKZIkSWoqhiJJkiQMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEJFkoeuqpp7jmmmsoKCigd+/ejBw5kkcffZR4PF6l3dKlSxk6dCi5ubmce+65rFy5slpfpaWlTJ06lVNPPZW8vDwmTpzItm3bGutQJElSikmqUHTvvffSqlUrpkyZwsKFCykoKGD69OnMnz8/0ebJJ59k+vTpDBs2jMLCQnr37s348eN57bXXqvQ1adIk1q5dy0033cRtt93Gpk2bGDt2LBUVFY18VJIkKRWkNXUBn7dw4ULat2+fuN2/f3927drFkiVL+MEPfkAwGGTu3LmMGDGCSZMmAXDaaafx7rvvMn/+fAoLCwF49dVXWbNmDYsXLyY/Px+AzMxMhg8fzvLlyxk+fHijH5skSUpuSXWl6POBqFLPnj0pKytjz549bN68mX/84x8MGzasSpvhw4ezbt069u/fD8Dq1asJh8MMGDAg0SYrK4uePXuyevXqhj0ISZKUkpIqFNXklVdeoVOnTrRu3Zri4mLgwFWfz8vOzqa8vJzNmzcDUFxcTGZmJoFAoEq7rKysRB+SJEmfl1TTZ//u5ZdfpqioiMmTJwNQUlICQDgcrtKu8nbl/kgkQps2bar1l5GRwZtvvlnnutLS6jdLhkIH+gsEAtWCnFJE4F8/AziGqajy3Ks8H5VaKsfN8VNd1DoUjR49mmuuuYb+/fvXuP9vf/sbCxYs4P77769V/1u3buW6666jX79+jB49urZl1rtgMEC7dukN0ncoFCQtLdQgfatxpIUcv1RV+WIaDrdq4kpUF46f6qLWoWj9+vVceOGFX7h/x44dvPTSS7XqOxKJMHbsWNq2bcu8efMIBg88WWVkZAAH3m7fsWPHKu0/vz8cDrN169Zq/ZaUlCTa1FYsFicS2VOnPv5dKBQkHG5FNBqjoiJar32rkQQOBKKKaBTiX91cyScajQEQiexN/K7UUfk86vipJuFwq4O6ilin6bMvm+r54IMPSE8/9Csqn332GVdffTWlpaU88sgjVabBsrKygANrhip/r7zdrFkzunXrlmi3bt064vF4lRo3bdrEcccdd8g1/buKioY54eLxeLXPZFJqSEyZxXEMU1TluB3448QX1VTl+KkuDikUPf744zz++OOJ2wsXLuT3v/99tXalpaW88847FBQUHFIxFRUVTJo0ieLiYh566CE6depUZX+3bt3o3r07y5YtY8iQIYntRUVF9O/fn+bNmwNQUFDAggULWLduHaeffjpwIBBt2LCBK6+88pBqkiRJXw+HFIr27t3Lzp07E7d3796dmNr6vCOOOIKLLrqIH/7wh4dUzMyZM1m5ciVTpkyhrKysygcyHn/88TRv3pwJEyZwww03cPTRR9OvXz+Kiop44403ePDBBxNt8/LyyM/PZ+rUqUyePJkWLVowe/ZscnJyOPvssw+pJkmS9PUQiNfyWv/gwYP5yU9+wplnnllvxQwePJgtW7bUuO/ZZ5+la9euwIGv+SgsLOTjjz8mMzOT66+/nkGDBlVpX1payqxZs3jmmWeoqKggPz+fadOmVbv6dKii0Rg7duyuUx//Li0tSLt26cz57Sts2V5Wr32rcQQCAdLSQlRURJ0+S1FdOrZm0sV92Llzt9MvKajyedTxU03at08/qDVFtQ5FX1eGItXEUJT6DEWpzVCkL3OwoajOn1NUVlbGxx9/TCQSqfHFoG/fvnV9CEmSpAZX61C0Y8cObrnlFpYvX040Wv1t5JXv/Pr73/9epwIlSZIaQ61D0YwZM1i5ciWjRo3ilFNOqfYp05IkSamk1qFo7dq1XHbZZdx44431WY8kSVKTqPWXxLRs2ZIuXbrUZy2SJElNptah6Nxzz2XFihX1WYskSVKTqfX02dChQ3nppZe44oor+M///E+OOuooQjV8GeYJJ5xQpwIlSZIaQ61D0cUXX5z4/YUXXqi233efSZKkVFLrUDRr1qz6rEOSJKlJ1ToUnXfeefVZhyRJUpOq9UJrSZKkw0mtrxT9+Mc//so2gUCAX/ziF7V9CEmSpEZT61D04osvVtsWi8XYvn070WiU9u3b06pVqzoVJ0mS1FhqHYqee+65GreXl5fzyCOPcN999/Gb3/ym1oVJkiQ1pnpfU9SsWTMuvfRSBgwYwM9+9rP67l6SJKlBNNhC6x49evDSSy81VPeSJEn1qsFC0QsvvOCaIkmSlDJqvabozjvvrHF7aWkpL730Ehs2bOCqq66qdWGSJEmNqd5DUUZGBt26dWPmzJl8//vfr3VhkiRJjanWoejtt9+uzzokSZKalJ9oLUmSRB2uFFVav349zz//PB9//DEAnTt35owzzuDUU0+tc3GSJEmNpdahaP/+/fy///f/WLFiBfF4nHA4DEAkEmHJkiWcddZZ3H777TRr1qzeipUkSWootZ4+mz9/Ps888wxjxoxhzZo1rF+/nvXr17N27Vr+67/+i+XLlzN//vz6rFWSJKnB1DoU/fnPf+a8887jxhtv5Bvf+EZie4cOHfjRj37Ed7/7XZ544ol6KVKSJKmh1ToUbd++nV69en3h/l69erF9+/badi9JktSoah2KjjrqKNavX/+F+1966SWOOuqo2nYvSZLUqGodir773e/y1FNPMWPGDIqLi4lGo8RiMYqLi/npT3/KsmXLOO+88+qzVkmSpAZT63efjRs3js2bN/P73/+epUuXEgweyFexWIx4PM55553HuHHj6q1QSZKkhlTrUBQKhbj11lu5/PLLWb16NVu2bAGgS5cuFBQU0KNHj3orUpIkqaEdUijat28fP//5zzn22GMZNWoUAD169KgWgO6//34efvhhfvKTn/g5RZIkKSUc0pqiRx55hMcff5wzzjjjS9udccYZPPbYYyxdurQutUmSJDWaQwpFTz31FGeffTbdunX70nZHH3003/72t3nyySfrVJwkSVJjOaRQ9O6779KnT5+DapuXl8c777xTq6IkSZIa2yGFovLy8oNeI9SsWTP2799fq6IkSZIa2yGFoiOPPJKNGzceVNuNGzdy5JFH1qooSZKkxnZIoej000/nT3/6E59++umXtvv000/505/+xOmnn16n4iRJkhrLIYWisWPHsm/fPi677DJef/31Gtu8/vrrXH755ezbt48rr7yyXoqUJElqaIf0OUXdunVjzpw5XH/99Vx00UV069aN4447jvT0dHbv3s3GjRv58MMPadmyJf/93//N0Ucf3VB1S5Ik1atD/kTrM844gyeeeILCwkKef/55VqxYkdh35JFHcuGFFzJ27NivfNt+TT744AMWL17M66+/zsaNG8nKyuIvf/lLlTajRo2q8Ytoi4qKyM7OTtwuLS1l1qxZrFixgvLycgYOHMi0adNc5yRJkmpUq6/56Nq1KzNnzgSgrKyM3bt3k56eTuvWretUzMaNG1m1ahUnnXRS4jvUanLyySczefLkajV93qRJk3jvvfe46aabaNGiBXPmzGHs2LE89thjpKXV+ttNJEnSYarO6aB169Z1DkOVBg8ezJAhQwCYMmUKb775Zo3twuEwvXv3/sJ+Xn31VdasWcPixYvJz88HIDMzk+HDh7N8+XKGDx9eL/VKkqTDxyEttG5owWD9lLN69WrC4TADBgxIbMvKyqJnz56sXr26Xh5DkiQdXlJyHmn9+vX07t2baDTKSSedxLXXXkvfvn0T+4uLi8nMzCQQCFS5X1ZWFsXFxXV+/LS0+s2SodCB/gKBQLWalSIC//oZwDFMRZXnXuX5qNRSOW6On+oi5UJR3759GTlyJN27d2fbtm0sXryYMWPG8MADD5CXlwdAJBKhTZs21e6bkZHxhVNyBysYDNCuXXqd+vgioVCQtLRQg/StxpEWcvxSVeWLaTjcqokrUV04fqqLlAtFEydOrHL7jDPO4JxzzmHBggUUFhY2+OPHYnEikT312mcoFCQcbkU0GqOiIlqvfauRBA4EoopoFGp+f4CSXDQaAyAS2Zv4Xamj8nnU8VNNwuFWB3UVMeVC0b874ogj+Na3vsXTTz+d2BYOh9m6dWu1tiUlJWRkZNT5MSsqGuaEi8fjX/iOOyW3xJRZHMcwRVWO24E/TnxRTVWOn+risJx8zcrKYtOmTdVenDZt2kRWVlYTVSVJkpJZyoeiPXv28Pzzz5Obm5vYVlBQQElJCevWrUts27RpExs2bKCgoKApypQkSUkuqabP9u7dy6pVqwDYsmULZWVlLFu2DIBTTz2V4uJi7rnnHs466yy6dOnCtm3bWLJkCdu3b+eOO+5I9JOXl0d+fj5Tp05l8uTJtGjRgtmzZ5OTk8PZZ5/dJMcmSZKSW1KFok8//ZRrr722yrbK2/fffz9HHXUU5eXlzJ49m127dtGqVSvy8vKYOXMmvXr1qnK/OXPmMGvWLGbMmEFFRQX5+flMmzbNT7OWJEk1CsRdFXpIotEYO3bsrtc+09KCtGuXzpzfvsKW7WX12rcaRyAQIC0tREVF1IXWKapLx9ZMurgPO3fudqFuCqp8HnX8VJP27dMP6t1nKb+mSJIkqT4YiiRJkjAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRKQZKHogw8+YMaMGYwcOZLjjz+ec845p8Z2S5cuZejQoeTm5nLuueeycuXKam1KS0uZOnUqp556Knl5eUycOJFt27Y19CFIkqQUlVShaOPGjaxatYpjjjmG7OzsGts8+eSTTJ8+nWHDhlFYWEjv3r0ZP348r732WpV2kyZNYu3atdx0003cdtttbNq0ibFjx1JRUdEIRyJJklJNWlMX8HmDBw9myJAhAEyZMoU333yzWpu5c+cyYsQIJk2aBMBpp53Gu+++y/z58yksLATg1VdfZc2aNSxevJj8/HwAMjMzGT58OMuXL2f48OGNc0CSJCllJNWVomDwy8vZvHkz//jHPxg2bFiV7cOHD2fdunXs378fgNWrVxMOhxkwYECiTVZWFj179mT16tX1X7gkSUp5SXWl6KsUFxcDB676fF52djbl5eVs3ryZ7OxsiouLyczMJBAIVGmXlZWV6KMu0tLqN0uGQgf6CwQC1WpWigj862cAxzAVVZ57leejUkvluDl+qouUCkUlJSUAhMPhKtsrb1fuj0QitGnTptr9MzIyapySOxTBYIB27dLr1McXCYWCpKWFGqRvNY60kOOXqipfTMPhVk1cierC8VNdpFQoSgaxWJxIZE+99hkKBQmHWxGNxqioiNZr32okgQOBqCIahXhTF6PaiEZjAEQiexO/K3VUPo86fqpJONzqoK4iplQoysjIAA683b5jx46J7ZFIpMr+cDjM1q1bq92/pKQk0aYuKioa5oSLx+PE476ipqLElFkcxzBFVY7bgT9OfFFNVY6f6iKlJl+zsrIAqq0LKi4uplmzZnTr1i3RbtOmTdVenDZt2pToQ5Ik6fNSKhR169aN7t27s2zZsirbi4qK6N+/P82bNwegoKCAkpIS1q1bl2izadMmNmzYQEFBQaPWLEmSUkNSTZ/t3buXVatWAbBlyxbKysoSAejUU0+lffv2TJgwgRtuuIGjjz6afv36UVRUxBtvvMGDDz6Y6CcvL4/8/HymTp3K5MmTadGiBbNnzyYnJ4ezzz67SY5NkiQlt0A8iRZAfPTRR5x55pk17rv//vvp168fcOBrPgoLC/n444/JzMzk+uuvZ9CgQVXal5aWMmvWLJ555hkqKirIz89n2rRpdOrUqU41RqMxduzYXac+/l1aWpB27dKZ89tX2LK9rF77VuMIBAKkpYWoqIi6pihFdenYmkkX92Hnzt2uSUlBlc+jjp9q0r59+kEttE6qUJQKDEWqiaEo9VWGIt+9lJp899nhIRaLE4vV/3PowYaipJo+k6Sm0uaIZsRicT/nJsU5fqktGouxa+eeBglGB8NQJElAyxZpBIMBfvf023zyaf1eDVbDCwQChEJBotGYV2tT1JHtj+Dib/ckGAwYiiQpGWzbscdp7BTkFLbqQ0q9JV+SJKmhGIokSZIwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJCAFQ9Ef/vAHcnJyqv132223VWm3dOlShg4dSm5uLueeey4rV65sooolSVIqSGvqAmrrnnvuoU2bNonbnTp1Svz+5JNPMn36dMaNG8dpp51GUVER48eP56GHHqJ3795NUK0kSUp2KRuKTjjhBNq3b1/jvrlz5zJixAgmTZoEwGmnnca7777L/PnzKSwsbMQqJUlSqki56bOvsnnzZv7xj38wbNiwKtuHDx/OunXr2L9/fxNVJkmSklnKXik655xz2LlzJ507d+b73/8+V155JaFQiOLiYgAyMzOrtM/Ozqa8vJzNmzeTnZ1dp8dOS6vfLBkKHegvEAgQCATqtW81ksC/fgZwDFNR4twL4HmYijwHU17leVf5mtgUUi4UdezYkQkTJnDSSScRCAR47rnnmDNnDp988gkzZsygpKQEgHA4XOV+lbcr99dWMBigXbv0OvXxRUKhIGlpoQbpW40jLeT4papQMJj46XmYujwHU1dlGAqHWzVZDSkXigYOHMjAgQMTt/Pz82nRogX33Xcf48aNa/DHj8XiRCJ76rXPUChIONyKaDRGRUW0XvtWIwkceDKuiEYh3tTFqDaisVjip+dhCvIcTHnR6IFzMBLZm/i9voTDrQ7qClTKhaKaDBs2jN/85jf8/e9/JyMjA4DS0lI6duyYaBOJRAAS++uioqJ+B6tSPB4nHvdsTkWJy/VxHMMUlRg3xzAleQ6mvspxO3CBoGFeZ7/KYbfQOisrCyCxtqhScXExzZo1o1u3bk1RliRJSnKHRSgqKioiFApx/PHH061bN7p3786yZcuqtenfvz/NmzdvoiolSVIyS7npsyuuuIJ+/fqRk5MDwLPPPsvvf/97Ro8enZgumzBhAjfccANHH300/fr1o6ioiDfeeIMHH3ywKUuXJElJLOVCUWZmJo899hhbt24lFovRvXt3pk6dyqhRoxJtzjnnHPbu3UthYSGLFi0iMzOTO++8k7y8vCasXJIkJbOUC0XTpk07qHYXXnghF154YQNXI0mSDheHxZoiSZKkujIUSZIkYSiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJOAwD0Xvv/8+Y8aMoXfv3gwYMIBf/epX7N+/v6nLkiRJSSitqQtoKCUlJVx22WV0796defPm8cknn3Drrbfy2WefMWPGjKYuT5IkJZnDNhQ9/PDD7N69mzvvvJO2bdsCEI1GmTlzJldffTWdOnVq2gIlSVJSOWynz1avXk3//v0TgQhg2LBhxGIx1q5d23SFSZKkpHTYXikqLi7me9/7XpVt4XCYjh07UlxcXOt+g8EA7dun17W8KgKBAz+v/G4u0Vi8XvuWdHCapR34G/GKkSd6HkpNIBQ88GKYkdGKeD2fgsH/v++vctiGokgkQjgcrrY9IyODkpKSWvcbCAQIhQ7uf+6han1E8wbpV9LB8zyUmlYw2HSTWIft9JkkSdKhOGxDUTgcprS0tNr2kpISMjIymqAiSZKUzA7bUJSVlVVt7VBpaSnbt28nKyuriaqSJEnJ6rANRQUFBbzwwgtEIpHEtmXLlhEMBhkwYEATViZJkpJRIB6v7zXeyaGkpIQRI0aQmZnJ1Vdfnfjwxu985zt+eKMkSarmsA1FcOBrPn72s5/x6quvkp6ezsiRI7nuuuto3tx3l0iSpKoO61AkSZJ0sA7bNUWSJEmHwlAkSZKEoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKpC81atQohg0bxv79+6vtmzhxIt/61rfYvXt3E1Qmff3MmzePnJwcLrnkkmr7fv7znzN48OAmqEqHE0OR9CVmzpzJRx99xD333FNl++rVq3n66aeZPn066enpTVSd9PX08ssv8+KLLzZ1GToMGYqkL5GVlcXVV1/NXXfdxebNmwHYt28fP/vZzzjzzDMZMmRIE1cofb0cccQR9OrViwULFjR1KToMGYqkr3DVVVfRuXNnZs6cCcBdd93FP//5T2bMmMHWrVu54YYb6NevH7169eKSSy7hzTffrHL/Z599lvPPP5+8vDxOOeUUzj//fFatWtUUhyIdFn7wgx/wt7/9jf/5n//5wjZbtmxh4sSJ9OnTh969e3PFFVfwzjvvNGKVSkWGIukrNG/enJtvvpm//vWvLFiwgHvuuYdrr72WVq1acfHFF/P2228zffp05s2bR6tWrbjsssv49NNPAfjwww+59tprOfbYY7nzzjuZPXs2w4YNo6SkpImPSkpdgwYN4vjjj2f+/Pk17i8rK2PUqFFs2LCBmTNn8utf/5qdO3dy6aWX8n//93+NXK1SSVpTFyClglNPPZXzzz+fO+64gxNOOIFRo0Yxf/58IpEIS5cupUOHDgD079+foUOHsnjxYm688UY2bNhAeXk506dPp3Xr1gAMHDiwKQ9FOixcc801TJgwgTfeeINevXpV2feHP/yBjz/+mCeffJLs7GwA+vbty6BBg7jvvvuYMmVKU5SsFOCVIukgXXXVVQCMGTOGUCjE2rVr6devHxkZGVRUVFBRUUEwGKRv37787//+LwA5OTmEQiFuuOEGnnvuOUpLS5vyEKTDxllnncVxxx1X49Wil19+mWOPPTYRiADatm3L6aefziuvvNKYZSrFeKVIOkjNmjWr8nPnzp289tprnHDCCdXaHn300QBkZmZy1113cffddzN+/HiCwSD5+fnMmDGDzp07N17x0mEmEAgwbtw4rr/+et56660q+yKRCN/4xjeq3adDhw5s3LixsUpUCjIUSbWUkZHBwIEDufbaa6vta968eeL3goICCgoKKCsrY/Xq1cyaNYsf//jH3HfffY1ZrnTYGTZsGPPmzWPBggVV/sjIyMhg06ZN1dp/+umnZGRkNGaJSjFOn0m1dPrpp/P++++TnZ1Nbm5ulf9ycnKqtW/dujXDhw9nxIgRvP/++01QsXR4CQaDjBs3jmeffbbKO8v69OnDu+++S3FxcWJbSUkJL7zwAn369GmKUpUivFIk1dLll1/On//8Zy699FJGjx5N586d2bFjB6+//jqdOnXi8ssv5+GHH+a1115j4MCBdOzYkY8++ognnniCAQMGNHX50mHhO9/5DvPnz+fFF1+kS5cuAJx//vnce++9XH311UyaNIkWLVqwcOFC0tLSuOyyy5q4YiUzQ5FUS+3ateORRx5hzpw53HbbbezatYsOHTpw0kkncdZZZwEHFlqvXLmSWbNmsWvXLjp27MiIESNqnHKTdOhCoRBXXXUV06ZNS2xr3bo1DzzwALfeeivTp08nFotx8skn8+CDD/If//EfTVitkl0gHo/Hm7oISZKkpuaaIkmSJAxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkaTD1Lx582r8upWa5OTkMG/evFo9Tk5ODjfffHOt7ispuRiKJEmS8Gs+JIk33niDUCjU1GVIamJeKZL0tRSLxdi3bx8ALVq0IC3NvxGlrztDkaSU9/LLL/O9732P3NxchgwZwsMPP1ytTeXanyeeeIIRI0aQm5vLX//618S+z68pqlyP9MEHHzBlyhROOeUU+vTpw49//GP27t37lfUsWLCAHj168MADD9TfQUpqcP5pJCmlvfPOO1xxxRW0b9+eCRMmUFFRwbx58+jQoUO1tn/729946qmnuOSSS2jXrh1dunT50r4nTZpE165duf7669mwYQNLly6lffv2/OhHP/rC+8yePZu7776bm2++me9///t1Pj5JjcdQJCmlzZ07l3g8zkMPPUTnzp0BGDp0KN/5zneqtd20aRN//vOf+eY3v3lQfffs2ZNf/OIXidu7du3i0Ucf/cJQ9Mtf/pJ7772XWbNmcd5559XiaCQ1JafPJKWsaDTKmjVrGDJkSCIQAWRnZ5Ofn1+tfd++fQ86EAFcdNFFVW6fcsop7Nq1i7Kysirb4/E4N998M/fffz+//vWvDURSivJKkaSUtWPHDj777DOOOeaYavsyMzNZtWpVlW1du3Y9pP4/H7QAwuEwACUlJbRu3Tqx/Y9//CN79uzhpptu4pxzzjmkx5CUPLxSJOlro2XLlofUPhis+SkyHo9XuX3yySfzjW98g4ceeohdu3bVtjxJTcxQJClltW/fnpYtW/LBBx9U27dp06ZGq+OYY45h8eLFbNu2jSuvvLLa9Jqk1GAokpSyQqEQ+fn5rFixgo8//jix/f3332fNmjWNWkuPHj1YtGgR77//Ptdccw2fffZZoz6+pLozFElKaRMmTADgkksuYdGiRSxcuJDRo0cf0oLq+tK7d28WLFjAa6+9xsSJEykvL2/0GiTVnqFIUkrr0aMHixcvpl27dsydO5fHHnuMCRMmcNZZZzVJPf3792fOnDmsXbuWG2+8kVgs1iR1SDp0gfi/rxiUJEn6GvJKkSRJEoYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRIA/x9MceEERMMg/AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=steak, x=\"drink\")" + ] + }, + { + "cell_type": "markdown", + "id": "e0ec8c49-e490-4bac-927a-0f3c50c72c8d", + "metadata": {}, + "source": [ + "### Number of people who like their steak rare\n" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "46f2704d-6336-4b76-a7db-8cde388f7d55", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "cooked\n", + "Medium rare 166\n", + "Medium 132\n", + "Medium Well 75\n", + "Well 36\n", + "Rare 23\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steak.cooked.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "45451f54-ebc8-4acc-aec7-64ecd9842709", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP9NJREFUeJzt3Xl4VPW9x/H3zCRskYmgiFfWBAuyE6uETapIQRAXqiyiqHW3FwVuvUIpULGIe7UKaonWDa1oW1wp4goVuUorbrVVNKCARSlLQghbZub+QTN1DGoI2Q68X8/DM5lzfufMd76czHxyzpkzoUQikUCSJOkAF67pAiRJkmoDQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAmAtJouIGgSiQTxuBcBBwiHQ/aimtjr6mGfq4d9rh72+T/C4RChUOg7xxmK9lI8nmDjxq01XUaNS0sL06hRBoWFxZSUxGu6nP2ava4e9rl62OfqYZ9TNW6cQSTy3aHIw2eSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJgLSaLkCqTuFwiHA4VNNl7JVIJJxyGxTxeIJ4PFHTZUhSuRmKdMAIh0Mc3KgBkXCwwkWpaLR+TZewV2LxOJs3FRuMJAWGoUgHjHA4RCQc5tEFf+fLjcU1XU65hUIhIpEwsVicRCIYAeOwxg0YdVJ7wuGQoUhSYBiKdMD5cmMxa9cX1XQZ5RYKhUhLi1BSEgtMKJKkIArmcQRJkqRKZiiSJEnCUCRJkgQYiiRJkoBaFoo+/fRTpk6dymmnnUaHDh0YMmTIHscVFhYyffp0+vTpQ+fOnenfvz+//e1vU8bs3LmTG2+8kd69e9OtWzd+/OMfk5+fXx1PQ5IkBVCt+vTZihUrWLRoEV27diUe3/PHj4uLixk9ejSRSIRJkyZxyCGHsGrVKoqKUj9NNH36dObPn8/EiRNp2rQp99xzD+effz7PPfccDRs2rK6nJEmSAqJWhaJ+/frRv39/ACZOnMj7779fZszs2bPZunUrTz/9NA0aNAAgNzc3Zcy6dev4/e9/zy9+8QvOPPNMADp37swJJ5zAY489xsUXX1zFz0SSJAVNrTp8Fi7HlYZ///vfc8YZZyQD0Z689tprxONxTjrppOS0gw8+mN69e7N48eJKqVWSJO1falUo+i5r1qxh/fr1NGrUiMsuu4xOnTrRvXt3Jk+ezNatW5Pj8vPzOeSQQ8jMzExZvk2bNp5XJEmS9qhWHT77Lv/6178AuPHGGxkwYAB5eXmsWrWKW2+9leLiYn71q18Bu0/E3tN5Q9FolIKCgn2uIy0tUFmySgTxS0pLaw2FQoRCAfpS2NB/bkMEo+7S/gZx+whSzUFkn6uHfa6YQIWieDwOQFZWFjfeeCMAPXv2JC0tjcmTJzN+/HhatGhRpTWEwyEaNcqo0scIkqB9SSnsfpFIS4vUdBl7LS0SnJpLX4iDuH0EseYgss/Vwz7vnUCFotLDYV8/sbpHjx7A7k+vtWjRgmg0WubTaLB7D9LXD6ntrXg8QWFhcL5MtKpEImGi0foUFm4jFovXdDnlUlpzLBanpCRW0+WUX2h3ICqJxSAgX31Wuk0EcfsIUs1BZJ+rh31OFY3WL9des0CFohYtWlCnTp1vnL9jxw4AsrOz+de//kVBQUFKCMrPzyc7O3uf6ygpcQMrtTtgBKsfiUQiUF+smjxkliAwdZfWGcTtI4g1B5F9rh72ee8E6mBjnTp16N27N0uXLk2Z/vrrrwPQsWNHAPr06UM4HGbhwoXJMQUFBbz22mv07du3+gqWJEmBUav2FG3bto1FixYBsHbtWoqKiliwYAEA3bt3p3HjxowZM4aRI0fy05/+lKFDh/Lpp59y6623csopp9CyZUsADj/8cM4880xuuukmwuEwTZs25Te/+Q0NGzZk5MiRNfb8JElS7VWrQtGGDRsYO3ZsyrTS+w899BC5ubl06tSJvLw8brnlFi6//HIyMzMZMWIE48ePT1lu8uTJZGRkcOutt7J161aOPvpo7r//fq9mLUmS9iiUCMpJCrVELBZn48at3z1wP5eWFqZRoww2bdoamOPVpTXf/uhfWbu+7In4tVUoFCItLUJJSSww5xQ1a3IQ40Z9P5DbR5BqDiL7XD3sc6rGjTPKdaJ1oM4pkiRJqiqGIkmSJAxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiSgloWiTz/9lKlTp3LaaafRoUMHhgwZ8q3jX3zxRdq1a7fHcVu2bGHSpEl0796dnJwcrrzySr788suqKl2SJAVcrQpFK1asYNGiRbRq1Yo2bdp869jt27czY8YMDj300D3OHzduHEuWLOGaa67hlltuYeXKlVx88cWUlJRURemSJCng0mq6gK/q168f/fv3B2DixIm8//773zj2N7/5DUcccQTNmzcvM2758uW89tpr3HffffTp0weArKwsBg8ezMKFCxk8eHDVPQlJkhRItWpPUThcvnI+++wz7r//fiZPnrzH+YsXLyYajdK7d+/ktOzsbNq3b8/ixYsrpVZJkrR/qVV7isrruuuu47TTTuOoo47a4/z8/HyysrIIhUIp07Ozs8nPz9/nx09Lq1VZskZEIuGU2yAorTUUCpXZNmq10H9uQwSj7tL+BnH7CFLNQWSfq4d9rpjAhaKXX36Z5cuXs2DBgm8cU1hYSMOGDctMz8zM/NZDcuURDodo1Chjn9axP4lG69d0CXstEgmTlhap6TL2WlokODWXvhAHcfsIYs1BZJ+rh33eO4EKRTt27GDGjBlcccUVNG7cuEZqiMcTFBYW18hj1yaRSJhotD6FhduIxeI1XU65lNYci8UpKYnVdDnlF9odiEpiMUjUdDHlU7pNBHH7CFLNQWSfq4d9ThWN1i/XXrNAhaIHH3yQcDjMySefTGFhIQC7du0iHo9TWFhIvXr1qFOnDtFolHXr1pVZvqCggMzMzH2uo6TEDazU7oARrH4kEgkSiYCkC75yyCxBYOourTOI20cQaw4i+1w97PPeCVQoys/P59NPP6Vnz55l5h177LFcc801nHXWWWRnZ7N06VISiUTKuSMrV66kbdu21VmyJEkKiECFoosvvpihQ4emTJs9ezYrV67k+uuvp3Xr1gD07duXu+66i6VLl9KrVy9gdyD64IMPuOiii6q7bEmSFAC1KhRt27aNRYsWAbB27VqKioqSJ1R3796dNm3alLmo47x58/jiiy/Izc1NTsvJyaFPnz5MmjSJCRMmULduXW677TbatWvHgAEDqu8JSZKkwKhVoWjDhg2MHTs2ZVrp/Yceeigl+HyX22+/neuvv56pU6dSUlJCnz59mDx5MmlpteopS5KkWiKUCMqZm7VELBZn48atNV1GjUtLC9OoUQabNm0NzEl8pTXf/uhfWbu+qKbLKbdQKERaWoSSklhgTrRu1uQgxo36fiC3jyDVHET2uXrY51SNG2eU69NnXtVJkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIE1LIrWh/IwuEQ4XDouwfWEqUXwSrPxbBqiyDVKkmqfoaiWiAcDnFwowZEwsF7045G69d0CZIkVQpDUS0QDoeIhMM8uuDvfLmxuKbLKZdQKEQkEiYWiwfmqyfatW7MoF5ZhELB2SMnSao+hqJa5MuNxYH5Tq4gfh9Xk0bu1ZIkfbPgHa+RJEmqAoYiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSAGk1XcBXffrpp9x333288847rFixguzsbJ599tnk/KKiIu6//34WLVrEqlWrqFOnDl26dGH8+PG0a9cuZV1btmzh+uuv58UXX2TXrl0cd9xxTJ48mcMOO6y6n5YkSQqAWrWnaMWKFSxatIhWrVrRpk2bMvM///xz5s6dS+/evbn99tv55S9/yZYtWxgxYgSffPJJythx48axZMkSrrnmGm655RZWrlzJxRdfTElJSXU9HUmSFCC1ak9Rv3796N+/PwATJ07k/fffT5nfvHlzXnjhBerXr5+c1qNHD/r168ejjz7KlClTAFi+fDmvvfYa9913H3369AEgKyuLwYMHs3DhQgYPHlxNz0iSJAVFrdpTFA5/ezkNGjRICUQAGRkZtGzZki+//DI5bfHixUSjUXr37p2clp2dTfv27Vm8eHHlFi1JkvYLtSoUVURhYWHy/KNS+fn5ZGVlEQqFUsZmZ2eTn59f3SVKkqQAqFWHzyri5ptvJhQKcdZZZyWnFRYW0rBhwzJjMzMzyxySq4i0tMrNkpHI7vWFQqEyQa7WCv3nNkQwak72NkRw+gyB7nXpth0EpbUGqeYgss/Vwz5XTKBD0R/+8Acef/xxbrjhBg4//PBqecxwOESjRhlVsu5IJExaWqRK1l1V0iLBqTfy78OzkXDw+gwB6/W/X4ij0frfMbL2CWLNQWSfq4d93juBDUWLFi1i6tSp/OQnP2Ho0KEp86LRKOvWrSuzTEFBAZmZmfv0uPF4gsLC4n1ax9dFImGi0frEYnFKSmKVuu4qE9r9Jl0Si0Gipospn1g8nrwNTJ8hmL2O7e51YeG25M+1XenvYZBqDiL7XD3sc6potH659poFMhS9/fbbjB07ltNPP52xY8eWmZ+dnc3SpUtJJBIph0lWrlxJ27Zt9/nxS0qqZgNLJBIkEsF410sexkkQmJqTdQaoZgh2r3cH/WC9IAex5iCyz9XDPu+dwB1s/Pjjj7n00kvp0aMH06ZN2+OYvn37UlBQwNKlS5PTVq5cyQcffEDfvn2rq1RJkhQgtWpP0bZt21i0aBEAa9eupaioiAULFgDQvXt3EokEF154IXXr1uW8885LOWn6oIMO4sgjjwQgJyeHPn36MGnSJCZMmEDdunW57bbbaNeuHQMGDKj+JyZJkmq9WhWKNmzYUOZwWOn9hx56CCB5rtD555+fMq579+48/PDDyfu33347119/PVOnTqWkpIQ+ffowefJk0tJq1VOWJEm1RK1KCM2bN+fDDz/81jHfNb9Uw4YNmTFjBjNmzKiM0iRJ0n4ucOcUSZIkVQVDkSRJEoYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJQy0LRp59+ytSpUznttNPo0KEDQ4YM2eO4J554goEDB9K5c2dOPfVUXnnllTJjtmzZwqRJk+jevTs5OTlceeWVfPnll1X9FCRJUkDVqlC0YsUKFi1aRKtWrWjTps0exzz33HNMmTKFQYMGkZeXR7du3RgzZgxvv/12yrhx48axZMkSrrnmGm655RZWrlzJxRdfTElJSTU8E0mSFDRpNV3AV/Xr14/+/fsDMHHiRN5///0yY+644w5OPvlkxo0bB0CPHj346KOPmDVrFnl5eQAsX76c1157jfvuu48+ffoAkJWVxeDBg1m4cCGDBw+unickSZICo1btKQqHv72c1atXs2rVKgYNGpQyffDgwSxdupSdO3cCsHjxYqLRKL17906Oyc7Opn379ixevLjyC5ckSYFXq/YUfZf8/Hxg916fr2rTpg27du1i9erVtGnThvz8fLKysgiFQinjsrOzk+vYF2lplZslI5Hd6wuFQmVqrrVC/7kNEYyak70NEZw+Q6B7XbptB0FprUGqOYjsc/WwzxUTqFBUUFAAQDQaTZleer90fmFhIQ0bNiyzfGZm5h4Pye2NcDhEo0YZ+7SObxKJhElLi1TJuqtKWiQ49Ub+vScyEg5enyFgvf73C3E0Wr+GK9l7Qaw5iOxz9bDPeydQoag2iMcTFBYWV+o6I5Ew0Wh9YrE4JSWxSl13lQntfpMuicUgUdPFlE8sHk/eBqbPEMxex3b3urBwW/Ln2q709zBINQeRfa4e9jlVNFq/XHvNAhWKMjMzgd0ft2/SpElyemFhYcr8aDTKunXryixfUFCQHLMvSkqqZgNLJBIkEsF410sexkkQmJqTdQaoZgh2r3cH/WC9IAex5iCyz9XDPu+dQB1szM7OBihzXlB+fj7p6em0aNEiOW7lypVl3kBWrlyZXIckSdJXBSoUtWjRgtatW7NgwYKU6fPnz6dnz57UqVMHgL59+1JQUMDSpUuTY1auXMkHH3xA3759q7VmSZIUDBU+fHbuuedy+eWX07Nnzz3O/7//+z/uuusuHnrooXKvc9u2bSxatAiAtWvXUlRUlAxA3bt3p3HjxlxxxRVcddVVtGzZktzcXObPn8+7777LnDlzkuvJycmhT58+TJo0iQkTJlC3bl1uu+022rVrx4ABAyr6lCVJ0n6swqHozTffZNiwYd84f+PGjSxbtmyv1rlhwwbGjh2bMq30/kMPPURubi5Dhgxh27Zt5OXlMXv2bLKyspg5cyY5OTkpy91+++1cf/31TJ06lZKSEvr06cPkyZNJSwvUaVSSJKma7FNC+LZrvXz66adkZOzdR9ebN2/Ohx9++J3jhg0b9q2BDKBhw4bMmDGDGTNm7FUNkiTpwLRXoWjevHnMmzcvef/uu+/m8ccfLzNuy5YtfPjhh56/I0mSAmOvQtG2bdvYtGlT8v7WrVv3+NUcDRo0YOTIkfz3f//3vlcoSZJUDfYqFI0aNYpRo0YBu7+89ec//zknnnhilRQmSZJUnSp8TtHLL79cmXVIkiTVqH3+KFZRURGff/45hYWFe7za7rHHHruvDyFJklTlKhyKNm7cyPTp01m4cCGxWNnvkUokEoRCIf7+97/vU4GSJEnVocKhaOrUqbzyyiuMHj2aY445psw310uSJAVJhUPRkiVLOO+887j66qsrsx5JkqQaUeHvPqtXrx7NmjWrzFokSZJqTIVD0amnnsqLL75YmbVIkiTVmAofPhs4cCDLli3jwgsvZMSIERx++OFEIpEy4zp27LhPBUqSJFWHCoei0os4Arz++utl5vvpM0mSFCQVDkXXX399ZdYhSZJUoyocioYOHVqZdUiSJNWoCp9oLUmStD+p8J6in/3sZ985JhQKMWPGjIo+hCRJUrWpcCh64403ykyLx+OsX7+eWCxG48aNqV+//j4VJ0mSVF0qHIpefvnlPU7ftWsXc+fO5cEHH+S3v/1thQuTJEmqTpV+TlF6ejrnnHMOvXv35pe//GVlr16SJKlKVNmJ1kcddRTLli2rqtVLkiRVqioLRa+//rrnFEmSpMCo8DlFM2fO3OP0LVu2sGzZMj744AMuueSSChcmSZJUnSo9FGVmZtKiRQumTZvG8OHDK1yYJElSdapwKPrHP/5RmXVIkiTVKK9oLUmSxD7sKSr15ptv8uqrr/L5558DcMQRR3D88cfTvXv3fS5OkiSpulQ4FO3cuZOf/vSnvPjiiyQSCaLRKACFhYXcf//9/PCHP+TWW28lPT290oqVJEmqKhU+fDZr1ixeeOEFfvzjH/Paa6/x5ptv8uabb7JkyRIuuOACFi5cyKxZsyqzVkmSpCpT4VD0zDPPMHToUK6++moOPfTQ5PRDDjmE//3f/+X000/n6aefrpQiJUmSqlqFQ9H69evp0qXLN87v0qUL69evr+jqv9VLL73EsGHDyMnJoU+fPowdO5bVq1eXGffEE08wcOBAOnfuzKmnnsorr7xSJfVIkqTgq3AoOvzww3nzzTe/cf6yZcs4/PDDK7r6b/TGG28wZswYjjzySGbNmsWkSZP4xz/+wQUXXMD27duT45577jmmTJnCoEGDyMvLo1u3bowZM4a333670muSJEnBV+ETrU8//XTuvPNOGjZsyPnnn0+rVq0IhUKsWrWKBx98kAULFnDFFVdUZq3A7rBzxBFHMGPGDEKhEACNGzfmvPPO4/333+eYY44B4I477uDkk09m3LhxAPTo0YOPPvqIWbNmkZeXV+l1SZKkYKtwKLrssstYvXo1jz/+OE888QTh8O6dTvF4nEQiwdChQ7nssssqrdBSJSUlZGRkJAMRQMOGDQFIJBIArF69mlWrVvG///u/KcsOHjyYm266iZ07d1KnTp1Kr02SJAVXhUNRJBLhhhtu4Pzzz2fx4sWsXbsWgGbNmtG3b1+OOuqoSivyq370ox/x1FNP8cgjj3DqqaeyefNmfvWrX9GhQweOPvpoAPLz8wHIyspKWbZNmzbs2rWL1atX06ZNmyqpT5IkBdNehaIdO3Zw3XXX8b3vfY/Ro0cDcNRRR5UJQA899BCPPfYYP//5zyv9OkXHHHMMM2fO5Kc//SnXXnstAO3bt+fee+8lEokAUFBQAJC8dlKp0vul8ysqLa1yLwQeiexeXygUStkDVquF/nMbIhg1J3sbIjh9hkD3unTbDoLSWoNUcxDZ5+phnytmr0LR3LlzmTdvHvPnz//Wcccffzw333wzbdu2ZdSoUftU4Ne99dZbXH311QwfPpzjjz+ezZs3c9ddd3HJJZfw6KOPUq9evUp9vK8Lh0M0apRRJeuORMKkpUWqZN1VJS0SnHoj/z7EGwkHr88QsF7/+4U4Gq1fw5XsvSDWHET2uXrY572zV6HoT3/6EwMGDKBFixbfOq5ly5acdNJJPPfcc5UeiqZPn06PHj2YOHFiclq3bt04/vjjeeqppxgxYgSZmZkAbNmyhSZNmiTHFRYWAiTnV0Q8nqCwsLjCy+9JJBImGq1PLBanpCRWqeuuMqHdb9IlsRgkarqY8onF48nbwPQZgtnr2O5eFxZuS/5c25X+Hgap5iCyz9XDPqeKRuuXa6/ZXoWijz76iFNOOaVcY3NycqrkukCffPIJJ554Ysq0ww8/nEaNGvHZZ58BkJ2dDew+t6j059L76enp3xnqvktJSdVsYIlEInmyeG2XPIyTIDA1J+sMUM0Q7F7vDvrBekEOYs1BZJ+rh33eO3t1sHHXrl3lPkcoPT2dnTt3Vqiob3PEEUfwwQcfpExbu3YtmzZtolmzZgC0aNGC1q1bs2DBgpRx8+fPp2fPnn7yTJIklbFXe4oOO+wwVqxYUa6xK1as4LDDDqtQUd9m5MiRzJgxg+nTp9OvXz82b97M3XffzSGHHMKgQYOS46644gquuuoqWrZsSW5uLvPnz+fdd99lzpw5lV6TJEkKvr0KRb169eKpp57i0ksv5ZBDDvnGcRs2bOCpp55i4MCB+1zg15177rnUqVOH3/3ud/zhD38gIyODbt26cfvtt9OoUaPkuCFDhrBt2zby8vKYPXs2WVlZzJw5k5ycnEqvSZIkBd9ehaKLL76Yp59+mvPOO4/rrruOrl27lhnzzjvvMHnyZHbs2MFFF11UaYWWCoVCnHXWWZx11lnfOXbYsGEMGzas0muQJEn7n70KRS1atOD222/nf/7nfxg5ciQtWrSgbdu2ZGRksHXrVlasWMFnn31GvXr1+NWvfkXLli2rqm5JkqRKtddXtD7++ON5+umnycvL49VXX+XFF19MzjvssMMYNmwYF1988T5/wkuSJKk6VehrPpo3b860adMAKCoqYuvWrWRkZHDQQQdVanGSgi1IV9MN6hWA4/EE8XgwLtUg1XYV/u6zUgcddJBhSFKKhg3SiccTgbyabtBqjsXjbN5UbDCSKsE+hyJJ+rp6ddMIh0P87vl/8MWGrTVdTrmEQiEikTCxWDwwF8k8rHEDRp3UnnA4ZCiSKoGhSFKV+XJjMWvXF9V0GeUSCoVIS4tQUhILTCiSVLmCdfBckiSpihiKJEmSMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEhDgUDRv3jxOP/10OnfuTG5uLhdddBHbt29Pzn/55Zc59dRT6dy5MwMHDuQPf/hDDVYrSZJqu7SaLqAi7r77bvLy8rjsssvo1q0bmzZtYunSpcRiMQD+8pe/MGbMGM4880wmTZrE//3f//Hzn/+cjIwMTjrppBquXpIk1UaBC0X5+fnMnDmTu+66ix/84AfJ6QMHDkz+fPfdd9OlSxeuvfZaAHr06MHq1au54447DEWSJGmPAnf47I9//CPNmzdPCURftXPnTt54440y4Wfw4MF88sknrFmzpjrKlCRJARO4UPTOO+/Qtm1b7rrrLnr27EmnTp0YOXIk77zzDgCfffYZu3btIjs7O2W5Nm3aALv3NEmSJH1d4A6frV+/nvfff5+PPvqIX/ziF9SvX5977rmHCy64gIULF1JQUABANBpNWa70fun8fZGWVrlZMhLZvb5QKEQoFKrUdVeZ0H9uQwSj5mRvQwSnz2Cvq0uA+1z6GhIEpbUGqeYgss8VE7hQlEgkKC4u5te//jVHHXUUAF27dqVfv37MmTOHPn36VOnjh8MhGjXKqJJ1RyJh0tIiVbLuqpIWCU69kXA4eRu0PoO9ri6B6vO/3/Ci0fo1XMneC2LNQWSf907gQlE0GuXggw9OBiKAgw8+mA4dOvDxxx9z8sknA7Bly5aU5QoLCwHIzMzcp8ePxxMUFhbv0zq+LhIJE43WJxaLU1ISq9R1V5nQ7jePklgMEjVdTPnE4vHkbWD6DPa6ugSxz7HdfS4s3Jb8ubYrfb0LUs1BZJ9TRaP1y7XXLHCh6Mgjj+Szzz7b47wdO3bQsmVL0tPTyc/P57jjjkvOKz2X6OvnGlVESUnVbGCJRIJEIhivxsnDCwkCU3OyzgDVDPa6ugS5z7v/oArWG18Qaw4i+7x3Anew8YQTTmDz5s38/e9/T07btGkTf/vb3+jYsSN16tQhNzeX559/PmW5+fPn06ZNG5o3b17dJUuSpAAI3J6i/v3707lzZ6688krGjx9P3bp1mT17NnXq1GHUqFEAXH755Zx77rlcc801DBo0iDfeeINnn32W2267rYarlyRJtVXg9hSFw2Fmz55Nt27dmDp1Kv/zP//DQQcdxCOPPEKTJk0AOOaYY7jzzjv561//yoUXXsizzz7L9OnTGTRoUA1XL0mSaqvA7SkCaNy4MTfffPO3jjnxxBM58cQTq6kiSZIUdIHbUyRJklQVDEWSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJwH4QirZu3Urfvn1p164d7733Xsq8J554goEDB9K5c2dOPfVUXnnllRqqUpIk1XaBD0V33XUXsViszPTnnnuOKVOmMGjQIPLy8ujWrRtjxozh7bffrv4iJUlSrRfoUPTJJ5/w6KOPcsUVV5SZd8cdd3DyySczbtw4evTowbXXXkvnzp2ZNWtWDVQqSZJqu0CHounTpzNy5EiysrJSpq9evZpVq1YxaNCglOmDBw9m6dKl7Ny5szrLlCRJAZBW0wVU1IIFC/joo4+48847+dvf/pYyLz8/H6BMWGrTpg27du1i9erVtGnTpsKPnZZWuVkyEtm9vlAoRCgUqtR1V5nQf25DBKPmZG9DBKfPYK+rS4D7XPoaEgSltQap5iCyzxUTyFC0bds2brjhBsaPH89BBx1UZn5BQQEA0Wg0ZXrp/dL5FREOh2jUKKPCy3+bSCRMWlqkStZdVdIiwak3Eg4nb4PWZ7DX1SVQff73G140Wr+GK9l7Qaw5iOzz3glkKLr77rs55JBDOOOMM6r9sePxBIWFxZW6zkgkTDRan1gsTklJ2ZPGa6XQ7jePklgMEjVdTPnE4vHkbWD6DPa6ugSxz7HdfS4s3Jb8ubYrfb0LUs1BZJ9TRaP1y7XXLHChaO3atfz2t79l1qxZbNmyBYDi4uLk7datW8nMzARgy5YtNGnSJLlsYWEhQHJ+RZWUVM0GlkgkSCSC8WqcPLyQIDA1J+sMUM1gr6tLkPu8+w+qYL3xBbHmILLPeydwoWjNmjXs2rWLSy65pMy8c889l65du3LrrbcCu88tys7OTs7Pz88nPT2dFi1aVFu9kiQpGAIXitq3b89DDz2UMu3vf/87119/PdOmTaNz5860aNGC1q1bs2DBAvr3758cN3/+fHr27EmdOnWqu2xJklTLBS4URaNRcnNz9zivY8eOdOzYEYArrriCq666ipYtW5Kbm8v8+fN59913mTNnTnWWK0mSAiJwoai8hgwZwrZt28jLy2P27NlkZWUxc+ZMcnJyaro0SZJUC+0XoSg3N5cPP/ywzPRhw4YxbNiwGqhIkiQFzX4RiiRJqkrhcIhwOBgX9YTgXrwxHk8Qj9fcpz8NRZIkfYtwOMTBjRokL0oaJEG7eGMsHmfzpuIaC0aGIkmSvkU4HCISDvPogr/z5cbKvXhvVQmFQkQiYWKxeGCuu3VY4waMOqk94XDIUCRJUm325cZi1q4vqukyyiUUCpGWFqGkJBaYUFQbBG9foCRJUhUwFEmSJGEokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiQA0mq6AEnSvolEgvP3bWmtQaxZ+z9DkSQFVMMG6cTjCaLR+jVdyl4LYs3a/wUuFP3pT3/i6aef5m9/+xuFhYW0atWK0aNHc8YZZxAKhZLjnnjiCe69914+//xzsrKyGD9+PCeccEINVi5Jlate3TTC4RC/e/4ffLFha02XUy6hUIhIJEwsFieRSNR0OeXSrnVjBvXKSnmP0f4pcKHogQceoFmzZkycOJFGjRrx+uuvM2XKFNatW8eYMWMAeO6555gyZQqXXXYZPXr0YP78+YwZM4ZHHnmEbt261ewTkKRK9uXGYtauL6rpMsolFAqRlhahpCQWmFDUpJF7tQ4UgQtFd999N40bN07e79mzJ5s3b+b+++/nJz/5CeFwmDvuuIOTTz6ZcePGAdCjRw8++ugjZs2aRV5eXg1VLkmSarPAnT321UBUqn379hQVFVFcXMzq1atZtWoVgwYNShkzePBgli5dys6dO6urVEmSFCCBC0V78te//pWmTZty0EEHkZ+fD0BWVlbKmDZt2rBr1y5Wr15dEyVKkqRaLnCHz77uL3/5C/Pnz2fChAkAFBQUABCNRlPGld4vnb8v0tIqN0uWftwzFAoF50S+0H9uQwSj5mRvQwSnz2Cvq4t9rh72uXoEuM81eQmEQIeidevWMX78eHJzczn33HOr5THD4RCNGmVUybojkTBpaZEqWXdVSYsEp95IOJy8DVqfwV5XF/tcPexz9QhUn/8dhmrycg2BDUWFhYVcfPHFHHzwwdx5552E/73RZmZmArBlyxaaNGmSMv6r8ysqHk9QWFi8T+v4ukgkTDRan1gsTklJrFLXXWVCu3/ZSmIxCMYHSIjF48nbwPQZ7HV1sc/Vwz5XjyD2Oba7z4WF25I/V5ZotH659kAFMhRt376dSy+9lC1btjB37lwaNmyYnJednQ1Afn5+8ufS++np6bRo0WKfH7+kpHL/s0olEonAfEQ1uTs2QWBqTtYZoJrBXlcX+1w97HP1CHKfd+8gqJr32e8SuBOtS0pKGDduHPn5+dx77700bdo0ZX6LFi1o3bo1CxYsSJk+f/58evbsSZ06daqzXEmSFBCB21M0bdo0XnnlFSZOnEhRURFvv/12cl6HDh2oU6cOV1xxBVdddRUtW7YkNzeX+fPn8+677zJnzpyaK1ySJNVqgQtFS5YsAeCGG24oM++ll16iefPmDBkyhG3btpGXl8fs2bPJyspi5syZ5OTkVHe5kiQpIAIXil5++eVyjRs2bBjDhg2r4mokSdL+InDnFEmSJFUFQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSsJ+Hok8++YQf//jHdOvWjd69e3PTTTexc+fOmi5LkiTVQmk1XUBVKSgo4LzzzqN169bceeedfPHFF9xwww1s376dqVOn1nR5kiSpltlvQ9Fjjz3G1q1bmTlzJgcffDAAsViMadOmcemll9K0adOaLVCSJNUq++3hs8WLF9OzZ89kIAIYNGgQ8XicJUuW1FxhkiSpVtpv9xTl5+dzxhlnpEyLRqM0adKE/Pz8Cq83HA7RuHHGvpaXIhTafXvR6Z2JxROVum79R3ra7r8BLjytk32uYva6etjn6mGfq0ckvPvNMDOzPolKbnP43+v+LvttKCosLCQajZaZnpmZSUFBQYXXGwqFiETK19y9dVCDOlWyXqWyz9XHXlcP+1w97HP1CIdr7iDWfnv4TJIkaW/st6EoGo2yZcuWMtMLCgrIzMysgYokSVJttt+Gouzs7DLnDm3ZsoX169eTnZ1dQ1VJkqTaar8NRX379uX111+nsLAwOW3BggWEw2F69+5dg5VJkqTaKJRIVPY53rVDQUEBJ598MllZWVx66aXJizeecsopXrxRkiSVsd+GItj9NR+//OUvWb58ORkZGZx22mmMHz+eOnX8BIEkSUq1X4ciSZKk8tpvzymSJEnaG4YiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQtN+48847adeuHccddxzxeLzM/JEjR9KuXTsmTpy4z4/1wAMP0K5du+T9N954g3bt2vHee+/t87qrSnX2B4LZo8pgn+H3v/897dq1Y9WqVSnTH374Ydq1a8cdd9yRMn3z5s0cddRR5OXllfsx+vXrx7XXXpu8P3HiRIYMGbJPde+N0v/n0n+5ubmcddZZLFq0qNpqOBBU9bZU09tRbWQo2o+kp6ezadMmli1bljJ97dq1vP322zRo0KBKHrdjx47MnTuXNm3aVMn6K0tN9QeC06PKcKD3+eijjwZg+fLlKdPfeust6tevX2b68uXLSSQSfP/736+2GitDvXr1mDt3LnPnzuWXv/wlO3bs4LLLLuOtt96q6dL2GwfKtlSbGIr2I+np6fTt25fnnnsuZfpzzz3H9773PVq2bFklj3vQQQfRrVu3Kn2zqww11R+ovT1KJBLs3Lmzwsvv3LmzzB6hA73P2dnZNG7cuEw4eOuttxg6dChvv/02sVgsZXrdunXp1KlTdZe6T8LhMN26daNbt24MGDCAu+++m0QiwZNPPrlP692+fXvlFLgfOFC2pdrEULSfGTJkCM8//zy7du1KTnv22Wf3uEv0k08+4fLLL+f73/8+3bp145JLLuGzzz5LGVNUVMTVV19NTk4OPXr04Kabbkr5JYSyhyzWrFlDu3btWLBgQcq46667jn79+iXv//GPf0wud8EFF9C1a1cGDhzI66+/Tjwe57bbbqNXr1706tWLW2+9dY+HY6qyP7D/9ah09/iiRYs49dRT6dy5My+//DLFxcVce+21DBw4kK5du9KvXz+mTp3Kli1bUpYv3d2el5fHCSecQJcuXdi8eXOy1kcffZTi4mKWLVvGk08+mfIGdyD1+eijj055I/v8889Zt24d5557Ljt37uTDDz9Mznvrrbfo1KlT8uuH1q1bx1VXXUVubi5dunTh7LPP5v333//Wx6sNmjZtSuPGjfn8888B+PLLL/nZz37GiSeeSJcuXRgwYAC/+tWvyoTwdu3aMXv2bG6++WZ69+5Nz549gd2B/b777mPgwIF06tSJE088kQceeKC6n1aNq+i2FNTtqKYZivYzJ5xwAjt37mTJkiUAfPzxx3z44YcMHjw4Zdzq1asZOXIkBQUF3HDDDdxyyy1s3LiR888/P+VFa9KkSbzwwgtcddVV3HjjjXzyySc8+OCDlVrzhAkTOP7445k5cyaHHXYYY8aM4brrrmPdunXceOONjBo1itmzZ5fZ81AR5e0P7L89+vLLL5k+fTrnn38+eXl5tG/fnu3btxOLxRg/fjx5eXmMHTuWZcuW8ZOf/KTM8gsXLuTVV1/l5z//OXfddRcNGjTg/vvvZ/LkybRs2ZK6dety2WWXsWPHDq6++mrgwOvz0UcfzSeffEJBQQGw+83qv/7rv8jKyqJdu3bJN7ldu3bx3nvvJQ93FBQUMGrUKP7xj38wZcoU7rzzTurXr895553Hhg0bKvW5VratW7dSUFBA8+bNAdi0aRMHH3wwP/vZz7j33nu56KKLmDdvHr/4xS/KLPvQQw+xatUqrrvuOm6++WZgd3C94447OP3005k9ezZDhw7llltu4Xe/+121Pq+aVpFtKcjbUU1Lq+kCVLnq169Pv379eO655zj++ON59tlnycnJoUWLFinjZs6cSWZmJvfffz9169YFdv/ynXjiiTzxxBOcffbZfPzxxyxcuJDp06dz5plnAtCnTx8GDBhQqTWfc845jBo1Ctj91+Ypp5zC+++/z9y5cwE47rjjePnll1mwYAGnnHLKPj1WefsD+2+PCgoKyMvLo2vXrinTp02blvy5pKSE5s2bM2rUKFauXElWVlZy3q5du8jLy0seoioqKuKOO+7goosuIj09nY8++ogLL7yQP/3pT7zwwgts2rTpgOvz97//fRKJBG+//TY/+MEPWL58OTk5Ocnntnz5cs455xw++OADduzYkQxFDz74IIWFhTzxxBMccsghAPTs2ZOBAwdy3333JUNmbVFSUgLsDto333wzGRkZnHvuucDuPUATJkxIjj366KOpX78+EydOZOrUqdSvXz85LzMzk5kzZxIKhQD47LPPmDNnDtOmTWPEiBEA9OrVi+3btzNr1ixGjBhBOHxg/E1fkW0paNtRbXJgbFUHmCFDhvDSSy+xfft25s+fz8knn1xmzJIlS+jXrx+RSISSkhJKSkqIRqN06NAhuYv1vffeI5FI8MMf/jC5XCQSoX///pVab+/evZM/t27dGoAePXqkjMnKyuKf//xnpTxeefoD+2+PDj744DKBCODJJ5/k9NNPJycnh44dOybDwdc/+ZKbm5tyzs7y5cspLi7mpJNOIh6Pk0gkKCkpYdiwYcTjcf72t78dcH3u2LEj9erVS/4V/9ZbbyXfyLp165YyPRQKJectWbKE3NxcMjMzk70Ih8Mce+yxte6Ti8XFxXTs2JGOHTtywgkn8Pzzz3PTTTeRnZ0N7D789cADDzB48GC6dOlCx44dueqqqygpKWH16tUp6+rbt28yEAG8/vrrAAwYMCDZh5KSEnr16sX69esr7bUgCCqyLQVpO6pt3FO0H+rTpw/p6en8+te/Zs2aNQwaNKjMmE2bNvHggw/u8fBDeno6AOvXryc9PZ3MzMyU+aV/eVSWhg0bJn8uPa8iGo2WqWlfTgj+qvL0B/bfHh166KFlpr3wwgtMmDCBESNGMH78eA4++GDWr1/Pf//3f7Njx46UsV9/bps2bQJg6NChyWkdO3ZM/vzggw8ecH1OT0+nc+fOvPXWW2zdupUPP/ww+UaWk5OTPC/krbfe4sgjj0w+r02bNvH222+n9K9UVZ6gXhH16tVjzpw5JBIJVq1axa233sqECRN45plnOOyww3jwwQe58cYbueiii8jNzSUajfLee+9x7bXXlmubSiQSZQJpqX/+8580a9asyp5bbVKRbSlI21FtYyjaD6WnpzNgwAAeeOABevbsucc3wczMTH7wgx8k9wZ8VUZGBgBNmjRh165dFBQUpLwZfdcx6dJDIF89mRmgsLBwr59LVShPf2D/7dFX/yIvtWDBAtq3b59yzZI333yzXMuXPu+ZM2eyaNEinnnmGebMmQPAPffcw8svv3xA9rn0MMZf//pX6tSpQ/v27QFo1qwZTZo04a233mL58uUpJ3xnZmZy3HHHMXbs2DLrKw1ptUU4HKZz584AdOnShaysLIYPH86sWbOYNm0aCxYsoF+/fvz0pz9NLvPJJ5/scV172qZCoRCPPvpoMhh/1VcP5x4I9nZbCtJ2VNsYivZTw4YNY8OGDQwfPnyP83v27MmKFSvo0KEDkUhkj2NKX/BeeOGF5HkcsViMF1988Vsf+5BDDiE9PT3lBXDnzp1lrltTk76rP3Bg9Wj79u1l3nyeeeaZci2bk5ND/fr1WbduHU2bNk15s7z00ktJJBIHZJ+PPvpo7rnnHh555BE6d+5MWlpayrynnnqK9evXJ69FA7vPm3n66adp06ZNrbt8w3fp3LkzJ598Mn/84x8ZM2bMPm1TpZ9A27x5c0poPFDt7bYU5O2ophmK9lNdunThrrvu+sb5V155JWeeeSYXXnghw4cP59BDD+Vf//oXb775JscccwxDhgzhyCOP5Ic//CEzZsxgx44dNG/enEcffbTMX91fFw6H+eEPf8gjjzxCq1ataNSoUXI3+572UtSE7+oPHFg96tWrF9deey2zZs0iJyeHRYsWsXTp0nItG41GufLKK7n55pvp0KEDsViM1157jdWrV/PSSy8lP/nyTfbXPufk5BAOh1m0aBGXXHJJyrxu3bpx0003AaRcaO/888/nmWee4ZxzzuHcc8/liCOOYOPGjbzzzjs0bdqU888/v0pr3lc/+clPmD9/Pg8++CC9evXioYceYs6cObRu3Zqnn36aTz/9tFzrycrK4uyzz+bqq6/mwgsvpGvXruzatYtVq1bxxhtvfOfv7v5mb7eloG9HNclQdIBq1aoVTzzxBLfffjvTpk2juLiYJk2acOyxx6Z8bcKMGTO49tprueWWW6hTpw5Dhw6le/fuyV/CbzJlyhSmTJnC9OnTycjI4MILLyQrK4uXXnqpqp9apTmQejRy5EjWrFnDnDlzuO++++jTpw+33nrrt+7h+aoLLriApk2bcsMNN7Bjxw7Gjh1Ly5YtOf744/d4+OOr9tc+R6NRjjzySD766KPkOSClcnJySCQSHHbYYSmfyGvUqBFz587l9ttv55ZbbmHz5s0ccsghdO3aNeUk89oqOzubwYMH87vf/Y5XX32VTZs2Jb+KYuDAgUyePJnLLrusXOuaPHkyWVlZzJ07l1mzZpGRkUFWVhYnnXRSVT6FWmlvt6Wgb0c1KZRIJBI1XYQkSVJN8yP5kiRJGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSUpas2YN7dq147777qvSxxk9ejSjR4+u0seQtPcMRZIkSRiKJEmSAEORJEkSYCiSVMt98cUXTJo0iT59+tCpUyf69evHL37xC3bu3AnA6tWrufLKK+nevTtdu3Zl+PDhvPrqq2XWs2HDBiZNmkSvXr3o3Lkzp556KvPmzfvOx08kEkyZMoVOnTqxcOHC5PSnnnqKH/3oR3Tp0oXu3bszfvx4/vnPf5ZZfu7cufTv358uXbpw5pln8pe//KXizZBUpdJqugBJ+iZffPEFZ555Jlu2bGH48OFkZ2fzxRdf8Pzzz7N9+3YKCwsZOXIk27ZtY/To0TRq1Ih58+Zx+eWXc8cddyS/EXz79u2MHj2azz77jLPPPpvmzZuzYMECJk6cSGFhIeedd94eHz8WizFp0iTmz5/PzJkzOf744wG4++67+fWvf82gQYM488wz2bhxI3PmzOHss8/mySefJBqNAvDEE08wdepUcnJyOO+881i9ejWXX345mZmZ/Nd//Ve19FDSXkhIUi119dVXJ4466qjEu+++W2ZePB5PXHfddYm2bdsmli1blpxeVFSU6NevX+KEE05IxGKxRCKRSDzwwAOJtm3bJp566qnkuJ07dyZGjBiR6NatW2LLli2JRCKRWL16daJt27aJe++9N7Fr167EuHHjEl26dEn8+c9/Ti63Zs2aRPv27RN33313Sj0ffvhhokOHDsnpO3fuTPTs2TNx2mmnJXbs2JEcN3fu3ETbtm0T55xzTiV0SFJl8vCZpFopHo/z4osvcsIJJ9C5c+cy80OhEIsWLaJLly4cc8wxyekZGRmMGDGCtWvX8vHHHwOwePFimjRpwpAhQ5Lj0tPTGT16NMXFxSxbtixl3bt27WLs2LG8+uqrzJ49mz59+iTnvfDCC8TjcQYNGsTGjRuT/w499FBatWrFG2+8AcD777/Phg0bGDlyJHXq1EkuP3ToUBo2bFg5TZJUqTx8JqlW2rhxI0VFRXzve9/7xjGff/45Xbt2LTM9Ozs7Ob9t27asXbuWVq1aEQ6n/h3Ypk2b5Liv+s1vfkNxcTF5eXnk5uamzFu1ahWJRIIBAwbssaa0tLSUdbZq1Splfnp6Oi1atPjG5ySp5hiKJOlrjjvuOP785z9z7733kpubS926dZPz4vE4oVCIvLw8IpFImWUbNGhQnaVKqkSGIkm1UuPGjTnooINYsWLFN4454ogjWLlyZZnp+fn5yfkAzZo148MPPyQej6fsLfr6uFJdu3Zl5MiRXHrppYwdO5aZM2cm9wC1bNmSRCJB8+bNycrK+tbaAD799FN69uyZnL5r1y7WrFnDUUcd9a3PX1L185wiSbVSOBymf//+vPLKK7z33ntl5icSCX7wgx/w7rvvsnz58uT04uJiHn/8cZo1a8aRRx4JQN++fVm/fj3z589PjispKeHhhx+mQYMGHHvssWXW36tXL2677Tb+/Oc/c/XVVxOPxwEYMGAAkUiEmTNnkkgkytS0adMmADp16kTjxo157LHHkpcPAJg3bx6FhYX70BlJVSWU+PpvtSTVEl988QVnnHEGRUVFDB8+nDZt2rB+/XoWLFjAo48+ys6dOznttNPYsWMHo0ePJjMzkyeffJJ//OMf3HnnnSkfyf/Rj37EZ599xujRo2nWrBnPP/88b775JpMmTUp+JH/NmjWceOKJXH311Vx44YXA7usRTZgwgeHDh3PttdcCMHv2bG699VZycnLo378/GRkZrFmzhhdffJHhw4cnl507dy5Tp07l6KOPZvDgwaxZs4Y//vGPyY/kP/zwwzXQVUnfxMNnkmqtpk2b8vjjj/PrX/+aZ555hqKiIpo2bUrfvn2pV68e0WiUxx57jJtvvpk5c+awY8cO2rVrxz333JO8phBAvXr1ePjhh7nllluYN28eRUVFZGVlcf311/OjH/3oW2s47bTT2Lp1K9OmTSMjI4MJEyZwySWX0Lp1ax544AFmzZoFwOGHH07v3r3p169fctkRI0YQi8W47777uOmmm2jbtm3yGkeSah/3FEmSJOE5RZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEwP8D2gBGn3vH2JkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=steak, x=\"cooked\")" + ] + }, + { + "cell_type": "markdown", + "id": "ec996656-8880-4077-bc4f-01e7d600dece", + "metadata": {}, + "source": [ + "### Number of people who like their steak rare, and who drink" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "5d1555da-3c4f-4105-b7b7-83a1bfb3f833", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "drink cooked \n", + "No Medium 23\n", + " Medium Well 17\n", + " Medium rare 38\n", + " Rare 3\n", + " Well 12\n", + "Yes Medium 109\n", + " Medium Well 58\n", + " Medium rare 128\n", + " Rare 20\n", + " Well 24\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "\n", + "counts = steak.groupby([\"drink\", 'cooked']).size()\n", + "print(counts)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "32ca9aa2-e1ad-4563-b2de-55326f187e1f", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAATmdJREFUeJzt3Xd4FOXexvHvliSEJJtGkRYIQamBICWUEKSJdEVBbNgBfWl6UBEFAWlWOgECBwVRaTYQQeEgICpHpAURRAhIRyDJBggk2d33jxxW11DTdhfuz3VxkZ155pnfbBL25pmZZwwOh8OBiIiIyE3O6O4CRERERDyBQpGIiIgICkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgKA2d0FeBuHw4HdrknARUREvIXRaMBgMFy1nULRdbLbHZw+fdbdZYiIiMg1CgsLwGS6eijS6TMRERERFIpEREREAIUiEREREUChSERERATQhdYiIlKE7HY7Nlu2u8uQG4jJZMZoLJgxHoUiEREpdA6HA6v1NBkZZ9xdityA/P0DsVjCrum2+ytRKBIRkUJ3MRAFBobi6+uX7w8vEcgJ25mZFzhzJgWA4ODwfPWnUCQiIoXKbrc5A1FgoMXd5cgNxtfXD4AzZ1IICgrN16k0XWgtIiKFymazAX99eIkUtIs/W/m9Xk2hSEREioROmUlhKaifLYUiERERERSKRERERACFIhEREY909OgR4uLq8+GH8wp1P3379qJv316Fug9voVAkIiIigm7Jl+tkNBowGj33Ykm73YHd7nB3GSIi4oUUiuSaGY0GQkP9MRpN7i7lsux2GykpGQpGIiJy3RSK5JrljBKZSF6WSMapo+4uJxf/8DJEdnwao9GgUCQiheLPP08wa9Z0fvzxe6zWNEqUKElsbGMGDBiEj48Phw8fIiFhMj///BOZmReIirqVxx57iiZN4lz6SUk5zfTpU/j+++84e/YMFSpUpEePh2jXruMV9+9wOHjzzTF89dVSRowYQ/PmLQFYuXI5CxZ8yP79yfj5+dGwYSzPPjuA0qVvcdn+888/Yf789zl58iRRUVH07ftcwb5BXk6hSK5bxqmjZBz/w91liIgUqZMn/+Tppx/lzJl0One+h4iISpw8+Sfffrua8+fPk55u5ZlnnuT8+fPcd9/9BAcH89VXXzJ48PO8/vobNG/eAoALF87Tr19vDh06yL33dqdMmbKsWbOa0aOHk56eTvfuD1xy/zabjbFjR/Kf/3zDmDFvO4PW++/PZtas6bRs2ZpOne4mNTWFJUsW0LdvL/797/kEBQUBsGzZZ7z11hiio2vTvfsDHDlymJdeeh6LxUKpUqWL5k30cApFIiIi12D69CmcPn2KmTPfo1q1Gs7lTz3VB4fDweTJ73L69CmmTp1FnToxAHTqdA+PPvoAU6aMp1mz5hiNRj7//FP2709m2LDXufPOdgDcffd99O3bi8TEBDp27Ezx4gEu+87Ozub114fy3XfrGDfuXRo2bATAsWNH+fe/Z/L008/Qs+cTzvbNm7fg8ccf4tNPF9Gz5xNkZ2czY8Y0br31NiZNmoGPjw8AlSpV5s03RysU/Y/uPhMREbkKu93O+vXf0rRpM5dAdJHBYOCHHzZQvXpNZyACKF68OJ0738PRo0fYv38fAD/+uIHw8HBat27rbGc2m7nvvvvJyDjHli2bXfrOzs5i6NDBfP/9d7z11kRnIAJYu/Y/2O12WrZsQ2pqqvNPWFgJKlSIYPPmTQDs2rWTlJTTdOlyrzMQAbRv34nAwMACeIduDBopEhERuYrU1BTOnj1LZGTUZdscP36MGjVq5VpeqVIlAI4dO0blylU4duwo5ctH5HpwacWKkf9r53rN5rx575GRcY63357E7bfXd1l38OBBHA4HPXrcc8maTCazS58VKkS4rDebzZQtW+6yx3SzUSgSERHxYLGxjdi48Qc+/HAudevWw8/vrwfrOhx2DAYDb7896ZJPh/f3L16UpXo9hSIREZGrCAkJJSAggOTkvZdtU7r0Lfzxx4Fcyw8c2A/ALbfc8r+/y7B37x7sdrtLkPnjj/3O9X9Xo0Y0Xbrcy0svPcfQoYMZM+YtzOacj+9y5crjcDgoU6YsEREVL1vbxT4PHvyDevUaOJdnZ2dz5MgRqlS59QpHf/PQNUUiIiJXYTQaadbsDjZsWM+uXTtzrXc4HDRu3JRff/2FHTu2O5dnZGTwxRefUqZMWSpVqgxAo0ZNOXXqFKtXf+1sl52dzeLFC/D3L07durfn6r9Bg1iGDx/Dxo3f8/rrw7Db7QA0b94Sk8nEnDmJOByuU5E4HA7S0lIBqFatBiEhoXz++RKysrKcbZYvX8qZM+l5f2NuMBopEhERuQa9e/8fP/30I3379qJz53uoWDGSU6dOsmbNKqZNm83DDz/GqlVfM2hQf+67rwcWi4WvvlrG0aNHGDXqTeeoUJcu9/DFF58wZswIdu/eRZkyZVizZjVJSdvo3/9fue48uyg+/g6GDHmNUaNeIyAggBdffIVy5crz1FPPMGPGFI4dO0KzZndQvHhxjhw5wrp139K58z08+OAjmM1mnn76Gd56awz9+/ehVas2HD16hC+/XKpriv5GoUhEROQalCxZihkz3mfWrAS+/noF586dpUSJkjRq1IRixYoRFBREQsJsEhIms3jxAjIzM4mKqsIbb4x3mbzRz68YkyfPICFhMitWLOPs2bNERFRkyJDXaN++0xVraNu2PefOneOdd8YREBDI//3fAB555DEiIiJYsOBD5sxJBKBUqdI0bBhLXFy8c9suXbpit9v58MN5TJs2icqVq/DGG++SmJhQOG+YFzI4/jneJldks9k5ffqsu8twC7PZSGhoADvfH+mRkzf6l46gxqPDSEk5S3a23d3liMj/ZGVlcurUUcLDy+Dj4+vucuQGdLWfsbCwAEymq18xpGuKRERERFAoEhEREQEUikREREQAhSIRERERQKFIREREBPCwW/IPHDjA7Nmz2bZtG3v27KFy5cosW7bMuf7MmTPMmTOHtWvXsn//fnx9falduzbPPfccVatWdekrPT2dsWPHsmrVKrKysmjWrBmvvvoqpUqVKurDEhERES/gUSNFe/bsYe3atVSsWJGoqNwP3Tty5AgLFiygadOmTJgwgddff5309HTuv/9+9u51nXp94MCBbNiwgeHDh/P222+TnJzM008/TXZ2dlEdjoiIiHgRjxopatmyJa1btwZg8ODB7Nixw2V9+fLl+eabb/D393cua9SoES1btuTDDz9k6NChAGzZsoXvvvuO2bNnExeXM2FWZGQk7du35+uvv6Z9+/ZFdEQiIiLiLTxqpOhST/j9u+LFi7sEIoCAgAAiIiI4ceKEc9m6deuwWCw0bdrUuaxy5cpUr16ddevWFWzRIiIickPwqJGivLBarezZs4cmTZo4l+3bt4/IyEgMBoNL28qVK7Nv375879Ns9qgsWWSuZTZQT+AtdYrcLOx2w9UbiRQAk8mQr89orw9Fb731FgaDgQceeMC5zGq1EhQUlKttcHBwrlNy18toNBAaeumH9YlnsFj8r95IRIrM+fMmTp40XvIDy2AwYDQWfWiy2x25nip/LRITpzN79kxKlizJ559/lesMx9NPP05S0jbat+/EsGEj8lXjxx/PZ8KEd/jxx80A/PzzJv7v/3oxZ84HVK9eI19932jsdgNGo5Hg4OIUK1Ysz/14dShasmQJCxcuZNy4cdxyyy1Fsk+73YHVeq5I9uVpTCajVwQOqzUDm03PPhPxFJmZF7Db7dhsDpfnEhqNBkJC/N0yumuz2UlNPYfdfn3ByG53YDabSU1NZdOmTdx+e33numPHjrJjx3b8/YvjcDjy/QzGi7Vd7KdKlduYPn0O5ctX1PMd/8Fmc2C320lLO0dGhi3Xeovl2n7OvDYUrV27lmHDhvHss89yzz33uKyzWCwcO3Ys1zZpaWkEBwfne9/6YfRsNptd3yMRD2KzXTp4GI0GTCYjUz/awOETaUVWT7lSwfzfA00xGg3XHYoAfHx8qF+/IatWrXQJRatWrSQysjJGo6kgy3UKCAikVq3oQun7RvHP4H29vDIUbd26lQEDBnD33XczYMCAXOsrV67MDz/8gMPhcLmuKDk5mdtuu60oSxURkas4fCKN/YdT3F3GdWndui3vvPMGzz//EmZzzkfpN9+spE2bu1i9+huXtvv3JzN9+mS2bPkZm81G3br1GDjwBcqVK+9sc/bsGd59903WrfsWPz9f2rfvREhImEs/mzdvon//PsyaNZdq1Wpw9OgRunXrzOuvj6NFi9bOdhMnvsP69d+yePFSAJYvX8qYMSOYNWsuM2ZMZfv2rZQqVZrnn3+JevUaMGvWdJYu/QyADh0606vXs1e98elG5XVH/fvvv9O7d28aNWrEiBGXPl8bHx9PWloaP/zwg3NZcnIyO3fuJD4+vqhKFRGRG1TTpvFkZWXy3//+CEBy8j727t1Dq1Z3urQ7fPgQffo8gdVqZciQ4bz22ihSU1MYMOAZMjMzne3Gjh3JunXf0qdPX155ZTj79yezaNFHBVrzqFGv0aRJM8aMeZsSJUryyisvMnHi25w4cZxXXx1B167d+OCD91i16usC3a838aiRooyMDNauXQvA4cOHOXPmDCtWrACgYcOGOBwOnnzySfz8/Hj00UddLpoODAykSpUqANStW5e4uDiGDBnCSy+9hJ+fH+PHj6dq1arceeeduXcsIiJyHYoVK0ZcXHNWr15JkyZxrFq1klq1alO2bDmXdnPmJGKxWBg/fip+fn4A1KpVh+7du7Bs2ed07dqN5OR9rF27hpdeepWOHbsA0LBhY3r06FqgNd977/3cc899AJQsWZKePXuwa9evzJgxB4DY2MZ899061qxZxZ133lWg+/YWHhWKTp06let02MXXc+fOBXBeK/TYY4+5tGvYsCHz5s1zvp4wYQJjx45l2LBhZGdnExcXx6uvvuoc5hQREcmP1q3bMmLEq1y4cJ7Vq7/mvvvuz9Xmp59+pFWrOzGZTM4nKgQFBXHbbVXZtWsnALt27cThcBAf38K5nclkIj6+OQsWfFhg9TZoEOv8ukKFigDUq9fApU2FChEcPPhHge3T23hUQihfvjy7d+++Ypurrb8oKCiIMWPGMGbMmIIoTURExEVsbGPMZjOzZs3g6NEjtGzZJleb1NRUFi78iIULc58KM5t9ADh58iRmsxmLxeKyPjQ0LNc2+REY+NdUNT4+PrmWXVyemXmhQPfrTTwqFImIiHgLs9lM8+YtWbBgPvXqNSAsLDxXG4slmMaNm9K1a7dc64oXLw5AiRIlyM7Oxmq1ugSjlJTTV9y/r68vAFlZrs/0TE+3XvexSA6FIhERkTzq1KkLqamn6dTpnkuur1+/IcnJe7n11qqYTJe+Vb9atZyJGNetW+O8pshms7Fu3dor7js0NAyz2cyBA8nOZVlZWWzdujkvhyIoFImIiORZjRq1GDv2ncuuf/LJ3jz1VE+ef74fnTvfQ1hYGKdPn2LLls3UqRNDmzZ3ERlZmfj4Fkya9C6ZmZmUKVOGTz9dTHZ21hX3bTQaad68BUuWLKR8+QoEB4ewZMnCXNPRyLVTKBIREbcqVyr/k+p66v7Kl69AYuL7JCYm8O6748jIyCA8vAR16tQlKupWZ7uXXx7G+PFvkpAwCV9fX+66qyMxMfWYNm3iFfsfOPBF3nxzNBMmvEXx4gE88MAjRERUZP36bwv1uG5UBkdeHv5yE7PZ7Jw+fdbdZbiF2WwkNDSAne+PJOO4592d4F86ghqPDiMl5axmtBbxIFlZmZw6dZTw8DL4+Pg6l+c85qO4Vz3mQzzT5X7GLgoLC7ixH/MhIiLezW53kJp6zm0PhFUgkn9SKBIREbdROBFP4nWP+RAREREpDApFIiIiIigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiLiR0WjAbDYW+Z+8zqI9e/YM4uLqc/fd7bDbcz9O6JlnniAurj6jRw/P5zuTY+HCD4mLq+98vXnzJuLi6rNr184C6V9caUZrERFxC6PRQGioP0ajqcj3bbfbSEnJyNNs2mazmbS0VLZu3cztt/8VWI4dO8qOHUn4+xcvyFJdVK1ajenT51CxYmSh7eNmplAkIiJuYTQaMBpNJC9LJOPU0SLbr394GSI7Po3RaMhTKPLx8aF+/YasWrXSJRStWrWSyMjKhRryAgICqVUrutD6zyuHw0FWVha+vrkfxnotMjMzMZvNGI3uPYGlUCQiIm6VceooGcf/cHcZ16V167a8884bPP/8S5jNOR+l33yzkjZt7mL16m9ytd+/P5np0yezZcvP2Gw26tatx8CBL1CuXHlnm7Nnz/Duu2+ybt23+Pn50r59J0JCwlz62bx5E/3792HWrLlUq1aDo0eP0K1bZ15/fRwtWrR2tps48R3Wr/+WxYuXArB8+VLGjBnBrFlzmTFjKtu3b6VUqdI8//xL1KvXgFmzprN06WcAdOjQmV69nr1iQBk9eji7du3k2Wf7M336VA4cSOa110bRqFFTEhIm8dNPGzlx4jihoWHExjbmmWf6ExgY6Nz+vvs60aRJHKVL38InnyzixInjLF36DSEhISxfvpQFC+Zz8OAfWCzBtGvXkaee6oPJVPgjigpFIiIi16lp03jGjXud//73R5o0iSM5eR979+5h7Ni3c4Wiw4cP0afPE1SuHMWQIcMxGg3MnftvBgx4hg8/XOIcXRk7diQbN/5Inz59KVu2LJ9+upg9e1YWaN2jRr1Gly730qPHw3zwwXu88sqLtGvXgbNnz/LqqyPYuXMHs2fPoHLlKtx5511X7OvkyZNMmPA2jz76JKVL30Lp0rdw/vx57HY7vXo9S0hIKCdOHGfu3H/z8sv/YvLkGS7br137H8qXj2DAgEEYjUb8/Yvx8ccfkJAwme7dH6Rv34Hs37+fmTOnYbfbeeaZfgX6XlyKQpGIiMh1KlasGHFxzVm9eiVNmsSxatVKatWqTdmy5XK1nTMnEYvFwvjxU/Hz8wOgVq06dO/ehWXLPqdr124kJ+9j7do1vPTSq3Ts2AWAhg0b06NH1wKt+9577+eee+4DoGTJkvTs2YNdu35lxow5AMTGNua779axZs2qq4ai9HQrb789iZo1a7ksHzToZefX2dnZlClTlmeffYo//jhARERFl3Vvvz0Jf39/AM6dO8vs2TN58MGe9O79fwA0aNAIHx8zkyeP58EHHyE4OCTf78GV6O4zERGRPGjdui3r16/jwoXzrF79Na1b33nJdj/99CNxcfGYTCays7PJzs4mKCiI226r6ryLbNeunTgcDuLjWzi3M5lMxMc3L9CaGzSIdX5doUJOQKlXr4FLmwoVIjhx4vhV+woODs4ViABWrPiSxx9/kDZtmnHHHY149tmnADh40PUUad269ZyBCCApaTsZGedo0aKV833Kzs6mfv1YLly4wL59e6/9QPNII0UeJufCw7zdKlrYTCZlaBGRi2JjG2M2m5k1awZHjx6hZcs2l2yXmprKwoUfsXDhR7nWmc0+QM6pKLPZjMVicVkfGhqWa5v8CAwMcn7t4+OTa9nF5ZmZF67aV2hoeK5la9euYdSo1+jc+R569XoWiyWEU6dOMmTIoFx9/nP7tLRUAJ544uFL7u9aglp+KRR5EKPRQEhIcYUPEREvYDabad68JQsWzKdevQaEheUOCQAWSzCNGzela9duudYVL55z+36JEiXIzs7GarW6BKOUlNNXrOHi9UhZWdkuy9PTrdd1LHlhuMT/39esWcWtt97Giy++4ly2ZcvP17R9UFDOcY8e/RalS5fO1b5MmbJ5L/YaKRR5EKPRgMlkZOpHGzh8Is3d5eRSp2pZ7r8rxt1liIh4jE6dupCaeppOne65bJv69RuSnLyXW2+tetk7qKpVqwHAunVrnNcU2Ww21q1be8X9h4aGYTabOXAg2bksKyuLrVs3X++hFIgLFy44R78u+vrrFde0ba1atSlWrBh//nmc5s1bXH2DQqBQ5IEOn0hj/+EUd5eRS9mSlqs3EhG5idSoUYuxY9+5Ypsnn+zNU0/15Pnn+9G58z2EhYVx+vQptmzZTJ06MbRpcxeRkZWJj2/BpEnvkpmZSZkyZfj008VkZ2ddsW+j0Ujz5i1YsmQh5ctXIDg4hCVLFuJwODBcaiinkDVoEMu7777Be+/NombNaH78cQM///zfa9o2KCiIJ5/sw7Rpkzlx4gR169bDZDJx5Mgh1q9fx+jRb1KsWLFCrV+hSERE3Mo/vMwNvb/y5SuQmPg+iYkJvPvuODIyMggPL0GdOnWJirrV2e7ll4cxfvybJCRMwtfXl7vu6khMTD2mTZt4xf4HDnyRN98czYQJb1G8eAAPPPAIEREVWb/+20I9rkvp0qUrR44cZvHiBXz44TwaNmzEa6+Npnfvx65p+wceeJiSJUuyYMF8lixZgNlsply58jRp0sw5H1RhMjgcjuufzvMmZrPZOX36bKH0bTYbCQ0NYMjE5R45UtQkpiJ9H4xj5/sjPXKiNf/SEdR4dBgpKWfJzs79TCIRcY+srExOnTpKeHgZfHz+mvHYWx/zIZ7ncj9jF4WFBVzT9boaKRIREbew2x2kpGS45Y5bu92hQCS5KBSJiIjbKJyIJ9G93yIiIiIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKBQJCIibmQ0GjCbjUX+J6+zaM+ePYO4uPrcfXc77PbcjxN65pkniIurz+jRw/P5zuRYuPBD4uLqO19v3ryJuLj67Nq1s0D6z4tlyz4nLq4+Bw+6Pu5p8eKPiYurz+zZM1yWW61pNGvWgPnz37/mfdx3XyfeffcN5+vRo4fzyCPd81f4NdCM1iIi4hZGo4GQUH9Mbnj2mc1uIzWPzz4zm82kpaWydetmbr/9r8By7NhRduxIwt+/eEGW6qJq1WpMnz6HihUjC20fV1O7dh0AduzYToUKEc7lSUnbKFasGElJ21zaJyVtx+FwULt2TFGWmScKRSIi4hZGowGT0cSMtXM5kna8yPZbNrg0vZv3xGg05CkU+fj4UL9+Q1atWukSilatWklkZOVCfcBtQEAgtWpFF1r/1yIiohIhIaFs376Ndu06OpcnJW2nXbtOrFjxJTabDZPJ9L/l2/D19aNatRruKvmaKRSJiIhbHUk7zoFTh9xdxnVp3bot77zzBs8//xJmc85H6TffrKRNm7tYvfqbXO33709m+vTJbNnyMzabjbp16zFw4AuUK1fe2ebs2TO8++6brFv3LX5+vrRv34mQkDCXfjZv3kT//n2YNWsu1arV4OjRI3Tr1pnXXx9Hixatne0mTnyH9eu/ZfHipQAsX76UMWNGMGvWXGbMmMr27VspVao0zz//EvXqNWDWrOksXfoZAB06dKZXr2cxGi9/hU10dB2XEaFjx45x4sRxunXrwRdffMLevXu47bZqQE4oqlatOj4+PgCcOHGc6dOnsHHj92RknKd69Rr06/c81apVv/ZvQCHxqGuKDhw4wLBhw+jSpQs1atSgY8eOl2y3aNEi2rZtS3R0NJ07d2bNmjW52qSnpzNkyBAaNmxI3bp16d+/PydOnCjsQxARkZtA06bxZGVl8t///ghAcvI+9u7dQ6tWd+Zqe/jwIfr0eQKr1cqQIcN57bVRpKamMGDAM2RmZjrbjR07knXrvqVPn7688spw9u9PZtGijwq07lGjXqNJk2aMGfM2JUqU5JVXXmTixLc5ceI4r746gq5du/HBB++xatXXV+wnOroOBw4kY7VaAUhKyglZEREVqVLlNmdgys7O5tdfdzpPnVmtVp599in27NnNwIEvMHr0GxQr5s+AAX1ISTldoMeaFx4Vivbs2cPatWupWLEiUVFRl2zz5ZdfMnToUNq1a0diYiIxMTH07duXrVu3urQbOHAgGzZsYPjw4bz99tskJyfz9NNPk52dXQRHIiIiN7JixYoRF9ec1atXAjmnzmrVqk3ZsuVytZ0zJxGLxcL48VNp3rwFzZrdwZtvTiQtLY1lyz4HckLV2rVrGDDgX9x7b3caN45j7Nh3MJt9CrTue++9n27dehAb25jnnnuBc+fOsmvXr7z66ghiYxvz+ONPU7VqddasWXXFfmrXjsHhcPDLL9uBnOuLoqNrAxAdXZukpJzlu3fvIjPzgjMULVr0EWfOpDNp0nTatLnrf8f5NoGBQXz00bwCPda88KhQ1LJlS9auXcukSZOoWbPmJdtMmjSJDh06MHDgQBo1asTIkSOJjo5m6tSpzjZbtmzhu+++Y/To0bRv355WrVoxceJEdu/ezddfXzn9ioiIXIvWrduyfv06Llw4z+rVX9O6de5RIoCffvqRuLh4TCYT2dnZZGdnExQUxG23VXXeRbZr104cDgfx8S2c25lMJuLjmxdozQ0axDq/rlChIgD16jVwaVOhQgQnTlz5Gq9q1arj5+fH9u05I0JJSduoVSvnAuyaNaOdI0VJSVsxGAzUqpUTmP773x+pW7c+QUEW53thNBqJibmdX3913x11F3nUNUVXOn8JcPDgQfbv388LL7zgsrx9+/a8+eabZGZm4uvry7p167BYLDRt2tTZpnLlylSvXp1169bRvn37QqlfRERuHrGxjTGbzcyaNYOjR4/QsmWbS7ZLTU1l4cKPWLgw96mwiyNBJ0+exGw2Y7FYXNaHhobl2iY/AgODnF9fvMbn78suLs/MvHDFfsxmM9Wr1yQpaRvnzp1j797f/zZSVIfjx3OuMUpK2kalSpHO40pLS+WXX5K4445Gufr8+/VV7uJRoehq9u3bB0BkpOutiFFRUWRlZXHw4EGioqLYt28fkZGRGAyu81BUrlzZ2Ud+mM2FM8BmMnnUwJ3X0vso4lns9rzNCeTpzGYzzZu3ZMGC+dSr14CwsPBLtrNYgmncuCldu3bLta548Zzb90uUKEF2djZWq9UlGF3tOhtfX18AsrJcLw1JT7de17HkRXR0HRYt+ojt27fi4+NDlSq3AXDLLWUIDy9BUtI2duzYTlzcX6NdQUEWYmOb8PTTfXL15+Pjm++aTCZDvj6jvSoUpaWlAeRK0n8l0Jz1VquVoCDX5AsQHBzMjh078lWD0WggNDQgX31I4bJY/N1dgoj8zfnzJk6eNOb6wHL3f2Dysv+Lkz5ePI67776HtLQUunS5x7nMYACD4a9jbdAglv3791G9enXnber/VKtWLQA2bPiWTp3uBsBms7F+/VqX/V2s2WTKmYSyZMkSmM1mDh7c72yTlZXF1q2bXbb7q+7coeGf3xeDweBS/+XUrXs78+bN4dNPF1K9ek2KFfsr1NSuXYevv17OqVOniImJcfbVsGEsK1cuJyoqCn//K/9bfXFiz2upyW43YDQaCQ4uTrFixa7Y75V4VSjyBHa7A6v1XKH0bTIZ9YFeAKzWDGy23DPNioh7ZGZewG63Y7M5yM7O/btZNrh0kdZzcX82m/2S9VzJxXmNLm5XtWoNxox522WZwwEOx1/H+sQTvXjqqZ707/9/dO58D2FhYZw+fYotWzZTp04MbdrcRYUKlYiPb8H48e+QkXGBMmXK8Omni8nKynLp++K/bX+vvXnzFixatICyZcsTHBzCkiULcTgcGAwGZ5u/6s79Pfjn98XhcLjUfznVq9fCaDTy/fcbePjhx1za16gRzbRpEwGoWbOOc1337g+ycuVX9OnzFN269aB06VtITU1h585fKFGiBPff/5DLe/3Xe3rlmmw2B3a7nbS0c2Rk2HKtt1j8rykEe1UoCg4OBnJuty9ZsqRz+cVbAi+ut1gsHDt2LNf2aWlpzjb5cb2/RFK08vIPnYgUHpvt0hMk2u0ObHYbvZv3LOKKcma0zsvEjXlRvnwFEhPfJzExgXffHUdGRgbh4SWoU6cuUVG3Otu9/PIwxo9/k4SESfj6+nLXXR2JiannDBeXM3Dgi7z55mgmTHiL4sUDeOCBR4iIqMj69d8W6nEFBQURGVmZvXt/d15IfVF0dG0cDgclSpR0uSMvODiEGTPmkJiYQELCZKzWNEJDw6hRoxbx8Xfku6bLBe9rZXA4HEXzU3GdBg8ezI4dO1i2bJlz2cGDB2ndujVTp06ldeu/JqmaN28eb7zxBps3b8bX15eJEycyf/58Nm7c6HJdUdeuXbntttsYN25cnuuy2eycPn02z9tfidlsJDQ0gCETl7P/cEqh7CM/msRUpO+Dcex8fyQZx/+4+gZFzL90BDUeHUZKylmFIhEPkpWVyalTRwkPL5PruhGj0ZDn55Dlh93uKLJQJIXvSj9jAGFhAdc0UuRVV6RWqFCBSpUqsWLFCpfly5cvp3Hjxs4LzuLj40lLS+OHH35wtklOTmbnzp3Ex8cXac0iInJ5F0+RFPUfBSK5FI86fZaRkcHatTkXlR0+fJgzZ844A1DDhg0JCwujX79+DBo0iIiICGJjY1m+fDnbt2/ngw8+cPZTt25d4uLiGDJkCC+99BJ+fn6MHz+eqlWrcuedl55HQkRERG5uHhWKTp06xYABA1yWXXw9d+5cYmNj6dixIxkZGSQmJjJz5kwiIyOZMmUKdevWddluwoQJjB07lmHDhpGdnU1cXByvvvqq8xk1IiIiIn/nUQmhfPny7N69+6rtunXrRrduued7+LugoCDGjBnDmDFjCqo8ERERuYF51TVFIiIiIoVFoUhEREQEhSIRERERQKFIREREBFAoEhEREQE87O4zERG5uXjbjNazZ89gzpxE52uLJZiKFSvRs+fjNG4cV5AlihsoFImIiFsYjQZCQ/wxXubJ8YXJbrORkpqRp2Dk5+fHxInTATh16k/mzp3DSy89z9SpiURH1ynoUqUIKRSJiIhbGI0GjCYTWxNmcObI0SLbb2DZMsQ80xuj0ZCnUGQ0GqlVK9r5ukaNWnTt2oGvvlqWr1B04cJ5/PyK5Xl7yT+FIhERcaszR45iPXDA3WXkWcmSpQgJCeX48eMAnDx5kpkzp7Jly2ZOnTpJqVKlaNGiNY8//rTzGZ0AcXH16d27L+npVlas+JKMjAy++WYdDoeDjz76gC+++JTjx49SokQp7ruvO/ff/5C7DvGmoVAkIiKSD+fOncNqTaNMmbIApKWlYrEE06/fcwQFBXHw4B/8+98zOXXqJEOGvOay7eLFH1GjRjSDBw/FZssGYOLEt1m69DN69nyCGjVqsWPHdhISJuPn58fdd99X5Md3M1EoEhERuU7Z2TkB5uTJkyQkTKR48QC6d+8BQFRUFfr2HehsGx1dh2LF/Bk9+jWef/4lihX76xRZUFAwY8a8hcGQc7H54cOHWLJkIYMGvUyXLl0BaNAglvPnzzNnTiKdO3fFaNSN44VFoUhEROQ6ZGRkcMcdjZyvTSYTY8e+Q0REJQAcDgeLFn3EF198ypEjR8jMvOBse+TIISpXruJ83ahRE2cgAvjpp40A3HFHS2fwAqhfvyHz57/PiRPHueWWMoV1aDc9hSIREZHr4Ofnx9Spidjtdg4dOsj06VMYNeo15s5dQIkSJVi48EOmTp3Igw/25Pbb6xMUFMSvv+7k3XffIDMz06WvsLAwl9dpaak4HA46dGh9yX0fP65QVJgUikRERK6D0WikWrUaQM6dZxERFenV6zHeey+RQYNeZs2a1TRtGk+fPn2d2+zfn3yZ3lznaLJYgjEYDEybNgsfH59crSMiKhbYcUhuCkUiIiL5UK1aDVq3bsvy5Ut5/PGnuXDhfK5A8/XXX11TX/XqNQAgLS2NuLj4Aq9VrkyhSEREJJ8ee+xJVq/+moULP6JBg1gWLfqYJUsWUKFCRVauXM6hQ4euqZ+IiIp07dqNUaOG8cADj1CjRi2ys7M5ePAPtmzZxNix7xTykdzcFIpERMStAssW7TUyhbG/iIhKtGp1J599tpglS74kNTWVWbNmAHDHHa0YOHAQL7303DX1NXDgC0REVOTzzz/hvfdm4e9fnIiIirRo0arA6xZXBofDcf3Ted7EbDY7p0+fLZS+zWYjoaEBDJm4nP2HUwplH/nRJKYifR+MY+f7I8k4/oe7y8nFv3QENR4dRkrKWbKz7e4uR0T+Jysrk1OnjhIeXgYfn78mL/TWx3yI57ncz9hFYWEBmExXn8pAI0UiIuIWdruDlNQMr3ogrNzYFIpERMRtFE7Ek2haTBEREREUikREREQAhSIRERERQKFIREREBFAoEhEREQEUikREREQAhSIRERERQKFIREREBFAoEhERNzIaDZjNxiL/k5dZtJct+5y4uPocPOj6mKPFiz8mLq4+s2fPcFlutabRrFkD5s9//5r6v+++Trz77hvO16NHD+eRR7pfd52Sd5rRWkRE3MJoNBASUvyanklV0Gw2O6mp565rNu3atesAsGPHdipUiHAuT0raRrFixUhK2ubSPilpOw6Hg9q1YwqkZil8CkUiIuIWRqMBk8nI5ws3cvLP9CLbb4mSQXTpHovRaLiuUBQRUYmQkFC2b99Gu3YdncuTkrbTrl0nVqz4EpvNhul/D7hNStqGr68f1arVKPBjkMKhUCQiIm518s90jh9JdXcZ1yQ6uo7LiNCxY8c4ceI43br14IsvPmHv3j3cdls1ICcUVatWHR8fH06cOM706VPYuPF7MjLOU716Dfr1e55q1aq761DkEnRNkYiIyDWKjq7DgQPJWK1WAJKStlKqVGkiIipSpcptzsCUnZ3Nr7/upHbtGKxWK88++xR79uxm4MAXGD36DYoV82fAgD6kpJx25+HIPygUiYiIXKPatWNwOBz88st2IOf6oujo2gBER9cmKSln+e7du8jMvEDt2jEsWvQRZ86kM2nSdNq0uYvGjeMYO/ZtAgOD+OijeW47FslNoUhEROQaVatWHT8/P7ZvzxkRSkraRq1aORdg16wZ7RwpSkraisFgoFat2vz3vz9St259goIsZGdnk52djdFoJCbmdn79dafbjkVy0zVFIiIi18hsNlO9ek2SkrZx7tw59u79/W8jRXU4fjznGqOkpG1UqhSJxWIhLS2VX35J4o47GuXqr1y58kV9CHIFCkUiIiLXITq6DosWfcT27Vvx8fGhSpXbALjlljKEh5cgKWkbO3ZsJy6uOQBBQRZiY5vw9NN9cvXl4+NbpLXLlSkUiYiIXIfatWOYN28On3yykGrVamA2//VRGh1dm5Url3Pq1Cmio3NOq9Wv35Cvv/6KihUj8ff3d1fZcg10TZGIiMh1qFWrNkajkR9+2OAMPhfVrFmbH37YAOCctLFHj4cwGAz07duLFSu+ZMuWn1mzZhVTp05kwYL5RV2+XIFGikRExK1KlAzyqv0FBQURGVmZvXt/p1at2i7roqNr43A4KFGiJGXLlgMgODiEGTPmkJiYQELCZKzWNEJDw6hRoxbx8XfkqxYpWApFIiLiFna7A5vNTpfusUW+b5vNfl2zWf/T++9/fMnltWrV5rvvNuVaHh5egsGDh16xz8WLl7q8fuWV4XmuT/JGoUhERNzCbneQmnouTw9nLYh95ycUyY3JK0PR6tWrmT59Or///jsBAQHUq1ePQYMGUaFCBZd2ixYtYtasWRw5coTIyEiee+45WrRo4aaqRUTknxROxJN43YXWGzdupG/fvlSpUoWpU6cyZMgQdu3axRNPPMH58+ed7b788kuGDh1Ku3btSExMJCYmhr59+7J161b3FS8iIiIey+tGir788kvKli3LmDFjMBhyhlzDwsJ49NFH2bFjB/Xr1wdg0qRJdOjQgYEDBwLQqFEjfvvtN6ZOnUpiYqK7yhcREREP5XUjRdnZ2QQEBDgDEeTcCQDgcOQMwR48eJD9+/fTrl07l23bt2/PDz/8QGZmZtEVLCIiIl7B60aKunbtyueff878+fPp3LkzqampvPvuu9SoUYPbb78dgH379gEQGRnpsm1UVBRZWVkcPHiQqKioPNdgNhdOljSZvC6jeiS9jyKexW7P+Z28+B9XkYJ28WfLZDLm6zPa60JR/fr1mTJlCv/6178YOXIkANWrV2fWrFmYTCYA0tLSALBYLC7bXnx9cX1eGI0GQkMD8ry9FD6LRTPGingSm60Yp04dxWbLxGzW76cUvIyMTEwmIyVKWJxZIC+8LhRt3ryZF198ke7du3PHHXeQmprKtGnT6NWrFx9++CHFihUr1P3b7Q6s1nOF0rfJZNQHegGwWjOw2ezuLkNE/qZYsQDS0lKw2Rz4+vq5XAIhklcOh4PMzAucOZNKQEAgVuv5S7azWPyv6SyC14WiUaNG0ahRIwYPHuxcFhMTwx133MHnn3/O/fffT3BwMADp6emULFnS2c5qtQI41+dVdrY+cD2ZzWbX90jEwwQGhmK3OzhzJsXdpcgNyN8/kMDA0Hz/2+91oWjv3r20atXKZdktt9xCaGgof/zxBwCVK1cGcq4tuvj1xdc+Pj655jMSEZHCZTAYCA4OJygoFJst293lyA3EZDJjNBbMtaReF4rKli3Lzp07XZYdPnyYlJQUypXLec5MhQoVqFSpEitWrKB169bOdsuXL6dx48b4+voWac0iIpLDaDRiNOrfYPFMXheKevTowZgxYxg1ahQtW7YkNTWVhIQEwsPDXW7B79evH4MGDSIiIoLY2FiWL1/O9u3b+eCDD9xYvYiIiHgqrwtFPXv2xNfXl48++oglS5YQEBBATEwMEyZMIDQ01NmuY8eOZGRkkJiYyMyZM4mMjGTKlCnUrVvXjdWLiIiIp/K6UGQwGHjggQd44IEHrtq2W7dudOvWrQiqEhEREW+nWe5EREREUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERAfIRij777DMOHTp02fWHDh3is88+y2v3IiIiIkUqz6Ho5ZdfZsuWLZddv337dl5++eW8di8iIiJSpPIcihwOxxXXnzt3DpPJlNfuRURERIrUdc1ovWvXLnbt2uV8vWnTJmw2W652VquVjz/+mMjIyPxXKCIiIlIErisUrVq1iilTpgA5j9tYsGABCxYsuGRbi8XCG2+8kf8KRURERIrAdYWi7t27c8cdd+BwOOjWrRv9+/cnPj7epY3BYMDf35+IiAjMZq97tJqIiIjcpK4rtZQqVYpSpUoBMHfuXKKioggPDy+UwkRERESKUp6Hcho2bFiQdYiIiIi4Vb7Ob61fv57Fixdz8OBBrFZrrjvSDAYDq1atyleBIiIiIkUhz6Fo1qxZvPPOO4SHh1O7dm2qVq1akHWJiIiIFKk8h6K5c+fSqFEjZs6ciY+PT0HWJCIiIlLk8jx5o9VqpW3btgpEIiIickPIcyiKjo4mOTm5IGsRERERcZs8h6Lhw4fzzTffsHTp0oKsR0RERMQt8nxN0cCBA8nOzubFF19k+PDh3HLLLRiNrhnLYDDwxRdf5LtIERERkcKW51AUEhJCSEgIFStWLMh6RERERNwiz6Fo3rx5BVmHiIiIiFvl+ZoiERERkRtJnkeKfvrpp2tq16BBg7zuQkRERKTI5DkUPfLIIxgMhqu2+/XXX/O6CxEREZEik68Zrf/JZrNx+PBhFi5ciN1u51//+le+ihMREREpKnkORQ0bNrzsuq5du/Lggw/y3//+l8aNG+d1FyIiIiJFplAutDYajXTo0IFFixYVRvciIiIiBa7Q7j5LS0sjPT29sLoXERERKVB5Pn125MiRSy63Wq1s2rSJ2bNnU79+/TwXJiIiIlKU8hyKWrZsedm7zxwOBzExMYwYMSLPhYmIiIgUpTyHojFjxuQKRQaDAYvFQkREBFWqVMl3cSIiIiJFJc+hqGvXrgVZh4iIiIhb5TkU/d3vv//O4cOHAShXrpxGiURERMTr5CsUrVq1inHjxjkD0UXly5dn8ODBtGrVKl/FiYiIiBSVPIeitWvX0r9/f8qWLctzzz1HVFQUAHv37mXhwoX069eP6dOnEx8fX2DFioiIiBSWPIeiadOmUbVqVebPn0/x4sWdy1u1asXDDz/Mgw8+yNSpUxWKRERExCvkefLG3bt3c/fdd7sEoouKFy/OPffcw+7du/NVnIiIiEhRyXMo8vPzIy0t7bLr09LS8PPzy2v3IiIiIkUqz6EoNjaWuXPnsmXLllzrtm3bxrx58/QwWBEREfEaeb6m6IUXXqBHjx48+OCD1K5dm8jISACSk5PZvn074eHhDBo0qMAKFRERESlMeR4pqlChAl988QWPPPIIaWlpLF++nOXLl5OWlkbPnj35/PPPKV++fEHW6uLTTz/l7rvvJjo6mtjYWJ566inOnz/vXP+f//yHzp07Ex0dTdu2bVmyZEmh1SIiIiLeL88jRdnZ2fj5+TFkyBCGDBmSa/2ZM2fIzs7GbC6Q+SFdJCQkkJiYSJ8+fYiJiSElJYUffvgBm80GwKZNm+jbty/33XcfQ4YM4ccff+SVV14hICCAu+66q8DrEREREe+X58QyatQoNm3axLJlyy65/oEHHiA2NpZXX301z8Vdyr59+5gyZQrTpk2jefPmzuVt27Z1fp2QkEDt2rUZOXIkAI0aNeLgwYNMmjRJoUhEREQuKc+nz9avX+8SRP6pbdu2rFu3Lq/dX9Ynn3xC+fLlXQLR32VmZrJx48Zc4ad9+/bs3buXQ4cOFXhNIiIi4v3yPFJ04sQJSpcufdn1pUqV4vjx43nt/rK2bdvGbbfdxrRp05g3bx7p6enUqlWLl19+mTp16vDHH3+QlZVF5cqVXba7OOP2vn378n2tk9mc5yx5RSZT4fR7s9H7KCIieZHnUBQSEkJycvJl1+/du5fAwMC8dn9Zf/75Jzt27OC3337jtddew9/fn+nTp/PEE0/w9ddfO+dOslgsLttdfH2luZWuhdFoIDQ0IF99SOGyWPzdXYKIiHihPIeiZs2a8fHHH9OpUydq1Kjhsu6XX35h4cKFhXL9jsPh4Ny5c0ycOJFq1aoBUKdOHVq2bMkHH3xAXFxcge/z7+x2B1bruULp22Qy6gO9AFitGdhsdneXISIiHsJi8b+mswh5DkUDBgxg/fr1dOvWjZYtW1KlShUA9uzZw5o1awgLC2PAgAF57f6yLBYLISEhzkAEOaNWNWrU4Pfff6dDhw4ApKenu2xntVoBCA4OzncN2dn6wPVkNptd3yMREblueQ5FpUuXZsmSJbzzzjusXr2ab775BoDAwEA6derEc889d8VrjvKqSpUq/PHHH5dcd+HCBSIiIvDx8WHfvn00a9bMuW7fvn0Aua41EhEREYF8hCLIuZj6jTfewOFwcPr0aQDCwsIwGAwFUtyltGjRgk8++YRff/2V6tWrA5CSksIvv/zCY489hq+vL7GxsaxcuZJHH33Uud3y5cuJiooq1AklRURExHsVyMyKBoOB8PDwgujqqlq3bk10dDT9+/fnueeew8/Pj5kzZ+Lr68uDDz4IwDPPPEPPnj0ZPnw47dq1Y+PGjSxbtozx48cXSY3iXp5695nd7sBud7i7DBERuYyCn266kBmNRmbOnMnYsWMZNmwYWVlZ1K9fn/nz51OyZEkA6tevz+TJk5kwYQKLFy+mbNmyjBo1inbt2rm5eilM5gALdrvdYy9Wt9ltpKZkKBiJiHgorwtFkHOK7q233rpim1atWtGqVasiqkg8gdmvOEajkRlr53IkreDnyMqPssGl6d28J0ajQaFIRMRDeWUoErmSI2nHOXBKM5eLiMj18cyLL0RERESKmEKRiIiICApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiIC3ACh6OzZs8THx1O1alWSkpJc1i1atIi2bdsSHR1N586dWbNmjZuqFBEREU/n9aFo2rRp2Gy2XMu//PJLhg4dSrt27UhMTCQmJoa+ffuydevWoi9SREREPJ5Xh6K9e/fy4Ycf0q9fv1zrJk2aRIcOHRg4cCCNGjVi5MiRREdHM3XqVDdUKiIiIp7Oq0PRqFGj6NGjB5GRkS7LDx48yP79+2nXrp3L8vbt2/PDDz+QmZlZlGWKiIiIFzC7u4C8WrFiBb/99huTJ0/ml19+cVm3b98+gFxhKSoqiqysLA4ePEhUVFSe9202F06WNJm8OqPKNdD3WETEc3llKMrIyGDcuHE899xzBAYG5lqflpYGgMVicVl+8fXF9XlhNBoIDQ3I8/Zyc7NY/N1dgoiIXIZXhqKEhATCw8O59957i3zfdrsDq/VcofRtMhn1oXmDs1ozsNns7i5DROSmYrH4X9NIvdeFosOHD/Pvf/+bqVOnkp6eDsC5c+ecf589e5bg4GAA0tPTKVmypHNbq9UK4FyfV9nZ+lCTvLHZ7Pr5ERHxUF4Xig4dOkRWVha9evXKta5nz57UqVOHd955B8i5tqhy5crO9fv27cPHx4cKFSoUWb0iIiLiHbwuFFWvXp25c+e6LPv1118ZO3YsI0aMIDo6mgoVKlCpUiVWrFhB69atne2WL19O48aN8fX1LeqyRURExMN5XSiyWCzExsZecl3NmjWpWbMmAP369WPQoEFEREQQGxvL8uXL2b59Ox988EFRlisi4jWMRgNGo8HdZVyW3e7Abne4uwy5gXldKLpWHTt2JCMjg8TERGbOnElkZCRTpkyhbt267i5NRMTj5NxZ64/RaHJ3KZdlt9tISclQMJJCc0OEotjYWHbv3p1rebdu3ejWrZsbKhIR8S45o0QmkpclknHqqLvLycU/vAyRHZ/GaDQoFEmhuSFCkYiIFIyMU0fJOP6Hu8sQcQtNrysiIiKCQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIAGZ3FyAinsFoNGA0GtxdxmXZ7Q7sdoe7yxCRG5hCkYhgNBoICSmOyeS5g8c2m53U1HMKRiJSaBSKRASj0YDJZOTzhRs5+We6u8vJpUTJILp0j8VoNCgUiUihUSgSEaeTf6Zz/Eiqu8u4YXnyKUpPHiUUKSoKRSIiRcAbTlGK3OwUikREisDFU5RTP9rA4RNp7i4nlzpVy3L/XTHuLkPErRSKRESK0OETaew/nOLuMnIpW9Li7hJE3M7rxnG/+uornnnmGeLj44mJiaFLly4sXrwYh8P14stFixbRtm1boqOj6dy5M2vWrHFTxSIiIuINvC4Uvffee/j7+zN48GASEhKIj49n6NChTJ061dnmyy+/ZOjQobRr147ExERiYmLo27cvW7dudV/hIiIi4tG87vRZQkICYWFhzteNGzcmNTWVOXPm8Oyzz2I0Gpk0aRIdOnRg4MCBADRq1IjffvuNqVOnkpiY6KbKRURExJN53UjR3wPRRdWrV+fMmTOcO3eOgwcPsn//ftq1a+fSpn379vzwww9kZmYWVakiIiLiRbxupOhSfv75Z0qXLk1gYCA///wzAJGRkS5toqKiyMrK4uDBg0RFReVrf2Zz4WRJ3ap74/PxMXnk99lT5875J098766VN9fuSfQ+SmHy+lC0adMmli9fzksvvQRAWlrOra4Wi+udFBdfX1yfV0ajgdDQgHz1ITefYP8gHHY7gYHF3F2KV7NY/N1dgriZfgakMHl1KDp27BjPPfccsbGx9OzZs0j2abc7sFrPFUrfJpNRv/A3qOK+/hiMRrYmzODMkaPuLieXkrWjqdrtXneXcVVWawY2m93dZeSJfr8Lhjf/DIj7WCz+1zTK6LWhyGq18vTTTxMSEsLkyZMxGnMONjg4GID09HRKlizp0v7v6/MjO1u/kJI3Z44cxXrggLvLyCWgTBl3l3BNbDa7fv9ucvoZkMLklSdnz58/T+/evUlPT2fWrFkEBQU511WuXBmAffv2uWyzb98+fHx8qFChQpHWKiIiIt7B60JRdnY2AwcOZN++fcyaNYvSpUu7rK9QoQKVKlVixYoVLsuXL19O48aN8fX1LcpyRURExEt43emzESNGsGbNGgYPHsyZM2dcJmSsUaMGvr6+9OvXj0GDBhEREUFsbCzLly9n+/btfPDBB+4rXERERDya14WiDRs2ADBu3Lhc61avXk358uXp2LEjGRkZJCYmMnPmTCIjI5kyZQp169Yt6nJFRETES3hdKPrPf/5zTe26detGt27dCrkaERERuVF4XSgSEZGbl6dO3mi3O7DbHVdvKB5NoUhERDyeOcCC3W732LmebHYbqSkZCkZeTqFIREQ8ntmvOEajkRlr53Ik7bi7y3FRNrg0vZv3xGg0KBR5OYUiERHxGkfSjnPg1CF3lyE3KM88OSsiIiJSxBSKRERERFAoEhEREQEUikREREQAhSIRERERQKFIREREBFAoEhEREQEUikREREQAhSIRERERQDNai4iI3PCMRgNGo8HdZVyWpzxQV6FIRETkBmY0GggJKY7J5Lknh2w2O6mp59wejBSKREREbmBGowGTycjnCzdy8s90d5eTS4mSQXTpHusRD9RVKBIREbkJnPwzneNHUt1dhkfz3LE0ERERkSKkUCQiIiKCQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiABgdncBIiIiNwKTyTPHGTy1Lk+kUCQiIpIPwf5BOOx2LBZ/d5ci+aRQJCIikg/Fff0xGI1sTZjBmSNH3V1OLiVrR1O1273uLsMrKBSJiIgUgDNHjmI9cMDdZeQSUKaMu0vwGjf0ica9e/fy+OOPExMTQ9OmTXnzzTfJzMx0d1kiIiLigW7YkaK0tDQeffRRKlWqxOTJkzl+/Djjxo3j/PnzDBs2zN3liYiIiIe5YUPRxx9/zNmzZ5kyZQohISEA2Gw2RowYQe/evSldurR7CxQRERGPcsOePlu3bh2NGzd2BiKAdu3aYbfb2bBhg/sKExEREY9kcDgcDncXURgaN27Mvffey6BBg1yWN2vWjC5duuRafq0cDgd2e+G8ZQYDGI1G0s6cx2azF8o+8sPXx0RgcT+yzlpx2G3uLicXo9kXs38A1ox0sj2sPj+zDwF+AVywWnFke1ZtAEZfX3wDAzjroT97JpORgMBi2O12vPVfLP1+549+v/NOv99gNBowGAxXbXfDnj6zWq1YLJZcy4ODg0lLS8tzvwaDAZPp6m9sfgQHFivU/vPLJyD3++pJLP5B7i7hsvwu8TPpSQI8/GfPaPT+wW39fuePfr/zTr/f11CDuwsQERER8QQ3bCiyWCykp6fnWp6WlkZwcLAbKhIRERFPdsOGosqVK7Nv3z6XZenp6fz5559UrlzZTVWJiIiIp7phQ1F8fDzff/89VqvVuWzFihUYjUaaNm3qxspERETEE92wd5+lpaXRoUMHIiMj6d27t3Pyxk6dOmnyRhEREcnlhg1FkPOYj9dff50tW7YQEBBAly5deO655/D19XV3aSIiIuJhbuhQJCIiInKtbthrikRERESuh0KRiIiICApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFcpN55JFHaNeuHZmZmbnW9e/fn+bNm3P27Fk3VCYiBWny5MlUrVqVhx56KNe60aNH07JlSzdUJZ5OoUhuKiNGjODQoUPMmjXLZfm6detYuXIlQ4cOJSAgwE3ViUhB27RpExs3bnR3GeIlFIrkplK5cmV69+7N9OnTOXjwIAAXLlzg9ddfp1WrVrRu3drNFYpIQSlevDi1a9dm2rRp7i5FvIRCkdx0evXqRdmyZRkxYgQA06dP5+TJkwwbNoxjx44xaNAgYmNjqV27Ng899BA7duxw2X716tV07dqVunXrUr9+fbp27cratWvdcSgichXPPvssP/74I5s3b75sm8OHD9O/f3/q1atHTEwMTz75JLt37y7CKsVTKBTJTcfX15eRI0eyfv16pk2bxqxZsxgwYAD+/v48+OCD7Nq1i6FDhzJ58mT8/f159NFHOXXqFAB//PEHAwYM4NZbb2XKlCmMHz+edu3akZaW5uajEpFLadGiBTVq1GDq1KmXXH/mzBkeeeQRdu7cyYgRI3jrrbdISUnh4Ycf5ujRo0Vcrbib2d0FiLhDw4YN6dq1KxMnTqRmzZo88sgjTJ06FavVyqJFiwgPDwegcePGtG3bltmzZ/Piiy+yc+dOsrKyGDp0KIGBgQA0a9bMnYciIlfxzDPP0K9fP7Zv307t2rVd1n3yySccOXKEL7/8kqioKAAaNGhAixYteP/99xk8eLA7ShY30UiR3LR69eoFwOOPP47JZGLDhg3ExsYSHBxMdnY22dnZGI1GGjRoQFJSEgBVq1bFZDIxaNAg/vOf/5Cenu7OQxCRa9CmTRtuu+22S44Wbdq0iVtvvdUZiABCQkJo0qQJP//8c1GWKR5AI0Vy0/Lx8XH5OyUlha1bt1KzZs1cbSMiIgCIjIxk+vTpzJgxg759+2I0GomLi2PYsGGULVu26IoXkWtmMBjo06cPzz//PL/88ovLOqvVSokSJXJtEx4ezp49e4qqRPEQCkUi/xMcHEyzZs0YMGBArnW+vr7Or+Pj44mPj+fMmTOsW7eOsWPH8vLLL/P+++8XZbkich3atWvH5MmTmTZtmst/YIKDg0lOTs7V/tSpUwQHBxdlieIBdPpM5H+aNGnC3r17iYqKIjo62uVP1apVc7UPDAykffv2dOjQgb1797qhYhG5VkajkT59+rB69WqXO8vq1avHb7/9xr59+5zL0tLS+P7776lXr547ShU30kiRyP889thjLF26lIcffpiePXtStmxZTp8+zbZt2yhdujSPPfYYH3/8MVu3bqVZs2aULFmSQ4cO8cUXX9C0aVN3ly8iV9GpUyemTp3Kxo0bKVeuHABdu3blvffeo3fv3gwcOBA/Pz8SEhIwm808+uijbq5YippCkcj/hIaGsmDBAiZMmMDbb79Namoq4eHh1KlThzZt2gA5F1qvWbOGsWPHkpqaSsmSJenQocMlT7mJiGcxmUz06tWLV1991bksMDCQefPmMW7cOIYOHYrdbuf222/ngw8+oEyZMm6sVtzB4HA4HO4uQkRERMTddE2RiIiICApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiN6DJkydf8tEsl1K1alUmT56cp/1UrVqVkSNH5mlbEfE8CkUiIiIi6DEfInKT2759OyaTyd1liIgH0EiRiNx07HY7Fy5cAMDPzw+zWf8/FBGFIhHxcps2beLee+8lOjqa1q1b8/HHH+dqc/Hany+++IIOHToQHR3N+vXrnev+fk3RxeuRDhw4wODBg6lfvz716tXj5ZdfJiMj46r1TJs2jWrVqjFv3ryCO0gRKRL675GIeK3du3fz5JNPEhYWRr9+/cjOzmby5MmEh4fnavvjjz/y1Vdf8dBDDxEaGkq5cuWu2PfAgQMpX748zz//PDt37mTRokWEhYXxwgsvXHab8ePHM2PGDEaOHEn37t3zfXwiUrQUikTEa02aNAmHw8H8+fMpW7YsAG3btqVTp0652iYnJ7N06VKqVKlyTX1Xr16dMWPGOF+npqayePHiy4aiN954g/fee4+xY8dyzz335OFoRMTddPpMRLySzWbju+++o3Xr1s5ABBAVFUVcXFyu9g0aNLjmQATQo0cPl9f169cnNTWVM2fOuCx3OByMHDmSuXPn8tZbbykQiXgxjRSJiFc6ffo058+fp2LFirnWRUZGsnbtWpdl5cuXv67+/x60ACwWCwBpaWkEBgY6l3/22WecO3eO4cOH07Fjx+vah4h4Fo0UichNoVixYtfV3mi89D+PDofD5fXtt99OiRIlmD9/PqmpqXktT0Q8gEKRiHilsLAwihUrxoEDB3KtS05OLrI6KlasyOzZszlx4gRPPfVUrtNrIuI9FIpExCuZTCbi4uJYtWoVR44ccS7fu3cv3333XZHWUq1aNWbOnMnevXt55plnOH/+fJHuX0QKhkKRiHitfv36AfDQQw8xc+ZMEhIS6Nmz53VdUF1QYmJimDZtGlu3bqV///5kZWUVeQ0ikj8KRSLitapVq8bs2bMJDQ1l0qRJLFmyhH79+tGmTRu31NO4cWMmTJjAhg0bePHFF7Hb7W6pQ0TyxuD451WDIiIiIjchjRSJiIiIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIAP8P/qJmvepaWQcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.countplot(x='drink', hue='cooked', data=steak)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "a72f700e-4d9b-46d9-a216-69b754fd409f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of people who drink and order their steak rare: 20\n" + ] + } + ], + "source": [ + "df = steak.dropna(subset=['drink', 'cooked'])\n", + "drink_rare = df[(df['drink'].str.lower() == 'yes') & (df['cooked'].str.lower() == 'rare')]\n", + "count_drink_rare = len(drink_rare)\n", + "print(f\"Number of people who drink and order their steak rare: {count_drink_rare}\")" + ] + }, + { + "cell_type": "markdown", + "id": "collectible-puppy", + "metadata": {}, + "source": [ + "## Second Research Question: *Do people (males and females) who gamble also order their steak rare?*\n" + ] + }, + { + "cell_type": "markdown", + "id": "demographic-future", + "metadata": {}, + "source": [ + "### Methods" + ] + }, + { + "cell_type": "markdown", + "id": "incorporate-roller", + "metadata": {}, + "source": [ + "*Explain how you will approach this research question below. Consider the following:* \n", + " - *Which aspects of the dataset will you use?* \n", + " - *How will you reorganize/store the data?* \n", + " - *What data science tools/functions will you use and why?* \n", + "\n", + "✏️ *Write your answer below:*\n", + "\n", + "**I will use the columns Gamble/Cooked to answer this question.\n", + "I will...\n", + "\n", + "-get the value of people who gamble\n", + "-get the value of people who order steak rare\n", + "-get the value of people who do both gamble and order their steak rare\n", + "\n", + "I will use pandas to handle my data (as data frames), seaborne to create visualizations\n" + ] + }, + { + "cell_type": "markdown", + "id": "juvenile-creation", + "metadata": {}, + "source": [ + "# Results " + ] + }, + { + "cell_type": "markdown", + "id": "8d239cc7-d973-452d-a462-7317ab8fe5f2", + "metadata": {}, + "source": [ + "### Number of people who gamble\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "pursuant-surrey", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "gamble\n", + "Yes 216\n", + "No 213\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steak.gamble.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "located-night", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJ+1JREFUeJzt3Xt4VPWdgPF3ZhIQgYmCiDeQhAqickmtIBBSxQslIBb2wfUGahWhLjeVCiKwsq7gbt0FBdQa8Fbtomh9ahdEqiBBjIDWSxUr1ERMcVEETQKikMzsHzRTpgGFkGRm4vt5Hp9kzvxy+A7jIS9nzoRANBqNIkmS9D0XTPQAkiRJycAokiRJwiiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCIC3RA6SaaDRKJOIPAVd1wWDA/zekBPIY1IEEgwECgcB3rjOKDlEkEmX79p2JHkNJJi0tyNFHN6Ws7CsqKiKJHkf63vEY1Ldp0aIpodB3R5Evn0mSJGEUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAZCW6AG0VzAYIBgMJHoM1VAoFIz7qNQUiUSJRKKJHkNSghhFSSAYDHDU0UcSCvoNNdWFw00SPYIOQ2UkwpdffGUYSd9TRlESCAYDhIJBfrP0fT7b/lWix1ENBAIBQqEglZURolG/oaaiY1scyeU/6UQwGDCKpO8poyiJfLb9KzZv3ZHoMVQDgUCAtLQQFRWVRpEkpShfr5EkScIzRZIUx4vlU5NvdmgYEv1mB6NIkoDmR6YTiUS9WD7F+fyltkS/2cEokiTgiMZpBIMB/ueFP/Pptp2JHkeHyDc7pL5keLODUSRJ+/AND6nJNzuoNvjiqyRJEkaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUkWRc8//zw///nPyc3NpVu3blx88cU8/fTT1f7F40WLFtGvXz86d+7MoEGDWLFiRbV9lZeXM3nyZLp37052djZjx47ls88+q6+HIkmSUkxSRdEjjzxCkyZNmDRpEvfffz+5ublMnTqVefPmxdYsXryYqVOn0r9/f/Lz8+nWrRujR4/mrbfeitvX+PHjWb16Nbfffjt33303xcXFjBgxgoqKinp+VJIkKRWkJXqAfd1///20aNEidrtnz558+eWXPPzww9xwww0Eg0HuvfdeBgwYwPjx4wE4++yz2bBhA/PmzSM/Px+AN998k1deeYUFCxaQk5MDQGZmJnl5eSxbtoy8vLx6f2ySJCm5JdWZon2DqEqnTp3YsWMHX331FSUlJXz00Uf0798/bk1eXh6FhYXs3r0bgIKCAsLhML17946tycrKolOnThQUFNTtg5AkSSkpqc4U7c8bb7xB69atadasGW+88Qaw96zPvtq3b8+ePXsoKSmhffv2FBUVkZmZSSAQiFuXlZVFUVHRYc+Ulla7LRkK7d1fIBCoNrNSRODvHwP4HKai2LEXwOMwFXkMpryq467qe2IiJHUUvf766yxZsoSJEycCUFpaCkA4HI5bV3W76v6ysjKaN29ebX8ZGRm8++67hzVTMBjg6KObHtY+DiQUCpKWFqqTfat+pIV8/lJVKBiMffQ4TF0eg6mrKobC4SYJmyFpo2jLli3ceOON9OjRg+HDhyd6nJhIJEpZ2Ve1us9QKEg43ITKyggVFZW1um/Vk8DeP4wrKish+t3LlXwqI5HYR4/DFOQxmPIqK/ceg2Vlu2Kf15ZwuMlBnYFKyigqKytjxIgRHHXUUcyZM4fg3/4Gl5GRAex9u32rVq3i1u97fzgcZsuWLdX2W1paGltzOCoqavfJqhKNRqv9+AGlhtjp+ig+hykq9rz5HKYkj8HUV/W87T1BUDffZ79LUl1oDfD1118zcuRIysvLmT9/ftzLYFlZWQDVrgsqKioiPT2dNm3axNYVFxdXOzCKi4tj+5AkSdpXUkVRRUUF48ePp6ioiPnz59O6deu4+9u0aUO7du1YunRp3PYlS5bQs2dPGjVqBEBubi6lpaUUFhbG1hQXF7N+/Xpyc3Pr/oFIkqSUk1Qvn02fPp0VK1YwadIkduzYEfcDGU877TQaNWrEmDFjmDBhAm3btqVHjx4sWbKEd955h8cffzy2Njs7m5ycHCZPnszEiRNp3Lgxs2bNomPHjlx44YUJeGSSJCnZJVUUrV69GoC77rqr2n0vvfQSJ510EgMHDmTXrl3k5+fz4IMPkpmZydy5c8nOzo5bP3v2bGbOnMm0adOoqKggJyeHKVOmkJaWVA9ZkiQliaQqhOXLlx/UuqFDhzJ06NBvXdO8eXNmzJjBjBkzamM0SZLUwCXVNUWSJEmJYhRJkiRhFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRIAaYkeYF+bNm1iwYIFvP3222zcuJGsrCz+93//N27NsGHDWLt2bbWvXbJkCe3bt4/dLi8vZ+bMmbz44ovs2bOHPn36MGXKFI499tg6fxySJCn1JFUUbdy4kZUrV9K1a1cikQjRaHS/6374wx8yceLEuG0nnXRS3O3x48fzl7/8hdtvv53GjRsze/ZsRowYwTPPPENaWlI9bEmSlASSqg769u3L+eefD8CkSZN4991397suHA7TrVu3A+7nzTff5JVXXmHBggXk5OQAkJmZSV5eHsuWLSMvL6/WZ5ckSaktqa4pCgZrZ5yCggLC4TC9e/eObcvKyqJTp04UFBTUyq8hSZIalqSKooO1du1aunXrRufOnbnyyitZt25d3P1FRUVkZmYSCATitmdlZVFUVFSfo0qSpBSRVC+fHYyzzjqLiy++mHbt2vHZZ5+xYMECrrnmGn7961+TnZ0NQFlZGc2bN6/2tRkZGQd8Se5QpKXVbkuGQnv3FwgEqoWcUkTg7x8D+BymotixF8DjMBV5DKa8quOu6ntiIqRcFI0dOzbu9jnnnMPAgQO57777yM/Pr/NfPxgMcPTRTetk36FQkLS0UJ3sW/UjLeTzl6pCf3v5PhT0OExlHoOpqyqGwuEmCZsh5aLoHx155JH8+Mc/5oUXXohtC4fDbNmypdra0tJSMjIyDuvXi0SilJV9dVj7+EehUJBwuAmVlREqKiprdd+qJ4G9fxhXVFbC/t80qSRXGYnEPnocpiCPwZRXWbn3GCwr2xX7vLaEw00O6gxUykfR/mRlZVFYWEg0Go07DV5cXEyHDh0Oe/8VFbX7ZFWJRqMH/DEESm6x0/VRfA5TVOx58zlMSR6Dqa/qedt7gqBuvs9+l5S80HpfX331FS+//DKdO3eObcvNzaW0tJTCwsLYtuLiYtavX09ubm4ixpQkSUkuqc4U7dq1i5UrVwKwefNmduzYwdKlSwHo3r07RUVFzJ8/nwsuuIATTzyRzz77jIcffpitW7dyzz33xPaTnZ1NTk4OkydPZuLEiTRu3JhZs2bRsWNHLrzwwoQ8NkmSlNySKoq2bdvGuHHj4rZV3X7sscc47rjj2LNnD7NmzeLLL7+kSZMmZGdnM336dLp06RL3dbNnz2bmzJlMmzaNiooKcnJymDJlij/NWpIk7VdSFcJJJ53EBx988K1rFixYcFD7at68OTNmzGDGjBm1MZokSWrgUv6aIkmSpNpgFEmSJGEUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJwGFE0fPhwCgsLD3j/a6+9xvDhw2u6e0mSpHpV4yhau3Ytn3/++QHv3759O+vWravp7iVJkurVYb18FggEDnjfpk2baNq06eHsXpIkqd6kHcriZ599lmeffTZ2+/777+epp56qtq68vJwPPviA3Nzcw59QkiSpHhxSFO3atYsvvvgidnvnzp0Eg9VPNh155JFceuml/Mu//MvhTyhJklQPDimKLr/8ci6//HIA+vbty2233cZ5551XJ4NJkiTVp0OKon0tX768NueQJElKqBpHUZUdO3bwySefUFZWRjQarXb/WWeddbi/hCRJUp2rcRRt376df//3f2fZsmVUVlZWuz8ajRIIBHj//fcPa0BJkqT6UOMomjZtGitWrGDYsGH86Ec/IhwO1+ZckiRJ9arGUbR69WquuuoqbrnlltqcR5IkKSFq/MMbjzjiCE488cTanEWSJClhahxFgwYN4sUXX6zNWSRJkhKmxi+f9evXj3Xr1nHttdfyz//8zxx33HGEQqFq604//fTDGlCSJKk+1DiKqn6II8Crr75a7X7ffSZJklJJjaNo5syZtTmHJElSQtU4igYPHlybc0iSJCVUjS+0liRJakhqfKbo1ltv/c41gUCAGTNm1PSXkCRJqjc1jqI1a9ZU2xaJRNi6dSuVlZW0aNGCJk2aHNZwkiRJ9aXGUbR8+fL9bt+zZw9PPvkkjz76KA899FCNB5MkSapPtX5NUXp6OldeeSW9e/fmjjvuqO3dS5Ik1Yk6u9D61FNPZd26dXW1e0mSpFpVZ1H06quvek2RJElKGTW+pmju3Ln73V5eXs66detYv349119/fY0HkyRJqk+1HkUZGRm0adOG6dOnc8kll9R4MEmSpPpU4yj685//XJtzSJIkJZQ/0VqSJInDOFNUZe3atbz88st88sknAJxwwgmcc845dO/e/bCHkyRJqi81jqLdu3dz88038+KLLxKNRgmHwwCUlZXx8MMPc8EFF/Bf//VfpKen19qwkiRJdaXGL5/NmzePP/zhD1xzzTW88sorrF27lrVr17J69Wp+9rOfsWzZMubNm1ebs0qSJNWZGkfR73//ewYPHswtt9zCMcccE9vesmVLfvGLX/DTn/6U5557rlaGlCRJqms1jqKtW7fSpUuXA97fpUsXtm7dWtPdS5Ik1asaR9Fxxx3H2rVrD3j/unXrOO6442q6e0mSpHpV4yj66U9/yvPPP8+0adMoKiqisrKSSCRCUVER//qv/8rSpUsZPHhwbc4qSZJUZ2r87rNRo0ZRUlLCU089xaJFiwgG9/ZVJBIhGo0yePBgRo0aVWuDSpIk1aUaR1EoFOKuu+7i6quvpqCggM2bNwNw4oknkpuby6mnnlprQ0qSJNW1Q4qib775hjvvvJNTTjmFYcOGAXDqqadWC6DHHnuMhQsXctttt/lziiRJUko4pGuKnnzySZ599lnOOeecb113zjnn8Mwzz7Bo0aLDmU2SJKneHFIUPf/881x44YW0adPmW9e1bduWn/zkJyxevPiQhtm0aRPTpk3j4osv5rTTTmPgwIH7Xbdo0SL69etH586dGTRoECtWrKi2pry8nMmTJ9O9e3eys7MZO3Ysn3322SHNI0mSvj8OKYo2bNjAmWeeeVBrs7Oz+eCDDw5pmI0bN7Jy5UpOPvlk2rdvv981ixcvZurUqfTv35/8/Hy6devG6NGjeeutt+LWjR8/ntWrV3P77bdz9913U1xczIgRI6ioqDikmSRJ0vfDIV1TtGfPnoO+Rig9PZ3du3cf0jB9+/bl/PPPB2DSpEm8++671dbce++9DBgwgPHjxwNw9tlns2HDBubNm0d+fj4Ab775Jq+88goLFiwgJycHgMzMTPLy8li2bBl5eXmHNJckSWr4DulM0bHHHsvGjRsPau3GjRs59thjD22Y4LePU1JSwkcffUT//v3jtufl5VFYWBiLsIKCAsLhML17946tycrKolOnThQUFBzSTJIk6fvhkM4U9erVi9/97neMHDmSli1bHnDdtm3b+N3vfke/fv0Oe8B9FRUVAXvP+uyrffv27Nmzh5KSEtq3b09RURGZmZkEAoG4dVlZWbF9HI60tBr/zMv9CoX27i8QCFSbWSki8PePAXwOU1Hs2AvgcZiKPAZTXtVxV/U9MREOKYpGjBjBc889x1VXXcWdd95J165dq615++23mTJlCt988w3XXXddrQ0KUFpaCkA4HI7bXnW76v6ysjKaN29e7eszMjL2+5LcoQgGAxx9dNPD2seBhEJB0tJCdbJv1Y+0kM9fqgr97Ux1KOhxmMo8BlNXVQyFw00SNsMhRVGbNm2YPXs2N910E5deeilt2rShQ4cONG3alJ07d7Jx40Y+/vhjjjjiCP77v/+btm3b1tXcCROJRCkr+6pW9xkKBQmHm1BZGaGiorJW9616Etj7h3FFZSVEEz2MaqIyEol99DhMQR6DKa+ycu8xWFa2K/Z5bQmHmxzUGahD/onW55xzDs899xz5+fm8/PLLvPjii7H7jj32WIYOHcqIESO+8237NZGRkQHsfbt9q1atYtvLysri7g+Hw2zZsqXa15eWlsbWHI6Kitp9sqpEo1GiUY/mVBQ7XR/F5zBFxZ43n8OU5DGY+qqet70nCOrm++x3qdE/83HSSScxffp0AHbs2MHOnTtp2rQpzZo1q9Xh/lFWVhaw99qiqs+rbqenp8dCLCsri8LCQqLRaNy1AcXFxXTo0KFOZ5QkSanpsK9matasGa1bt67zIIK9L9+1a9eOpUuXxm1fsmQJPXv2pFGjRgDk5uZSWlpKYWFhbE1xcTHr168nNze3zueUJEmpp8b/IGxd2LVrFytXrgRg8+bN7NixIxZA3bt3p0WLFowZM4YJEybQtm1bevTowZIlS3jnnXd4/PHHY/vJzs4mJyeHyZMnM3HiRBo3bsysWbPo2LEjF154YUIemyRJSm5JFUXbtm1j3Lhxcduqbj/22GP06NGDgQMHsmvXLvLz83nwwQfJzMxk7ty5ZGdnx33d7NmzmTlzJtOmTaOiooKcnBymTJlCWlpSPWRJkpQkkqoQTjrppIP6p0GGDh3K0KFDv3VN8+bNmTFjBjNmzKit8SRJUgOWuJ+QJEmSlESMIkmSJIwiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAlIwin7729/SsWPHav/dfffdcesWLVpEv3796Ny5M4MGDWLFihUJmliSJKWCtEQPUFPz58+nefPmsdutW7eOfb548WKmTp3KqFGjOPvss1myZAmjR4/miSeeoFu3bgmYVpIkJbuUjaLTTz+dFi1a7Pe+e++9lwEDBjB+/HgAzj77bDZs2MC8efPIz8+vxyklSVKqSLmXz75LSUkJH330Ef3794/bnpeXR2FhIbt3707QZJIkKZmlbBQNHDiQTp06cd555/GrX/2KyspKAIqKigDIzMyMW9++fXv27NlDSUlJvc8qSZKSX8q9fNaqVSvGjBlD165dCQQCLF++nNmzZ/Ppp58ybdo0SktLAQiHw3FfV3W76v7DkZZWuy0ZCu3dXyAQIBAI1Oq+VU8Cf/8YwOcwFcWOvQAeh6nIYzDlVR13Vd8TEyHloqhPnz706dMndjsnJ4fGjRvz6KOPMmrUqDr/9YPBAEcf3bRO9h0KBUlLC9XJvlU/0kI+f6kqFAzGPnocpi6PwdRVFUPhcJOEzZByUbQ//fv356GHHuL9998nIyMDgPLyclq1ahVbU1ZWBhC7v6YikShlZV8d1j7+USgUJBxuQmVlhIqKylrdt+pJYO8fxhWVlRBN9DCqicpIJPbR4zAFeQymvMrKvcdgWdmu2Oe1JRxuclBnoBpEFO0rKysL2HttUdXnVbfT09Np06bNYf8aFRW1+2RViUajRKMezakodro+is9hioo9bz6HKcljMPVVPW97TxDUzffZ75KyF1rva8mSJYRCIU477TTatGlDu3btWLp0abU1PXv2pFGjRgmaUpIkJbOUO1N07bXX0qNHDzp27AjASy+9xFNPPcXw4cNjL5eNGTOGCRMm0LZtW3r06MGSJUt45513ePzxxxM5uiRJSmIpF0WZmZk888wzbNmyhUgkQrt27Zg8eTLDhg2LrRk4cCC7du0iPz+fBx98kMzMTObOnUt2dnYCJ5ckScks5aJoypQpB7Vu6NChDB06tI6nkSRJDUWDuKZIkiTpcBlFkiRJGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJElAA4+iDz/8kGuuuYZu3brRu3dv/vM//5Pdu3cneixJkpSE0hI9QF0pLS3lqquuol27dsyZM4dPP/2Uu+66i6+//ppp06YlejxJkpRkGmwULVy4kJ07dzJ37lyOOuooACorK5k+fTojR46kdevWiR1QkiQllQb78llBQQE9e/aMBRFA//79iUQirF69OnGDSZKkpNRgzxQVFRXxT//0T3HbwuEwrVq1oqioqMb7DQYDtGjR9HDHixMI7P143U87UxmJ1uq+JR2c9LS9f0e89uIzPA6lBAgF934zzMhoQrSWD8Hg3/b9XRpsFJWVlREOh6ttz8jIoLS0tMb7DQQChEIH95t7qJod2ahO9ivp4HkcSokVDCbuRawG+/KZJEnSoWiwURQOhykvL6+2vbS0lIyMjARMJEmSklmDjaKsrKxq1w6Vl5ezdetWsrKyEjSVJElKVg02inJzc3n11VcpKyuLbVu6dCnBYJDevXsncDJJkpSMAtFobV/jnRxKS0sZMGAAmZmZjBw5MvbDGy+66CJ/eKMkSaqmwUYR7P1nPu644w7efPNNmjZtysUXX8yNN95Io0a+u0SSJMVr0FEkSZJ0sBrsNUWSJEmHwiiSJEnCKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSDmjYsGH079+f3bt3V7tv7Nix/PjHP2bnzp0JmEz6/pkzZw4dO3bkiiuuqHbfnXfeSd++fRMwlRoao0g6gOnTp/PXv/6V+fPnx20vKCjghRdeYOrUqTRt2jRB00nfT6+//jpr1qxJ9BhqoIwi6QCysrIYOXIkDzzwACUlJQB888033HHHHZx33nmcf/75CZ5Q+n458sgj6dKlC/fdd1+iR1EDZRRJ3+L666/nhBNOYPr06QA88MADfP7550ybNo0tW7YwYcIEevToQZcuXbjiiit49913477+pZdeYsiQIWRnZ/OjH/2IIUOGsHLlykQ8FKlBuOGGG3jttdf44x//eMA1mzdvZuzYsZx55pl069aNa6+9lg8++KAep1SqMoqkb9GoUSP+7d/+jVWrVnHfffcxf/58xo0bR5MmTbj88sv585//zNSpU5kzZw5NmjThqquuYtu2bQB8/PHHjBs3jlNOOYW5c+cya9Ys+vfvT2lpaYIflZS6zj33XE477TTmzZu33/t37NjBsGHDWL9+PdOnT+eXv/wlX3zxBVdeeSX/93//V8/TKtWkJXoAKdl1796dIUOGcM8993D66aczbNgw5s2bR1lZGYsWLaJly5YA9OzZk379+rFgwQJuueUW1q9fz549e5g6dSrNmjUDoE+fPol8KFKD8POf/5wxY8bwzjvv0KVLl7j7fvvb3/LJJ5+wePFi2rdvD8BZZ53Fueeey6OPPsqkSZMSMbJShGeKpINw/fXXA3DNNdcQCoVYvXo1PXr0ICMjg4qKCioqKggGg5x11ln86U9/AqBjx46EQiEmTJjA8uXLKS8vT+RDkBqMCy64gA4dOuz3bNHrr7/OKaecEgsigKOOOopevXrxxhtv1OeYSkGeKZIOQnp6etzHL774grfeeovTTz+92tq2bdsCkJmZyQMPPMCvfvUrRo8eTTAYJCcnh2nTpnHCCSfU3/BSAxMIBBg1ahQ33XQT7733Xtx9ZWVlHHPMMdW+pmXLlmzcuLG+RlSKMoqkGsjIyKBPnz6MGzeu2n2NGjWKfZ6bm0tubi47duygoKCAmTNncuutt/Loo4/W57hSg9O/f3/mzJnDfffdF/eXjIyMDIqLi6ut37ZtGxkZGfU5olKQL59JNdCrVy8+/PBD2rdvT+fOneP+69ixY7X1zZo1Iy8vjwEDBvDhhx8mYGKpYQkGg4waNYqXXnop7p1lZ555Jhs2bKCoqCi2rbS0lFdffZUzzzwzEaMqhXimSKqBq6++mt///vdceeWVDB8+nBNOOIHt27fz9ttv07p1a66++moWLlzIW2+9RZ8+fWjVqhV//etfee655+jdu3eix5cahIsuuoh58+axZs0aTjzxRACGDBnCI488wsiRIxk/fjyNGzfm/vvvJy0tjauuuirBEyvZGUVSDRx99NE8+eSTzJ49m7vvvpsvv/ySli1b0rVrVy644AJg74XWK1asYObMmXz55Ze0atWKAQMG7PclN0mHLhQKcf311zNlypTYtmbNmvHrX/+au+66i6lTpxKJRPjhD3/I448/zvHHH5/AaZUKAtFoNJroISRJkhLNa4okSZIwiiRJkgCjSJIkCTCKJEmSAKNIkiQJMIokSZIAo0iSJAkwiiTpO02aNIns7OyDWtuxY0fmzJlTxxNJqgtGkSRJEkaRJEkSYBRJkiQBRpGkJLVmzRqGDBlC586dOf/881m4cCFz5syhY8eOsTXPPPMMw4cPp2fPnpxxxhnk5eXxm9/8ptq++vbty8iRI2P77NKlCxdddBFr1qwBYNmyZVx00UV07tyZIUOGsH79+v3OVFJSwrXXXku3bt3Iyclh7ty5HMw/H/npp59y66230qtXL8444wwGDBjA008/XcPfGUl1JS3RA0jSP1q/fj3XXXcdrVq1YsyYMUQiEebNm0eLFi3i1v3P//wPp5xyCn379iUtLY0VK1Ywffp0otEoV1xxRdzaTZs2cfPNN3PppZcyaNAgHnroIUaNGsX06dOZNWsWl112GQAPPvgg48ePZ+nSpQSDf/97Y2VlJddddx1du3blF7/4BatWrWLOnDlUVlYybty4Az6Wzz//nEsuuYRAIMAVV1xBixYtKCgo4LbbbmPHjh1cffXVtfcbJ+nwRCUpyYwcOTLatWvX6JYtW2LbPvroo+hpp50W7dChQ2zbrl27qn3tz372s+h5550Xt+3cc8+NdujQIfrHP/4xtm3VqlXRDh06RLt06RLdvHlzbPvChQujHTp0iL722muxbRMnTox26NAhescdd8S2RSKR6PXXXx89/fTTo9u2bYtt79ChQ/Tee++N3Z48eXK0d+/e0e3bt8fNdOONN0bPPPPM/T4GSYnhy2eSkkplZSWFhYWcd955tG7dOrb95JNPpk+fPnFrjzjiiNjn5eXlbN++ne7du1NSUkJ5eXnc2h/84Adxb6vv2rUrAGeffTYnnHBCte0lJSXVZtv37FPVmZ89e/ZQWFi438cSjUZZtmwZffv2JRqNsn379th/OTk5lJeX8957733n74mk+uHLZ5KSyrZt2/j66685+eSTq933j9veeOMN5syZw1tvvcWuXbvi7isvL6d58+ax28cff3zc/VX3HXfccXHbmzVrBkBZWVnc9mAwSJs2beK2ZWZmArB58+b9Ppbt27dTVlbGk08+yZNPPnnANZKSg1EkKSV9/PHHXH311WRlZTFp0iSOP/540tPTWblyJY888giRSCRufSgU2u9+DrQ9ehAXUH+XqhkGDRrE4MGD97tm3wvHJSWWUSQpqbRs2ZLGjRuzadOmavftu2358uXs3r2b+++/P+7lr6p3lNW2SCRCSUlJ7OwQQHFxMQAnnnjifr+mRYsWNG3alEgkQq9evepkLkm1x2uKJCWVUChEr169eOmll/j0009j2zdt2sSqVavi1kH8GZ3y8nKeeeaZOpvtiSeeiH0ejUZ54oknSE9Pp2fPnvtdHwqF6NevHy+88AIbNmyodr8vnUnJxTNFkpLO6NGjeeWVV7jsssu47LLLiEQiPP7445xyyim8//77APTu3Zv09HRGjRrFpZdeys6dO1m0aBEtW7Zk69attT5T48aNWbVqFRMnTqRLly6sWrWKl19+mVGjRlX7UQH7uvnmm1mzZg2XXHIJQ4cO5Qc/+AGlpaW89957FBYWsnbt2lqfVVLNeKZIUtI544wzyM/PJyMjg3vuuYenn36asWPH0rNnTxo3bgxAVlYW9957L4FAgP/4j/9g4cKFXHLJJQwfPrxOZgqFQsyfP5/PP/+cX/7yl/zpT39i9OjR3/ozigCOOeYYFi1axJAhQ/jDH/7AHXfcwWOPPUZpaSkTJkyok1kl1UwgWhtXE0pSPbjhhhv4y1/+wrJlyxI9iqQGyDNFkpLS119/HXf7o48+oqCggO7duydoIkkNndcUSUpK559/PoMHD6ZNmzZs3ryZhQsXkp6eznXXXZfo0SQ1UEaRpKTUp08fFi9ezNatW2nUqBHdunXjpptuol27dokeTVID5TVFkiRJeE2RJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRIA/w/vXwfUCiPxpwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=steak, x=\"gamble\")" + ] + }, + { + "cell_type": "markdown", + "id": "e213a7eb-6a17-4db7-bda6-200200421688", + "metadata": {}, + "source": [ + "### Number of people who like their steak rare\n" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "c520afe4-e348-4573-a6f3-9968cc8b594b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "cooked\n", + "Medium rare 166\n", + "Medium 132\n", + "Medium Well 75\n", + "Well 36\n", + "Rare 23\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steak.cooked.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "b7fd5c7a-a8cb-4253-912b-d062f88caf25", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP9NJREFUeJzt3Xl4VPW9x/H3zCRskYmgiFfWBAuyE6uETapIQRAXqiyiqHW3FwVuvUIpULGIe7UKaonWDa1oW1wp4goVuUorbrVVNKCARSlLQghbZub+QTN1DGoI2Q68X8/DM5lzfufMd76czHxyzpkzoUQikUCSJOkAF67pAiRJkmoDQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAmAtJouIGgSiQTxuBcBBwiHQ/aimtjr6mGfq4d9rh72+T/C4RChUOg7xxmK9lI8nmDjxq01XUaNS0sL06hRBoWFxZSUxGu6nP2ava4e9rl62OfqYZ9TNW6cQSTy3aHIw2eSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJgLSaLkCqTuFwiHA4VNNl7JVIJJxyGxTxeIJ4PFHTZUhSuRmKdMAIh0Mc3KgBkXCwwkWpaLR+TZewV2LxOJs3FRuMJAWGoUgHjHA4RCQc5tEFf+fLjcU1XU65hUIhIpEwsVicRCIYAeOwxg0YdVJ7wuGQoUhSYBiKdMD5cmMxa9cX1XQZ5RYKhUhLi1BSEgtMKJKkIArmcQRJkqRKZiiSJEnCUCRJkgQYiiRJkoBaFoo+/fRTpk6dymmnnUaHDh0YMmTIHscVFhYyffp0+vTpQ+fOnenfvz+//e1vU8bs3LmTG2+8kd69e9OtWzd+/OMfk5+fXx1PQ5IkBVCt+vTZihUrWLRoEV27diUe3/PHj4uLixk9ejSRSIRJkyZxyCGHsGrVKoqKUj9NNH36dObPn8/EiRNp2rQp99xzD+effz7PPfccDRs2rK6nJEmSAqJWhaJ+/frRv39/ACZOnMj7779fZszs2bPZunUrTz/9NA0aNAAgNzc3Zcy6dev4/e9/zy9+8QvOPPNMADp37swJJ5zAY489xsUXX1zFz0SSJAVNrTp8Fi7HlYZ///vfc8YZZyQD0Z689tprxONxTjrppOS0gw8+mN69e7N48eJKqVWSJO1falUo+i5r1qxh/fr1NGrUiMsuu4xOnTrRvXt3Jk+ezNatW5Pj8vPzOeSQQ8jMzExZvk2bNp5XJEmS9qhWHT77Lv/6178AuPHGGxkwYAB5eXmsWrWKW2+9leLiYn71q18Bu0/E3tN5Q9FolIKCgn2uIy0tUFmySgTxS0pLaw2FQoRCAfpS2NB/bkMEo+7S/gZx+whSzUFkn6uHfa6YQIWieDwOQFZWFjfeeCMAPXv2JC0tjcmTJzN+/HhatGhRpTWEwyEaNcqo0scIkqB9SSnsfpFIS4vUdBl7LS0SnJpLX4iDuH0EseYgss/Vwz7vnUCFotLDYV8/sbpHjx7A7k+vtWjRgmg0WubTaLB7D9LXD6ntrXg8QWFhcL5MtKpEImGi0foUFm4jFovXdDnlUlpzLBanpCRW0+WUX2h3ICqJxSAgX31Wuk0EcfsIUs1BZJ+rh31OFY3WL9des0CFohYtWlCnTp1vnL9jxw4AsrOz+de//kVBQUFKCMrPzyc7O3uf6ygpcQMrtTtgBKsfiUQiUF+smjxkliAwdZfWGcTtI4g1B5F9rh72ee8E6mBjnTp16N27N0uXLk2Z/vrrrwPQsWNHAPr06UM4HGbhwoXJMQUFBbz22mv07du3+gqWJEmBUav2FG3bto1FixYBsHbtWoqKiliwYAEA3bt3p3HjxowZM4aRI0fy05/+lKFDh/Lpp59y6623csopp9CyZUsADj/8cM4880xuuukmwuEwTZs25Te/+Q0NGzZk5MiRNfb8JElS7VWrQtGGDRsYO3ZsyrTS+w899BC5ubl06tSJvLw8brnlFi6//HIyMzMZMWIE48ePT1lu8uTJZGRkcOutt7J161aOPvpo7r//fq9mLUmS9iiUCMpJCrVELBZn48at3z1wP5eWFqZRoww2bdoamOPVpTXf/uhfWbu+7In4tVUoFCItLUJJSSww5xQ1a3IQ40Z9P5DbR5BqDiL7XD3sc6rGjTPKdaJ1oM4pkiRJqiqGIkmSJAxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiSgloWiTz/9lKlTp3LaaafRoUMHhgwZ8q3jX3zxRdq1a7fHcVu2bGHSpEl0796dnJwcrrzySr788suqKl2SJAVcrQpFK1asYNGiRbRq1Yo2bdp869jt27czY8YMDj300D3OHzduHEuWLOGaa67hlltuYeXKlVx88cWUlJRURemSJCng0mq6gK/q168f/fv3B2DixIm8//773zj2N7/5DUcccQTNmzcvM2758uW89tpr3HffffTp0weArKwsBg8ezMKFCxk8eHDVPQlJkhRItWpPUThcvnI+++wz7r//fiZPnrzH+YsXLyYajdK7d+/ktOzsbNq3b8/ixYsrpVZJkrR/qVV7isrruuuu47TTTuOoo47a4/z8/HyysrIIhUIp07Ozs8nPz9/nx09Lq1VZskZEIuGU2yAorTUUCpXZNmq10H9uQwSj7tL+BnH7CFLNQWSfq4d9rpjAhaKXX36Z5cuXs2DBgm8cU1hYSMOGDctMz8zM/NZDcuURDodo1Chjn9axP4lG69d0CXstEgmTlhap6TL2WlokODWXvhAHcfsIYs1BZJ+rh33eO4EKRTt27GDGjBlcccUVNG7cuEZqiMcTFBYW18hj1yaRSJhotD6FhduIxeI1XU65lNYci8UpKYnVdDnlF9odiEpiMUjUdDHlU7pNBHH7CFLNQWSfq4d9ThWN1i/XXrNAhaIHH3yQcDjMySefTGFhIQC7du0iHo9TWFhIvXr1qFOnDtFolHXr1pVZvqCggMzMzH2uo6TEDazU7oARrH4kEgkSiYCkC75yyCxBYOourTOI20cQaw4i+1w97PPeCVQoys/P59NPP6Vnz55l5h177LFcc801nHXWWWRnZ7N06VISiUTKuSMrV66kbdu21VmyJEkKiECFoosvvpihQ4emTJs9ezYrV67k+uuvp3Xr1gD07duXu+66i6VLl9KrVy9gdyD64IMPuOiii6q7bEmSFAC1KhRt27aNRYsWAbB27VqKioqSJ1R3796dNm3alLmo47x58/jiiy/Izc1NTsvJyaFPnz5MmjSJCRMmULduXW677TbatWvHgAEDqu8JSZKkwKhVoWjDhg2MHTs2ZVrp/Yceeigl+HyX22+/neuvv56pU6dSUlJCnz59mDx5MmlpteopS5KkWiKUCMqZm7VELBZn48atNV1GjUtLC9OoUQabNm0NzEl8pTXf/uhfWbu+qKbLKbdQKERaWoSSklhgTrRu1uQgxo36fiC3jyDVHET2uXrY51SNG2eU69NnXtVJkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIE1LIrWh/IwuEQ4XDouwfWEqUXwSrPxbBqiyDVKkmqfoaiWiAcDnFwowZEwsF7045G69d0CZIkVQpDUS0QDoeIhMM8uuDvfLmxuKbLKZdQKEQkEiYWiwfmqyfatW7MoF5ZhELB2SMnSao+hqJa5MuNxYH5Tq4gfh9Xk0bu1ZIkfbPgHa+RJEmqAoYiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSAGk1XcBXffrpp9x333288847rFixguzsbJ599tnk/KKiIu6//34WLVrEqlWrqFOnDl26dGH8+PG0a9cuZV1btmzh+uuv58UXX2TXrl0cd9xxTJ48mcMOO6y6n5YkSQqAWrWnaMWKFSxatIhWrVrRpk2bMvM///xz5s6dS+/evbn99tv55S9/yZYtWxgxYgSffPJJythx48axZMkSrrnmGm655RZWrlzJxRdfTElJSXU9HUmSFCC1ak9Rv3796N+/PwATJ07k/fffT5nfvHlzXnjhBerXr5+c1qNHD/r168ejjz7KlClTAFi+fDmvvfYa9913H3369AEgKyuLwYMHs3DhQgYPHlxNz0iSJAVFrdpTFA5/ezkNGjRICUQAGRkZtGzZki+//DI5bfHixUSjUXr37p2clp2dTfv27Vm8eHHlFi1JkvYLtSoUVURhYWHy/KNS+fn5ZGVlEQqFUsZmZ2eTn59f3SVKkqQAqFWHzyri5ptvJhQKcdZZZyWnFRYW0rBhwzJjMzMzyxySq4i0tMrNkpHI7vWFQqEyQa7WCv3nNkQwak72NkRw+gyB7nXpth0EpbUGqeYgss/Vwz5XTKBD0R/+8Acef/xxbrjhBg4//PBqecxwOESjRhlVsu5IJExaWqRK1l1V0iLBqTfy78OzkXDw+gwB6/W/X4ij0frfMbL2CWLNQWSfq4d93juBDUWLFi1i6tSp/OQnP2Ho0KEp86LRKOvWrSuzTEFBAZmZmfv0uPF4gsLC4n1ax9dFImGi0frEYnFKSmKVuu4qE9r9Jl0Si0Gipospn1g8nrwNTJ8hmL2O7e51YeG25M+1XenvYZBqDiL7XD3sc6potH659poFMhS9/fbbjB07ltNPP52xY8eWmZ+dnc3SpUtJJBIph0lWrlxJ27Zt9/nxS0qqZgNLJBIkEsF410sexkkQmJqTdQaoZgh2r3cH/WC9IAex5iCyz9XDPu+dwB1s/Pjjj7n00kvp0aMH06ZN2+OYvn37UlBQwNKlS5PTVq5cyQcffEDfvn2rq1RJkhQgtWpP0bZt21i0aBEAa9eupaioiAULFgDQvXt3EokEF154IXXr1uW8885LOWn6oIMO4sgjjwQgJyeHPn36MGnSJCZMmEDdunW57bbbaNeuHQMGDKj+JyZJkmq9WhWKNmzYUOZwWOn9hx56CCB5rtD555+fMq579+48/PDDyfu33347119/PVOnTqWkpIQ+ffowefJk0tJq1VOWJEm1RK1KCM2bN+fDDz/81jHfNb9Uw4YNmTFjBjNmzKiM0iRJ0n4ucOcUSZIkVQVDkSRJEoYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJQy0LRp59+ytSpUznttNPo0KEDQ4YM2eO4J554goEDB9K5c2dOPfVUXnnllTJjtmzZwqRJk+jevTs5OTlceeWVfPnll1X9FCRJUkDVqlC0YsUKFi1aRKtWrWjTps0exzz33HNMmTKFQYMGkZeXR7du3RgzZgxvv/12yrhx48axZMkSrrnmGm655RZWrlzJxRdfTElJSTU8E0mSFDRpNV3AV/Xr14/+/fsDMHHiRN5///0yY+644w5OPvlkxo0bB0CPHj346KOPmDVrFnl5eQAsX76c1157jfvuu48+ffoAkJWVxeDBg1m4cCGDBw+unickSZICo1btKQqHv72c1atXs2rVKgYNGpQyffDgwSxdupSdO3cCsHjxYqLRKL17906Oyc7Opn379ixevLjyC5ckSYFXq/YUfZf8/Hxg916fr2rTpg27du1i9erVtGnThvz8fLKysgiFQinjsrOzk+vYF2lplZslI5Hd6wuFQmVqrrVC/7kNEYyak70NEZw+Q6B7XbptB0FprUGqOYjsc/WwzxUTqFBUUFAAQDQaTZleer90fmFhIQ0bNiyzfGZm5h4Pye2NcDhEo0YZ+7SObxKJhElLi1TJuqtKWiQ49Ub+vScyEg5enyFgvf73C3E0Wr+GK9l7Qaw5iOxz9bDPeydQoag2iMcTFBYWV+o6I5Ew0Wh9YrE4JSWxSl13lQntfpMuicUgUdPFlE8sHk/eBqbPEMxex3b3urBwW/Ln2q709zBINQeRfa4e9jlVNFq/XHvNAhWKMjMzgd0ft2/SpElyemFhYcr8aDTKunXryixfUFCQHLMvSkqqZgNLJBIkEsF410sexkkQmJqTdQaoZgh2r3cH/WC9IAex5iCyz9XDPu+dQB1szM7OBihzXlB+fj7p6em0aNEiOW7lypVl3kBWrlyZXIckSdJXBSoUtWjRgtatW7NgwYKU6fPnz6dnz57UqVMHgL59+1JQUMDSpUuTY1auXMkHH3xA3759q7VmSZIUDBU+fHbuuedy+eWX07Nnzz3O/7//+z/uuusuHnrooXKvc9u2bSxatAiAtWvXUlRUlAxA3bt3p3HjxlxxxRVcddVVtGzZktzcXObPn8+7777LnDlzkuvJycmhT58+TJo0iQkTJlC3bl1uu+022rVrx4ABAyr6lCVJ0n6swqHozTffZNiwYd84f+PGjSxbtmyv1rlhwwbGjh2bMq30/kMPPURubi5Dhgxh27Zt5OXlMXv2bLKyspg5cyY5OTkpy91+++1cf/31TJ06lZKSEvr06cPkyZNJSwvUaVSSJKma7FNC+LZrvXz66adkZOzdR9ebN2/Ohx9++J3jhg0b9q2BDKBhw4bMmDGDGTNm7FUNkiTpwLRXoWjevHnMmzcvef/uu+/m8ccfLzNuy5YtfPjhh56/I0mSAmOvQtG2bdvYtGlT8v7WrVv3+NUcDRo0YOTIkfz3f//3vlcoSZJUDfYqFI0aNYpRo0YBu7+89ec//zknnnhilRQmSZJUnSp8TtHLL79cmXVIkiTVqH3+KFZRURGff/45hYWFe7za7rHHHruvDyFJklTlKhyKNm7cyPTp01m4cCGxWNnvkUokEoRCIf7+97/vU4GSJEnVocKhaOrUqbzyyiuMHj2aY445psw310uSJAVJhUPRkiVLOO+887j66qsrsx5JkqQaUeHvPqtXrx7NmjWrzFokSZJqTIVD0amnnsqLL75YmbVIkiTVmAofPhs4cCDLli3jwgsvZMSIERx++OFEIpEy4zp27LhPBUqSJFWHCoei0os4Arz++utl5vvpM0mSFCQVDkXXX399ZdYhSZJUoyocioYOHVqZdUiSJNWoCp9oLUmStD+p8J6in/3sZ985JhQKMWPGjIo+hCRJUrWpcCh64403ykyLx+OsX7+eWCxG48aNqV+//j4VJ0mSVF0qHIpefvnlPU7ftWsXc+fO5cEHH+S3v/1thQuTJEmqTpV+TlF6ejrnnHMOvXv35pe//GVlr16SJKlKVNmJ1kcddRTLli2rqtVLkiRVqioLRa+//rrnFEmSpMCo8DlFM2fO3OP0LVu2sGzZMj744AMuueSSChcmSZJUnSo9FGVmZtKiRQumTZvG8OHDK1yYJElSdapwKPrHP/5RmXVIkiTVKK9oLUmSxD7sKSr15ptv8uqrr/L5558DcMQRR3D88cfTvXv3fS5OkiSpulQ4FO3cuZOf/vSnvPjiiyQSCaLRKACFhYXcf//9/PCHP+TWW28lPT290oqVJEmqKhU+fDZr1ixeeOEFfvzjH/Paa6/x5ptv8uabb7JkyRIuuOACFi5cyKxZsyqzVkmSpCpT4VD0zDPPMHToUK6++moOPfTQ5PRDDjmE//3f/+X000/n6aefrpQiJUmSqlqFQ9H69evp0qXLN87v0qUL69evr+jqv9VLL73EsGHDyMnJoU+fPowdO5bVq1eXGffEE08wcOBAOnfuzKmnnsorr7xSJfVIkqTgq3AoOvzww3nzzTe/cf6yZcs4/PDDK7r6b/TGG28wZswYjjzySGbNmsWkSZP4xz/+wQUXXMD27duT45577jmmTJnCoEGDyMvLo1u3bowZM4a333670muSJEnBV+ETrU8//XTuvPNOGjZsyPnnn0+rVq0IhUKsWrWKBx98kAULFnDFFVdUZq3A7rBzxBFHMGPGDEKhEACNGzfmvPPO4/333+eYY44B4I477uDkk09m3LhxAPTo0YOPPvqIWbNmkZeXV+l1SZKkYKtwKLrssstYvXo1jz/+OE888QTh8O6dTvF4nEQiwdChQ7nssssqrdBSJSUlZGRkJAMRQMOGDQFIJBIArF69mlWrVvG///u/KcsOHjyYm266iZ07d1KnTp1Kr02SJAVXhUNRJBLhhhtu4Pzzz2fx4sWsXbsWgGbNmtG3b1+OOuqoSivyq370ox/x1FNP8cgjj3DqqaeyefNmfvWrX9GhQweOPvpoAPLz8wHIyspKWbZNmzbs2rWL1atX06ZNmyqpT5IkBdNehaIdO3Zw3XXX8b3vfY/Ro0cDcNRRR5UJQA899BCPPfYYP//5zyv9OkXHHHMMM2fO5Kc//SnXXnstAO3bt+fee+8lEokAUFBQAJC8dlKp0vul8ysqLa1yLwQeiexeXygUStkDVquF/nMbIhg1J3sbIjh9hkD3unTbDoLSWoNUcxDZ5+phnytmr0LR3LlzmTdvHvPnz//Wcccffzw333wzbdu2ZdSoUftU4Ne99dZbXH311QwfPpzjjz+ezZs3c9ddd3HJJZfw6KOPUq9evUp9vK8Lh0M0apRRJeuORMKkpUWqZN1VJS0SnHoj/z7EGwkHr88QsF7/+4U4Gq1fw5XsvSDWHET2uXrY572zV6HoT3/6EwMGDKBFixbfOq5ly5acdNJJPPfcc5UeiqZPn06PHj2YOHFiclq3bt04/vjjeeqppxgxYgSZmZkAbNmyhSZNmiTHFRYWAiTnV0Q8nqCwsLjCy+9JJBImGq1PLBanpCRWqeuuMqHdb9IlsRgkarqY8onF48nbwPQZgtnr2O5eFxZuS/5c25X+Hgap5iCyz9XDPqeKRuuXa6/ZXoWijz76iFNOOaVcY3NycqrkukCffPIJJ554Ysq0ww8/nEaNGvHZZ58BkJ2dDew+t6j059L76enp3xnqvktJSdVsYIlEInmyeG2XPIyTIDA1J+sMUM0Q7F7vDvrBekEOYs1BZJ+rh33eO3t1sHHXrl3lPkcoPT2dnTt3Vqiob3PEEUfwwQcfpExbu3YtmzZtolmzZgC0aNGC1q1bs2DBgpRx8+fPp2fPnn7yTJIklbFXe4oOO+wwVqxYUa6xK1as4LDDDqtQUd9m5MiRzJgxg+nTp9OvXz82b97M3XffzSGHHMKgQYOS46644gquuuoqWrZsSW5uLvPnz+fdd99lzpw5lV6TJEkKvr0KRb169eKpp57i0ksv5ZBDDvnGcRs2bOCpp55i4MCB+1zg15177rnUqVOH3/3ud/zhD38gIyODbt26cfvtt9OoUaPkuCFDhrBt2zby8vKYPXs2WVlZzJw5k5ycnEqvSZIkBd9ehaKLL76Yp59+mvPOO4/rrruOrl27lhnzzjvvMHnyZHbs2MFFF11UaYWWCoVCnHXWWZx11lnfOXbYsGEMGzas0muQJEn7n70KRS1atOD222/nf/7nfxg5ciQtWrSgbdu2ZGRksHXrVlasWMFnn31GvXr1+NWvfkXLli2rqm5JkqRKtddXtD7++ON5+umnycvL49VXX+XFF19MzjvssMMYNmwYF1988T5/wkuSJKk6VehrPpo3b860adMAKCoqYuvWrWRkZHDQQQdVanGSgi1IV9MN6hWA4/EE8XgwLtUg1XYV/u6zUgcddJBhSFKKhg3SiccTgbyabtBqjsXjbN5UbDCSKsE+hyJJ+rp6ddMIh0P87vl/8MWGrTVdTrmEQiEikTCxWDwwF8k8rHEDRp3UnnA4ZCiSKoGhSFKV+XJjMWvXF9V0GeUSCoVIS4tQUhILTCiSVLmCdfBckiSpihiKJEmSMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEhDgUDRv3jxOP/10OnfuTG5uLhdddBHbt29Pzn/55Zc59dRT6dy5MwMHDuQPf/hDDVYrSZJqu7SaLqAi7r77bvLy8rjsssvo1q0bmzZtYunSpcRiMQD+8pe/MGbMGM4880wmTZrE//3f//Hzn/+cjIwMTjrppBquXpIk1UaBC0X5+fnMnDmTu+66ix/84AfJ6QMHDkz+fPfdd9OlSxeuvfZaAHr06MHq1au54447DEWSJGmPAnf47I9//CPNmzdPCURftXPnTt54440y4Wfw4MF88sknrFmzpjrKlCRJARO4UPTOO+/Qtm1b7rrrLnr27EmnTp0YOXIk77zzDgCfffYZu3btIjs7O2W5Nm3aALv3NEmSJH1d4A6frV+/nvfff5+PPvqIX/ziF9SvX5977rmHCy64gIULF1JQUABANBpNWa70fun8fZGWVrlZMhLZvb5QKEQoFKrUdVeZ0H9uQwSj5mRvQwSnz2Cvq0uA+1z6GhIEpbUGqeYgss8VE7hQlEgkKC4u5te//jVHHXUUAF27dqVfv37MmTOHPn36VOnjh8MhGjXKqJJ1RyJh0tIiVbLuqpIWCU69kXA4eRu0PoO9ri6B6vO/3/Ci0fo1XMneC2LNQWSf907gQlE0GuXggw9OBiKAgw8+mA4dOvDxxx9z8sknA7Bly5aU5QoLCwHIzMzcp8ePxxMUFhbv0zq+LhIJE43WJxaLU1ISq9R1V5nQ7jePklgMEjVdTPnE4vHkbWD6DPa6ugSxz7HdfS4s3Jb8ubYrfb0LUs1BZJ9TRaP1y7XXLHCh6Mgjj+Szzz7b47wdO3bQsmVL0tPTyc/P57jjjkvOKz2X6OvnGlVESUnVbGCJRIJEIhivxsnDCwkCU3OyzgDVDPa6ugS5z7v/oArWG18Qaw4i+7x3Anew8YQTTmDz5s38/e9/T07btGkTf/vb3+jYsSN16tQhNzeX559/PmW5+fPn06ZNG5o3b17dJUuSpAAI3J6i/v3707lzZ6688krGjx9P3bp1mT17NnXq1GHUqFEAXH755Zx77rlcc801DBo0iDfeeINnn32W2267rYarlyRJtVXg9hSFw2Fmz55Nt27dmDp1Kv/zP//DQQcdxCOPPEKTJk0AOOaYY7jzzjv561//yoUXXsizzz7L9OnTGTRoUA1XL0mSaqvA7SkCaNy4MTfffPO3jjnxxBM58cQTq6kiSZIUdIHbUyRJklQVDEWSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJwH4QirZu3Urfvn1p164d7733Xsq8J554goEDB9K5c2dOPfVUXnnllRqqUpIk1XaBD0V33XUXsViszPTnnnuOKVOmMGjQIPLy8ujWrRtjxozh7bffrv4iJUlSrRfoUPTJJ5/w6KOPcsUVV5SZd8cdd3DyySczbtw4evTowbXXXkvnzp2ZNWtWDVQqSZJqu0CHounTpzNy5EiysrJSpq9evZpVq1YxaNCglOmDBw9m6dKl7Ny5szrLlCRJAZBW0wVU1IIFC/joo4+48847+dvf/pYyLz8/H6BMWGrTpg27du1i9erVtGnTpsKPnZZWuVkyEtm9vlAoRCgUqtR1V5nQf25DBKPmZG9DBKfPYK+rS4D7XPoaEgSltQap5iCyzxUTyFC0bds2brjhBsaPH89BBx1UZn5BQQEA0Wg0ZXrp/dL5FREOh2jUKKPCy3+bSCRMWlqkStZdVdIiwak3Eg4nb4PWZ7DX1SVQff73G140Wr+GK9l7Qaw5iOzz3glkKLr77rs55JBDOOOMM6r9sePxBIWFxZW6zkgkTDRan1gsTklJ2ZPGa6XQ7jePklgMEjVdTPnE4vHkbWD6DPa6ugSxz7HdfS4s3Jb8ubYrfb0LUs1BZJ9TRaP1y7XXLHChaO3atfz2t79l1qxZbNmyBYDi4uLk7datW8nMzARgy5YtNGnSJLlsYWEhQHJ+RZWUVM0GlkgkSCSC8WqcPLyQIDA1J+sMUM1gr6tLkPu8+w+qYL3xBbHmILLPeydwoWjNmjXs2rWLSy65pMy8c889l65du3LrrbcCu88tys7OTs7Pz88nPT2dFi1aVFu9kiQpGAIXitq3b89DDz2UMu3vf/87119/PdOmTaNz5860aNGC1q1bs2DBAvr3758cN3/+fHr27EmdOnWqu2xJklTLBS4URaNRcnNz9zivY8eOdOzYEYArrriCq666ipYtW5Kbm8v8+fN59913mTNnTnWWK0mSAiJwoai8hgwZwrZt28jLy2P27NlkZWUxc+ZMcnJyaro0SZJUC+0XoSg3N5cPP/ywzPRhw4YxbNiwGqhIkiQFzX4RiiRJqkrhcIhwOBgX9YTgXrwxHk8Qj9fcpz8NRZIkfYtwOMTBjRokL0oaJEG7eGMsHmfzpuIaC0aGIkmSvkU4HCISDvPogr/z5cbKvXhvVQmFQkQiYWKxeGCuu3VY4waMOqk94XDIUCRJUm325cZi1q4vqukyyiUUCpGWFqGkJBaYUFQbBG9foCRJUhUwFEmSJGEokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiQA0mq6AEnSvolEgvP3bWmtQaxZ+z9DkSQFVMMG6cTjCaLR+jVdyl4LYs3a/wUuFP3pT3/i6aef5m9/+xuFhYW0atWK0aNHc8YZZxAKhZLjnnjiCe69914+//xzsrKyGD9+PCeccEINVi5Jlate3TTC4RC/e/4ffLFha02XUy6hUIhIJEwsFieRSNR0OeXSrnVjBvXKSnmP0f4pcKHogQceoFmzZkycOJFGjRrx+uuvM2XKFNatW8eYMWMAeO6555gyZQqXXXYZPXr0YP78+YwZM4ZHHnmEbt261ewTkKRK9uXGYtauL6rpMsolFAqRlhahpCQWmFDUpJF7tQ4UgQtFd999N40bN07e79mzJ5s3b+b+++/nJz/5CeFwmDvuuIOTTz6ZcePGAdCjRw8++ugjZs2aRV5eXg1VLkmSarPAnT321UBUqn379hQVFVFcXMzq1atZtWoVgwYNShkzePBgli5dys6dO6urVEmSFCCBC0V78te//pWmTZty0EEHkZ+fD0BWVlbKmDZt2rBr1y5Wr15dEyVKkqRaLnCHz77uL3/5C/Pnz2fChAkAFBQUABCNRlPGld4vnb8v0tIqN0uWftwzFAoF50S+0H9uQwSj5mRvQwSnz2Cvq4t9rh72uXoEuM81eQmEQIeidevWMX78eHJzczn33HOr5THD4RCNGmVUybojkTBpaZEqWXdVSYsEp95IOJy8DVqfwV5XF/tcPexz9QhUn/8dhmrycg2BDUWFhYVcfPHFHHzwwdx5552E/73RZmZmArBlyxaaNGmSMv6r8ysqHk9QWFi8T+v4ukgkTDRan1gsTklJrFLXXWVCu3/ZSmIxCMYHSIjF48nbwPQZ7HV1sc/Vwz5XjyD2Oba7z4WF25I/V5ZotH659kAFMhRt376dSy+9lC1btjB37lwaNmyYnJednQ1Afn5+8ufS++np6bRo0WKfH7+kpHL/s0olEonAfEQ1uTs2QWBqTtYZoJrBXlcX+1w97HP1CHKfd+8gqJr32e8SuBOtS0pKGDduHPn5+dx77700bdo0ZX6LFi1o3bo1CxYsSJk+f/58evbsSZ06daqzXEmSFBCB21M0bdo0XnnlFSZOnEhRURFvv/12cl6HDh2oU6cOV1xxBVdddRUtW7YkNzeX+fPn8+677zJnzpyaK1ySJNVqgQtFS5YsAeCGG24oM++ll16iefPmDBkyhG3btpGXl8fs2bPJyspi5syZ5OTkVHe5kiQpIAIXil5++eVyjRs2bBjDhg2r4mokSdL+InDnFEmSJFUFQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSsJ+Hok8++YQf//jHdOvWjd69e3PTTTexc+fOmi5LkiTVQmk1XUBVKSgo4LzzzqN169bceeedfPHFF9xwww1s376dqVOn1nR5kiSpltlvQ9Fjjz3G1q1bmTlzJgcffDAAsViMadOmcemll9K0adOaLVCSJNUq++3hs8WLF9OzZ89kIAIYNGgQ8XicJUuW1FxhkiSpVtpv9xTl5+dzxhlnpEyLRqM0adKE/Pz8Cq83HA7RuHHGvpaXIhTafXvR6Z2JxROVum79R3ra7r8BLjytk32uYva6etjn6mGfq0ckvPvNMDOzPolKbnP43+v+LvttKCosLCQajZaZnpmZSUFBQYXXGwqFiETK19y9dVCDOlWyXqWyz9XHXlcP+1w97HP1CIdr7iDWfnv4TJIkaW/st6EoGo2yZcuWMtMLCgrIzMysgYokSVJttt+Gouzs7DLnDm3ZsoX169eTnZ1dQ1VJkqTaar8NRX379uX111+nsLAwOW3BggWEw2F69+5dg5VJkqTaKJRIVPY53rVDQUEBJ598MllZWVx66aXJizeecsopXrxRkiSVsd+GItj9NR+//OUvWb58ORkZGZx22mmMHz+eOnX8BIEkSUq1X4ciSZKk8tpvzymSJEnaG4YiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQtN+48847adeuHccddxzxeLzM/JEjR9KuXTsmTpy4z4/1wAMP0K5du+T9N954g3bt2vHee+/t87qrSnX2B4LZo8pgn+H3v/897dq1Y9WqVSnTH374Ydq1a8cdd9yRMn3z5s0cddRR5OXllfsx+vXrx7XXXpu8P3HiRIYMGbJPde+N0v/n0n+5ubmcddZZLFq0qNpqOBBU9bZU09tRbWQo2o+kp6ezadMmli1bljJ97dq1vP322zRo0KBKHrdjx47MnTuXNm3aVMn6K0tN9QeC06PKcKD3+eijjwZg+fLlKdPfeust6tevX2b68uXLSSQSfP/736+2GitDvXr1mDt3LnPnzuWXv/wlO3bs4LLLLuOtt96q6dL2GwfKtlSbGIr2I+np6fTt25fnnnsuZfpzzz3H9773PVq2bFklj3vQQQfRrVu3Kn2zqww11R+ovT1KJBLs3Lmzwsvv3LmzzB6hA73P2dnZNG7cuEw4eOuttxg6dChvv/02sVgsZXrdunXp1KlTdZe6T8LhMN26daNbt24MGDCAu+++m0QiwZNPPrlP692+fXvlFLgfOFC2pdrEULSfGTJkCM8//zy7du1KTnv22Wf3uEv0k08+4fLLL+f73/8+3bp145JLLuGzzz5LGVNUVMTVV19NTk4OPXr04Kabbkr5JYSyhyzWrFlDu3btWLBgQcq46667jn79+iXv//GPf0wud8EFF9C1a1cGDhzI66+/Tjwe57bbbqNXr1706tWLW2+9dY+HY6qyP7D/9ah09/iiRYs49dRT6dy5My+//DLFxcVce+21DBw4kK5du9KvXz+mTp3Kli1bUpYv3d2el5fHCSecQJcuXdi8eXOy1kcffZTi4mKWLVvGk08+mfIGdyD1+eijj055I/v8889Zt24d5557Ljt37uTDDz9Mznvrrbfo1KlT8uuH1q1bx1VXXUVubi5dunTh7LPP5v333//Wx6sNmjZtSuPGjfn8888B+PLLL/nZz37GiSeeSJcuXRgwYAC/+tWvyoTwdu3aMXv2bG6++WZ69+5Nz549gd2B/b777mPgwIF06tSJE088kQceeKC6n1aNq+i2FNTtqKYZivYzJ5xwAjt37mTJkiUAfPzxx3z44YcMHjw4Zdzq1asZOXIkBQUF3HDDDdxyyy1s3LiR888/P+VFa9KkSbzwwgtcddVV3HjjjXzyySc8+OCDlVrzhAkTOP7445k5cyaHHXYYY8aM4brrrmPdunXceOONjBo1itmzZ5fZ81AR5e0P7L89+vLLL5k+fTrnn38+eXl5tG/fnu3btxOLxRg/fjx5eXmMHTuWZcuW8ZOf/KTM8gsXLuTVV1/l5z//OXfddRcNGjTg/vvvZ/LkybRs2ZK6dety2WWXsWPHDq6++mrgwOvz0UcfzSeffEJBQQGw+83qv/7rv8jKyqJdu3bJN7ldu3bx3nvvJQ93FBQUMGrUKP7xj38wZcoU7rzzTurXr895553Hhg0bKvW5VratW7dSUFBA8+bNAdi0aRMHH3wwP/vZz7j33nu56KKLmDdvHr/4xS/KLPvQQw+xatUqrrvuOm6++WZgd3C94447OP3005k9ezZDhw7llltu4Xe/+121Pq+aVpFtKcjbUU1Lq+kCVLnq169Pv379eO655zj++ON59tlnycnJoUWLFinjZs6cSWZmJvfffz9169YFdv/ynXjiiTzxxBOcffbZfPzxxyxcuJDp06dz5plnAtCnTx8GDBhQqTWfc845jBo1Ctj91+Ypp5zC+++/z9y5cwE47rjjePnll1mwYAGnnHLKPj1WefsD+2+PCgoKyMvLo2vXrinTp02blvy5pKSE5s2bM2rUKFauXElWVlZy3q5du8jLy0seoioqKuKOO+7goosuIj09nY8++ogLL7yQP/3pT7zwwgts2rTpgOvz97//fRKJBG+//TY/+MEPWL58OTk5Ocnntnz5cs455xw++OADduzYkQxFDz74IIWFhTzxxBMccsghAPTs2ZOBAwdy3333JUNmbVFSUgLsDto333wzGRkZnHvuucDuPUATJkxIjj366KOpX78+EydOZOrUqdSvXz85LzMzk5kzZxIKhQD47LPPmDNnDtOmTWPEiBEA9OrVi+3btzNr1ixGjBhBOHxg/E1fkW0paNtRbXJgbFUHmCFDhvDSSy+xfft25s+fz8knn1xmzJIlS+jXrx+RSISSkhJKSkqIRqN06NAhuYv1vffeI5FI8MMf/jC5XCQSoX///pVab+/evZM/t27dGoAePXqkjMnKyuKf//xnpTxeefoD+2+PDj744DKBCODJJ5/k9NNPJycnh44dOybDwdc/+ZKbm5tyzs7y5cspLi7mpJNOIh6Pk0gkKCkpYdiwYcTjcf72t78dcH3u2LEj9erVS/4V/9ZbbyXfyLp165YyPRQKJectWbKE3NxcMjMzk70Ih8Mce+yxte6Ti8XFxXTs2JGOHTtywgkn8Pzzz3PTTTeRnZ0N7D789cADDzB48GC6dOlCx44dueqqqygpKWH16tUp6+rbt28yEAG8/vrrAAwYMCDZh5KSEnr16sX69esr7bUgCCqyLQVpO6pt3FO0H+rTpw/p6en8+te/Zs2aNQwaNKjMmE2bNvHggw/u8fBDeno6AOvXryc9PZ3MzMyU+aV/eVSWhg0bJn8uPa8iGo2WqWlfTgj+qvL0B/bfHh166KFlpr3wwgtMmDCBESNGMH78eA4++GDWr1/Pf//3f7Njx46UsV9/bps2bQJg6NChyWkdO3ZM/vzggw8ecH1OT0+nc+fOvPXWW2zdupUPP/ww+UaWk5OTPC/krbfe4sgjj0w+r02bNvH222+n9K9UVZ6gXhH16tVjzpw5JBIJVq1axa233sqECRN45plnOOyww3jwwQe58cYbueiii8jNzSUajfLee+9x7bXXlmubSiQSZQJpqX/+8580a9asyp5bbVKRbSlI21FtYyjaD6WnpzNgwAAeeOABevbsucc3wczMTH7wgx8k9wZ8VUZGBgBNmjRh165dFBQUpLwZfdcx6dJDIF89mRmgsLBwr59LVShPf2D/7dFX/yIvtWDBAtq3b59yzZI333yzXMuXPu+ZM2eyaNEinnnmGebMmQPAPffcw8svv3xA9rn0MMZf//pX6tSpQ/v27QFo1qwZTZo04a233mL58uUpJ3xnZmZy3HHHMXbs2DLrKw1ptUU4HKZz584AdOnShaysLIYPH86sWbOYNm0aCxYsoF+/fvz0pz9NLvPJJ5/scV172qZCoRCPPvpoMhh/1VcP5x4I9nZbCtJ2VNsYivZTw4YNY8OGDQwfPnyP83v27MmKFSvo0KEDkUhkj2NKX/BeeOGF5HkcsViMF1988Vsf+5BDDiE9PT3lBXDnzp1lrltTk76rP3Bg9Wj79u1l3nyeeeaZci2bk5ND/fr1WbduHU2bNk15s7z00ktJJBIHZJ+PPvpo7rnnHh555BE6d+5MWlpayrynnnqK9evXJ69FA7vPm3n66adp06ZNrbt8w3fp3LkzJ598Mn/84x8ZM2bMPm1TpZ9A27x5c0poPFDt7bYU5O2ophmK9lNdunThrrvu+sb5V155JWeeeSYXXnghw4cP59BDD+Vf//oXb775JscccwxDhgzhyCOP5Ic//CEzZsxgx44dNG/enEcffbTMX91fFw6H+eEPf8gjjzxCq1ataNSoUXI3+572UtSE7+oPHFg96tWrF9deey2zZs0iJyeHRYsWsXTp0nItG41GufLKK7n55pvp0KEDsViM1157jdWrV/PSSy8lP/nyTfbXPufk5BAOh1m0aBGXXHJJyrxu3bpx0003AaRcaO/888/nmWee4ZxzzuHcc8/liCOOYOPGjbzzzjs0bdqU888/v0pr3lc/+clPmD9/Pg8++CC9evXioYceYs6cObRu3Zqnn36aTz/9tFzrycrK4uyzz+bqq6/mwgsvpGvXruzatYtVq1bxxhtvfOfv7v5mb7eloG9HNclQdIBq1aoVTzzxBLfffjvTpk2juLiYJk2acOyxx6Z8bcKMGTO49tprueWWW6hTpw5Dhw6le/fuyV/CbzJlyhSmTJnC9OnTycjI4MILLyQrK4uXXnqpqp9apTmQejRy5EjWrFnDnDlzuO++++jTpw+33nrrt+7h+aoLLriApk2bcsMNN7Bjxw7Gjh1Ly5YtOf744/d4+OOr9tc+R6NRjjzySD766KPkOSClcnJySCQSHHbYYSmfyGvUqBFz587l9ttv55ZbbmHz5s0ccsghdO3aNeUk89oqOzubwYMH87vf/Y5XX32VTZs2Jb+KYuDAgUyePJnLLrusXOuaPHkyWVlZzJ07l1mzZpGRkUFWVhYnnXRSVT6FWmlvt6Wgb0c1KZRIJBI1XYQkSVJN8yP5kiRJGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSUpas2YN7dq147777qvSxxk9ejSjR4+u0seQtPcMRZIkSRiKJEmSAEORJEkSYCiSVMt98cUXTJo0iT59+tCpUyf69evHL37xC3bu3AnA6tWrufLKK+nevTtdu3Zl+PDhvPrqq2XWs2HDBiZNmkSvXr3o3Lkzp556KvPmzfvOx08kEkyZMoVOnTqxcOHC5PSnnnqKH/3oR3Tp0oXu3bszfvx4/vnPf5ZZfu7cufTv358uXbpw5pln8pe//KXizZBUpdJqugBJ+iZffPEFZ555Jlu2bGH48OFkZ2fzxRdf8Pzzz7N9+3YKCwsZOXIk27ZtY/To0TRq1Ih58+Zx+eWXc8cddyS/EXz79u2MHj2azz77jLPPPpvmzZuzYMECJk6cSGFhIeedd94eHz8WizFp0iTmz5/PzJkzOf744wG4++67+fWvf82gQYM488wz2bhxI3PmzOHss8/mySefJBqNAvDEE08wdepUcnJyOO+881i9ejWXX345mZmZ/Nd//Ve19FDSXkhIUi119dVXJ4466qjEu+++W2ZePB5PXHfddYm2bdsmli1blpxeVFSU6NevX+KEE05IxGKxRCKRSDzwwAOJtm3bJp566qnkuJ07dyZGjBiR6NatW2LLli2JRCKRWL16daJt27aJe++9N7Fr167EuHHjEl26dEn8+c9/Ti63Zs2aRPv27RN33313Sj0ffvhhokOHDsnpO3fuTPTs2TNx2mmnJXbs2JEcN3fu3ETbtm0T55xzTiV0SFJl8vCZpFopHo/z4osvcsIJJ9C5c+cy80OhEIsWLaJLly4cc8wxyekZGRmMGDGCtWvX8vHHHwOwePFimjRpwpAhQ5Lj0tPTGT16NMXFxSxbtixl3bt27WLs2LG8+uqrzJ49mz59+iTnvfDCC8TjcQYNGsTGjRuT/w499FBatWrFG2+8AcD777/Phg0bGDlyJHXq1EkuP3ToUBo2bFg5TZJUqTx8JqlW2rhxI0VFRXzve9/7xjGff/45Xbt2LTM9Ozs7Ob9t27asXbuWVq1aEQ6n/h3Ypk2b5Liv+s1vfkNxcTF5eXnk5uamzFu1ahWJRIIBAwbssaa0tLSUdbZq1Splfnp6Oi1atPjG5ySp5hiKJOlrjjvuOP785z9z7733kpubS926dZPz4vE4oVCIvLw8IpFImWUbNGhQnaVKqkSGIkm1UuPGjTnooINYsWLFN4454ogjWLlyZZnp+fn5yfkAzZo148MPPyQej6fsLfr6uFJdu3Zl5MiRXHrppYwdO5aZM2cm9wC1bNmSRCJB8+bNycrK+tbaAD799FN69uyZnL5r1y7WrFnDUUcd9a3PX1L185wiSbVSOBymf//+vPLKK7z33ntl5icSCX7wgx/w7rvvsnz58uT04uJiHn/8cZo1a8aRRx4JQN++fVm/fj3z589PjispKeHhhx+mQYMGHHvssWXW36tXL2677Tb+/Oc/c/XVVxOPxwEYMGAAkUiEmTNnkkgkytS0adMmADp16kTjxo157LHHkpcPAJg3bx6FhYX70BlJVSWU+PpvtSTVEl988QVnnHEGRUVFDB8+nDZt2rB+/XoWLFjAo48+ys6dOznttNPYsWMHo0ePJjMzkyeffJJ//OMf3HnnnSkfyf/Rj37EZ599xujRo2nWrBnPP/88b775JpMmTUp+JH/NmjWceOKJXH311Vx44YXA7usRTZgwgeHDh3PttdcCMHv2bG699VZycnLo378/GRkZrFmzhhdffJHhw4cnl507dy5Tp07l6KOPZvDgwaxZs4Y//vGPyY/kP/zwwzXQVUnfxMNnkmqtpk2b8vjjj/PrX/+aZ555hqKiIpo2bUrfvn2pV68e0WiUxx57jJtvvpk5c+awY8cO2rVrxz333JO8phBAvXr1ePjhh7nllluYN28eRUVFZGVlcf311/OjH/3oW2s47bTT2Lp1K9OmTSMjI4MJEyZwySWX0Lp1ax544AFmzZoFwOGHH07v3r3p169fctkRI0YQi8W47777uOmmm2jbtm3yGkeSah/3FEmSJOE5RZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEwP8D2gBGn3vH2JkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=steak, x=\"cooked\")" + ] + }, + { + "cell_type": "markdown", + "id": "996d3496-8057-4c0f-b083-ead62e394fde", + "metadata": {}, + "source": [ + "### Number of people who like their steak rare, and who gamble" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "f75ee0b2-8ed2-40d2-9a6e-dd839663f364", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamble cooked \n", + "No Medium 59\n", + " Medium Well 40\n", + " Medium rare 85\n", + " Rare 11\n", + " Well 18\n", + "Yes Medium 73\n", + " Medium Well 32\n", + " Medium rare 81\n", + " Rare 12\n", + " Well 18\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "counts = df.groupby([\"gamble\", 'cooked']).size()\n", + "print(counts)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "8082a773-1acd-4da5-beef-e78b82e4bca7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAG5CAYAAACKmu5sAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVCtJREFUeJzt3XlcFPX/B/DXzu5ys1wiiYICXiGXiQKKmopfxTM1TCvt0BT74ZmlWVbmmeWJiApmmvdR31LJM1Prq5Z5gFeaoKIoJsouKgp7/P4gNrdFxWVhl/H1fDx4yH7mMzPvWXbg5cxnZiQ6nU4HIiIiIhETLF0AERERUWVj4CEiIiLRY+AhIiIi0WPgISIiItFj4CEiIiLRY+AhIiIi0WPgISIiItFj4CEiIiLRY+AhIiIi0ZNZugBrodPpoNXyptNERETVhSBIIJFIytWXgedvWq0ON2/esXQZREREVE7u7o6QSssXeHhKi4iIiESPgYeIiIhEj4GHiIiIRI+Bh4iIiESPg5aJiKjCtFotNBq1pcsgEZFKZRAE8x2XYeAhIiKT6XQ6qFQ3UVh429KlkAjZ2ztBoXAv96Xnj8LAQ0REJisNO05ObrCxsTXLHyYinU6HoqL7uH37FgDAxcWjwstk4CEiIpNotRp92HFyUli6HBIZGxtbAMDt27fg7OxW4dNbHLRMREQm0Wg0AP75w0RkbqWfLXOMD2PgISKiCuFpLKos5vxsMfAQERGR6DHwEBERkegx8BAREVWhq1dzEB0djtWrv67U9SQkDEFCwpBKXUd1wsBDREREosfL0omIngKCIIEgmHdwsVbLwcpUfTDwEBGJnCBI4OZmD0GQmnW59+5JceOGAKlUApnM9BMGOh2g0WjNWBmRMQYeIiKRKzm6I0XWlhQU5l0123K1No5Q+0fhvkwKjdS0MCVI5bB1rWG2mkz111/XkZq6CAcP/g8qlRI1angiIiIKI0eOhVwux5Url5GcnIjff/8NRUX3ERDQAK+/PhgtW0YbLOfWrZtYtGgB/ve/n3Hnzm34+NRFv36vIDa22yPXr9PpMHPmNPzww2ZMmjQNbdu2BwBs356GdetW48KFLNja2qJFiwi8/fZIeHk9YzD/d999g1WrluPGjRsICAhAQsJo875BIsDAQ0T0lCjMu4rC3EvmW6CDK4R6GmjVxdBqNeZbbhW7ceMvvPXWa7h9uwA9evSCr2893LjxF376aTfu3buHggIVhg0bhHv37uHFF1+Ci4sLfvhhK8aPH4PJkz9D27btAAD379/D8OFDcflyNvr06YtatbyxZ89uTJ36CQoKCtC3b/8y16/RaDB9+qf48cedmDbtC32IWr58KVJTF6F9+xh07/4C8vNvYdOmdUhIGIIvv1wFZ2dnAMCWLf/F559PQ3BwCPr27Y+cnCsYN24MFAoFatb0qpo3sRpg4CEioqfaokULcPNmHpYs+QqNGwfq2wcPjodOp0Ni4mzcvJmHpKRUhIaGAQC6d++F117rjwUL5qB167YQBAHfffctLlzIwkcfTcZ//hMLAHjhhReRkDAEKSnJ6NatBxwcHA3WrVarMXnyRPz88z7MmDEbLVpEAgCuXbuKL79cgrfeGoaBA9/U92/bth3eeOMVfPvtBgwc+CbUajUWL16IBg0aYv78xZDL5QCAevX8MXPmVAaeB/AqLSIiempptVrs3/8TWrVqbRB2SkkkEhw48AuefbaJPuwAgIODA3r06IWrV3Nw4UImAODgwV/g4eGBmJhO+n4ymQwvvvgSCgvv4ujRIwbLVquLMXHiePzvfz/j88/n6cMOAOzd+yO0Wi3at++I/Px8/Ze7ew34+PjiyJHDAIAzZ07h1q2b6Nmzjz7sAECXLt3h5ORkhndIPHiEh4iInlr5+bdw584d+PkFPLRPbu41BAYGGbXXq1cPAHDt2jX4+9fHtWtXUaeOr9FDLuvW9fu7n+H4qa+//gqFhXfxxRfz8dxz4QbTsrOzodPp0K9frzJrkkplBsv08fE1mC6TyeDtXfuh2/Q0YuAhIiKygIiISBw6dACrV69A06bNYGv7z0NYdTotJBIJvvhifplPCbe3d6jKUkWBgYeIiJ5arq5ucHR0RFbW+Yf28fJ6BpcuXTRqv3jxAgDgmWee+fvfWjh//hy0Wq1BSLl06YJ++oMCA4PRs2cfjBs3GhMnjse0aZ9DJiv5s1y7dh3odDrUquUNX9+6D62tdJnZ2ZfQrFlzfbtarUZOTg7q12/wiK1/unAMDxERPbUEQUDr1s/jl1/248yZU0bTdTodoqJa4fTpkzhxIl3fXlhYiO+//xa1anmjXj1/AEBkZCvk5eVh9+4d+n5qtRobN66Dvb0DmjZ9zmj5zZtH4JNPpuHQof9h8uSPoNWW3I+obdv2kEqlWLYsBTqdzqgmpTIfANC4cSBcXd3w3XebUFxcrO+TlrYZt28XmP7GiBCP8BAR0VNt6ND/w2+/HURCwhD06NELdev6IS/vBvbs2YWFC5fi1Vdfx65dOzB27Ai8+GI/KBQK/PDDFly9moMpU2bqj+b07NkL33//DaZNm4Q//jiDWrVqYc+e3cjIOI4RI94xukKrVJs2z2PChI8xZcrHcHR0xHvvfYDatetg8OBhWLx4Aa5dy0Hr1s/DwcEBOTk52LfvJ/To0QsvvzwAMpkMb701DJ9/Pg0jRsSjQ4eOuHo1B1u3buYYnn9h4CEioqeap2dNLF68HKmpydixYxvu3r2DGjU8ERnZEnZ2dnB2dkZy8lIkJydi48Z1KCoqQkBAfXz22RyDGw/a2tohMXExkpMTsW3bFty5cwe+vnUxYcLH6NKl+yNr6NSpC+7evYtZs2bA0dEJ//d/IzFgwOvw9fXFunWrsWxZCgCgZk0vtGgRgejoNvp5e/bsDa1Wi9Wrv8bChfPh718fn302GykpyZXzhlVTEt2/j5U9pTQaLW7evGPpMoiIzE4mE+Dm5ohTyz81/40Hm/WEm8INsjIG1paHILeBvUctqNV8tAQZKy4uQl7eVXh41IJcbmM03d3dEVJp+T57HMNDREREosfAQ0RERKLHwENERESiZ3WBZ/fu3YiLi0PTpk0RHR2NkSNHIjs726jfhg0b0KlTJwQHB6NHjx7Ys2ePBaolIiKi6sCqAs+hQ4eQkJCA+vXrIykpCRMmTMCZM2fw5ptv4t69e/p+W7duxcSJExEbG4uUlBSEhYUhISEBx44ds1zxIiAIEshkglV+CYLE0m8PERFVY1Z1WfrWrVvh7e2NadOmQSIp+QPn7u6O1157DSdOnEB4eMmzRubPn4+uXbti1KhRAIDIyEicPXsWSUlJSElJsVT51ZogSODmZg9BkFq6lDJptRrculUIrZYXFRIR0ZOzqsCjVqvh6OioDzsA4OzsDAD6O01mZ2fjwoULePfddw3m7dKlC2bOnImioiLY2BhfukaPJggSCIIUWVtSUJh39fEzVCF7j1rw6/YWBEHCwENERCaxqsDTu3dvfPfdd1i1ahV69OiB/Px8zJ49G4GBgXjuuZJbcmdmZgIA/Pz8DOYNCAhAcXExsrOzERDw8Kfe0qMV5l017306iIiIrIBVBZ7w8HAsWLAA77zzDj799FMAwLPPPovU1FRIpSWnWpRKJQBAoVAYzFv6unS6KWQyqxrSVKXKe+MmS6oONRJZo+qw70gkAG+DSw8jlUoq/DfaqgLPkSNH8N5776Fv3754/vnnkZ+fj4ULF2LIkCFYvXo17OzsKm3dJWNYyn7OCVkHhcLe0iUQUSWpDqGMqp5WK4EgCHBxcahwBrCqwDNlyhRERkZi/Pjx+rawsDA8//zz+O677/DSSy/BxcUFAFBQUABPT099P5VKBQD66U9Kq9VBpbpbgeqrN6lUsPpAoVIVQqPh7eeJnpQl9m+pTAZB9vg/MYJMDqlUMOu+rdXqTBrvt3TpYixbloIaNTzxzTdb9Q8FLTVs2JvIyEhHbGw3fPDBJxWqcf361Zg/fzZ+/vkwAODIkcMYMSIeqakr0LhxYIWWLSYajQ5arRZK5V0UFmqMpisU9uUOy1YVeM6fP48OHToYtD3zzDNwc3PDpUsl40r8/f0BlIzlKf2+9LVcLoePj4/J6+ezXKybRqPlz4ioGpDKZKjpH6AfilDVNBot8vPvmhR6ZDIZlMp8HDt2BM89F65vv3btKk6cyIC9vYM5S9Vr1KgxFi1ahrp1/R7f+Smk0egq/PvfqgKPt7c3Tp06ZdB25coV3Lp1C7Vrlzzm3sfHB/Xq1cO2bdsQExOj75eWloaoqCheoUVEZGGCTAapVIqkNb/gynXTx1WaonZNF/xf/1YmX9Upl8sRHt4Cu3ZtNwg8u3Zth5+ff6XdusPR0QlBQcGVsmwqYVWBp1+/fpg2bRqmTJmC9u3bIz8/H8nJyfDw8EBsbKy+3/DhwzF27Fj4+voiIiICaWlpSE9Px8qVKy1YPRERPejKdSUuXLll6TKeWExMJ8ya9RnGjBkH2d+n5Xbu3I6OHTtj9+6dBn0vXMjCokWJOHr0d2g0GjRt2gyjRr2L2rXr6PvcuXMbs2fPxL59P8HW1gZdunSHq6u7wXL+fUrr6tUcxMX1wOTJM9Cu3T//uZ83bxb27/8JGzduBgCkpW3GtGmTkJq6AosXJyE9/Rhq1vTCmDHj0KxZc6SmLsLmzf8FAHTt2gNDhrxtdKruaWFVgWfgwIGwsbHBmjVrsGnTJjg6OiIsLAxz586Fm5ubvl+3bt1QWFiIlJQULFmyBH5+fliwYAGaNm1qweqJiEgMWrVqgxkzJuPXXw+iZctoZGVl4vz5c5g+/QuDwHPlymXEx78Jf/8ATJjwCQRBghUrvsTIkcOwevUm/RmH6dM/xaFDBxEfnwBvb298++1GnDu33aw1T5nyMXr27IN+/V7FypVf4YMP3kNsbFfcuXMHH344CadOncDSpYvh718f//lPZ7Ouu7qwqsAjkUjQv39/9O/f/7F94+LiEBcXVwVVERHR08TOzg7R0W2xe/d2tGwZjV27tiMoKATe3rUN+i1blgKFQoE5c5Jga2sLAAgKCkXfvj2xZct36N07DllZmdi7dw/GjfsQ3br1BAC0aBGFfv16m7XmPn1eQq9eLwIAPD09MXBgP5w5cxqLFy8DAEREROHnn/dhz55dT23geTqPaxERET1CTEwn7N+/D/fv38Pu3TsQE/Mfoz6//XYQ0dFtIJVKoVaroVar4ezsjIYNG+HMmZLxqGfOnIJOp0ObNu3080mlUrRp09as9TZvHqH/3senLgCgWbPmBn18fHxx/XquWddbnVjVER4iIiJrEBERBZlMhtTUxbh6NQft23c06pOfn4/169dg/fo1RtNkMjkA4MaNG5DJZEY3y3VzczeapyKcnJz138vlcqO20vaiovtmXW91wsBDRET0LzKZDG3btse6davQrFlzuLt7GPVRKFwQFdUKvXsbD69wcCi5fL1GjRpQq9VQqVQGoefWrZuPXH/p+J/iYrVBe0GB6om3hUow8BAREZWhe/eeyM+/ie7de5U5PTy8BbKyzqNBg0YPvedQ6U0E9+3box/Do9FosG/f3keu283NHTKZDBcvZunbiouLcezYEVM2hcDAQ0REVKbAwCBMnz7rodMHDRqKwYMHYsyY4ejRoxfc3d1x82Yejh49gtDQMHTs2Bl+fv5o06Yd5s+fjaKiItSqVQvffrsRanXxI9ctCALatm2HTZvWo04dH7i4uGLTpvXQ6XSQSCTm3tSnAgMPERFVito1TXvUT3VZZ506PkhJWY6UlGTMnj0DhYWF8PCogdDQpggIaKDv9/77H2HOnJlITp4PGxsbdO7cDWFhzbBw4bxHLn/UqPcwc+ZUzJ37ORwcHNG//wD4+tbF/v0/Vep2iZVEp+PzaYGSW5HfvHnH0mVYjEwmwM3NEaeWf4rC3EuWLseAvZcvAl/7CLdu3eGjJYhMUGn7t4MrhGY94aZwg+yBm9lV50dLkHUpLi5CXt5VeHjUglxu/CQFd3fH6vksLSIiqv40ajWuZ54v98NDbV1qWMXDQ0ncGHiIiMjsNGo1NGr1Y/sJci1kfDAwVQHeeJCIiIhEj4GHiIiIRI+Bh4iIiESPgYeIiIhEj4GHiIiIRI+Bh4iIiESPgYeIiIhEj4GHiIiIRI+Bh4iIzE4qk0FuZ/f4L1tbSKUCZDLzfQnCkz9cc+nSxYiODscLL8RCqzW+CeKwYW8iOjocU6d+YoZ3B1i/fjWio8P1r48cOYzo6HCcOXPKLMsnY7zTMhERmZVUJoOXvz8EqWX+xGi1Gty6VfjEj5eQyWRQKvNx7NgRPPfcP2Hk2rWrOHEiA/b2DuYuVa9Ro8ZYtGgZ6tb1q7R1PO0YeIiIyKwEmQyCVIasLSkozLtapeu296gFv25vQRAkTxx45HI5wsNbYNeu7QaBZ9eu7fDz84cgVN7DUB0dnRAUFFxpyzeVTqdDcXExbGyMH9xZHkVFRZDJZBAEy59QYuAhIqJKUZh31bxPZ68CMTGdMGvWZxgzZhxkfz/8dOfO7ejYsTN2795p1P/ChSwsWpSIo0d/h0ajQdOmzTBq1LuoXbuOvs+dO7cxe/ZM7Nv3E2xtbdClS3e4urobLOfIkcMYMSIeqakr0LhxIK5ezUFcXA9MnjwD7drF6PvNmzcL+/f/hI0bNwMA0tI2Y9q0SUhNXYHFi5OQnn4MNWt6YcyYcWjWrDlSUxdh8+b/AgC6du2BIUPefmT4mDr1E5w5cwpvvz0CixYl4eLFLHz88RRERrZCcvJ8/PbbIVy/ngs3N3dERERh2LARcHJy0s//4ovd0bJlNLy8nsE332zA9eu52Lx5J1xdXZGWthnr1q1CdvYlKBQuiI3thsGD4yGVVl6QfBADTxUSBIlJ55arglRq+fRNRGRprVq1wYwZk/HrrwfRsmU0srIycf78OUyf/oVR4Lly5TLi49+Ev38AJkz4BIIgwYoVX2LkyGFYvXqT/qjI9Omf4tChg4iPT4C3tze+/XYjzp3bbta6p0z5GD179kG/fq9i5cqv8MEH7yE2tivu3LmDDz+chFOnTmDp0sXw96+P//yn8yOXdePGDcyd+wVee20QvLyegZfXM7h37x60Wi2GDHkbrq5uuH49FytWfIn3338HiYmLDebfu/dH1Knji5Ejx0IQBNjb22Ht2pVITk5E374vIyFhFC5cuIAlSxZCq9Vi2LDhZn0vHoaBp4oIggSurg4MFkREVszOzg7R0W2xe/d2tGwZjV27tiMoKATe3rWN+i5blgKFQoE5c5Jga2sLAAgKCkXfvj2xZct36N07DllZmdi7dw/GjfsQ3br1BAC0aBGFfv16m7XuPn1eQq9eLwIAPD09MXBgP5w5cxqLFy8DAEREROHnn/dhz55djw08BQUqfPHFfDRpEmTQPnbs+/rv1Wo1atXyxttvD8alSxfh61vXYNoXX8yHvb09AODu3TtYunQJXn55IIYO/T8AQPPmkZDLZUhMnIOXXx4AFxfXCr8Hj8PAU0UEQQKpVEDSml9w5brS0uUYCW3kjZc6h1m6DCIii4uJ6YRJkz7E/fv3sHv3Drz44ktl9vvtt4Po0OE/kEqlUKvVAABnZ2c0bNhIf7XVmTOnoNPp0KZNO/18UqkUbdq0xbp1q81Wc/PmEfrvfXxKwkezZs0N+vj4+CI7+/GnGF1cXIzCDgBs27YV69atwuXL2SgsLNS3Z2dfMgg8TZs204cdAMjISEdh4V20a9dB/z4BQHh4BO7fv4/MzPNo2rRZObayYhh4qtiV60pcuHLL0mUY8fZUWLoEIiKrEBERBZlMhtTUxbh6NQft23css19+fj7Wr1+D9evXGE2TyeQASk4PyWQyKBSGv2Pd3NyN5qkIJydn/fdyudyorbS9qOj+Y5fl5uZh1LZ37x5MmfIxevTohSFD3oZC4Yq8vBuYMGGs0TL/Pb9SmQ8AePPNV8tc3/XruY+tyRwYeIiIiB4gk8nQtm17rFu3Cs2aNYe7u3EAAACFwgVRUa3Qu3ec0TQHh5JL2GvUqAG1Wg2VSmUQem7duvnIGkrH/xQXqw3aCwpUT7QtppCUMdR0z55daNCgId577wN929Gjv5drfmfnku2eOvVzeHl5GfWvVcvb9GKfAAMPERHRv3Tv3hP5+TfRvXuvh/YJD2+BrKzzaNCg0UOvNGrcOBAAsG/fHv0YHo1Gg3379j5y/W5u7pDJZLh4MUvfVlxcjGPHjjzpppjF/fv39UetSu3Ysa1c8wYFhcDOzg5//ZWLtm3bPX6GSsLAQ0RE9C+BgUGYPn3WI/sMGjQUgwcPxJgxw9GjRy+4u7vj5s08HD16BKGhYejYsTP8/PzRpk07zJ8/G0VFRahVqxa+/XYj1OriRy5bEAS0bdsOmzatR506PnBxccWmTeuh0+kgKesQTCVr3jwCs2d/hq++SkWTJsE4ePAX/P77r+Wa19nZGYMGxWPhwkRcv34dTZs2g1QqRU7OZezfvw9Tp86EnZ1dJW8BAw8REVUSe49aol5nnTo+SElZjpSUZMyePQOFhYXw8KiB0NCmCAhooO/3/vsfYc6cmUhOng8bGxt07twNYWHNsHDhvEcuf9So9zBz5lTMnfs5HBwc0b//APj61sX+/T9V6naVpWfP3sjJuYKNG9dh9eqv0aJFJD7+eCqGDn29XPP37/8qPD09sW7dKmzatA4ymQy1a9dBy5at9fc7qmwSnU73ZLeirEQDBgzAr7+WnRhnz56Nrl27AgA2bNiA1NRU5OTkwM/PD6NHj0a7dhU7TKbRaHHz5p0KLeNRZDIBbm6OmDAvzSoHLbcMq4uEl6NxavmnVnejMHsvXwS+9hFu3boDtdr4GTdE9Gilv3/Mvn87uEJo1hNuCjfIHriZXXV9tARZn+LiIuTlXYWHRy3I5cZ3e3Z3dyz37V6s6gjPxx9/jNu3bxu0LV++HDt27EBUVBQAYOvWrZg4cSLi4+MRGRmJtLQ0JCQkYNWqVQgLC7NA1URE9CCNWo3czEwI5fifuyCTw9alBjQa8/1nRqvVMeyQEasKPPXr1zdqe+edd9CqVSu4u5dcwjd//nx07doVo0aNAgBERkbi7NmzSEpKQkpKSlWWS0RED6FRq6FRqx/bT5BrIdNoefSWKp1V3/b3yJEjuHz5Mrp37w4AyM7OxoULFxAbG2vQr0uXLjhw4ACKioosUSYRERFZOas6wvNvW7ZsgYODAzp06AAAyMzMBAD4+fkZ9AsICEBxcTGys7MREBBg8vpkssrLf3ykRMXxPSQyTXXYdyQSwHpGlJK1kUolFf4bbbWBR61W44cffkD79u31N3BSKkseyfDvO1aWvi6dbgpBkMDNzdHk+anyKRT2j+9ERNVSdQhlVPW0WgkEQYCLi0OFL1232sDzyy+/4ObNm+jWrVuVrE+r1UGlultpy5dKBf7BriCVqtCsAxuJnhbV4fePRqPlER4yotHooNVqoVTeRWGhxmi6QmFfPa/SetCWLVvg6uqK6OhofZuLiwsAoKCgAJ6envp2lUplMN1UHDRn3TQc2EgkWgw79Cgaja7Cv/+t8hjivXv3sGvXLnTu3Fn/EDQA8Pf3B/DPWJ5SmZmZkMvl8PHxqdI6iYiIqHqwysDz448/4u7du/qrs0r5+PigXr162LbN8PkdaWlpiIqK0j9sjYiIiOhBVnlKa/PmzfD29kazZs2Mpg0fPhxjx46Fr68vIiIikJaWhvT0dKxcudIClRIREVF1YHVHeJRKJfbv348uXbqU+YC0bt26YfLkydiyZQsGDRqEI0eOYMGCBWjatKkFqiUiorJIZTLI7ewe/2VrC6lUgExmvi9BePKHay5duhjR0eF44YVYaLXGY0WGDXsT0dHhmDr1EzO8O8D69asRHR2uf33kyGFER4fjzJlTZlm+KbZs+Q7R0eHIzjZ8/MjGjWsRHR2OpUsXG7SrVEq0bt0cq1YtL/c6XnyxO2bP/kz/eurUTzBgQN+KFV5OVneEx8XFBSdOnHhkn7i4OMTFxVVRRURE9CSkMhlq+gdAKpVaZP0arQb5JjxLSyaTQanMx7FjR/Dcc/+EkWvXruLEiQzY2zuYu1S9Ro0aY9GiZahb1+/xnStJSEgoAODEiXT4+Pjq2zMyjsPOzg4ZGccN+mdkpEOn0yEkJKwqyzSZ1QUeIiKq3gSZDFKpFIv3rkCOMrdK1+3t4oWhbQdCECRPHHjkcjnCw1tg167tBoFn167t8PPzhyBUXoBzdHRCUFBwpS2/PHx968HV1Q3p6ccRG/vPLWEyMtIRG9sd27ZthUaj0QfZjIzjsLGxRePGgZYq+Ykw8BARUaXIUebiYt5lS5fxRGJiOmHWrM8wZsw4yP5++OnOndvRsWNn7N6906j/hQtZWLQoEUeP/g6NRoOmTZth1Kh3Ubt2HX2fO3duY/bsmdi37yfY2tqgS5fucHV1N1jOkSOHMWJEPFJTV6Bx40BcvZqDuLgemDx5Btq1i9H3mzdvFvbv/wkbN24GAKSlbca0aZOQmroCixcnIT39GGrW9MKYMePQrFlzpKYuwubN/wUAdO3aA0OGvA1BePholuDgUIMjOdeuXcP167mIi+uH77//BufPn0PDho0BlASexo2f1V9Nff16LhYtWoBDh/6HwsJ7ePbZQAwfPgaNGz9b/h9AJbK6MTxERESW0qpVGxQXF+HXXw8CALKyMnH+/Dl06PAfo75XrlxGfPybUKlUmDDhE3z88RTk59/CyJHDDJ7tOH36p9i37yfExyfggw8+wYULWdiwYY1Z654y5WO0bNka06Z9gRo1PPHBB+9h3rwvcP16Lj78cBJ6947DypVfYdeuHY9cTnBwKC5ezNLf3y4joyRA+frWRf36DfVhSK1W4/TpU/rTWSqVCm+/PRjnzv2BUaPexdSpn8HOzh4jR8bj1q2bZt1WUzHwEBER/c3Ozg7R0W2xe/d2ACWns4KCQuDtXduo77JlKVAoFJgzJwlt27ZD69bPY+bMeVAqldiy5TsAJYFp7949GDnyHfTp0xdRUdGYPn0WZDK50fIqok+flxAX1w8REVEYPfpd3L17B2fOnMaHH05CREQU3njjLTRq9Cz27Nn1yOWEhIRBp9Ph5Ml0ACXjeYKDQwAAwcEhyMgoaf/jjzMoKrqvDzwbNqzB7dsFmD9/ETp27Pz3dn4BJydnrFnztVm31VQMPERERA+IiemE/fv34f79e9i9ewdiYoyP7gDAb78dRHR0G0ilUqjVaqjVajg7O6Nhw0b6q63OnDkFnU6HNm3a6eeTSqVo06atWWtu3jxC/72PT10AQLNmzQ36+Pj44vr1R4+patz4Wdja2iI9veRITkbGcQQFlQxmbtIkWH+EJyPjGCQSCYKCSsLQr78eRNOm4XB2VujfC0EQEBb2HE6fttyVZw/iGB4iIqIHREREQSaTITV1Ma5ezUH79h3L7Jefn4/169dg/Xrj01OlR3Bu3LgBmUxm9NBrNzd3o3kqwsnJWf996ZiaB9tK24uK7j9yOTKZDM8+2wQZGcdx9+5dnD//5wNHeEKRm1sypicj4zjq1fN74OHd+Th5MgPPPx9ptMwHxzNZEgMPERHRA2QyGdq2bY9161ahWbPmcHf3KLOfQuGCqKhW6N3b+DYpDg4ll7DXqFEDarUaKpXKIPQ8blxL6ZMDiovVBu0FBaon2hZTBAeHYsOGNUhPPwa5XI769RsCAJ55phY8PGogI+M4TpxIR3T0P0epnJ0ViIhoibfeijdanlxuHU9BYOAhIiL6l+7deyI//ya6d+/10D7h4S2QlXUeDRo0eug9h0ov2d63bw+6desJANBoNNi3b+8j1+/m5g6ZTIaLF7P0bcXFxTh27MiTbsoTCwkJw9dfL8M336xH48aB+qvVgJJxPNu3pyEvLw/BwaH69vDwFtix4wfUresHe3v7Sq/RFAw8RERUKbxdvKrtOgMDgzB9+qxH9hk0aCgGDx6IMWOGo0ePXnB3d8fNm3k4evQIQkPD0LFjZ/j5+aNNm3aYP382ioqKUKtWLXz77Uao1cWPXLYgCGjbth02bVqPOnV84OLiik2b1kOn05X5FAJzCgoKgSAIOHDgF7z66usG05o0CcHChfMAwOCGg/36vYKdO7chIWEI4uL6wcvrGeTn38KpUydRo0YNvPTSK5Vac3kw8BARkVlp1WpoNBoMbTvQIuvXaDVPfNNBU9Sp44OUlOVISUnG7NkzUFhYCA+PGggNbYqAgAb6fu+//xHmzJmJ5OT5sLGxQefO3RAW1kwfHB5m1Kj3MHPmVMyd+zkcHBzRv/8A+PrWxf79P1Xqdjk7O8PPzx/nz/+pH5RcKjg4BDqdDjVqeBpcuebi4orFi5chJSUZycmJUKmUcHNzR2BgENq0eb5S6y0viU6nq/xPRTWg0Whx8+adSlu+TCbAzc0RE+al4cKVW5W2HlO1DKuLhJejcWr5pyjMvfT4GaqQvZcvAl/7CLdu3YFabfyMGyJ6tNLfP2bfvx1cITTrCTeFG2T/upmdVCaDIHv8/6kFmRy2LjWg0Zhv39ZqdVUSeKjyFRcXIS/vKjw8apU5Fsjd3RFSafkuOOcRHiIiMjuNWg2NWv3YfoJcC5lGy//MUKXjfXiIiIhI9Bh4iIiISPQYeIiIiEj0GHiIiIhI9Bh4iIiISPQYeIiIiEj0GHiIiIhI9Bh4iIiISPR440EiIjK7J7nTcnnvlFtept5peenSxVi2LEX/WqFwQd269TBw4BuIioo2Z4lkAQw8RERkVlKZDF5+/uUKPJVBq9HgVn6hSaHH1tYW8+YtAgDk5f2FFSuWYdy4MUhKSjF4OjhVPww8RERkVsLfR3eOJS/G7ZyrVbpuJ+9aCBs2FIIgMSnwCIKAoKBg/evAwCD07t0VP/ywpUKB5/79e7C1tTN5fqo4Bh4iIqoUt3OuQnXxoqXLqBBPz5pwdXVDbm4uAODGjRtYsiQJR48eQV7eDdSsWRPt2sXgjTfego3NPw+3jI4Ox9ChCSgoUGHbtq0oLCzEzp37oNPpsGbNSnz//bfIzb2KGjVq4sUX++Kll16x1CY+NRh4iIiIHuLu3btQqZSoVcsbAKBU5kOhcMHw4aPh7OyM7OxL+PLLJcjLu4EJEz42mHfjxjUIDAzG+PETodGUPEh13rwvsHnzfzFw4JsIDAzCiRPpSE5OhK2tLV544cUq376nCQMPERHRA9R/P+X9xo0bSE6eBwcHR/Tt2w8AEBBQHwkJo/R9g4NDYWdnj6lTP8aYMeNgZ/fPaStnZxdMm/Y5JBIJAODKlcvYtGk9xo59Hz179gYANG8egXv37mHZshT06NEbgsCLpysLAw8REdHfCgsL8fzzkfrXUqkU06fPgq9vPQCATqfDhg1r8P333yInJwdFRff1fXNyLsPfv77+dWRkS33YAYDffjsEAHj++fb6UAUA4eEtsGrVcly/notnnqlVWZv21GPgISIi+putrS2SklKg1Wpx+XI2Fi1agClTPsaKFetQo0YNrF+/GklJ8/DyywPx3HPhcHZ2xunTpzB79mcoKioyWJa7u7vBa6UyHzqdDl27xpS57txcBp7KZJWB59tvv8Xy5ctx/vx5ODg4IDg4GAsWLNAfKvzxxx8xd+5cZGVlwdvbG0OGDEGfPn0sXDUREVV3giCgceNAACVXaPn61sWQIa/jq69SMHbs+9izZzdatWqD+PgE/TwXLmQ9ZGkSg1cKhQskEgkWLkyFXC436u3rW9ds20HGrC7wJCcnIyUlBfHx8QgLC8OtW7dw4MABaDQaAMDhw4eRkJCAF198ERMmTMDBgwfxwQcfwNHREZ07d7Zw9UREJCaNGwciJqYT0tI244033sL9+/eMwsqOHT+Ua1nNmjUHACiVSkRHtzF7rfRoVhV4MjMzsWDBAixcuBBt27bVt3fq1En/fXJyMkJCQvDpp58CACIjI5GdnY358+cz8BARkdm9/vog7N69A+vXr0Hz5hHYsGEtNm1aBx+futi+PQ2XL18u13J8feuid+84TJnyEfr3H4DAwCCo1WpkZ1/C0aOHMX36rErekqebVQWeb775BnXq1DEIOw8qKirCoUOHMHbsWIP2Ll26YMuWLbh8+TLq1KlTFaUSEdFjOHlX/XiUylinr289dOjwH/z3vxuxadNW5OfnIzV1MQDg+ec7YNSosRg3bnS5ljVq1Lvw9a2L7777Bl99lQp7ewf4+tZFu3YdzF43GbKqwHP8+HE0bNgQCxcuxNdff42CggIEBQXh/fffR2hoKC5duoTi4mL4+/sbzBcQEACg5AgRAw8RkWVp1Wpo1WqEDRtqmfVrNCbdZXnQoKEYNKjsmj/6aLL++3/fbwcAfv758CNfl5JIJOjT5yX06fPSE9dHFWNVgeevv/7CiRMncPbsWXz88cewt7fHokWL8Oabb2LHjh1QKpUAAIVCYTBf6evS6aaSySrv/gfmfjje04jvIZFpqnrf0ajVyM3KLPfDQ21dakCj0Zpt/aY+PJSsl1QqqfDfaKsKPDqdDnfv3sW8efPQuHFjAEBoaCjat2+PlStXIjq68p5WKwgSuLk5VtryqeIUCntLl0BE5aRRq6F54F4zDyPItZCZMewAJb/PBUHy+I5k9bRaCQRBgIuLg8FNHU1hVYFHoVDA1dVVH3YAwNXVFYGBgfjzzz/RtWtXAEBBQYHBfCqVCgDg4uJi8rq1Wh1Uqrsmz/84UqnAP9gVpFIVmvV/gURPi+rw+0ej0ULHgzL0LxqNDlqtFkrlXRQWaoymKxT25T6CaVWBp379+rh06VKZ0+7fvw9fX1/I5XJkZmaidevW+mmZmZkAYDS250mp1fxjas00Gi1/RkQixbBDj6LR6Cr8+9+qBkW0a9cO+fn5OH36tL7t1q1bOHnyJJo0aQIbGxtERERg+/btBvOlpaUhICCAA5aJyGIEoWSMgTV+cfwbkZUd4YmJiUFwcDBGjBiB0aNHw9bWFkuWLIGNjQ1efvllAMCwYcMwcOBAfPLJJ4iNjcWhQ4ewZcsWzJkzx8LVE9HTShAkcHV1YLAgsmJWFXgEQcCSJUswffp0fPTRRyguLkZ4eDhWrVoFT09PAEB4eDgSExMxd+5cbNy4Ed7e3pgyZQpiY2MtXD0RPa0EQQKpVEDSml9w5XrFrhatDKGNvPFS5zBLl0FkUVYVeICSh619/vnnj+zToUMHdOjAmzQRkXW5cl2JC1duWboMI96eisd3IhI5Hn8lIiIi0WPgISIiItFj4CEiIrOTymSQ29k9/svWFlKpea9KM+Wmg1u2fIfo6HBkZxveGmXjxrWIjg7H0qWLDdpVKiVat26OVauWl2v5L77YHbNnf6Z/PXXqJxgwoO8T10mms7oxPEREVL1JZTLU9A+AVCq1yPo1Gi3y8+8+0eMlQkJCAQAnTqTDx8dX356RcRx2dnbIyDhu0D8jIx06nQ4hIWFmqZkqHwMPERGZlSCTQSqV4rv1h3Djr4LHz2BGNTyd0bNvBARB8kSBx9e3Hlxd3ZCefhyxsd307RkZ6YiN7Y5t27ZCo9HoQ1xGxnHY2NiiceNAs28DVQ4GHiIiqhQ3/ipAbk6+pcsot+DgUIMjOdeuXcP167mIi+uH77//BufPn0PDhiWPPsrIOI7GjZ+FXC7H9eu5WLRoAQ4d+h8KC+/h2WcDMXz4GDRu/KylNoXKwDE8REREKAk8Fy9m6Z/PmJFxDDVresHXty7q12+oD0NqtRqnT59CSEgYVCoV3n57MM6d+wOjRr2LqVM/g52dPUaOjMetWzctuTn0Lww8REREAEJCwqDT6XDyZDqAkvE8wcEhAIDg4BBkZJS0//HHGRQV3UdISBg2bFiD27cLMH/+InTs2BlRUdGYPv0LODk5Y82ary22LWSMgYeIiAhA48bPwtbWFunpJUdyMjKOIyioZDBzkybB+iM8GRnHIJFIEBQUgl9/PYimTcPh7KyAWq2GWq2GIAgIC3sOp0+fsti2kDGO4SEiIgIgk8nw7LNNkJFxHHfv3sX5838+cIQnFLm5JWN6MjKOo149PygUCiiV+Th5MgPPPx9ptLzatflAa2vCwENERPS34OBQbNiwBunpxyCXy1G/fkMAwDPP1IKHRw1kZBzHiRPpiI5uCwBwdlYgIqIl3nor3mhZcrlNldZOj8bAQ0RE9LeQkDB8/fUyfPPNejRuHAiZ7J8/k8HBIdi+PQ15eXkIDi451RUe3gI7dvyAunX9YG9vb6myqRw4hoeIiOhvQUEhEAQBBw78og81pZo0CcGBA78AgP6Gg/36vQKJRIKEhCHYtm0rjh79HXv27EJS0jysW7eqqsunR+ARHiIiqhQ1PJ2r3TqdnZ3h5+eP8+f/RFBQiMG04OAQ6HQ61KjhCW/v2gAAFxdXLF68DCkpyUhOToRKpYSbmzsCA4PQps3zFaqFzIuBh4iIzEqrVkOj0aBn3wiLrF+j0T7RXZb/bfnytWW2BwWF4OefDxu1e3jUwPjxEx+5zI0bNxu8/uCDT0yuj0zDwENERGalUatxPfM8BNnj/8QIMjlsXWpAo9Gabf1ara5CgYfEiYGHiIjMTqNWQ6NWP7afINdCptFCrTZf4CEqCwctExERkegx8BAREZHoMfAQERGR6DHwEBGRaXQ6QKcDhwdTZdHpzPfpYuAhIiLTFN2FTquBWssBx1Q5ioruAwCk0opfY8WrtIiIyDSaYuhyzuC2LARwdIZMECB5wkUIGg2Kiu5Do+FxIvqHTqdDUdF93L59C/b2ThCEih+fYeAhIiLTXfgdWgAF3o0hEaSA5Mkij0SQQq7WQMujRFQGe3snKBTuZlkWAw8REVXMhd+hy06HzsbhiQOPrUctBPT6PyiVd3mUhwxIpTKzHNkpxcBDREQVpykGCpVPPJvgrICdnR0KCzW8+SBVKg5aJiIiItFj4CEiIiLRY+AhIiIi0bOqwPPNN9+gUaNGRl9ffPGFQb8NGzagU6dOCA4ORo8ePbBnzx4LVUxERETVgVUOWk5NTYWzs7P+tZeXl/77rVu3YuLEiYiPj0dkZCTS0tKQkJCAVatWISwszALVEhERkbWzysDTpEkTuLuXfd39/Pnz0bVrV4waNQoAEBkZibNnzyIpKQkpKSlVWCURERFVF1Z1SutxsrOzceHCBcTGxhq0d+nSBQcOHEBRUZGFKiMiIiJrZpVHeLp164Zbt27B29sbffv2xeDBgyGVSpGZmQkA8PPzM+gfEBCA4uJiZGdnIyAgwOT1ymSVl/+k0mqVLa0S30OyVvxsVhzfQ6psVhV4PD09MXz4cISGhkIikeDHH3/E3LlzkZubi48++ghKZclNrRQKhcF8pa9Lp5tCECRwc3M0vXiqdAqFvaVLIKJKwv2bKpvJgee///0vwsPDUadOnTKnX758GYcPH8YLL7xQ7mW2bt0arVu31r+Ojo6Gra0tli9fjvj4eFNLLRetVgeV6m6lLV8qFbhDV5BKVQiNhndiJevD/bviuH+TKRQK+3IfHTQ58Lz//vuYOXPmQwNPeno63n///ScKPGWJjY3Fl19+idOnT8PFxQUAUFBQAE9PT30flUoFAPrppuJtza2bRqPlz4hIpLh/U2Uz+aSpTvfoh7zdvXsXUqnU1MWXyd/fHwD0Y3lKZWZmQi6Xw8fHx6zrIyIiInF4oiM8Z86cwZkzZ/SvDx8+DI1GY9RPpVJh7dq1RoOLTZGWlgapVIrAwEB4enqiXr162LZtG2JiYgz6REVFwcbGpsLrIyIiIvF5osCza9cuLFiwAAAgkUiwbt06rFu3rsy+CoUCn3322RMVM2jQIERERKBRo0YAgN27d2P9+vUYOHCg/hTW8OHDMXbsWPj6+iIiIgJpaWlIT0/HypUrn2hdRERE9PR4osDTt29fPP/889DpdIiLi8OIESPQpk0bgz4SiQT29vbw9fWFTPZkQ4T8/PywadMmXLt2DVqtFvXq1cOECRMwYMAAfZ9u3bqhsLAQKSkpWLJkCfz8/LBgwQI0bdr0idZFRERET48nSiQ1a9ZEzZo1AQArVqxAQEAAPDw8zFbMhx9+WK5+cXFxiIuLM9t6iYiISNxMvkqrRYsW5qyDiIiIqNJU6MaD+/fvx8aNG5GdnQ2VSmV05ZZEIsGuXbsqVCARERFRRZkceFJTUzFr1ix4eHggJCREP9CYiIiIyNqYHHhWrFiByMhILFmyBHK53Jw1EREREZmVyTceVKlU6NSpE8MOERERWT2TA09wcDCysrLMWQsRERFRpTA58HzyySfYuXMnNm/ebM56iIiIiMzO5DE8o0aNglqtxnvvvYdPPvkEzzzzDATBMD9JJBJ8//33FS6SiIiIqCJMDjyurq5wdXVF3bp1zVkPERERkdmZHHi+/vprc9ZBREREVGlMHsNDREREVF2YfITnt99+K1e/5s2bm7oKIiIiIrMwOfAMGDAAEonksf1Onz5t6iqIiIiIzKJCd1r+N41GgytXrmD9+vXQarV45513KlQcERERkTlUytPSe/fujZdffhm//voroqKiTF0FERERkVlUyqBlQRDQtWtXbNiwoTIWT0RERPREKu0qLaVSiYKCgspaPBEREVG5mXxKKycnp8x2lUqFw4cPY+nSpQgPDze5MCIiIiJzMTnwtG/f/qFXael0OoSFhWHSpEkmF0ZERERkLiYHnmnTphkFHolEAoVCAV9fX9SvX7/CxRERERGZg8mBp3fv3uasg4iIiKjSmBx4HvTnn3/iypUrAIDatWvz6A4RERFZlQoFnl27dmHGjBn6sFOqTp06GD9+PDp06FCh4oiIiIjMweTAs3fvXowYMQLe3t4YPXo0AgICAADnz5/H+vXrMXz4cCxatAht2rQxW7FEREREpjA58CxcuBCNGjXCqlWr4ODgoG/v0KEDXn31Vbz88stISkpi4CEiIiKLM/nGg3/88QdeeOEFg7BTysHBAb169cIff/xRoeKIiIiIzMHkwGNrawulUvnQ6UqlEra2tqYunoiIiMhsTA48ERERWLFiBY4ePWo07fjx4/j666/54FAiIiKyCiaP4Xn33XfRr18/vPzyywgJCYGfnx8AICsrC+np6fDw8MDYsWNNLuzOnTuIjY1Fbm4uNm7ciODgYP20DRs2IDU1FTk5OfDz88Po0aPRrl07k9dFRERE4mbyER4fHx98//33GDBgAJRKJdLS0pCWlgalUomBAwfiu+++Q506dUwubOHChdBoNEbtW7duxcSJExEbG4uUlBSEhYUhISEBx44dM3ldREREJG4mH+FRq9WwtbXFhAkTMGHCBKPpt2/fhlqthkz25Ks4f/48Vq9ejXHjxuHjjz82mDZ//nx07doVo0aNAgBERkbi7NmzSEpKQkpKiknbQkREROJm8hGeKVOmoF+/fg+d3r9/f8yYMaNCyy49TVYqOzsbFy5cQGxsrEF7ly5dcODAARQVFZm0PiIiIhI3kwPP/v370alTp4dO79SpE/bt2/fEy922bRvOnj2L//u//zOalpmZCQBGQSggIADFxcXIzs5+4vURERGR+Jl8Suv69evw8vJ66PSaNWsiNzf3iZZZWFiIGTNmYPTo0XBycjKaXnoZvEKhMGgvff2oy+TLQyYzOf89llRaect+WvA9JGvFz2bFyeVSq30ftVoddDqdpcugCjI58Li6uiIrK+uh08+fP19maHmU5ORkeHh4oE+fPqaWZTJBkMDNzbHK10vlp1DYW7oEIjIzmaMCWq0WTk52li7lobRaLQTBOsMYlZ/Jgad169ZYu3YtunfvjsDAQINpJ0+exPr169G5c+dyL+/KlSv48ssvkZSUhIKCAgDA3bt39f/euXMHLi4uAICCggJ4enrq51WpVACgn24KrVYHlequyfM/jlQq8A92BalUhdBotJYug8gI92/TyWwdIAgCFu9dgRzlk50VqAreLl4Y2nYgf/9YKYXCvtxHBk0OPCNHjsT+/fsRFxeH9u3bo379+gCAc+fOYc+ePXB3d8fIkSPLvbzLly+juLgYQ4YMMZo2cOBAhIaGYtasWQBKxvL4+/vrp2dmZkIul8PHx8fUzQEAqNX8MFszjUbLnxGRSOUoc3Ex77Kly3go/v6p/kwOPF5eXti0aRNmzZqF3bt3Y+fOnQAAJycndO/eHaNHj37kGJ9/e/bZZ7FixQqDttOnT2P69OmYNGkSgoOD4ePjg3r16mHbtm2IiYnR90tLS0NUVBRsbGxM3RwiIiISMZMDD1AyMPmzzz6DTqfDzZs3AQDu7u6QSCRPvCyFQoGIiIgypzVp0gRNmjQBAAwfPhxjx46Fr68vIiIikJaWhvT0dKxcudL0DSEiIiJRq1DgKSWRSODh4WGORT1Wt27dUFhYiJSUFCxZsgR+fn5YsGABmjZtWiXrJyIiourHLIGnskREROCPP/4wao+Li0NcXJwFKiIiIqLqiNfZERERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkejJLF0AUXlJpdabz7VaHbRanaXLICKih2DgIasnc1RAq9VCobC3dCkPpdFqkH+rkKGHiMhKMfCQ1ZPZOkAQBCzeuwI5ylxLl2PE28ULQ9sOhCBIGHiIiKyUVQWevXv3IiUlBX/++Sdu374NLy8vxMTEICEhAc7Ozvp+P/74I+bOnYusrCx4e3tjyJAh6NOnjwUrp6qQo8zFxbzLli6DiIiqIasKPPn5+QgJCcGAAQPg6uqKc+fOITExEefOncOXX34JADh8+DASEhLw4osvYsKECTh48CA++OADODo6onPnzhbeAiIiIrJGVhV4evbsafA6IiICNjY2mDhxInJzc+Hl5YXk5GSEhITg008/BQBERkYiOzsb8+fPZ+AhIiKiMlnvZS9/c3V1BQAUFxejqKgIhw4dMgo2Xbp0wfnz53H5Mk93EBERkTGrDDwajQb379/HyZMnkZSUhPbt26NOnTq4dOkSiouL4e/vb9A/ICAAAJCZmWmJcomIiMjKWdUprVLt2rVDbm7J1TitW7fGrFmzAABKpRIAoFAoDPqXvi6dbiqZrPLynzXfQ4bMgz/jpxd/9uLHn3H1Z5WBZ8mSJSgsLMSff/6J5ORkxMfHY9myZZW6TkGQwM3NsVLXQeJmzfcJIqKK4f5d/Vll4GncuDEAoGnTpggODkbPnj2xc+dO1K9fHwBQUFBg0F+lUgEAXFxcTF6nVquDSnXX5PkfRyoVuMOInEpVCI1Ga+kyyAK4f4sf92/rpFDYl/vom1UGngc1atQIcrkcly5dQvv27SGXy5GZmYnWrVvr+5SO3fn32J4npVbzw0ym02i0/AwRiRT37+rP6k9KHj9+HMXFxahTpw5sbGwQERGB7du3G/RJS0tDQEAA6tSpY6EqiYiIyJpZ1RGehIQEBAUFoVGjRrCzs8OZM2ewdOlSNGrUCDExMQCAYcOGYeDAgfjkk08QGxuLQ4cOYcuWLZgzZ46FqyciIiJrZVWBJyQkBGlpaViyZAl0Oh1q166NuLg4DBo0CDY2NgCA8PBwJCYmYu7cudi4cSO8vb0xZcoUxMbGWrh6IiIislZWFXiGDBmCIUOGPLZfhw4d0KFDhyqoiIiIiMTA6sfwEBEREVUUAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJnlUFnh9++AHDhg1DmzZtEBYWhp49e2Ljxo3Q6XQG/TZs2IBOnTohODgYPXr0wJ49eyxUMREREVUHVhV4vvrqK9jb22P8+PFITk5GmzZtMHHiRCQlJen7bN26FRMnTkRsbCxSUlIQFhaGhIQEHDt2zHKFExERkVWTWbqAByUnJ8Pd3V3/OioqCvn5+Vi2bBnefvttCIKA+fPno2vXrhg1ahQAIDIyEmfPnkVSUhJSUlIsVDkRERFZM6s6wvNg2Cn17LPP4vbt27h79y6ys7Nx4cIFxMbGGvTp0qULDhw4gKKioqoqlYiIiKoRqzrCU5bff/8dXl5ecHJywu+//w4A8PPzM+gTEBCA4uJiZGdnIyAgwOR1yWSVl/+kUqvKllQJ+DN+evFnL378GVd/Vh14Dh8+jLS0NIwbNw4AoFQqAQAKhcKgX+nr0ummEAQJ3NwcTZ6fSKGwt3QJRFRJuH9Xf1YbeK5du4bRo0cjIiICAwcOrPT1abU6qFR3K235UqnAHUbkVKpCaDRaS5dBFsD9W/y4f1snhcK+3EffrDLwqFQqvPXWW3B1dUViYiIEoWRjXFxcAAAFBQXw9PQ06P/gdFOp1fwwk+k0Gi0/Q0Qixf27+rO6k5L37t3D0KFDUVBQgNTUVDg7O+un+fv7AwAyMzMN5snMzIRcLoePj0+V1kpERETVg1UFHrVajVGjRiEzMxOpqanw8vIymO7j44N69eph27ZtBu1paWmIioqCjY1NVZZLRERE1YRVndKaNGkS9uzZg/Hjx+P27dsGNxMMDAyEjY0Nhg8fjrFjx8LX1xcRERFIS0tDeno6Vq5cabnCiYiIyKpZVeD55ZdfAAAzZswwmrZ7927UqVMH3bp1Q2FhIVJSUrBkyRL4+flhwYIFaNq0aVWXS0RERNWEVQWeH3/8sVz94uLiEBcXV8nVEBERkVhYVeAhosohCBIIgsTSZZRJq9VBq9U9viMRlYn7d/kw8BCJnCBI4OrqYLV3itVotMjPv2s1vxSJqhPu3+XHwEMkcoIggVQq4Lv1h3DjrwJLl2OghqczevaNgCBIrOIXIlF1w/27/Bh4iJ4SN/4qQG5OvqXLIKJKwP378azzGBgRERGRGTHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoySxdAJFYSKXW+f8Ha62LiKgqMfAQVZCLvTN0Wi0UCntLl0JERA/BwENUQQ429pAIAo4lL8btnKuWLseIZ0gwGsX1sXQZREQWZVWB5+LFi1i6dCmOHz+Oc+fOwd/fH1u2bDHqt2HDBqSmpiInJwd+fn4YPXo02rVrZ4GKif5xO+cqVBcvWroMI461alm6BCIii7OqwHPu3Dns3bsXoaGh0Gq10Ol0Rn22bt2KiRMnIj4+HpGRkUhLS0NCQgJWrVqFsLCwqi+aiIhEz1rHwllrXdbIqgJP+/btERMTAwAYP348Tpw4YdRn/vz56Nq1K0aNGgUAiIyMxNmzZ5GUlISUlJSqLJeIiESOY/TEw6oCjyA8OqlmZ2fjwoULePfddw3au3TpgpkzZ6KoqAg2NjaVWSIRET1FOEZPPKwq8DxOZmYmAMDPz8+gPSAgAMXFxcjOzkZAQIAlSiMiIhHjGL3qr1oFHqVSCQBQKBQG7aWvS6ebSiarvHOhPM9K9HDVff+o7vUTVSZr2T+qVeCpTIIggZubo6XLIHoqcXwEkXhZy/5drQKPi4sLAKCgoACenp76dpVKZTDdFFqtDirV3YoV+AhSqWA1P3Qia6NSFUKj0Vq6DJNx/yZ6uMrcvxUK+3IfQapWgcff3x9AyVie0u9LX8vlcvj4+FRo+Wp19f2FS1SdaTRa7n9EImUt+7d1nFgrJx8fH9SrVw/btm0zaE9LS0NUVBSv0CIiIqIyWdURnsLCQuzduxcAcOXKFdy+fVsfblq0aAF3d3cMHz4cY8eOha+vLyIiIpCWlob09HSsXLnSkqUTERGRFbOqwJOXl4eRI0catJW+XrFiBSIiItCtWzcUFhYiJSUFS5YsgZ+fHxYsWICmTZtaomQiIiKqBqwq8NSpUwd//PHHY/vFxcUhLi6uCioiIiIiMahWY3iIiIiITMHAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKJXLQPP+fPn8cYbbyAsLAytWrXCzJkzUVRUZOmyiIiIyErJLF3Ak1IqlXjttddQr149JCYmIjc3FzNmzMC9e/fw0UcfWbo8IiIiskLVLvCsXbsWd+7cwYIFC+Dq6goA0Gg0mDRpEoYOHQovLy/LFkhERERWp9qd0tq3bx+ioqL0YQcAYmNjodVq8csvv1iuMCIiIrJaEp1Op7N0EU8iKioKffr0wdixYw3aW7dujZ49exq1l5dOp4NWW3lvhUQCCIIA5e170Gi0lbYeU9nIpXBysEXxHRV0Wo2lyzEgyGwgs3eEqrAAaiurDQBsZXI42jrivkoFndr66hNsbGDj5Ig7VvjZk0oFODrZQavVonr9JjLE/dt03L8r5mnfvwVBAolEUq6+1e6UlkqlgkKhMGp3cXGBUqk0ebkSiQRSafnetIpwcbKr9HVUhNzR+L21Fgp7Z0uX8Ei2ZXwurYmjFX/2BKHaHWwuE/dv03H/rhju349nHVUQERERVaJqF3gUCgUKCgqM2pVKJVxcXCxQEREREVm7ahd4/P39kZmZadBWUFCAv/76C/7+/haqioiIiKxZtQs8bdq0wf/+9z+oVCp927Zt2yAIAlq1amXByoiIiMhaVburtJRKJbp27Qo/Pz8MHTpUf+PB7t2788aDREREVKZqF3iAkkdLTJ48GUePHoWjoyN69uyJ0aNHw8bGxtKlERERkRWqloGHiIiI6ElUuzE8RERERE+KgYeIiIhEj4GHiIiIRI+Bh4iIiESPgYeIiIhEj4GHiIiIRI+Bh0RjwIABiI2NRVFRkdG0ESNGoG3btrhz544FKiMic0lMTESjRo3wyiuvGE2bOnUq2rdvb4GqqDpg4CHRmDRpEi5fvozU1FSD9n379mH79u2YOHEiHB0dLVQdEZnT4cOHcejQIUuXQdUIAw+Jhr+/P4YOHYpFixYhOzsbAHD//n1MnjwZHTp0QExMjIUrJCJzcHBwQEhICBYuXGjpUqgaYeAhURkyZAi8vb0xadIkAMCiRYtw48YNfPTRR7h27RrGjh2LiIgIhISE4JVXXsGJEycM5t+9ezd69+6Npk2bIjw8HL1798bevXstsSlE9Ahvv/02Dh48iCNHjjy0z5UrVzBixAg0a9YMYWFhGDRoEP74448qrJKsCQMPiYqNjQ0+/fRT7N+/HwsXLkRqaipGjhwJe3t7vPzyyzhz5gwmTpyIxMRE2Nvb47XXXkNeXh4A4NKlSxg5ciQaNGiABQsWYM6cOYiNjYVSqbTwVhHRv7Vr1w6BgYFISkoqc/rt27cxYMAAnDp1CpMmTcLnn3+OW7du4dVXX8XVq1eruFqyBjJLF0Bkbi1atEDv3r0xb948NGnSBAMGDEBSUhJUKhU2bNgADw8PAEBUVBQ6deqEpUuX4r333sOpU6dQXFyMiRMnwsnJCQDQunVrS24KET3CsGHDMHz4cKSnpyMkJMRg2jfffIOcnBxs3boVAQEBAIDmzZujXbt2WL58OcaPH2+JksmCeISHRGnIkCEAgDfeeANSqRS//PILIiIi4OLiArVaDbVaDUEQ0Lx5c2RkZAAAGjVqBKlUirFjx+LHH39EQUGBJTeBiB6jY8eOaNiwYZlHeQ4fPowGDRroww4AuLq6omXLlvj999+rskyyEjzCQ6Ikl8sN/r116xaOHTuGJk2aGPX19fUFAPj5+WHRokVYvHgxEhISIAgCoqOj8dFHH8Hb27vqiieicpFIJIiPj8eYMWNw8uRJg2kqlQo1atQwmsfDwwPnzp2rqhLJijDw0FPBxcUFrVu3xsiRI42m2djY6L9v06YN2rRpg9u3b2Pfvn2YPn063n//fSxfvrwqyyWicoqNjUViYiIWLlxo8B8TFxcXZGVlGfXPy8uDi4tLVZZIVoKntOip0LJlS5w/fx4BAQEIDg42+GrUqJFRfycnJ3Tp0gVdu3bF+fPnLVAxEZWHIAiIj4/H7t27Da7AatasGc6ePYvMzEx9m1KpxP/+9z80a9bMEqWShfEIDz0VXn/9dWzevBmvvvoqBg4cCG9vb9y8eRPHjx+Hl5cXXn/9daxduxbHjh1D69at4enpicuXL+P7779Hq1atLF0+ET1C9+7dkZSUhEOHDqF27doAgN69e+Orr77C0KFDMWrUKNja2iI5ORkymQyvvfaahSsmS2DgoaeCm5sb1q1bh7lz5+KLL75Afn4+PDw8EBoaio4dOwIoGbS8Z88eTJ8+Hfn5+fD09ETXrl3LPA1GRNZDKpViyJAh+PDDD/VtTk5O+PrrrzFjxgxMnDgRWq0Wzz33HFauXIlatWpZsFqyFIlOp9NZuggiIiKiysQxPERERCR6DDxEREQkegw8REREJHoMPERERCR6DDxEREQkegw8REREJHoMPERERCR6DDxE9FQbP348mjZtWq6+jRo1QmJiYiVXRESVgYGHiIiIRI+Bh4iIiESPgYeIiIhEj4GHiKrcoUOH0Lt3bwQHByMmJgZr165FYmIiGjVqpO+zadMmDBw4EFFRUQgKCkKXLl2wevVqo2W1b98eQ4cO1S8zJCQE3bt3x6FDhwAAO3bsQPfu3REcHIzevXvj1KlTZdaUnZ2NQYMGISwsDNHR0ViwYAHK86jB3NxcvP/++2jZsiWCgoLQtWtXbNy40cR3hogqC5+WTkRV6tSpUxg8eDA8PT0xfPhwaLVaJCUlwd3d3aDfmjVr0KBBA7Rv3x4ymQx79uzBpEmToNPp8Morrxj0vXjxIt555x3069cPPXr0wJdffon4+HhMmjQJc+bMQf/+/QEAS5YswahRo7Bt2zYIwj//39NoNBg8eDBCQ0Px7rvvYv/+/UhMTIRGo8HIkSMfui03btxA3759IZFI8Morr8Dd3R379u3DBx98gNu3b+P111833xtHRBWjIyKqQkOHDtWFhobqrl27pm+7cOGCLjAwUNewYUN9W2FhodG8b775pq5Dhw4Gbe3atdM1bNhQd+TIEX3b/v37dQ0bNtSFhITorly5om9fu3atrmHDhrqDBw/q28aNG6dr2LChbvLkyfo2rVarGzJkiK5Jkya6vLw8fXvDhg118+fP17+eMGGCrlWrVrqbN28a1DR69Ghds2bNytwGIrIMntIioiqj0Whw4MABdOjQAV5eXvr2unXronXr1gZ97ezs9N8XFBTg5s2baNGiBbKzs1FQUGDQt379+gaXloeGhgIAIiMj4e3tbdSenZ1tVNuDR41Kj9gUFxfjwIEDZW6LTqfDjh070L59e+h0Oty8eVP/FR0djYKCApw8efKx7wkRVQ2e0iKiKpOXl4d79+6hbt26RtP+3fb7778jMTERx44dQ2FhocG0goICODs761/XqlXLYHrptGeeecag3cnJCQCgUqkM2gVBgI+Pj0Gbn58fAODKlStlbsvNmzehUqmwbt06rFu37qF9iMg6MPAQkdW5dOkSXn/9dfj7+2P8+PGoVasW5HI59u7di6+++gpardagv1QqLXM5D2vXlWMw8uOU1tCjRw/06tWrzD4PDsImIsti4CGiKuPh4QFbW1tcvHjRaNqDbT/++COKioqQnJxscEqq9Morc9NqtcjOztYf1QGArKwsAEDt2rXLnMfd3R2Ojo7QarVo2bJlpdRFRObDMTxEVGWkUilatmyJ3bt3Izc3V99+8eJF7N+/36AfYHgkpqCgAJs2baq02latWqX/XqfTYdWqVZDL5YiKiiqzv1QqRadOnbB9+3acPXvWaDpPZxFZFx7hIaIqlZCQgJ9//hn9+/dH//79odVqsXLlSjRo0ACnT58GALRq1QpyuRzx8fHo168f7ty5gw0bNsDDwwN//fWX2WuytbXF/v37MW7cOISEhGD//v346aefEB8fb3S5/IPeeecdHDp0CH379kVcXBzq168PpVKJkydP4sCBA/j111/NXisRmYZHeIioSgUFBSElJQUuLi6YN28eNm7ciBEjRiAqKgq2trYAAH9/f8yfPx8SiQSfffYZ1q5di759+2LgwIGVUpNUKkVqaipu3LiBzz//HBkZGUhISHjkPXgAoEaNGtiwYQN69+6NnTt3YvLkyVixYgWUSiXGjh1bKbUSkWkkOnOM3iMiqqC3334bf/75J3bs2GHpUohIhHiEh4iq3L179wxeX7hwAfv27UOLFi0sVBERiR3H8BBRlYuJiUGvXr3g4+ODK1euYO3atZDL5Rg8eLClSyMikWLgIaIq17p1a2zduhV//fUXbGxsEBYWhjFjxqBevXqWLo2IRIpjeIiIiEj0OIaHiIiIRI+Bh4iIiESPgYeIiIhEj4GHiIiIRI+Bh4iIiESPgYeIiIhEj4GHiIiIRI+Bh4iIiESPgYeIiIhE7/8BMCVM3tIc254AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.countplot(x='gamble', hue='cooked', data=df)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "506a2001-d2dc-4e66-b330-699d5194db2d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of people who gamble and order their steak rare: 12\n" + ] + } + ], + "source": [ + "df = df.dropna(subset=['gamble', 'cooked'])\n", + "gamble_rare = df[(df['gamble'].str.lower() == 'yes') & (df['cooked'].str.lower() == 'rare')]\n", + "count_gamble_rare = len(gamble_rare)\n", + "print(f\"Number of people who gamble and order their steak rare: {count_gamble_rare}\")" + ] + }, + { + "cell_type": "markdown", + "id": "87df3b25-3df9-42a8-884f-2a9c1a362bf4", + "metadata": {}, + "source": [ + "## Third Research Question: *Do people (males and females) who smoke also order their steak rare?*\n" + ] + }, + { + "cell_type": "markdown", + "id": "f20e80e3-f582-4422-ba20-5ff133730a79", + "metadata": {}, + "source": [ + "### Methods\n", + "*Explain how you will approach this research question below. Consider the following:* \n", + " - *Which aspects of the dataset will you use?* \n", + " - *How will you reorganize/store the data?* \n", + " - *What data science tools/functions will you use and why?* \n", + "\n", + "✏️ *Write your answer below:*\n", + "\n", + "**I will use the columns Smoke/Cooked to answer this question.\n", + "I will...\n", + "\n", + "-get the value of people who smoke\n", + "-get the value of people who order steak rare\n", + "-get the value of people who do both smoke and order their steak rare\n", + "\n", + "I will use pandas to handle my data (as data frames), seaborne to create visualizations\n" + ] + }, + { + "cell_type": "markdown", + "id": "e3a6ce78-a232-440d-be07-d5263b922bd7", + "metadata": {}, + "source": [ + "# Results " + ] + }, + { + "cell_type": "markdown", + "id": "fdf13331-0905-49a9-9da6-97124c967248", + "metadata": {}, + "source": [ + "### Number of people who smoke\n" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "22f25f57-c47a-4b73-9fc6-12a5dcd85d2f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "smoke\n", + "No 356\n", + "Yes 72\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steak.smoke.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "2377f2bc-3aa3-4d92-a128-c4cc9eaf7d35", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAM7VJREFUeJzt3Xt4VOW9t/F7ZsIxMAEsYOUgSSoBFSSiAhKiIB4IVKrVbjeCSi1KFRWtFmoBpbXFbXWDIqIGSrWeldraGhHPlENF2R6q1IoGFbEgcsgkgJLMzPsHb6amwQoJyczQ+3NdXJNZ61nP/CZPZs2XtZ41E4jH43EkSZL+wwWTXYAkSVIqMBRJkiRhKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAyEh2AekmHo8Ti/kh4KotGAz4tyElka9BfZVgMEAgEPjadoaifRSLxdmyZXuyy1CKycgI0rZtJpHIDqqqYskuR/qP42tQ/067dpmEQl8fijx9JkmShKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgDISHYBkpQqgsEAwWAg2WWoDkKhYI1bpadYLE4sFk/a4xuKJIndgahN25aEgr6pprNwuEWyS1A9RGMxtm3dkbRglFKh6KWXXqK4uJj33nuPiooKOnbsyNChQ5kwYQKtW7cGYPLkyTz++OO1ti0uLqawsDBxf9euXcycOZMnnniC7du3k5+fz9SpU8nJyWm05yMpfQSDAULBIA8s+hufbtmR7HK0jwKBAKFQkGg0RjyevCMNqrsO7Voy6rSeBIMBQxHAtm3b6N27N2PGjKFNmzasWbOG2bNns2bNGn79618n2nXp0oWbb765xra5ubk17t9www2UlJQwefJkOnbsyJ133skFF1zAk08+mQhYkvSvPt2yg/WbKpJdhvZRIBAgIyNEVVXUUKQ6S6lQNHLkyBr3+/XrR9OmTZk6dSobN26kY8eOADRv3pw+ffp8ZT8bNmzgscce47rrruOss84CoFevXgwePJiHHnqIcePGNdhzkCRJ6SnlT563adMGgMrKyr3eZunSpcRiMU477bQa/QwcOJAlS5bs7xIlSdIBIKWOFFWLRqNUVVXx3nvvMWfOHIYMGULnzp0T6z/88EP69u3LF198Qffu3bnkkksYOnRoYn1paSkHHXQQWVlZNfrNzc3lscceq3d9GRkpnyXVyLzyJf1Vj10gECAQ8Aq0tBP4520Axy8dVb/ukrkfTclQNHjwYDZu3AjAoEGDuOWWWxLrevbsSa9evfjWt75FeXk5Dz74IJdeeim33npr4shQJBLZ47yhcDhMWVlZvWoLBgO0bZtZrz504PLKl/QXCgXJyAgluwzVUUbIsUtX1WEomfvRlAxFd999Nzt37uS9995j7ty5jB8/ngULFhAKhTj//PNrtB0yZAjnnHMOt912W43TZQ0lFosTiXhlimoKhYKEwy2IRHYSjcaSXY7qoHoMo9EYVVXRZJejfRXYHYiqolFwnnVaqt53NsR+NBxusVdHoFIyFPXo0QOA/Px8evXqxciRI3nmmWf2GHqCwSCnnHIKv/rVr/j8889p3rw54XCYioraV49EIpFap9TqoqrKNz3t2e43VP8+0lk8HvfqpTSUOGUWx/FLU9Xjlsz9aMpPgMjLy6NJkyZ89NFHe71NTk4On332Wa1TZaWlpX5OkSRJ2qOUD0VvvPEGlZWVNSZaf1ksFmPRokUcdthhNG/eHICCggKCwSCLFy9OtCsrK2Pp0qU1PuBRkiSpWkqdPpswYQJHHnkkeXl5NG/enHfeeYf58+eTl5fH0KFDWb9+PZMnT2b48OEceuihlJWV8eCDD/LWW28xe/bsRD8HH3wwZ511FjfddBPBYJCOHTty11130bp1a84555wkPkNJkpSqUioU9e7dm5KSEu6++27i8TidOnXi7LPP5sILL6Rp06ZkZmbSqlUr5s6dy+bNm2nSpAlHHnkkxcXFDBo0qEZfU6ZMITMzk1tuuYXt27dz9NFHs2DBAj/NWpIk7VEg7oy0fRKNxtiyZXuyy1CKycgI0rZtJlu3bneidZqqHsNZD6zyaz7SkF/zkf46tW/FxFF9G2Q/2q5d5l5dfZbyc4okSZIag6FIkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQJSLBS99NJLjB49mv79+3PkkUdy0kknMWPGDMrLy2u0e/755zn99NPp1asXp556KgsXLqzV165du/if//kfBg4cSJ8+fRg7diylpaWN9VQkSVKaSalQtG3bNnr37s306dOZP38+Y8eO5fe//z1XXHFFos2rr77KhAkT6NOnD8XFxQwbNoyf/vSnLFq0qEZfN9xwA48++ihXXnkls2fPZteuXVxwwQW1ApYkSRJARrIL+LKRI0fWuN+vXz+aNm3K1KlT2bhxIx07dmTu3Ln07t2bn/3sZwD079+fdevWcdttt3HaaacBsGHDBh577DGuu+46zjrrLAB69erF4MGDeeihhxg3blzjPjFJkpTyUupI0Z60adMGgMrKSnbt2sXLL7+cCD/VioqKeP/99/n4448BWLp0KbFYrEa7Nm3aMHDgQJYsWdJotUuSpPSRkqEoGo3yxRdf8PbbbzNnzhyGDBlC586d+eijj6isrCQnJ6dG+9zcXIDEnKHS0lIOOuggsrKyarVzXpEkSdqTlDp9Vm3w4MFs3LgRgEGDBnHLLbcAUFZWBkA4HK7Rvvp+9fpIJELr1q1r9RsOhxNt6iMjIyWzpJIoFArWuFX6qR67QCBAIBBIcjXaZ4F/3gZw/NJR9esumfvRlAxFd999Nzt37uS9995j7ty5jB8/ngULFiS7LACCwQBt22YmuwylqHC4RbJLUD2FQkEyMkLJLkN1lBFy7NJVdRhK5n40JUNRjx49AMjPz6dXr16MHDmSZ555hm9961sAta4gi0QiAInTZeFwmIqKilr9RiKRWqfU9lUsFicS2VGvPnTgCYWChMMtiER2Eo3Gkl2O6qB6DKPRGFVV0WSXo30V2B2IqqJRiCe7GNVF9b6zIfaj4XCLvToClZKh6Mvy8vJo0qQJH330EUOGDKFJkyaUlpYyaNCgRJvqeULVc41ycnL47LPPKCsrqxGCSktLa81HqouqKt/0tGe731D9+0hn8XiceNx31XSTOGUWx/FLU9Xjlsz9aMpPgHjjjTeorKykc+fONG3alH79+vH000/XaFNSUkJubi6dO3cGoKCggGAwyOLFixNtysrKWLp0KYWFhY1avyRJSg8pdaRowoQJHHnkkeTl5dG8eXPeeecd5s+fT15eHkOHDgXghz/8Ieeddx7XX389w4YN4+WXX+ZPf/oTM2fOTPRz8MEHc9ZZZ3HTTTcRDAbp2LEjd911F61bt+acc85J1tOTJEkpLKVCUe/evSkpKeHuu+8mHo/TqVMnzj77bC688EKaNm0KwDHHHMPs2bOZNWsWjz32GIcccgg33HADw4YNq9HXlClTyMzM5JZbbmH79u0cffTRLFiwYI9XpUmSJAXinnzdJ9FojC1btie7DKWYjIwgbdtmsnXrducUpanqMZz1wCrWb6p9oYZSWyAQICMjRFVV1DlFaapT+1ZMHNW3Qfaj7dpl7tVE65SfUyRJktQYDEWSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEgAZyS7gy5566imeeOIJ3n77bSKRCIceeihjxozhu9/9LoFAAIAxY8awcuXKWtuWlJSQm5ubuF9eXs6MGTN49tlnqaysZNCgQUyZMoUOHTo02vORJEnpI6VC0W9+8xs6derE5MmTadu2LcuXL2fq1Kls2LCBCRMmJNodffTRTJo0qca2nTt3rnF/4sSJvPfee1x//fU0a9aMWbNmMW7cOBYuXEhGRko9bUmSlAJSKh3MnTuXdu3aJe4PGDCAbdu2sWDBAi655BKCwd1n+8LhMH369PnKfl577TWWLl3K/PnzKSgoACA7O5uioiIWL15MUVFRgz4PSZKUflJqTtGXA1G1nj17UlFRwY4dO/a6nyVLlhAOhxk4cGBiWU5ODj179mTJkiX7pVZJknRgSalQtCerVq2iY8eOtGrVKrFs5cqV9OnTh169ejF69GheeeWVGtuUlpaSnZ2dmIdULScnh9LS0kapW5IkpZeUOn32r1599VVKSkpqzB869thjGTlyJN26dePTTz9l/vz5jB07lt/+9rfk5+cDEIlEaN26da3+srKyeOutt+pdV0ZGymdJNbJQKFjjVumneuwCgUCt/1ApDQT+eRvA8UtH1a+7ZO5HUzYUbdiwgSuvvJJ+/fpx3nnnJZZffvnlNdqdeOKJjBgxgjvuuIPi4uIGrysYDNC2bWaDP47SUzjcItklqJ5CoSAZGaFkl6E6ygg5dumqOgwlcz+akqEoEokwbtw42rRpw+zZsxMTrPekZcuWnHDCCTz99NOJZeFwmA0bNtRqW1ZWRlZWVr1qi8XiRCJ7P79J/xlCoSDhcAsikZ1Eo7Fkl6M6qB7DaDRGVVU02eVoXwV2B6KqaBTiyS5GdVG972yI/Wg43GKvjkClXCj6/PPPufjiiykvL+fhhx/e42mwr5OTk8OKFSuIx+M1DoOvXbuW7t2717vGqirf9LRnu99Q/ftIZ/F4nHjcd9V0kzhlFsfxS1PV45bM/WhKTYCoqqpi4sSJlJaWMm/ePDp27Pi12+zYsYMXX3yRXr16JZYVFhZSVlbGihUrEsvWrl3L6tWrKSwsbJDaJUlSekupI0XTp0/nhRdeYPLkyVRUVPD6668n1h1++OG8+eabzJs3j5NPPplOnTrx6aefsmDBAjZt2sStt96aaJufn09BQQHXXnstkyZNolmzZsycOZO8vDxOOeWUJDwzSZKU6lIqFC1btgyAG2+8sda65557jvbt21NZWcnMmTPZtm0bLVq0ID8/n+nTp9O7d+8a7WfNmsWMGTOYNm0aVVVVFBQUMGXKFD/NWpIk7VEg7snXfRKNxtiyZXuyy1CKycgI0rZtJlu3bndOUZqqHsNZD6xi/aaKZJejfRQIBMjICFFVFXVOUZrq1L4VE0f1bZD9aLt2mXs10Tql5hRJkiQli6FIkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIE1CMUnXfeeaxYseIr1//lL3/hvPPOq2v3kiRJjarOoWjlypV89tlnX7l+y5YtvPLKK3XtXpIkqVHV6/RZIBD4ynUffvghmZmZ9elekiSp0WTsS+PHH3+cxx9/PHF/7ty5PPLII7XalZeX8/e//53CwsL6VyhJktQI9ikU7dy5k61btybub9++nWCw9sGmli1bcs4553DppZfuUzFPPfUUTzzxBG+//TaRSIRDDz2UMWPG8N3vfrfGUalHH32UefPm8cknn5Cdnc2VV17J4MGDa/RVXl7OjBkzePbZZ6msrGTQoEFMmTKFDh067FNNkiTpP0MgHo/H67LhkCFD+OlPf8pJJ52034r5r//6Lzp16sTQoUNp27Yty5cvZ968eVx66aVMmDABgCeffJIf/ehHjB8/nv79+1NSUsLChQu5//776dOnT6KvCy+8kPfee49JkybRrFkzZs2aRTAYZOHChWRk7FMWrCEajbFly/b6PlUdYDIygrRtm8nWrdupqooluxzVQfUYznpgFes3VSS7HO2jQCBARkaIqqoodXxbU5J1at+KiaP6Nsh+tF27TEKhr58xVOd08Pzzz9d10680d+5c2rVrl7g/YMAAtm3bxoIFC7jkkksIBoPcdtttDB8+nIkTJwLQv39/3n33XebMmUNxcTEAr732GkuXLmX+/PkUFBQAkJ2dTVFREYsXL6aoqGi/1y5JktJb3Q+Z/H8VFRV88sknRCKRPabzY489dq/7+nIgqtazZ08eeeQRduzYwdatW/nggw+45pprarQpKiripptuYteuXTRt2pQlS5YQDocZOHBgok1OTg49e/ZkyZIlhiJJklRLnUPRli1buOGGG1i8eDHRaLTW+ng8TiAQ4G9/+1u9Cly1ahUdO3akVatWrFq1Cth91OfLcnNzqaysZN26deTm5lJaWkp2dnatq+NycnIoLS2tVz2w+zC79GXVh2X35vCsUlP12AUCgX97Za1SVOCftwEcv3RU/bpL5n60zqFo2rRpvPDCC4wZM4ZjjjmGcDi8P+sC4NVXX6WkpIRJkyYBUFZWBlDrsarvV6+PRCK0bt26Vn9ZWVm89dZb9aopGAzQtq0fNaA9C4dbJLsE1VMoFCQjI5TsMlRHGSHHLl1Vh6Fk7kfrHIqWLVvG+eefz49//OP9WU/Chg0buPLKK+nXr19KfTJ2LBYnEtmR7DKUYkKhIOFwCyKRnUSjTrROR9VjGI3GqKqqffRbKS6wOxBVRaPgPOu0VL3vbIj9aDjcomEnWjdv3pxOnTrVdfN/KxKJMG7cONq0acPs2bMTl/1nZWUBuy+3b9++fY32X14fDofZsGFDrX7LysoSberDq4v0VXa/ofr3kc7i8bhXL6WhxCmzOI5fmqoet2TuR+t84u7000/n2Wef3Z+1APD5559z8cUXU15ezrx582qcBsvJyQGoNS+otLSUJk2a0KVLl0S7tWvX1nphrF27NtGHJEnSl9U5FJ166qmUlZVx4YUXsnjxYt58803efvvtWv/2RVVVFRMnTqS0tJR58+bRsWPHGuu7dOlCt27dWLRoUY3lJSUlDBgwgKZNmwJQWFhIWVlZjS+sXbt2LatXr/ZTtiVJ0h7V+fTZqFGjEj8vX7681vq6XH02ffp0XnjhBSZPnkxFRQWvv/56Yt3hhx9O06ZNueyyy7j66qvp2rUr/fr1o6SkhDfffJP77rsv0TY/P5+CggKuvfbaxIc3zpw5k7y8PE455ZS6PWFJknRAq3MomjFjxv6sA9g9eRvgxhtvrLXuueeeo3PnzowYMYKdO3dSXFzM3XffTXZ2Nrfffjv5+fk12s+aNYsZM2Ywbdo0qqqqKCgoYMqUKfX6NGtJknTgqvPXfPyn8ms+tCd+zUf682s+0ptf85H+UuFrPvykOUmSJOpx+uwnP/nJ17YJBAL88pe/rOtDSJIkNZo6h6KXX3651rJYLMamTZuIRqO0a9eOFi38dF9JkpQe6hyKnn/++T0ur6ys5OGHH+aee+7h17/+dZ0LkyRJakz7fU5RkyZNGD16NAMHDuTnP//5/u5ekiSpQTTYROsePXrwyiuvNFT3kiRJ+1WDhaLly5c7p0iSJKWNOs8puv322/e4vLy8nFdeeYXVq1dz0UUX1bkwSZKkxrTfQ1FWVhZdunRh+vTpfO9736tzYZIkSY2pzqHonXfe2Z91SJIkJZWfaC1JkkQ9jhRVW7lyJS+++CKffPIJAIcccggnnngixx13XL2LkyRJaix1DkW7du3iRz/6Ec8++yzxeJxwOAxAJBJhwYIFnHzyydxyyy00adJkvxUrSZLUUOp8+mzOnDk888wzjB07lqVLl7Jy5UpWrlzJsmXL+P73v8/ixYuZM2fO/qxVkiSpwdQ5FP3xj3/kjDPO4Mc//jHf+MY3EssPOuggrrnmGr7zne/wxBNP7JciJUmSGlqdQ9GmTZvo3bv3V67v3bs3mzZtqmv3kiRJjarOoejggw9m5cqVX7n+lVde4eCDD65r95IkSY2qzqHoO9/5Dk899RTTpk2jtLSUaDRKLBajtLSU6667jkWLFnHGGWfsz1olSZIaTJ2vPhs/fjzr1q3jkUce4dFHHyUY3J2vYrEY8XicM844g/Hjx++3QiVJkhpSnUNRKBTixhtv5IILLmDJkiWsX78egE6dOlFYWEiPHj32W5GSJEkNbZ9C0RdffMEvfvELDjvsMMaMGQNAjx49agWge++9l4ceeoif/vSnfk6RJElKC/s0p+jhhx/m8ccf58QTT/y37U488UQWLlzIo48+Wp/aJEmSGs0+haKnnnqKU045hS5duvzbdl27duW0007jySefrFdxkiRJjWWfQtG7775L375996ptfn4+f//73+tUlCRJUmPbp1BUWVm513OEmjRpwq5du+pUlCRJUmPbp1DUoUMH1qxZs1dt16xZQ4cOHepUlCRJUmPbp1B0/PHH84c//IHNmzf/23abN2/mD3/4A8cff3y9ipMkSWos+xSKxo0bxxdffMH555/PG2+8scc2b7zxBhdccAFffPEFP/jBD/ZLkZIkSQ1tnz6nqEuXLsyaNYurrrqKc845hy5dutC9e3cyMzPZvn07a9as4aOPPqJ58+b87//+L127dm2ouiVJkvarff5E6xNPPJEnnniC4uJiXnzxRZ599tnEug4dOnD22Wczbty4r71sX5IkKZXU6Ws+OnfuzPTp0wGoqKhg+/btZGZm0qpVq/1anCRJUmOp83efVWvVqpVhSJIkpb19mmgtSZJ0oDIUSZIkYSiSJEkCDEWSJEnAfphovT99+OGHzJ8/nzfeeIM1a9aQk5PDn/70pxptxowZw8qVK2ttW1JSQm5ubuJ+eXk5M2bM4Nlnn6WyspJBgwYxZcoUv3pEkiTtUUqFojVr1vDSSy9x1FFHEYvFiMfje2x39NFHM2nSpBrLOnfuXOP+xIkTee+997j++utp1qwZs2bNYty4cSxcuJCMjJR62pIkKQWkVDoYMmQIQ4cOBWDy5Mm89dZbe2wXDofp06fPV/bz2muvsXTpUubPn09BQQEA2dnZFBUVsXjxYoqKivZ77ZIkKb2l1JyiYHD/lLNkyRLC4TADBw5MLMvJyaFnz54sWbJkvzyGJEk6sKRUKNpbK1eupE+fPvTq1YvRo0fzyiuv1FhfWlpKdnY2gUCgxvKcnBxKS0sbs1RJkpQmUur02d449thjGTlyJN26dePTTz9l/vz5jB07lt/+9rfk5+cDEIlEaN26da1ts7KyvvKU3L7IyEjLLKkGFAoFa9wq/VSPXSAQqPUfKqWBwD9vAzh+6aj6dZfM/WjahaLLL7+8xv0TTzyRESNGcMcdd1BcXNzgjx8MBmjbNrPBH0fpKRxukewSVE+hUJCMjFCyy1AdZYQcu3RVHYaSuR9Nu1D0r1q2bMkJJ5zA008/nVgWDofZsGFDrbZlZWVkZWXV6/FisTiRyI569aEDTygUJBxuQSSyk2g0luxyVAfVYxiNxqiqiia7HO2rwO5AVBWNwp4vXFaKq953NsR+NBxusVdHoNI+FO1JTk4OK1asIB6P1zgMvnbtWrp3717v/quqfNPTnu1+Q/XvI53F4/Gv/DgQpa7EKbM4jl+aqh63ZO5H034CxI4dO3jxxRfp1atXYllhYSFlZWWsWLEisWzt2rWsXr2awsLCZJQpSZJSXEodKdq5cycvvfQSAOvXr6eiooJFixYBcNxxx1FaWsq8efM4+eST6dSpE59++ikLFixg06ZN3HrrrYl+8vPzKSgo4Nprr2XSpEk0a9aMmTNnkpeXxymnnJKU5yZJklJbSoWizZs3c8UVV9RYVn3/3nvv5eCDD6ayspKZM2eybds2WrRoQX5+PtOnT6d37941tps1axYzZsxg2rRpVFVVUVBQwJQpU/w0a0mStEeBuCdf90k0GmPLlu3JLkMpJiMjSNu2mWzdut05RWmqegxnPbCK9Zsqkl2O9lEgECAjI0RVVdQ5RWmqU/tWTBzVt0H2o+3aZe7VROu0n1MkSZK0PxiKJEmSMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgSkWCj68MMPmTZtGiNHjuTwww9nxIgRe2z36KOPcuqpp9KrVy9OP/10XnjhhVptysvLufbaaznuuOPIz8/n8ssv59NPP23opyBJktJUSoWiNWvW8NJLL3HooYeSm5u7xzZPPvkkU6dOZdiwYRQXF9OnTx8mTJjA66+/XqPdxIkTWbZsGddffz0333wza9euZdy4cVRVVTXCM5EkSekmI9kFfNmQIUMYOnQoAJMnT+att96q1ea2225j+PDhTJw4EYD+/fvz7rvvMmfOHIqLiwF47bXXWLp0KfPnz6egoACA7OxsioqKWLx4MUVFRY3zhCRJUtpIqSNFweC/L2fdunV88MEHDBs2rMbyoqIiVqxYwa5duwBYsmQJ4XCYgQMHJtrk5OTQs2dPlixZsv8LlyRJaS+ljhR9ndLSUmD3UZ8vy83NpbKyknXr1pGbm0tpaSnZ2dkEAoEa7XJychJ91EdGRkplSaWAUChY41bpp3rsAoFArX2H0kDgn7cBHL90VP26S+Z+NK1CUVlZGQDhcLjG8ur71esjkQitW7eutX1WVtYeT8nti2AwQNu2mfXqQweucLhFsktQPYVCQTIyQskuQ3WUEXLs0lV1GErmfjStQlEqiMXiRCI7kl2GUkwoFCQcbkEkspNoNJbsclQH1WMYjcaoqoomuxztq8DuQFQVjUI82cWoLqr3nQ2xHw2HW+zVEai0CkVZWVnA7svt27dvn1geiURqrA+Hw2zYsKHW9mVlZYk29VFV5Zue9mz3G6p/H+ksHo8Tj/uumm4Sp8ziOH5pqnrckrkfTasJEDk5OQC15gWVlpbSpEkTunTpkmi3du3aWi+MtWvXJvqQJEn6srQKRV26dKFbt24sWrSoxvKSkhIGDBhA06ZNASgsLKSsrIwVK1Yk2qxdu5bVq1dTWFjYqDVLkqT0kFKnz3bu3MlLL70EwPr166moqEgEoOOOO4527dpx2WWXcfXVV9O1a1f69etHSUkJb775Jvfdd1+in/z8fAoKCrj22muZNGkSzZo1Y+bMmeTl5XHKKack5blJkqTUFoin0MnXjz/+mJNOOmmP6+6991769esH7P6aj+LiYj755BOys7O56qqrGDx4cI325eXlzJgxg2eeeYaqqioKCgqYMmUKHTt2rFeN0WiMLVu216sPHXgyMoK0bZvJ1q3bnVOUpqrHcNYDq1i/qSLZ5WgfBQIBMjJCVFVFnVOUpjq1b8XEUX0bZD/arl3mXk20TqlQlA4MRdoTQ1H6MxSlN0NR+kuFUJRWc4okSZIaiqFIkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRIAGckuQLsFgwGCwUCyy1AdhULBGrdKP46dJENRCggGA7Rp25JQ0J1yuguHWyS7BElSHRmKUkAwGCAUDPLAor/x6ZYdyS5HdRAIBAiFgkSjMeLxeLLLUR3kdWvHsOOzCQQ8Yiv9pzIUpZBPt+xg/aaKZJehOggEAmRkhKiqihqK0lT7th7lk/7Teb5GkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCUjDUPS73/2OvLy8Wv9uvvnmGu0effRRTj31VHr16sXpp5/OCy+8kKSKJUlSOshIdgF1NW/ePFq3bp2437Fjx8TPTz75JFOnTmX8+PH079+fkpISJkyYwP3330+fPn2SUK0kSUp1aRuKjjjiCNq1a7fHdbfddhvDhw9n4sSJAPTv3593332XOXPmUFxc3IhVSpKkdJF2p8++zrp16/jggw8YNmxYjeVFRUWsWLGCXbt2JakySZKUytI2FI0YMYKePXty0kkncddddxGNRgEoLS0FIDs7u0b73NxcKisrWbduXaPXKkmSUl/anT5r3749l112GUcddRSBQIDnn3+eWbNmsXHjRqZNm0ZZWRkA4XC4xnbV96vX10dGxv7NkqHQ7v4CgQCBQGC/9q1GEvjnbQDHMB0lXnsBfB2mI1+Daa/6dVf9npgMaReKBg0axKBBgxL3CwoKaNasGffccw/jx49v8McPBgO0bZvZIH2HQkEyMkIN0rcaR0bI8UtXoWAwcevrMH35Gkxf1WEoHG6RtBrSLhTtybBhw/j1r3/N3/72N7KysgAoLy+nffv2iTaRSAQgsb6uYrE4kciOevXxr0KhIOFwC6LRGFVV0f3atxpJYPfOuCoahXiyi1FdRGOxxK2vwzTkazDtRaO7X4ORyM7Ez/tLONxir45AHRCh6MtycnKA3XOLqn+uvt+kSRO6dOlS78eoqtq/g1UtHo8Tj/tqTkeJw/VxHMM0lRg3xzAt+RpMf9XjtvsAQcO8z36dtJ1o/WUlJSWEQiEOP/xwunTpQrdu3Vi0aFGtNgMGDKBp06ZJqlKSJKWytDtSdOGFF9KvXz/y8vIAeO6553jkkUc477zzEqfLLrvsMq6++mq6du1Kv379KCkp4c033+S+++5LZumSJCmFpV0oys7OZuHChWzYsIFYLEa3bt249tprGTNmTKLNiBEj2LlzJ8XFxdx9991kZ2dz++23k5+fn8TKJUlSKku7UDRlypS9anf22Wdz9tlnN3A1kiTpQHFAzCmSJEmqL0ORJEkShiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkoADPBS9//77jB07lj59+jBw4EBuuukmdu3aleyyJElSCspIdgENpaysjPPPP59u3boxe/ZsNm7cyI033sjnn3/OtGnTkl2eJElKMQdsKHrooYfYvn07t99+O23atAEgGo0yffp0Lr74Yjp27JjcAiVJUko5YE+fLVmyhAEDBiQCEcCwYcOIxWIsW7YseYVJkqSUdMAeKSotLeW73/1ujWXhcJj27dtTWlpa536DwQDt2mXWt7waAoHdtz/4Ti+isfh+7VvS3mmSsfv/iBeOPNLXoZQEoeDuN8OsrBbE9/NLMPj/+/46B2woikQihMPhWsuzsrIoKyurc7+BQIBQaO9+ufuqVcumDdKvpL3n61BKrmAweSexDtjTZ5IkSfvigA1F4XCY8vLyWsvLysrIyspKQkWSJCmVHbChKCcnp9bcofLycjZt2kROTk6SqpIkSanqgA1FhYWFLF++nEgkkli2aNEigsEgAwcOTGJlkiQpFQXi8f09xzs1lJWVMXz4cLKzs7n44osTH9747W9/2w9vlCRJtRywoQh2f83Hz3/+c1577TUyMzMZOXIkV155JU2benWJJEmq6YAORZIkSXvrgJ1TJEmStC8MRZIkSRiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUj6t8aMGcOwYcPYtWtXrXWXX345J5xwAtu3b09CZdJ/ntmzZ5OXl8e5555ba90vfvELhgwZkoSqdCAxFEn/xvTp0/n444+ZN29ejeVLlizh6aefZurUqWRmZiapOuk/06uvvsrLL7+c7DJ0ADIUSf9GTk4OF198MXfeeSfr1q0D4IsvvuDnP/85J510EkOHDk1yhdJ/lpYtW9K7d2/uuOOOZJeiA5ChSPoaF110EYcccgjTp08H4M477+Szzz5j2rRpbNiwgauvvpp+/frRu3dvzj33XN56660a2z/33HOceeaZ5Ofnc8wxx3DmmWfy0ksvJeOpSAeESy65hL/85S/83//931e2Wb9+PZdffjl9+/alT58+XHjhhfz9739vxCqVjgxF0tdo2rQpP/vZz/jzn//MHXfcwbx587jiiito0aIFo0aN4p133mHq1KnMnj2bFi1acP7557N582YAPvroI6644goOO+wwbr/9dmbOnMmwYcMoKytL8rOS0tfgwYM5/PDDmTNnzh7XV1RUMGbMGFavXs306dP51a9+xdatWxk9ejT/+Mc/GrlapZOMZBcgpYPjjjuOM888k1tvvZUjjjiCMWPGMGfOHCKRCI8++igHHXQQAAMGDODUU09l/vz5/PjHP2b16tVUVlYydepUWrVqBcCgQYOS+VSkA8IPf/hDLrvsMt5880169+5dY93vfvc7PvnkE5588klyc3MBOPbYYxk8eDD33HMPkydPTkbJSgMeKZL20kUXXQTA2LFjCYVCLFu2jH79+pGVlUVVVRVVVVUEg0GOPfZY/vrXvwKQl5dHKBTi6quv5vnnn6e8vDyZT0E6YJx88sl07959j0eLXn31VQ477LBEIAJo06YNxx9/PKtWrWrMMpVmPFIk7aUmTZrUuN26dSuvv/46RxxxRK22Xbt2BSA7O5s777yTu+66iwkTJhAMBikoKGDatGkccsghjVe8dIAJBAKMHz+eq666irfffrvGukgkwje+8Y1a2xx00EGsWbOmsUpUGjIUSXWUlZXFoEGDuOKKK2qta9q0aeLnwsJCCgsLqaioYMmSJcyYMYOf/OQn3HPPPY1ZrnTAGTZsGLNnz+aOO+6o8Z+MrKws1q5dW6v95s2bycrKaswSlWY8fSbV0fHHH8/7779Pbm4uvXr1qvEvLy+vVvtWrVpRVFTE8OHDef/995NQsXRgCQaDjB8/nueee67GlWV9+/bl3XffpbS0NLGsrKyM5cuX07dv32SUqjThkSKpji644AL++Mc/Mnr0aM477zwOOeQQtmzZwhtvvEHHjh254IILeOihh3j99dcZNGgQ7du35+OPP+aJJ55g4MCByS5fOiB8+9vfZs6cObz88st06tQJgDPPPJPf/OY3XHzxxUycOJFmzZoxd+5cMjIyOP/885NcsVKZoUiqo7Zt2/Lwww8za9Ysbr75ZrZt28ZBBx3EUUcdxcknnwzsnmj9wgsvMGPGDLZt20b79u0ZPnz4Hk+5Sdp3oVCIiy66iClTpiSWtWrVit/+9rfceOONTJ06lVgsxtFHH819993HN7/5zSRWq1QXiMfj8WQXIUmSlGzOKZIkScJQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEnSXvvd735HXl4ef/3rX5NdiqQGYCiSJEnCUCRJkgQYiiRJkgBDkaQ0UFFRwS9+8QuGDBnCkUceyYABAxg7dixvv/02AGPGjGHEiBG88847jB49OvGlvIsWLQJg5cqVnH322fTu3ZtTTz2V5cuX13qM1atX84Mf/ICjjz6a/Px8zj//fF5//fWvra2srIyzzjqLwsJCSktLAdi1axe33XYbJ598MkceeSQnnHACN910E7t27dp/vxRJ+11GsguQpK9z3XXX8fTTTzN69Ghyc3PZtm0bq1at4v333+eII44AdoeT8ePHU1RUxGmnncaDDz7IVVddRSwW45e//CXnnHMOI0aMYP78+Vx++eW8+OKLtGrVCoA1a9Zw7rnnkpmZyQ9+8AMyMjJ4+OGHGTNmDPfddx9HHXXUHuvasmUL3//+9ykrK+O+++6ja9euxGIxfvjDH7Jq1Sq+973vkZuby7vvvss999zDBx98wB133NFovzdJ+yguSSmub9++8enTp3/l+tGjR8e7d+8e/+Mf/5hY9v7778e7d+8e79GjR/z1119PLP/zn/8c7969e3zhwoWJZZdcckn8iCOOiH/00UeJZRs3bozn5+fHzz333MSyhQsXxrt37x5/8803459++ml8+PDh8ZNOOin+8ccfJ9r8/ve/j/fo0SP+yiuv1KjxwQcfjHfv3j2+atWquv0SJDU4T59JSnnhcJg33niDjRs3fmWbli1bMnz48MT9nJwcwuEwubm5NY70VP+8bt06AKLRKMuWLWPo0KF06dIl0a5Dhw6MGDGCVatWUVFRUeOxNm7cyOjRo6msrOT++++nU6dOiXWLFi0iNzeXnJwctmzZkvjXv39/AF5++eV6/CYkNSRPn0lKeVdffTWTJ0/mxBNP5IgjjuCEE07gO9/5To0Qc/DBBxMIBGps17p1aw4++OBaywAikQiw+xTYzp07yc7OrvW4ubm5xGIx/vGPf3DYYYclll9zzTVkZGRQUlJC+/bta2zz4Ycf8v777zNgwIA9PpfNmzfvwzOX1JgMRZJSXlFREccccwzPPPMMy5YtY/78+RQXFzN79mxOOOEEAEKh0B63/arl8Xi8zvWccsop/P73v+fee+/lRz/6UY11sViM7t2785Of/GSP2/5rSJOUOgxFktJChw4dOPfcczn33HPZvHkzZ5xxBnfeeWciFNVVu3btaNGiBWvXrq21rrS0lGAwyDe/+c0ay0ePHk3Xrl257bbbaN26NRdddFFiXdeuXXnnnXcYMGBArSNXklKbc4okpbRoNEp5eXmNZQcddBAdOnTYL5e4h0IhBg4cyHPPPcfHH3+cWP7ZZ5/xpz/9ib59+yauUvuySy+9lO9///vccsstPPDAA4nlw4YNY+PGjTzyyCO1tvn888/ZsWNHvWuW1DA8UiQppW3fvp0TTjiBU089lR49etCyZUuWL1/OX//6VyZPnrxfHmPixIksX76cUaNGMWrUKEKhEA8//DC7du3immuu+crtJk2aREVFBT/72c/IzMxk5MiRjBw5kqeeeorrrruOl19+maOPPppoNEppaSmLFi1i3rx59OrVa7/ULWn/MhRJSmnNmzfnv//7v1m2bBmLFy8mHo/TtWtXrrvuOkaNGrVfHuOwww7j/vvv55ZbbuGuu+4iHo/Tu3dvfvWrX33lZxRVmz59Ojt27ODaa68lMzOToUOHMmfOHH7zm9/whz/8gWeeeYYWLVrQuXNnxowZs8cJ3ZJSQyBen9mGkiRJBwjnFEmSJGEokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQB8P8AS9N/1b4usg8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=steak, x=\"smoke\")" + ] + }, + { + "cell_type": "markdown", + "id": "baefe767-40fb-4afe-ae12-2374ce33ece4", + "metadata": {}, + "source": [ + "### Number of people who like their steak rare\n" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "2e62dead-0ed2-422b-abdb-c0d359732689", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "cooked\n", + "Medium rare 166\n", + "Medium 132\n", + "Medium Well 75\n", + "Well 36\n", + "Rare 23\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steak.cooked.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "09aec01a-465f-49e7-8b2f-f6e3c74720da", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP9NJREFUeJzt3Xl4VPW9x/H3zCRskYmgiFfWBAuyE6uETapIQRAXqiyiqHW3FwVuvUIpULGIe7UKaonWDa1oW1wp4goVuUorbrVVNKCARSlLQghbZub+QTN1DGoI2Q68X8/DM5lzfufMd76czHxyzpkzoUQikUCSJOkAF67pAiRJkmoDQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAmAtJouIGgSiQTxuBcBBwiHQ/aimtjr6mGfq4d9rh72+T/C4RChUOg7xxmK9lI8nmDjxq01XUaNS0sL06hRBoWFxZSUxGu6nP2ava4e9rl62OfqYZ9TNW6cQSTy3aHIw2eSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJgLSaLkCqTuFwiHA4VNNl7JVIJJxyGxTxeIJ4PFHTZUhSuRmKdMAIh0Mc3KgBkXCwwkWpaLR+TZewV2LxOJs3FRuMJAWGoUgHjHA4RCQc5tEFf+fLjcU1XU65hUIhIpEwsVicRCIYAeOwxg0YdVJ7wuGQoUhSYBiKdMD5cmMxa9cX1XQZ5RYKhUhLi1BSEgtMKJKkIArmcQRJkqRKZiiSJEnCUCRJkgQYiiRJkoBaFoo+/fRTpk6dymmnnUaHDh0YMmTIHscVFhYyffp0+vTpQ+fOnenfvz+//e1vU8bs3LmTG2+8kd69e9OtWzd+/OMfk5+fXx1PQ5IkBVCt+vTZihUrWLRoEV27diUe3/PHj4uLixk9ejSRSIRJkyZxyCGHsGrVKoqKUj9NNH36dObPn8/EiRNp2rQp99xzD+effz7PPfccDRs2rK6nJEmSAqJWhaJ+/frRv39/ACZOnMj7779fZszs2bPZunUrTz/9NA0aNAAgNzc3Zcy6dev4/e9/zy9+8QvOPPNMADp37swJJ5zAY489xsUXX1zFz0SSJAVNrTp8Fi7HlYZ///vfc8YZZyQD0Z689tprxONxTjrppOS0gw8+mN69e7N48eJKqVWSJO1falUo+i5r1qxh/fr1NGrUiMsuu4xOnTrRvXt3Jk+ezNatW5Pj8vPzOeSQQ8jMzExZvk2bNp5XJEmS9qhWHT77Lv/6178AuPHGGxkwYAB5eXmsWrWKW2+9leLiYn71q18Bu0/E3tN5Q9FolIKCgn2uIy0tUFmySgTxS0pLaw2FQoRCAfpS2NB/bkMEo+7S/gZx+whSzUFkn6uHfa6YQIWieDwOQFZWFjfeeCMAPXv2JC0tjcmTJzN+/HhatGhRpTWEwyEaNcqo0scIkqB9SSnsfpFIS4vUdBl7LS0SnJpLX4iDuH0EseYgss/Vwz7vnUCFotLDYV8/sbpHjx7A7k+vtWjRgmg0WubTaLB7D9LXD6ntrXg8QWFhcL5MtKpEImGi0foUFm4jFovXdDnlUlpzLBanpCRW0+WUX2h3ICqJxSAgX31Wuk0EcfsIUs1BZJ+rh31OFY3WL9des0CFohYtWlCnTp1vnL9jxw4AsrOz+de//kVBQUFKCMrPzyc7O3uf6ygpcQMrtTtgBKsfiUQiUF+smjxkliAwdZfWGcTtI4g1B5F9rh72ee8E6mBjnTp16N27N0uXLk2Z/vrrrwPQsWNHAPr06UM4HGbhwoXJMQUFBbz22mv07du3+gqWJEmBUav2FG3bto1FixYBsHbtWoqKiliwYAEA3bt3p3HjxowZM4aRI0fy05/+lKFDh/Lpp59y6623csopp9CyZUsADj/8cM4880xuuukmwuEwTZs25Te/+Q0NGzZk5MiRNfb8JElS7VWrQtGGDRsYO3ZsyrTS+w899BC5ubl06tSJvLw8brnlFi6//HIyMzMZMWIE48ePT1lu8uTJZGRkcOutt7J161aOPvpo7r//fq9mLUmS9iiUCMpJCrVELBZn48at3z1wP5eWFqZRoww2bdoamOPVpTXf/uhfWbu+7In4tVUoFCItLUJJSSww5xQ1a3IQ40Z9P5DbR5BqDiL7XD3sc6rGjTPKdaJ1oM4pkiRJqiqGIkmSJAxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiSgloWiTz/9lKlTp3LaaafRoUMHhgwZ8q3jX3zxRdq1a7fHcVu2bGHSpEl0796dnJwcrrzySr788suqKl2SJAVcrQpFK1asYNGiRbRq1Yo2bdp869jt27czY8YMDj300D3OHzduHEuWLOGaa67hlltuYeXKlVx88cWUlJRURemSJCng0mq6gK/q168f/fv3B2DixIm8//773zj2N7/5DUcccQTNmzcvM2758uW89tpr3HffffTp0weArKwsBg8ezMKFCxk8eHDVPQlJkhRItWpPUThcvnI+++wz7r//fiZPnrzH+YsXLyYajdK7d+/ktOzsbNq3b8/ixYsrpVZJkrR/qVV7isrruuuu47TTTuOoo47a4/z8/HyysrIIhUIp07Ozs8nPz9/nx09Lq1VZskZEIuGU2yAorTUUCpXZNmq10H9uQwSj7tL+BnH7CFLNQWSfq4d9rpjAhaKXX36Z5cuXs2DBgm8cU1hYSMOGDctMz8zM/NZDcuURDodo1Chjn9axP4lG69d0CXstEgmTlhap6TL2WlokODWXvhAHcfsIYs1BZJ+rh33eO4EKRTt27GDGjBlcccUVNG7cuEZqiMcTFBYW18hj1yaRSJhotD6FhduIxeI1XU65lNYci8UpKYnVdDnlF9odiEpiMUjUdDHlU7pNBHH7CFLNQWSfq4d9ThWN1i/XXrNAhaIHH3yQcDjMySefTGFhIQC7du0iHo9TWFhIvXr1qFOnDtFolHXr1pVZvqCggMzMzH2uo6TEDazU7oARrH4kEgkSiYCkC75yyCxBYOourTOI20cQaw4i+1w97PPeCVQoys/P59NPP6Vnz55l5h177LFcc801nHXWWWRnZ7N06VISiUTKuSMrV66kbdu21VmyJEkKiECFoosvvpihQ4emTJs9ezYrV67k+uuvp3Xr1gD07duXu+66i6VLl9KrVy9gdyD64IMPuOiii6q7bEmSFAC1KhRt27aNRYsWAbB27VqKioqSJ1R3796dNm3alLmo47x58/jiiy/Izc1NTsvJyaFPnz5MmjSJCRMmULduXW677TbatWvHgAEDqu8JSZKkwKhVoWjDhg2MHTs2ZVrp/Yceeigl+HyX22+/neuvv56pU6dSUlJCnz59mDx5MmlpteopS5KkWiKUCMqZm7VELBZn48atNV1GjUtLC9OoUQabNm0NzEl8pTXf/uhfWbu+qKbLKbdQKERaWoSSklhgTrRu1uQgxo36fiC3jyDVHET2uXrY51SNG2eU69NnXtVJkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIE1LIrWh/IwuEQ4XDouwfWEqUXwSrPxbBqiyDVKkmqfoaiWiAcDnFwowZEwsF7045G69d0CZIkVQpDUS0QDoeIhMM8uuDvfLmxuKbLKZdQKEQkEiYWiwfmqyfatW7MoF5ZhELB2SMnSao+hqJa5MuNxYH5Tq4gfh9Xk0bu1ZIkfbPgHa+RJEmqAoYiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSAGk1XcBXffrpp9x333288847rFixguzsbJ599tnk/KKiIu6//34WLVrEqlWrqFOnDl26dGH8+PG0a9cuZV1btmzh+uuv58UXX2TXrl0cd9xxTJ48mcMOO6y6n5YkSQqAWrWnaMWKFSxatIhWrVrRpk2bMvM///xz5s6dS+/evbn99tv55S9/yZYtWxgxYgSffPJJythx48axZMkSrrnmGm655RZWrlzJxRdfTElJSXU9HUmSFCC1ak9Rv3796N+/PwATJ07k/fffT5nfvHlzXnjhBerXr5+c1qNHD/r168ejjz7KlClTAFi+fDmvvfYa9913H3369AEgKyuLwYMHs3DhQgYPHlxNz0iSJAVFrdpTFA5/ezkNGjRICUQAGRkZtGzZki+//DI5bfHixUSjUXr37p2clp2dTfv27Vm8eHHlFi1JkvYLtSoUVURhYWHy/KNS+fn5ZGVlEQqFUsZmZ2eTn59f3SVKkqQAqFWHzyri5ptvJhQKcdZZZyWnFRYW0rBhwzJjMzMzyxySq4i0tMrNkpHI7vWFQqEyQa7WCv3nNkQwak72NkRw+gyB7nXpth0EpbUGqeYgss/Vwz5XTKBD0R/+8Acef/xxbrjhBg4//PBqecxwOESjRhlVsu5IJExaWqRK1l1V0iLBqTfy78OzkXDw+gwB6/W/X4ij0frfMbL2CWLNQWSfq4d93juBDUWLFi1i6tSp/OQnP2Ho0KEp86LRKOvWrSuzTEFBAZmZmfv0uPF4gsLC4n1ax9dFImGi0frEYnFKSmKVuu4qE9r9Jl0Si0Gipospn1g8nrwNTJ8hmL2O7e51YeG25M+1XenvYZBqDiL7XD3sc6potH659poFMhS9/fbbjB07ltNPP52xY8eWmZ+dnc3SpUtJJBIph0lWrlxJ27Zt9/nxS0qqZgNLJBIkEsF410sexkkQmJqTdQaoZgh2r3cH/WC9IAex5iCyz9XDPu+dwB1s/Pjjj7n00kvp0aMH06ZN2+OYvn37UlBQwNKlS5PTVq5cyQcffEDfvn2rq1RJkhQgtWpP0bZt21i0aBEAa9eupaioiAULFgDQvXt3EokEF154IXXr1uW8885LOWn6oIMO4sgjjwQgJyeHPn36MGnSJCZMmEDdunW57bbbaNeuHQMGDKj+JyZJkmq9WhWKNmzYUOZwWOn9hx56CCB5rtD555+fMq579+48/PDDyfu33347119/PVOnTqWkpIQ+ffowefJk0tJq1VOWJEm1RK1KCM2bN+fDDz/81jHfNb9Uw4YNmTFjBjNmzKiM0iRJ0n4ucOcUSZIkVQVDkSRJEoYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJQy0LRp59+ytSpUznttNPo0KEDQ4YM2eO4J554goEDB9K5c2dOPfVUXnnllTJjtmzZwqRJk+jevTs5OTlceeWVfPnll1X9FCRJUkDVqlC0YsUKFi1aRKtWrWjTps0exzz33HNMmTKFQYMGkZeXR7du3RgzZgxvv/12yrhx48axZMkSrrnmGm655RZWrlzJxRdfTElJSTU8E0mSFDRpNV3AV/Xr14/+/fsDMHHiRN5///0yY+644w5OPvlkxo0bB0CPHj346KOPmDVrFnl5eQAsX76c1157jfvuu48+ffoAkJWVxeDBg1m4cCGDBw+unickSZICo1btKQqHv72c1atXs2rVKgYNGpQyffDgwSxdupSdO3cCsHjxYqLRKL17906Oyc7Opn379ixevLjyC5ckSYFXq/YUfZf8/Hxg916fr2rTpg27du1i9erVtGnThvz8fLKysgiFQinjsrOzk+vYF2lplZslI5Hd6wuFQmVqrrVC/7kNEYyak70NEZw+Q6B7XbptB0FprUGqOYjsc/WwzxUTqFBUUFAAQDQaTZleer90fmFhIQ0bNiyzfGZm5h4Pye2NcDhEo0YZ+7SObxKJhElLi1TJuqtKWiQ49Ub+vScyEg5enyFgvf73C3E0Wr+GK9l7Qaw5iOxz9bDPeydQoag2iMcTFBYWV+o6I5Ew0Wh9YrE4JSWxSl13lQntfpMuicUgUdPFlE8sHk/eBqbPEMxex3b3urBwW/Ln2q709zBINQeRfa4e9jlVNFq/XHvNAhWKMjMzgd0ft2/SpElyemFhYcr8aDTKunXryixfUFCQHLMvSkqqZgNLJBIkEsF410sexkkQmJqTdQaoZgh2r3cH/WC9IAex5iCyz9XDPu+dQB1szM7OBihzXlB+fj7p6em0aNEiOW7lypVl3kBWrlyZXIckSdJXBSoUtWjRgtatW7NgwYKU6fPnz6dnz57UqVMHgL59+1JQUMDSpUuTY1auXMkHH3xA3759q7VmSZIUDBU+fHbuuedy+eWX07Nnzz3O/7//+z/uuusuHnrooXKvc9u2bSxatAiAtWvXUlRUlAxA3bt3p3HjxlxxxRVcddVVtGzZktzcXObPn8+7777LnDlzkuvJycmhT58+TJo0iQkTJlC3bl1uu+022rVrx4ABAyr6lCVJ0n6swqHozTffZNiwYd84f+PGjSxbtmyv1rlhwwbGjh2bMq30/kMPPURubi5Dhgxh27Zt5OXlMXv2bLKyspg5cyY5OTkpy91+++1cf/31TJ06lZKSEvr06cPkyZNJSwvUaVSSJKma7FNC+LZrvXz66adkZOzdR9ebN2/Ohx9++J3jhg0b9q2BDKBhw4bMmDGDGTNm7FUNkiTpwLRXoWjevHnMmzcvef/uu+/m8ccfLzNuy5YtfPjhh56/I0mSAmOvQtG2bdvYtGlT8v7WrVv3+NUcDRo0YOTIkfz3f//3vlcoSZJUDfYqFI0aNYpRo0YBu7+89ec//zknnnhilRQmSZJUnSp8TtHLL79cmXVIkiTVqH3+KFZRURGff/45hYWFe7za7rHHHruvDyFJklTlKhyKNm7cyPTp01m4cCGxWNnvkUokEoRCIf7+97/vU4GSJEnVocKhaOrUqbzyyiuMHj2aY445psw310uSJAVJhUPRkiVLOO+887j66qsrsx5JkqQaUeHvPqtXrx7NmjWrzFokSZJqTIVD0amnnsqLL75YmbVIkiTVmAofPhs4cCDLli3jwgsvZMSIERx++OFEIpEy4zp27LhPBUqSJFWHCoei0os4Arz++utl5vvpM0mSFCQVDkXXX399ZdYhSZJUoyocioYOHVqZdUiSJNWoCp9oLUmStD+p8J6in/3sZ985JhQKMWPGjIo+hCRJUrWpcCh64403ykyLx+OsX7+eWCxG48aNqV+//j4VJ0mSVF0qHIpefvnlPU7ftWsXc+fO5cEHH+S3v/1thQuTJEmqTpV+TlF6ejrnnHMOvXv35pe//GVlr16SJKlKVNmJ1kcddRTLli2rqtVLkiRVqioLRa+//rrnFEmSpMCo8DlFM2fO3OP0LVu2sGzZMj744AMuueSSChcmSZJUnSo9FGVmZtKiRQumTZvG8OHDK1yYJElSdapwKPrHP/5RmXVIkiTVKK9oLUmSxD7sKSr15ptv8uqrr/L5558DcMQRR3D88cfTvXv3fS5OkiSpulQ4FO3cuZOf/vSnvPjiiyQSCaLRKACFhYXcf//9/PCHP+TWW28lPT290oqVJEmqKhU+fDZr1ixeeOEFfvzjH/Paa6/x5ptv8uabb7JkyRIuuOACFi5cyKxZsyqzVkmSpCpT4VD0zDPPMHToUK6++moOPfTQ5PRDDjmE//3f/+X000/n6aefrpQiJUmSqlqFQ9H69evp0qXLN87v0qUL69evr+jqv9VLL73EsGHDyMnJoU+fPowdO5bVq1eXGffEE08wcOBAOnfuzKmnnsorr7xSJfVIkqTgq3AoOvzww3nzzTe/cf6yZcs4/PDDK7r6b/TGG28wZswYjjzySGbNmsWkSZP4xz/+wQUXXMD27duT45577jmmTJnCoEGDyMvLo1u3bowZM4a333670muSJEnBV+ETrU8//XTuvPNOGjZsyPnnn0+rVq0IhUKsWrWKBx98kAULFnDFFVdUZq3A7rBzxBFHMGPGDEKhEACNGzfmvPPO4/333+eYY44B4I477uDkk09m3LhxAPTo0YOPPvqIWbNmkZeXV+l1SZKkYKtwKLrssstYvXo1jz/+OE888QTh8O6dTvF4nEQiwdChQ7nssssqrdBSJSUlZGRkJAMRQMOGDQFIJBIArF69mlWrVvG///u/KcsOHjyYm266iZ07d1KnTp1Kr02SJAVXhUNRJBLhhhtu4Pzzz2fx4sWsXbsWgGbNmtG3b1+OOuqoSivyq370ox/x1FNP8cgjj3DqqaeyefNmfvWrX9GhQweOPvpoAPLz8wHIyspKWbZNmzbs2rWL1atX06ZNmyqpT5IkBdNehaIdO3Zw3XXX8b3vfY/Ro0cDcNRRR5UJQA899BCPPfYYP//5zyv9OkXHHHMMM2fO5Kc//SnXXnstAO3bt+fee+8lEokAUFBQAJC8dlKp0vul8ysqLa1yLwQeiexeXygUStkDVquF/nMbIhg1J3sbIjh9hkD3unTbDoLSWoNUcxDZ5+phnytmr0LR3LlzmTdvHvPnz//Wcccffzw333wzbdu2ZdSoUftU4Ne99dZbXH311QwfPpzjjz+ezZs3c9ddd3HJJZfw6KOPUq9evUp9vK8Lh0M0apRRJeuORMKkpUWqZN1VJS0SnHoj/z7EGwkHr88QsF7/+4U4Gq1fw5XsvSDWHET2uXrY572zV6HoT3/6EwMGDKBFixbfOq5ly5acdNJJPPfcc5UeiqZPn06PHj2YOHFiclq3bt04/vjjeeqppxgxYgSZmZkAbNmyhSZNmiTHFRYWAiTnV0Q8nqCwsLjCy+9JJBImGq1PLBanpCRWqeuuMqHdb9IlsRgkarqY8onF48nbwPQZgtnr2O5eFxZuS/5c25X+Hgap5iCyz9XDPqeKRuuXa6/ZXoWijz76iFNOOaVcY3NycqrkukCffPIJJ554Ysq0ww8/nEaNGvHZZ58BkJ2dDew+t6j059L76enp3xnqvktJSdVsYIlEInmyeG2XPIyTIDA1J+sMUM0Q7F7vDvrBekEOYs1BZJ+rh33eO3t1sHHXrl3lPkcoPT2dnTt3Vqiob3PEEUfwwQcfpExbu3YtmzZtolmzZgC0aNGC1q1bs2DBgpRx8+fPp2fPnn7yTJIklbFXe4oOO+wwVqxYUa6xK1as4LDDDqtQUd9m5MiRzJgxg+nTp9OvXz82b97M3XffzSGHHMKgQYOS46644gquuuoqWrZsSW5uLvPnz+fdd99lzpw5lV6TJEkKvr0KRb169eKpp57i0ksv5ZBDDvnGcRs2bOCpp55i4MCB+1zg15177rnUqVOH3/3ud/zhD38gIyODbt26cfvtt9OoUaPkuCFDhrBt2zby8vKYPXs2WVlZzJw5k5ycnEqvSZIkBd9ehaKLL76Yp59+mvPOO4/rrruOrl27lhnzzjvvMHnyZHbs2MFFF11UaYWWCoVCnHXWWZx11lnfOXbYsGEMGzas0muQJEn7n70KRS1atOD222/nf/7nfxg5ciQtWrSgbdu2ZGRksHXrVlasWMFnn31GvXr1+NWvfkXLli2rqm5JkqRKtddXtD7++ON5+umnycvL49VXX+XFF19MzjvssMMYNmwYF1988T5/wkuSJKk6VehrPpo3b860adMAKCoqYuvWrWRkZHDQQQdVanGSgi1IV9MN6hWA4/EE8XgwLtUg1XYV/u6zUgcddJBhSFKKhg3SiccTgbyabtBqjsXjbN5UbDCSKsE+hyJJ+rp6ddMIh0P87vl/8MWGrTVdTrmEQiEikTCxWDwwF8k8rHEDRp3UnnA4ZCiSKoGhSFKV+XJjMWvXF9V0GeUSCoVIS4tQUhILTCiSVLmCdfBckiSpihiKJEmSMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEhDgUDRv3jxOP/10OnfuTG5uLhdddBHbt29Pzn/55Zc59dRT6dy5MwMHDuQPf/hDDVYrSZJqu7SaLqAi7r77bvLy8rjsssvo1q0bmzZtYunSpcRiMQD+8pe/MGbMGM4880wmTZrE//3f//Hzn/+cjIwMTjrppBquXpIk1UaBC0X5+fnMnDmTu+66ix/84AfJ6QMHDkz+fPfdd9OlSxeuvfZaAHr06MHq1au54447DEWSJGmPAnf47I9//CPNmzdPCURftXPnTt54440y4Wfw4MF88sknrFmzpjrKlCRJARO4UPTOO+/Qtm1b7rrrLnr27EmnTp0YOXIk77zzDgCfffYZu3btIjs7O2W5Nm3aALv3NEmSJH1d4A6frV+/nvfff5+PPvqIX/ziF9SvX5977rmHCy64gIULF1JQUABANBpNWa70fun8fZGWVrlZMhLZvb5QKEQoFKrUdVeZ0H9uQwSj5mRvQwSnz2Cvq0uA+1z6GhIEpbUGqeYgss8VE7hQlEgkKC4u5te//jVHHXUUAF27dqVfv37MmTOHPn36VOnjh8MhGjXKqJJ1RyJh0tIiVbLuqpIWCU69kXA4eRu0PoO9ri6B6vO/3/Ci0fo1XMneC2LNQWSf907gQlE0GuXggw9OBiKAgw8+mA4dOvDxxx9z8sknA7Bly5aU5QoLCwHIzMzcp8ePxxMUFhbv0zq+LhIJE43WJxaLU1ISq9R1V5nQ7jePklgMEjVdTPnE4vHkbWD6DPa6ugSxz7HdfS4s3Jb8ubYrfb0LUs1BZJ9TRaP1y7XXLHCh6Mgjj+Szzz7b47wdO3bQsmVL0tPTyc/P57jjjkvOKz2X6OvnGlVESUnVbGCJRIJEIhivxsnDCwkCU3OyzgDVDPa6ugS5z7v/oArWG18Qaw4i+7x3Anew8YQTTmDz5s38/e9/T07btGkTf/vb3+jYsSN16tQhNzeX559/PmW5+fPn06ZNG5o3b17dJUuSpAAI3J6i/v3707lzZ6688krGjx9P3bp1mT17NnXq1GHUqFEAXH755Zx77rlcc801DBo0iDfeeINnn32W2267rYarlyRJtVXg9hSFw2Fmz55Nt27dmDp1Kv/zP//DQQcdxCOPPEKTJk0AOOaYY7jzzjv561//yoUXXsizzz7L9OnTGTRoUA1XL0mSaqvA7SkCaNy4MTfffPO3jjnxxBM58cQTq6kiSZIUdIHbUyRJklQVDEWSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJwH4QirZu3Urfvn1p164d7733Xsq8J554goEDB9K5c2dOPfVUXnnllRqqUpIk1XaBD0V33XUXsViszPTnnnuOKVOmMGjQIPLy8ujWrRtjxozh7bffrv4iJUlSrRfoUPTJJ5/w6KOPcsUVV5SZd8cdd3DyySczbtw4evTowbXXXkvnzp2ZNWtWDVQqSZJqu0CHounTpzNy5EiysrJSpq9evZpVq1YxaNCglOmDBw9m6dKl7Ny5szrLlCRJAZBW0wVU1IIFC/joo4+48847+dvf/pYyLz8/H6BMWGrTpg27du1i9erVtGnTpsKPnZZWuVkyEtm9vlAoRCgUqtR1V5nQf25DBKPmZG9DBKfPYK+rS4D7XPoaEgSltQap5iCyzxUTyFC0bds2brjhBsaPH89BBx1UZn5BQQEA0Wg0ZXrp/dL5FREOh2jUKKPCy3+bSCRMWlqkStZdVdIiwak3Eg4nb4PWZ7DX1SVQff73G140Wr+GK9l7Qaw5iOzz3glkKLr77rs55JBDOOOMM6r9sePxBIWFxZW6zkgkTDRan1gsTklJ2ZPGa6XQ7jePklgMEjVdTPnE4vHkbWD6DPa6ugSxz7HdfS4s3Jb8ubYrfb0LUs1BZJ9TRaP1y7XXLHChaO3atfz2t79l1qxZbNmyBYDi4uLk7datW8nMzARgy5YtNGnSJLlsYWEhQHJ+RZWUVM0GlkgkSCSC8WqcPLyQIDA1J+sMUM1gr6tLkPu8+w+qYL3xBbHmILLPeydwoWjNmjXs2rWLSy65pMy8c889l65du3LrrbcCu88tys7OTs7Pz88nPT2dFi1aVFu9kiQpGAIXitq3b89DDz2UMu3vf/87119/PdOmTaNz5860aNGC1q1bs2DBAvr3758cN3/+fHr27EmdOnWqu2xJklTLBS4URaNRcnNz9zivY8eOdOzYEYArrriCq666ipYtW5Kbm8v8+fN59913mTNnTnWWK0mSAiJwoai8hgwZwrZt28jLy2P27NlkZWUxc+ZMcnJyaro0SZJUC+0XoSg3N5cPP/ywzPRhw4YxbNiwGqhIkiQFzX4RiiRJqkrhcIhwOBgX9YTgXrwxHk8Qj9fcpz8NRZIkfYtwOMTBjRokL0oaJEG7eGMsHmfzpuIaC0aGIkmSvkU4HCISDvPogr/z5cbKvXhvVQmFQkQiYWKxeGCuu3VY4waMOqk94XDIUCRJUm325cZi1q4vqukyyiUUCpGWFqGkJBaYUFQbBG9foCRJUhUwFEmSJGEokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiQA0mq6AEnSvolEgvP3bWmtQaxZ+z9DkSQFVMMG6cTjCaLR+jVdyl4LYs3a/wUuFP3pT3/i6aef5m9/+xuFhYW0atWK0aNHc8YZZxAKhZLjnnjiCe69914+//xzsrKyGD9+PCeccEINVi5Jlate3TTC4RC/e/4ffLFha02XUy6hUIhIJEwsFieRSNR0OeXSrnVjBvXKSnmP0f4pcKHogQceoFmzZkycOJFGjRrx+uuvM2XKFNatW8eYMWMAeO6555gyZQqXXXYZPXr0YP78+YwZM4ZHHnmEbt261ewTkKRK9uXGYtauL6rpMsolFAqRlhahpCQWmFDUpJF7tQ4UgQtFd999N40bN07e79mzJ5s3b+b+++/nJz/5CeFwmDvuuIOTTz6ZcePGAdCjRw8++ugjZs2aRV5eXg1VLkmSarPAnT321UBUqn379hQVFVFcXMzq1atZtWoVgwYNShkzePBgli5dys6dO6urVEmSFCCBC0V78te//pWmTZty0EEHkZ+fD0BWVlbKmDZt2rBr1y5Wr15dEyVKkqRaLnCHz77uL3/5C/Pnz2fChAkAFBQUABCNRlPGld4vnb8v0tIqN0uWftwzFAoF50S+0H9uQwSj5mRvQwSnz2Cvq4t9rh72uXoEuM81eQmEQIeidevWMX78eHJzczn33HOr5THD4RCNGmVUybojkTBpaZEqWXdVSYsEp95IOJy8DVqfwV5XF/tcPexz9QhUn/8dhmrycg2BDUWFhYVcfPHFHHzwwdx5552E/73RZmZmArBlyxaaNGmSMv6r8ysqHk9QWFi8T+v4ukgkTDRan1gsTklJrFLXXWVCu3/ZSmIxCMYHSIjF48nbwPQZ7HV1sc/Vwz5XjyD2Oba7z4WF25I/V5ZotH659kAFMhRt376dSy+9lC1btjB37lwaNmyYnJednQ1Afn5+8ufS++np6bRo0WKfH7+kpHL/s0olEonAfEQ1uTs2QWBqTtYZoJrBXlcX+1w97HP1CHKfd+8gqJr32e8SuBOtS0pKGDduHPn5+dx77700bdo0ZX6LFi1o3bo1CxYsSJk+f/58evbsSZ06daqzXEmSFBCB21M0bdo0XnnlFSZOnEhRURFvv/12cl6HDh2oU6cOV1xxBVdddRUtW7YkNzeX+fPn8+677zJnzpyaK1ySJNVqgQtFS5YsAeCGG24oM++ll16iefPmDBkyhG3btpGXl8fs2bPJyspi5syZ5OTkVHe5kiQpIAIXil5++eVyjRs2bBjDhg2r4mokSdL+InDnFEmSJFUFQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSsJ+Hok8++YQf//jHdOvWjd69e3PTTTexc+fOmi5LkiTVQmk1XUBVKSgo4LzzzqN169bceeedfPHFF9xwww1s376dqVOn1nR5kiSpltlvQ9Fjjz3G1q1bmTlzJgcffDAAsViMadOmcemll9K0adOaLVCSJNUq++3hs8WLF9OzZ89kIAIYNGgQ8XicJUuW1FxhkiSpVtpv9xTl5+dzxhlnpEyLRqM0adKE/Pz8Cq83HA7RuHHGvpaXIhTafXvR6Z2JxROVum79R3ra7r8BLjytk32uYva6etjn6mGfq0ckvPvNMDOzPolKbnP43+v+LvttKCosLCQajZaZnpmZSUFBQYXXGwqFiETK19y9dVCDOlWyXqWyz9XHXlcP+1w97HP1CIdr7iDWfnv4TJIkaW/st6EoGo2yZcuWMtMLCgrIzMysgYokSVJttt+Gouzs7DLnDm3ZsoX169eTnZ1dQ1VJkqTaar8NRX379uX111+nsLAwOW3BggWEw2F69+5dg5VJkqTaKJRIVPY53rVDQUEBJ598MllZWVx66aXJizeecsopXrxRkiSVsd+GItj9NR+//OUvWb58ORkZGZx22mmMHz+eOnX8BIEkSUq1X4ciSZKk8tpvzymSJEnaG4YiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQtN+48847adeuHccddxzxeLzM/JEjR9KuXTsmTpy4z4/1wAMP0K5du+T9N954g3bt2vHee+/t87qrSnX2B4LZo8pgn+H3v/897dq1Y9WqVSnTH374Ydq1a8cdd9yRMn3z5s0cddRR5OXllfsx+vXrx7XXXpu8P3HiRIYMGbJPde+N0v/n0n+5ubmcddZZLFq0qNpqOBBU9bZU09tRbWQo2o+kp6ezadMmli1bljJ97dq1vP322zRo0KBKHrdjx47MnTuXNm3aVMn6K0tN9QeC06PKcKD3+eijjwZg+fLlKdPfeust6tevX2b68uXLSSQSfP/736+2GitDvXr1mDt3LnPnzuWXv/wlO3bs4LLLLuOtt96q6dL2GwfKtlSbGIr2I+np6fTt25fnnnsuZfpzzz3H9773PVq2bFklj3vQQQfRrVu3Kn2zqww11R+ovT1KJBLs3Lmzwsvv3LmzzB6hA73P2dnZNG7cuEw4eOuttxg6dChvv/02sVgsZXrdunXp1KlTdZe6T8LhMN26daNbt24MGDCAu+++m0QiwZNPPrlP692+fXvlFLgfOFC2pdrEULSfGTJkCM8//zy7du1KTnv22Wf3uEv0k08+4fLLL+f73/8+3bp145JLLuGzzz5LGVNUVMTVV19NTk4OPXr04Kabbkr5JYSyhyzWrFlDu3btWLBgQcq46667jn79+iXv//GPf0wud8EFF9C1a1cGDhzI66+/Tjwe57bbbqNXr1706tWLW2+9dY+HY6qyP7D/9ah09/iiRYs49dRT6dy5My+//DLFxcVce+21DBw4kK5du9KvXz+mTp3Kli1bUpYv3d2el5fHCSecQJcuXdi8eXOy1kcffZTi4mKWLVvGk08+mfIGdyD1+eijj055I/v8889Zt24d5557Ljt37uTDDz9Mznvrrbfo1KlT8uuH1q1bx1VXXUVubi5dunTh7LPP5v333//Wx6sNmjZtSuPGjfn8888B+PLLL/nZz37GiSeeSJcuXRgwYAC/+tWvyoTwdu3aMXv2bG6++WZ69+5Nz549gd2B/b777mPgwIF06tSJE088kQceeKC6n1aNq+i2FNTtqKYZivYzJ5xwAjt37mTJkiUAfPzxx3z44YcMHjw4Zdzq1asZOXIkBQUF3HDDDdxyyy1s3LiR888/P+VFa9KkSbzwwgtcddVV3HjjjXzyySc8+OCDlVrzhAkTOP7445k5cyaHHXYYY8aM4brrrmPdunXceOONjBo1itmzZ5fZ81AR5e0P7L89+vLLL5k+fTrnn38+eXl5tG/fnu3btxOLxRg/fjx5eXmMHTuWZcuW8ZOf/KTM8gsXLuTVV1/l5z//OXfddRcNGjTg/vvvZ/LkybRs2ZK6dety2WWXsWPHDq6++mrgwOvz0UcfzSeffEJBQQGw+83qv/7rv8jKyqJdu3bJN7ldu3bx3nvvJQ93FBQUMGrUKP7xj38wZcoU7rzzTurXr895553Hhg0bKvW5VratW7dSUFBA8+bNAdi0aRMHH3wwP/vZz7j33nu56KKLmDdvHr/4xS/KLPvQQw+xatUqrrvuOm6++WZgd3C94447OP3005k9ezZDhw7llltu4Xe/+121Pq+aVpFtKcjbUU1Lq+kCVLnq169Pv379eO655zj++ON59tlnycnJoUWLFinjZs6cSWZmJvfffz9169YFdv/ynXjiiTzxxBOcffbZfPzxxyxcuJDp06dz5plnAtCnTx8GDBhQqTWfc845jBo1Ctj91+Ypp5zC+++/z9y5cwE47rjjePnll1mwYAGnnHLKPj1WefsD+2+PCgoKyMvLo2vXrinTp02blvy5pKSE5s2bM2rUKFauXElWVlZy3q5du8jLy0seoioqKuKOO+7goosuIj09nY8++ogLL7yQP/3pT7zwwgts2rTpgOvz97//fRKJBG+//TY/+MEPWL58OTk5Ocnntnz5cs455xw++OADduzYkQxFDz74IIWFhTzxxBMccsghAPTs2ZOBAwdy3333JUNmbVFSUgLsDto333wzGRkZnHvuucDuPUATJkxIjj366KOpX78+EydOZOrUqdSvXz85LzMzk5kzZxIKhQD47LPPmDNnDtOmTWPEiBEA9OrVi+3btzNr1ixGjBhBOHxg/E1fkW0paNtRbXJgbFUHmCFDhvDSSy+xfft25s+fz8knn1xmzJIlS+jXrx+RSISSkhJKSkqIRqN06NAhuYv1vffeI5FI8MMf/jC5XCQSoX///pVab+/evZM/t27dGoAePXqkjMnKyuKf//xnpTxeefoD+2+PDj744DKBCODJJ5/k9NNPJycnh44dOybDwdc/+ZKbm5tyzs7y5cspLi7mpJNOIh6Pk0gkKCkpYdiwYcTjcf72t78dcH3u2LEj9erVS/4V/9ZbbyXfyLp165YyPRQKJectWbKE3NxcMjMzk70Ih8Mce+yxte6Ti8XFxXTs2JGOHTtywgkn8Pzzz3PTTTeRnZ0N7D789cADDzB48GC6dOlCx44dueqqqygpKWH16tUp6+rbt28yEAG8/vrrAAwYMCDZh5KSEnr16sX69esr7bUgCCqyLQVpO6pt3FO0H+rTpw/p6en8+te/Zs2aNQwaNKjMmE2bNvHggw/u8fBDeno6AOvXryc9PZ3MzMyU+aV/eVSWhg0bJn8uPa8iGo2WqWlfTgj+qvL0B/bfHh166KFlpr3wwgtMmDCBESNGMH78eA4++GDWr1/Pf//3f7Njx46UsV9/bps2bQJg6NChyWkdO3ZM/vzggw8ecH1OT0+nc+fOvPXWW2zdupUPP/ww+UaWk5OTPC/krbfe4sgjj0w+r02bNvH222+n9K9UVZ6gXhH16tVjzpw5JBIJVq1axa233sqECRN45plnOOyww3jwwQe58cYbueiii8jNzSUajfLee+9x7bXXlmubSiQSZQJpqX/+8580a9asyp5bbVKRbSlI21FtYyjaD6WnpzNgwAAeeOABevbsucc3wczMTH7wgx8k9wZ8VUZGBgBNmjRh165dFBQUpLwZfdcx6dJDIF89mRmgsLBwr59LVShPf2D/7dFX/yIvtWDBAtq3b59yzZI333yzXMuXPu+ZM2eyaNEinnnmGebMmQPAPffcw8svv3xA9rn0MMZf//pX6tSpQ/v27QFo1qwZTZo04a233mL58uUpJ3xnZmZy3HHHMXbs2DLrKw1ptUU4HKZz584AdOnShaysLIYPH86sWbOYNm0aCxYsoF+/fvz0pz9NLvPJJ5/scV172qZCoRCPPvpoMhh/1VcP5x4I9nZbCtJ2VNsYivZTw4YNY8OGDQwfPnyP83v27MmKFSvo0KEDkUhkj2NKX/BeeOGF5HkcsViMF1988Vsf+5BDDiE9PT3lBXDnzp1lrltTk76rP3Bg9Wj79u1l3nyeeeaZci2bk5ND/fr1WbduHU2bNk15s7z00ktJJBIHZJ+PPvpo7rnnHh555BE6d+5MWlpayrynnnqK9evXJ69FA7vPm3n66adp06ZNrbt8w3fp3LkzJ598Mn/84x8ZM2bMPm1TpZ9A27x5c0poPFDt7bYU5O2ophmK9lNdunThrrvu+sb5V155JWeeeSYXXnghw4cP59BDD+Vf//oXb775JscccwxDhgzhyCOP5Ic//CEzZsxgx44dNG/enEcffbTMX91fFw6H+eEPf8gjjzxCq1ataNSoUXI3+572UtSE7+oPHFg96tWrF9deey2zZs0iJyeHRYsWsXTp0nItG41GufLKK7n55pvp0KEDsViM1157jdWrV/PSSy8lP/nyTfbXPufk5BAOh1m0aBGXXHJJyrxu3bpx0003AaRcaO/888/nmWee4ZxzzuHcc8/liCOOYOPGjbzzzjs0bdqU888/v0pr3lc/+clPmD9/Pg8++CC9evXioYceYs6cObRu3Zqnn36aTz/9tFzrycrK4uyzz+bqq6/mwgsvpGvXruzatYtVq1bxxhtvfOfv7v5mb7eloG9HNclQdIBq1aoVTzzxBLfffjvTpk2juLiYJk2acOyxx6Z8bcKMGTO49tprueWWW6hTpw5Dhw6le/fuyV/CbzJlyhSmTJnC9OnTycjI4MILLyQrK4uXXnqpqp9apTmQejRy5EjWrFnDnDlzuO++++jTpw+33nrrt+7h+aoLLriApk2bcsMNN7Bjxw7Gjh1Ly5YtOf744/d4+OOr9tc+R6NRjjzySD766KPkOSClcnJySCQSHHbYYSmfyGvUqBFz587l9ttv55ZbbmHz5s0ccsghdO3aNeUk89oqOzubwYMH87vf/Y5XX32VTZs2Jb+KYuDAgUyePJnLLrusXOuaPHkyWVlZzJ07l1mzZpGRkUFWVhYnnXRSVT6FWmlvt6Wgb0c1KZRIJBI1XYQkSVJN8yP5kiRJGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSUpas2YN7dq147777qvSxxk9ejSjR4+u0seQtPcMRZIkSRiKJEmSAEORJEkSYCiSVMt98cUXTJo0iT59+tCpUyf69evHL37xC3bu3AnA6tWrufLKK+nevTtdu3Zl+PDhvPrqq2XWs2HDBiZNmkSvXr3o3Lkzp556KvPmzfvOx08kEkyZMoVOnTqxcOHC5PSnnnqKH/3oR3Tp0oXu3bszfvx4/vnPf5ZZfu7cufTv358uXbpw5pln8pe//KXizZBUpdJqugBJ+iZffPEFZ555Jlu2bGH48OFkZ2fzxRdf8Pzzz7N9+3YKCwsZOXIk27ZtY/To0TRq1Ih58+Zx+eWXc8cddyS/EXz79u2MHj2azz77jLPPPpvmzZuzYMECJk6cSGFhIeedd94eHz8WizFp0iTmz5/PzJkzOf744wG4++67+fWvf82gQYM488wz2bhxI3PmzOHss8/mySefJBqNAvDEE08wdepUcnJyOO+881i9ejWXX345mZmZ/Nd//Ve19FDSXkhIUi119dVXJ4466qjEu+++W2ZePB5PXHfddYm2bdsmli1blpxeVFSU6NevX+KEE05IxGKxRCKRSDzwwAOJtm3bJp566qnkuJ07dyZGjBiR6NatW2LLli2JRCKRWL16daJt27aJe++9N7Fr167EuHHjEl26dEn8+c9/Ti63Zs2aRPv27RN33313Sj0ffvhhokOHDsnpO3fuTPTs2TNx2mmnJXbs2JEcN3fu3ETbtm0T55xzTiV0SFJl8vCZpFopHo/z4osvcsIJJ9C5c+cy80OhEIsWLaJLly4cc8wxyekZGRmMGDGCtWvX8vHHHwOwePFimjRpwpAhQ5Lj0tPTGT16NMXFxSxbtixl3bt27WLs2LG8+uqrzJ49mz59+iTnvfDCC8TjcQYNGsTGjRuT/w499FBatWrFG2+8AcD777/Phg0bGDlyJHXq1EkuP3ToUBo2bFg5TZJUqTx8JqlW2rhxI0VFRXzve9/7xjGff/45Xbt2LTM9Ozs7Ob9t27asXbuWVq1aEQ6n/h3Ypk2b5Liv+s1vfkNxcTF5eXnk5uamzFu1ahWJRIIBAwbssaa0tLSUdbZq1Splfnp6Oi1atPjG5ySp5hiKJOlrjjvuOP785z9z7733kpubS926dZPz4vE4oVCIvLw8IpFImWUbNGhQnaVKqkSGIkm1UuPGjTnooINYsWLFN4454ogjWLlyZZnp+fn5yfkAzZo148MPPyQej6fsLfr6uFJdu3Zl5MiRXHrppYwdO5aZM2cm9wC1bNmSRCJB8+bNycrK+tbaAD799FN69uyZnL5r1y7WrFnDUUcd9a3PX1L185wiSbVSOBymf//+vPLKK7z33ntl5icSCX7wgx/w7rvvsnz58uT04uJiHn/8cZo1a8aRRx4JQN++fVm/fj3z589PjispKeHhhx+mQYMGHHvssWXW36tXL2677Tb+/Oc/c/XVVxOPxwEYMGAAkUiEmTNnkkgkytS0adMmADp16kTjxo157LHHkpcPAJg3bx6FhYX70BlJVSWU+PpvtSTVEl988QVnnHEGRUVFDB8+nDZt2rB+/XoWLFjAo48+ys6dOznttNPYsWMHo0ePJjMzkyeffJJ//OMf3HnnnSkfyf/Rj37EZ599xujRo2nWrBnPP/88b775JpMmTUp+JH/NmjWceOKJXH311Vx44YXA7usRTZgwgeHDh3PttdcCMHv2bG699VZycnLo378/GRkZrFmzhhdffJHhw4cnl507dy5Tp07l6KOPZvDgwaxZs4Y//vGPyY/kP/zwwzXQVUnfxMNnkmqtpk2b8vjjj/PrX/+aZ555hqKiIpo2bUrfvn2pV68e0WiUxx57jJtvvpk5c+awY8cO2rVrxz333JO8phBAvXr1ePjhh7nllluYN28eRUVFZGVlcf311/OjH/3oW2s47bTT2Lp1K9OmTSMjI4MJEyZwySWX0Lp1ax544AFmzZoFwOGHH07v3r3p169fctkRI0YQi8W47777uOmmm2jbtm3yGkeSah/3FEmSJOE5RZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEwP8D2gBGn3vH2JkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=steak, x=\"cooked\")" + ] + }, + { + "cell_type": "markdown", + "id": "ee1b058c-71de-4141-b9e6-c1e66ebb6033", + "metadata": {}, + "source": [ + "### Number of people who like their steak rare, and who smoke" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "6abbe66a-565d-47a1-a6b0-b676c0362261", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "smoke cooked \n", + "No Medium 111\n", + " Medium Well 61\n", + " Medium rare 136\n", + " Rare 16\n", + " Well 30\n", + "Yes Medium 20\n", + " Medium Well 11\n", + " Medium rare 30\n", + " Rare 6\n", + " Well 5\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "counts = df.groupby([\"smoke\", 'cooked']).size()\n", + "print(counts)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "4751cff3-a23a-449d-b8f3-c52072d02768", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUjtJREFUeJzt3XlcVPX+x/HXDAOIwCDgvqBAuYOaCy6IaZq5l2Wpqe0uXbe8lmZpWm5Ztrgb+jNtVbPVTE0zNTMrV8wsr+C+JQqDisIsvz+8zr1zxxWBmbH38/HwIfM933PO54wDvD3ne87X4HA4HIiIiIj8zRk9XYCIiIiIN1AoEhEREUGhSERERARQKBIREREBFIpEREREAIUiEREREUChSERERARQKBIREREBFIpEREREADB5ugBf43A4sNv1EHARERFfYTQaMBgM1+znVaFo//79zJ07l+3bt7Nnzx5iYmJYunTpFfuvWrWKf/zjH9x+++1u/bKyspgwYQKrVq0iNzeXpk2b8uKLL1KyZMmbqtFud3Dq1Nmb2oaIiIgUnoiIYPz8rh2KvOry2Z49e1i7di0VK1YkNjb2qn3Pnz/P+PHjKV68+GWXDx48mA0bNjB69Ghef/110tLSeOqpp7BarQVRuoiIiPg4rzpT1KJFC1q2bAnA8OHD2blz5xX7zp49m7Jly1K+fHm3flu3buWHH35g7ty5JCYmAhAdHU3btm1ZuXIlbdu2LbiDEBEREZ/kVWeKjMbrK+fAgQPMmzePF1988bLL161bh9lspkmTJs62mJgYqlWrxrp16/KlVhEREbm1eFUoul7jxo2jU6dOVK1a9bLLU1NTiY6OdhtUFRMTQ2pqamGUKCIiIj7Gqy6fXY/vvvuOrVu3snz58iv2sVgshIaGurWHhYVd9ZLc9TKZrp4l7XYbVqsN0F1qkh8M+Pn5YTQar+vuCRERyRufCkUXLlxg/PjxDBgwgIiICI/UYDQaCA8Pvuwyh8PB0aNHycjIwKE8JPnMZDJRqlRJwsLCFI5ERAqAT4Wi+fPnYzQaadeuHRaLBYDc3FzsdjsWi4UiRYoQEBCA2Wzm2LFjbutnZmYSFhZ2UzXY7Q4slnOXXXb69EnOnj1DSEgxAgIC9YtL8sXFZ2PZOH/+HAcPHuLUqUzCwy9/16WIiLgzm4Pw87v2iCGfCkWpqans37+fRo0auS2rX78+o0ePplu3bsTExLBx40YcDodLMElLS6Ny5co3XYfVandrs9ttnD2bRUhIOCEh5pveh8j/KlKkKGfO+HPmTCbBwWEYjX6eLklE5JbiU6Hoqaee4r777nNpe+edd0hLS2PChAlUqlQJgKSkJGbMmMHGjRtp3LgxcDEQ7dq1iyeffLJAarPZbAAEBAQWyPZFAAICigAZ2Gw2hSIRkXzmVaEoOzubtWvXAnD48GHOnDnjHFDdoEEDYmNj3R7q+Nlnn3H8+HESEhKcbXXq1CExMZERI0YwbNgwAgMDefPNN6lSpQp33313gR6DLplJQdLnS0Sk4HhVKEpPT2fQoEEubZdeL1iwwCX4XMtbb73FhAkTGDVqFFarlcTERF588UVMJq86ZBEREfESBodD90ndCJvNftm5z3Jzc0hPP0pkZBn8/QM8UJn8HehzJiJy4y7OfXbtgdY++fBGuXUcPXqExMR6fPjhewW6n/79e9O/f+8C3YeIiPg2hSIRERERvGxMkYiIeI7RaMBo9N7B/Ha7A7tdIz6k4CgUiYjIv5/WH+TVj3qw222cPp2tYCQFRqFI3Pz11wnmzJnFTz/9iMWSSfHiJUhIaMSgQUPx9/fn8OFDzJw5lc2bfyEn5wKxsbfz6KNP0rhxost2Tp8+xaxZ0/jxxx84e/YMFSpUpGvXh2nTpv1V9+9wOJg0aTzffPMVY8aMp1mzFgCsWLGMhQs/ZN++NAIDA2nQIIGnnx5EqVKlXdb/4otP+eCD+Zw8eZLY2Fj6938mf98gkVvQxbNEfqQtTSY7/ainy3ETFFmG6PZPYTQaFIqkwCgUiYuTJ//iqace4cyZLDp2vI+oqEqcPPkX33+/mvPnz5OVZaFfvyc4f/48DzzwEGFhYXzzzdcMHz6EV155lWbNmgNw4cJ5Bgzow6FDB7n//gcpU6Ysa9asZty40WRlZfHgg90uu3+bzcaECS/z3XffMn78686gNX/+XObMmUWLFi3p0OFeMjJOs2TJQvr3783//d8HzgmAly79nNdeG09cXDwPPtiNI0cOM2zYEMxmMyVLliqcN1HEh2WnHyX7+AFPlyHiEQpF4mLWrGmcOpXOO++8S9Wq1Z3tTz7ZF4fDwdSpb3DqVDrTp8+hVq3aAHTocB+PPNKNadPepGnTZhiNRr744jP27Utj1KhXuPvuNgDce+8D9O/fm+TkmbRv35GiRV0n1rVarbzyykh++GEdEye+QYMGDQE4duwo//d/7/DUU/3o1etxZ/9mzZrz2GMP89lni+nV63GsViuzZ8/g9tsrM2XKbPz9/QGoVCmGSZPGKRSJiMhV6e4zcbLb7axf/z1NmjR1CUSXGAwGNm7cQLVqNZyBCKBo0aJ07HgfR48eYd++VAB++mkDkZGRtGzZ2tnPZDLxwAMPkZ19jq1bt7hs22rNZeTI4fz44w+89trbzkAEsHbtd9jtdlq0aEVGRobzT0REcSpUiGLLll8B2L17F6dPn6JTp/udgQigbdsOhISE5MM7JCIitzKdKRKnjIzTnD17lujo2Cv2OX78GNWr13RrvzTv3LFjx4iJuY1jx45SvnwURqNr7q5YMfrf/VzHLLz33rtkZ5/j9dencMcd9VyWHTx4EIfDQdeurvPeXeLnZ3LZZoUKUS7LTSYTZcuWu+IxiYiIgEKReImEhIZs2rSRDz9cQJ06dQkM/M/Eug6HHYPBwOuvT3ELWQBBQUULs1QREblFKRSJU7Fi4QQHB5OWtveKfUqVKs2BA/vd2vfv3wdA6dKl//13Gfbu3YPdbncJMgcO7HMu/2/Vq8fRqdP9DBv2DCNHDmf8+Nec89SVK1ceh8NBmTJliYqqeMXaLm3z4MED1K1b39lutVo5cuQIt912+1WOXkRE/u40pkicjEYjTZveyYYN69m9e5fbcofDQaNGTfj999/YuXOHsz07O5svv/yMMmXKUqlSDAANGzYhPT2d1atXOvtZrVY++WQhQUFFqVPnDrft16+fwOjR49m06UdeeWUUdrsdgGbNWuDn58e8ecn871R9DoeDzMwMAKpWrU6xYuF88cUScnNznX2WLfuKM2ey8v7GiIjI34LOFImLPn3+wS+//ET//r3p2PE+KlaMJj39JGvWrGLGjLn06PEoq1atZOjQgTzwQFfMZjPffLOUo0ePMHbsJOdZoU6d7uPLLz9l/Pgx/PHHbsqUKcOaNatJSdnOwIH/dLvz7JKkpDsZMeIlxo59ieDgYJ577gXKlSvPk0/2Y/bsaRw7doSmTe+kaNGiHDlyhHXrvqdjx/vo3r0nJpOJp57qx2uvjWfgwL7cdVcrjh49wtdff6UxRSIick0KReKiRImSzJ49nzlzZrJy5XLOnTtL8eIlaNiwMUWKFCE0NJSZM+cyc+ZUPvlkITk5OcTG3sarr77p8vDGwMAiTJ06m5kzp7J8+VLOnj1LVFRFRox4ibZtO1y1htat23Lu3DkmT55IcHAI//jHIHr2fJSoqCgWLvyQefOSAShZshQNGiSQmJjkXLdTp87Y7XY+/PA9ZsyYQkzMbbz66hskJ88smDdMRERuGQbH/16PkKuy2eycOnXWrT03N4f09KNERpbB3z/AA5XJ34E+Z1JQTCYj4eHB7Jr/slc+vDGoVBTVHxnF6dNnsVrtni5HfExERDB+ftceMaQxRSIiIiIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkWFwmg0YDIZPfLHaDTkqea5c2eTmFiPe+9t45yt/r/16/c4iYn1GDdu9E2+O7Bo0YckJtZzvt6y5VcSE+uxe/eum962iIjI9dKEsAXMaDRQrFjR65pzpSDYbHYyMs5ht9/4FHcmk4nMzAy2bdvCHXf8J7QcO3aUnTtTCAoqmp+lOlWpUpVZs+ZRsWJ0gWxfRETkchSKCpjRaMDPz8j0jzZw+ERmoe67XMkw/tGtCUajIU+hyN/fn3r1GrBq1QqXULRq1Qqio2MwGv3ys1yn4OAQataMK5Bti4iIXIlCUSE5fCKTfYdPe7qMG9ayZWsmT36VIUOGYTJd/Lh8++0KWrW6h9Wrv3Xpu29fGrNmTWXr1s3YbDbq1KnL4MHPUq5ceWefs2fP8MYbk1i37nsCAwNo27YDxYpFuGxny5ZfGTiwL3PmLKBq1eocPXqELl068sorE2nevKWz39tvT2b9+u/55JOvAFi27CvGjx/DnDkLmD17Ojt2bKNkyVIMGTKMunXrM2fOLL766nMA2rXrSO/eT2M06gqyiIhcpN8IclVNmiSRm5vDzz//BEBaWip79+7hrrvudul3+PAh+vZ9HIvFwogRo3nppbFkZJxm0KB+5OTkOPtNmPAy69Z9T9++/XnhhdHs25fG4sUf5WvNY8e+ROPGTRk//nWKFy/BCy88x9tvv86JE8d58cUxdO7chffff5dVq1bm635FRMS36UyRXFWRIkVITGzG6tUraNw4kVWrVlCzZjxly5Zz6TdvXjJms5k335xOYGAgADVr1uLBBzuxdOkXdO7chbS0VNauXcOwYS/Svn0nABo0aETXrp3zteb773+I++57AIASJUrQq1dXdu/+ndmz5wGQkNCIH35Yx5o1q7j77nvydd8iIuK7dKZIrqlly9asX7+OCxfOs3r1Slq2vNutzy+//ERiYhJ+fn5YrVasViuhoaFUrlzFeRfZ7t27cDgcJCU1d67n5+dHUlKzfK23fv0E59cVKlQEoG7d+i59KlSI4sSJ4/m6XxER8W06UyTXlJDQCJPJxJw5szl69AgtWrRy65ORkcGiRR+xaJH7pTCTyR+AkydPYjKZMJvNLsvDwyPc1rkZISGhzq/9/f3d2i615+RcyNf9ioiIb1MokmsymUw0a9aChQs/oG7d+kRERLr1MZvDaNSoCZ07d3FbVrToxVv3ixcvjtVqxWKxuASj06dPXXX/AQEBAOTmWl3as7IsN3wsIiIiV6JQJNelQ4dOZGScokOH+y67vF69BqSl7eX226vg53f5W/WrVq0OwLp1a5xjimw2G+vWrb3qvsPDIzCZTOzfn+Zsy83NZdu2LXk5FBERkctSKJLrUr16TSZMmHzF5U880Ycnn+zFkCED6NjxPiIiIjh1Kp2tW7dQq1ZtWrW6h+joGJKSmjNlyhvk5ORQpkwZPvvsE6zW3Kvu22g00qxZc5YsWUT58hUICyvGkiWLcDgcGAx5e2K3iIjI/1IoKiTlSobd0vssX74CycnzSU6eyRtvTCQ7O5vIyOLUqlWH2Njbnf2ef34Ub745iZkzpxAQEMA997Sndu26zJjx9lW3P3jwc0yaNI633nqNokWD6datJ1FRFVm//vsCPS4REfn7MDgcjht/1PHfmM1m59Sps27tubk5pKcfJTKyDP7+Ac52X57mQ7zPlT5nIjfLZDISHh7Mrvkvk338gKfLcRNUKorqj4zi9OmzWK3u8zGKXE1ERPB1/R7WmaICZrc7yMg4l+eJWfNj/wpEIiIi1+ZVoWj//v3MnTuX7du3s2fPHmJiYli6dKlz+ZkzZ5g3bx5r165l3759BAQEEB8fzzPPPEOVKlVctpWVlcWECRNYtWoVubm5NG3alBdffJGSJUsW9mEpmIiIiPgAr3p44549e1i7di0VK1YkNjbWbfmRI0dYuHAhTZo04a233uKVV14hKyuLhx56iL1797r0HTx4MBs2bGD06NG8/vrrpKWl8dRTT2G1Wt22KyIiIuJVZ4patGhBy5YXJ/wcPnw4O3fudFlevnx5vv32W4KCgpxtDRs2pEWLFnz44YeMHDkSgK1bt/LDDz8wd+5cEhMTAYiOjqZt27asXLmStm3bFtIRiYiIiK/wqjNF15qxvGjRoi6BCCA4OJioqChOnDjhbFu3bh1ms5kmTZo422JiYqhWrRrr1q3L36JFRETkluBVoSgvLBaLc/zRJampqURHR7s9wyYmJobU1NTCLlFERER8gFddPsuL1157DYPBQLdu3ZxtFouF0NBQt75hYWFul+TywmRyz5J2ux4iKIXHz89w2c+hSF556rEhN8pX6hTf5NOhaMmSJSxatIiJEydSunTpQtmn0WggPDzYrf38eT9OnjTql5UUKLvdgNFoJCysKEWKFPF0OSKFzmwOunYnkTzy2VC0du1aRo0axdNPP81997nOx2U2mzl27JjbOpmZmYSF3dxTnu12BxbLObf2nJwL2O12bDaHHiwmBcZmc2C328nMPEd2ts3T5cgtxM/P6BOBw2LJxmbTz1i5MWZz0K378MZt27YxaNAg7r33XgYNGuS2PCYmho0bN7rNjZWWlkblypVvev+XCz02m55DJIVH4Vv+rmw2uz77UmB87jrPv/71L/r06UPDhg0ZM2bMZfskJSWRmZnJxo0bnW1paWns2rWLpKSkwirVyWi8eEnNE3/y8iTtuXNnk5hYj3vvbYPd7v7Dp1+/x0lMrMe4caPz4d2BRYs+JDGxnvP1li2/kphYj927d+XL9kVERK6HV50pys7OZu3atQAcPnyYM2fOsHz5cgAaNGiAw+HgiSeeIDAwkEceecRl0HRISAi33XYbAHXq1CExMZERI0YwbNgwAgMDefPNN6lSpQp33313oR7TxTFIQRiNfoW630vsdhunT2ff8BO1TSYTmZkZbNu2hTvu+E9gOXbsKDt3phAUVDS/S3WqUqUqs2bNo2LF6ALbh4iIyP/yqlCUnp7udjns0usFCxYAOMcKPfrooy79GjRowHvvved8/dZbbzFhwgRGjRqF1WolMTGRF198EZOpcA/ZaDRgNPqRtjSZ7PSjhbrvoMgyRLd/CqPRcMOhyN/fn3r1GrBq1QqXULRq1Qqio2MKNOQFB4dQs2ZcgW0/rxwOB7m5uQQE5G0i1pycHEwm0zWfxyUiIp7hVaGofPny/PHHH1ftc63ll4SGhjJ+/HjGjx+fH6XdtOz0o1458/TVtGzZmsmTX2XIkGHOMPnttyto1eoeVq/+1q3/vn1pzJo1la1bN2Oz2ahTpy6DBz9LuXLlnX3Onj3DG29MYt267wkMDKBt2w4UKxbhsp0tW35l4MC+zJmzgKpVq3P06BG6dOnIK69MpHnzls5+b789mfXrv+eTT74CYNmyrxg/fgxz5ixg9uzp7NixjZIlSzFkyDDq1q3PnDmz+OqrzwFo164jvXs/fdWAMm7caHbv3sXTTw9k1qzp7N+fxksvjaVhwybMnDmFX37ZxIkTxwkPjyAhoRH9+g0kJCTEuf4DD3SgceNESpUqzaefLubEieN89dW3FCtWjGXLvmLhwg84ePAAZnMYbdq058kn++Ln55kziiIi4mWhSLxLkyZJTJz4Cj///BONGyeSlpbK3r17mDDhdbdQdPjwIfr2fZyYmFhGjBiN0WhgwYL/Y9Cgfnz44RLn2ZUJE15m06af6Nu3P2XLluWzzz5hz54V+Vr32LEv0anT/XTt2oP333+XF154jjZt2nH27FlefHEMu3btZO7c2cTE3Mbdd99z1W2dPHmSt956nUceeYJSpUpTqlRpzp8/j91up3fvpylWLJwTJ46zYMH/8fzz/2Tq1Nku669d+x3ly0cxaNBQjEYjQUFF+Pjj95k5cyoPPtid/v0Hs2/fPt55ZwZ2u51+/Qbk63shIiLXT6FIrqhIkSIkJjZj9eoVNG6cyKpVK6hZM56yZcu59Z03Lxmz2cybb04nMDAQgJo1a/Hgg51YuvQLOnfuQlpaKmvXrmHYsBdp374TAA0aNKJr1875Wvf99z/Effc9AECJEiXo1asru3f/zuzZ8wBISGjEDz+sY82aVdcMRVlZFl5/fQo1atR0aR869Hnn11arlTJlyvL0009y4MB+oqIquix7/fUpzulpzp07y9y579C9ey/69PkHAPXrN8Tf38TUqW/SvXtPwsKK3fR7ICIiN06DG+SqWrZszfr167hw4TyrV6+kZcvLD1T/5ZefSExMws/PD6vVitVqJTQ0lMqVqzjvItu9excOh4OkpObO9fz8/EhKapavNdevn+D8ukKFiwGlbt36Ln0qVIjixInj19xWWFiYWyACWL78ax57rDutWjXlzjsb8vTTTwJw8KDrJdI6deq6zNeXkrKD7OxzNG9+l/N9slqt1KuXwIULF0hN3Xv9ByoiIvlKZ4rkqhISGmEymZgzZzZHjx6hRYtWl+2XkZHBokUfsWjRR27LTCZ/4OKlKJPJhNlsdlkeHh7hts7NCAn5zxQv/v7+bm2X2nNyLlxzW+HhkW5ta9euYezYl+jY8T56934as7kY6eknGTFiqNs2/3f9zMwMAB5/vMdl93c9QU1ERAqGQpFclclkolmzFixc+AF169YnIsI9JACYzWE0atSEzp27uC0rWvTi7fvFixfHarVisVhcgtHp06euWsOl8Ui5uVaX9qwsyw0dS14YLvOYpzVrVnH77ZV57rkXnG1bt26+rvVDQy8e97hxr1GqVCm3/mXKlM17sSIiclMUiuSaOnToREbGKTp0uO+KferVa0Ba2l5uv73KFe+gqlq1OgDr1q1xjimy2WysW7f2qvsPD4/AZDKxf3+asy03N5dt27bc6KHkiwsXLjjPfl2ycuXy61q3Zs14ihQpwl9/HadZs+bXXkFERAqNQpFcU/XqNZkwYfJV+zzxRB+efLIXQ4YMoGPH+4iIiODUqXS2bt1CrVq1adXqHqKjY0hKas6UKW+Qk5NDmTJl+OyzT7Bac6+6baPRSLNmzVmyZBHly1cgLKwYS5YscpvGpbDUr5/AG2+8yrvvzqFGjTh++mkDmzf/fF3rhoaG8sQTfZkxYyonTpygTp26+Pn5ceTIIdavX8e4cZM00auIiIcoFBWSoMgyt/Q+y5evQHLyfJKTZ/LGGxPJzs4mMrI4tWrVITb2dme/558fxZtvTmLmzCkEBARwzz3tqV27LjNmvH3V7Q8e/ByTJo3jrbdeo2jRYLp160lUVEXWr/++QI/rcjp16syRI4f55JOFfPjhezRo0JCXXhpHnz6PXtf63br1oESJEixc+AFLlizEZDJRrlx5GjduWugPFxURkf8wOBwOzWR6A2w2O6dOnXVrz83NIT39KJGRZfD3/88Tj311mg/xTlf6nIncLJPJSHh4MLvmv+yVD5oNKhVF9UdGcfr0WU0IKzcsIiIYP79r33Cv/5YWMLvdwenT2XmamDW/9q9AJCIicm0KRYVAwURERMT76eGNIiIiIigUiYiIiAAKRSIiIiKAQpGIiIgIoIHWIiKFxmg0eOxO1Gu5ntuVRW51CkUiIoXAaDRQrFhRhQ8RL6ZQJCJSCIxGA35+RqZ/tIHDJzI9XY6bWlXK8tA9tT1dhohHKRSJiBSiwycy2Xf4tKfLcFO2hNnTJYh4nM7jFgKj0YDJZPTIn7yMX5g7dzaJifW499422O3uj9Pv1+9xEhPrMW7c6Hx4d2DRog9JTKznfL1ly68kJtZj9+5d+bL9vFi69AsSE+tx8KDrdAeffPIxiYn1mDt3tku7xZJJ06b1+eCD+de9jwce6MAbb7zqfD1u3Gh69nzw5goXEZE805miAmY0GigWHoSfh+Y+s9ltZORh7jOTyURmZgbbtm3hjjv+E1iOHTvKzp0pBAUVze9SnapUqcqsWfOoWDG6wPZxLfHxtQDYuXMHFSpEOdtTUrZTpEgRUlK2u/RPSdmBw+EgPr52YZYpIiL5SKGogBmNBvyMfsxeu4AjmccLdd9lw0rRp1kvjEbDDYcif39/6tVrwKpVK1xC0apVK4iOjinQCW6Dg0OoWTOuwLZ/PaKiKlGsWDg7dmynTZv2zvaUlB20adOB5cu/xmaz4efn9+/27QQEBFK1anVPlSwiIjdJoaiQHMk8zv70Q54u44a0bNmayZNfZciQYZhMFz8q3367glat7mH16m/d+u/bl8asWVPZunUzNpuNOnXqMnjws5QrV97Z5+zZM7zxxiTWrfuewMAA2rbtQLFiES7b2bLlVwYO7MucOQuoWrU6R48eoUuXjrzyykSaN2/p7Pf225NZv/57PvnkKwCWLfuK8ePHMGfOAmbPns6OHdsoWbIUQ4YMo27d+syZM4uvvvocgHbtOtK799MYjVe+ghwXV8vljNCxY8c4ceI4Xbp05csvP2Xv3j1UrlwVuBiKqlathr+/PwAnThxn1qxpbNr0I9nZ56lWrToDBgyhatVq1/8PICIihUpjiuSKmjRJIjc3h59//gmAtLRU9u7dw1133e3W9/DhQ/Tt+zgWi4URI0bz0ktjycg4zaBB/cjJyXH2mzDhZdat+56+ffvzwguj2bcvjcWLP8rXuseOfYnGjZsyfvzrFC9eghdeeI63336dEyeO8+KLY+jcuQvvv/8uq1atvOp24uJqsX9/GhaLBYCUlIshKyqqIrfdVtkZmKxWK7//vst56cxisfD000+yZ88fDB78LOPGvUqRIkEMGtSX06dP5euxiohI/lEokisqUqQIiYnNWL16BXDx0lnNmvGULVvOre+8ecmYzWbefHM6zZo1p2nTO5k06W0yMzNZuvQL4GKoWrt2DYMG/ZP773+QRo0SmTBhMiaTf77Wff/9D9GlS1cSEhrxzDPPcu7cWXbv/p0XXxxDQkIjHnvsKapUqcaaNauuup34+No4HA5++20HcHF8UVxcPABxcfGkpFxs/+OP3eTkXHCGosWLP+LMmSymTJlFq1b3/Ps4XyckJJSPPnovX49VRETyj0KRXFXLlq1Zv34dFy6cZ/XqlbRs6X6WCOCXX34iMTEJPz8/rFYrVquV0NBQKleu4ryLbPfuXTgcDpKSmjvX8/PzIympWb7WXL9+gvPrChUqAlC3bn2XPhUqRHHixNXHeFWtWo3AwEB27Lh4RiglZTs1a14cgF2jRpzzTFFKyjYMBgM1a14MTD///BN16tQjNNTsfC+MRiO1a9/B77977o46ERG5Oo0pkqtKSGiEyWRizpzZHD16hBYtWl22X0ZGBosWfcSiRe6Xwi6dCTp58iQmkwmz2fV5KOHhEW7r3IyQkFDn15fG+Px326X2nJwLV92OyWSiWrUapKRs59y5c+zd+6//OlNUi+PHL44xSknZTqVK0c7jyszM4LffUrjzzoZu2/zv8VUiIuJdFIrkqkwmE82atWDhwg+oW7c+ERGRl+1nNofRqFETOnfu4rasaNGLt+8XL14cq9WKxWJxCUbXGmcTEBAAQG6u1aU9K8tyQ8eSF3FxtVi8+CN27NiGv78/t91WGYDSpcsQGVmclJTt7Ny5g8TE/5ztCg01k5DQmKee6uu2PX//gAKvWURE8kahSK6pQ4dOZGScokOH+67Yp169BqSl7eX226s4b1P/X5duV1+3bg3t23cCwGazsW7d2qvuPzw8ApPJxP79ac623Nxctm3bcqOHcsPi42vz3nvz+PTTRVStWt15Fx5cHFe0YsUy0tPTiYur5WyvV68BK1d+Q8WK0QQFBRV4jSIikj8UigpJ2bBSPrvP6tVrMmHC5Kv2eeKJPjz5ZC+GDBlAx473ERERwalT6WzduoVatWrTqtU9REfHkJTUnClT3iAnJ4cyZcrw2WefYLXmXnXbRqORZs2as2TJIsqXr0BYWDGWLFmEw+HAYCjYGcdr1ozHaDSyceMGevR41GVZjRrxzJjxNoDLQxu7dn2Yb79dTv/+venSpSulSpUmI+M0u3b9RvHixXnooYcLtGYREckbhaICZrc7sNlt9GnWyyP7t9ltN/zgxrwoX74CycnzSU6eyRtvTCQ7O5vIyOLUqlWH2Njbnf2ef34Ub745iZkzpxAQEMA997Sndu26znBxJYMHP8ekSeN4663XKFo0mG7dehIVVZH1678v0OMKDQ0lOjqGvXv/5RxIfUlcXDwOh4PixUu43JEXFlaM2bPnkZw8k5kzp2KxZBIeHkH16jVJSrqzQOsVEZG8MzgcjoL/jXkLsdnsnDp11q09NzeH9PSjREaWcRs3YjQa8jQHWX6w2x2FEoqkcFztcybezWQyEh4ezIi3l3nlhLCNa1ekf/dEds1/mezjB669QiELKhVF9UdGcfr0WaxW9zkZRa4mIiIYP79r33CvM0WFQMFERETE++k5RSIiIiIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgAXhaK9u/fz6hRo+jUqRPVq1enffv2l+23ePFiWrduTVxcHB07dmTNmjVufbKyshgxYgQNGjSgTp06DBw4kBMnThT0IYiIiIiP8qpQtGfPHtauXUvFihWJjY29bJ+vv/6akSNH0qZNG5KTk6lduzb9+/dn27ZtLv0GDx7Mhg0bGD16NK+//jppaWk89dRTWK3Wy25XRERE/t686uGNLVq0oGXLlgAMHz6cnTt3uvWZMmUK7dq1Y/DgwQA0bNiQP//8k+nTp5OcnAzA1q1b+eGHH5g7dy6JiYkAREdH07ZtW1auXEnbtm0L54D+zRefaD137mzmzUt2vjabw6hYsRK9ej1Go0aJ+VmiiIiIV/CqUGQ0Xv3E1cGDB9m3bx/PPvusS3vbtm2ZNGkSOTk5BAQEsG7dOsxmM02aNHH2iYmJoVq1aqxbt65QQ5HRaCC8WBDGK8wcX9DsNhunM7LzFIwCAwN5++1ZAKSn/8WCBfMYNmwI06cnu8wKLyIicivwqlB0LampqcDFsz7/LTY2ltzcXA4ePEhsbCypqalER0e7zaAeExPj3MbNMJncw5vdfvkzQUajAaOfH9tmzubMkaM3ve8bEVK2DLX79cFoNOQpFBmNRmrWjHO+rl69Jp07t+Obb5beVCi6cOE8gYFF8ry+gJ+f4bKfQ/Fe1zPvklyb3kcpSD4VijIzMwEwm80u7ZdeX1pusVgIDQ11Wz8sLOyyl+RuhNFoIDw82K39/Hk/Tp40uv2yuvQNfObIUSz799/UvvMqLz9ELl3u++9jKVOmNMWKhXPixHFMJiMnT/7FrFnT2bJlM+npJylRoiR33dWSJ57oQ0DAfyYrbdjwDp5+egAWi4Vly5Zy/nw23333Aw6Hgw8/fI/PP/+UY8eOUqJESbp0eYhu3Xrc/EHfoux2A0ajkbCwohQpomApfz9mc5CnS5BbmE+FIm9gtzuwWM65tefkXMBut2OzObxuBmebzX7DNV06s/Tf6507dw6LJZPSpctitdpJTz9NSIiZ/v2fITQ0lIMHD/B///cOf/11khEjXnLZ3sKFH1K9ehzDh4/EZrNitdp5663X+Oqrz+nV63GqV6/Jzp07mD59Cv7+Adx77wM3f+C3IJvNgd1uJzPzHNnZNk+XIzfAz8+oX+j5wGLJxmbzrp+x4v3M5qDrOkHgU6EoLCwMuHi7fYkSJZztFovFZbnZbObYsWNu62dmZjr73IzLBQyb7cYvT/mCS3frnTx5kpkz36Zo0WAefLArALGxt9G//2Bn37i4WhQpEsS4cS8xZMgwlzMZoaFhjB//mvOS5uHDh1iyZBFDhz5Pp06dAahfP4Hz588zb14yHTt2vuYYs78zbwzfIoUhL//JE7lePhWKYmJigItjiy59fem1v78/FSpUcPbbuHEjDofDZVxRWloalStXLtyifVh2djZ33tnQ+drPz48JEyYTFVUJAIfDweLFH/Hll59x5MgRcnIuOPseOXKImJjbnK8bNmzs8m/xyy+bALjzzhYuj0moV68BH3wwnxMnjlO6dJmCOjQRERE3PhWKKlSoQKVKlVi+fLnz1n2AZcuW0ahRI+c4lqSkJGbMmMHGjRtp3LgxcDEQ7dq1iyeffNIjtfuiwMBApk9Pxm63c+jQQWbNmsbYsS+xYMFCihcvzqJFHzJ9+tt0796LO+6oR2hoKL//vos33niVnJwcl21FRES4vM7MzMDhcNCuXUsu5/hxhSIRESlcXhWKsrOzWbt2LQCHDx/mzJkzLF++HIAGDRoQERHBgAEDGDp0KFFRUSQkJLBs2TJ27NjB+++/79xOnTp1SExMZMSIEQwbNozAwEDefPNNqlSpwt133+2RY/NFRqORqlWrAxfvPIuKqkjv3o/y7rvJDB36PGvWrKZJkyT69u3vXGffvrQrbM317jyzOQyDwcCMGXPw9/d36x0VVTHfjkNEROR6eFUoSk9PZ9CgQS5tl14vWLCAhIQE2rdvT3Z2NsnJybzzzjtER0czbdo06tSp47LeW2+9xYQJExg1ahRWq5XExERefPFFTCavOmSfUrVqdVq2bM2yZV/x2GNPceHCebdAs3LlN9e1rbp16wMXx3klJible60iIiI3yqsSQvny5fnjjz+u2a9Lly506dLlqn1CQ0MZP34848ePz6/yBHj00SdYvXolixZ9RP36CSxe/DFLliykQoWKrFixjEOHDl3XdqKiKtK5cxfGjh1Ft249qV69JlarlYMHD7B1669MmDC5gI9ERETElVeFoltZSNnCHx9TEPuMiqrEXXfdzeeff8KSJV+TkZHBnDmzAbjzzrsYPHgow4Y9c13bGjz4WaKiKvLFF5/y7rtzCAoqSlRURZo3vyvf6xYREbkWg8PhuDXvJS8gNpudU6fOurXn5uaQnn6UyMgy+Pv/58GFvjzNh3ifK33OxPuZTEbCw4MZ8fYy9h0+7ely3DSuXZH+3RPZNf9lso8f8HQ5boJKRVH9kVGcPn1Wt+TLDYuICL71nlPki+x2B6czsn1uQlgREZG/G4WiQqBgIiIi4v30yGARERERFIpEREREAIUiEREREUChSERERARQKBIREREBFIpEREREAIUiEREREUChSERERARQKCoURqMBk8nokT95eZL20qVfkJhYj4MHXR/1/8knH5OYWI+5c2e7tFssmTRtWp8PPph/Xdt/4IEOvPHGq87X48aNpmfPB2+4ThERkfykJ1oXMKPRQLFiRa9rzpWCYLPZycg4d0NP1I6PrwXAzp07qFAhytmekrKdIkWKkJKy3aV/SsoOHA4H8fG186VmERERT1AoKmBGowE/PyNfLNrEyb+yCnXfxUuE0unBBIxGww2FoqioShQrFs6OHdtp06a9sz0lZQdt2nRg+fKvsdls+P17ktuUlO0EBARStWr1fD8GERGRwqJQVEhO/pXF8SMZni7jusXF1XI5I3Ts2DFOnDhOly5d+fLLT9m7dw+VK1cFLoaiqlWr4e/vz4kTx5k1axqbNv1IdvZ5qlWrzoABQ6hatZqnDkVEROS6aEyRXFZcXC3270/DYrEAkJKyjZIlSxEVVZHbbqvsDExWq5Xff99FfHxtLBYLTz/9JHv2/MHgwc8ybtyrFCkSxKBBfTl9+pQnD0dEROSaFIrksuLja+NwOPjttx3AxfFFcXHxAMTFxZOScrH9jz92k5Nzgfj42ixe/BFnzmQxZcosWrW6h0aNEpkw4XVCQkL56KP3PHYsIiIi10OhSC6ratVqBAYGsmPHxTNCKSnbqVnz4gDsGjXinGeKUlK2YTAYqFkznp9//ok6deoRGmrGarVitVoxGo3Urn0Hv/++y2PHIiIicj00pkguy2QyUa1aDVJStnPu3Dn27v3Xf50pqsXx4xfHGKWkbKdSpWjMZjOZmRn89lsKd97Z0G175cqVL+xDEBERuSEKRXJFcXG1WLz4I3bs2Ia/vz+33VYZgNKlyxAZWZyUlO3s3LmDxMRmAISGmklIaMxTT/V125a/f0Ch1i4iInKjFIrkiuLja/Pee/P49NNFVK1aHZPpPx+XuLh4VqxYRnp6OnFxFy+r1avXgJUrv6FixWiCgoI8VbaIiEieaEyRXFHNmvEYjUY2btzgDD6X1KgRz8aNGwCcD23s2vVhDAYD/fv3Zvnyr9m6dTNr1qxi+vS3Wbjwg8IuX0RE5IboTFEhKV4i1Of2GRoaSnR0DHv3/ouaNeNdlsXFxeNwOChevARly5YDICysGLNnzyM5eSYzZ07FYskkPDyC6tVrkpR0503VIiIiUtAUigqY3e7AZrPT6cEEj+zfZrPf0NOs/9f8+R9ftr1mzXh++OFXt/bIyOIMHz7yqtv85JOvXF6/8MLoPNcnIiKSXxSKCpjd7iAj41yeJmbNr/3fTCgSERH5u1AoKgQKJiIiIt5PA61FREREUCgSERERARSKRERERACFonzncGjskBQcfb5ERAqOQlE+8fPzAyAn54KHK5FbWU7OecDg/LyJiEj+0d1n+cRo9CMoKIQzZ04DEBAQiMHgmdvw5dbicDiw222cP3+O8+fPEhQUgtGoUCQikt8UivKR2RwB4AxGIvnJaPTDbI4kKCjY06WIiNySFIrykcFgICwsktDQcGw2q6fLkVuI0eiH0WjU2UcRkQKkUFQAjEYjRmOAp8sQERGRG6CB1iIiIiIoFImIiIgACkUiIiIigI+GotWrV9OlSxfq1KlDYmIigwYN4uDBg279Fi9eTOvWrYmLi6Njx46sWbPGA9WKiIiIL/C5ULRp0yb69+/PbbfdxvTp0xkxYgS7d+/m8ccf5/z5885+X3/9NSNHjqRNmzYkJydTu3Zt+vfvz7Zt2zxXvIiIiHgtn7v77Ouvv6Zs2bKMHz/eeXtyREQEjzzyCDt37qRevXoATJkyhXbt2jF48GAAGjZsyJ9//sn06dNJTk72VPkiIiLipXzuTJHVaiU4ONjleS2hoaHAf+aFOnjwIPv27aNNmzYu67Zt25aNGzeSk5NTeAWLiIiIT/C5M0WdO3fmiy++4IMPPqBjx45kZGTwxhtvUL16de644w4AUlNTAYiOjnZZNzY2ltzcXA4ePEhsbGyeazCZfC5LioiH+fnp50Z+0PsoBcnnQlG9evWYNm0a//znP3n55ZcBqFatGnPmzHFOkpmZmQmA2Wx2WffS60vL88JoNBAermkWREQ8wWwO8nQJcgvLcyj6/PPPqVevHuXLl7/s8kOHDvHrr79y77335nUXl7Vlyxaee+45HnzwQe68804yMjKYMWMGvXv35sMPP6RIkSL5ur//Zbc7sFjOFeg+ROTW4+dn1C/0fGCxZGOz2T1dhvgYsznous4y5jkUPf/880yaNOmKoWjHjh08//zz+R6Kxo4dS8OGDRk+fLizrXbt2tx555188cUXPPTQQ4SFhQGQlZVFiRIlnP0sFguAc3leWa36hhQR8QSbza6fwVJg8nxx9tKg5is5d+6c83JWftq7dy9Vq1Z1aStdujTh4eEcOHAAgJiYGOA/Y4suSU1Nxd/fnwoVKuR7XSIiIuLbbuhM0e7du9m9e7fz9a+//orNZnPrZ7FY+Pjjj90GOueHsmXLsmvXLpe2w4cPc/r0acqVKwdAhQoVqFSpEsuXL6dly5bOfsuWLaNRo0YEBGiyVhEREXF1Q6Fo1apVTJs2DQCDwcDChQtZuHDhZfuazWZeffXVm6/wf3Tt2pXx48czduxYWrRoQUZGBjNnziQyMtLlFvwBAwYwdOhQoqKiSEhIYNmyZezYsYP3338/32sSERER33dDoejS4GaHw0GXLl0YOHAgSUlJLn0MBgNBQUFERUVhMuX/zW29evUiICCAjz76iCVLlhAcHEzt2rV56623CA8Pd/Zr37492dnZJCcn88477xAdHc20adOoU6dOvtckIiIivu+GUkvJkiUpWbIkAAsWLCA2NpbIyMgCKexKDAYD3bp1o1u3btfs26VLF7p06VIIVYmIiIivy/OpnAYNGuRnHSIiIiIedVPXt9avX88nn3zCwYMHsVgsbnekGQwGVq1adVMFioiIiBSGPIeiOXPmMHnyZCIjI4mPj6dKlSr5WZeIiIhIocpzKFqwYAENGzbknXfewd/fPz9rEhERESl0eX54o8VioXXr1gpEIiIickvIcyiKi4sjLS0tP2sRERER8Zg8h6LRo0fz7bff8tVXX+VnPSIiIiIekecxRYMHD8ZqtfLcc88xevRoSpcujdHomrEMBgNffvnlTRcpIiIiUtDyHIqKFStGsWLFqFixYn7WIyIiIuIReQ5F7733Xn7WISIiIuJReR5TJCIiInIryfOZol9++eW6+tWvXz+vuxAREREpNHkORT179sRgMFyz3++//57XXYiIiIgUmpt6ovX/stlsHD58mEWLFmG32/nnP/95U8WJiIiIFJY8h6IGDRpccVnnzp3p3r07P//8M40aNcrrLkREREQKTYEMtDYajbRr147FixcXxOZFRERE8l2B3X2WmZlJVlZWQW1eREREJF/l+fLZkSNHLttusVj49ddfmTt3LvXq1ctzYSIiIiKFKc+hqEWLFle8+8zhcFC7dm3GjBmT58JEREREClOeQ9H48ePdQpHBYMBsNhMVFcVtt91208WJiIiIFJY8h6LOnTvnZx0iIiIiHpXnUPTf/vWvf3H48GEAypUrp7NEIiIi4nNuKhStWrWKiRMnOgPRJeXLl2f48OHcddddN1WciIiISGHJcyhau3YtAwcOpGzZsjzzzDPExsYCsHfvXhYtWsSAAQOYNWsWSUlJ+VasiIiISEHJcyiaMWMGVapU4YMPPqBo0aLO9rvuuosePXrQvXt3pk+frlAkIiIiPiHPD2/8448/uPfee10C0SVFixblvvvu448//rip4kREREQKS55DUWBgIJmZmVdcnpmZSWBgYF43LyIiIlKo8hyKEhISWLBgAVu3bnVbtn37dt577z1NBisiIiI+I89jip599lm6du1K9+7diY+PJzo6GoC0tDR27NhBZGQkQ4cOzbdCRURERApSns8UVahQgS+//JKePXuSmZnJsmXLWLZsGZmZmfTq1YsvvviC8uXL52etIiIiIgUmz2eKrFYrgYGBjBgxghEjRrgtP3PmDFarFZMpX54PKSIiIlKg8nymaOzYsXTt2vWKy7t168bEiRPzunkRERGRQpXnULR+/Xpat259xeWtW7dm3bp1ed28iIiISKHKcyg6ceIEpUqVuuLykiVLcvz48bxuXkRERKRQ5TkUFStWjLS0tCsu37t3LyEhIXndvIiIiEihynMoatq0KR9//DG7du1yW/bbb7+xaNEiTfEhIiIiPiPPt4YNGjSI9evX06VLF1q0aMFtt90GwJ49e1izZg0REREMGjQo3woVERERKUh5DkWlSpViyZIlTJ48mdWrV/Ptt98CEBISQocOHXjmmWeuOuZIRERExJvc1EOESpYsyauvvorD4eDUqVMAREREYDAY8qW4q/nss8+YP38+e/fupWjRosTFxTFt2jSKFCkCwHfffcdbb71FWloaZcuWpXfv3tx///0FXpeIiIj4pnx5sqLBYCAyMjI/NnVdZs6cSXJyMn379qV27dqcPn2ajRs3YrPZAPj111/p378/DzzwACNGjOCnn37ihRdeIDg4mHvuuafQ6hQRERHf4XOPm05NTWXatGnMmDGDZs2aOdv/+5lJM2fOJD4+npdffhmAhg0bcvDgQaZMmaJQJCLiw/z88nx/UIGy2x3Y7Q5PlyE3yedC0aeffkr58uVdAtF/y8nJYdOmTW6T0bZt25alS5dy6NAhzckmIuJjTMFm7HY7ZnOQp0u5LJvdRsbpbAUjH+dzoWj79u1UrlyZGTNm8N5775GVlUXNmjV5/vnnqVWrFgcOHCA3N5eYmBiX9WJjY4GLZ5oUikREfIspsChGo5HZaxdwJNO7HgxcNqwUfZr1wmg0KBT5OJ8LRX/99Rc7d+7kzz//5KWXXiIoKIhZs2bx+OOPs3LlSjIzMwEwm80u6116fWn5zTCZvPP0rYh4L2+97ONrjmQeZ3/6IU+XcVn6N/Z9PheKHA4H586d4+2336Zq1aoA1KpVixYtWvD++++TmJhYoPs3Gg2EhwcX6D5ERMT3eOulPbl+PheKzGYzxYoVcwYiuDjlSPXq1fnXv/5Fu3btAMjKynJZz2KxABAWFnZT+7fbHVgs525qGyLy9+PnZ9QvzVucxZKNzWb3dBlyGWZz0HWdyfO5UHTbbbdx4MCByy67cOECUVFR+Pv7k5qaStOmTZ3LUlNTAdzGGuWF1aoPvYiIuLLZ7Pr94ON87gJo8+bNycjI4Pfff3e2nT59mt9++40aNWoQEBBAQkICK1ascFlv2bJlxMbGapC1iIiIXJbPnSlq2bIlcXFxDBw4kGeeeYbAwEDeeecdAgIC6N69OwD9+vWjV69ejB49mjZt2rBp0yaWLl3Km2++6eHqRURExFv53Jkio9HIO++8Q+3atRk1ahRDhgwhJCSEDz74gBIlSgBQr149pk6dyubNm3niiSdYunQpY8eOpU2bNh6uXkRERLyVz50pgovzq7322mtX7XPXXXdx1113FVJFIiIi4ut87kyRiIiISEFQKBIRERFBoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEuAVC0dmzZ0lKSqJKlSqkpKS4LFu8eDGtW7cmLi6Ojh07smbNGg9VKSIiIt7O50PRjBkzsNlsbu1ff/01I0eOpE2bNiQnJ1O7dm369+/Ptm3bCr9IERER8Xo+HYr27t3Lhx9+yIABA9yWTZkyhXbt2jF48GAaNmzIyy+/TFxcHNOnT/dApSIiIuLtfDoUjR07lq5duxIdHe3SfvDgQfbt20ebNm1c2tu2bcvGjRvJyckpzDJFRETEB/hsKFq+fDl//vkn//jHP9yWpaamAriFpdjYWHJzczl48GCh1CgiIiK+w+TpAvIiOzubiRMn8swzzxASEuK2PDMzEwCz2ezSfun1peV5ZTL5bJYUEQ/x89PPjVud/o19n0+GopkzZxIZGcn9999f6Ps2Gg2EhwcX+n5FRMS7mc1Bni5BbpLPhaLDhw/zf//3f0yfPp2srCwAzp075/z77NmzhIWFAZCVlUWJEiWc61osFgDn8ryw2x1YLOfyvL6I/D35+Rn1S/MWZ7FkY7PZPV2GXIbZHHRdZ/J8LhQdOnSI3Nxcevfu7basV69e1KpVi8mTJwMXxxbFxMQ4l6empuLv70+FChVuqgarVR96ERFxZbPZ9fvBx/lcKKpWrRoLFixwafv999+ZMGECY8aMIS4ujgoVKlCpUiWWL19Oy5Ytnf2WLVtGo0aNCAgIKOyyRURExMv5XCgym80kJCRcdlmNGjWoUaMGAAMGDGDo0KFERUWRkJDAsmXL2LFjB++//35hlisiIiI+wudC0fVq37492dnZJCcn88477xAdHc20adOoU6eOp0sTERERL3RLhKKEhAT++OMPt/YuXbrQpUsXD1QkIiIivkYPVRARERFBoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEAJOnCxDfYjQaMBoNni7jiux2B3a7w9NliIh4Ff3svj4KRXLdjEYD4eFBGI1+ni7liux2G6dPZ3vFN5eIiDcwGg0UK1YUPz/vvThks9nJyDjn8Z/dCkVy3S7+T8OPtKXJZKcf9XQ5boIiyxDd/imMRoPHv7FERLyF0WjAz8/IF4s2cfKvLE+X46Z4iVA6PZjgFT+7FYrkhmWnHyX7+AFPlyEiIjfg5F9ZHD+S4ekyvJr3nksTERERKUQKRSIiIiIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICOCDoeibb76hX79+JCUlUbt2bTp16sQnn3yCw+Fw6bd48WJat25NXFwcHTt2ZM2aNR6qWERERHyBz4Wid999l6CgIIYPH87MmTNJSkpi5MiRTJ8+3dnn66+/ZuTIkbRp04bk5GRq165N//792bZtm+cKFxEREa9m8nQBN2rmzJlEREQ4Xzdq1IiMjAzmzZvH008/jdFoZMqUKbRr147BgwcD0LBhQ/7880+mT59OcnKyhyoXERERb+ZzZ4r+OxBdUq1aNc6cOcO5c+c4ePAg+/bto02bNi592rZty8aNG8nJySmsUkVERMSH+NyZosvZvHkzpUqVIiQkhM2bNwMQHR3t0ic2Npbc3FwOHjxIbGzsTe3PZCq4LGkwGDAaDQW2/ZvhrXX9Lz8/n8v68jegz+Wtz1v/jb21rv/lDXX6fCj69ddfWbZsGcOGDQMgMzMTALPZ7NLv0utLy/PKaDQQHh58U9u4Grvd4TPhw1uZzUGeLkFE/ob0s+fmeMP759Oh6NixYzzzzDMkJCTQq1evQtmn3e7AYjlXINv28zNiNgcx/aMNHD5xc+GtINSqUpaH7qnt6TKuyWLJxmaze7oMEReXvr/l1uWtP3t85bNXkO+f2Rx0XWeifDYUWSwWnnrqKYoVK8bUqVMxGi8ebFhYGABZWVmUKFHCpf9/L78ZVmvBfugPn8hk3+HTBbqPvChbwnztTl7AZrMX+L+RiMj/0s+em+MN75/nL+Dlwfnz5+nTpw9ZWVnMmTOH0NBQ57KYmBgAUlNTXdZJTU3F39+fChUqFGqtIiIi4ht8LhRZrVYGDx5Mamoqc+bMoVSpUi7LK1SoQKVKlVi+fLlL+7Jly2jUqBEBAQGFWa6IiIj4CJ+7fDZmzBjWrFnD8OHDOXPmjMsDGatXr05AQAADBgxg6NChREVFkZCQwLJly9ixYwfvv/++5woXERERr+ZzoWjDhg0ATJw40W3Z6tWrKV++PO3btyc7O5vk5GTeeecdoqOjmTZtGnXq1CnsckVERMRH+Fwo+u67766rX5cuXejSpUsBVyMiIiK3Cp8bUyQiIiJSEBSKRERERPDBy2ciIiLeyBumqbgcb63LGykUiYiI3ISwoFAcdrtPPDVark6hSERE5CYUDQjCYDSybeZszhw56uly3JSIj6NKl/s9XYZPUCgSERHJB2eOHMWyf7+ny3ATXKaMp0vwGbrQKCIiIoJCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoCeaC23IG+d/NBud2C3OzxdhoiIXIFCkdwyTMFm7F48KaPNbiPjdLaCkYiIl1IokluGKbAoRqOR2WsXcCTzuKfLcVE2rBR9mvXCaDQoFImIeCmFIrnlHMk8zv70Q54uQ0REfIx3Dr4QERERKWQKRSIiIiIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKAnWosUKm+drBY0Ya2IiEKRSCEICwrF4cWT1QLYbTZOZ2jCWhH5+1IoEikERQOCMBiNbJs5mzNHjnq6HDchZctQu18f/P39sNnsni7nsnQmS0QKmkKRSCE6c+Qolv37PV2Gm8CwMOx2h1efybLZ7GRknFMwEpECo1AkIpiKFsVoNPDFok2c/CvL0+W4KV4ilE4PJmA0GhSKRKTAKBSJiNPJv7I4fiTD02WIiHiE994KIyIiIlKIFIpEREREUCgSERERARSKRERERACFIhERERHgFg9Fe/fu5bHHHqN27do0adKESZMmkZOT4+myRERExAvdsrfkZ2Zm8sgjj1CpUiWmTp3K8ePHmThxIufPn2fUqFGeLk9ERES8zC0bij7++GPOnj3LtGnTKFasGAA2m40xY8bQp08fSpUq5dkCRURExKvcspfP1q1bR6NGjZyBCKBNmzbY7XY2bNjgucJERETEKxkcDsct+cz8Ro0acf/99zN06FCX9qZNm9KpUye39uvlcBTcpJQGAxiNRjLPnPfKSTkD/P0IKRpI7lkLDrvN0+W4MZoCMAUFY8nOwupl9QWa/AkODOaCxYLD6l21ARgDAggICeasl372/PyMBIcUwW6346s/sfT9fXP0/Z13+v4Go9GAwWC4Zr9b9vKZxWLBbDa7tYeFhZGZmZnn7RoMBvz8rv3G3oywkCIFuv2b5R/s/r56E3NQqKdLuKLAy3wmvUmwl3/2jEbfP7mt7++bo+/vvNP393XU4OkCRERERLzBLRuKzGYzWVnus31nZmYSFhbmgYpERETEm92yoSgmJobU1FSXtqysLP766y9iYmI8VJWIiIh4q1s2FCUlJfHjjz9isVicbcuXL8doNNKkSRMPViYiIiLe6Ja9+ywzM5N27doRHR1Nnz59nA9v7NChgx7eKCIiIm5u2VAEF6f5eOWVV9i6dSvBwcF06tSJZ555hoCAAE+XJiIiIl7mlg5FIiIiItfrlh1TJCIiInIjFIpEREREUCgSERERARSKRERERACFIhERERFAoUhEREQEUCiSv5mePXvSpk0bcnJy3JYNHDiQZs2acfbsWQ9UJiL5aerUqVSpUoWHH37Ybdm4ceNo0aKFB6oSb6dQJH8rY8aM4dChQ8yZM8elfd26daxYsYKRI0cSHBzsoepEJL/9+uuvbNq0ydNliI9QKJK/lZiYGPr06cOsWbM4ePAgABcuXOCVV17hrrvuomXLlh6uUETyS9GiRYmPj2fGjBmeLkV8hEKR/O307t2bsmXLMmbMGABmzZrFyZMnGTVqFMeOHWPo0KEkJCQQHx/Pww8/zM6dO13WX716NZ07d6ZOnTrUq1ePzp07s3btWk8ciohcw9NPP81PP/3Eli1brtjn8OHDDBw4kLp161K7dm2eeOIJ/vjjj0KsUryFQpH87QQEBPDyyy+zfv16ZsyYwZw5cxg0aBBBQUF0796d3bt3M3LkSKZOnUpQUBCPPPII6enpABw4cIBBgwZx++23M23aNN58803atGlDZmamh49KRC6nefPmVK9enenTp192+ZkzZ+jZsye7du1izJgxvPbaa5w+fZoePXpw9OjRQq5WPM3k6QJEPKFBgwZ07tyZt99+mxo1atCzZ0+mT5+OxWJh8eLFREZGAtCoUSNat27N3Llzee6559i1axe5ubmMHDmSkJAQAJo2berJQxGRa+jXrx8DBgxgx44dxMfHuyz79NNPOXLkCF9//TWxsbEA1K9fn+bNmzN//nyGDx/uiZLFQ3SmSP62evfuDcBjjz2Gn58fGzZsICEhgbCwMKxWK1arFaPRSP369UlJSQGgSpUq+Pn5MXToUL777juysrI8eQgich1atWpF5cqVL3u26Ndff+X22293BiKAYsWK0bhxYzZv3lyYZYoX0Jki+dvy9/d3+fv06dNs27aNGjVquPWNiooCIDo6mlmzZjF79mz69++P0WgkMTGRUaNGUbZs2cIrXkSum8FgoG/fvgwZMoTffvvNZZnFYqF48eJu60RGRrJnz57CKlG8hEKRyL+FhYXRtGlTBg0a5LYsICDA+XVSUhJJSUmcOXOGdevWMWHCBJ5//nnmz59fmOWKyA1o06YNU6dOZcaMGS7/gQkLCyMtLc2tf3p6OmFhYYVZongBXT4T+bfGjRuzd+9eYmNjiYuLc/lTpUoVt/4hISG0bduWdu3asXfvXg9ULCLXy2g00rdvX1avXu1yZ1ndunX5888/SU1NdbZlZmby448/UrduXU+UKh6kM0Ui//boo4/y1Vdf0aNHD3r16kXZsmU5deoU27dvp1SpUjz66KN8/PHHbNu2jaZNm1KiRAkOHTrEl19+SZMmTTxdvohcQ4cOHZg+fTqbNm2iXLlyAHTu3Jl3332XPn36MHjwYAIDA5k5cyYmk4lHHnnEwxVLYVMoEvm38PBwFi5cyFtvvcXrr79ORkYGkZGR1KpVi1atWgEXB1qvWbOGCRMmkJGRQYkSJWjXrt1lL7mJiHfx8/Ojd+/evPjii862kJAQ3nvvPSZOnMjIkSOx2+3ccccdvP/++5QpU8aD1YonGBwOh8PTRYiIiIh4msYUiYiIiKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiItft008/pUqVKqSkpHi6FBEpAApFIiIiIigUiYiIiAAKRSIiIiKAQpGI+IAzZ84wbtw4WrRoQc2aNWnUqBGPPfYYv/32GwA9e/akffv27N69mx49ejgn8V2+fDkAP//8M126dCE+Pp7WrVvz448/uu1j165dPPnkk9xxxx3UqVOHRx55hG3btl2ztszMTB544AGSkpJITU0FICcnhylTptCqVStq1qxJs2bNmDRpEjk5Ofn3pohIvjN5ugARkWt56aWXWLFiBT169CA2NpaMjAw2b97M3r17qVGjBnAxnPTt25e2bdtyzz338NFHHzFkyBDsdjvjx4+na9eutG/fnrlz5zJw4EC+//57QkJCANizZw8PP/wwwcHBPPnkk5hMJhYuXEjPnj15//33qVWr1mXrOnXqFI8//jiZmZm8//77REVFYbfb6devH5s3b+bBBx8kNjaWP//8k/nz57Nv3z5mzJhRaO+biNwgh4iIl6tbt65jzJgxV1zeo0cPR+XKlR1fffWVs23v3r2OypUrO6pWrerYtm2bs339+vWOypUrO5YsWeJse/rppx01atRwHDhwwNl2/PhxR506dRwPP/yws23JkiWOypUrO3bs2OE4ceKEo127do677rrLcejQIWefzz//3FG1alXHL7/84lLjRx995KhcubJj8+bNeXsTRKTA6fKZiHg9s9nM9u3bOX78+BX7FC1alHbt2jlfx8TEYDabiY2NdTnTc+nrgwcPAmCz2diwYQMtW7akQoUKzn4lS5akffv2bN68mTNnzrjs6/jx4/To0YPc3Fw++OADypUr51y2fPlyYmNjiYmJ4dSpU84/DRs2BGDTpk038U6ISEHS5TMR8XpDhw5l+PDh3HnnndSoUYNmzZpx7733uoSY0qVLYzAYXNYLDQ2ldOnSbm0AFosFuHgJLDs7m+joaLf9xsbGYrfbOXr0KLfffruz/dlnn8VkMrFs2TJKlCjhss7+/fvZu3cvjRo1uuyxpKen38CRi0hhUigSEa/Xtm1b6tWrx7fffsuGDRuYO3cuycnJTJ06lWbNmgHg5+d32XWv1O5wOPJcz913383nn3/OggUL+Oc//+myzG63U7lyZZ5//vnLrvu/IU1EvIdCkYj4hJIlS/Lwww/z8MMPk56ezn333cesWbOcoSivIiIiCAoKIi0tzW1ZamoqRqORMmXKuLT36NGDqKgopkyZQmhoKL1793Yui4qKYvfu3TRq1MjtzJWIeDeNKRIRr2az2cjKynJpi4yMpGTJkvlyi7ufnx9NmjRh9erVHDp0yNl+8uRJli5dSt26dZ13qf23f/zjHzz++ONMnjyZDz/80Nnepk0bjh8/zqJFi9zWOX/+POfOnbvpmkWkYOhMkYh4tbNnz9KsWTNat25N1apVKVq0KD/++CMpKSkMHz48X/YxePBgfvzxR7p370737t3x8/Nj4cKF5OTk8Oyzz15xvWHDhnHmzBlefvllgoOD6dSpE506deKbb77hpZdeYtOmTdxxxx3YbDZSU1NZvnw5c+bMIS4uLl/qFpH8pVAkIl6tSJEidOvWjQ0bNrBy5UocDgdRUVG89NJLdO/ePV/2cfvtt/PBBx8wefJkZs+ejcPhID4+ntdee+2Kzyi6ZMyYMZw7d44RI0YQHBxMy5YtmT59Ou+++y5ffPEF3377LUFBQZQvX56ePXtedkC3iHgHg+NmRhuKiIiI3CI0pkhEREQEhSIRERERQKFIREREBFAoEhEREQEUikREREQAhSIRERERQKFIREREBFAoEhEREQEUikREREQAhSIRERERQKFIREREBFAoEhEREQEUikREREQA+H8sHS3wVsah+gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.countplot(x='smoke', hue='cooked', data=df)" + ] + }, + { + "cell_type": "markdown", + "id": "81274425-b884-4604-a2d4-7f2cc6b4a1c2", + "metadata": {}, + "source": [ + "### Number of people who like their steak rare, and who do all 3 risky behaviors(smoke, drink, gamble)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "8817c157-0528-47c7-8680-c886dd5499f4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of people who smoke, drink, and gamble who order their steak rare: 5\n" + ] + } + ], + "source": [ + "df = df.dropna(subset=['smoke', 'drink', 'gamble', 'cooked'])\n", + "smoke_drink_gamble_rare = df[\n", + " (df['smoke'].str.lower() == 'yes') &\n", + " (df['drink'].str.lower() == 'yes') &\n", + " (df['gamble'].str.lower() == 'yes') &\n", + " (df['cooked'].str.lower() == 'rare')\n", + "]\n", + "count_smoke_drink_gamble_rare = len(smoke_drink_gamble_rare)\n", + "print(f\"Number of people who smoke, drink, and gamble who order their steak rare: {count_smoke_drink_gamble_rare}\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "beneficial-invasion", + "metadata": {}, + "source": [ + "## Summary" + ] + }, + { + "cell_type": "markdown", + "id": "about-raise", + "metadata": {}, + "source": [ + "\n", + "\n", + "**OVERARCHING QUESTION**\n", + "*DO PEOPLE WHO EXIBIT RISKY BEHAVIORS (SMOKING, GAMBLING, DRINKING) ORDER THEIR STEAK IN THE SAME RISKY MANNER AS THEIR BEAHVIORS (RARE). IS THERE A RELATIONSHIP BETWEEN THE TWO?*\n", + "\n", + "## *Findings \n", + "-The number of total people in the survey was **432** \n", + "\n", + "-The number of people who smoke was **72** or **17%** of people in survey\n", + "\n", + "-The number of people who drink was **339** or **78%** of people in survey\n", + "\n", + "-The number of people who gamble was **216** or **50%** of people in survey\n", + "\n", + "-The number of people that order their steak rare was **23** or **5%** \n", + "\n", + "-The number of people who smoke and order steak rare was **6** or **1%** of people in survey\n", + "\n", + "-The number of people who drink and order steak rare was **19** or **4%** of people in survey\n", + "\n", + "-The number of people who Gamble and order steak rare was **12** or **3%** of people in survey\n", + "\n", + "# The most surprising stat was that the Number of people who do all 3 risky behaviors (smoke, drink, gamble) and order steak rare was **5** or **1%*\n", + "\n", + "\n", + "\n", + "**What did I learn about my data?**\n", + "I learned that you can extract a bunch of different data about a survey. This was kind of a silly survey, but fun to see the results. What I learned was that out of small sample size of 432 people, doing risky behaviors such as smoking, drinking, and gambling, have nothing to do with food choices, specifically risky food choices such as ordering steak rare.\n", + "\n", + "**Did the results make sense?**\n", + "Yes. The results made sense to me in the fact that I came in with a preconceived notion that the two wouldnt be related. What would have been interesting would be if you did a study between people who do risky behaviors who also live shorter lives.\n", + "\n", + "**What was most surprising?**\n", + "# The most surprising stat was that the Number of people who do all 3 risky behaviors (smoke, drink, gamble) and order steak rare was **5** or **1%*\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "infectious-symbol", + "metadata": {}, + "source": [ + "# Discussion" + ] + }, + { + "cell_type": "markdown", + "id": "bearing-stadium", + "metadata": {}, + "source": [ + "*It's important to recognize the limitations of our research.\n", + "Consider the following:*\n", + "\n", + "**Do the results give an accurate depiction of your research question? Why or why not?**\n", + "Yes becasue it answers the question.\n", + " \n", + "**What were limitations of your datset?**\n", + "I only had a small sample size.\n", + "\n", + "**Are there any known biases in the data?**\n", + "I dont believe so.\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "jupytext": { + "cell_metadata_json": true, + "text_representation": { + "extension": ".Rmd", + "format_name": "rmarkdown", + "format_version": "1.2", + "jupytext_version": "1.9.1" + } + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": false, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.ipynb_checkpoints/lab_pokemon-checkpoint.ipynb b/.ipynb_checkpoints/lab_pokemon-checkpoint.ipynb new file mode 100644 index 0000000..6e82c33 --- /dev/null +++ b/.ipynb_checkpoints/lab_pokemon-checkpoint.ipynb @@ -0,0 +1,2308 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "90041b00-672b-4bd4-a8e8-0cab3f0548af", + "metadata": {}, + "source": [ + "# Lab 04: Data Science Tools\n", + "\n", + "## 0. Jupyter Notebooks\n", + "\n", + "Welcome to your first Jupyter notebook! Notebooks are made up of cells. Some cells contain text (like this one) and others contain Python code.\n", + "\n", + "Each cell can be in two different modes: editing or running. To edit a cell, double-click on it. When you're done editing, press **shift+Enter** to run it. You can use [Markdown](https://www.markdownguide.org/cheat-sheet/) to add basic formatting to the text. Before you go on, try editing the text in this cell." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "5923b0d7-c0e0-48fa-b765-4aa6002c2d4f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Other cells are code cells, containing Python code. (This is a comment, of course!)\n", + "# Try running this cell (again, shift+Enter). You'll see the result of the final statement \n", + "# printed below the cell. \n", + "# Then try changing the Python code and re-run it.\n", + "\n", + "1+1+1+2" + ] + }, + { + "cell_type": "markdown", + "id": "257ef44f-8f53-4136-9d0d-23a811ec53e9", + "metadata": {}, + "source": [ + "### 0.1 Cells share state\n", + "\n", + "Even though code cells run one at a time, anything that happens in a cell (like declaring a variable or running a function) affects the whole notebook. Try running these two cells a few times, in different orders. What happens when you run *Cell B* over and over?" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "0e2a2927-f6d1-4b13-97ae-ff97416723e9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Cell A\n", + "x = 9\n", + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "69dd7908-b213-4d0f-8016-e46a4a491961", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "18" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Cell B\n", + "x = x * 2\n", + "x" + ] + }, + { + "cell_type": "markdown", + "id": "adc581ac-db13-40a8-bcfc-bf5d6e5472c5", + "metadata": {}, + "source": [ + "### 0.2 Saving your work\n", + "\n", + "When you finish working on a notebook, save your work using the icon in the menu bar above. Your notebook is stored in the file `lab_pokemon.ipynb` in the lab directory. You can commit your changes to `ipynb` files just like any other file. Once you finish with Jupyter, you can stop the server by pressing **Control + C** in the Terminal. \n", + "\n", + "*If you're doing this lab on a cloud-based platform like Binder, then you can't save your work. So don't close the tab!*" + ] + }, + { + "cell_type": "markdown", + "id": "0269bf0f-b993-4dfe-99cd-a7d38e94546c", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## 1. Pandas\n", + "\n", + "Pandas is probably the most important Python library for data science. Pandas provides an object called a **DataFrame**, which is basically a table with rows and columns. Most of the time, you will load data into Pandas using a `.csv` file. CSV files can be exported from Excel or Google Sheets, and are a common format for public data sets. \n", + "\n", + "In this lab, we'll be working with two data sets: The first contains Pokémon characteristics and the second comes from a wide-scale survey conducted by the US Centers for Disease Control ([details](https://www.cdc.gov/brfss/annual_data/annual_2020.html)). We will demonstrate techniques with Pokémon; your job is to replicate these tasks with the CDC dataset. \n", + "\n", + "**Note:** Pandas has *extensive* capabilities, and there's no way we could possibly present them all here. If you have a clearly-formed idea of what you want to do with tabular data, there's a way to do it. This lab introduces *some* of what Pandas can do, but expect to spend time reading the documentation and Stack Overflow when you start working on new tasks. \n", + "\n", + "### 1.0 Getting started\n", + "\n", + "First, we'll import pandas (using the conventional variable name `pd`) and load the two datasets. *Run these cells and every code cell you encounter in this notebook.*" + ] + }, + { + "cell_type": "markdown", + "id": "f60aa4b0-7050-4e43-9619-5f8500770cb0", + "metadata": {}, + "source": [ + "import pandas as pd\n", + "\n", + "pokemon = pd.read_csv(\"pokemon.csv\")\n", + "people = pd.read_csv(\"brfss_2020.csv\")" + ] + }, + { + "cell_type": "markdown", + "id": "d4e0b811-b8bf-4e9a-a934-3aad8f0520bb", + "metadata": {}, + "source": [ + "### 1.1 A first look\n", + "\n", + "#### Demo\n", + "\n", + "Let's start by learning the *shape* of the data. How many columns are there? How many rows? What kinds of data are included?" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "579d8dda-ca39-48b1-8819-b17651029729", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "pokemon = pd.read_csv(\"pokemon.csv\")\n", + "people = pd.read_csv(\"brfss_2020.csv\")" + ] + }, + { + "cell_type": "markdown", + "id": "ee8b0718-56f9-4fc8-bd35-fa0ccb445179", + "metadata": {}, + "source": [ + "OK, 800 Pokémon, with 12 columns for each. And you can see all the columns. Not all the data is shown in this preview, of course. If there were more columns than could be displayed, you could see them all by typing `pokemon.columns`. \n", + "\n", + "#### Your turn\n", + "\n", + "Now do the same for your data set, `people`." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c9e5e4ec-b197-450c-ae2d-318006fa0a2f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agesexincomeeducationsexual_orientationheightweighthealthno_doctorexercisesleep
055female52other1.5583.012TrueTrue7
165female81heterosexual1.6578.023FalseFalse8
235female84heterosexual1.6577.114TrueTrue7
355male84heterosexual1.8381.655FalseTrue8
455female84heterosexual1.8076.664FalseTrue8
....................................
16642045female83heterosexual1.6386.181FalseFalse6
16642125male72heterosexual1.7886.184FalseTrue6
16642225female12heterosexual1.9145.361FalseFalse8
16642335female54heterosexual1.6068.044TrueTrue6
16642435male72heterosexual1.7586.183FalseFalse8
\n", + "

166425 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " age sex income education sexual_orientation height weight \\\n", + "0 55 female 5 2 other 1.55 83.01 \n", + "1 65 female 8 1 heterosexual 1.65 78.02 \n", + "2 35 female 8 4 heterosexual 1.65 77.11 \n", + "3 55 male 8 4 heterosexual 1.83 81.65 \n", + "4 55 female 8 4 heterosexual 1.80 76.66 \n", + "... ... ... ... ... ... ... ... \n", + "166420 45 female 8 3 heterosexual 1.63 86.18 \n", + "166421 25 male 7 2 heterosexual 1.78 86.18 \n", + "166422 25 female 1 2 heterosexual 1.91 45.36 \n", + "166423 35 female 5 4 heterosexual 1.60 68.04 \n", + "166424 35 male 7 2 heterosexual 1.75 86.18 \n", + "\n", + " health no_doctor exercise sleep \n", + "0 2 True True 7 \n", + "1 3 False False 8 \n", + "2 4 True True 7 \n", + "3 5 False True 8 \n", + "4 4 False True 8 \n", + "... ... ... ... ... \n", + "166420 1 False False 6 \n", + "166421 4 False True 6 \n", + "166422 1 False False 8 \n", + "166423 4 True True 6 \n", + "166424 3 False False 8 \n", + "\n", + "[166425 rows x 11 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people\n" + ] + }, + { + "cell_type": "markdown", + "id": "7fab76ef-d453-4568-a916-4d4c29535a42", + "metadata": {}, + "source": [ + "### 1.2 Descriptive Statistics\n", + "\n", + "#### Demo\n", + "\n", + "Let's get a sense of the data contained in some of the columns. For categorical data like `generation`, it makes sense to look at value counts--showing us how many of each category there are. You can use the optional keyword `normalize=True` to see percentage of total instead of frequencies. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "9afca362-9edc-423c-981b-dc42107d5de0", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'people' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mpeople\u001b[49m\u001b[38;5;241m.\u001b[39mgeneration\n", + "\u001b[0;31mNameError\u001b[0m: name 'people' is not defined" + ] + } + ], + "source": [ + "people.generation\n" + ] + }, + { + "cell_type": "markdown", + "id": "a9b98eee-bdc2-4c63-bab2-ee82e2466d0f", + "metadata": {}, + "source": [ + "For numeric data, we could start by looking at the mean value. We can select multiple columns and get all the column means at once." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "5fe580d0-5939-4152-9f8c-4c32d35a4479", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "hp 69.25875\n", + "attack 79.00125\n", + "defense 73.84250\n", + "speed 68.27750\n", + "dtype: float64" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pokemon[[\"hp\", \"attack\", \"defense\", \"speed\"]].mean()" + ] + }, + { + "cell_type": "markdown", + "id": "0d8e6e78-fcfc-4c38-a418-545fe4216a44", + "metadata": {}, + "source": [ + "We can also compute the mean of boolean data. In this case, True will map to 1 and False will map to 0. So the mean value equals the percentage of data which is True. " + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "dc69ef53-70cd-4ae0-80e7-c9c8e28de76f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(0.08125)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pokemon.legendary.mean()" + ] + }, + { + "cell_type": "markdown", + "id": "69333e87-8df2-4b46-9005-2b8c9df3a7b4", + "metadata": {}, + "source": [ + "Just over 8% of Pokemon are legendary." + ] + }, + { + "cell_type": "markdown", + "id": "f563d97d-d9d3-4f2d-a46a-5d5dfc6382de", + "metadata": {}, + "source": [ + "#### Your turn\n", + "\n", + "**1.2.0.** In this survey, people are grouped into age bands of 18-24, 25-34, 35-44, 45-54, 55-64, and 65+, with the lower bound reported. What percentage of people are in each age band? (When we talk about \"people\" in this lab, we're referring to the people who responded to the survey, not the whole US population.)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "8fbcc766-8399-4f93-a6c8-e0607250a72a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(48.76603274748385)" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people.age.mean()" + ] + }, + { + "cell_type": "markdown", + "id": "38006e7b-4771-4c29-86a8-19d04a50fc25", + "metadata": {}, + "source": [ + "**1.2.1.** What are the mean height and weight of people in this survey?" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "b7f910c8-3d40-49ae-b270-678734c04100", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "height 1.705082\n", + "weight 83.053588\n", + "dtype: float64" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people[[\"height\", \"weight\"]].mean()" + ] + }, + { + "cell_type": "markdown", + "id": "f74634bb-8664-46e4-b371-6f45cbb7c8ef", + "metadata": {}, + "source": [ + "**1.2.2.** The `exercise` column indicates whether a person has done any physical activity or exercise in the last 30 days, outside of work. What percentage of people have done exercise?" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "f3891188-a85f-4089-8388-d4d81c7438ad", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(0.7858014120474688)" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people.exercise.mean()\n" + ] + }, + { + "cell_type": "markdown", + "id": "f6082e65-321c-4ee0-9457-74f9bb1b0363", + "metadata": {}, + "source": [ + "### 1.3 Filtering\n", + "\n", + "Sometimes we're just interested in a selection of the data set. The way to do this is to create a boolean series, and then use this to select which rows you want to include. Vocabulary note: A dataframe is two-dimensional, with rows and columns. A series (a single row or a single column) is one-dimensional. \n", + "\n", + "#### Demo\n", + "`pokemon.legendary` is already boolean, so we can use this to select just the legendary pokémon. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "12c0c6c9-c07b-4183-82f6-5e346c74aac9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
nametypesubtypetotalhpattackdefensespecial_attackspecial_defensespeedgenerationlegendary
156ArticunoIceFlying580908510095125851True
157ZapdosElectricFlying580909085125901001True
158MoltresFireFlying580901009012585901True
162MewtwoPsychicNaN68010611090154901301True
163MewtwoMega Mewtwo XPsychicFighting7801061901001541001301True
.......................................
795DiancieRockFairy60050100150100150506True
796DiancieMega DiancieRockFairy700501601101601101106True
797HoopaHoopa ConfinedPsychicGhost6008011060150130706True
798HoopaHoopa UnboundPsychicDark6808016060170130806True
799VolcanionFireWater6008011012013090706True
\n", + "

65 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " name type subtype total hp attack defense \\\n", + "156 Articuno Ice Flying 580 90 85 100 \n", + "157 Zapdos Electric Flying 580 90 90 85 \n", + "158 Moltres Fire Flying 580 90 100 90 \n", + "162 Mewtwo Psychic NaN 680 106 110 90 \n", + "163 MewtwoMega Mewtwo X Psychic Fighting 780 106 190 100 \n", + ".. ... ... ... ... ... ... ... \n", + "795 Diancie Rock Fairy 600 50 100 150 \n", + "796 DiancieMega Diancie Rock Fairy 700 50 160 110 \n", + "797 HoopaHoopa Confined Psychic Ghost 600 80 110 60 \n", + "798 HoopaHoopa Unbound Psychic Dark 680 80 160 60 \n", + "799 Volcanion Fire Water 600 80 110 120 \n", + "\n", + " special_attack special_defense speed generation legendary \n", + "156 95 125 85 1 True \n", + "157 125 90 100 1 True \n", + "158 125 85 90 1 True \n", + "162 154 90 130 1 True \n", + "163 154 100 130 1 True \n", + ".. ... ... ... ... ... \n", + "795 100 150 50 6 True \n", + "796 160 110 110 6 True \n", + "797 150 130 70 6 True \n", + "798 170 130 80 6 True \n", + "799 130 90 70 6 True \n", + "\n", + "[65 rows x 12 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "legendary = pokemon[pokemon.legendary]\n", + "legendary" + ] + }, + { + "cell_type": "markdown", + "id": "b4ad804a-f5f0-441f-bb83-51f360c1c154", + "metadata": {}, + "source": [ + "Let's get all the ice pokémon. We can create a boolean series from another series..." + ] + }, + { + "cell_type": "markdown", + "id": "4ea42d67-4dd0-47c8-b4da-1c29fb4507ea", + "metadata": {}, + "source": [ + "pokemon.type == \"Ice\"" + ] + }, + { + "cell_type": "markdown", + "id": "a5ea9e89-f466-48de-9133-346c99f4a6c1", + "metadata": {}, + "source": [ + "And then use this series to select just the ice pokémon. " + ] + }, + { + "cell_type": "markdown", + "id": "c65eb1bd-72b6-487e-adac-ae2071762ca2", + "metadata": { + "scrolled": true + }, + "source": [ + "ice = pokemon[pokemon.type == \"Ice\"]\n", + "ice" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "8161cdbd-76af-4a45-bed9-665ad37cd267", + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'DataFrame' object has no attribute 'type'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipykernel_1131/3928984197.py\u001b[0m in \u001b[0;36m?\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mgood\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpeople\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpeople\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtype\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"good\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mice\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.cache/pypoetry/virtualenvs/lab-pokemon-MIddldub-py3.12/lib/python3.12/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 6295\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_accessors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6296\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6297\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6298\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6299\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m: 'DataFrame' object has no attribute 'type'" + ] + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "3ce81665-f1c6-4528-9d0b-56b5da9ccbe3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
nametypesubtypetotalhpattackdefensespecial_attackspecial_defensespeedgenerationlegendary
156ArticunoIceFlying580908510095125851True
157ZapdosElectricFlying580909085125901001True
158MoltresFireFlying580901009012585901True
162MewtwoPsychicNaN68010611090154901301True
163MewtwoMega Mewtwo XPsychicFighting7801061901001541001301True
.......................................
795DiancieRockFairy60050100150100150506True
796DiancieMega DiancieRockFairy700501601101601101106True
797HoopaHoopa ConfinedPsychicGhost6008011060150130706True
798HoopaHoopa UnboundPsychicDark6808016060170130806True
799VolcanionFireWater6008011012013090706True
\n", + "

65 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " name type subtype total hp attack defense \\\n", + "156 Articuno Ice Flying 580 90 85 100 \n", + "157 Zapdos Electric Flying 580 90 90 85 \n", + "158 Moltres Fire Flying 580 90 100 90 \n", + "162 Mewtwo Psychic NaN 680 106 110 90 \n", + "163 MewtwoMega Mewtwo X Psychic Fighting 780 106 190 100 \n", + ".. ... ... ... ... ... ... ... \n", + "795 Diancie Rock Fairy 600 50 100 150 \n", + "796 DiancieMega Diancie Rock Fairy 700 50 160 110 \n", + "797 HoopaHoopa Confined Psychic Ghost 600 80 110 60 \n", + "798 HoopaHoopa Unbound Psychic Dark 680 80 160 60 \n", + "799 Volcanion Fire Water 600 80 110 120 \n", + "\n", + " special_attack special_defense speed generation legendary \n", + "156 95 125 85 1 True \n", + "157 125 90 100 1 True \n", + "158 125 85 90 1 True \n", + "162 154 90 130 1 True \n", + "163 154 100 130 1 True \n", + ".. ... ... ... ... ... \n", + "795 100 150 50 6 True \n", + "796 160 110 110 6 True \n", + "797 150 130 70 6 True \n", + "798 170 130 80 6 True \n", + "799 130 90 70 6 True \n", + "\n", + "[65 rows x 12 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "legendary = pokemon[pokemon.legendary]\n", + "legendary" + ] + }, + { + "cell_type": "markdown", + "id": "0af5f534-0bec-4577-beee-29b350102265", + "metadata": {}, + "source": [ + "Let's get the high-speed ice pokémon. You can join conditions together using the `&` (and) and `|` (or) operators. `~` means \"not\", so `pokemon[~(pokemon.type == \"Ice\")]` would select all the non-ice pokémon. Due to order of operations, each condition needs to be wrapped in parentheses." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "bbbeeeef-3490-48f1-aadf-c39c31c6c41b", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'high_speed' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[29], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mhigh_speed\u001b[49m\n", + "\u001b[0;31mNameError\u001b[0m: name 'high_speed' is not defined" + ] + } + ], + "source": [ + "high_speed" + ] + }, + { + "cell_type": "markdown", + "id": "c84dc7ce-24f2-4ac7-92d7-99ed331488e0", + "metadata": {}, + "source": [ + "You could get the pokémon who are fire or ice by selecting `pokemon[(pokemon.type == \"Fire\") | (pokemon.type == \"Ice\")]`." + ] + }, + { + "cell_type": "markdown", + "id": "1f0e9625-b194-450d-b003-b88798cc2f45", + "metadata": {}, + "source": [ + "#### Your turn\n", + "\n", + "**1.3.0.** `no_doctor` indicates whether there was a time in the last year when the person needed to see a doctor, but could not afford to do so. Create a dataframe containing only these people. " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "198cb0c6-3f43-43c2-9eee-3939c12ea537", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 True\n", + "1 False\n", + "2 True\n", + "3 False\n", + "4 False\n", + " ... \n", + "166420 False\n", + "166421 False\n", + "166422 False\n", + "166423 True\n", + "166424 False\n", + "Name: no_doctor, Length: 166425, dtype: bool" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people.no_doctor" + ] + }, + { + "cell_type": "markdown", + "id": "9d213707-a15b-4751-8df9-48aa568af209", + "metadata": {}, + "source": [ + "**1.3.1.** `health` asks people for their general health, with the meanings of numbers shown below. Create a dataframe which contains people whose general health is good or better. \n", + "\n", + "| number | health status | \n", + "| ------ | ----------- |\n", + "| 1 | Poor |\n", + "| 2 | Fair |\n", + "| 3 | Good |\n", + "| 4 | Very good |\n", + "| 5 | Excellent |" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "8a8c1ad6-4c1e-4996-ab5e-5212dadb1851", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 2\n", + "1 3\n", + "2 4\n", + "3 5\n", + "4 4\n", + " ..\n", + "166420 1\n", + "166421 4\n", + "166422 1\n", + "166423 4\n", + "166424 3\n", + "Name: health, Length: 166425, dtype: int64" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people.health\n" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "a50cfa93-8ff7-46ee-b4c4-5c07255ca870", + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'DataFrame' object has no attribute 'health_status'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipykernel_1131/1799491424.py\u001b[0m in \u001b[0;36m?\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mhealth_status\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpeople\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpeople\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhealth_status\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/.cache/pypoetry/virtualenvs/lab-pokemon-MIddldub-py3.12/lib/python3.12/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 6295\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_accessors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6296\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6297\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6298\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6299\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m: 'DataFrame' object has no attribute 'health_status'" + ] + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "ef61ce67-b36f-4e80-9d57-8b80a7d9eb2b", + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'DataFrame' object has no attribute 'good'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipykernel_1131/4081568713.py\u001b[0m in \u001b[0;36m?\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mpeople\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhealth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"good\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mpeople\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgood\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/.cache/pypoetry/virtualenvs/lab-pokemon-MIddldub-py3.12/lib/python3.12/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 6295\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_accessors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6296\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6297\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6298\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6299\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m: 'DataFrame' object has no attribute 'good'" + ] + } + ], + "source": [] + }, + { + "cell_type": "markdown", + "id": "7add542b-bfd2-481a-b5b4-4e1ca744078a", + "metadata": {}, + "source": [ + "**1.3.2.**. `education` indicates the highest level of education completed, with codes as follows. Create a dataframe which only contains female college graduates who needed a doctor but couldn't afford one. (The survey asked people for their current sex, and only had options for male and female.)\n", + "\n", + "| number | education level | \n", + "| ------ | ----------- |\n", + "| 1 | Did not graduate from high school |\n", + "| 2 | Graduated from high school |\n", + "| 3 | Attended some college |\n", + "| 4 | Graduated from college |" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "315682ae-7d54-4d78-9a63-d23c83ba1576", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(3.0645515998197386)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people.education.mean()\n" + ] + }, + { + "cell_type": "markdown", + "id": "f4b023b1-b754-4b6a-a7e6-b840ae180501", + "metadata": {}, + "source": [ + "### 1.4. Grouping\n", + "\n", + "Now things get crazy. You can group a dataframe using one or more columns, and then compare their statistics. \n", + "\n", + "#### Demo\n", + "\n", + "Do different types of pokémon move at different speeds? We'll use `sort_values` to put these in order from slow to fast." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "069ea0ab-eff6-4985-9f46-db956fe1df91", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "type\n", + "Fairy 48.588235\n", + "Steel 55.259259\n", + "Rock 55.909091\n", + "Bug 61.681159\n", + "Grass 61.928571\n", + "Ice 63.458333\n", + "Poison 63.571429\n", + "Ground 63.906250\n", + "Ghost 64.343750\n", + "Water 65.964286\n", + "Fighting 66.074074\n", + "Normal 71.551020\n", + "Fire 74.442308\n", + "Dark 76.161290\n", + "Psychic 81.491228\n", + "Dragon 83.031250\n", + "Electric 84.500000\n", + "Flying 102.500000\n", + "Name: speed, dtype: float64" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pokemon.groupby(\"type\").speed.mean().sort_values()" + ] + }, + { + "cell_type": "markdown", + "id": "bdc801b7-d3ae-45bb-80f4-ebeb474e20a1", + "metadata": {}, + "source": [ + "Do types differ in other stats? Let's sort by hit points. " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "5c420c0e-b5d2-49ae-ab98-3305ee076169", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
hpattackdefense
type
Bug56.88405870.97101470.724638
Electric59.79545569.09090966.295455
Ghost64.43750073.78125081.187500
Steel65.22222292.703704126.370370
Rock65.36363692.863636100.795455
Dark66.80645288.38709770.225806
Poison67.25000074.67857168.821429
Grass67.27142973.21428670.800000
Fighting69.85185296.77777865.925926
Fire69.90384684.76923167.769231
Psychic70.63157971.45614067.684211
Flying70.75000078.75000066.250000
Ice72.00000072.75000071.416667
Water72.06250074.15178672.946429
Ground73.78125095.75000084.843750
Fairy74.11764761.52941265.705882
Normal77.27551073.46938859.846939
Dragon83.312500112.12500086.375000
\n", + "
" + ], + "text/plain": [ + " hp attack defense\n", + "type \n", + "Bug 56.884058 70.971014 70.724638\n", + "Electric 59.795455 69.090909 66.295455\n", + "Ghost 64.437500 73.781250 81.187500\n", + "Steel 65.222222 92.703704 126.370370\n", + "Rock 65.363636 92.863636 100.795455\n", + "Dark 66.806452 88.387097 70.225806\n", + "Poison 67.250000 74.678571 68.821429\n", + "Grass 67.271429 73.214286 70.800000\n", + "Fighting 69.851852 96.777778 65.925926\n", + "Fire 69.903846 84.769231 67.769231\n", + "Psychic 70.631579 71.456140 67.684211\n", + "Flying 70.750000 78.750000 66.250000\n", + "Ice 72.000000 72.750000 71.416667\n", + "Water 72.062500 74.151786 72.946429\n", + "Ground 73.781250 95.750000 84.843750\n", + "Fairy 74.117647 61.529412 65.705882\n", + "Normal 77.275510 73.469388 59.846939\n", + "Dragon 83.312500 112.125000 86.375000" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ptypes = pokemon.groupby(\"type\")\n", + "ptypes[[\"hp\", \"attack\", \"defense\"]].mean().sort_values(\"hp\")" + ] + }, + { + "cell_type": "markdown", + "id": "cc9a3d19-0ecd-487b-b34f-b748c44fc9c9", + "metadata": {}, + "source": [ + "Which type/subtype combinations are most likely to have legendary pokémon?" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "444a580d-e70c-48a1-bf87-77f98b8c9f85", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "type subtype \n", + "Electric Flying 0.600000\n", + "Rock Fairy 0.666667\n", + "Ghost Dragon 1.000000\n", + "Ground Fire 1.000000\n", + "Fire Water 1.000000\n", + " Steel 1.000000\n", + "Steel Dragon 1.000000\n", + "Dragon Electric 1.000000\n", + "Psychic Ghost 1.000000\n", + "Dragon Psychic 1.000000\n", + " Ice 1.000000\n", + "Rock Fighting 1.000000\n", + "Steel Fighting 1.000000\n", + "Dragon Fire 1.000000\n", + "Psychic Dark 1.000000\n", + " Fire 1.000000\n", + "Name: legendary, dtype: float64" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "legendary_percentages = pokemon.groupby([\"type\", \"subtype\"]).legendary.mean().sort_values() \n", + "legendary_percentages[legendary_percentages > 0.5]" + ] + }, + { + "cell_type": "markdown", + "id": "de23775b-8670-4371-913d-d8fa1d1f3a76", + "metadata": {}, + "source": [ + "#### Your turn\n", + "\n", + "**1.4.0.** `income` records peoples' annual income, in the following bands. `sleep` records the average hours of sleep someone gets per night. Is there a difference in the average hours of sleep by income level?\n", + "\n", + "| number | annual income, in $1000 | \n", + "| ------ | ----------- |\n", + "| 1 | Less than 10 |\n", + "| 2 | 10-15 |\n", + "| 3 | 15-20 |\n", + "| 4 | 20-25 |\n", + "| 5 | 25-35 |\n", + "| 6 | 35-50 |\n", + "| 7 | 50-75 |\n", + "| 8 | More than 75 |" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "75c1ac4f-3914-4c0a-a156-2e084002df66", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(7.068553402433529)" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people.sleep.mean()\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "f6413f2b-26a0-4b70-976f-90e45558c4bb", + "metadata": {}, + "source": [ + "**1.4.0.** Is there a difference in peoples' income or general health, by sex and education level? " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "d46df8a1-bbc2-45a4-9be1-cee1858cbf21", + "metadata": {}, + "outputs": [], + "source": [ + "# YOUR CODE HERE" + ] + }, + { + "cell_type": "markdown", + "id": "931d602b-ddf4-4c8b-80e0-f886267cce76", + "metadata": {}, + "source": [ + "### 1.5. Plotting \n", + "\n", + "Pandas has excellent built-in plotting capabilities, but \n", + "we are going to use the [seaborn](https://seaborn.pydata.org/) library because it's a bit \n", + "more intuitive and produces more beautiful plots. `set_theme`, called here without any arguments, assigns the default color palette. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "b1e06e4f-6b9e-42af-a27c-dbb525a259ce", + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "sns.set_theme()" + ] + }, + { + "cell_type": "markdown", + "id": "a15ad672-13e8-4bdd-bc31-a489a1730daf", + "metadata": {}, + "source": [ + "#### Demo\n", + "\n", + "**When you want to visualize the distribution of a series**, a [histogram](https://seaborn.pydata.org/generated/seaborn.histplot.html) puts data into bins and plots the number of data points in each bin.\n", + "\n", + "Let's see the distribution of pokémon attack values. Note how assigning `x=\"attack\"` spreads attack values over the x-axis, while `y=\"attack\"` spreads attack values over the y-axis. The number of bins is selected automatically, but you can specify this with the optional `bins` argument. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "5ce066fe-f81d-4b78-a394-c5c2f4dc9f46", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAO+VJREFUeJzt3X1YVHX+//HXDHciOCh+0dbEFWhBMxTSRANJrc1AUmtta12zbLPaTUvLTdeUtGx1+2aaN1mS3V21tplbuYmsud2wKlltN15pm9qgYv28SW0GkARmzu8Pl/k6O1YKM2dm6Pm4Lq6Ycz7z4f15wxUvz/nMYDEMwxAAAMCPnDXYBQAAAIQCQhEAAIAIRQAAAJIIRQAAAJIIRQAAAJIIRQAAAJIIRQAAAJIIRQAAAJIIRQAAAJKkyGAXEG4Mw5Db7f83AbdaLQGZF97os3notTnosznoszkC1Wer1SKLxfKD4whFZ8ntNnT0aK1f54yMtKpDhzg5ncfV2Oj269z4P/TZPPTaHPTZHPTZHIHsc2JinCIifjgUcfsMAABAhCIAAABJhCIAAABJhCIAAABJhCIAAABJhCIAAABJhCIAAABJhCIAAABJhCIAAABJhCIAAABJhCIAAABJhCIAAABJhCIAAABJhCIAAABJUmSwC8D/iYgI7Yzqdhtyu41glwEAQEAQikKAxWKR223IZosNdinfy+V265tjxwlGAIBWiVAUAqxWi6xWi1b9/d86eKQ22OWcVqfEthpzRU9ZrRZCEQCgVSIUhZBDR4/ry8M1wS4DAIAfpdDexAIAAGASQhEAAIAIRQAAAJIIRQAAAJIIRQAAAJIIRQAAAJIIRQAAAJIIRQAAAJJCLBRdf/31ysjIOO3HunXrPONWr16tYcOGKTMzUyNGjNBbb73lM1d1dbVmzJih/v37Kzs7W3fccYcOHTpk5nIAAEAYCal3tL7vvvtUU+P9js7PPvusNmzYoIEDB0qS1q1bp1mzZum2227TgAEDVFpaqokTJ+qFF15QVlaW53mTJ0/W7t27NXv2bMXExGjRokWaMGGC1qxZo8jIkFo2AAAIASGVDs477zyfY3fffbdyc3OVmJgoSVq8eLGGDx+uyZMnS5IGDBignTt3atmyZSopKZEkffTRR9q0aZNWrlypvLw8SVJKSooKCwu1YcMGFRYWmrMgAAAQNkLq9tl/+/DDD7V//35deeWVkqSqqirt2bNHBQUFXuMKCwtVUVGh+vp6SVJ5eblsNptyc3M9Y1JTU9WzZ0+Vl5ebtwAAABA2QjoUvf7662rbtq0uvfRSSZLdbpd08qrPqdLS0tTQ0KCqqirPuJSUFFksFq9xqampnjkAAABOFVK3z07V2Nio9evXa+jQoWrbtq0kyeFwSJJsNpvX2KbHTeedTqfatWvnM2dCQoI+/fTTFtcWGenfLGm1/ie8WeQT5EJFU10RESGdo79XU+3hvIZwQa/NQZ/NQZ/NEQp9DtlQtHnzZh09elRFRUXBLsWL1WpRhw5xAZk7wmpVZGREQOZuqaYfUpstNsiVtFxrWEO4oNfmoM/moM/mCGafQzYUvf7662rfvr1no7R08kqPdPLl9klJSZ7jTqfT67zNZtOBAwd85nQ4HJ4xzeV2G3I6j7dojv8WFRWh+Pg2crndamx0+XVuf3G53JIkp7PO83m4iYiwymaLDes1hAt6bQ76bA76bI5A9tlmiz2jK1AhGYq+/fZbbdy4USNGjFBUVJTneGpqqqSTe4aaPm96HBUVpeTkZM+4iooKGYbhdTuqsrJS6enpLa6vsdG/3yzPN8qQDMPw69z+0lSXy+X2+/rN1hrWEC7otTnosznoszmC2eeQvEH65ptv6vjx455XnTVJTk5W9+7dVVZW5nW8tLRUAwcOVHR0tCQpPz9fDodDFRUVnjGVlZXasWOH8vPzA78AAAAQdkLyStHf/vY3denSRX379vU5N2nSJE2dOlXdunVTTk6OSktLtW3bNj3//POeMdnZ2crLy9OMGTM0bdo0xcTEaOHChcrIyNDll19u5lIAAECYCLlQ5HA49M9//lM33HDDaV+JVVRUpLq6OpWUlGjFihVKSUnR0qVLlZ2d7TVu0aJFmjdvnoqLi9XY2Ki8vDzNnDmTd7MGAACnZTFCdRNLiHK53Dp6tNavc8bERMpmi9Wjqz7U/kPVfp3bX85NitfkMX117Fht2N5Tj4y0qkOHuLBeQ7ig1+agz+agz+YIZJ8TE+POaKN1SO4pAgAAMBuhCAAAQIQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASSEail555RWNGjVKmZmZysnJ0c0336xvv/3Wc/7NN9/UiBEjlJmZqWHDhmnNmjU+c9TX1+tPf/qTcnNzlZWVpfHjx8tut5u5DAAAEEZCLhQtX75cDzzwgAoLC7Vy5Urdf//96tq1q1wulyTpgw8+0MSJE5WVlaWSkhIVFBTo3nvvVVlZmdc8c+fO1erVqzVlyhQtWbJE9fX1uvHGG1VdXR2MZQEAgBAXGewCTmW327V06VI99thjuuSSSzzHhw0b5vl8+fLl6t27t+6//35J0oABA1RVVaXFixfriiuukCQdOHBAL7/8su677z6NHj1akpSZmakhQ4boxRdf1IQJE0xcFQAACAchdaXor3/9q7p27eoViE5VX1+vrVu3esJPk8LCQn3xxRfav3+/JGnTpk1yu91e49q3b6/c3FyVl5cHbgEAACBshVQo+uSTT5Senq7HHntMAwcO1AUXXKDrrrtOn3zyiSRp3759amhoUGpqqtfz0tLSJMmzZ8hut6tjx45KSEjwGce+IgAAcDohdfvs8OHD+vTTT7Vz507dd999io2N1eOPP66bbrpJGzZskMPhkCTZbDav5zU9bjrvdDrVrl07n/ltNptnTEtERvo3S1qtlpOfWCSLxeLXuf2lqa6IiJDK0WelqfZwXkO4oNfmoM/moM/mCIU+h1QoMgxDx48f16OPPqoePXpIkvr06aOhQ4fq+eefV15eXpArPBlgOnSIC8jcEVarIiMjAjJ3SzX9kNpssUGupOVawxrCBb02B302B302RzD7HFKhyGazqX379p5AJJ3cC3T++edr9+7dGj58uCT5vILM6XRKkud2mc1mU01Njc/8TqfT55ba2XK7DTmdx1s0x3+LiopQfHwbudxuNTa6/Dq3v7hcbkmS01nn+TzcRERYZbPFhvUawgW9Ngd9Ngd9Nkcg+2yzxZ7RFaiQCkXnnXee9u3bd9pzJ06cULdu3RQVFSW73a5BgwZ5zjXtE2raa5Samqqvv/5aDofDKwTZ7Xaf/UjN0djo32+W5xtlnLxaFoqa6nK53H5fv9lawxrCBb02B302B302RzD7HFI3SIcMGaJvvvlGn332mefYsWPHtH37dvXq1UvR0dHKycnR3//+d6/nlZaWKi0tTV27dpUk5eXlyWq1asOGDZ4xDodDmzZtUn5+vjmLAQAAYSWkrhRddtllyszM1B133KEpU6YoJiZGK1asUHR0tMaMGSNJ+u1vf6tx48Zp9uzZKigo0NatW/X6669r4cKFnnnOOeccjR49Wg899JCsVqs6d+6sJ554Qu3atdN1110XrOUBAIAQFlKhyGq1asWKFZo3b56Ki4vV0NCgfv366YUXXlBSUpIkqV+/flqyZIkWLVqkl19+WV26dNHcuXNVUFDgNdfMmTMVFxenBQsWqLa2VhdeeKGefvrp074qDQAAwGKE6iaWEOVyuXX0aK1f54yJiZTNFqtHV32o/YdC88+QnJsUr8lj+urYsdqwvaceGWlVhw5xYb2GcEGvzUGfzUGfzRHIPicmxp3RRuuQ2lMEAAAQLIQiAAAAEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkEYoAAAAkhVgo+utf/6qMjAyfj4cffthr3OrVqzVs2DBlZmZqxIgReuutt3zmqq6u1owZM9S/f39lZ2frjjvu0KFDh8xaCgAACDORwS7gdJ588km1a9fO87hz586ez9etW6dZs2bptttu04ABA1RaWqqJEyfqhRdeUFZWlmfc5MmTtXv3bs2ePVsxMTFatGiRJkyYoDVr1igyMiSXDQAAgigk00GvXr2UmJh42nOLFy/W8OHDNXnyZEnSgAEDtHPnTi1btkwlJSWSpI8++kibNm3SypUrlZeXJ0lKSUlRYWGhNmzYoMLCQlPWAQAAwkdI3T77IVVVVdqzZ48KCgq8jhcWFqqiokL19fWSpPLyctlsNuXm5nrGpKamqmfPniovLze1ZgAAEB5CMhQVFRWpZ8+euvTSS/XEE0/I5XJJkux2u6STV31OlZaWpoaGBlVVVXnGpaSkyGKxeI1LTU31zAEAAHCqkLp9lpSUpEmTJqlPnz6yWCx68803tWjRIh08eFDFxcVyOBySJJvN5vW8psdN551Op9eepCYJCQn69NNPW1xnZKR/s6TV+p/wZpFPkAsVTXVFRIRkjj4jTbWH8xrCBb02B302B302Ryj0OaRC0aBBgzRo0CDP47y8PMXExOjZZ5/VbbfdFsTK/o/ValGHDnEBmTvCalVkZERA5m6pph9Smy02yJW0XGtYQ7ig1+agz+agz+YIZp9DKhSdTkFBgZ566il99tlnSkhIkHTy5fZJSUmeMU6nU5I85202mw4cOOAzl8Ph8IxpLrfbkNN5vEVz/LeoqAjFx7eRy+1WY6PLr3P7i8vlliQ5nXWez8NNRIRVNltsWK8hXNBrc9Bnc9BncwSyzzZb7BldgQr5UHSq1NRUSSf3DDV93vQ4KipKycnJnnEVFRUyDMPrdlRlZaXS09NbXEdjo3+/WZ5vlCEZhuHXuf2lqS6Xy+339ZutNawhXNBrc9Bnc9BncwSzzyF/g7S0tFQRERE6//zzlZycrO7du6usrMxnzMCBAxUdHS1Jys/Pl8PhUEVFhWdMZWWlduzYofz8fFPrBwAA4SGkrhT95je/UU5OjjIyMiRJ//jHP/TSSy9p3LhxnttlkyZN0tSpU9WtWzfl5OSotLRU27Zt0/PPP++ZJzs7W3l5eZoxY4amTZummJgYLVy4UBkZGbr88suDsjYAABDaQioUpaSkaM2aNTpw4IDcbre6d++uGTNm6Prrr/eMKSoqUl1dnUpKSrRixQqlpKRo6dKlys7O9ppr0aJFmjdvnoqLi9XY2Ki8vDzNnDmTd7MGAACnZTFCdRNLiHK53Dp6tNavc8bERMpmi9Wjqz7U/kPVfp3bX85NitfkMX117Fht2N5Tj4y0qkOHuLBeQ7ig1+agz+agz+YIZJ8TE+POaKN1yO8pAgAAMAOhCAAAQIQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASS0IRePGjVNFRcV3nn/33Xc1bty45k4PAABgqmaHovfee09ff/31d54/evSo3n///eZODwAAYKoW3T6zWCzfeW7v3r2Ki4tryfQAAACmiTybwa+88opeeeUVz+Ply5frpZde8hlXXV2tzz//XPn5+S2vEAAAwARnFYrq6up07Ngxz+Pa2lpZrb4Xm9q2bavrrrtOt99+e8srBAAAMMFZhaIxY8ZozJgxkqShQ4fq3nvv1aWXXhqQwgAAAMx0VqHoVG+++aY/6wAAAAiqZoeiJjU1Nfrqq6/kdDplGIbP+YsuuqilXwIAACDgmh2Kjh49qrlz52rDhg1yuVw+5w3DkMVi0WeffdaiAgEAAMzQ7FBUXFyst956S9dff7369esnm83mz7oAAABM1exQtHnzZt1www265557/FmPR21trQoKCnTw4EG9/PLLyszM9JxbvXq1nnzySX311VdKSUnRlClTNGTIEK/nV1dXa968edq4caMaGho0aNAgzZw5U506dQpIvQAAILw1+80b27Rpo3PPPdeftXh57LHHTntbbt26dZo1a5YKCgpUUlKirKwsTZw4UR9//LHXuMmTJ2vz5s2aPXu2Hn74YVVWVmrChAlqbGwMWM0AACB8NTsUjRgxQhs3bvRnLR5ffPGF/vznP2vSpEk+5xYvXqzhw4dr8uTJGjBggO6//35lZmZq2bJlnjEfffSRNm3apAcffFCFhYW69NJL9eijj+rzzz/Xhg0bAlIzAAAIb80ORcOGDZPD4dBvfvMbbdiwQdu2bdP27dt9Pppj7ty5uu6665SSkuJ1vKqqSnv27FFBQYHX8cLCQlVUVKi+vl6SVF5eLpvNptzcXM+Y1NRU9ezZU+Xl5c2qCQAAtG7N3lPU9CaOkrRlyxaf88199VlZWZl27typJUuW+IQqu90uST5hKS0tTQ0NDaqqqlJaWprsdrtSUlJ8/jZbamqqZw4AAIBTNTsUzZs3z591SDr5Z0Tmz5+vKVOmKD4+3ue8w+GQJJ9XujU9bjrvdDrVrl07n+cnJCTo008/bXGdkZEt+ju6PqzW/4Q3y/f/kd1gaqorIsK/azdTU+3hvIZwQa/NQZ/NQZ/NEQp9bnYouuqqq/xZh6STf2C2Y8eO+sUvfuH3uf3FarWoQ4e4gMwdYbUqMjIiIHO3VNMPqc0WG+RKWq41rCFc0Gtz0Gdz0GdzBLPPLX5Ha3/58ssv9dRTT2nZsmWqrq6WJB0/ftzz39raWiUkJEg6+XL7pKQkz3OdTqckec7bbDYdOHDA52s4HA7PmOZyuw05ncdbNMd/i4qKUHx8G7ncbjU2+r7iLhS4XG5JktNZ5/k83EREWGWzxYb1GsIFvTYHfTYHfTZHIPtss8We0RWoZoeiP/zhDz84xmKx6I9//OMZzbd//341NDTolltu8Tk3btw49enTRwsWLJB0cm9Ramqq57zdbldUVJSSk5Mlndw7VFFR4dnX1KSyslLp6elnVM/3aWz07zfL840ydNo/lRIKmupyudx+X7/ZWsMawgW9Ngd9Ngd9Nkcw+9zsULR161afY263W4cPH5bL5VJiYqJiY8/8EljPnj313HPPeR377LPPNG/ePM2ZM0eZmZlKTk5W9+7dVVZWpssuu8wzrrS0VAMHDlR0dLQkKT8/X4899pgqKip08cUXSzoZiHbs2KGbb765OcsFAACtXLND0Ztvvnna4w0NDfrLX/6iZ599Vk899dQZz2ez2ZSTk3Pac7169VKvXr0kSZMmTdLUqVPVrVs35eTkqLS0VNu2bdPzzz/vGZ+dna28vDzNmDFD06ZNU0xMjBYuXKiMjAxdfvnlZ7FKAADwY+H3PUVRUVEaO3asdu/erQceeEArVqzw6/xFRUWqq6tTSUmJVqxYoZSUFC1dulTZ2dle4xYtWqR58+apuLhYjY2NysvL08yZMxUZGTLbqAAAQAgJWELo0aOHXnvttRbNkZOTo88//9zn+DXXXKNrrrnme5/brl07/fGPfzzjPU0AAODHLWBvBrBly5az2lMEAAAQTM2+UrR06dLTHq+urtb777+vHTt2nPaVZAAAAKHI76EoISFBycnJmjNnjn75y182uzAAAAAzNTsU/fvf//ZnHQAAAEHFH3IBAACQH1599t577+ntt9/WV199JUnq0qWLBg8erP79+7e4OAAAALM0OxTV19fr7rvv1saNG2UYhucv1TudTj399NP6+c9/rgULFigqKspvxQIAAARKs2+fLVu2TG+88YbGjx+vTZs26b333tN7772nzZs366abbtKGDRu0bNkyf9YKAAAQMM0ORX/729901VVX6Z577tH//M//eI537NhRv//97zVq1CitXbvWL0UCAAAEWrND0eHDh9W7d+/vPN+7d28dPny4udMDAACYqtmh6JxzztF77733nefff/99nXPOOc2dHgAAwFTNDkWjRo3S+vXrVVxcLLvdLpfLJbfbLbvdrvvuu09lZWW66qqr/FkrAABAwDT71We33Xabqqqq9NJLL2n16tWyWk/mK7fbLcMwdNVVV+m2227zW6EAAACB1OxQFBERofnz5+vGG29UeXm5vvzyS0nSueeeq/z8fPXo0cNvRQIAAATaWYWiEydO6MEHH9TPfvYzXX/99ZKkHj16+ASg5557Ti+++KLuvfde3qcIAACEhbPaU/SXv/xFr7zyigYPHvy94wYPHqw1a9Zo9erVLakNAADANGcVitavX6/LL79cycnJ3zuuW7duuuKKK7Ru3boWFQcAAGCWswpFO3fuVN++fc9obHZ2tj7//PNmFQUAAGC2swpFDQ0NZ7xHKCoqSvX19c0qCgAAwGxnFYo6deqkXbt2ndHYXbt2qVOnTs0qCgAAwGxnFYouvvhivfbaazpy5Mj3jjty5Ihee+01XXzxxS0qDgAAwCxnFYomTJigEydO6IYbbtAnn3xy2jGffPKJbrzxRp04cUI333yzX4oEAAAItLN6n6Lk5GQtWrRId911l6677jolJycrPT1dcXFxqq2t1a5du7Rv3z61adNGjzzyiLp16xaougEAAPzqrN/RevDgwVq7dq1KSkr09ttva+PGjZ5znTp10jXXXKMJEyb84Mv2AQAAQkmz/sxH165dNWfOHElSTU2NamtrFRcXp/j4eL8WBwAAYJZm/+2zJvHx8YQhAAAQ9s5qozUAAEBrRSgCAAAQoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEBSiIWid955R2PHjtWAAQN0wQUX6NJLL9W8efNUXV3tNe7NN9/UiBEjlJmZqWHDhmnNmjU+c9XX1+tPf/qTcnNzlZWVpfHjx8tut5u1FAAAEGZCKhR988036t27t+bMmaOVK1dq/PjxevXVV3XnnXd6xnzwwQeaOHGisrKyVFJSooKCAt17770qKyvzmmvu3LlavXq1pkyZoiVLlqi+vl433nijT8ACAACQ/PC3z/xp5MiRXo9zcnIUHR2tWbNm6eDBg+rcubOWL1+u3r176/7775ckDRgwQFVVVVq8eLGuuOIKSdKBAwf08ssv67777tPo0aMlSZmZmRoyZIhefPFFTZgwwdyFAQCAkBdSV4pOp3379pKkhoYG1dfXa+vWrZ7w06SwsFBffPGF9u/fL0natGmT3G6317j27dsrNzdX5eXlptUOAADCR0iGIpfLpRMnTmj79u1atmyZhg4dqq5du2rfvn1qaGhQamqq1/i0tDRJ8uwZstvt6tixoxISEnzGsa8IAACcTkjdPmsyZMgQHTx4UJI0aNAgLViwQJLkcDgkSTabzWt80+Om806nU+3atfOZ12azeca0RGSkf7Ok1Wo5+YlFslgsfp3bX5rqiogIyRx9RppqD+c1hAt6bQ76bA76bI5Q6HNIhqIVK1aorq5Ou3fv1vLly3Xbbbfp6aefDnZZkk4GmA4d4gIyd4TVqsjIiIDM3VJNP6Q2W2yQK2m51rCGcEGvzUGfzUGfzRHMPodkKOrRo4ckKTs7W5mZmRo5cqTeeOMNnXfeeZLk8woyp9MpSZ7bZTabTTU1NT7zOp1On1tqZ8vtNuR0Hm/RHP8tKipC8fFt5HK71djo8uvc/uJyuSVJTmed5/NwExFhlc0WG9ZrCBf02hz02Rz02RyB7LPNFntGV6BCMhSdKiMjQ1FRUdq3b5+GDh2qqKgo2e12DRo0yDOmaZ9Q016j1NRUff3113I4HF4hyG63++xHao7GRv9+szzfKEMyDMOvc/tLU10ul9vv6zdba1hDuKDX5qDP5qDP5ghmn0P+Buknn3yihoYGde3aVdHR0crJydHf//53rzGlpaVKS0tT165dJUl5eXmyWq3asGGDZ4zD4dCmTZuUn59vav0AACA8hNSVookTJ+qCCy5QRkaG2rRpo3//+99auXKlMjIydNlll0mSfvvb32rcuHGaPXu2CgoKtHXrVr3++utauHChZ55zzjlHo0eP1kMPPSSr1arOnTvriSeeULt27XTdddcFa3kAACCEhVQo6t27t0pLS7VixQoZhqFzzz1X11xzjX7zm98oOjpaktSvXz8tWbJEixYt0ssvv6wuXbpo7ty5Kigo8Jpr5syZiouL04IFC1RbW6sLL7xQTz/99GlflQYAAGAxQnUTS4hyudw6erTWr3PGxETKZovVo6s+1P5DoflnSM5NitfkMX117Fht2N5Tj4y0qkOHuLBeQ7ig1+agz+agz+YIZJ8TE+POaKN1yO8pAgAAMAOhCAAAQIQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASYQiAAAASSEWitavX6/f/va3ys/PV1ZWlkaOHKmXX35ZhmF4jVu9erWGDRumzMxMjRgxQm+99ZbPXNXV1ZoxY4b69++v7Oxs3XHHHTp06JBZSwEAAGEmpELRM888o9jYWE2fPl3Lly9Xfn6+Zs2apWXLlnnGrFu3TrNmzVJBQYFKSkqUlZWliRMn6uOPP/aaa/Lkydq8ebNmz56thx9+WJWVlZowYYIaGxtNXhUAAAgHkcEu4FTLly9XYmKi5/HAgQP1zTff6Omnn9bvfvc7Wa1WLV68WMOHD9fkyZMlSQMGDNDOnTu1bNkylZSUSJI++ugjbdq0SStXrlReXp4kKSUlRYWFhdqwYYMKCwtNXxsAAAhtIXWl6NRA1KRnz56qqanR8ePHVVVVpT179qigoMBrTGFhoSoqKlRfXy9JKi8vl81mU25urmdMamqqevbsqfLy8sAuAgAAhKWQulJ0Ov/617/UuXNnxcfH61//+pekk1d9TpWWlqaGhgZVVVUpLS1NdrtdKSkpslgsXuNSU1Nlt9tbXFNkpH+zpNX6nzot8qk5VDTVFRERUjn6rDTVHs5rCBf02hz02Rz02Ryh0OeQDkUffPCBSktLNW3aNEmSw+GQJNlsNq9xTY+bzjudTrVr185nvoSEBH366actqslqtahDh7gWzfFdIqxWRUZGBGTulmr6IbXZYoNcScu1hjWEC3ptDvpsDvpsjmD2OWRD0YEDBzRlyhTl5ORo3LhxwS7Hw+025HQe9+ucUVERio9vI5fbrcZGl1/n9heXyy1JcjrrPJ+Hm4gIq2y22LBeQ7ig1+agz+agz+YIZJ9tttgzugIVkqHI6XRqwoQJat++vZYsWSKr9eRCEhISJJ18uX1SUpLX+FPP22w2HThwwGdeh8PhGdMSjY3+/WZ5vlGGfN5+IFQ01eVyuf2+frO1hjWEC3ptDvpsDvpsjmD2OeRukH777be69dZbVV1drSeffNLrNlhqaqok+ewLstvtioqKUnJysmdcZWWlT8CorKz0zAEAAHCqkApFjY2Nmjx5sux2u5588kl17tzZ63xycrK6d++usrIyr+OlpaUaOHCgoqOjJUn5+flyOByqqKjwjKmsrNSOHTuUn58f+IUAAICwE1K3z+bMmaO33npL06dPV01NjdcbMp5//vmKjo7WpEmTNHXqVHXr1k05OTkqLS3Vtm3b9Pzzz3vGZmdnKy8vTzNmzNC0adMUExOjhQsXKiMjQ5dffnkQVgYAAEJdSIWizZs3S5Lmz5/vc+4f//iHunbtqqKiItXV1amkpEQrVqxQSkqKli5dquzsbK/xixYt0rx581RcXKzGxkbl5eVp5syZiowMqSUDAIAQYTFCdWdviHK53Dp6tNavc8bERMpmi9Wjqz7U/kPVfp3bX85NitfkMX117Fht2G40jIy0qkOHuLBeQ7ig1+agz+agz+YIZJ8TE+PO6NVnIbWnCAAAIFgIRQAAACIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASCIUAQAASAqxULR3714VFxdr5MiROv/881VUVHTacatXr9awYcOUmZmpESNG6K233vIZU11drRkzZqh///7Kzs7WHXfcoUOHDgV6CQAAIEyFVCjatWuX3nnnHf30pz9VWlraacesW7dOs2bNUkFBgUpKSpSVlaWJEyfq448/9ho3efJkbd68WbNnz9bDDz+syspKTZgwQY2NjSasBAAAhJvIYBdwqqFDh+qyyy6TJE2fPl2ffvqpz5jFixdr+PDhmjx5siRpwIAB2rlzp5YtW6aSkhJJ0kcffaRNmzZp5cqVysvLkySlpKSosLBQGzZsUGFhoTkLAgAAYSOkrhRZrd9fTlVVlfbs2aOCggKv44WFhaqoqFB9fb0kqby8XDabTbm5uZ4xqamp6tmzp8rLy/1fOAAACHshdaXoh9jtdkknr/qcKi0tTQ0NDaqqqlJaWprsdrtSUlJksVi8xqWmpnrmaInISP9mSav1P3Va5FNzqGiqKyIipHL0WWmqPZzXEC7otTnosznoszlCoc9hFYocDockyWazeR1vetx03ul0ql27dj7PT0hIOO0tubNhtVrUoUNci+b4LhFWqyIjIwIyd0s1/ZDabLFBrqTlWsMawgW9Ngd9Ngd9Nkcw+xxWoSgUuN2GnM7jfp0zKipC8fFt5HK71djo8uvc/uJyuSVJTmed5/NwExFhlc0WG9ZrCBf02hz02Rz02RyB7LPNFntGV6DCKhQlJCRIOvly+6SkJM9xp9Ppdd5ms+nAgQM+z3c4HJ4xLdHY6N9vlucbZUiGYfh1bn9pqsvlcvt9/WZrDWsIF/TaHPTZHPTZHMHsc1jdIE1NTZUkn31BdrtdUVFRSk5O9oyrrKz0CRiVlZWeOQAAAE4VVqEoOTlZ3bt3V1lZmdfx0tJSDRw4UNHR0ZKk/Px8ORwOVVRUeMZUVlZqx44dys/PN7VmAAAQHkLq9lldXZ3eeecdSdKXX36pmpoaTwDq37+/EhMTNWnSJE2dOlXdunVTTk6OSktLtW3bNj3//POeebKzs5WXl6cZM2Zo2rRpiomJ0cKFC5WRkaHLL788KGsDAAChLaRC0ZEjR3TnnXd6HWt6/NxzzyknJ0dFRUWqq6tTSUmJVqxYoZSUFC1dulTZ2dlez1u0aJHmzZun4uJiNTY2Ki8vTzNnzlRkZEgtGQAAhAiLEao7e0OUy+XW0aO1fp0zJiZSNlusHl31ofYfqvbr3P5yblK8Jo/pq2PHasN2o2FkpFUdOsSF9RrCBb02B302B302RyD7nJgYd0avPgurPUUAAACBQigCAAAQoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEASoQgAAEBSiL2jNQAACAyr1SKr1RLsMr7Tmby5YqARigAAaOWsVovad2irCGvwg8f3cbsNWSzBC26EIgAAWjmr1aIIq1V/LvtMh44eD3Y5p9W5Y5x+NaxHUK9mEYoAAPiROHT0uL48XBPsMk4rmFeImoT2dTQAAACTEIoAAABEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJBEKAIAAJDUykPRF198ofHjxysrK0u5ubl66KGHVF9fH+yyAABACIoMdgGB4nA4dMMNN6h79+5asmSJDh48qPnz5+vbb79VcXFxsMsDAAAhptWGohdffFG1tbVaunSp2rdvL0lyuVyaM2eObr31VnXu3Dm4BQIAgJDSam+flZeXa+DAgZ5AJEkFBQVyu93avHlz8AoDAAAhqdVeKbLb7frFL37hdcxmsykpKUl2u73Z81qtFiUmxrW0PC8Wy8n//mbkBXK5Db/O7S8R1pNFJiTEBrmSlmsNawgX9Noc9NkcraHPN4/KDPnfM/HxMYqLi/Hr3Nb/zP1DWm0ocjqdstlsPscTEhLkcDiaPa/FYlFExJk192zFt40OyLz+ZLWG/8XF1rCGcEGvzUGfzdEa+szvmR/42kH7ygAAACGk1YYim82m6upqn+MOh0MJCQlBqAgAAISyVhuKUlNTffYOVVdX6/Dhw0pNTQ1SVQAAIFS12lCUn5+vLVu2yOl0eo6VlZXJarUqNzc3iJUBAIBQZDEMIzS3obeQw+HQ8OHDlZKSoltvvdXz5o1XXnklb94IAAB8tNpQJJ38Mx8PPPCAPvroI8XFxWnkyJGaMmWKoqNDf/c9AAAwV6sORQAAAGeq1e4pAgAAOBuEIgAAABGKAAAAJBGKAAAAJBGKAAAAJBGKAAAAJBGKAu6LL77Q+PHjlZWVpdzcXD300EOqr6//wecZhqEVK1Zo8ODB6t27t6699lp9/PHHgS84TDWnz4cOHdJDDz2kkSNHKjs7W/n5+br77rv15ZdfmlR1eGruz/SpnnnmGWVkZOjWW28NUJXhryV9PnjwoKZNm6YBAwaod+/eKigo0Nq1awNccXhqbp+PHTum4uJiDR48WFlZWSoqKtKqVatMqDg87d27V8XFxRo5cqTOP/98FRUVndHzzP5dGBmwmSGHw6EbbrhB3bt315IlSzzvqv3tt9/+4Ltql5SUaPHixZo6daoyMjL0wgsv6KabbtJrr72m5ORkk1YQHprb5+3bt+uNN97QL37xC/Xp00fHjh3T8uXLdc011+j1119XYmKiiasIDy35mW5y+PBhLVu2TB07dgxwteGrJX0+dOiQrr32WqWkpOiBBx5QfHy8du3addbB9cegJX2+8847Zbfbddddd+knP/mJysvLNXv2bEVEROiXv/ylSSsIH7t27dI777yjPn36yO1260zfItH034UGAubxxx83srKyjGPHjnmOvfjii0bPnj2NAwcOfOfzvv32W+PCCy80FixY4Dl24sQJY8iQIcZ9990XwIrDU3P77HA4jIaGBq9j/+///T8jIyPDWLlyZaDKDWvN7fWpfv/73xv33HOPMXbsWOOWW24JUKXhrSV9njp1qnHttdcajY2NAa4y/DW3z4cOHTLS09ONNWvWeB3/9a9/bYwbNy5Q5YY1l8vl+XzatGnG8OHDf/A5wfhdyO2zACovL9fAgQPVvn17z7GCggK53W5t3rz5O5/34YcfqqamRgUFBZ5j0dHR+vnPf67y8vJAlhyWmttnm82myEjvi6XnnHOOEhMTdejQoUCVG9aa2+smH3zwgTZu3Ki77747gFWGv+b2uaamRuvXr9eYMWMUERFhQqXhrbl9bmxslCS1a9fO63h8fPwZXwH5sbFazz5uBON3IaEogOx2u1JTU72O2Ww2JSUlyW63f+/zJPk8Ny0tTV999ZW+/fZb/xcbxprb59OprKzUkSNHlJaW5s8SW42W9NrlcumBBx7Qbbfdpk6dOgWyzLDX3D5v375dDQ0NioyM1NixY9WrVy/l5ubqf//3f9XQ0BDossNOc/v8k5/8RHl5eXr88ce1e/du1dTUqLS0VJs3b9avf/3rQJf9oxGM34XsKQogp9Mpm83mczwhIUEOh+N7nxcdHa2YmBiv4zabTYZhyOFwqE2bNn6vN1w1t8//zTAMzZ07V506ddLw4cP9WWKr0ZJe//nPf1ZdXZ1uvPHGAFXXejS3z19//bUkaebMmfrlL3+piRMnatu2bVq8eLGsVitX6P5LS36elyxZoilTpnj+XxEREaGZM2dq2LBhAan1xygYvwsJRcB/LFmyRO+++66efPJJtW3bNtjltCpHjhzR4sWL9ac//UnR0dHBLqfVcrvdkqSLL75Y06dPlyQNGDBAtbW1euqpp3T77bfzDyo/MAxDf/jDH7Rnzx4tWLBASUlJ2rJli/74xz8qISGBf1SFMUJRANlsNlVXV/scdzgcSkhI+N7n1dfX68SJE14J2el0ymKxfO9zf4ya2+dTvfTSS1q2bJkefPBBDRw40N8lthrN7fWjjz6qjIwM9evXT06nU9LJfRmNjY1yOp1q27atz/6uH7OW/L9DOhmETjVw4EA9/vjj2rt3rzIyMvxbbBhrbp/ffvttlZWVae3atZ5+5uTk6MiRI5o/fz6hyE+C8buQPUUBlJqa6nNfurq6WocPH/a5R/rfz5NO7m85ld1uV5cuXfiX3n9pbp+bvPHGG5o9e7buuOMOjR49OlBltgrN7XVlZaXef/99XXTRRZ6PDz/8UJs2bdJFF12kLVu2BLr0sNLcPp933nnfO++JEyf8Ul9r0dw+7969WxEREUpPT/c63rNnTx06dEh1dXUBqffHJhi/CwlFAZSfn68tW7Z4/mUsSWVlZbJarcrNzf3O51144YWKj4/X+vXrPccaGhq0YcMG5efnB7TmcNTcPkvS1q1bddddd+maa67R7bffHuhSw15zez1jxgw999xzXh89evRQVlaWnnvuOfXu3duM8sNGc/t87rnnKj093SdkbtmyRW3atPnB0PRj05I+u1wuff75517Ht2/fro4dOyo2NjZgNf+YBOV3YUBe6A/DMAzjm2++MXJzc42xY8ca//znP42XX37Z6NevnzFnzhyvcePGjTMuu+wyr2NPPPGEccEFFxjPPPOMsWXLFmPSpElGdna2sW/fPjOXEBaa2+fdu3cbffv2NYqKiox//etfxkcffeT52Lt3r9nLCAst+Zn+b7xP0XdrSZ//8Y9/GBkZGcbcuXONTZs2GcuXLzd69eplPPLII2YuISw0t8/V1dXG4MGDjZ///OfGq6++amzZssV46KGHjB49ehjLli0zexlh4fjx48b69euN9evXG2PHjjUuueQSz+MjR44YhhEavwu5iR9ACQkJevbZZ/XAAw/o9ttvV1xcnEaPHq0pU6Z4jXO73XK5XF7HJkyYIMMw9NRTT+no0aPq2bOnVq5cybtZn0Zz+/zJJ5+ourpa1dXV+tWvfuU19qqrrtL8+fNNqT+ctORnGmeuJX0eOnSoHnnkET322GNatWqVOnXqpEmTJumWW24xcwlhobl9jo+P1zPPPKOFCxfq4YcfVnV1tbp27arp06dr7NixZi8jLBw5ckR33nmn17Gmx88995xycnJC4nehxTB4pykAAAD2FAEAAIhQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBAAAIIlQBMBEf/3rX5WRkaH9+/cHu5QWa01rAXASoQgAAECEIgAAAEmEIgAICXV1dcEuAfjRIxQBCKp33nlHY8aMUVZWlrKzs3XLLbdo165dPuPWr1+vwsJCZWZmqqioSG+88YamT5+uoUOHeo1zu9165plnNHz4cGVmZuriiy9WcXGxHA6H17ihQ4fq1ltv1QcffKDRo0crMzNTl156qV599VWfr71r1y6NGzdOvXv3Vn5+vh577DG53W6fcRs3btQtt9yivLw8XXDBBbrsssu0bNkynz9yef3116uoqEiffvqpfv3rX6tPnz565JFHNG3aNOXk5KihocFn7ptuuknDhg07k5YCaKbIYBcA4Mfr1Vdf1fTp05WXl6epU6eqrq5Oq1at0pgxY/TKK6+oa9eukqS3335bU6ZMUXp6uu6++245HA7de++96ty5s8+cxcXFeuWVV3T11Vfr+uuv1/79+/XCCy9ox44dWrVqlaKiojxj9+7dqzvvvFOjR4/WVVddpTVr1mj69Onq1auXfvazn0mSDh8+rHHjxsnlcumWW25RbGysXnrpJcXExPh87VdeeUVt27bV+PHj1bZtW7377rtavHixampqNG3aNK+x33zzjSZMmKDhw4drxIgR6tixo9q2batXX31VmzZt0pAhQzxjDx8+rHfffVe33367X/oO4DsYAGCSNWvWGOnp6UZVVZVRU1Nj9OvXz5g5c6bXmMOHDxt9+/b1Ol5UVGTk5+cbNTU1nmNbt2410tPTjSFDhniOvf/++0Z6erqxdu1arznLy8t9jg8ZMsRIT0833n//fc+xI0eOGBdccIExf/58z7EHH3zQSE9PNz755BOvcX379vWspUldXZ3PmmfNmmX06dPHOHHihOfY2LFjjfT0dGPVqlVeY10ul5Gfn29MnjzZ6/jTTz9tZGRkGPv27fOZH4D/cPsMQFBs2bJFTqdTw4cP19GjRz0fVqtVffr00datWyVJBw8e1M6dOzVq1CjFxcV5nt+/f3+lp6d7zVlWVqZ27dopNzfXa85evXqpbdu2njmbnHfeeerXr5/ncWJiolJSUlRVVeU59s477ygrK0u9e/f2GnfllVf6rKlNmzaez2tqanT06FH169dPdXV1stvtXmOjo6N19dVXex2zWq268sor9eabb6qmpsZzfO3atcrOzlZycvJ3NxRAi3H7DEBQ7NmzR5J0ww03nPZ8fHy8JOmrr76SJHXr1s1nzE9/+lPt2LHD83jv3r2qrq7WwIEDTzvnkSNHvB7/5Cc/8RmTkJDgtf/oq6++Up8+fXzGpaSk+BzbtWuXFi1apHfffdcr1EhSdXW11+POnTsrOjraZ45Ro0appKREGzdu1KhRo2S327V9+3bNmTPntGsC4D+EIgBBYRiGJOmhhx5SUlKSz/mIiIizntPtdqtjx456+OGHT3s+MTGxxV/juzidTo0dO1bx8fG644471K1bN8XExGj79u16+OGHfTZmn3pV6VTnnXeeevXqpbVr12rUqFFau3atoqKiVFBQ4LdaAZweoQhAUDTdCurYsaMuvvji7xzXpUsXSdK+fft8zu3du9frcbdu3VRRUaELL7zwO0PH2erSpYvP15GkyspKr8fvvfeevvnmGy1dulQXXXSR53hz3vF61KhRmj9/vg4dOqTXX39dgwcPVkJCwtkXD+CssKcIQFAMGjRI8fHxeuKJJ077EvSjR49KOnmbKT09Xa+++qpqa2s959977z3t3LnT6zkFBQVyuVx67LHHfOZrbGyU0+k86zovueQSffzxx9q2bZtXbX/729+8xlmtJ/932nQFTJLq6+v15z//+ay/ZlFRkSwWix588EFVVVVpxIgRZz0HgLPHlSIAQREfH6/Zs2frnnvu0dVXX63CwkIlJibqq6++0jvvvKMLL7xQxcXFkqQpU6bod7/7nX71q1/p6quvltPp1AsvvKD09HSvoNS/f39de+21euKJJ/TZZ58pNzdXUVFR2rNnj8rKynTvvffqiiuuOKs6b775Zr322mu6+eabNW7cOM9L8rt06aLPP//cMy47O1sJCQmaPn26rr/+elksFr322mteIelMJSYmatCgQSorK5PNZtPgwYPPeg4AZ48rRQCC5sorr9QzzzyjTp06aeXKlXrwwQdVWlqqnj17er0ya+jQoXrkkUfU0NCgBQsW6I033tC8efOUkpLi835B999/vx544AEdOXJECxcu1IIFC/Tuu+9qxIgRuvDCC8+6xk6dOum5555TRkaGVqxYoWeffVYjR47UuHHjvMZ16NBBjz/+uJKSkrRo0SKtXLlSF198sX7/+983qzcjR46UdPLq1+k2ZAPwP4vRnH/GAEAIGDlypBITE/X0008HuxS/27hxo26//Xa98MILXm8bACBwuFIEIOQ1NDSosbHR69jWrVv173//W/379w9SVYG1evVqJScnq2/fvsEuBfjRYE8RgJB38OBBjR8/XiNGjFCnTp1kt9v14osvKikpSdddd12wy/OrdevW6fPPP9fbb7+te++9VxaLJdglAT8ahCIAIS8hIUG9evXS6tWrdfToUbVt21aXXHKJpk6dqg4dOgS7PL+666671LZtW40ePVpjxowJdjnAjwp7igAAAMSeIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEmEIgAAAEnS/wcZcr5zMTl01QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=pokemon, x=\"legendary\")" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "bceb253b-ef4f-4aa2-aef4-cab2b3ca6d59", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAG1CAYAAADpzbD2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMdlJREFUeJzt3Ql8U1Xe//FfmrKUpQrINioguwy7gPAfkUVBZOQZENQBYQRlVUARBUHEER4QEQHRYRN4GLbHFR0ceI0IKMgomzwqW8siICo7pQVaWpLc/+scSKahuQds02b7vF+vmOTeNDn5eXv59txzz3VYlmUJAAAAAooLvBgAAAAKYQkAAMCAsAQAAGBAWAIAADAgLAEAABgQlgAAAAwISwAAAAaEJQAAAAPCEgAAgEG8aWWsUpOaezxMbB5IXJyD2tigNvaoTWDUxR61sUdt7OvicDgkPxCWAlDFTktLF5fLE+qmhJX4+DgpVao4tQmA2tijNoFRF3vUxh61Mdclv3AYDgAAwICwBAAAYEBYAgAAMCAsAQAAGBCWAAAADAhLAAAABoQlAAAAA8ISAACAAWEJAADAgLAEAABgQFgCAAAwICwBAAAYEJYAAAAM4k0rY5nTmf850uOx9A0AAIQvwlIAlmVJYmJCvn+O2+ORsynpBCYAAMIYYSkAh8Mh//tZkhw/fSHfPqNc6WLSo8PtEhfnICwBABDGCEs2TpxJl19Ong91MwAAQIgxwBsAAMCAsAQAAGBAWAIAADAgLAEAABgQlgAAAAwISwAAAAaEJQAAAAPCEgAAgAFhCQAAwICwBAAAYEBYAgAAMCAsAQAAGBCWAAAADAhLAAAABoQlAAAAA8ISAACAAWEJAADAgLAEAABgQFgCAAAwICwBAAAYxEsYmTNnjmzcuFEWL16sn/fq1Uu2bNkS8LWvvfaadO7cWdxutzRq1EgyMzP91g8ePFiGDBlSIO0GAADRK2zC0tKlS2X69OnSpEkT37K33npLLl265HtuWZYMGzZMUlNTpV27dnrZoUOHdFD6xz/+IWXKlPG9tlixYgX8DQAAQDQKeVg6fvy4vPzyy7J582apUqWK37obb7zR7/mSJUvkhx9+0MGoePHiellycrKUKFFCateuXaDtBgAAsSHkY5Z27dolhQoVkhUrVkiDBg1sX3fmzBnd8zRo0CCpWrWqb7kKS9WqVSug1gIAgFgT8p6ltm3b6tu1vPPOO1K0aFF54okn/Jbv3btXXC6XXp6UlCTly5eXxx57TP70pz/lrWEOEYfDkbf3ML39lfd2OkOeV6+bt62R1OaCQm3sUZvAqIs9amOP2gSW3/UIeVi6HufPn5f3339fD9ouUqSI37p9+/aJx+ORoUOHSoUKFWT9+vUyatQoPdapW7duuf5MZ1ycxMc7g9B68//YxMQEiTSR2OaCQm3sUZvAqIs9amOP2hSsiAhLa9askaysLOnatWuOdf/85z/1GXHeMUxq7NKvv/4q8+fPz1NYcns84nK589Ru4/u7Pfo+LS3D9zjcqYCnfkEjqc0FhdrYozaBURd71MYetTHXRWI9LLVq1UoSExNzrFOH5q5Ws2ZNPQYqT6zLZ9/lF+97q43d5YqsDT4S21xQqI09ahMYdbFHbexRm4IVEQc9t23bJi1atMixPC0tTZo1aybLly/3W75jxw6pUaNGAbYQAABEq7DvWTp69KikpKQEnBpA9TQ1b95cpk2bpudYqly5sqxevVr3KqkJLgEAAKI+LJ08eTLgnEteEydO1JNXqrmaTp8+racRmDFjhrRs2bKAWwoAAKJRWIWlSZMm5VhWv359PZeSHTUhpTr7Td0AAABicswSAABAqBCWAAAADAhLAAAABoQlAAAAA8ISAACAAWEJAADAgLAEAABgQFgCAAAwICwBAAAYEJYAAAAMCEsAAAAGhCUAAAADwhIAAIABYQkAAMCAsAQAAGBAWAIAADAgLAEAABgQlgAAAAwISwAAAAaEJQAAAAPCEgAAgAFhCQAAwICwBAAAYEBYAgAAMCAsAQAAGBCWAAAADAhLAAAABoQlAAAAA8ISAACAAWEJAADAgLAEAABgQFgCAAAwiDetjGXlShcrkPd3OiMnr3rbGkltDhaPx9I3AEDsCauwNGfOHNm4caMsXrzYt2zMmDHywQcf+L3u5ptvlnXr1unHHo9H3n77bf2ac+fOSdOmTWXs2LFy66235rodlmVJ9/tqS35T//gmJiZIpInENueV2+ORsynpBCYAiEFhE5aWLl0q06dPlyZNmvgtT05OloEDB0rPnj19y5xOp+/xzJkzZdmyZTJp0iSpUKGCvP7669K3b1/59NNPpXDhwrlqi8PhkH99fVBOp2ZIfrqY6ZJz6ZckUqi6qF4lt9ujA2WsUL2APTrcLnFxDsISAMSgkIel48ePy8svvyybN2+WKlWq+K1T/yDv379f+vfvL2XLls3xs1lZWbJgwQJ57rnnpHXr1nrZtGnTpGXLlrJ69Wp54IEHct2u5MMp8vOJc7n++WikwlJ8vFNcLndMhSUAQGwL+eCTXbt2SaFChWTFihXSoEEDv3U//fSTpKenS9WqVQP+bFJSkly4cEFatGjhW5aYmCh16tSRrVu35nvbAQBA9At5z1Lbtm31LZC9e/fqezWGacOGDRIXFyd33323DBs2TEqWLCnHjh3T6ytWrOj3c+XKlfOtyzXH5Z4UZOPIVhvfk+jn3Q5MA9tjefD7tVCbwKiLPWpjj9oElt/1CHlYMlFhSQUkFX5mz56te5omT54s+/btk7///e+SkXF5TNHVY5OKFCkiqampefpsZ1ycPuSEnOKzjRmLpV/C6xnYHouD368XtQmMutijNvaoTcEK67A0aNAg6dGjh5QqVUo/r1mzph679PDDD8uOHTukaNGivrFL3sdKZmamJCQk5PnsJzU2B9k4Lgcll9stEkNDltSAdiUtLcP3OFCgUjsv02tiFbUJjLrYozb2qI25LjEZllSvkjcoedWoUUPfq8Ns3sNvJ06ckEqVKvleo57XqlUrbx9uXR5gjv/wHXqLsdp4v6vaMblc5p3T9bwmVlGbwKiLPWpjj9oUrLA+6DlixAjp3bu33zLVo6RUr15dateuLSVKlNBn0nmlpaXJ7t279XxLAAAAUR2W7rvvPvnmm2/0pJNqvNL69etl9OjRekqAatWq6bFKav6lKVOmyNq1a/XZcWrwt5pvqX379qFuPgAAiAJhfRjunnvu0RNVzp07V9555x19BlynTp3kmWee8b1m6NCh4nK59EzfFy9e1D1K8+fP19MRAAAA5JXDiqXBJ7/Bm/+7nUkprxKrk1LeXLaEPNPjDklJuWA7RiA+Xo2vK258TayiNoFRF3vUxh61MdclJg/DAQAAhBphCQAAwICwBAAAYEBYAgAAMCAsAQAAGBCWAAAADAhLAAAABoQlAAAAA8ISAACAAWEJAADAgLAEAABgQFgCAAAwICwBAAAYEJYAAAAMCEsAAAAGhCUAAAADwhIAAIABYQkAAMCAsAQAAGBAWAIAADAgLAEAABgQlgAAAAwISwAAAAaEJQAAAAPCEgAAgAFhCQAAwICwBAAAYEBYAgAAMCAsAQAAGBCWAAAADAhLAAAABoQlAAAAA8ISAABApISlOXPmSK9evfyWrVu3Trp27SqNGjWStm3bymuvvSYXL170rf/222+lVq1aOW6bN28OwTcAAADRJl7CxNKlS2X69OnSpEkT37Jt27bJ4MGDZejQodKhQwc5fPiwjB07Vs6ePSuvvvqqfk1ycrJUqlRJli1b5vd+N9xwQ4F/BwAAEH1C3rN0/PhxGThwoEyZMkWqVKnit+7dd9+VO++8U69X61q1aiXDhg2TTz/9VLKysvRr9u7dK9WrV5eyZcv63QoXLhyibwQAAKJJyMPSrl27pFChQrJixQpp0KCB37rHH39cRo4c6bcsLi5OLl26JOfPn/f1LFWrVq1A2wwAAGJHyA/DqXFI6hZInTp1/J6rkLRw4UKpW7eulC5dWi/bt2+flCpVSh588EHdS1WzZk3d+1S/fv0CaT8AAIhuIQ9L18vlcsmIESN0OFLjm5SjR4/KuXPnJD09XcaMGSNOp1OWLFkiPXv2lOXLl+vDc7nmEHE4HMH7AtHAka02vifRz7sdOJ32HbHedabXxCpqExh1sUdt7FGbwPK7HhERltQht2eeeUa2bNkib7/9tq/XqGLFirJ161ZJSEjQh/KUevXqye7du2Xx4sXyyiuv5PoznXFxEh/vDNp3iCbxTmdM/hImJiZc87XX85pYRW0Coy72qI09alOwwj4snThxQvr16ye//PKLzJ8/X5o2beq3PjExMceYJjWGSR2Sywu3xyMulztP7xF1HJeDksvtFrEkZrjdHn2flpbhexwoUKmdl+k1sYraBEZd7FEbe9TGXJeYDEupqany2GOP6Z4ldehNzZ+U3YYNG+Tpp5/Wg8NvvfVW3+G6pKQkad++fd4+3BKxrBhKBNfBd+gtxmrj/a5qx+RymXdO1/OaWEVtAqMu9qiNPWpTsMI6LKm5lI4cOSLz5s3TA7pPnjzpW6eeN27cWA/uVmfMjR49Wh+Kmzt3rp6HqXfv3iFtOwAAiA5hG5bcbresWrVKnwGnepeutnbtWrnlllv02XFqjqYnnnhCMjMz5Y477tCDvG+66aaQtBsAAESXsApLkyZN8j1WZ7b98MMP1/wZNXv3jBkz8rllAAAgVnHuIQAAgAFhCQAAwICwBAAAYEBYAgAAMCAsAQAAGBCWAAAADAhLAAAABoQlAAAAA8ISAABApMzgHU7KlS4W6iaEH4eIMy5O3B6PvphurG0L6qrWdrzrTK+JVdQmMOoS2tp4PJa+AdfDYcXS5eOvkyqJw+EIdTMQRtRONS6ObQKIFuqPvrMp6REXmOLj46RUqeKSknJBXC5PqJsTdnXJt/fPt3eOYCoo/evrg3I6NSPUTQm7unh7lmItY1/MdMm59Evm2jjjxO2OvdpcC7UJjLqErjaqt7hHh9v1H0CRFpYQGoQlG8mHU+TnE+dC3Yyw24HFxzvF5XKzc78KtbFHbQKjLvaoDcINB8sBAAAMCEsAAAAGhCUAAAADwhIAAIABYQkAAMCAsAQAAGBAWAIAADAgLAEAABgQlgAAAAwISwAAAAUdllJTU/PjbQEAACIjLM2aNct23cqVK6Vjx455aRMAAEBkX0h3xowZ4na7ZfDgwb5lx48fl5dfflm+/PJLqV+/fjDbCAAAEFk9S+PHj5eZM2fq0KQsXbpU9yZ9++23MnbsWHnvvfeC3U4AAIDI6Vnq1q2bFCtWTEaMGCErVqyQX375Re6//34ZNWqUlC1bNvitBAAAiKSwpKieJBWYnn76aWnVqpVMnTo1uC0DAACIpLCkeo0CqVSpkqxfv14GDBggpUuX1sscDodMnDgxeK0EAAAI97C0efNm23UVK1aUffv2+Z6rsAQAABBTYWndunX52xIAAIBompRSnfn2t7/9zfd89+7devzSzp07g9U2AACAyAxLaozSY489Jhs3bvQ79Hbo0CHp0aOHbNu2LZhtBAAAiKyw9NZbb8kf//hHWbZsmW/Z7bffLv/4xz/0FAK5PTNuzpw50qtXL79le/bskZ49e0rDhg2lbdu2smjRIr/1Ho9Hz/fUsmVL/Zp+/frJkSNHcvX5AAAAQQlLBw4ckM6dOwccyK2WJyUl/eb3VBNbTp8+3W9ZSkqK9OnTR59x99FHH8lTTz0lU6ZM0Y+91OSYKrSpiTLfffddHZ769u0rWVlZuflqAAAAeQ9LJUuWlIMHDwZcp3p11PxL10tdJmXgwIE6BFWpUsVv3fvvvy+FChWScePGSbVq1aRr167Su3dvmTt3rl6vAtGCBQtk6NCh0rp1a6ldu7ZMmzZNjh07JqtXr87NVwMAAMh7WGrXrp28+eab8sUXX/gt/+qrr/Rytf567dq1SwciNRN4gwYN/NapsU/NmjWT+Pj/nLTXvHlzPTbq1KlTugfrwoUL0qJFC9/6xMREqVOnjmzdujU3Xw0AACDvM3gPGzZMduzYIYMGDdJB58Ybb5SzZ8+Ky+XSgWf48OHX/V5qHJK6BaJ6iGrWrOm3rFy5cvr+6NGjer13nqerX+Ndl2sO5ovKwZGtNr4n0KiNPWoTGHUJWW28+3anM9cnhIeMt82R2Pb8lN/1yFVYKlGihB4fpM6KU1MIpKam6kNzTZo00YfD4uKC0+iLFy9K4cKF/ZYVKVJE32dmZkpGRoZ+HOg1qk154YyLk/h4Z57eI1rFO6mLHWpjj9oERl0Kvjbef1gTExMkUkVy22Pq2nAqELVp00bfrmZZVlB6ZYoWLZpjoLYKSYoaF6XWK+o13sfe1yQk5G1Dcns84nK58/QeUcdxeeflcrtFrFA3JsxQG3vUJjDqErLauN0efZ+WluF7HClU0FNBKRLbXhB1CbuwtGrVKtmyZYsOKiocKeo+PT1dvvvuO9mwYUOeG1ehQgU5ceKE3zLv8/Lly+vDft5l6oy57K+pVatW3j7cuvx98B++7nBqkwO1sUdtAqMuoauN9z1V2HC5IjNwRHLbI1GuwtLbb7+tb+rQmwosatySGoR95swZ3eP00EMPBaVxTZs21Yf73G63OK90x27atEluu+02KVOmjP58dUhQXbfOG5bS0tL0bOJqbiYAAIC8ytXgoo8//ljPp6R6ltSp/OpQ3Ndffy0ffvihHuxdo0YNCQY1VcD58+flxRdflP3798vy5ctl4cKFMmDAAN9YJRWK1LQDa9eu1WfHqcHnqkeqffv2QWkDAACIbbkKS2pupE6dOulxSWrm7v/7v//Ty+vWravnTPrggw+C0jjVezRv3jw9p1OXLl10b9aIESP0Yy81x1K3bt1kzJgx0r17d90DNX/+fN3bBQAAEJLDcGpwtXcAd+XKleXnn3/WZ66pQdYqPKnnuTFp0qQcy+rXry/vvfee7c+ocPT888/rGwAAQFj0LNWrV08++eQT/ViNH1KB5ZtvvvFdCuXqU/kBAABiqmdJHWpT12xTg6lnz54t//Vf/yUjR46UO++8UzZu3Cj33ntv8FsKAAAQKWFJnaWmBnMnJyfr52PHjtVnwW3fvl06dOggo0aNCnY7AQAAIics/frrr/rCturCtd4Zs8ePH++bEFJd761x48bBbSkAAECkjFm65557ZM+ePQHX/fDDD/oQHQAAQEz1LL322mv6Yrne2U9nzpwppUqVyvE6FaLUZJEAAAAxFZaqVq0qs2bN8j3fuXNnjrPe1FlxKigxZgkAAMRcWFKXMPFexqRt27a6Z8k7ZgkAACBa5WrM0oMPPhjwEJyiJqQcN25cXtsFAAAQuWHpb3/7m77kSSDff/990C53AgAAEDGH4f785z/rIOQd4P3II48YZ/gGAACIqbD03//93/Kvf/1LByXVs9S1a1epUKGC32vUxJSJiYnSvn37/GgrAABA+Ial6tWry+DBg/VjdRFdNdg7Pj5esrKydIBSPB6PZGRkyNq1a6V79+7512oAAIBwnsFbXfvtiSee0BfNDUSFKcISAACI2bA0efJkSU1N1RfP/eKLL/R8S23atJENGzbI+vXrZdGiRcFvKQAAQKScDacGej/99NPSu3dv6dixoz701qNHD5k9e7a0a9dOFi9eHPyWAgAAREpYUuOUqlSpoh+r+6SkJL85mL777rvgtRAAACDSwtLvfvc7OXLkiC8snT9/Xk9GqahDcuoQHQAAQMyGJTU1wBtvvCGfffaZlC9fXl83bvr06ZKcnCwLFiyQW2+9NfgtBQAAiJSwpKYQaNy4sXz44Yf6ubpw7ueffy6dO3eWTZs2yZAhQ4LdTgAAgMg5G65IkSIyY8YMuXTpkn7esmVL+ec//yk7d+6U3//+91KpUqVgtxMAACBywpJXoUKFfI/VoTcOvwEAgGiTq8NwAAAAsYKwBAAAYEBYAgAAMCAsAQAAGBCWAAAADAhLAAAABoQlAAAAA8ISAABAfk1KGc3KlS4W6iaEH4eIMy5O3B6PiBXqxoQZamOP2gRGXUJWG+/+3emMvP4Cb5sjse1eHo+lb5HEYVlWZLW4AKiSOByOUDcDAJBP1D/WcXHs50PB7fHI2ZT0oAam+Pg4KVWqeNDeL8f759s7RzAVlP719UE5nZoR6qaEXV28f+2Rsf1RG3vUJjDqEtraXMx0ybn0y9c3jbjaOOPE7Y7M7aZc6WLSo8PtOqhGUu9S2IelzZs3y1/+8peA62655RZZu3atzJo1S6ZPn55jfXJycq4/N/lwivx84lyufz4aqV/S+HinuFzuiPwlzU/Uxh61CYy62KM29qhNaIR9WGrUqJFs3LjRb9l3330nQ4YMkSeffNIXiv70pz/J888/H6JWAgCAaBX2Yalw4cJStmxZ3/P09HR59dVXpUuXLtK1a1e9bO/evfLwww/7vQ4AACAYIm44/ezZsyUjI0NGjhypn2dlZcmhQ4ekatWqoW4aAACIQmHfs5TdmTNnZOHChTJ8+HC58cYb9bL9+/eL2+2Wzz77TCZMmCCZmZnStGlTfUiuXLlyuf8wx+Vjw8jGka02vifQqI09ahMYdbFHbaK2No4r/64Ge+qD/J5KIaLC0rJly6RkyZLyyCOP+JapQ3BKQkKCvPnmm3L69GmZOnWqHhT+ySefSNGiRXP1WepMDDWIDjnFO6mLHWpjj9oERl3sUZvoq43zSqhJTEyQSBJRYUmFn86dO/sFIPX87rvvltKlS/uW1ahRQy9bt26ddOzYMVefpU5ZVWcbIBvH5V9Ql9vNJHpXozb2qE1g1MUetYna2rjdHn2flpbhexysEJafASxiwlJSUpIcOXJEOnXqlGNd9qCkqMNv6jDdsWPHcv+B1uXJKfEfvi5fapMDtbFHbQKjLvaoTfTWxrrSZhWUXK7ghaX8FjEDvLdt2yZlypSR2rVr+y2fNm2a3HfffX4bzc8//ywpKSlSvXr1ELQUAABEk4gJS7t375ZatWrlWN6uXTv55Zdf5K9//ascPHhQtm7dqudgaty4sbRs2TIkbQUAANEjYsLSyZMnfWfAZVe3bl1555139MSUDz74oAwePFhuv/12PcUAZ7MBAICYGbOkApGdFi1a6BsAAEDM9iwBAACEAmEJAADAgLAEAABgQFgCAAAwICwBAAAYEJYAAAAMCEsAAAAGhCUAAAADwhIAAIABYQkAAMCAsAQAAGBAWAIAADAgLAEAABgQlgAAAAwISwAAAAaEJQAAAAPCEgAAgAFhCQAAwICwBAAAYEBYAgAAMCAsAQAAGBCWAAAADAhLAAAABoQlAAAAA8ISAACAAWEJAADAgLAEAABgQFgCAAAwICwBAAAYEJYAAAAMCEsAAAAGhCUAAAADwhIAAIABYQkAACDSw9Lx48elVq1aOW7Lly/X6/fs2SM9e/aUhg0bStu2bWXRokWhbjIAAIgS8RIBkpKSpEiRIrJmzRpxOBy+5SVLlpSUlBTp06ePDkmvvPKKfPfdd/q+ePHi0rVr15C2GwAARL6ICEt79+6VKlWqSLly5XKs+/vf/y6FChWScePGSXx8vFSrVk0OHz4sc+fOJSwBAIDYOAyXnJysQ1Ag27Ztk2bNmumg5NW8eXM5dOiQnDp1qgBbCQAAolHE9CyVKlVKHn30UTl48KBUrlxZBg0aJHfffbccO3ZMatas6fd6bw/U0aNH5aabbsrdhzrE75AfLtfEe+/wPYFGbexRm8Coiz1qE7W1cVz5d9XpDG5fTbDfL+LCksvlkh9//FGqV68uL7zwgpQoUUJWrlwp/fv3l//5n/+RixcvSuHChf1+Ro1vUjIzM3P9uc64OImPd+a5/dEo3kld7FAbe9QmMOpij9pEX22cV0JNYmKCRJKwD0vq8NrmzZvF6XRK0aJF9bK6devKvn37ZP78+XpZVlaW3894Q1KxYsVy/bluj0dcLnceWx9lHJd/QV1ut4gV6saEGWpjj9oERl3sUZuorY3b7dH3aWkZvsfBCmH5GcDCPiwp6sy2q9WoUUM2btwoFSpUkBMnTvit8z4vX7587j/UErGsCNwS85Gvy5fa5EBt7FGbwKiLPWoTvbWxrrRZBSWXK3hhSWJ9gLfqQWrcuLHuXcpu586d+tBc06ZN5dtvvxW3StlXbNq0SW677TYpU6ZMCFoMAACiSdiHJXUWXNWqVfXUAOrMtwMHDsirr76q51NSg7zV9ADnz5+XF198Ufbv368nqly4cKEMGDAg1E0HAABRIOwPw8XFxcns2bPljTfekGeeeUbS0tKkTp06enC39yy4efPmyYQJE6RLly5StmxZGTFihH4MAAAQ9WFJUaf/q94kO/Xr15f33nuvQNsEAABiQ9gfhgMAAAglwhIAAIABYQkAAMCAsAQAAGBAWAIAADAgLAEAAET61AGhUK507q8rF7Ucly8wrK6bF4nXJAokWJcLUFfSVtcmUlP4R+IlCPITtQmMutijNtFbm3IR+m+rw4rEauczVRK1QQIAgOBSf3CfTUkXjyd48SM+Pk5Klcp5HdmgvX++vXMEU0HpX18flNOpGaFuSvj9RXOlZykaMnbpGxLk/v93W1Cufu294nWwr6QdDahNYNTFHrWJ7tp4PFZQg1JBICzZSD6cIj+fOBfqZoRdWIqPd4rL5Y6KsHRz2RI6LAXz6teRdiXtgkRtAqMu9qiNPWpTsBjgDQAAYEBYAgAAMCAsAQAAGBCWAAAADAhLAAAABoQlAAAAA8ISAACAAWEJAADAgLAEAABgQFgCAAAwICwBAAAYEJYAAAAMCEsAAAAGhCUAAAADwhIAAIABYQkAAMCAsAQAAGBAWAIAADAgLAEAABgQlgAAAAwISwAAAAaEJQAAAAPCEgAAgEG8RICzZ8/K1KlT5csvv5Tz589LrVq1ZPjw4dKkSRO9vk+fPvL111/7/UyzZs1k8eLFIWoxAACIFhERlp599lk5efKkDkxlypTRIeiJJ56Qjz/+WKpWrSrJycny17/+Ve69917fzxQqVCikbQYAANEh7MPS4cOH5d///rcsW7ZM7rjjDr3spZdekq+++ko+/fRT6dmzp5w+fVoaNGggZcuWDXVzAQBAlAn7MUulSpWSuXPnSr169XzLHA6HvqWlpeleJfX4tttuC2k7AQBAdAr7nqXExERp1aqV37LPPvtM9ziNHj1a9u7dKyVLlpRx48bpHqhixYpJhw4d5Mknn5TChQvn/oMdl0MZsnFkq43vSeTy/v91OvP+N4P3PYLxXtGG2gRGXexRG3vUJrD8rkfYh6Wrbd++XUaNGiXt27eX1q1b68CUmZkp9evX1wO99+zZI5MnT5Zff/1V3+eWMy5O4uOdQW17tIh3OqPqlysxMSFo7xnM94o21CYw6mKP2tijNgXLYVmWJRFizZo18txzz0njxo1l1qxZUqRIEXG5XHLhwgW54YYbfK9btWqVDBs2TPc03XTTTbn6rDff3S6/nDgfxNZHAcfloORyu0UiZquxd3PZEvJ098aSlpYhbrcnz8FL7byC8V7RhtoERl3sURt71MZcF4n1nqUlS5bIhAkT9CG21157zXeILT4+3i8oKTVq1ND3x44dy3VYUmEggnJkgfAdeouS2ni/g9rhuFzB2ekE872iDbUJjLrYozb2qE3BioiDnupMuPHjx8ujjz6qpw/IPhapV69e+rBcdjt27NBTB1SpUiUErQUAANEk7HuWDh48KBMnTpR27drJgAED5NSpU751RYsWlfvuu0+vV2OW7rrrLh2U1FglNQ9TiRIlQtp2AAAQ+cI+LKkz3y5duiSff/65vmXXpUsXmTRpkj6rSU1UqUKTmmupd+/e0r9//5C1GQAARI+wD0sDBw7UNxN1eE7dAAAAYnLMEgAAQKgQlgAAAAwISwAAAAaEJQAAAAPCEgAAgAFhCQAAwICwBAAAYEBYAgAAMCAsAQAAGBCWAAAADAhLAAAABoQlAAAAA8ISAACAAWEJAADAgLAEAABgQFgCAAAwICwBAAAYEJYAAAAMCEsAAAAGhCUAAAADwhIAAIABYQkAAMCAsAQAAGBAWAIAADAgLAEAABgQlgAAAAwISwAAAAaEJQAAAIN408pYVq50MbEsK9TNCCsOh0Oczjhxuz1RURv1/xgAgGshLAWggkD3+2qHuhkoAG6PRzyeyA9+AID8Q1iy6UFJS8vQPSj4D9WrlJiYEFW1UUGJsAQAMCEs2VBhwOWKjkAQbNQGABBLGOANAAAQ7WHJ4/HIjBkzpGXLltKwYUPp16+fHDlyJNTNAgAAUSAqwtLMmTNl2bJlMn78eHn33Xd1eOrbt69kZWWFumkAACDCRXxYUoFowYIFMnToUGndurXUrl1bpk2bJseOHZPVq1eHunkAACDCRXxYSkpKkgsXLkiLFi18yxITE6VOnTqydevWkLYNAABEvogPS6oHSalYsaLf8nLlyvnWAQAAxOzUARkZGfq+cOHCfsuLFCkiqampeZpTCIFrQm1yojb2qE1g1MUetbFHbQLL73pEfFgqWrSob+yS97GSmZkpCQkJuX5fNfkiAqM29qiNPWoTGHWxR23sUZuCFfFhyXv47cSJE1KpUiXfcvW8Vq1auX7faJqlOliicQbvYKE29qhNYNTFHrWxR23MdckvER+W1NlvJUqUkM2bN/vCUlpamuzevVt69uyZ6/dllmp71MYetbFHbQKjLvaojT1qU7AiPiypsUoqFE2ZMkVKly4tN998s7z++utSoUIFad++faibBwAAIlzEhyVFzbHkcrlkzJgxcvHiRWnatKnMnz9fChUqFOqmAQCACBcVYcnpdMrzzz+vbwAAAMHksCzLCuo7RgkGztkPoqM2gVEbe9QmMOpij9rYozYFP30AYQkAAMCAWa0AAAAMCEsAAAAGhCUAAAADwhIAAIABYQkAAMCAsAQAAGBAWAIAADAgLAEAABgQlgAAAAwISwAAAAaEJQAAAAPCEgAAgAFhCQAAwICwlI3H45EZM2ZIy5YtpWHDhtKvXz85cuSIxJrjx49LrVq1ctyWL1+u1+/Zs0d69uypa9S2bVtZtGiRxII5c+ZIr169/JZdqxaxsE0FqsuYMWNybD+qPrFQl7Nnz8rYsWPl7rvvlsaNG0v37t1l27ZtvvXffPONPPjgg9KgQQPp0KGDrFy50u/nMzMz5ZVXXpEWLVpIo0aNZPjw4XLmzBmJhdr06dMnx3aTfduK5tqcPn1ann/+eWnevLn+bv3795cDBw5IrO9rTl+jLgW2r7Hg89Zbb1l33nmn9cUXX1h79uyxHn/8cat9+/ZWZmamFUu+/PJLq169etbx48etEydO+G4ZGRnWmTNndI1GjRpl7d+/3/rwww/1a9V9NFuyZIlVu3Ztq2fPnr5l11OLaN+mAtVF6datmzV16lS/7ef06dMxUZc+ffpYDzzwgLV161brxx9/tF555RWrfv361oEDB/R2orYRVRv1eN68eVadOnWsr7/+2vfzL7zwgnXvvffqn//++++tzp07W48++qgVDUy1UVq0aGEtW7bMb7tJSUmJido88sgj1kMPPaS/l9o2hgwZYt11111Wenp6TO9rHjHUpSD3NYSlK1ThGjVqZC1dutS3LDU1Vf8if/rpp1YsmTt3rtWpU6eA62bPnq031EuXLvmWvfHGG3rji0bHjh2zBgwYYDVs2NDq0KGDXyi4Vi2ieZsy1cXj8ejlq1evDviz0VyXQ4cOWTVr1rS2bdvmVw/1D/z06dOtl156Se/cs3v22Wf1DtxbVxU+1R8sXipUqPfcvn27Fc21OXXqlF6/a9eugD8fzbU5e/as3g6Sk5N9y9Q/7Oq7qZAQq/uas9eoS0HuazgMd0VSUpJcuHBBd+96JSYmSp06dWTr1q0SS5KTk6VatWoB16ku82bNmkl8fLxvmeoePXTokJw6dUqiza5du6RQoUKyYsUKfdjkt9QimrcpU11++uknSU9Pl6pVqwb82WiuS6lSpWTu3LlSr1493zKHw6FvaWlpepvJ/r2928y3336r/nDV995lXrfddpuUL18+6muj9jvqsfq+gURzbW644QZ54403pGbNmvq5OrS4cOFCqVChglSvXj1m9zU3XKMuBbmv+U/lY9yxY8f0fcWKFf2WlytXzrcuVuzdu1fv2B599FE5ePCgVK5cWQYNGqTHGahaeDfc7DVSjh49KjfddJNEE3XsO/vx7+yuVYto3qZMdVHbj7J48WLZsGGDxMXF6W1n2LBhUrJkyaiui9oRt2rVym/ZZ599JocPH5bRo0fLxx9/rHf0V3/vjIwMSUlJ0eMF1e9ekSJFYq42artR28e4cePk3//+txQrVkyP6XryySelcOHCUV2b7F566SV5//339XeeNWuWrkMs72tMdSnIfQ09S1eonZWi/kdkp34x1aDCWOFyueTHH3+U1NRUGTJkiP5LUA2KU4Pq1MDUixcvBqyREkt1Uq5Vi1jdptQOTO201A5p9uzZ8sILL8jGjRv1P3pqsGUs1WX79u0yatQoad++vbRu3TrgNuN9npWVpWtz9fpYqY3abtR3rF+/vsybN0//gfbBBx/oAbxKrNTmsccek48++kgeeOABeeqpp3QvLvsaCViXgtzX0LN0RdGiRX07LO9jRRU0ISFBYoXq5t28ebM4nU5fHerWrSv79u2T+fPn62WqRtl5NzqV9GPJtWoRq9uU+keuR48euhdAUX8Rly1bVh5++GHZsWNHzNRlzZo18txzz+mzvqZMmeLbSV+9zXifq+8eaJuKldqoHqWRI0fqQy/e7UYd6lW9BCNGjIiZ2qjDS8qECRPk+++/lyVLlrCvkcB1UY8Lal9Dz9IV3m66EydO+C1Xz9Ux8VhSvHhxvw1LqVGjhu4GV4cQAtVIibU6XasWsbpNqb/0vDuv7NuPorq+Y6EuakeuembbtGmj/+L19gKo7x7oe6t/8NRhA7VNqdPrr/6HMRZqo/5Q8walQNtNNNdGjcVRU0ionv3sv0cqIKjvF6v7mjPXqEtB7msIS1fUrl1bSpQooXtVvNSgw927d0vTpk0lVqgeJPXXXvY6KDt37tQbqKqFGmjpdrt96zZt2qQHWpYpU0ZiybVqEavblOoF6N27t98y9VeeorahaK/LsmXLZPz48XrM39SpU/0OATRp0kS2bNni93q1zajfObXjv+OOO/ThA+9gZkWNG1R/qER7bdR8Suqw3NXbjepdqlKlSlTXRg3SfvbZZ/VQB69Lly7p3wl1sk2s7mtOXaMuBbqvycNZfVFHzdXQrFkza82aNX7zMWRlZVmxwu12W127drU6duyo5zJR81pMnDjRqlu3rj59U53e27RpU2vkyJHWvn37rI8++kjP97F8+XIr2qnvnP0U+eupRSxsU1fXRX1XdWqvmt/k8OHD+lTvtm3b6lOAo70u6lT23//+99ZTTz3lN++LuqWlpVl79+7V619//XX9uzV//vwc8yypOql6bdq0yTeX0NXzWEVjbRYvXmzdfvvtep6ln376yVq5cqWeH0dtK9FeG6Vv3776d2DLli16X6u+q9q//PLLLzG9r+lrqEtB7msIS9m4XC5r8uTJVvPmzfXcDf369bOOHDlixZqTJ0/qyd/+8Ic/6F9INSmYCk5eaif18MMP6wDVpk0bvZOLBVeHguupRSxsU4HqsmrVKv0PmZrPRG1HkyZNsi5evBj1dZk1a5beeQe6qTop69ev1xMzqm1GzVGlQkF2Fy5csF588UWrSZMm+qZ2/GpSwliojZrk9P777/f9PqmfUX/ARXttFBUYX375Zf37on5v1D/qKlzH+r4m7Rp1Kah9jUP9J69dZQAAANGKMUsAAAAGhCUAAAADwhIAAIABYQkAAMCAsAQAAGBAWAIAADAgLAFAHjD7ChD9uJAugIigLmOwaNEi2bp1q75mlLrSeIsWLaR///5y6623hqRNM2fO1Jfs6Nu3b0g+H0DBoGcJQNhbunSp/PnPf5bTp0/L8OHD5Z133tEhSV1nrVu3bpKUlBSSdr355puSkZERks8GUHDoWQIQ1tQFRCdMmKAvvvriiy/6lt95551y7733SufOnWX06NGyfPnykLYTQPSiZwlAWJs/f76ULFlSX338aqVLl5YXXnhB7rnnHklPT9dXZVe9UJ06dZL69etL69atZcqUKZKZmel3dXt1y05dlbxWrVq+q5Or4FWnTh35/vvv5ZFHHpF69epJmzZtdFu81OuVt99+2/cYQHQiLAEI68HTGzdu1GOTEhISAr6mY8eO8tRTT0mxYsVk7Nix8uqrr+oep1mzZuneqCVLlsiTTz75mwdiezweeeaZZ/T7z507Vxo3biyTJ0+Wr776Sq9/77339L06DOh9DCA6cRgOQNhKSUnRvUK33HLLNV+7f/9++fDDD/WYJjWeSfnDH/6gB4KPGDFCNmzYIK1atbruz1bhSoWshx56SD+/44475PPPP5cvv/xSWrZsKQ0bNtTLK1So4HsMIDrRswQgbDmdTn2vDq9dixrsrfzxj3/0W66eq/fxHmL7LRo1auR7rM56U4f91OE+ALGFniUAYeuGG26Q4sWLy6+//mr7GhVeLl26JKmpqfp52bJl/dbHx8dLqVKl5Ny5c7/584sWLer3PC4ujnmVgBhEzxKAsHbXXXfpXqHsg7Sze//996V58+a+5ydPnvRbr4KUOpynApPX1T1V9BYBMCEsAQhrjz/+uJw9e1amT5+eY50KRgsWLJDq1atLu3bt9LKVK1f6vUY9V+FIjTlSSpQoIceOHcsxPUFuqJ4mANGPw3AAwpoaPP3000/rsHTgwAE9r5LqJdq3b58+lV/1OKl11apVky5dusiMGTP0RJFNmzaVPXv26FP71ZxMalC2oqYAWLdunT5rrm3btrJt2zb55JNPctW2xMRE2b59u55VvEmTJuJwOIL87QGEA8ISgLA3aNAgPe+RmkNp4sSJenxSxYoV9TxKAwcO1I8VNXll5cqV5aOPPtKzfKsz4f7yl7/os9q8vUBdu3aVn376ST7++GN59913dahSAat79+6/uV3qs9UlT/r16yerVq2S3/3ud0H/7gBCz2ExWhEAAMAWB9wBAAAMCEsAAAAGhCUAAAADwhIAAIABYQkAAMCAsAQAAGBAWAIAADAgLAEAABgQlgAAAAwISwAAAAaEJQAAAAPCEgAAgNj7/z6t2pHNDcl6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=pokemon, y=\"attack\", bins=5)" + ] + }, + { + "cell_type": "markdown", + "id": "2aac9186-86c0-41db-a1c4-8719bb78b46b", + "metadata": {}, + "source": [ + "**When you want to compare the distribution of a numeric variable across categories**, a [barplot](https://seaborn.pydata.org/generated/seaborn.barplot.html) is a good choice. Choose one numeric column and one categorical column. \n", + "\n", + "Let's see pokémon hit points by legendary/non-legendary. `errorbar=\"sd\"` shows the standard deviation for each category. " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "92be1ad0-12bb-49f0-a3f6-85fcfd98e943", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG6CAYAAADnOSfBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJtlJREFUeJzt3Qd0lFXex/F/Jr0QCCUJ0sVDU5oIG1QQ44Ku4iqyehYBlSYqHFYgB0RQEKQtrCBNwYCAwIusNLGBiIVl6axlaYoUAYEIhEQgffKe//WdeTMBFEOSmcn9fs4ZZp4yM3cIz/DL/977PAH5+fn5AgAAYAmHtxsAAABQmgg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVfCr8zJ49W7p37+6xbsOGDdK5c2dp3ry5JCYmysSJEyUzM9O9PSsrS1566SVp3bq12Wfw4MFy9uxZL7QeAAD4A58JP4sXL5apU6d6rNuxY4f0799f2rdvLytXrpSRI0fKBx98YMKOy6hRo+Rf//qXTJ8+XRYsWCAHDx6UAQMGeOETAAAAfxDg7Wt7nTp1yoSarVu3Snx8vFSuXFneeustsy0pKUnOnDkjb775pnv/VatWyYgRI2TXrl2Smpoq7dq1k9dff13uuOMOs/3QoUNyzz33yNKlS00lCAAAwKcqP7t375bg4GB59913pWnTph7bevbsKUOHDvVY53A4JCcnR86fPy87d+406xISEtzb69SpI3FxcbJ9+/ZS+gQAAMCfBHm7ATqOR2+X06hRI49lDT3z58+Xm266SSpWrGiqRjExMRIaGuqxX2xsrJw8ebJE2w0AAPyT18PP1crNzZUhQ4bId999Z8YHqYyMDAkJCblkXw1DOhC6qLQnMCAg4JraCwAAfJNfhB/t4nr22Wdl27ZtMmPGDGnSpIlZHxYWJtnZ2Zfsr8EnPDy8yO/ndOZLevrFa2ozAAAoPdHR4RIY6Cgb4SclJUX69Okjx48fl7lz50rLli3d23SA9Llz50wAKlgB0ufouJ9rkZvrvKbnAwAA3+T1Ac+/Ji0tTR5//HFz3h7t6ioYfFSLFi3E6XS6Bz67ZnvpWKDC+wIAAPh85Wf8+PFy9OhRSU5ONgOcf/rpJ/c2Xdbqzn333Wemvo8bN850dem0+VatWkmzZs282nYAAOCbfDb85OXlmRMa6gwvrf4U9sknn0j16tVlzJgxJvjoyRBV27ZtTRgCAADwyZMc+qK8PKecPXvB280AAABXqWLFyKse8OzTY34AAACKG+EHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAUCYtWJAsjz76kLkHCiL8AADKnKysLPnoow/E6XTK2rUfmGXAhfADAChzcnNzJD/faR5rANJlwIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVnwo/s2fPlu7du3us27t3r3Tr1k2aNWsmiYmJsnDhQo/tTqdTpk2bJm3atDH79OnTR44ePVrKLQcAAP7CZ8LP4sWLZerUqR7rUlNTpUePHlKzZk1Zvny59OvXTyZPnmweu8yaNUuWLFkiY8aMkaVLl5ow1Lt3b8nOzvbCpwAAAL4uyNsNOHXqlIwcOVK2bt0qtWvX9ti2bNkyCQ4OltGjR0tQUJDUrVtXjhw5InPmzJHOnTubgDNv3jxJSkqSdu3amedMmTLFVIHWrVsnHTt29NKnAgAAvsrrlZ/du3ebgPPuu+9K06ZNPbbt2LFDWrVqZYKPS0JCghw+fFhOnz4t+/btkwsXLkjr1q3d26Ojo6VRo0ayffv2Uv0cAADAP3i98qPjePR2OSdPnpR69ep5rIuNjTX3J06cMNtV1apVL9nHta2ogoK8ngsBAMX0Ha7LfK/DZ8LPr8nMzJSQkBCPdaGhoeY+KytLMjIyzOPL7ZOWllbk93U4AiQmJrLIzwcAeFdwcL7HcoUKkRIVxfc6/CD8hIWFXTJwWUOPioiIMNuV7uN67NonPDy8yO/rdOZLevrFIj8fAOBdOiSioHPnLkhOToDX2oOSFx0dLoGBDv8PP/Hx8ZKSkuKxzrUcFxcnubm57nU6I6zgPvXr17+m987NdV7T8wEA3lP4O1yX+V6Hi093gLZs2VJ27twpeXl57nVbtmyROnXqSKVKlaRBgwYSFRVlZoq5pKeny549e8xzAQAA/Cr86HT28+fPy/Dhw+XAgQOyYsUKmT9/vvTt29c91kdPgKjn/vnkk0/M7K+BAweailGHDh283XwAAOCDfLrbS6s7ycnJMnbsWOnUqZNUqVJFhgwZYh67DBgwwHR/jRgxwgyQ1orP3LlzzfR5AACAwgLy8/M9h8RD8vKccvas52A5AID/uHDhvPTq1c29PHfuIomMjPJqm1CyKlaMvOoBzz7d7QUAAFDcCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArBLk7QYAQFnjcASYG7wnKMhxyXLhdShdTme+ufkCwg8AFCMNPRUqREhgIP/RelNwsOd/shUqREpUVKTX2gORvDynnDt30ScCEOEHVluwIFnWrv1A7r77Xnn88d7ebg7KSPjR4DPzfzbJ8ZQ0bzfHWrk5mR7Lo19fJ0HBYV5rj+2qxZaXfl1uM8cH4QfwoqysLPnoow8kP99pAtBf/9pdQkNDvd0slBEafA4fT/V2M6zlzM3yWP7hx3PiCOL4xi+oy8Jaubk5Jvgop9NplgEAZR/hBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKn4RfnJzc+XVV1+VO++8U5o3by5du3aVL7/80r1979690q1bN2nWrJkkJibKwoULvdpeAADgu/wi/Lz22mvyz3/+U8aMGSOrVq2SOnXqSO/evSUlJUVSU1OlR48eUrNmTVm+fLn069dPJk+ebB4DAAAUFiR+YP369dKxY0e5/fbbzfJzzz1nwpBWfw4dOiTBwcEyevRoCQoKkrp168qRI0dkzpw50rlzZ283HQAA+Bi/qPxUqlRJPv30Uzl27Jjk5eXJ22+/LSEhIdKgQQPZsWOHtGrVygQfl4SEBDl8+LCcPn3aq+0GAAC+xy8qP8OHD5e//e1vctddd0lgYKA4HA6ZPn266eo6efKk1KtXz2P/2NhYc3/ixAmpXLlykd4zKMgvciGuQeGfsS7zc8e1Cgzk3xDg68eHX4SfAwcOSLly5WTmzJkSFxdnurySkpJk0aJFkpmZaapABYWGhpr7rKysIr2fwxEgMTGRxdJ2+K7g4HyP5QoVIiUqip87AJSU6Ohw8QU+H360ejN48GCZP3++3HLLLWZd48aNTSDS6k9YWJhkZ2d7PMcVeiIiIor0nk5nvqSnXyyG1sOXXbhwwWP53LkLkpMT4LX2oOz8ZusrX/CAr0lPz5C8PGeJvLYed1dbWfL58PPVV19JTk6OCTwFNW3aVL744gu57rrrzKyvglzLWiUqqtzckvnhwHcU/hnrMj93ACg5Gnx84XvWNzrffkV8fLy5379/v8f6b7/9VmrXri0tW7aUnTt3moHQLlu2bDHT4XWgNAAAgF+FnyZNmkiLFi1k6NChJtToLK6pU6fK5s2b5cknnzTT2c+fP28GRWtX2IoVK0wXWd++fb3ddAAA4IN8vttLZ3bpSQ418AwbNkzS0tLM7C4NONr1pZKTk2Xs2LHSqVMnqVKligwZMsQ8BgAA8Lvwo8qXLy8jR440tytVh/TcPwAAAH7f7QUAAFCcCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAChzAhyB+qdr6f+WgV8QfgAAZU6AI0giYhua4KP3ugy48K8BAFAmlauRYG5AYVR+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrcJJDL3E4AswN3hMU5LhkufA6lC6nM9/cAKAkEX68QENPhQoREhjIf7TeFBzs+Z9shQqREhUV6bX2QCQvzynnzl0kAAEoUYQfL4UfDT4z/2eTHE9J83ZzrJWbk+mxPPr1dRIUHOa19tiuWmx56dflNnN8EH4AlCTCjxdp8Dl8PNXbzbCWMzfLY/mHH8+JIyjUa+0BAJQO+l0AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWKXIV3U/ffq0LFy4ULZt2yZpaWlSqVIlad26tXTv3l2io6OLt5UAAADerPzs27dP7r33XlmwYIGEhYVJo0aNJDAwUGbPni3333+//Pjjj1LcVq1aZd6zcePGct9998mHH37o3nbs2DHp27ev3HzzzXL77bfL1KlTJS8vr9jbAAAALK38TJgwQapWrSrJyclSpUoV9/pTp05J7969ZeLEifLqq68WWyNXr14tw4cPl+eff17atGkj77//vgwaNEji4+Plpptukl69eknt2rVl6dKl8sMPP5h9HQ6HDBgwoNjaAAAALA4/X331lUyePNkj+Ki4uDjp37+/jBgxorjaJ/n5+SZIPfbYY9K1a1ez7umnn5YdO3aYLrfjx4+bStOyZcukfPnyUq9ePTlz5oz8/e9/l6eeekpCQkKKrS0AAMDSbq+YmBj5+eefL7tNu5u0K6y4HDp0yAQc7U4raO7cuaarS0PQjTfeaIKPS0JCgpw/f1727t1bbO0AAAAWV3769etnKj81a9Y042xcDh48aKo0Wv0pzvCjLl68aLq39uzZI9WrVzfVn8TERDl58qTp/iooNjbW3J84cUKaNm1apPcNCiq5iXCBgUyyA8rq8eHv7QdsOD6Cijr4OCsry3RDaRDR7q7U1FQ5fPiwOJ1OmTNnjrmpgIAAWb9+fZEbqBUcNXToUBOqkpKSZO3atfLMM8/Im2++KZmZmZfMLgsNDTX32saicDgCJCYmsshtBlB00dHh3m4CgDJ+fBcp/Gjg0VtBNWrUkCZNmkhxCw4ONvda9enUqZN53LBhQ1MB0vCjXWzZ2dkez3GFnoiIiCK9p9OZL+npF6Ukk6+v/AMAfE16eobk5TnFX3F8A945vvW4u9rKUpHCz/jx4839hQsXzNgfrfYUdt1110lx0KqS0oHMBd1www3y2WefSatWreTbb7/12JaSkuLx3KLIzfXfL1/An+kXI8cfUDbl+cjxXaTwc/ToURk4cKDs3r37ivsU12BjHcwcGRlpZpjdcsst7vUaeHTMUcuWLU03nHaPRUVFmW1btmwxz2nQoEGxtAEAAJQdRQo/o0aNMgFIp5Jr95eeU6ekaLeWnjto5syZppKjXWt6np9NmzbJ/PnzpVmzZuakhs8++6wZD6QnPHzllVekZ8+eTHMHAADFE3527dolI0eOlAcffFBKgw5uDg8PlylTppgTKdatW1emT58uf/jDH8x2PdniSy+9JI888oiZ8v7oo4+a5wAAABRL+NEupcInOCxpPXr0MLfLqVWrlsybN69U2wMAAPxTkfqrHnjgAXNRU66fBQAAymzlZ9iwYe7Hubm5snHjRmnfvr0Zg6NdUgXpuX3GjRtXvC0FAAAozfCzdetWj2XXWZW//vrrS/bV8AMAAODX4WfDhg0l2xIAAIBS4BsX2QAAACglhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEH1gpwBOqfrqX/WwYAlHWEH1grwBEkEbENTfDRe10GAJR9fhV+Dh06JM2bN5cVK1a41+3du1e6desmzZo1k8TERFm4cKFX2wj/Uq5GgsS16GHuAQB28Jvwk5OTI0lJSXLx4kX3utTUVOnRo4fUrFlTli9fLv369ZPJkyebxwAAAJfjN3X+6dOnS1RUlMe6ZcuWSXBwsIwePVqCgoKkbt26cuTIEZkzZ4507tzZa20FAAC+yy8qP9u3b5e3335bJkyY4LF+x44d0qpVKxN8XBISEuTw4cNy+vRpL7QUAAD4Op+v/KSnp8uQIUNkxIgRUrVqVY9tJ0+elHr16nmsi42NNfcnTpyQypUrF/l9g4JKLhcGBvpF5gS8wt+PD39vP2DD8eHz4WfUqFFmkPP9999/ybbMzEwJCQnxWBcaGmrus7KyivyeDkeAxMREFvn5AIouOjrc200AUMaPb58OP6tWrTJdW2vWrLns9rCwMMnOzvZY5wo9ERERRX5fpzNf0tP/f2B1SSRfX/kHAPia9PQMyctzir/i+Aa8c3zrcXe1lSWfDj86a+vMmTPSrl07j/UjR46UDz74QOLj4yUlJcVjm2s5Li7umt47N9d/v3wBf6ZfjBx/QNmU5yPHt0+HH522rl1bBXXo0EEGDBggf/7zn2X16tWydOlSycvLk8DAX87Ou2XLFqlTp45UqlTJS60GAAC+zDdGHl2BVm9q1arlcVMabHSbTmc/f/68DB8+XA4cOGBOfjh//nzp27evt5sOAAB8lE+Hn9+iISg5Odmc+blTp04yY8YMMzNMHwMAAPhdt9fl7N+/32O5SZMm5hxAAAAAZb7yAwAA8HsRfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFX8IvycO3dOXnzxRWnbtq3cfPPN0qVLF9mxY4d7++bNm+Whhx6Spk2byj333CPvv/++V9sLAAB8l1+En0GDBsl//vMfeeWVV2T58uXSsGFD6dWrlxw8eFC+//576du3r7Rp00ZWrFghDz/8sAwZMsQEIgAAgMKCxMcdOXJENm3aJEuWLJEWLVqYdS+88IJs3LhR1qxZI2fOnJH69evLwIEDzba6devKnj17JDk5WVq3bu3l1gMAAF/j85WfmJgYmTNnjjRu3Ni9LiAgwNzS09NN91fhkJOQkCA7d+6U/Px8L7QYAAD4Mp+v/ERHR8sdd9zhsW7t2rWmIvT888/LypUrJT4+3mN7bGysZGRkSGpqqlSsWLFI7xsUVHK5MDDQ5zMn4DX+fnz4e/sBG44Pnw8/he3atUuGDRsmHTp0kHbt2klmZqaEhIR47ONazs7OLtJ7OBwBEhMTWSztBfD7REeHe7sJAMr48e1X4Wf9+vWSlJRkZnxNnjzZrAsNDb0k5LiWw8OL9pfsdOZLevpFKcnk6yv/AABfk56eIXl5TvFXHN+Ad45vPe6utrLkN+Fn0aJFMnbsWDOVfeLEie7qTtWqVSUlJcVjX12OiIiQcuXKFfn9cnP998sX8Gf6xcjxB5RNeT5yfPtG59tv0JleY8aMka5du5rp7gW7uW655RbZtm2bx/5btmwx1SGHwy8+HgAAKEU+X/k5dOiQjBs3Ttq3b2/O53P69Gn3trCwMOnevbt06tTJdIPp/eeffy4fffSRmeoOAADgd+FHZ3bl5OTIxx9/bG4FadiZMGGCzJo1SyZNmiQLFiyQ6tWrm8ec4wcAAPhl+HnqqafM7dfoZS/0BgAA8FsYFAMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxSJsKP0+mUadOmSZs2baRZs2bSp08fOXr0qLebBQAAfFCZCD+zZs2SJUuWyJgxY2Tp0qUmDPXu3Vuys7O93TQAAOBj/D78aMCZN2+eDBgwQNq1aycNGjSQKVOmyMmTJ2XdunXebh4AAPAxfh9+9u3bJxcuXJDWrVu710VHR0ujRo1k+/btXm0bAADwPUHi57TCo6pWreqxPjY21r3t93I4AqRixUgpKQEBv9wP7ZUoeXnOEnsfwJ8EBv7yu1j58uGSny9+i+Mb8M7xrf93WxN+MjIyzH1ISIjH+tDQUElLSyvSawYEBEhg4NX/JRZV+aiwEn8PwN84HH5fkDY4vgHfPb59oxXXICzsly+YwoObs7KyJDw83EutAgAAvsrvw4+ruyslJcVjvS7HxcV5qVUAAMBX+X340dldUVFRsnXrVve69PR02bNnj7Rs2dKrbQMAAL7H78f86Fifbt26yeTJk6VixYpSrVo1mTRpksTHx0uHDh283TwAAOBj/D78KD3HT25urowYMUIyMzNNxWfu3LkSHBzs7aYBAAAfE5Cf78+TSgEAACwb8wMAAPB7EH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxSJk5yCHt1795dtm3bdtltPXv2lKFDh/7q8/WyKI899ph88sknUr169RJqJYBr8dxzz8nKlSt/dZ/9+/eXWnvg/wg/8Ht/+tOfZPjw4ZesDw8P90p7ABQvPb4HDx7sXr799tvl+eefl3vvvder7YL/IvzA74WFhUmVKlW83QwAJaRcuXLmVngdxz2KijE/KNPS0tLMNd/atGkjN954o7Ru3dosZ2RkXHb/w4cPS69evaRFixbSvHlz87hgOf3nn3+WF154QRISEsw+2mX2zTfflOInAlDYihUrpH379vLyyy+b4/KZZ54xXdr169eXY8eOufcrvE6v7vTGG2/IXXfdJU2bNpUHHnhA3n33XS9+EpQWKj8o82MFTp06JTNmzJBKlSrJrl27TLn8hhtukCeeeOKS/QcNGiQNGjSQ5cuXm4vlTpw4Ufr37y8ff/yx+aLs06ePqTTNnj1boqKiZPXq1dKlSxdZtmyZNGrUyCufEYDIDz/8ICkpKbJq1SpzgeuzZ8/+5nOmTJki7733nrz44oty/fXXy/bt22XUqFHml5yuXbuWSrvhHYQf+L01a9bI2rVrPdbpb3/Jycly2223ScuWLc1ve0oHNS9atEi+/fbbK36B3nrrrVKtWjUJDg6WcePGycGDB8XpdJrfGr/88kvZsmWLVKhQwR2WNFAtXLhQJkyYUAqfFsCVaMWnRo0a5rEer7/m4sWLMn/+fHnllVekXbt2Zl3NmjXl+PHjMnfuXMJPGUf4gd9LTEyUpKQkj3VanVGPPvqobNiwwcwU0S6tAwcOmJK3/pZ3OQMHDjSBZ8mSJdKqVSvTXdaxY0dxOByye/duU/258847PZ6TnZ0tWVlZJfgJAVyN2rVrX/W++l2gx60OpNbj20UrvnpMa/XI9T2CsofwA78XGRkptWrVumS9Vmv69u0r3333nQkwOjNEx/3omJ0r0d/27rnnHvn8889l8+bNMm3aNHnttddMKV1fT7u6dHxBYSEhIcX+uQD8Pr8VVvLy8tyP9RcZNXXq1Mv+MsQxXbYRflBm7d27V7744gszHkcHM6qcnBzTteUqjRd05swZmTlzpjz55JPy0EMPmZuOF2rbtq05l1C9evXk/Pnz5jV0zJCLDqDWcULdunUr1c8H4Mq021rpMeui1V8XDTxBQUHy448/elRztQtbq0KjR48u5RajNDHbC2VW5cqVzZfbhx9+KEePHjWzsp599ln56aefTFm7sPLly8tnn31mwowGJ33O0qVLzZfoTTfdZLrAGjZsaLrGdNzPkSNHZPz48aYSVLduXa98RgCXp7+sREREyJw5c8wvPBs3bpQ333zTY6r8X//6V3n11VfNxAU93t955x2ZNGmSxMbGerXtKHlUflBmxcXFmUHI06dPl8WLF5tzgujARp3lpeOACtOgpNNedYaX7qPT4TXs6JenDoRU8+bNM1+OGqJ0u4YenUmmU+gB+A7totZjdfLkyabLW6uzesb3fv36ufcZNmyYxMTEmACkM8WqVq0qAwYMkN69e3u17Sh5Afmujk8AAAAL0O0FAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QdAiatfv7452aS/6d69u7kBKFsIPwAAwCqEHwAAYBXCD4BSd+7cOXnxxRfl1ltvlcaNG8sjjzwimzdv9thHr8at++h105o3b24uKDt//nzThVbQ+vXr5aGHHjKvc9ttt8nLL78sFy9edG/X7rb27dubi9bef//95iK1d999t6xatcrjdfTq3v3795cWLVqY1yl4EUyXzMxM+cc//iEdOnQwr3PzzTdLjx49zIVwXZ577jl5/PHHZeTIkWa7XldKrxfVtm1bcTqdHq83fPhw0xYApYsLmwIoVVlZWSYcnD592gQavYL28uXLzcUkk5OT3ReJfeaZZ0yo0H2uu+46WbJkiQkeBa1Zs0aSkpJMqNGLzR4/flymTJkiBw4cMOElICDA7PfTTz/J6NGj5emnn5Zq1arJ3LlzzUUuNTDpxWk1LHXr1s1c3HbMmDHicDhk2rRp5mrgGrxchgwZIjt27JBBgwaZi90eOXLEXBRz8ODB8v7777vfT/cJDQ2VmTNnmtcODg6WtWvXytatW92fT4PURx99JH369CnFv30AivADoFStXr1a9u3bJ8uWLZOmTZuadVoV0YHFegVuDUJaBdKgoFUbrbK49unYsaN8//33Zlmvyaz7t2nTxty71K5dW5544gn5/PPPpV27dmZdRkaGjB071h08dJ8777zT7KPhZ+XKlaby895778kNN9xg9tG2acXIJTs7Wy5cuCAjRoww1RzVqlUrU6GaMGGCCXNVqlQx63Nzc03Yio+PN8ta8dHHWm1yteHjjz82wejBBx8shb91AAXR7QWgVGmw0ZBw4403mpCgt7y8PBNG/vvf/0paWpps2bLFVEv++Mc/up+n1RhX6FAHDx6UkydPSmJiovt19NayZUuJioqSTZs2ebxvs2bN3I9docTVPaaVGq3kuIKPqlq1qsdzQkJCTMVI23Dq1CnTxqVLl8qnn37qDkcuFSpUcL+Hq+2dOnWSdevWmSCmNHBpt1/B/QCUDio/AEp9vI92Q2n4uRzdlpqaagKEhoaCKlWq5PE66qWXXjK3wlJSUjyWw8PD3Y9dr6vVI6WBKyYm5pLX0JCmFR2XjRs3yrhx40zwioyMlAYNGkhERITHayndVljnzp3l9ddfNwEoISHBhMCCFSsApYfwA6BUlStXznQ7Xek//urVq0tcXJwJQNpdVDAAnTlzxv04OjraPQ5Hu58KK1++/FW3SYOPjt8pzBWwlI7/6devn6lGzZ49W2rUqGHG+CxevNiEot+i+2s7P/zwQ/O6Wp0qWNkCUHro9gJQqjQAnDhxwlRxdMCx66bdVDrgOTAw0OyjXVgbNmxwP08rKzqzy+X66683r3Hs2DGP19HgpAOj9+zZc9Vt0kqMvs4333zjXnf27Fn58ssv3cvaJaeDtZ988knTReYa3OwKPgUrP1fyl7/8Rf7973+bsUXafaaDogGUPio/AEqVTktftGiRmSL+1FNPmbE1GgjeeOMNM+NKx/rouB2dbq5TwbXbSWd7vfPOO7J//3536NCQpDPBdDq8PtYxQ+np6TJr1iwzJudK3WqX88ADD8jChQvNVHd9Ta3KvPbaax5T0/X1dDbYpEmTpGfPnmaMz4oVK8wUelVwev2V6LR2nU329ddfywsvvFCkvz8A147wA6BU6RgZ7SrS6owGiZ9//tlMP9fp4hoqXHTKus6i0v20CnTXXXdJly5dPM7P8/DDD5vxNVoxevvtt81r67l1tEtNu5mulg5mXrBggRnPo7PCNGDpuYf0NVxdbbVq1TJtmTFjhpkyr91qOiD6rbfeMjPVdNB04XMQFaaVHq0y6ZihJk2aFOnvD8C1C8i/mlotAJQiPV+Pdjlp4AkLC3Ov15MFHj161MyU8kd6bp877rjDnMNIz3UEwDuo/ADwOTrIWc+UrOFHx8lot5aOrdGZUuPHjxd/DHMa2LR7T6tKOvMLgPdQ+QHgk/Q8OnqGZD3Ls3Z76ckIdZyQnujQ3+gAbz2ZoXbRFTzZIgDvIPwAAACrMNUdAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAIhN/hcVyzcDEXbUKQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.barplot(data=pokemon, x=\"legendary\", y=\"hp\", errorbar=\"sd\")" + ] + }, + { + "cell_type": "markdown", + "id": "4f75e1fa-a5d7-4d2c-a458-8190a7cd700e", + "metadata": {}, + "source": [ + "Here, we use a barplot to show average hit points by type. `errorbar=None` removes the standard deviation bars, because they clutter up the plot with too much detail. " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "17f1c289-5990-4420-bfcb-e50eee0b8af6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAG1CAYAAADOYzEeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWXNJREFUeJzt3Qd8U+X3P/DTtEBLaaFlg1j2XmVP2YrsIZsCspU9ZAgIiJS90S8gIAKyZCNLhoCgskQ2Foqssgq0FGgZTfJ/neM/+XUhLU2ae5983q9XbHOz7mlD+vF5zn2ui9lsNhMAAAAA2IXBPk8LAAAAAAxhCwAAAMCOELYAAAAA7AhhCwAAAMCOELYAAAAA7AhhCwAAAMCOELYAAAAA7AhhCwAAAMCOELYAAAAA7MjNnk8OiccL+ZtMai/mbzC4KF2j6vUx1Kh/qtfHUKMaDDqokffRxcXljfdD2NII/mU9e/acjEYTqcjV1UDe3h7K1qh6fQw16p/q9empRg4Rbxsk3NwM5OPjSRERkRQdrd0ak8NNJzX6+nqSqyvClq5GtvgDQnWq16h6fQw16p/q9emhRg6C4eGRmh+5AdtA2NLQyNbX6y9QSGiko3cFAADsKGfmtNTno6K6mCYD20DY0hAOWtfuPHX0bgAAAIANuel96m3Tpk1yuXz5Mj19+pSyZ89ONWvWpJ49e1LmzJkdvYsAAADg5HS79IPJZKI+ffrQ5MmTqVatWrRixQr6+eefafTo0XT27Flq2bIlPXz40NG7CQAAAE5OtyNby5Yto4MHD9K6deuoWLFi1u05cuSgihUrUsOGDWnJkiU0bNgwh+4nAAAAODeDXqcPV65cSU2aNIkVtCzc3d1p+fLlNHDgQLp16xYVKlSIFi5cSFWrVqU6derIdGNQUBD16tWLypcvT8WLF5ftS5cutT5HVFQUjRo1Sh5TokQJatasmYycWVy7do26detGZcuWJX9/f/n+77//TrGfAQAAAOiDLsMWB6iQkBCqUqXKa++TM2dOSp06tfU693V9//33NHv2bHJ1daWuXbtShgwZaM2aNfTTTz9R/fr1acqUKXTx4kW5/5w5cyQ8LVq0iHbs2EHvvfceDRo0SF6bDR48mLJmzUobNmygH3/8kQwGA/Xt2zcFqgcAAAA90eU04oMHD+Srr69vrO29e/emo0ePxppS5BEt1r59e8qfP798/+jRI+rUqRN16NCBPD09ZVv//v1p8eLFErCKFClCN27ckNty5cpF3t7eNGDAABkFS58+vdyfb+ewx6EuVapUFBgYSFevXpVeMg5eAAAAALoNWz4+PvL18ePHsbaPHz+enj9/Lt9zw/z+/futt/n5+Vm/55DG4YtHtC5cuCDB6dKlS3IbhyXWo0cPCW+VK1emkiVLynRi48aNycvLS27nUS4OWKtWraIKFSpQ9erVqVGjRghaAAAAEIsukwGPNvGyDjFHsRhP63Go4otlBCpmH5dFaGio9Hvx9B8/hoMXTzPGxH1Y3IA/d+5c6QvbvHkzNWjQgH7//Xe5nUfFDh06JEc/cgDj+3FTvmXUDQAAAEC3YYt7rngakAOQZUQqrjt37rz28TyiFR4eTqtXr6ZPP/2U6tWrZx0l4+Z7xuHp5MmT0jjPgWr37t0S8vgrLynx5Zdf0qtXr6hFixY0bdo02rp1q4S4Y8eO2alqAAAA0CNdTiOy7t27yxQgj0rxAqa8kGm6dOnkKEM+UvHIkSOy1lZCsmXLJkcb7tq1S44m5F6rSZMmyW0vX76Urzdv3pQANWHCBHr33Xfp9OnTdPv2bRnx4lGzAwcOyPTjkCFD5HU3btwovVt8ZCMAAACA7sMW90bxkYU7d+6UIwJ5qYeIiAjKlCkTlStXTgIXN7Rbjh6MiY88PH/+vCyIystAcJN7q1ataN++fbIgart27Wjs2LFydOJnn30mo2B8n6FDh1LTpk3lOb799lu5vUuXLhLcuKmej1zkYAYAAABg4WK2zJuBw33+vxM4NyIAgOJyZ09HgZ+Uo7CwZxQd/e9BWUnh5mYgHx/Pt368HrjppEZfX09ydTWoO7Kl6pngAQBAbfisdz4IWxrBA4x9Pirq6N0AAIAUYDSayGTCxJKzQNjSCBcXF4qIiJJ/gCriYVZvbw9la1S9PoYa9U/1+vRUIwcthC3ngbClIfzBoOW5aVtQvUbV62OoUf9Ur89ZagT9QNjSkMQ02em9NlVrVL0+hhr1T/X6nKVGngkBfcHRiBrBvwb8AwIAgDcxm4zkYnDV/JF6yeGGoxHBHjho3dm+kF4+vO3oXQEAAI1KnTEHZW/Yy9G7AUmEsKUhHLRe3L/u6N0AAAAAG3K6sBUQEPDa8xd27dqVzp07J6vF8+ryAAAAAMnldGGLffjhhzRq1Kh42z08PCg6OlpOdA0AAABgC04Zttzd3Slz5syO3g0AAABwAuoeG5uMacYRI0bI9xs3bqR69erRV199RWXLlqVPP/1UtgcHB1OPHj3I39+fqlWrRkOGDKHQ0FAH7zkAAABoEcLWG9y4cYPu379PmzdvpkGDBtG9e/eoffv25OfnR+vXr6cFCxbQ06dPqU2bNhQZGeno3QUAAACNccppxG3bttHu3btjbeORq8WLFyd4fx7RypUrl3w/e/ZsypYtG40ePdp6O2+rVKkS7dq1i1q0aGHnvQcAAAA9ccqwVbt2bRo6dGi8Pq7XyZ07t/X7Cxcu0OXLl2UKMaYXL17I9CIAAAAAOXvY8vT0lGnAxIoZxEwmk4xijR07Nt79vLy8bLaPAAAAoAb0bCVRgQIFZAQre/bsEtj4kj59egoMDKSgoCBH7x4AAABoDMJWEnFz/JMnT2Qa8tKlS3LhxvmzZ89SwYIFHb17AAAAoDEIW0nEjfIrV66kZ8+eUbt27ahjx46UKlUqWr58Ofn6+jp69wAAAEBjXMxms9nROwH/ur58LM6NCAAAr5Umix/5dRov34eFPaPoaBOpyM3NQD4+npqv0dfXk1xd3zxuhZEtAAAAADtyyqMRtSp1xhyO3gUAANAw/J3QJ4QtjeDZ3OwNezl6NwAAQOPMJiO5GFwdvRuQBAhbGuHi4kIREVFkNGp3bjo5eE7b29tD2RpVr4+hRv1TvT5nqZH/XmTIkNbRuwFJgLClIfzBoOVGQFtQvUbV62OoUf9Ur0/1Grl5HPQFYUtDEnNEg95rU7VG1etjqFH/VK+PocaEmUxmuYBjYOkHjeBfAw8NAwAA2JrRZKLwsEjdBC43xZZ+wMiWRnDQWn1hJd2PvOfoXQEAAIVkSZuV2hXtSAaDi27ClmoQtjSEg1bI0xBH7wYAAADYkC4ntfv27UutWrWKt71169ZUqFAhOnbsWKztW7dupcKFC9PDhw//83kjIyPphx9+sPn+AgAAgPPSZdiqXLkyXbx4kZ4/f27dFh4eLieDzp49O/3666+x7n/ixAkJWxkzZvzP5126dCktWbLEbvsNAAAAzkeXYatSpUr06tUrCVcWv/32m4Spli1bJhi2qlSp8sbnxbECAAAAYGu6DFv58uWjrFmz0p9//mndxgGrWrVqcrl06RI9ePBAtj969IiCg4Nl+969e2X6sXTp0lSiRAlq0aKFNZjNmzeP5s+fTyEhITIVeevWLdm+YcMG+vDDD6lkyZLy9fvvvyeT6d8jI/g+fN+FCxdS1apVqU6dOvT06VOH/EwAAABAm3QZtixTiadOnbJeP3z4sAQeDkVeXl5ynZ08eZLc3d0pTZo01K9fP2rYsCFt27aN1q1bR76+vjRs2DB6+fIlde3aVS7ZsmWTx/J05Nq1a2nq1KnSI7Z9+3YaOHAgffvttzR9+vRY+7Jp0yYJYbNnz6Z06dKl+M8CAAAAtEv3YYun/ngkKzQ0VMKWq6ur3GYZsTp+/DiVK1eO0qZNS2PGjKEuXbpQrly5qEiRItSpUycZ+eLGeU9PT7kPPz5z5szy9ZtvvqFPPvlEAho/5oMPPqBBgwbRypUr6cWLF9Z9ad++PeXPn19GywAAAACUWPqBAxU3xV+9elVGoooWLSojVYxDF08JWvq1OCxxuEqfPj0tWrRIHnP9+nUJacxoNMZ7fg5hd+/epZkzZ9KcOXOs23kKkYMWTyHyaBnz8/NLoaoBAABAb3QbtrhnK0+ePDK6deTIEenJsuDvv/jiCzp//rwEqsDAQFkOolu3blSzZk0qW7YsNW7cmKKioqhPnz4JPr+lL2vkyJEJNtfzNOP9+/fle56mBAAAAFBqGpFxCOImeQ5cPJplkTNnTsqdO7esmcWjXdzEzss6VKxYURrheSqR73/nzp1YRyHGPF0OH9nIj71586aMXFkuHOC4NwsAAABA+bDFU4k7d+6UkFSmTJlYt1WvXl1u4/vw7TwS9ffff8u0Ik8B8lGGlulBbpBn3LP1+PFj+ueffyg6Opp69OhBK1askB6tGzdu0J49e2jcuHEykpU6dWqH1AwAAAD6ouuwxSNVvLApf02VKlWs23gqkVeEt4x49e/fX5Z86N27NzVr1ox+/PFHmV7k4GRZr+v999+X5vgmTZrQhQsX5OjEESNGSNhq0KABTZw4UVapHz9+vEPqBQAAAP1xMWMlT82Yc2IGzo0IAAA2lTNdThpQbgiFhT2j6Oh/+5G1zs3NQD4+nprfZ19fT3J1NajbIK/qmdkBAABsCX9bHA8jWxrBv4aYDfoAAAC2YjSZKDwskkwmffzJd8PIFtgDB62IiCgyGrX7pkoOfjN6e3soW6Pq9THUqH+q18dQY8I4ZOklaKkIYUtD+B+NlhO8Laheo+r1MdSof6rXx1AjaAnCloYkZihS77WpWqPq9THUqH9arw+jL6AqhC0N9WzxsLDqVK9R9foYatQ/rdZnMhopLDwKgQuUg7CloZ6ty8uXU9S9e47eFQCAFOeRNSsV6NSJDAYXhC1QDsKWhnDQirx1y9G7AQAAADbkVGGrdu3aFBLyf4uG8qrzfB7FVq1aUffu3R26bwAAAKAmpwpbjE/BwxfGp/o5c+YMjR49mjw8PKhDhw6O3j0AAABQjNOFLT7ZNJ//0CJXrlx09OhROTE1whYAAADYmjaP/01hfDJqi4CAADn5dExxt507d06CWalSpahOnTq0detWKlq0qIQ2AAAAgJicPmzxNOJPP/0kfVuJce/ePercubP0evFo2BdffEGzZs0io9Fo930FAAAA/XG6acSFCxfS0qVL5ftXr17JhUeoGjdunKjHr127lry8vGjixInSYJ8/f37p+fr000/tvOcAAACgR04Xttq2bSvTgiw6OpquX78uI1M8Lfjjjz++8fEXLlyg4sWLS9CyKF++vF33GQAAAPTL6cJW+vTpyc/Pz3o9X758sq19+/b022+/JfgYDmUWrq6uZDLhXFQAAACQOE7fs2U5VQ7jEMUjVk+fPrXexttu3rxpvV64cGEZ3eLpR4tTp06l8B4DAACAXjhd2IqMjKTQ0FC53L9/n06cOEGBgYGUJUsWqly5MpUuXZqOHDlChw4dkinGCRMmUEREhPXxPALG18eMGUPBwcEyGsb3sZxyBwAAAMCppxG5Od7SIG8wGChDhgxUrlw5mj59uixsygue3rhxgwYMGECpU6emjz76iBo2bGgd/cqYMSMtXrxYAlrTpk0pW7Zs1K5dO5o6dWqsPi4AAAAApwtb+/fvf+N90qVLJ8Hrda5cuSLBa/369dZtf/75p3zl4AUAAADg1NOIyXX37l3q1KkTbd68Wc6zyP1akyZNogoVKlD27NkdvXsAAACgMU41smUL1apVo1GjRsl6Xdy3xWtu8Qmuhw4dmuzn9sia1Sb7CACgN/j8A5W5mC3NSOBQ/GtAgz0AODOT0Uhh4VFkMr39nyU3NwP5+HhSWNgzio5Wc5ke1Kgdvr6e5Or65klCjGxpBAetiIgoMhq1+6ZKDn4zent7KFuj6vUx1Kh/Wq+PQ1ZyghaAViFsaQh/+Gk5wduC6jWqXh9Djfqnen0AWoOwpSGJGYrUe22q1qh6fQw16p/q9THUqB0Yqfw/6NnSCPRsAQCASkxGE4WFR75V4ELPFtgFB609q4/So/tPHL0rAAAAyeKbxYvqtatIBoMLRrcQtrSFg9aDkHBH7wYAAADYkCYnfHndKr7EPCG0xYgRIyggIIC05OjRo1SoUCG6deuWo3cFAAAANEaTYYvx6ux8vkEAAAAAPdNs2MqVKxetXbuWfvvtN0fvCgAAAIB6YatJkyZUuXJlOTVOQtOJLDw8nMaPH081atSgkiVLUtu2bWVKz2LevHnUsWNHGjRoEJUpU4YmTJhAGzdupHr16tGaNWuoZs2aVKpUKerfvz/du3dPTrnj7+9P7733XqwTTT9+/JhGjx5N1atXp2LFisl+8fWoqKgU+VkAAACAfhm0fHTexIkTJehMmTIl3u1Go5G6du1KJ06coGnTpkmIKliwIHXr1o3OnDljvd/x48cpU6ZMtGXLFmuv1+3bt2nXrl20aNEimjt3Lu3bt48aN24sQWrDhg0StsaNG0dhYWHWPrELFy7Q/Pnzaffu3TRy5Eg5ETWPvAEAAADoMmyxnDlz0vDhw2ndunV0+PDhWLfx9fPnz9OMGTOoQoUKlD9/fhnlKlCgAC1ZsiTWfXnkiqclc+fOLdejo6PlJNIcznhUrHDhwpQ3b176+OOPrV9fvXpF165dk/tXrVqVJk2aJKNg77zzjoy6FS1alIKCglLwpwEAAAB6pOmwxdq0aSNhh6ftYk4nctDx8vKSwBRzNKxcuXKxQlDGjBnlfnG9++671u/Tpk0b63qaNGnk68uXL+Vr+/bt6ebNmzR58mTq3bs31a1bV0bPTCbtLrQGAAAA2qD5sMW++uorevLkiYwuWbxu4Xve7ub2f8uHubu7J3i/VKlSxbpuMCT8o+BA1atXL9kHft4GDRrQwoULpQcMAAAAQIlFTXPkyCF9Uzy6xdOB2bNnl3WtOIDxKJZldIuD1smTJ2VK0VYuXrxIhw4dkqlMnkZkPMV448YN2RcAAAAA3Y9ssVatWlG1atVkOo/x90WKFKEhQ4bQsWPHKDg4mL788ksJX507d7bZ63JzPY9o7dy5U1777NmzNHDgQAoNDbVOMwIAAADoPmwxnsqz9F+5urrS0qVLpVG9b9++1LJlS7p8+TItW7aMSpcubbPXzJo1q/Rq7d+/X6YQBwwYINu6dOlC586ds9nrAAAAgJpczK9rfoIUt3bOXpwbEQAAdC9TzgzUZkBdCgt7RtHRST+YzM3NQD4+nm/9+JTi6+tJrq4GNXq2nOks6QAAAHqHv2exIWxpBA8w1mtX0dG7AQAAYBMmo4lMJkyeMYQtjeA1wiIiosho1O5waXLwMKu3t4eyNapeH0ON+qd6fQw1agcHLYStfyFsaQj/o9Hy3LQtqF6j6vUx1Kh/qtfHUCNoCcKWhiSmyU7vtalao+r1MdSof6rXp6caMerjXBC2NNSzxcPCqlO9RtXrY6hR/1SvTw81Go1GCg+PQuByEghbGurZ2rRoMj248++irQAAoKZM2XNR854jyGBwQdhyEghbGsJB6+6NK47eDQAAALAhTU9q165dW86BaLkULlxYTgDdsWNHOn78eKKeY+PGjfJYAAAAAEfQdNhiXbt2pcOHD8uFTwi9Zs0aSpcuHXXv3p1u3779xsfzKXb4sQAAAACOoPmwlTZtWsqcObNcsmTJQgULFqTx48fT8+fPac+ePW98vLu7uzwWAAAAwBE0H7YS4ub2b6tZ6tSpJXTNnj2b6tSpQyVKlKCmTZvS7t27XzuNePDgQWrRogWVKlWKKleuTCNGjKDHjx9bbw8ODqbevXtTxYoVqWzZstS/f38KCQmx3h4QEEDTp0+nzz//nMqVKyfTmkOGDKGnT5+mWP0AAACgH7oLW/fu3aMvv/xSRrxq1KhBgwcPps2bN9OYMWNo69atVLduXRowYADt3bs33mMfPXpEffv2pZYtW9KOHTto/vz50vs1depUuZ1DVZs2bSTEff/997R06VIKDQ2VHrGYYWrZsmWUKVMmWr9+PU2bNo327dsn2wAAAAB0dzTiwoULJfSw6OhoevnyJeXLl09Gs6KioiToLFiwgGrWrCn36devH126dEm2cfCKG9T48Tly5KCcOXPKhe/H652wVatWSYjjkSsOXGzu3LkyarZlyxbq0KGDbMufP7+EPJY7d26qWrUqnTp1KkV/LgAAAKAPmg9bbdu2lak7ZjAYKEOGDOTl9e/ZxHl0ivF0X0zly5enmTNnxnuuIkWKUKNGjWSakPu4OCRxSKtXr57cHhQURMWLF7cGLcb3y5Mnj9xmkTdv3ljPy/sTERFh07oBAABADZqfRkyfPj35+fnJJVeuXNag9abV2C19XXHNmDGDdu7cKUczhoWF0WeffUbdunWzPi4hJpOJUqVKZb0eM4wBAAAA6Dps/RdL4/vJkydjbT9x4oRM9cV1+vRpCgwMlJGpLl260KJFi+T6H3/8QQ8fPpTnO3v2rEw1Wjx48ICuX78uU5cAAAAAyk0j/hcOQLVq1ZKlIPh0Nzz6tX37dunj4p6uuHh9Lu7L4lGq1q1b04sXL2QqkvuufHx8qF27drR69WoZ7frkk08kdE2ZMkVua9iwoUNqBAAAAH3T9cgW494sboQfNWoUNWnShH755ReaN28e1a9fP8FwxrfxSFazZs0kXLm6utK3334r/WDvvPMOrVy5Uvqv+KhEnl7kni0OYN7e3g6pDwAAAPTNxfy6RiVIcd+O74NzIwIAKC7bu/mpx9ivKSzsGUVHm5L8eDc3A/n4eL714/XATSc1+vp6kqurQf2RLQAAAAAt03XPlmoyZc/l6F0AAAA7w2e980HY0giezW3ec4SjdwMAAFIAL6ZtMqGLx1kgbGkEH00ZERFFRqN256aTg+e0vb09lK1R9foYatQ/1evTU40ctBC2nAfClobwB4OWGwFtQfUaVa+PoUb9U70+Z6kR9ANhS0MSc0SD3mtTtUbV62OoUf9Ur88ySwCgNQhbGurZ4qFv1aleo+r1MdSofyrXx6dXA9AahC0N/d/Y9Z/O0YuHzxy9KwAAupQmoyf5NSru6N0AiAdhS0M4aEXdf+Lo3QAAAAAb0tzEfUBAgJwQ+nWXR48eUe3ateW0O7bCJ7Lmk1f/F37tjRs32uw1AQAAwDlocmTrww8/lHMdJoRPCm1r7du3p0mTJlG5cuVee5/Dhw+Tl5eXzV8bAAAA1KbJsOXu7i4ngNYSre0PAAAA6IPmphHfxp9//kkdOnSgkiVLUs2aNWn8+PH09OlT6+2vXr2iOXPmUK1atahUqVLUokULOnLkiHV6kI0cOZJGjBhBt27dkm0LFy6kqlWrUp06deS54k4jbt26lZo0aSKvyff5/vvvHVA5AAAAaJ3uw9alS5fo448/purVq0sAmj59Op0/f566du0qyymwiRMn0po1a2j48OG0bds2uW/v3r3p6tWrMj3IPv/881hTl5s2bZIANXv2bEqXLl2s19yxY4c8V9OmTeU1Bw8eLK+Lni4AAADQxTQiB6Ldu3fH2163bl2aNm1arG1LliyRESgOTyx37tw0Y8YMue+xY8eoWLFitH79ehozZgzVr19f7jNo0CAJYjxilTdvXtnG/Vh8efz4sbWPK3/+/AnuH4ewBg0aULdu3ayv+ezZM5n+BAAAANB82OKjDYcOHRpve9q0aeNtu3DhAl2/fp38/f3j3RYcHCyP4WlEnj6MiUej/oufn99rbwsKCqKGDRvG2ta6dev/fD4AAABwTpoMW56env8ZduKuFty4cWPryFZMvr6+FBIS8lb78F+jVG5umvyxAQAAgAbpvmerQIECdOXKFQlnlkt0dLQs5XDnzh25nipVKjp79my8kahly5a91Wvmy5cv3vPx6/Xv3z9ZtQAAAIB6NDlE8/z5cwoNDU3wtvTp08e6zo3wfCQiH4HYsWNHioiIkO/5ObiXKnXq1LKdj0bkkS4OZ9zDxVOBkydPlufgqUaecgwLC0vU/vXs2ZP69esnRyLWqFGDTp8+TatXr6Yvv/zSBtUDAACASjQZtnbu3CmXhHBoiql06dK0ePFi2d68eXMJTpUrV5ajBTloWfqzXF1daezYsfTkyRMqXLgwLVq0yNocz4GNn4MD1+jRoxPVU8bB6ttvv6UpU6ZQzpw5ZemIZs2a2aR+AAAAUIeL2bI+Ajhc0PdHcW5EAIC35JHFiwp2rijfh4U9o+hoE6nIzc1APj6eqFEDfH09ydXVoM+RLWc+Yz0AALwdfIaCViFsaQQPMPo1Ku7o3QAA0DU+Qt1g0P2xX6AYhC2NcHFxoYiIKDIatTtcmhw8zOrt7aFsjarXx1Cj/qlen+WzNEOG+GsyAjgSwpaG8IefluembUH1GlWvj6FG/VO5Pu71AdAahC0NSUyTnd5rU7VG1etjqFH/VK+Poca3ZzKZ5QK2h6MRNYJ/DTz8DQAA4KgRz/DwSE0ELjccjQj2wEFr7dq1r13MFQAAwF4yZ85Mbdq0IYPBRRNhSzUIWxrCQev27duO3g0AAACwIXUntQEAAAA0wKDV/qWNGzdSQEAAVapUiYoXL0716tWjiRMnanaabd68eXIaHwAAAABNhy1ekK5Pnz5ykuhatWrRihUr6Oeff5ZzFp49e5ZatmxJDx8+dPRuAgAAAOizZ2vZsmV08OBBWrduHRUrVsy6PUeOHFSxYkVq2LAhLVmyhIYNG+bQ/QQAAADQ3cgWTx+uXLmSmjRpEitoWbi7u9Py5ctp4MCBdOvWLSpUqBAtXLiQqlatSnXq1KGnT59SeHg4jR8/nmrUqEElS5aktm3b0tGjR/9zui/uNn7e9evXU5cuXeQ5qlWrRvPnz4/1GD5ykKc2+fbevXvT48eP7fIzAQAAAH3TVNjiABUSEkJVqlR57X1y5sxJqVOntl7ftGkTff/99zR79mzy8PCgrl270okTJ2jatGnS91WwYEHq1q0bnTlzJkn7MmXKFGrevDlt376dOnbsKIHs+PHjcttPP/1EX375pYSxLVu2UJkyZeiHH35IRuUAAACgKk2FrQcPHshXX1/fWNt55Mjf39964alEi/bt21P+/PmpRIkSdPjwYTp//jzNmDGDKlSoINt5lKtAgQIy9ZgUzZo1o6ZNm1KuXLnk9b29venPP/+U27iPrEGDBtShQwfKkycP9ezZU/rLAAAAADQdtnx8fORr3Ck5DkybN2+WCzfIR0VFWW/z8/Ozfh8UFEReXl4ymhVzsdBy5crJbUmRL1++WNf5eV+9emV9HQ53MXEIBAAAANB02OJRJF7FNmaPFcuaNauEKr6kT58+Xh+XxevOPMTb3dxefyxAdHR0vG0xpyoTen4+ajKmVKlSvfb5AQAAwHlpKmy5urpSp06dZATr0qVLCd7nzp07r308N7Y/efIk1igWB6STJ0/KlKIlFD179izW465fv56k/SxSpIh1StGCl6UAAAAA0HTYYt27d5f+J+7FWrBggYQubpzfv3+/NL9v2LBBFjpNCB81yEFoyJAhdOzYMQoODpZGdg5fnTt3lvuULl1ajljkHi5+3jVr1tChQ4eStI/co7Vnzx5avHgxXbt2TXq4du/ebZP6AQAAQC2aC1sGg0GOLOTV4vmoQg5Y9evXl9DEjfO8NERgYOBrR8aWLl1KRYsWpb59+0p/1+XLl2XtLg5ZjINav3795H7caH/kyBHq379/kvaxZs2a0oTPwa9x48ay6CrvJwAAAEBcLubXNTpBiuO1vHAiagAASGm8cDgPUoSFPaPo6Ng9yY7g5mYgHx9PzezP6/j6epKrq0F/K8g7Mz44AAAAIKXh7499YWRLI/jXwMtUAAAAOILRaKLw8EgymRwfC9wwsgX2wEErIiJK3uwq4jejt7eHsjWqXh9Djfqnen0MNb49DllaCFoqQtjSEP5Ho+UEbwuq16h6fQw16p/q9THUCFqCsKUhiRmK1Httqtaoen0MNeqf6vUx1Jh8GOGyPfRsaQR6tgAAQAv4DClhYY7t3XJDzxbYAwety6dWU9TT+47eFQAAcFIe6bJQAf92ZDC4YHTLhhC2NISDVmREiKN3AwAAAGxIuUntgIAAOUdiQpcpU6a88fF8Emy+L5/KBwAAACC5lBzZ+vDDD2nUqFHxtnt4eLzxsf7+/nT48GE5NRAAAABAcikZttzd3d96NdzUqVNjJV0AAABw7DTiy5cvadWqVXIepTZt2lBwcDCtXr2azpw5Q1r3+PFjGj16NFWvXp2KFStGlStXlutRUVEJTiPWrl1bph8bNGhAFStWlPMXFi5cmEJCYvdW8c8hMdOUAAAA4FySHLYePXpELVu2pIkTJ9L169clYD1//pwOHDgg/VKnTp0iLRsxYgRduHBBQtPu3btp5MiRtHnzZlq7du1rH7Ny5UoJZIsXL6aePXvKFOOWLVust//zzz/0119/yc8FAAAAIFlha+rUqfTs2TPasWMHbdq0SdaHYnPnzqUSJUrIV0fbtm2b9F7FvHTv3l1uq1q1Kk2aNIlKlSpF77zzDjVp0oSKFi1KQUFBr32+GjVqUJUqVaQ+nmZs2rRprLDFYY1vy58/f4rUBwAAAAr3bP3yyy/0+eefk5+fHxmNRuv2NGnSUNeuXWXkyNF46m/o0KHx+rhY+/btaf/+/RIUr127RleuXJEpw7x58772+bjWmHgEa+nSpXT69GkqWbIkbd26lXr06GGnagAAAMCpwtaLFy8oQ4YMCd7m6upKr169Ikfz9PSMF5Asq+L26tWLLl++TI0aNZI+LO7bGjNmzH8+nyWoWfAIFo+MccjiKdQHDx7I8wEAAAAkO2zxdBk3x/PUWkLTd8WLFyetunjxIh06dIjWrVsnYYlxOLxx4wblypUrSc/Fo1vffPONBLi6deuSt7e3nfYaAAAAnKpna8CAAXTkyBHpW5ozZ46cZuann36i3r17065du6hPnz6kVZkyZSI3NzfauXMn3bx5k86ePUsDBw6k0NBQOcIyKRo2bChHNm7cuJGaN29ut30GAAAAJwtb5cqVo++++04WCOWj87hBftmyZRJYFi5cSJUqVSKtypo1K02ePFl6tngKkYMjb+vSpQudO3cuSc+VLl06GdFKnz69NN0DAAAAJMTFbDmc8C1wvxKP7nDw4D4pZ8NLXZQpU4YGDRpkk+c78+scnBsRAAAcJq13TipZfQCFhT2j6GiTw/bDzc1APj6eDt+PN/H19SRXV4P9VpDnU9ocP36cwsPDZXqOFwflUS9nsHfvXun/4rW1eCkMW55tHQAAwFHwd0gjI1s8ksVH9HHQ4P4nPjKRAxcvA/Hee+/RvHnzZC0qlbVt21YWMuUFUZs1a2aT5+RfA/e/AQAAOBIf+BUWFkkm01tPfCWbm2IjW0kOW8OHD5fV4nkF+Tp16khA4F8Mj/bwEgotWrSQ+0DSRUREkdGo3TdVcvCb0dvbQ9kaVa+PoUb9U70+hhqTj0OWI4OWimErydOIHLR4wVBuDrcwGAz0/vvvy6l8+DQ4CFtvh//RaPlNZQuq16h6fQw16p/q9THUCLo+GpEHwrhHKyHZs2enyMhIW+wXAAAAgBKSPLLFa0r973//owoVKsQ6AjE6OlpO2Iw1p95eYoYi9V6bqjWqXh9Djfqnen3OUiP6e50gbPH6WnxOQe7X4guvUxUWFkYHDx6ku3fvyrpT3DhueUMEBgbaY7+VwyOGPAevOtVrVL0+hhr1T/X6VK/R0f1UkHRJbpDnkzwn+sldXGjfvn1vsVvOaeelEHoUmbSV7AEAwHn4pk1NHxbOKd9rvXk8OdycvUGeV18H++Cgdf/pc0fvBgAAANhQkie1v/jiCzp9+rRNV2EvVKhQgpcpU6bI7SNGjEjSyBuv9fVffvnlF7py5Yp8f/ToUXmtW7duJbsWAAAAgGSPbP3xxx/0448/Uu7cuWVNLT4hdZYsyVtx9sMPP6RRo0Yl2B/Gjfeurq5kKyEhIXLS7OXLl1P+/PnJ399fVsP39fW12WsAAAAAvHXY+vnnn+nkyZO0efNmWrRoEc2ePVtOxMzBixvmU6VKldSnJHd3d8qcOTOlhLgtarzafUq9NgAAADiftzo2tmzZsjRhwgQZEeKpPg4sfARitWrV6KuvvqKgoCCb7WDcaUR+TV5eokSJEtSoUSPasGFDvGnA0NBQ6tu3L5UuXZoqVqxIkyZNktMJ8X04ELJOnTrJdGPcaUSehlyyZAn169dPRr348VwTj7AlZR8AAAAAWLIWIkmTJg2VL19eTkCdL18+OW/itm3bZGqxR48edO/ePZv+lPnkz3xeRj7p9ZYtW+iTTz6RsBfX+vXrZb94Xz777DNatmwZbdq0SRZd5SlQxkGra9euCb7OnDlz5PFbt26lYcOGyfphP/30U5L2AQAAAOCtphEZrxK/e/duCRvHjh2jtGnTSt8VnxuxVKlS0kA/aNAgGjBgAK1Zs+aNz8ehiJ8v7ujZ4sWLY23j0FS8eHEJQCxv3rz08OFDOU9jTHzqoM6dO8v3uXLlkv6sc+fO0UcffWTtzeL1wGIuyhoTj9DxyJfl8StWrKA///xTTjqd2H0AAAAAeKuwNWTIEFn+ISoqSgIRh4z69etLM7sFBy5LMEkMnrrj8y3G7eOK68KFC1SlSpVY23gEKi5u3o+Jg9WLFy8osXiULiYvLy969epVkvYBAAAA4K3CFvc4tWnThtq2bRsv1ERERNCvv/5KDRs2pEqVKkkfU2LwCJOfn98b78dHJZpMb17cLKGjF5Oydiv3oL3u8YndBwAAAIC36tl68OABNWjQIF7Qsoz6WE7Vw+dO/OCDD2z6Uy5cuDCdOXMm1rZTp06l6DmlbLEPAAAA4DwSNbI1fPhwunPnjvX6uHHjKF26dPHux+dMzJQpE9kLN7Tz9OT06dOpZcuWsjDp3LlzkxSiuL+M8RGTRYsWdcg+AAAAgPNI1MgWj1DxNFrMqTjLdcvFYDDIUgu8zIK9FCxYkObPn08HDhygxo0bS8jp2LGj3JbY9b18fHwkJE2dOlWOOnTEPgAAAIDzSPKJqHndKx7ZittEnhJ4+s7NzS3WiBQfyfj555/LVB7fpud9+OHPf3BuRAAAeK0s6dypQ5k88r3WT9KcHG7OfiJqXgbBUXiNq2nTpsm6VkWKFKHr16/LelnckJ8SQcve+8BncwcAAHgd/J1wkpEtR+Jd/frrr2WBUl4wNWPGjBJy+vfvn+BSEXraB35e9HwBAMCbmEzcuuOi+VGf5HBTbGRLV2FLdRERUWQ0avdNlRz8ZvT29lC2RtXrY6hR/1Svz1lq5P8xz5AhreaDSHK4KRa2UmbuDRKFPxi0/KayBdVrVL0+hhr1T/X6VK+RgwjoC8KWhiQmHeu9NlVrVL0+hhr1T/X6nLVGnlbkC2gXphE1Aj1bAADwtqN44eGRSgUuN0wjgj1w0Pp6/QUKCY109K4AAIBO5Myclvp8VFQa5lUKW6pB2NIQDlrX7jx19G4AAACADWliUrt27dpy0mrLhc8/WKZMGVmZ/fjx4yny+rxW1uts3Lgx0SfVBgAAANBc2LKcc/Dw4cNyOXToEK1Zs0bOv9i9e3e6ffu2Q/eNT7zN+wUAAACg27DFJ4jOnDmzXLJkySLnIBw/fjw9f/6c9uzZ49B948VKeb8AAAAAdBu2EmI5/U3q1KnlnITt27cnf39/Kl++PPXr18864tWnTx/q1KlTrMdevXpVpv4uX74s13/99Vdq06YNlSpVit577z2aNWsWGY1G6/1DQ0Opb9++cjLtihUrygm1LbfHnUZ89uwZTZgwgapVqyb7w9Od586dS5GfCQAAAOiLZsMWnwrnyy+/lBEvDke9evWSkLV161ZatmyZBC0++TNr0aIFHTt2jO7cuWN9/ObNm6lEiRJUoEABOUF0z549qWzZshKcvvrqK5mm/Oabb6z3X79+vTw/n1T6s88+k9fgU/IkZODAgTLVyYGMXydXrlwyDfr48eMU+MkAAACAnmjmaMSFCxfS0qVL5fvo6Gh6+fIl5cuXj2bPni29W2FhYTK9mDNnTgk3vP3hw4dy/xo1alCmTJkkiHEoM5lMtGXLFglYlpNn84jWsGHD5Do/Lwc5y+PZ+++/T507d5bv+fmXL18uo1UfffRRvBEzDlpLliyRkS02btw48vb2ln1Mnz59Cv3EAAAAQA80E7batm1LAQEB8r3BYKAMGTKQl5eX9XZulOepu7lz51KlSpUkYH344YfW6cYmTZpIwOKw9ccff9CjR4+oUaNGcntQUBBVrVo11ut98MEHsa7nzp071nUOTS9evIi3n/xcjKcbLdKkSUMjR460wU8BAAAAVKOZaUQON35+fnLhkaWYQYsNHTqU9u/fL1N4vNo6B6+WLVvKCBjj74ODg2U0ike46tSpYx1lsvR+/RdXV9d42xJaXD8xzwUAAACgubD1X3jqbuzYsZQxY0Zq166djG4tXrxYwtWlS5esU4PcrL5z507at2+f9HFZ8G1nz56N9Zzff/89tWrVKsn7ws/FYj4fT3vyWl27du1KRpUAAACgIl2ELR8fH9q+fTt98cUXErD++ecfaV7nkau8efNa78ejWytXrpSlGmJOG/IU5F9//UVz5syha9eu0cGDB6U5vmbNmknelzx58kh/Fy9LwdOVvC9jxoyRKccKFSrYrGYAAABQg27C1rfffkshISHUunVrat68Od26dYu+++47aZ634B4unvpr1qxZrGnBIkWK0Ndff00HDhyQPi4OSrxUxCeffPJW+xMYGChHLg4YMEBG0PgoSG6Y9/X1tUm9AAAAoA4Xc0KNSTp18+ZNGXXiqcS4De968Pn/TuDciAAAkGi5s6ejwE/KUVjYM4qONpEq3NwM5OPjqfm6fH09ydX1zeNWSnR788gSL3q6atUqql69ui6DluXs7QAAAImFvxv6oETY4vWtRowYISFr/vz5pEc8wNjno6KO3g0AANAZo9FEJpMyk1RKUmoaUe8iIqLkH42KeJjV29tD2RpVr4+hRv1TvT5nrZGDlmphyw3TiGAv/I9Gy28qW1C9RtXrY6hR/1Svj6FG0BJdHI0IAAAAoFcY2dKQxAxF6r02VWtUvT6GGvVP9fq0UKOKU3qQfAhbGsGtczwHrzrVa1S9PoYa9U/1+hxZo8lkpLCwKAQuiAVhSyNcXFzozvaF9PLhbUfvCgAAvIXUGXNQ9oa9yGBwQdiCWBC2NISD1ov71x29GwAAAGBDSoWtgIAAOnbsWKxtqVKlokyZMsmJoj/77DPy8PCwyevkzJmTJk+enOznAgAAALUpFbYs50ccNWqU9XpkZCQdPnyYJk2aRCaTicaNG+fQ/QMAAADnolzYcnd3p8yZM8fa5ufnR+fOnaMdO3YgbAEAAECKUvf43zjSpElDbm7/Zsvnz5/T7NmzqU6dOlSiRAlq2rQp7d69O9b9+VyLXbp0IX9/f6pSpQqNHTuWoqKi4j1vdHQ09e/fn2rWrEk3btxIsXoAAABAH5QPWxyGDhw4QFu2bJFQxQYPHkybN2+mMWPG0NatW6lu3bo0YMAA2rt3r9x+8+ZN6ty5M2XJkoXWrl1L8+bNoyNHjtD48eNjPbfRaKRhw4bJqNmKFSvo3XffdUiNAAAAoF3KTSNu27Yt1igVj2LlyJGDunXrRr1796bg4GDat28fLViwQEajWL9+/ejSpUuyjYPXunXrKEOGDBQYGGgdDfvqq6/o1KlT1ufl/q+RI0fS6dOnJWhxwzwAAACA8mGLjzocOnSoLBLKU4ETJ06UaUAOWhyc/v77b7lf2bJlYz2ufPnyNHPmTPk+KCiIihUrZg1arFKlSnKx2LlzJ7169Yry5csXr0cMAAAAQNlpRE9PT2mIz507NzVp0oTmzJlD69evl5Gp/8LhzBKuYoas17FMMd69e5fmz59vs/0HAAAAtSgXtuLi0aiPP/6YVq9eTYcOHaJChQrJ9pMnT8a634kTJyh//vzyPX+9cOGC9GRZ7NmzR0bNXrx4YR0JK1WqlIyiLVmyRPq2AAAAAJwubDFufueRLl72IVu2bFSrVi1pdufG+X/++UdGpriPq2vXrnL/9u3bU1hYmByByD1ex48fp6lTp0pw46MaY2rbti2VLFlS+rdevnzpoAoBAABAq5wibHFAmjBhAt2+fZtmzZolvVncCM+Ln/JU4y+//CJHHNavX1/unzVrVlq6dCldvXqVmjVrRoMGDZKA9sUXXyR4TkOeouTQ9s033zigOgAAANAyFzM3K4EmXF8+FudGBADQqTRZ/Miv03gKC3tG0dEmu72Om5uBfHw87f46juSmkxp9fT3J1dXgfEcj6v2M8QAAoE/4DIfXQdjSCB5gzN6wl6N3AwAAksFkMpLJhAkjiA1hSyO49ysiIoqMRu0OlyYHD7N6e3soW6Pq9THUqH+q16eFGjloIWxBXAhbGsIfDFqem7YF1WtUvT6GGvVP9fqcpUbQD4QtDUlMk53ea1O1RtXrY6hR/1SvLyVrxAgWJAXCloZ6tnjoW3Wq16h6fQw16p/q9aVEjUaTicLDIhG4IFEQtjTUs7X6wkq6H3nP0bsCAAD/IUvarNSuaEcyGFwQtiBRELY0hINWyNMQR+8GAAAA2JBB71NvGzdupICAADmVTvHixalevXo0ceJECg0NlfvcunVLzod49OhRu+4Lr0J/5coVu74GAAAA6I9uw5bJZKI+ffrQ5MmT5VQ6K1asoJ9//plGjx5NZ8+epZYtW9LDhw9TZF9CQkKod+/eKfZ6AAAAoB+6nUZctmwZHTx4kNatW0fFihWzbs+RIwdVrFiRGjZsSEuWLJGTStsbzngEAAAASo1scbhZuXKlnEQ6ZtCycHd3p+XLl9PAgQOt206fPk2tWrWSqcY6derQhg0bYj1m8+bN8nwlS5ak2rVry0mljUZjrNs5wJUoUYKqV68uU5UvX76UaUp+PtapUyc5oTUAAACArsMWBxyeuqtSpcpr75MzZ05KnTq19fr3339Pn3zyCe3YsUPCEk83Xr9+3TpKNmbMGGrTpg1t3bqVBgwYIKNiPEXJLl26JPfv168f7d69mwIDA2nLli20ePFiyp49O/34449yPw5aXbt2tXv9AAAAoB+6nEZ88OCBfPX19Y21nfumYjbC85TiwoUL5Xvu7+IRKzZo0CBavXo1nT9/nt5991369ttvqWPHjtShQwe5PXfu3BQeHk7Tpk2j/v37S7jjpRk4wPFz8oXDWLp06cjV1dW6H+nTpydPT88U+zkAAACA9ukybPn4+MjXx48fx9o+fvx4ev78uXzPDfP79++33pYnTx7r9xyK2IsXL+jRo0cS3sqWLRvruSpUqECvXr2iq1evykiYv78/ffTRR/TOO+9Q1apVZeqQpyQBAAAAlJtGzJUrF2XOnDnecg5Zs2YlPz8/uVgClYXBYEiw9+t1ze18tCNzc3OjNGnSSA/Ypk2bZKrx2rVrMor2+eef27QuAAAAUI8uwxZP3XEzOjetcz9VQu7cuZOo58qUKZNcTp48GWv7iRMnKFWqVDLNyEc9zp8/n4oWLUo9e/aU4MXTi9z/xXiKEQAAAECZaUTWvXt3unDhgiztwAGoZs2a0kMVFBQkRyoeOXJE1tpKjG7dutGsWbNkxIynCM+cOSPhikexvLy8JHR9/fXX8vw8fcjTlwcOHJCpRZY2bVr5yq/NgYwfAwAAAKDrsMXTgrNnz6adO3fKMg482hQRESGjVOXKlZPAVb58eWlufxM+gpCPXOQjFvlIw2zZslGPHj0khDE+6pGXeli6dKmEMl5aokaNGjRixAhrDxkHu6lTp8oRjnzkIgAAAABzMWNFTs2Yc2IGzo0IAKBxOdPlpAHlhlBY2DOKjv63vzclubkZyMfH02GvnxLcdFKjr68nuboa1OzZAgAAANAL3U4jqihL2qyO3gUAAHgDfFZDUiFsaQTP5rYr2tHRuwEAAIlgNJnIZEIXDiQOwpZG8PIRERFRZDRqd246OXhO29vbQ9kaVa+PoUb9U72+lKyRgxbCFiQWwpaG8AeDlhsBbUH1GlWvj6FG/VO9PmepEfQDYUtDEnNEg95rU7VG1etjqFH/VK+Pocb4MArneFj6QSP414CV6AEAwNZMRiOFhUfpKnC5Kbb0A0a2NIKD1uXlyynq3j1H7woAACjCI2tWKtCpExkMLroKW6pB2NIQDlqRiVjxHgAAAPRD3UntJOJT7wQEBDh6NwAAAEAxCFsAAAAAdoSwBQAAAGBHCFsJePXqFc2ZM4dq1apFpUqVohYtWtCRI0estwcHB1OPHj3I39+fqlWrRkOGDKHQ0FCH7jMAAABoE8JWAiZOnEhr1qyh4cOH07Zt26h69erUu3dvunr1Kt27d4/at29Pfn5+tH79elqwYAE9ffqU2rRpQ5GRkY7edQAAANAYHI0YBwcnDlFjxoyh+vXry7ZBgwbJOlh829atWylbtmw0evRo62Nmz55NlSpVol27dskoGAAAAIAFwlYc//zzj0wj8vRhTIMHD5av8+fPp8uXL8sUYkwvXryQ6UUAAACAmBC24kiVKtV/3m4ymWQUa+zYsfFu8/LysuOeAQAAgB6hZysO7sXiwHX27NlY21u3bk3Lli2jAgUKyAhW9uzZ5b58SZ8+PQUGBlJQUJDD9hsAAAC0CWErDg8PD+rYsaMcjbhv3z66ceMGzZw5U4LUe++9J83xT548oaFDh9KlS5fkwj1dHM4KFizo6N0HAAAAjcE0YgK4P8vV1VWmCjlYFS5cmBYtWkR58+aV21euXEkzZsygdu3ayf3KlClDy5cvJ19fX0fvOgAAAGiMi5kPswNNODNtGs6NCAAANpP2nXeo5GefUVjYM4qONpFeuLkZyMfHU/P77evrSa6ub54kxMiWxs7ODgAAYCv4u6INGNnSCP41uLi4OHo3AABAMSajkcLCo8hk0s+fezeMbIE9cNCKiIgio1G7b6rk4Dejt7eHsjWqXh9Djfqnen0MNcbHIUtPQUtFCFsawv9otJzgbUH1GlWvj6FG/VO9PoYaQUsQtjQkMUOReq9N1RpVr4+hRv1TvT6GGtXgasMatTCyh54tjUDPFgAAgO2ZjCYKC4+0S+BCz5bOcNDas/ooPbr/xNG7AgAAoATfLF5Ur11FMhhcHDq6hbClIRy0HoSEO3o3AAAAQOWwVbt2bQoJCbFe5/MUZsqUiWrUqEEDBgzAKu0AAACgK5oLW6xr165yYc+fP5fzEk6bNk3OWbh27Vry8vJy9C4CAAAAJIomD2VImzYtZc6cWS65cuWiOnXq0NKlS+nOnTu0ePFiR+8eAAAAgL7DVkJy5MhB9erVo+3bt8v1QoUK0dy5c6lWrVpUrVo1unbtGt2+fZsGDRpElStXpmLFitF7770nI2Im0/+tQ3L48GFq3rw5lShRgho1akQbNmyQ57r1/89JyCNps2fPloDH92natCnt3r3b+viNGzfKfli+Fi9enFq0aEEnT550wE8FAAAAtE43YYsVLFiQbt68Sc+ePZPrq1atksA1f/58yp07N33yySf05MkT+u6772jXrl0yFckjYfv375f7X7x4kXr16iVhbMuWLXL/KVOmxHqNwYMH0+bNm2nMmDG0detWqlu3rvSK7d2713ofHmFbs2aNBLlNmzaRh4cHjRgxQpZvAAAAANBt2PL29pavT58+la886sSjT6VLl5YRKb4+YcIEKly4sEw/dunSRZrr//77b7n/smXLZCRq2LBhlDdvXmrYsCH17dvX+vzBwcG0b98+Gjt2LNWsWZPy5MlD/fr1k1GuBQsWWO/36tUrGj9+vLxugQIF6OOPP6YbN25QaGhoiv9MAAAAQNs02SD/OjxqxdKlSydf/fz8rLe5u7tLAz2PaJ05c4auX78uIevBgwfWacQLFy5QlSpVYj1n+fLlrd9bQlnZsmXj3WfmzJmxtuXLl8/6vaVhn0MYAAAAgG7D1vnz52W60NPT0xqwLCIjIyVs8QhX/fr1pS+rZMmS1KFDB+t9XF1dY/VvJRZPD7q5xf5RpU6dOsH7AQAAAOgybN29e1em+Hr06JHg7dz4zmHsyJEjMnXIwsPD6eHDh9YQxNOLPOoV06lTp6zfc6M842Z3bry3OHHiBOXPn98udQEAAIDaNBm2eJTK0v/EI1U8vcdHCL7zzjvSH5WQbNmyyVduav/ggw+kiZ2n/nhq7+XLl3IbN8w3a9aMpk+fTi1btqQrV65Ig73ldDk8Ncghi/ux+DpPU/LRjxzy+PUBAAAAlAhbvKYWXywryGfPnp0aNGggYckyhRgXTxmOHDlSmuA5GGXNmlUew489e/as9WhGPnKRQxjfjxvgeepx3rx58jqMb+PLqFGjKCIiQh7Dt/MyDwAAAABJ5WJ2okYjnkLk3quiRYtat23bto0+//xzmU6M25eV0tbO2YtzIwIAANhIppwZqM2AuhQW9oyio5Pes/0mvr6e5OpqUGvph+TidbY6deok04K8AOrvv/8uo1a8BISjgxYAAACoyakSRuvWraUXLDAwkO7du0cZM2aUoNW/f3/SAt8sOOcjAACAan9XnWoaUcv418BN+QAAAGA7JqOJwsIjyWQyO2wa0alGtrSMg1ZERBQZjbafU9YCfjN6e3soW6Pq9THUqH+q18dQoxpcbVgjhyx7BK2kQNjSEH5D2aOBT0tUr1H1+hhq1D/V62OoUQ1GRWpE2NKQxAxF6r02VWtUvT6GGvVP9fr0UKMWRlkg5SFsaahni4dMVad6jarXx1Cj/qlen5ZrNBqNFB4ehcDlZBC2NNSztWnRZHpw56ajdwUAAOwgU/Zc1LznCDIYXBC2nAzCloZw0Lp744qjdwMAAABsSNmwVbt2bQoJCbFe59Px8Amqa9SoQQMGDCBfX9+3fu6NGzfKqYH4nI0AAAAAThm2GJ9LkS+WE1oHBQXRtGnT5HyIa9euJS8vbSx2BgAAAOrS5uEaNpI2bVrKnDmzXHLlykV16tSRE1zfuXOHFi9e7OjdAwAAACegdNhKSI4cOahevXq0fft2uc6jXb169aLy5ctT8eLFrYHMgs+dyCNhgwYNojJlytCECRPiPeeuXbvksWvWrEnRWgAAAED7nC5ssYIFC9LNmzfp6dOnMs2YIUMGCUo//fQT1a9fn6ZMmSInrbY4fvy49Htt2bKFAgICYj3X3r176bPPPqOxY8dS27ZtHVANAAAAaJlThi1vb2/5+vjxY+rUqRN98cUXlC9fPsqdO7f1pNRxm995O09F8n0sDhw4QIMHD6bx48dTq1atUrgKAAAA0AOlG+Rf58mTJ/KVR7Tat28vI1oXLlygGzdu0KVLl+Q2k+n/Tg+QMWPGBJvp+ajGly9f0jvvvJOCew8AAAB64pQjW+fPn5cRqsjISGrSpAn9+OOPlDVrVglemzZtind/d3f3BJ/nq6++ovfff59GjRpFUVFRKbDnAAAAoDdON7J19+5d2rdvH/Xo0UNGtMLDw2n37t2yDlfM6UM+fc6bNG7cmCpVqkQNGjSgmTNnSugCAAAAcJqRLR65Cg0NlQs3xHMze/fu3WXa7+OPP6Zs2bLJiBQfTXj79m06fPiw9GAxnh5MDF5WghvkV65cSSdPnrRzRQAAAKA3So9s8RIOlmUceOQqe/bsMgrFRyB6enrKkYc8pTh58mQ5MjFnzpzS6M4jX2fPnqV27dol6nX4MVu3bqXPP/9cjlh83bQjAAAAOB8Xc2LmyyBFfDu+D86NCACgqGzv5qceY7+msLBnFB39fwdhJZWbm4F8fDyT/Txa5qaTGn19PcnV1eDcI1t6PCM8AACoCZ/xzgthSyN4gLF5zxGO3g0AALAjo9FIJhMmlJwNwpZGuLi4UEREFBmN2h0uTQ4eZvX29lC2RtXrY6hR/1SvTw81ctBC2HI+CFsawh8MWp6btgXVa1S9PoYa9U/1+pylRtAPhC0NSUyTnd5rU7VG1etjqFH/VK/P0TVi1ApeB2FLQz1bPPStOtVrVL0+hhr1T/X6HFUjn+YtLCwSgQviQdjSUM/W9Z/O0YuHzxy9KwAAkERpMnqSX6PiZDC4IGxBPAhbGsJBK+r+vyfJBgAAADUoOXHPq7m3bt2aSpcuTf7+/tSyZUtas2aN9fawsDA5+bQtBQQE0IgRWLoBAAAAFB/ZWr9+PU2cOFFOCl22bFnphTpy5Ah99dVX9ODBA+rbty9NnTqVbt26JafZAQAAALAn5cLWqlWrZCTro48+sm7Lmzcv3bt3j5YvXy5hC2coAgAAgJSi3DSiwWCgU6dO0ePHj2Nt79mzJ61du1am+jZt2kTHjh2jQoUKyW0cvr799luqU6cOlSpVipo2bSpTkTEFBwdTjx49ZFqyWrVqNGTIEAoNDU3R2gAAAEB/lAtb3bt3pwsXLtB7770nAWvRokV05swZ8vLyojx58sj04ocffiih6fDhw/KYWbNm0erVq2nMmDG0bds26tSpE40bN45++OEHuZ1Hxdq3b09+fn4yTblgwQJ6+vQptWnThiIjIx1cMQAAAGiZctOI9evXp2zZssmUIfdqHTx4ULbnzp2bAgMDpY/L3d2dUqVKRZkzZ5awtGzZMpo5cybVrFlT7vvuu+9SSEgILVmyhDp06CBBjJ9z9OjR1teZPXs2VapUiXbt2kUtWrRwWL0AAACgbcqFLcZHIfKFF5i7dOmSBK6VK1fKNOCePXti3ffKlSv04sULmRbkKUiL6OhoevnyJT1//lxGyi5fviyjYTHx43h6EQAAAMApwtbdu3dp4cKF1KtXLxmJ4vBUtGhRudStW5caNWpEx48fj/UYS7M8j1RxI31cqVOnltDGo1hjx46NdztPTwIAAAA4Rc8WByNePytuczvz9vaWr5kyZZLV2i04YLm5udHt27elJ8ty4dEwnkbkwFagQAEZwcqePbv19vTp08u0ZFBQUIrWCAAAAPqiVNjy9fWVBvk5c+ZI0/vFixfp5s2b9Msvv8iSDxUrVqRy5cpR2rRp6f79+3Ibj0y1bdtWHrNlyxbZxk3w06ZNoyxZssjzcnP8kydPaOjQoTItyZdBgwbR2bNnqWDBgo4uGwAAADRMqWlENnDgQGmGX7dunRxNyD1XOXLkkCMQeXqRNWvWTHq3eFrx559/ppEjR5KPj48ELg5hPILVv39/CW4sV65c0vM1Y8YMateuHbm6ulKZMmWkCZ8DHgAAAMDruJixwqdmBH1/FOdGBADQIY8sXlSwc0UKC3tG0dEmu76Wm5uBfHw8U+S1HMVNJzX6+nqSq6vBuaYRAQAAALRGuWlEPUuT0dPRuwAAAG8Bn9/wXxC2NIJnc/0aFXf0bgAAwFviZYJMJnTmQHwIWxrBy1FERESR0ajduenk4Dltb28PZWtUvT6GGvVP9focXSMHLYQtSAjClobwB4OWGwFtQfUaVa+PoUb9U70+Z6kR9ANhS0MSc0SD3mtTtUbV62OoUf9Ur8+Za8SomrZh6QeN4F9DzJXtAQAAkjKSFx4eqUzgclNs6QeMbGkEB621a9dSaGioo3cFAAB0JHPmzNSmTRsyGFyUCVuqQdjSEA5afI5GAAAAUIcuw1ZAQAAdO3Yswdu6du1K586do5w5c9LkyZPf+FwjRoygkJAQWrFihR32FAAAAJydLsMW43Mdjho1Kt52Dw8P+uSTTxL9PPwcRqPRxnsHAAAAoPOw5e7uLvPUyeXl5WWT/QEAAABIiLrHxv5/zZo1o5EjR8ba9uuvv1KJEiUoPDxcphF5WpIdPXqUihYtSgcPHqRGjRpR8eLFqX79+rR3717rY3kUbNasWVStWjUqXbo09e/fnyZOnGh9DgAAAACnClstWrSg3bt30/Pnz63bNm/eTLVr16YMGTLEuz+HqWnTpsn04k8//UQFCxak4cOH07Nnz+T26dOny1GDY8eOpQ0bNsjoGvq9AAAAQLmwtW3bNvL394916d69e7z7NW7cmF6+fGkdnXr69Kl8zyHsdQYOHEiVK1em3Llz06effiqPCQoKoqioKFq1apXcXq9ePcqXLx+NHj1aRsMAAAAAlOrZ4pGpoUOHxuvjisvHx4fq1Kkjo1k8Nbhz507p0+JpwNfJmzev9ft06dLJ11evXlFwcLCMkPH0Ycz1scqWLUuXLl2yUWUAAACgEt2GLU9PT/Lz80vUfVu2bEm9e/emhw8f0tatW6lp06bk6ur62vunTp06wRXe3dz+/XFh0X0AAABQfhoxKXgUi3ur1q1bRydOnPjPKcT/wuGOR8/++uuvWNtPnz5toz0FAAAA1eh2ZCspDAaDHJW4YMECOQqRe63eBq/hxUcdzp07V8IbPw8HOA5bFSpUsPl+AwAAgP45RdhiPJrFYettR7UsBgwYIP1b3BjPDfO1atWSnrAXL17YbF8BAABAHS5mJ2lA4jW0evXqJWtsJWch0z179khDvK+vb6xTBGXLlo0CAwOTtY/z58/HuREBACBJcuTIQX379qWwsGcUHW0iFbi5GcjHx1PzNfn6epKr65s7spQf2eIjCHnZBh7Vat68ebJXjF+yZIks/zBs2DA5UnHfvn30xx9/0NKlS5O9r7ZYER8AAJwL/nZon/IjW/v376fBgwdTqVKlaN68eeTt7Z2s57t165ac4Pr48eOyDET+/PnlSEdedys5+NfAy0gAAAAkldFoovDwSDKZ1PiT7qbYyJbyYUtPTCYTqfrb4BzJByqoWqPq9THUqH+q18dQozpcXQ0SIrXMYHBJ1EAJwhYAAACAHTnFOlsAAAAAjoKwBQAAAGBHCFsAAAAAdoSwBQAAAGBHCFsAAAAAdoSwBQAAAGBHCFsAAAAAdoSwBQAAAGBHCFsAAAAAdoSwBQAAAGBHCFsAAAAAdoSwBQAAAGBHCFsAAAAAdoSw5UAmk4nmzp1L1atXp9KlS1OPHj3o5s2bpIqFCxdSQEBArG0XL16kjh07Sr21a9em5cuXk56Eh4fTF198Qe+99x6VKVOG2rVrRydOnLDe/vvvv1OLFi2oVKlSVL9+fdq+fTvpzcOHD+mzzz6jSpUqkb+/P/Xs2ZOCg4OV+R3G9c8//0idGzduVKrGe/fuUaFCheJdLHWqUOPmzZupQYMGVKJECWrYsCHt3LnTetutW7eoV69e8u+0WrVqNHv2bDIajaQXR48eTfD3x5c6deooUSOLjo6mOXPmUK1ateTfYYcOHeivv/4iCxXep8IMDjNv3jxzxYoVzb/88ov54sWL5q5du5rff/9984sXL8x6t3LlSnPhwoXNHTt2tG579OiR1Dty5EjzlStXzOvXrzeXKFFCvurFxx9/bG7UqJH5+PHj5qtXr5rHjx9vLlmypDk4OFhq4npmzpwp3y9evNhctGhR82+//WbWkzZt2phbtWplPn36tNTRr18/c7Vq1cyRkZFK/A5jevnypblFixbmggULmjds2CDbVKnxwIEDst/37t0z379/33qJiopSosbNmzfLvy/+rLl+/br5m2++kc+cP//8U36v/Fnas2dP899//23es2ePuUKFCuY5c+aY9YL/DsT8vfHl559/NhcqVEh+TyrUyObOnWuuWrWq+ddffzVfu3bNPGrUKHPZsmXlfavC+9QCYcuB/5D8/f3NP/zwg3Xb48eP5Q/3tm3bzHp19+5dc69evcylS5c2169fP1bYWrBggfzRfvXqlXXbjBkz5ANDD/iDgP8onzhxwrrNZDKZ69ata549e7Z5zJgx5o8++ijWYwYPHiwhWi/Cw8Nln/nD24L/R4Dr5vCl999hXLzvnTp1ihW2VKlx0aJF5saNGyd4m95r5H93tWrVMk+ePDnWdv63xrXxZ2jx4sXl/WyxZs0ac5kyZXT7P7PPnj2TmkeMGCHXVamxSZMm5kmTJlmvP3nyRP497t69W/fv05gwjeggly5domfPnlHlypWt27y9valo0aJ0/Phx0qvz589TqlSpaOvWrTKVFhNPt1WoUIHc3Nys23iq6tq1a/TgwQPSOh8fH1q0aJFMWVi4uLjIJSIiQuqL+fu01Hfy5En+nxrSg/Tp09OMGTOoYMGCcv3Ro0e0bNkyypYtG+XPn1/3v8OY+N/Z2rVrafLkybG2q1Lj33//Tfny5UvwNr3XyFO/ISEh1Lhx41jblyxZItNqXF+xYsXk/RyzvqdPn8q0lB4tWLCAoqKiaPjw4XJdlRozZsxIv/zyi0yJ8hQo/5tMnTo1FS5cWPfv05gQthzk7t278jV79uyxtmfJksV6mx7xnPq8efMoV65c8W7juviPdtx62Z07d0jrOAzXqFFDPggsdu/eTdevX5e+u9fVxx+QYWFhpDdjxoyR8Mh9ZxMnTqS0adPq/ndoweF42LBhNHr06Hj/BlWpMSgoSMIy98BUqVJF+gsPHTqkRI0ctlhkZCR169ZN3qetWrWi/fv3K1FfXJb/6enduzdlyJBBqRpHjRol/4POfWj8P7KzZs2SXuZ3331XmRoZwpaD8B9gFvMPN0uTJg29ePGCVPT8+fME62V6rPnPP/+kkSNH0vvvv081a9ZMsD7L9ZcvX5LedO7cmTZs2ECNGjWiPn36yKilKr/DcePGSTNu3JERpkKN3HR89epVevz4MfXr109GZLnBmA924IM49F4jj94wHuXh9+fSpUupatWq9OmnnypRX1yrVq0iLy8vatOmjXWbKjVeuXJFavv6669lVIsPMBo6dKiMzqlSI/u/sTlIUe7u7tY/wpbvLW8gDw8PUhHXGTd0WP7B8KiJnuzdu1c+EPgooOnTp1s/BOLWZ7mux98pTxsyHtU6ffo0rVy5UonfIR/BxtMT27ZtS/B2FWrkaRc+ms3V1dX6+VK8eHG6fPmyTLXpvUYeCWE8qtW8eXP5vkiRInThwgX67rvvdF9fQu/ZZs2axfpboUKNd+7coSFDhsioXbly5WQbj25xAOMZEhVqtMDIloNYpi7u378faztfz5o1K6mIh4MTqpfpqWYOHTxawIcqcx+F5f+0+HeaUH38ocD/56aX6QqeNuSREQuDwSDBi2tR4XfIo3W8vAWPRvLoFl/Y2LFjqXv37krUyDw9PWP9cWYFChSQJSH0XqNlHy29hRb8PuXeH73XF7e/l5cEijsKq0KNp0+fplevXsXqg2Xc78vtGSrUaIGw5SDc/JcuXTr5v8+YfST8f2bly5cnFXFd3Cwecx2YP/74g/LkySNNknoZzp8wYYL0wcycOTPWEDf/n9mxY8di3Z/r49EvDix6wE2ngwcPlqkYC/4w5PclN1ur8DvkkcgdO3bIaIHlwvr37y+jeCrUyCNY/L6L+fnCzp07J4FE7zVyYziHSf5jHbdPjXt9uD5+z1qmGy318WP4s1dPeBSWfydx91uFGrP9/34sPpgj7u8xd+7cun+fxuLowyGdGa/HxOui7N27N9Y6W7x+igqGDx8ea+mHBw8emMuXLy/bL1++LIfa85opGzduNOsBr6tVrFgxc58+feKtfxMREWEOCgqS26dNmyZrwixZskSX62x1795d3ofHjh2TJSB4KQj+vYWEhOj+d/g6MZd+UKFGo9FobtmypblBgwayJhy/HwMDA2WpAP6dqlDj119/Lcvn8BIIMdfZ+uOPP8zPnz+XJVm6desmn62WNah4bUO94TWmunTpEm+7CjUajUZzu3btZJmg33//3fzPP/+YZ82aZS5SpIj5r7/+UuJ9aoGw5UDR0dHmqVOnmitVqiTrUvXo0cN88+ZNsyrihi3GazW1bt1aPvR5zZgVK1aY9eJ///uf/FFO6MK1soMHD8qip1wff4Bs377drDccHMeOHSsLDfK6b/w/ARwkVfgdJiZsqVJjaGiorMnEv0f+A8WL1XLwUqnGpUuXmmvXri3/k8PrNXHgiLkuHi9CzLXzWk28Fh7/cdcb/p+fgQMHJnibCjWGh4ebx40bZ65Zs6aEZ36fHj16VKn3KXPh/zh6dA0AAABAVfpoJAEAAADQKYQtAAAAADtC2AIAAACwI4QtAAAAADtC2AIAAACwI4QtAAAAADtC2AIAAACwI4QtAIBkql27No0YMcLRuwEAGoWwBQAAAGBHCFsAAAAAdoSwBQBgA69evaKpU6dS1apVqXTp0tS1a1e6fv263MZTjAEBAbR+/XqqVasW+fv7U+fOnenSpUuO3m0ASAEIWwAANrBjxw66fPkyTZ48mcaOHUvnzp2jQYMGWW+/ePEizZo1i/r27UvTpk2jsLAw6tixI92/f9+h+w0A9ueWAq8BAKC8rFmz0jfffEOpUqWS6zyq9b///Y+ePn0q1588eUILFiygcuXKyfWSJUtS3bp1afny5TR06FCH7jsA2BdGtgAAbIDDkyVosXfeeUe+RkREWK9bghbLkiWLTCceP37cAXsLACkJYQsAwAbSpk0b67rB8O/Hq8lkso58xZUxY0YKDw9PoT0EAEdB2AIASAHcoxXXgwcPJHABgNoQtgAAUsC1a9coODjYev3evXt06tQpqly5skP3CwDsDw3yAAApwGw2U+/eveUIRVdXV5o/fz6lT59eloQAALUhbAEApIAcOXLI2luBgYEUFRVFVapUkaMVM2TI4OhdAwA7czHz/24BAIDd8KKmx44do/379zt6VwDAAdCzBQAAAGBHCFsAAAAAdoRpRAAAAAA7wsgWAAAAgB0hbAEAAADYEcIWAAAAgB0hbAEAAADYEcIWAAAAgB0hbAEAAADYEcIWAAAAgB0hbAEAAADYEcIWAAAAANnP/wPcAv90YIcJlQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.barplot(data=pokemon, x=\"hp\", y=\"type\", hue=\"type\", errorbar=None, palette=\"muted\")" + ] + }, + { + "cell_type": "markdown", + "id": "213d6139-203f-4d81-a4b1-6f98cb184662", + "metadata": {}, + "source": [ + "**When you want to show how many observations are the intersection of multiple categories,** a [countplot](https://seaborn.pydata.org/generated/seaborn.countplot.html) is a good choice. \n", + "\n", + "To demonstrate this, let's convert the numeric variable `speed` into a categorical variable, `speed_category`, using the built-in function [cut](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html). " + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "3c8e9f47-9aea-4bf0-a628-7aa1a66a8eee", + "metadata": {}, + "outputs": [], + "source": [ + "bins = [0, 50, 100, 200]\n", + "labels = [\"slow\", \"medium\", \"fast\"]\n", + "pokemon[\"speed_category\"] = pd.cut(pokemon.speed, bins=bins, labels=labels)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "22f78bec-3d18-4133-ba9f-6595d7181ded", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG1CAYAAAAWb5UUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARENJREFUeJzt3Qd4FNX6x/E3hTRCIAmEjnQQ6RAEBeSiFLlYkKteFRQuTQFDkSKIVEGki0gTkC4CioqiYkcQMICdjnQCEQgJhBSSzf95D/9dshSJSchuMt/P86zZnZndnV2H3d+e854zHmlpaWkCAABgEZ6u3gEAAICcRPgBAACWQvgBAACWQvgBAACWQvgBAACWQvgBAACWQvgBAACWQvgBAACW4u3qHXBHOu+jzcbcjwAA5Baenh7i4eGRoW0JP9ehwefs2XhX7wYAAMigkJD84uWVsfBDtxcAALAUwg8AALAUwg8AALAUwg8AALAUwg8AALAURnsBAJBFNptNUlNTXL0beZqXl7d4emZPmw3hBwCALMwLFxd3VhISLrh6VyzB3z9QgoJCMjyfz40QfgAAyCR78AkMDBYfH98sfynjxiEzOTlJLlyIMbcLFgyVPBN+Dh48KI888oi8/PLL5q/atWuXjB07Vn7//XcJCQmRTp06ydNPP+3U1DhjxgxZtWqVnD9/XsLDw2X48OFSunRpF74SAEBeZ7OlOoJPYGCQq3cnz/Px8TV/NQAVKBCcpS4wtyl4vnTpkgwYMEAuXrzoWBYTEyOdO3eWMmXKyHvvvSe9evWSSZMmmet2M2fOlOXLl8uYMWNkxYoVJgx17dpVkpOTXfRKAABWkJqa6vSljFvP/l5ntb7KbcLPG2+8IYGBgU7LVq5cKfny5ZPRo0dLhQoVpH379qblZ+7cuWa9BpwFCxZIRESENGvWTKpWrSpTp06VkydPyvr16130SgAAVkJXV+57r92i2ysyMlLeffdd+eCDD0yIsdu2bZs0aNBAvL2v7GbDhg1lzpw5cvr0aTlx4oTEx8dLo0aNHOuDgoKkWrVq5jHbtm2b6X3y9nabXAgAcEM2G6HHVfQcXln5nnZ5+ImLi5NBgwbJsGHDpHjx4k7rtAWncuXKTsvCwsLM36ioKLNeXX0/3ca+LrNnhg0Ozp/p+wMA8r7ERC85fdozy1/E+GeBU2t9ChYMED8/P8m14WfkyJFSp04deeCBB65Zl5iYKD4+Pk7LfH0v9/clJSVJQkKCuX69bWJjY7N0Vve4uCu1RwAAXE1HH12e3ydNUlJsN92+ceP60rlzN+nSpYfkJr17dzd/Z8y4XHLiSvpe63seG3tREhIu11zZBQX5i5eXp/uHH+3m0q6ttWvXXne9prqrC5c19KiAgCupT7dJnwB1G39//yztW0YOZACAdekXMVwjo4HTLcOPjto6c+aMU52PGjFihKxbt06KFSsm0dHRTuvst4sWLSopKSmOZToiLP02VapUyZHXAOQW2p2rF6vTll29ALAul4YfHbauXVvptWzZ0ozeevDBB+XDDz80w9d1OKGXl5dZv2XLFilXrpyEhoZKgQIFzAixrVu3OsKP1hDt3LlTOnTo4JLXBLgjDT2FCgVkuEk4L0tNtcm5cxcJQHC5uLhYmT17hnz//XcSH39BKlasLN2795T69Rs4trl4MV5mzJgmGzZ8K0lJiXLXXY3ljjtqyPTpU2Tjxm2O7b7//ltZuHC+HDx4QAIDC0jz5i2kR49ejl6Q+fPnyPr1n0qfPgNkzpwZcuTIYSlatLh06tRFWrf+t+NxtF52+vTJsn37j+Lr6ydPPtnxmv3W/Xj77Xny7bdfyalTJyVfPh+pVu0O6dWrj1SqdLnhYezYkRIdfUpKly4j69d/Zmpxy5YtL3/88Zu8997HTnP0jB8/Rn7++SdZseJ9sUT40dab69Fgo+t0aPu8efPkpZdeMnP3/Prrr7Jw4UIZNWqUo9ZHQ46GKJ0AsWTJkjJx4kTTYqQhCsCV8KPB5813Nsnx6MzXw+V2JcMKSq8n7jbvB+EHrqTlGRERz8nZs2dM4ClcuLB88slH8sILz8uUKTOkXr1ws92LL74ge/fuMUGmaNFismbNKhOY0tNwMXr0MGnZ8n7p1u05OXnyhMyZM1MOHvxTpk170zE8/MyZ0zJ16gR55pn/meDzzjtL5JVXRsjtt98ht91W1tTR9u7dzYywHjRomPl3oqHp2LGjUr16TcfzjRkzQn755SezTyVLljLr582bLaNGDZMlS1Y6nu/nn3eY7+lx4yZKYmKCeHvnM4Fpx45tjoCnQeqbb76Up556JgfffTcoeP47GoI0/OgMz+3atZMiRYqYkWF63U5bibT7S0eLaSuSzvA8f/58Mz8QAGcafA4dvzw9PADX+fzzdbJ//16ZM2eh3HFHdbOsYcO75fnne8isWW/IvHmLZfv2SBMUxo6dIPfc0/z/t7lLnn76cTl06KDjtA+zZ78hd955lwwfPsbx+KVKlZG+fXvK5s2bTGuR0u/IwYOHOYJH6dK3yX/+01Z++GGjCT/r1q01LTmLF78r5cqVN9tUq1Zd/vvfdk4TEutkxH37DpR7721hltWpU8+0XGkLlYa50NDCZrn22gwcOFTCwi43dGihsl7/7LNPHPvw3XffmtCVvvXJkuFnz549Trdr1qxp5gC6Ee0OGzhwoLkAAJAbaLeS/sCvUqWqo35V3XVXE5k583VTwqHhR1thmjS5Uher3UXapbVgweWRV9p9pd1LHTt2dnqc2rXrSv78+SUycqsj/Kj0LThh/z91jLbKqF9//cm05NiDj9LWJu1ms9OGhSlT3jDX//orWo4ePWL2QQOUPRzZFSxY0BF87Pt+//1tZeXKd2TAgCFmoNKnn641QSj9dpYMPwAA5HU6HcvlAT8Nr7teu6jOnYsxAeLqc1hpmceVxzln/k6ePN5crnb69F9Ot9OPjPb8/8fVFhmlgatgwULXPIaGNN1Xu61bN5u6oMOHD0lAQH6pWLGS+PsHOFqi7OzL0mvT5gFZvHiBfPfd11K3bn0T8NK3WOUUwg8AADlMi5K1a2rkyFeuu75EiRKmNeTcuXMmnKQPQHrey/SPo3r27CN169a75nEKFMj4CVcLFiwkx44du2Z5+nnzjh8/JkOGDJAmTe6RCROmSYkSJU2Nz/vvr5KtW3+46XNoy5J2k3399RfmcTU8pW/ZyikM/QAAIIfVqVPXdFcVKhQiVatWc1x+/HGLLFu2WLy8vE3XldbNbNq0wXE/bVnZsOEbx22t1QkODpGoqBNOj1O4cJjMmjVD9u7dneF9ql8/XKKijsvu3TsdyzR8/fHH747bu3fvMpM7dujQyQQZe3Hzli0/OLUi/Z22bR+SyMgf5YsvPpP77mvpmLw4J9HyAwBADmvT5kF5772V0q9fT3n6aR19VczU5yxbtkjat3/c1Ppo+AkPv1NefXWM6XYqVqy4fPzxh3LgwH5H6NC6Vx0tNnHiODOi8+67m8j58xdk0aJ5/z/n3e0Z3qdWrf4tq1atkKFDB5rH1JqhRYsWiM12ZSZlrVHS59Si7CeeeEqSky/JunUfyebNl2t+rp6+5nq0eHvKlAmya9cf0q+fa+p1CT8AAOQwnX/nzTffMsPWZ86cbkZLabh59tne8t//XpmnbtSoV2XGjKlmu9TUFNNF9PDD7eWzz9Y5tnnggYdN99Hy5Yvlo4/WmMeuUaOWDB/+iumWyqh8+fLJ66/PNvU806ZNMgHrwQfbmcfQUVyqVKnSMnLkWFNwPXjwC+Zk4jpa7Y035piRajoEvkKFin/7PNrSU69efTl8+LAZTeYKHmnpq5PgmATt7Nl4V+8GkG30pIt6st6hr6+z9FD3siWDZVyfNhITE88pbJBlly4ly5kzURIaWtxM9JfdTp6Mkt9//9XU1+iEg3bDhg2WEyeOyYIFyyQ3SkpKlHbt/i2dOnWVxx57Itve85CQ/Lnj3F4AAOD6tOVl3LhR0rjxPaZORrubtKhYR0oNHTpCcpuTJ6Pk008/Nt17OoFi27YPumxfCD8AALghrQOaNGm6vP32WzJ8+ItmHh89RYQODW/RorXkxjC3atUKc2LykSPHma46VyH8AADgpnQuHL3klTC3bt1X4g4Y6g4AACyF8AMAACyF8AMAACyF8AMAACyF8AMAACyF0V4AAGQzncdGL65gs6WZC26M8AMAQDbS0FOoUECGZxu+FWcpOHfu4j8KQL17d5eff95x3XV6uo3evfv+7f137NgmERHPyqpVH0nx4iXE3RF+AADI5vCjwefNdzbJ8ejYHH3ukmEFpdcTd5t9+KetP82bt5A+fV64ZrmeKyyvIfwAAHALaPDJTefS8/X1ldDQwmIFhB8AAPC34uLiZNas6bJ58yaJiTkrBQoEmROu9ukzQPz8rpx01e7o0SMydepE+eOPX00LVI0aNaVXr76OM75fuHBB3nzzdfn++2/k0qVLUqXK7dKzZ4RUrVpNcgKjvQAAwN8aN26k7N27R8aOnSgrVqyRiIj+8tlnn8hHH71/3e1HjBgqRYoUkXnzlsjcuQvF09NThg4dYNalpaXJwIERcuLEcXnttWkyd+4iueOOGvLcc11k797dkhNo+QEAALJ+/afy7bfO596qWbOOTJ48XcLD75Tates5Wm60qHn16nflwIH9132sEyeOmfvodt7e3jJkyHA5fPiQ2Gw2Uxz9+++/ySeffClBQQXN9j169JLffvvFnPj0pZdG3vLXSvgBAADSuHFTee65iGvqgFS7do/Kxo0bZN26tXLs2BE5ePBPiYo6IbfdVva6j9WtW0+ZPn2yrFmzWurUqSt33nmX3HdfK9MCpK072vrTvn1bp/skJydLUlKS5ATCDwAAkICA/FKqVOlrlmtrzaBBfeXPPw9Iixat5d57W0rlylVlwoSxN3ys9u0fk+bN7zM1Qtu3/yjz5s2WRYvmydtvLzePlz9/fpk/f+k198uXL5/kBMIPAAC4oX379sqWLT/InDkL5Y47qptlKSkpcvz4USlRouQ122tB9NtvvyUdOnSSNm0eMJe//oqWdu3ayE8/7ZDy5StKfHy8KXQuV668436vvfaKVKxYSdq3f1xuNcIPAAC4odDQUPHy8pKvv/5CgoODJS4uVhYtWiBnzpyRS5eSr9leR4Jpi8/x48fl2Wd7mRalTz/92LTqVK16uxQrVlwqVaosI0YMkb59B0pYWFFZs2aV6VKbMmWG5ATCDwAAt2jCwbzwnIULF5GXXholCxbMMSElJCRU7rqrsTz++JOmDuhqWuA8ceLr8uab06RPn56SmJhows6ECdOkZMlSZpupU2fKzJmvy/DhL0pCQoKULVvejCSrVy9ccoJHmlYd4Zqpwc+ejXf1bgDZxtvbU4KD88vQ19flqknXslvZksEyrk8biYmJl5QUm6t3B7mctnqcORMloaHFJV8+n1x9eovc/p6rkJD8GX7PafkBACAbaejQ8MGJTd0X4QcAgGxGAHFvzPAMAAAshfADAAAshfADAAAsxeXhR+cJGDhwoDRs2FDq1Kkj3bt3lwMHDjjWDxs2TKpUqeJ0ad68uWO9zhQ5ffp0adKkidSuXVu6desmR48eddGrAQAA7s7l4adXr15y+PBhmTt3rqxevVr8/PykU6dOZty/2rNnjzz77LOyceNGx0W3s5s5c6YsX75cxowZIytWrDBhqGvXruYcIQAAAG4VfmJjY6VkyZLyyiuvSM2aNaVChQrSs2dPiY6Oln379pkTn+3fv1+qV68uRYoUcVxCQkLM/TXgLFiwQCIiIqRZs2ZStWpVmTp1qpw8eVLWr1/vypcGAADclEvDT8GCBWXy5MlSuXJlc/vs2bOycOFCKVasmFSsWFGOHDkiFy9elPLlr5z7I73du3eb84M0atTIsSwoKEiqVasmkZGROfY6AABA7uE28/y8/PLLsnLlSvHx8ZFZs2ZJQECA7N2716xbsmSJbNiwQTw9PaVp06bSr18/KVCggGnhUcWLF3d6rLCwMMe6rMyIC+QVrppp1l3xfiA72Gw3nsRQJzhkksNbx8vLI0vf024Tfp555hl5/PHHZdmyZaYOSOt4NPxo4NEwM3v2bNMSNGHCBNMltmjRIkddkAam9Hx9fU2XWmbpAaunAgCQNwUF+bt6F5AHJCZ6yenTntd8EXt4eEhQkK94enq5ZL9stlSJi0sypSMZMXr0CHNS0b+zZcsOcZfAqbmgYMEAUyOc68OPdnOpsWPHyi+//CJLly4115988klzFlml3WNa8/PYY4/Jb7/95njhWvuT/k1ISkoSf//Mf7hpYo6Lu5jl1wS4U0sHX/hXxMUlmPMfAVmRnJxkBtmkpqY5nStOg5AGn4MfvyUJZ6JydJ/8Q4tLubbdTPDJ6PnrIiJekB49ejluP/RQa7Ps3ntbOJa5y7nw9L3W9zw29qIkJKQ6rdPPuFxxbi+t8dm8ebO0atXKnAVWaaLTIKRFz3rdHnzsKlWqZP5qt5a9u0u3LVOmjGMbva1D4rPCXf5HA8h+Gnz4N47s+CL+Oxp8Ek4dEXcXGBhoLlcvCw0tLO7q6sD5T7m04/v06dPSv39/E4DsLl26JDt37jQjvwYNGmSGvaenLT5KA5KO7tL/QVu3bnWsj4uLM/cPDw/PwVcCAEDetG7dWnn88Ydl2rRJ0qrVPTJkyAuyY8c2ady4vkRFnXBsd/UybX1atmyRPProQ3LvvXdLp05Pyvr1n4o7cGnLj3ZjaQGzDnXXi47+mjNnjgkwGnp27dplhr7PmDFDHnzwQTl48KCMHj1a2rZta8KR6tChg0yaNMkMf9dh8xMnTjSjxVq2bOnKlwYAQJ5x/PgxOX36L1mwYJkpLTl3Luam95k7d6Z8+eXn0q/fILnttrLy8887ZNKk8XLhwgV55JFHxZVcXvMzZcoUM9xdR3CdP39e6tevb4qeS5QoYS7Tpk0zEyC+9dZbZoTXAw88IH379nXcX+f4SUlJMTNBJyYmmhaf+fPnS758+Vz6ugAAyEs6deoqJUuWcrTy/B0dkPTuu8tl5Mixctddjc0yve/Jk1GyfPliwo8GmpEjR5rL9dx///3mciNeXl7m9Bh6AQAAt0bp0qUzvO2hQ3+agvBRo14y9bt2qampZpBSUlKi+PpmfrRWrg8/AADA/fneJKxosLGzzzM0evR40+V1tXz5nKeoyWnM9AUAAP4Re2mJnmXB7tixKycV18CjPTOnTp2UUqVKOy6bN2+Sd95Z4tQa5Aq0/AAAcIvm3Mmrz1mhQkXx9w+QJUvelu7de5rgs2LFUsd6HYn98MPt5a23Zkn+/PmlevWa8tNP22XWrOnSoYPzKG5XIPwAAJDtp5dINZMNuub5U2/56S0CAvLLyy+Pltmz35AOHR6VihUrSe/efWXIkAGObZ5/vr8UKhQs8+bNNiPFwsKKSpcuPeTJJ58WV/NIy+j81xabAO3s2StNeUBupzPO6ilbhr6+Tg4dv/kQ1byqbMlgGdenjcTExDPJIbLs0qVkOXMmSkJDi19Tw8K5vXL+PQ8JyZ87ZngGACAvyssBJC+g4BkAAFgK4QcAAFgK4QcAAFgK4QcAgCxg3FDue68JPwAAZIKnp5djaDlyhv29tr/3mUX4AQAgE3SWYv0STky86OpdsYzExIvmPc/qDNEMdQcAIBM8PDwkMLCQxMWdkQsX8omPj59ZhlvT3ZWcnCiJifESFBSa5feZ8AMAQCb5++eXS5eS5MKFWBE55+rdyeM8xN8/0LznWUX4AQAgk7QFomDBUClQoJDTWc2R/fREqVmt9bEj/AAAkEWX61Cy54sZtx4FzwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFJcHn7OnDkjAwcOlIYNG0qdOnWke/fucuDAAcf6Xbt2SYcOHaR27drSvHlzWbx4sdP9bTabTJ8+XZo0aWK26datmxw9etQFrwQAAOQGLg8/vXr1ksOHD8vcuXNl9erV4ufnJ506dZKEhASJiYmRzp07S5kyZeS9994z206aNMlct5s5c6YsX75cxowZIytWrDBhqGvXrpKcnOzS1wUAANyTtyufPDY2VkqWLCk9evSQypUrm2U9e/aUhx56SPbt2yebN2+WfPnyyejRo8Xb21sqVKjgCErt27c3AWfBggUyYMAAadasmbn/1KlTTSvQ+vXrpW3btq58eQAAwA25tOWnYMGCMnnyZEfwOXv2rCxcuFCKFSsmFStWlG3btkmDBg1M8LHT7rFDhw7J6dOnZffu3RIfHy+NGjVyrA8KCpJq1apJZGSkS14TAABwby5t+Unv5ZdflpUrV4qPj4/MmjVLAgIC5OTJk45gZBcWFmb+RkVFmfWqePHi12xjX5dZ3t4u7xEEso2XF8dzerwfgLW5Tfh55pln5PHHH5dly5aZ2h6t40lMTDRhKD1fX1/zNykpydQFqetto11qmeXp6SHBwfkzfX8A7i0oyN/VuwDAhdwm/Gg3lxo7dqz88ssvsnTpUlP8fHXhsoYepS1Dul7pNvbr9m38/TP/4WazpUlc3MVM3x9wx5YOvvCviItLkNRUm6t3A0A20s+4jLbqujT8aI2PFjW3atXKUdfj6elpglB0dLSp/dG/6dlvFy1aVFJSUhzLdERY+m2qVKmSpX1LSeGDEcirNPjwbxywLpd2fGvRcv/+/U0Asrt06ZLs3LnTjOwKDw+X7du3S2pqqmP9li1bpFy5chIaGipVq1aVwMBA2bp1q2N9XFycub/eFwAAwK3CjxYzN23aVF555RUzOmvv3r3y4osvmgCjc/3ocPYLFy7ISy+9JPv375f333/fjAbTofH2Wh+dAFHn/vnqq6/M6K9+/fqZFqOWLVu68qUBAAA35fKanylTppjh7hpazp8/L/Xr1zdFzyVKlDDr582bZ+qA2rVrJ0WKFJFBgwaZ63YRERGm+2vYsGGmQFpbfObPn2/mBwIAALiaR1paWto1Sy1O6wHOno139W4A2UanbtARjENfXyeHjseIVZUtGSzj+rSRmJh4an6APCYkJH+GC56Z7AIAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFiKt6t3IK/y9PQwF6uz2dLMBQAAd0H4uQU09BQqFCBeXjSspaba5Ny5iwQgAIDbIPzcovCjwefNdzbJ8ehYsaqSYQWl1xN3m/eD8AMAcBeEn1tIg8+h4zGu3g0AAJCOy/tlzp07J8OHD5emTZtK3bp15YknnpBt27Y51nfu3FmqVKnidOnYsaNjfVJSkowaNUoaNWokderUkRdeeEHOnj3rolcDAADcnctbfvr37y9//fWXTJkyRUJDQ2XJkiXSpUsXWbNmjZQvX1727NkjI0eOlPvuu89xn3z58jmu6zoNS2+88Yb4+PjIiBEjJCIiQpYuXeqiVwQAANyZS8PP4cOHZdOmTbJ8+XKpV6+eWfbyyy/L999/L2vXrpUOHTrImTNnpFatWlKkSJFr7n/q1Cn54IMPZPbs2VK/fn2zTENU69at5aeffjItQQAAAG7T7RUcHCxz586VGjVqOJZ5eHiYS1xcnGn10evlypW77v23b99u/jZs2NCxTLctWrSoREZG5sArAAAAuY1LW36CgoLknnvucVr2+eefmxahoUOHyt69e6VAgQIyevRo00IUEBBgWnV69uxpuri05UcDlK+vr9NjhIWFycmTJ7O0b97emc+FDHF3xvvhevw/cMb7AViby2t+0tuxY4cMGTJEWrZsKc2aNTMBSAuaa9asaQqfd+3aJRMmTJATJ06YvwkJCSYEXU3DkN4vs3RodnBw/iy+GtgFBfm7ehcAJxyTgLW5Tfj58ssvZcCAAWbE16RJk8wybfEZPHiwFCxY0NyuXLmyKXbu16+fDBo0SPz8/CQ5Ofmax9Lg4++f+Q83nZMmLu5iln5V8uF6RVxcgpnsEK7DMemMYxLIe/QzLqOtum4RfnRk1tixY02X1muvveZozfH29nYEH7tKlSqZv9qtVaxYMTNUXgNQ+hag6OhoU/eTFSkpfDBmF/2S4f2EO+GYBKzN5R3fOtJrzJgx8tRTT5mRWulDjM7no91g6f3222+m9ads2bJmhJjNZnMUPquDBw+aWqDw8PAcfR0AACB3cGnLjwaVcePGSYsWLaRHjx5y+vRpxzrt0mrVqpVZrzU/jRs3NsFHa310HqDAwEBz+fe//y3Dhg0z22lXl87z06BBA6ldu7YrXxoAAHBTLg0/OrLr0qVL8sUXX5hLeu3atZPx48eboe468aGGG53rp1OnTtK9e3fHdtpqpOt69+5tbutM0RqGAAAArscjLS2NM05epx7g7Nn4LA2T19FiQ19fZ+lze5UtGSzj+rSRmJh46itcjGPyMo5JIO8KCcmf4YJnl9f8AAAA5CTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsJRMhZ/IyEiJj7/+iT/j4uLkk08+yep+AQAAuE/4efrpp+XAgQPXXbdz504ZMmRIVvcLAADglvDO6IaDBw+WqKgocz0tLU1GjhwpgYGB12x36NAhKVy4cPbuJQAAQE63/LRq1cqEHr3Y2W/bL56enlK7dm159dVXs2v/AAAAXNPy07x5c3NRHTt2NC0/FSpUyN69AQAAcJfwk96SJUuyf08AAADcNfwkJibKrFmz5JtvvpGEhASx2WxO6z08POTLL7/Mrn0EAABwbfgZO3asrF69Who0aCC33367qfUBAADIs+Fn/fr10q9fP+nevXv27xEAAMAtlKkmm0uXLknNmjWzf28AAADcMfw0btxYNmzYkP17AwAA4I7dXm3atJERI0bI2bNnpVatWuLv73/NNg8//HB27B8AAIDrw0/fvn3N3w8++MBcrqajvQg/AAAgz4Sfr776Kvv3BAAAwF3DT8mSJbN/TwAAANw1/MyYMeOm2/Tu3TszDw0AAJC7wo+e6T0sLIzwAwAA8k742b179zXLLl68KNu2bTMnPH355ZezY98AAACyXbadlyIgIECaNm0qvXr1kgkTJmTXwwIAAGSrbD8pV4kSJeTAgQPZ/bAAAADuFX7S0tIkKipK5s2b949Gg507d06GDx9uWo3q1q0rTzzxhOk+s9u8ebM88sgjZjLF1q1byyeffOJ0/6SkJBk1apQ0atRI6tSpIy+88IKZfBEAACDban6qVq1qJjK8UQj6J91e/fv3l7/++kumTJkioaGhsmTJEunSpYusWbPGPFaPHj2kc+fOMnHiRPn2229l0KBBEhISYsKO0hojDUtvvPGG+Pj4mJmnIyIiZOnSpZl5aQAAII/LVPjRup7rhR8d6dWsWTMpW7Zshh7n8OHDsmnTJlm+fLnUq1fPLNNi6e+//17Wrl0rZ86ckSpVqpgzyKsKFSrIzp07TeuShp9Tp06ZGaZnz54t9evXN9toiNIWop9++sm0BAEAAGQ5/Dz//POSHYKDg2Xu3LlSo0YNxzINVXqJi4szLTr33Xef030aNmwoY8eONa1C27dvdyyzK1eunBQtWlQiIyMJPwAAIHvCj9K6mgULFsiPP/5ogooGGW196dSpk+m+yoigoCC55557nJZ9/vnnpkVo6NChpuurWLFiTut1DqGEhASJiYkxLT/6vL6+vtdsc/LkSckKb+/Ml0N5eWV7HXmuxvvhevw/cMb7AVhbpsKPBovHH3/cBKDatWtLtWrVTN3O22+/bbqhVq9ebVpf/qkdO3bIkCFDpGXLlqb7LDEx0dTxpGe/nZycbELQ1euVhiEthM4sT08PCQ7On+n7w1lQkL+rdwFwwjEJWFumwo8WH3t7e8u6deukdOnSjuVHjx6V//3vfzJ16lQZP378P3rML7/8UgYMGGBGfE2aNMkRYjTkpGe/7e/vL35+ftesVxp8dH1m2WxpEhd3MUu/KvlwvSIuLkFSU22u3g1L45h0xjEJ5D36GZfRVt1MhZ+NGzeabqn0wUfp7cxMcqgjs7SORwuVX3vtNUdrTvHixSU6OtppW72tEyoWKFDAdInpUHkNQOlbgHSbzLQ8pZeSwgdjdtEvGd5PuBOOScDaMtXxnZqaamptrkeHoV+4cCHDj6UjvcaMGSNPPfWUGamVPsRoDZHWFKW3ZcsW0zrk6elpRojZbDZH4bM6ePCgqQUKDw/PzEsDAAB5XKbCjw4/16Ho1/Phhx9K5cqVM/Q4GlTGjRsnLVq0MPP5nD592tQO6eX8+fPSsWNH+fXXX003mM4arQXWn332mXTt2tXcX1t3/v3vf8uwYcNk69atZludN6hBgwamFgkAACBbur169uxpJiKMjY2VNm3aSJEiRUxg0dmXtUts+vTpGXocHdl16dIl+eKLL8wlvXbt2pm6oZkzZ5oao0WLFkmpUqXMdfsEh0pbjTRA2c8irzNFaxgCAAC4Ho80nTAnE3RUl7bIaGuNnYYgPb3Eww8/LLm9HuDs2fgsDZPX0WJDX18nh47HiFWVLRks4/q0kZiYeOorXIxj8jKOSSDvCgnJf2sLnu1FxTrEffDgwaYFaPfu3eYUE/+k3gcAACCnZSr8aO3NtGnTpEOHDuaUE/aRWX/++afpqtIh6o8++mh27ysAAIBrws+KFSukb9++0r17d8cyDT9aa1O4cGFZuHAh4QcAAOSd0V46lDz9+bjSq1Wrlhw7diyr+wUAAOA+4adkyZKyefPm667TE4pefT4uAACAXN3t9dhjj5kh5zpMXc+6ricy1fN8ffPNN+b8XjriCwAAIM+EHz1zu3Z9LVmyxNT32Hl5eckzzzwjnTt3zs59BAAAyDaZHuquQ9x1ssOff/7ZnF8rKChIatasecPTXgAAAOTq8KP05KJNmjTJvr0BAABwx4JnAACA3IrwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALMWtws+cOXOkY8eOTsuGDRsmVapUcbo0b97csd5ms8n06dOlSZMmUrt2benWrZscPXrUBXsPAAByA7cJP8uWLZNp06Zds3zPnj3y7LPPysaNGx2X1atXO9bPnDlTli9fLmPGjJEVK1aYMNS1a1dJTk7O4VcAAAByA5eHn1OnTplwM2nSJClbtqzTurS0NNm/f79Ur15dihQp4riEhISY9RpwFixYIBEREdKsWTOpWrWqTJ06VU6ePCnr16930SsCAADuzOXh548//pB8+fLJRx99JLVq1XJad+TIEbl48aKUL1/+uvfdvXu3xMfHS6NGjRzLgoKCpFq1ahIZGXnL9x0AAOQ+3q7eAa3fSV/Dk97evXvN3yVLlsiGDRvE09NTmjZtKv369ZMCBQqYFh5VvHhxp/uFhYU51mWWt3fmc6GXl8szpVvh/XA9/h844/0ArM3l4efvaPjRwKNhZvbs2aYlaMKECbJv3z5ZtGiRJCQkmO18fHyc7ufr6yuxsbGZfl5PTw8JDs6f5f3HZUFB/q7eBcAJxyRgbW4dfp577jl58sknJTg42NyuXLmyqfl57LHH5LfffhM/Pz9H7Y/9ukpKShJ//8x/uNlsaRIXdzFLvyr5cL0iLi5BUlNtrt4NS+OYdMYxCeQ9+hmX0VZdtw4/2upjDz52lSpVMn+1W8ve3RUdHS1lypRxbKO3dUh8VqSk8MGYXfRLhvcT7oRjErA2t+74HjRokHTq1Mlpmbb4qIoVK5rRXYGBgbJ161bH+ri4ONm5c6eEh4fn+P4CAAD359bhp1WrVrJ582aZMWOGqff57rvvZOjQodK2bVupUKGCqfXp0KGDGSb/1VdfmdFfWgxdrFgxadmypat3HwAAuCG37va69957zcSHc+fOlbfeesuM8HrggQekb9++jm10jp+UlBQzE3RiYqJp8Zk/f74ZPg8AAODW4Wf8+PHXLLv//vvN5Ua8vLxk4MCB5gIAAJCru70AAACyG+EHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYiluFnzlz5kjHjh2dlu3atUs6dOggtWvXlubNm8vixYud1ttsNpk+fbo0adLEbNOtWzc5evRoDu85AADILdwm/CxbtkymTZvmtCwmJkY6d+4sZcqUkffee0969eolkyZNMtftZs6cKcuXL5cxY8bIihUrTBjq2rWrJCcnu+BVAAAAd+ft6h04deqUjBgxQrZu3Sply5Z1Wrdy5UrJly+fjB49Wry9vaVChQpy+PBhmTt3rrRv394EnAULFsiAAQOkWbNm5j5Tp041rUDr16+Xtm3buuhVAQAAd+Xylp8//vjDBJyPPvpIatWq5bRu27Zt0qBBAxN87Bo2bCiHDh2S06dPy+7duyU+Pl4aNWrkWB8UFCTVqlWTyMjIHH0dAAAgd3B5y4/W8ejlek6ePCmVK1d2WhYWFmb+RkVFmfWqePHi12xjX5dZ3t6Zz4VeXi7PlG6F98P1+H/gjPcDsDaXh5+/k5iYKD4+Pk7LfH19zd+kpCRJSEgw16+3TWxsbKaf19PTQ4KD82f6/nAWFOTv6l0AnHBMAtbm1uHHz8/vmsJlDT0qICDArFe6jf26fRt//8x/uNlsaRIXdzFLvyr5cL0iLi5BUlNtrt4NS+OYdMYxCeQ9+hmX0VZdtw4/xYoVk+joaKdl9ttFixaVlJQUxzIdEZZ+mypVqmTpuVNS+GDMLvolw/sJd8IxCVibW3d8h4eHy/bt2yU1NdWxbMuWLVKuXDkJDQ2VqlWrSmBgoBkpZhcXFyc7d+409wUAAMhV4UeHs1+4cEFeeukl2b9/v7z//vuycOFC6dGjh6PWRydA1Ll/vvrqKzP6q1+/fqbFqGXLlq7efQAA4IbcuttLW3fmzZsnY8eOlXbt2kmRIkVk0KBB5rpdRESE6f4aNmyYKZDWFp/58+eb4fMAAABuHX7Gjx9/zbKaNWvKu+++e8P7eHl5ycCBA80FAAAgV3d7AQAAZDfCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBS3Or0FAMA6PD09zAUiNluauSBnEH4AADlOQ0+hQgHi5UUHhEpNtcm5cxcJQDmE8AMAcEn40eDz5jub5Hh0rFhZybCC0uuJu817QvjJGYQfAIDLaPA5dDzG1bsBi6G9EQAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWEquCD+nTp2SKlWqXHN5//33zfpdu3ZJhw4dpHbt2tK8eXNZvHixq3cZAAC4KW/JBXbv3i2+vr7y5ZdfioeHh2N5gQIFJCYmRjp37mxCz6hRo+Tnn382f/Pnzy/t27d36X4DAAD3kyvCz969e6Vs2bISFhZ2zbpFixZJvnz5ZPTo0eLt7S0VKlSQw4cPy9y5cwk/AAAgd3Z77dmzx4Sa69m2bZs0aNDABB+7hg0byqFDh+T06dM5uJcAACA3yDUtP8HBwfLUU0/JwYMH5bbbbpPnnntOmjZtKidPnpTKlSs7bW9vIYqKipLChQtn6jm9vTOfC728ckWmzDG8H67H/wNnvB+ux/+Da/Ge5By3Dz8pKSny559/SsWKFeXFF1+UwMBA+eSTT6R79+7y9ttvS2Jiovj4+DjdR+uDVFJSUqae09PTQ4KD82fL/kMkKMjf1bsAOOGYhDviuMw5bh9+tDtr69at4uXlJX5+fmZZ9erVZd++fTJ//nyzLDk52ek+9tATEBCQqee02dIkLu5iltI7B/EVcXEJkppqc/VuWBrHpDOOSdfjmLwWx2XW6PGU0dYztw8/SkduXa1SpUqyceNGKVasmERHRzuts98uWrRopp8zJYUDMLvoP2beT7gTjkm4I47LnOP2HYzawlO3bl3T+pPe77//brrCwsPDZfv27ZKamupYt2XLFilXrpyEhoa6YI8BAIA7c/vwo6O8ypcvb4ay68iuAwcOyKuvvmrm89GiZx3OfuHCBXnppZdk//79ZuLDhQsXSo8ePVy96wAAwA25fbeXp6enzJ49WyZPnix9+/aVuLg4qVatmil2to/ymjdvnowdO1batWsnRYoUkUGDBpnrAAAAuS78KB2urq09N1KzZk159913c3SfAABA7uT23V4AAADZifADAAAshfADAAAshfADAAAshfADAAAsJVeM9gKA7MQJJC+fxkcvgBURfgBYRsECfpJms3FOKRN+UiUmJoEABEsi/ACwjPx+PuLh6SkHP35LEs5EiVX5hxaXcm27iaenB+EHlkT4AWA5GnwSTh1x9W4AcBE6vgEAgKUQfgAAgKUQfgAAgKUQfgAAgKVQ8AwAgBtg/qmcm3+K8AMAgAsx/1TOzz9F+AEAwIWYfyrn558i/AAA4AaYfyrn0MEIAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAsxVvyAJvNJjNmzJBVq1bJ+fPnJTw8XIYPHy6lS5d29a5BRLy8yNg2W5q5AABcL0+En5kzZ8ry5ctl/PjxUqxYMZk4caJ07dpV1q5dKz4+Pq7ePcsqWMBP0mw2CQryF6uz2VIlJiaBAAQAbiDXh5/k5GRZsGCBDBgwQJo1a2aWTZ06VZo0aSLr16+Xtm3bunoXLSu/n494eHrKwY/fkoQzUWJV/qHFpVzbbuLp6UH4AQA3kOvDz+7duyU+Pl4aNWrkWBYUFCTVqlWTyMhIwo8b0OCTcOqIq3cDAADDIy0tLVf/FNXWneeff15++eUX8fPzcyzv06ePJCYmypw5c/7xY+pbkpVf6B4eIp6enhJ7IVFSU21iVT75vCQwwFcuxcdJmi1VrMrD00vy5Q8ytWmu+tfGMXkZx+RlHJPuheMye45LbV330APLCi0/CQkJ5u/VtT2+vr4SGxubqcfUN8/LK2Nv4N8pGHgljFmZHsy4/EHvahyTl3FMXsYx6V44LnPuuHT9kZ9F9tYerf1JLykpSfz9KbQFAAB5LPwUL17c/I2OjnZarreLFi3qor0CAADuKteHn6pVq0pgYKBs3brVsSwuLk527txp5vsBAADIUzU/WuvToUMHmTRpkoSEhEjJkiXNPD8630/Lli1dvXsAAMDN5PrwoyIiIiQlJUWGDRtmRnhpi8/8+fMlX758rt41AADgZnL9UHcAAABL1fwAAAD8E4QfAABgKYQfAABgKYQfAABgKYQfAABgKYQfAABgKYQfAABgKYQfZImeVqRKlSpy7NgxV+8KkCHNmzeXN954w1x///33zfELZLfffvtN7r//fqlevbq89tprWXosnY5vzZo1cubMmWzbP6vLEzM8A0BmtGnTRpo0aeLq3UAeNGfOHHOWgXXr1kmBAgWy9FiRkZHy4osvyldffZVt+2d1hB8AluXn52cuQHaLjY2V22+/XcqUKZPlx+JEDNmPbi9kyHfffSePPPKI1KpVSxo1amR+heg/7qulpqbKwoULpVWrVlKjRg3z95133jHrdPs77rhD1q9f79h+3LhxUrVqVTl79qxjmT7PzJkzc+iVwV1o99O7774rTz75pDl2tMtgx44dZlmzZs2kbt260rdvX3P+Pjtd/9RTT0nNmjXNNqNGjZILFy441p8/f14GDx4s9evXl4YNG8rbb7/t9JxXd3vpdV129X7Zl2l3WadOnWTGjBly1113SZ06dWT48OESFRUlPXr0MP8+WrRoId9+++0tfKeQG7pWf/zxR/nggw/M8bNz505z7kltZdTPQP0M1dsJCQmO++j5KO+77z7TTab3f/PNN03o0dKCp59+2mxz7733XnN8InMIP7gpDSa9e/eW9u3bmyZc/eDXZtgJEyZcs+348eNNcNHt165da76Yxo4dawJRwYIFzRfYpk2bHNv/8MMP5q/+A1fR0dHmg0L/kcN6pk6dKl27dpUPP/zQdBU8++yz8vnnn8vcuXPl1VdflS+//FJWrVpltt29e7d07tzZfKF89NFHMmnSJPnjjz/kf//7n+OXsoalX3/9VWbPnm2Cj4aS48ePZ2kft23bJgcPHpRly5aZLzANZ//5z39MWNMvpgoVKpgfB/xat67Vq1ebYKzHxMaNG2X69Onmc00/O/V4HjJkiAlGeuyor7/+2nSTaXjXH4cDBgyQWbNmmeNaH8deo6bHvnbVIuvo9sJNnTp1SpKTk6VEiRJSsmRJc9EvE23lSd/6o7+4tZVHP/gfeOABs6xs2bKmGFq/vJ555hnzi0a/NOyPq18i+otdw49+UGgLkz4+RajWpAFbjxH10EMPyejRo03Lih5HlStXlnnz5sm+ffscv5TvvvtuE5CUbjN58mTz61l/dRcpUsR88Wjw1pYfpev/9a9/ZWkfbTab+ZIKDAyUcuXKycSJE02r0sMPP2zWP/HEE/LNN9/IX3/9JWFhYVl8R5AbhYSEmHof7VLV47Bx48YSHh7u+FwrVaqULF26VPbu3WtuHzlyRHx8fMxnn37O6kWPHf2ry/WHo/1x6abNHoQf3JT2W7dt29Z8yeg/ZP3C0cCizfvbt293bPfnn3/KpUuXpF69ek73b9CggSxatMiMVNAvHm0dOnr0qLmvNgHfc889Zr3S8EOrj3Xddtttjuv+/v7mb/qaCf3g1yCu9Jf04cOHzS/jqx04cEBiYmLMde1CsytcuLCULl06S/sYGhpqgo9dQEDANfuo7PsJaFeutu7oiK1Dhw7J/v37zY/C8uXLm/UPPvigvPfee6ZMoGLFiqZLVa9r+MGtQbcXMkR/MX/66aemS0K/VAYOHChdunRx2uZGzfz6S1l5e3ubX+f6D15/kWuXl/Z960VbgPTDQLvECD/WpcfI1Tw9PW94XGkLo3YfpL9ot4Eu9/DwcGx3s+e4kZSUlGuW6S/6jO4joMef1oO98sor5tjTbivt4tISADtt0dGu3uXLl5vQ88svv5iSAe0mw63Bv1jclP5D1MJkDS1a7KldWHp7y5YtTvNOaK2DfjGkbw2y10hoi5G96VZbfzTkaFeXdhdoINJfOPoPXZt4r245Aq6nUqVK5he0thbZLxpWtDZIC5C1xdJeFG0XFxdnuhhuRI/f9AXT2rIEZMWuXbtkw4YN8vrrr5taHm3l0ZZCPQ7tPxi1tkdLBvSzLyIiQlauXCmPPvqoqbFU9iCP7EO3F25Km/j1F4l+MTz22GOSlJRk/lFqaAkODnba7vHHHzfFfYUKFTLdDdrCo/ft37+/4x+w1nRooaretv/60RCkv9r1F/s/+WUO69LCZv11rPU3HTp0MMFGr+toMD02NUi3bt3a1A3pde3ymjJlyt92R9WuXdsUlWp9hn4xaZDS+wKZpcedfqZpy7m28Jw7d87UTGpNmP1Y1M9UnQgxf/78pj7t5MmTZlCJvVZNu1btRf76mavbIWv4lsFNaYuOjjbQlhkNMtrEr2HlrbfeMr+w09NRDPqPU0fenD592nwJacGqhiY7rdHQf7xa/Ofr62uWaR+3jpShywsZpUFFC6D1F3W7du3MF4R2oerQdntg0S8UvfTr1890P2g4Tz+twtVGjhxpLnq8asFpnz59zBcRkFlFixY1dY76GaqDPbQVXGsmtRVd64CUtvJoKNKRsvqZqq3k2v2lLUVKi/21NlJHL+oPSQ3+yBqPNMZjAgAAC6HmBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAygCnRgLyD8AMgV9AZwHVWcD0Bbk7T89V17949x58XwK1B+AGAm9DzfR04cMDVuwEgmxB+AACApRB+ABi///67PPPMM1KvXj1z8lk98eLPP/9s1r344ovSsWNHWb16tfzrX/8y63VbPct0eidOnDAnXmzQoIHUqlXLbLNz506nbfQM1hMmTDAnaqxevbo88MADsm7dOqdt9CSkepJHPQGkPk7Pnj0lNjY2U68rOjranOxUT3qq+61ngP/pp58c6/VEp3o2eH1duj+677169XJ0r+lrX7NmjRw/ftx0u2n3W0Zfx6VLl8xJfps2bSo1a9aULl26yAcffHBN992mTZvkySefNO/9nXfeKS+88ILTSYP1OatVq2ZaoO6++26zj3qSTH2cgwcPOj3nhx9+KLfffvs1Jx0GcAXhB4BcuHBBunbtKsHBwebs01OnTpWEhATzZX3+/Hmzza5du8zy3r17y8SJEyUmJsYECQ0X9hDx3//+V/744w95+eWXZfLkySbEPPXUU44uIy0a1mCxYsUK6dy5s8yaNcsEEj3ruoYCO338N998U/7zn//IjBkzpFChQubx/qn4+Hh54oknZOvWrTJw4EDzWL6+vuas2IcOHTL706NHDxM+9Aza8+fPN69v8+bNMmLECPMYGrw04OjZuN99910TyDL6OoYPHy6LFi0y75O+nsKFC5v3Jj3dXvenePHiMmXKFBkyZIgJZ3oG+jNnzji2S01NlQULFsjYsWPNNm3btjWvRcPO1Y+nQU8fD8AN6FndAVjbTz/9lFa5cuW07du3O5YdPnw4bcKECWlRUVFpgwcPNusjIyMd60+dOpVWo0aNtIkTJ5rbU6ZMMbePHTvm2CYpKSnt3nvvTXv++efN7Y0bN5rH+eSTT5yef8CAAWl333132qVLl9JiY2PT7rjjDsfj2nXp0sXc9+jRoxl+XUuWLEmrUqVK2s6dOx3LLl68mNayZcu0lStXpp08eTKtY8eOTq9LjRkzJq169eqO2/r6//WvfzluZ+R16Punz71gwQKnbf73v/85XkdqaqrZXpelp/fV9+C1114zt9977z1znw8++MBpu/79+5v9stls5rb+v6patWra2rVrM/weAVZEyw8AqVSpkoSEhMizzz5rWiu++OIL00qhrSXFihUz25QqVUrq16/vuE9YWJhp7YiMjDS3tbVEu1uKFi0qKSkp5uLp6Wm6fH744QfHNh4eHqYlxb6NXpo3by5//fWX7Nu3z3S1aXeRdkOld//992dqlJbut+6Xnb+/v3z++efy6KOPmn1dvHix6W7SbihtAVqyZIns2LFDkpOTb/i4GXkd2tqkLUStW7d2uq+22Nhpl5Vun36ZKlOmjHlvf/zxR6fl6V+H0pYx7Y7btm2bo9Unf/780qJFi3/8XgFW4u3qHQDgevqFqTUk2n3z6aefmu4dPz8/eeihh2TYsGFmGw0KVwsNDTXdXOrcuXNy+PBhueOOO677HNqNpttoIKhbt+51t9EutLi4OHNdu+DS026nf0qfT/fx73z00Uemu0lrZLR7TQOGvvabPe7NXod2A6qrnz/9bX0cpUHzarrs6nqpgIAAp9sNGzY04U5DT3h4uPnbpk0b0x0G4MYIPwCM8uXLm1obrS359ddfTS3JO++8Y1ohlNb4XO306dOOL/MCBQqYQtxBgwZd9/F9fHzMNvoFrq0t13PbbbeZ51Za76L7dHVQ+Cf0+a43L5C27BQsWNC8Ji2G1mJurW+yBzwtZNZWo7973Ju9Dvv7pe9RiRIlHOvsoUhp2LJvczVtEbo6AF5NW5/atWtnWqu0tklbkl577bW/vQ8ACp4BiMhnn31mWhH0C9fLy8t0uYwcOVKCgoLMCC6lBcLp57o5deqUKczV4lqlwUe/fMuVKyc1atRwXDRE6SgxfVzd5uLFi6bVJP02e/fuNQXB2nWkz60tL7pP6X3zzTf/+HVpN93Ro0dNN5SdjtJ6/vnnzT7p/mtRtt62Bx8Nf/ZuOl2ntPsuvYy8Du1K09esXYjprV+/3nFd3ytt0fr444+dttF91u6/G7UspffII4+Y1jINPRUqVDCj4wD8PVp+AJgvWf2i1xFMOpOxdoNp95eO9GrZsqXpTtEveq0J0hFN+qWuI6e09URbTZQOjdego3919JK2WujQ75UrV5rRSUprZLR7RkdQ6UW/rLWlZ/r06dKkSRNTd6R03bRp00x9joay7777LlPhR4OBtoo899xzEhERYfZJW2u0pkiHltuD3ejRo6V9+/ZmOL12/9mH8GvACQwMNCFQW2d0P7RbLCOvQy/6mNqlps9XtWpVE4Tsr0MDlV50agB9f3R4+4MPPmhajOzvrY4kuxltVbrrrrtk48aNZsQagAxwdcU1APfwyy+/mFFHDRo0MKO2HnnkkbT169c7jXZavny5GZ1Ut27dtN69e18z8kpHKUVERKSFh4en1axZM+3BBx9MW7VqldM28fHxaePGjUtr2rSpGdHUvHnztMmTJ6clJiY6bbd48WIzUkxHXemILH3ufzraS+mILh0VVb9+fbPf+hp37drlWL906VLH8zRr1sy81i+++MI817fffmu22bNnT1rr1q3N/s6ZMyfDr0NHu+k2jRo1Mu9p9+7d015//XXz2DExMY7tPvvss7R27dqZx7nzzjvNqLETJ0441ttHe93otet7dfvtt5sReABuzkP/k5GQBMC6dKI/HXn09ddfu3pXcg2tUdqwYYNpCUpfu6PdUzppoY4Gyy46R5MWOWuXG4Cbo9sLQK6jdTk3+92mxcDaPecq2mWnExJqN5nOdK0F0lrHs3TpUjOxYnbQsKN1VtrltXz58mx5TMAKCD8Ach2dx0bnt/k7WpSs9T6uoi0xCxcuNLVL2nKmQ/115JyOLtNZr7ODtsQdOXLEjLDLSHE0gMvo9gKQ6+zZs+dvJyFUWrSdfqg8ANgRfgAAgKUwzw8AALAUwg8AALAUwg8AALAUwg8AALAUwg8AALAUwg8AALAUwg8AABAr+T/DxOfFb6pecwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.countplot(data=pokemon, x=\"speed_category\", hue=\"legendary\")" + ] + }, + { + "cell_type": "markdown", + "id": "fd508c13-9900-4be1-958f-4f9e9e9b633a", + "metadata": {}, + "source": [ + "**When you want to show the relationship between two numeric variables**, a [scatterplot](https://seaborn.pydata.org/generated/seaborn.scatterplot.html) is a good choice. \n", + "\n", + "Here, we plot pokémon hit points against their speed. " + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "444d9832-bd57-4238-9ea4-5ee898847170", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG1CAYAAAAWb5UUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiRZJREFUeJztnQmYFNXV/k/39OzDAMMmuIAoizgM4gcqCkqMUWNEEdRsuOMCotFI3P5Go8YdlyigoJjEhS9xDZpNP5MYxQUhURBZFSFG2WdgYPZe/s97Z6qprqmte6p7enl/zzMMU1V9695b1V2nzz3nPb5IJBIRQgghhJAcwd/ZHSCEEEIISSU0fgghhBCSU9D4IYQQQkhOQeOHEEIIITkFjR9CCCGE5BQ0fgghhBCSU9D4IYQQQkhOQeOHEEIIITkFjR9CCCGE5BSBzu5AOgLR63DYW+Frv9/neZskFs5x8uEcJxfOb/LhHCefzppjnNfn87k6lsaPCbho1dV1nrUXCPile/dSqa2tl2Aw7Fm7ZB+c4+TDOU4unN/kwznO7jmuqCiVvDx3xg+XvQghhBCSU9D4IYQQQkhOQeOHEEIIITkFjR9CCCGE5BQ0fgghhBCSU9D4IYQQQkhOQeOHEEIIITkFjR9CCCGE5BQ0fgghhBCSU9D4IYQQQkhOwfIWJOOJ+HxS2xiSbZuqpbgwIEUBv/girN1DCCHEHBo/JKMJ+Xwy9+UV8vG67dFtI4f0kumTqiSPBhAhhBATuOxFMtrjYzR8wMdrt8vcV1ao/YQQQogRGj8kY2loCbUzfPQGEPYTQgghRmj8kIylvjHYof2EEEJyExo/JGMpKQp0aD8hhJDchMYPyViK8/NUcLMZ2I79hBBCiBEaPyRjQTo7srqMBpCW7cV0d0IIIWZwXYBkNEhnnzGpShpawtLYHJSigoAU51PnhxBCSIYYP/PmzZPFixfLs88+q/4+77zz5KOPPjI99r777pOJEydKKBSSkSNHSlNTU8z+GTNmyFVXXZWSfpPOBYZOeVGe9O9bLjU1dRIMhju7S4QQQtKYtDF+nn/+eXnkkUdk1KhR0W2PPfaYtLS0RP+ORCJy7bXXyu7du+U73/mO2rZx40Zl+CxatEh69OgRPbakpCTFIyCEEEJIJtDpxs/WrVvltttukyVLlsiAAQNi9nXr1i3m7+eee05WrFihDJ3S0lK1be3atVJWViZDhw5Nab8JIYQQkpl0esDzZ599Jvn5+fLaa6/JiBEjLI+rrq5WnqFp06bJwIEDo9th/BxyyCEp6i0hhBBCMp1O9/yceOKJ6seJJ598UoqKiuSSSy6J2b5u3ToJBoNq+5o1a6RPnz5ywQUXyJlnntmhfgUC3tmFeXn+mN/EezjHyYdznFw4v8mHc5x88jJkjjvd+HHD3r175YUXXlBBzIWFhTH71q9fL+FwWK6++mrZb7/95J///KfcdNNNKlbo7LPPTuh8fr9PundvXVbzkvLyYs/bJLFwjpMP5zi5cH6TD+c4+aT7HGeE8fPWW29Jc3OzTJ48ud2+P/7xjyrjS4sBQuzPN998IwsWLEjY+AmHI1JbWy9eAQsYN0JtbYOEQsxESgac4+TDOU4unN/kwznO7jkuLy927XHKGOPnhBNOkPLy8nb7sBRmZPDgwSqGqCMkI10aNwLTsJML5zj5cI6TC+c3+XCOk0+6z3F6L8q1sWzZMhkzZky77bW1tXLUUUfJK6+8ErP9008/lUGDBqWwh4QQQgjJFNLe87N582apqakxTWWHJ+iYY46Rhx9+WGn89O/fX958803l9YFgIiGEEEJIxhk/27dvN9X80bj77ruVGCK0gnbu3KnS3h999FEZN25cintKCCGEkEzAF4FsMmm3VlldXedZe0ibR/YYSy8kD85x8uEcJxfOb/LhHGf3HFdUlLoOeM6ImB9CCCGEEK+g8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8UMIIYSQnILGDyE6Ij6f1AfDsmNvs/qNvwkhhGQXgc7uACHpQsjnk7kvr5CP122Pbhs5pJdMn1QleZFIp/aNEEKId9DzQ0ibx8do+ICP126Xua+soAeIEEKyCBo/hIhIQ0uoneGjN4CwnxBCSHZA44cQEalvDHZoPyGEkMyBxg8hIlJSFOjQfkIIIZkDjR9CRKQ4P08FN5uB7dhPCCEkO6DxQ4iI+CIRldVlNIC0bC/sJ4QQkh3Ql09IG0hnnzGpSgU3I8YHS13w+NDwIYSQ7ILGDyE6YOiUBPxSUlbQuoGGDyGEZB1c9iKEEEJITkHjhxBCCCE5BY0fQgghhOQUNH4IIYQQklPQ+CGEEEJITkHjhxBCCCE5BY0fQgghhOQUNH4IIYQQklOklfEzb948Oe+882K23XLLLTJkyJCYnxNPPDG6PxwOy6OPPirjxo2TI444Qi699FL56quvOqH3hBBCCMkE0sb4ef755+WRRx5pt33t2rVyxRVXyOLFi6M/L730UnT/3LlzZeHChXLnnXfK7373O2UMTZ06VZqbm1M8AtJZhP1+2dUQlM827JTdjUH1t5GIzyf1wbDs2NusfuPvdCbT+ksIIZlEp5e32Lp1q9x2222yZMkSGTBgQMy+SCQin3/+uVx22WXSq1f7itswcJ5++mmZOXOmjB8/Xm17+OGHlRfozTfflNNPPz1l4yCdQ9DnkzkvLpfl67dHt40Y1EuuPLtKAm2lKUI+n8x9eYV8vG57u4KlqOeVbmRafwkhJNPodM/PZ599Jvn5+fLaa6/JiBEjYvb95z//kfr6ehk4cKDpa9esWSN1dXUyZsyY6Lby8nIZNmyYLF26NOl9J50LPDxzXloRY/gA/I3t2B8xMSTAx2u3y9xXVqSdRyXT+ksIIZlIp3t+EL+jj+HRs27dOvX72WeflXfeeUf8fr8cf/zxcu2110qXLl1ky5Ytan/fvn1jXte7d+/ovkQJBLyzC/Py/DG/iTdgqcto+Ghge31TUPw+XztDQm9QNLSEpbwoT9KF2sZQ2vaX93Fy4fwmH85x8snLkDnudOPHDhg/MHhgzDzxxBPKE3T//ffL+vXr5be//a00NDSo4woK2ipwt1FYWCi7d+9O+Lx+v0+6dy8VrykvL/a8zVzmm5qdtvvrG4MSyLP3lDQ2B6V/33JJF7Ztqk77/vI+Ti6c3+TDOU4+6T7HaW38TJs2TX70ox9J9+7d1d+DBw9WsT/nnnuufPrpp1JUVBSN/dH+D5qamqS4OPGJD4cjUltbL14BCxg3Qm1tg4RCYc/azXVKigKO++H5saOoICA1NXWSLqA/6dpf3sfJhfObfDjH2T3H5eXFrj1OaW38wOujGT4agwYNUr+xrKUtd23btk0OOuig6DH4GynxHSEY9P6i4UZIRru5SklhQAU3my19YTv2+yIRFSyMJSMj2F6c70+ra4L+pHt/eR8nF85v8uEcJ590n+O0XpS7/vrr5cILL4zZBo8POPTQQ2Xo0KFSVlamMsU0amtrZdWqVTJ69OiU95ekFn84rLK6YOjo0bK9sB/GD7KkYDjo0bKnsD+dyLT+EkJIJpLWnp9TTjlFpk+fLrNnz5YzzjhDvvzyS7njjjtUCvshhxyijpkyZYrMmjVLKioqZP/995cHHnhA9ttvPzn55JM7u/skBSCd/apzRqjgZsT4YKkLHh8YPhpID58xqUoaWkLRY4rz89LWkMi0/hJCSKaR1sbPt7/9bSV8OH/+fHnyySdVhteECRPkmmuuiR5z9dVXSzAYVErQjY2NyuOzYMEClT5PcgMYOt2KA3Jwv64qHsbM1QrDoSTgl5KytuD4NDckMq2/hBCSSfgiUBIk7dYqq6u9CypF2jyyx6wezCRz5hg6O3YeGaf9Xp2nM+B9nFw4v8mHc5zdc1xRUZodAc+EZJLyslfKzFR4JoSQHA54JiRTlJehJu2FMjMVngkhJPnQ+CHEBViCslNeRsC1vTJzyJPzuG2HEEKINTR+CHEBYm/sqGto6dDr3R7nth1CCCHW0PghxAM16dLi/A693u1xbtshhBBiDY0fQlyAbCuj8KAGtkNbyG4/Xu/Fedy2QwghxBoaP4R4oLwMrSEvlJmp8EwIIcmHPnRCPFJe9kqZmQrPhBCSXGj8EBKHsKCT8rJXysyZqvCcjuKMhBBihMYPIRQW9ATOISEkU2DMD8l5KCzYcTiHhJBMgsYPyXkoLNhxOIeEkEyCxg/JeSgs2HE4h4SQTILGD8l5KCzYcTiHhJBMgsYPyXkoLNhxOIeEkEyCxg/JeSgs2HE4h4SQTIK+aEIoLOgJnENCSKZA44eQDBcWTCc4h4SQTIDLXoTEAfRq6oNh2bG3Wf026tc47SeEENL50PNDiEcKxlQ4JoSQzICeH0I8UDAO+/1UOCaEkAyBxg8hHigY1zcFqXBMCCEZAo0fQrxQMG6gwjEhhGQKNH4I8ULBuJgKx4QQkinQ+CHEAwXjksIAFY4JISRDoPFDiAcKxv5wmArHhBCSIdAXT4hHCsZUOCaEkMyAnh9CPBQo1BSOe5YVqN+JGj5u+pKOgopI+d/bEpattU1S1xJWfxNCSLpBzw8hLgQM3R6TbX2Jh6DPJ3NeXC7L1+/r04hBveTKs6skQO8XISSN4NcykvM4CRhiv5tjsq0v8QAPz5yXVsQYPgB/Yzs9QISQdIKfSCTncRIwxH43x2RbX+IBIo9Gw0cD27GfEELSBRo/JOdxFDBsDLo6Jtv6ogfepNrGkKzdVC17mkLtvEt1DS0dEoEkhJBUwpgfkvM4Chi6ECj0SsQwnfqi4Sa+qLQ4v0MikIQQkkro+SE5j5OAIfa7OSbb+gLcxhdB5BHBzWZgO/YTQki6QOOH5DxOAobY7+aYbOsLcBtfBJFHZHUZDSAt2wv7CSEkXeDXMUJcChQmW8QQXhSt7UsmVEpgok/21DdLcWHq+6LhJr6opKxA/R/p7FedM0IFNyPGB0td8PjQ8CGEpBtpZfzMmzdPFi9eLM8++2x029///neZM2eObNiwQbp37y6nnHKK/OQnP5GioiK1/1//+pf86Ec/atfWM888I0cffXRK+08yG02gUHuYi4kh4eaYpMTVpLAveooclquM+2HolOX7pSy/rU80fAghaUjaGD/PP/+8PPLIIzJq1KjotmXLlsmMGTPk6quvllNPPVU2bdokt956q+zatUvuuecedczatWvloIMOkoULF8a017Vr15SPgWQ2es9Lop4U6NnA84Hsp7LifOW1cfJ8OMXVwMPTWSUy/D6fWroyS2PHduwnhJBMo9ONn61bt8ptt90mS5YskQEDBsTs+93vfqe8N1dccYX6G/uvvfZaueWWW+T222+XgoICWbdunRx66KHSq5d5sCUhbvBCMTlRhWM3cTXw8HQGPl9Ezhg3UP3fOC5sx34RGkCEkMyi0wOeP/vsM8nPz5fXXntNRowYEbPv4osvlhtuuCFmm9/vl5aWFtm7d2/U83PIIYektM8ku/BCMbkjCsedodvjlqJAnry5ZKMM6d9dbr3kaLnx/NHqN/7GduwnhJBMo9M9PyeeeKL6MWPYsGExf8Po+c1vfiOVlZVSUVGhtq1fv17FAk2aNEl5kQYPHqy8Q1VVVR3qV8DDb9p5ef6Y38R7OjLHEO+z97yEpbzI/iG/q8FZ4bibhdZNSZGDRk5Rvqf3Y7xMPaNSGYEvvLUu1is2uUry/TAM6fnxAn5OJB/OcfLJy5A57nTjxy3BYFCuv/56ZewgPghs3rxZ9uzZI/X19WopLC8vT5577jmZMmWKvPLKK2o5LBH8fp90717q8QhEysuLPW+TdHyOt22qtt3f2ByU/n3LbY/5pmano/fm4H7mcWiB+mZlTMDQMoLtFV2LpEtJWwCxDmSC7d7bpOKLIDLYtazQ9Dgv+NmUUSk7V67Dz4nkwzlOPuk+xxlh/GCJ65prrpGPPvpIZs+eHfXq9O3bV5YuXSrFxcVq6QwMHz5cVq1apTLGEBeUCOFwRGpr6z3rPyxg3Ai1tQ0SCjH7JRl0ZI6LChwymgoCUlNT12FlZrs2EFsE74reANK8K8GmFqlpii0f0RSKWMYoFeYlxxNTXhSQA3p3UXNs1ifSMfg5kXw4x9k9x+Xlxa49Tmlv/Gzbtk0uvfRS+frrr2XBggUyevTomP3l5eXtYoIQA4QlsI4QDHp/0XAjJKNd0rE5Ls7323pesN+pTU3hWL/0VVSQJ2ccf4hUHdpTGpuCUutrVXA2y9zCopqpbk84IsFwJK2yw3gfJxfOb/LhHCefdJ/jtF6U2717t1xwwQVSXV2tlrqMhs8777wjI0eOlK+++ipmeWzNmjUJL3mR3MMLxWSjwjEMHywVrd1UI7c88b5cP3uxzJj1tsx+ZYXKLLPqB7K6epYVqN9W503Hqu6EEJJJpLXnB1o+MGyeeuopFeC8ffu+D3z8feSRR6pgZ2SE3XzzzWrpa/78+UoH6MILL+zUvpPMwgvFZL3CsU988vTrK9sFQTt5Z+y0hrR9e+pbXKsuE0IIySDjJxQKyZ///GeV4QXvj5G//e1vcsABB6jsr1mzZskll1wiTU1N8j//8z8q6Llnz56d0m+SuXihmKwpHNcHw3Fr99hpDcFXNKdtH1LNU1nVnRBCso20+pS89957o/9H5taKFSscXwN150cffTTJPSOdoZacif1J1DvjFMdzXFW/6L41m2osVZejVd3jGFu6Xats6y8hJP1IK+OHZAdeqCVnYn/054nXO+MUxzNhbKvKMnjtnS9UPBHQG0CJVHVPt2uVbf0lhKQnaR3wTHJTLTkT+2M8j+adMSPqnYlDxbm5ZV/WRGNzSB54bllUdfne6WNl9szxKo4oHgMg3a5VtvWXEJK+0PNDPCXd6lSlqj/G88TrnSktDsi5Jw2Wof27K0OnIN+vDCi0A2MHf+vBNk1xGYaPGkOcno90u1bZ1l9CSPpC44d4ips6VanMREpVf4zn0bwz0Pk58/iBUlKYL2Ul1vEp+YE8lRavLyEBzxEMKNTQqq5tND1vIjE+Vn1O96yxTOsvISR9ofFDPMWN0nE29sesHbfeGSzXPP6yeVFUMOOcEcpgMgoxJhLj49TnePanmkzrLyEkfeGnBfEUeCHs1ZIT81Kke386ch675RwYQE3NQWU4dVSHyMs+dwaZ1l9CSPrCBXKSdmrJndUfeGCgz7Njb7P6HU8AbUfO42Y5Jx4F6GT0OR3ItP4SQtIXen5IWqolp7o/XqRQJ3qeX15xbKct56Tbtcq2/hJC0hMaPyRt1ZJTRTyFQsN+vypfUdfQImXF+VJcGFCqzm7GjfM8tWilDDqou0wYNzCa1YXYoCMG9ZJP4hQtdCP25+YYr65VqsQHM+neIoSkJzR+SNbj5NVxm0Id9PlkzovLYwKTkZGFgqao6+VEYzAkJx8zQF57d0NMVtfow/rI1ImVsuC1la4Dmt14qlIpCEjxQUJIJkHjh2Q1brw6bmJuisqLYgwfVG1HGjt0eb7aulf6VJRIcb59HE4k4lOGjzGra+nqrer35ROrJBhy9py4GRNw681KpeeMEELSARo/JKtx49UpKrR/G2A/lrr0hg/0d4weHCdPRzgSMa3HpRlA5512mCqK6rSc42ZM6v8pEgSk+CAhJNPgJxLJatx4dfw+n2UpCmzHfsT4aMDjY+bBcSqz4NSXBof9btvBfrcZZF6QynMRQogX0PghWY0bYTyfLyJnjBvYzgDC39iO/aXF+dHtWOqy8uDoPS/x9qXYZVaXmzGlUhCQ4oOEkEyDxg/JajRhPDO0TKqiQJ7841//URlYD197gtw97Tj1G39jO/aXFAaixpG+yKgZdQ1BpeFT1xKW+mBEGkKtmkFoA1ldZmA79ns1JjfHeEUqz0UIIV5A44dkNW6E8fBz/mnD5PV3N8i1D/9Tbn78PfUbf2M79iOdHVldMICMRUaN1DW2yPWzF8tVD74tTy5aKVt2Nsj811ZKY0tIGVRmHiZsb2oJejqmVAkCUnyQEJJp+CIRfjIZCYXCUl1d51l7gYBfuncvlZqaOgkG7b0GJDlzbKdBg32zTbKVtAe4UecnGArLvD98alpmAYbMkP7d2xUoxTb8PPBsa7FTs+rtv7xijHQrK7LVEXI7pniOScUcE2f4OZF8OMfZPccVFaWSl+fOp8PFeJIT2AnjxZOtBEOkwCfKo4HgZr0BpMUIoZq7HsQHobK7sdipnm5lBdKltFAei0NHyI3YXyoFASk+SAjJFGj8kIwHHofaxpBs21StPCVFcda9cpOtpD3QNe9GQ1NQLp84XIKhiNQ3tqh0+JZgWPx+kTsuGyM1e5okP7DPqwMvz4ZvdsvRh/eR/n27tvP8HDmkl8x9ybyy+5yXVshV54yw9AClE/T+EEIyARo/JKPxQlnYbbaS8VzQ+7n1kmPkxb+tk9Ubq6PaP0bPDbbn+X3y5ocb5b6rxikjx7gsNnZEP8sMMmzf29Ci+uFGSbqzoMozISRTYMAzyViclIWdqrJr1dXhpbjrimPl3JMGK4MGP/j/rZccLT+/+Ggs6KhYH9Tl0p8LsTu/f2ud2mal/YO/sT0YjsiU7x4mj79s7t3ZW79PR8gM9BEeIPQjG68FIYSkEnp+SMbSEWVhMy8FPDA3nD9akAOw6J326s2nHzdQln++Q8XtACxdacfo/28Exs25Jw2SPhUVMvvF5Qlp/GA/2kEwNFSg0w2qPBNCMgkaPyRjiSdWx42XAsbFuCP6yXvLvzFVb0bIDTw8mpGj1/vB//X1voyZXPl5ftlb32zZ1527G5XxZbb0he3Yr2kIleW3H5MTTtXoO+taEEJIZ0Djh2QsiSoL23kpKsqLLPfps7aAXu/Hqt6XFvNTWhyQkI2tMfuFj+W+GeOUUWaMGbp0YqXc8vh76m+0Ey8drUbvBqo8E0IyCX4ikYxFUxY209uJKgubPNztvBRO6s36/fDqaN4axPRAFNEsngcgWwtYeXeQAfbeiq/lB98ZJBdPOFx5aLDUBY8PDJ9de5vVa5UKdBweG3h8jIZPMrLIEr0WhBDSGXARnmQsiSoL23khnNSby0r21fjCctb3Txqszuf37TN0jGB7Y3MwqhJt7K+mD/TCW+vlprnvi9/vU4HUUJn+5dNLooYPXhuvoaKvRm/WL+z3Aqo8E0IyCXp+SEaDFGooMDe0hJWBUVQAbRl7nR87L0V1baOtB6NbWaE8dt148fl8quBpcSBPnX9HbZOrmBcsM10yoVK2ja2PiQuCMKIWSN3Q2KI8Mq0xOkG11FWSoNKzvhq9GYnGENlfC+r8EELSGxo/JOMF8fCa8qI86d+33JWkuualMCo0w7gZfkhPOfzgHjJ/UWz5ClV/a+xAef/Tb+TQA7oJetm7e4mEfT5llMBAsQt4jvU2ReSOBUss+4dj0SayuqKGiYXh46Sto69Gb0YiMUR2UOWZEJIJ0PghOSmIZ/RSFBfly5qN1fKTh95W+2HETP7WICkI+KUlFJaVG3Yqb89nG6pl4Rtr9/V5cC+ZNrlKSvJbBQ+xXGUMeMZ27NcMAa/iY5y0dTA+rRq9VRZZvDFEhBCSDbCwqQksbJpc4ikkmoo5RlCwsaaWvj+DDuyu/r92U42lEYFlqjkvLbcc05WTWwOL9Snn8MoE8nzy4crNKt7nsIMr4jL+INA4Y1arsWbG7JnjlRdGZXsZSmckku3F+zi5cH6TD+c4+QRY2JSQzBDEswsKRn+w3AXsRAzRht2YGluCUhDIM005v/ys4TK2an8JQAQ5CTXJYODEE0NECCHZDrO9SMpx89D2Gq2UxY69zeq3vtyCU1Aw4necUuCd2gj489p5XwD+nvfqp7KztkHFESVLW0eLIepTXqB+0/AhhOQy9PyQlJNqQbyOBgUjvb25pTUTywqnNpqDIduU8wtPHxa3x4vaOoQQkhj0/JCUoz20zYg+tFNYcFMLCjbjiEG9pE9FiUqBtzpGCxy22+/kGWpoDMbt8coEbR07jxshhHQW9PyQlGOXau71Q9ttfBGCf82CgqefXSV54bAceWhPqTykp8x7pX0xVE180KoNbNc0fKxAva28vOzS1unsjD5CCOmQ8fPNN99IPPTr1y+u40nukaqHdiJBwfUNQSkxBgVHIgLlmivPbj0GnpquZQXSEorIrj1N0f5ffc4IqTMJLHZKOd/b2Cy9u5WoivJWc2Kli2SmreOVhlKiuEnDTwcDjRCSm7gyfk488USlceKW1atXJ9SZefPmyeLFi+XZZ5+Naeuuu+6SlStXSkVFhVx44YVy/vnnR/eHw2GZPXu2vPjii7Jnzx4ZPXq03HrrrXLggQcm1AeSOlIhiJdIULCdsKB2THFBoaVXw6wNvA5epLkvWRcuvfOK4+Tp11aatol33xyXXpR08LikW0YfIYTEbfzcfffdUeNn9+7dMmvWLBkzZox897vflV69esmuXbvk73//u7z99tty4403SiI8//zz8sgjj8ioUaOi22pqauSiiy5Sxtftt98un3zyifpdWloqkydPVsfMnTtXFi5cKPfee6/st99+8sADD8jUqVPl9ddfl4ICb2T7SXJIhXcinqBgvQYPlqGKTdLB0eeWcKTd8pfeq6Fp+hhfV1vXJBPGDWwNblbCirGFS7fV1Fu2OW1Slezc3RDd3q2sQL533ECpawxKQ1Mw2l/Mn53HxaxvbsaNY3Y1BOXr6h22c6NdT+NlNKpfo8I9jjde7872WHUW6v5oDMm2TdVqbosC9iVaCCEpMH4mTZoU/f+VV14pEydOlF/+8pcxx0yYMEF5aP7yl7/I97//fdcd2Lp1q9x2222yZMkSGTBgQMy+F154QfLz8+WOO+6QQCAghxxyiGzatEnmz5+vjJ/m5mZ5+umnZebMmTJ+/Hj1mocffljGjRsnb775ppx++umu+0FSS6q8E27ji5QQoIkGj14IUOszDBg7r8aW6nrp0704Og7tdRdNOFx++fRi675abEeb22oa5P9dfLTc9fQSqa1rll9OO06e/MPKdv2demalY996dy+OjsnNuOOZG+3ct15ydIzh87Mpo+S1dzfEaCUZr3c6eKw6g1wdNyGdSdx+5/fee095fMyAAfLxxx/H1d5nn32mDJzXXntNRowYEbNv2bJlctRRRynDR+OYY46RjRs3yo4dO2TNmjVSV1envFAa5eXlMmzYMFm6dGm8QyMpwk0GlpfgAQKPx6PXjZd7ph+nCpPib+3BAq+GlQYPtmO/vs9uNH+Wf75D6oMRleW0bVeDDDqou6r8bpURhjIZqANmxd76FrVkdsMFo2XGuSPbGT5af7dV19v2De1oY3Iz7njnRgNj0cYKjw8MH2Mb+uudrHsC/dvbEpattU1S19KqsJ3L7wVCSILZXt27d5cVK1bIcccd127fhx9+KH369ImrPSxp4ceMLVu2yODBg2O29e7dW/3evHmz2g/69u3b7hhtX0ckur1Ck9t2K7ud7cC9bx8PElaFSr2a46ZQROYaSk9o36wL83xqOcdOgwdLQn6fL/p6FCy1AwVP//z+Rpn94vLoNhgC3x51oJx5fKtatJnH5rpfvWPZJs6J14RCEenRtciyv07PSq0djMnYDz3xHKOfGw0Uc4W3B2Cpy0odW7ve6v8e3xONoYilx6ooz5e17wViDT+Lk09ehsxx3MbPOeecI3PmzJHGxkbl6YExBC/MX//6V/nf//1fufnmmz3rHM5hjNspLCxUv5uamqShoTUGwuwYxCYlit/vU7VJvKa8vNjzNjMRxDXY0dgcVBXavZjjPfXN8vBzyyy/WeMBXV/TaNsm4k9Qg8vo1TCtBTa4l3z+9S5TT8kTr66Q8SMPMI37+fyrXaq2l1lsEs6leYXgVQrbrITgOKsYpyMG95JuXQrlxvNHq5gc3OdYkrJKw2+N3bFfdkFWW76qyxEL2nzguWXK61NSlO94vZ2I956AYvac339s6bG69kcjpUcavB+T+V4g1vCzOPmk+xzHbfxMmzZNZVUtWLBAxd4AfEAWFRXJT37yE/nxj3/sWefQJuJ69MDoASUlJWo/wDHa/7VjiosTn/hwOCK1tfbLB/EACxg3Qm1tgyqamusUFQQc96MonhdzrL5ZmxgCANurdze6ygiDd8Po1cAyVow3aTAyt4bLTx/5p+X5Lp5QKU8tah+rM+PsKule3noP6/uLfWeMG6gMCU1JOmRj/aBvj/x0vMx71RDjNLiXnPPtwXLz3Peixg6MJIwDbZsZQG6UtpHOr58bPWgTHp+xI/p16H5I5J6odfDm1e5tFn8avBeT8V4g1vCzOLvnuLy8OHmFTZH1dcMNN8j06dNV9hU8LPD+jBw5UhkkXoLsrW3btsVs0/7G8lowGIxuO+igg2KOGTJkSIfOnYxqtLgRWEkYGVh+U+8EvBBY/gFbdjUmlO1jnOP6RntlZeyvKC+y1eCBRg/6oPVZ82rMnDJKJp84SMXRVJQXyqYte+S/2/baChoiowvnMWY/IaA5GI7IeacNk8nfalFtYokKnhzNOEFfkAmEpS+r/g7pXyH5fp+KaUJws75vdyz4MKZvGAsSttAP47KUNm7t/27nxgi24xj7jLvWDyunY+J57zgpakPLCZIE6fpeSHTcxB38LE4+6T7HCb/7kW6ONHcEGCNQ2eih8QJo9vzrX/+SUCgUE1d08MEHS48ePWTo0KFSVlamMsU0amtrZdWqVeq1JD0xK8sAY+DWS46R95Z/IzNm/UOun71YZsx6W2a/skJlwyQCXtfs8OZTXp02dWZjMLJevdnYZxgRs55bprwebyzZKHsbEEi8PGZ5zHTsuuyntZtq5I4FS+TeZ5bK/3vifXn93S+kdk+TdC8vlL98sFHtg1GiGT5XtqlNF/gitv31hcOqz8jqQjta38yMMhg1VYf2tBx3InNjjKtSGkcOZTi8LtXhVGsNIpbpQCaUKCEkG/FFnBb1TVi0aJE8+OCDsn37duUJgsDgY489prK2sD1RfR1oBH399ddRkcOdO3eqzDIEREO7B4HWv/jFL5TWz1lnnRVNbf/d736ntIj2339/pfPz3//+V/74xz+q/iRqsVZXe+dqRvA0Yojgvk5nSzjV6DVdyksLVHVzs+BPPAicFIGNc4y2Z7+8QmVZwciw8lxA1VnTq9H0bkwVnk36DMOpJD9PVWPfUdskN8xZLOeeNNjyfFh6Qn+A5TFDesnUCZWSn+9XxopRKVqPm/7imB27G+XGOdYp9vfPGCtFhQHHdlq1gKz746TR40bDxyudH/T3MUOws9V1Twdaxx1WMT5Y6oLHh4aP9/CzOLvnuKKi1PWyV9yenz//+c9q2Qsp5w899JBSWAbf+c535J///KcSHfQKeHeeeuop+fLLL5WxAyXn66+/Pmr4gKuvvlrOPvtsueWWW+SHP/yh5OXlqXikRA0fknqF555lBRIMhR0VgRNRGEYMDGJmjJ4LGCLY3tQSbKfe3Lu8QP02ezjq+6wUitu8FjAIgHY+tK9Hy+jCfix1WcWjYKwRiSj9HPShj01f3PRXHePg5YCR4aadbsUBqTykh/rtZm6MD2+n/W6PcYMbj1U6gXEiqwvLlvhNw4eQ5BK37/eJJ56QH/zgB8oDo1+OguhgdXW1Eia85pprEuoMVJqNVFVVye9//3vL18DY+dnPfqZ+splsV751qsG1p75FIjbKwkZ1XK09fdYR0swRX4NYmvLSQrnliffkjsvGSHFbeQ23Ssdmx+iVpHG+X15xnMrq0s6H2J33VnyjHm5OOkHoe3GXQtfX2+7ewL5Ant+1ynVHMM6NihmyqVWWTNCX5pagTJs0XC192nm1CCG5R9zGD7ww8PyYgdgfLH8Rb8kFBVinzCKUcLhp7nuOysLa3CCryph1pAcKxNiundcLpWOUoNAEAVHKAjE7erRYn8ICe92W4qJ8tWTX0TpeWj2w1Rur1XnxzNf33cu4EuPcaDFcL/5tXcrvW7vrRMOHEJLQsheWor744gvTfdiO/cQ7ckUBVvOcmKHXuXFSFtbmZu2masf2NK+HV0rHUF0e0r+7MqzgWTIufWleKIgMW/UN29F3N9fb6d745PMdap92Xq1vP7/kaJk981sqjsoLI8RsbuBp+/1b61yNw0vcXCdCCIn7k+C0006TRx99VIkaahleCHpG1XXE+5x66qnJ6GfO4qY6djZglfWi6dwgVsaoLGw3N9DSufws6/Y2bd4d9XqgLScVYzfHLF29VXmY4PHBktrpY9vHGmHZq6k5LBNM9qGvV5xVpfru5no73RtI4Td6v9C3O5VHqjVWyQvM5sYprilZ962b60QIIXEveyGeZ926deq3v+1b1HnnnSf19fWqIjuEDknqYmFULEVbzEqmAy8EvBF4MCLGB0tdep0bPYjhsPsSj+P31DVF28M8IaMJqek+X0QuO6My+vB30oRBhhOMBftjYtswxhoVF+ZLcVGevL9is9z3TGvdOWMcUq9uJWq5zE4nSH+9ne4Nu9giL+8bs/lzE9eUjPvWzbUsy8+O9wshJIXGD9LYkYGFAqcffPCBEjns0qWLKkB6wgknKC8Q8Q436sPZhJbtEy7OVzE+ViB4FQrLdiAYWWsv9kHriwnwddKE0TK57I9p34Y+1ghFVaPZYDpxQ7Dhm91q+/1XjVNGkh36UhFO196uBpn+tR0Npjcbu1P9s2Tdt15cS0JI9pPwJwEKm+IHpSSQVq55gYi36LOIkpmpk24gK6ejysJu58bNudCK3THFbvqrAq2PUbEw+gBs7Mf20sKAtITCtu3oRRSd7o3qWvOaZfq58SKY3mz+bOufJfG+dXMtVeQ3ISSnSUjkcMOGDSru5/3335e9e/cqkcOXXnpJBg4cqJbAMp10EzlUD6hXDLWasizbyzJrxxC8aszACvt8KrAX8S3a8hEe+kcc2lP8ccyN07lqGpqltLhQHn+5/THTJ1dJQ3OTlBYVyda2khJaevuXX++WSydWqjY04UVLIcfJI6R6T6PU1rXIa+9uaHcexCqVl+ZLj9IC23vj6MP7yNQzhyvPE8ppwFxCX+BdQvFU7b5x7I8hE8zuPjbOn1W2F8bx/ZMGy37dipJmtLu5b9IRCvAlH85x8glkiMhh3J6f1atXq+KlyOo6/fTTVSV3TW8HKssoN6EXISTexsJkq86PGXhQQYnXTsUYM4CSGEbPxQhDyQbHc4nI1DMOV+0hbgTLJz7dG6QwPyC3zX9frj9/tOTnHR49Bp6au369RG6+6GiZ+9Lydv1A+rv2wHUKUN5cXS9dywrl5/M+aBcPpMU+zbp6nO29gWWd/ECeaV9Q8LQAg3LZH+xXQo4JXqsPV26WoQdXtNM7Qo0xjMNt2/Gi74udIjUhJHeJ2/i57777pLKyUp5++mn198KFC9VvKCxjCeyZZ56h8ZME2sWuJNHw8UJQ0U0bbkQFNRXjaJCq3vBxSPV2Komhb+fXf1ol40cdJD26FgmKpofDEVUW4u1//UcuOm2Y6n+/XmVy3SPvtHv9jHNGyLxXWvV0UN5Ci+fBw37F5zvkyEN7thlV9gHK8Bht2VmnvDNGXSKz5SLj/MH7hfHOtpgTVHpHwVPNIxZPMD3OtashKF9X77C+VpGIFAT8EinKU31a+MZaV20nA7v7Jh3R5vebmp3KWCsuoLFGSFoZP6jkjrIWgQCqS4fapcGjphbJXLyIAXHThhtRQSe88lw0hULyg1OGKp0eY3+wZIX9RX5/jIih/hikryM9HUKCWK4yxvNUHtJTnvvzKjlx9EG2/YCx9NTvVioPjdny2jSdMWc1fyihYTcnqPTep3uxug5ug+ndXCssP27b1ajimXAc9ITctE28eS8QQuIjbr9zYWGhNDaaB1Lu2rUr4aKmJDsEFd204ZUQnRvPhRv8vrx2ho/WH2zHfvR7waJ9IoY3nj9a/cbf22vq1TKVMU5HawNeIXiVtCBgO+FFxOls3VmvlooevvYEuWvacfLItSeov5/58yrH+dtWXe/oXdKug52wZDwCkJG2uCvN8AF2Y416sAhFGQnpJOL++oUMLwQ7H3nkkdKrV+uHG9Lb6+rq1FLYsccem4x+khTghSfFTRtYVnISosOShRPQ7enIfo3mYMi2P9gf9IksWbVV/RiBEYSlLrOlKoD5OP97w1TAMbxDSNE3BgEjmBkxPQgU7tmtSOabeKFwTGMwJCFDmQo9TvYpvEv6awlvnFUwPbxMdc0hx2uF8WDJTX+cNlbtOLO2iTtRRjfvBUJIko0fFBD9/ve/r5Schw4dqgwfFCRFzS8kjmFJjOSuoKKbNkKwfjwQosNz3i6t2aeO6LgwnpOgIrwc8ADZ0dAYjAofzpwySiafOCgmK0wTckT80JOLzL1Q4NIzK6Wuodm2L1bp7/oyIdq1dAqmdyMaiOQKo6ihUeSxrChfyssKJBiKSM2eppwJ2vfi3qMoIyHeE/dXir59+8qiRYvkggsuUMbOQQcdpNSdkfn1yiuvyIEHHpiEbpJMEVR004ZnQnQ+Ud4Q4/KK5iURn7sHq1N/VJaZzbjg5ejdvcS2jeK218MomPXcMmlqDslfPtioyk3AY4TtMFoQP/SJhecMBlA4ErHtL/piV9ZDKxOiH48WTN+zrED91hskbq4V2jITNdREHu9/dpmUdymUea9+KjNm/UOun71YZsx6W2a/skLFh+Uybu49Qoj3JPTO6t69u1x77bXe94ZkvKCimzYQI+KFEB0yYt74YKPyuhjTwrH9srOGu2qno4KKyM4qLshThUzNlvzQxs7dje28IpecUSk/PmWIVNc2SVlJvuxXUWIpTBh9bVNQLTFZ9RfGU77fp7K6ENxs5l3yWgASc4N+Wx2HIGzEPXU0Ky8boSgjIZ1DQovJO3bsUMtbP/jBD+S73/2uTJkyRebMmSO1tbXe95B0enHReOI03LSBFF5ksph5bLDdbYovjps6sVLWKu2YJXLvM0vVb/yN7fG049Qfp3HhmGmTrdtAyrzRSIERc+v8D+SNJRtVBhbacOM5c+qvLxxWx6BNtG30LsUTc+N2biAqCfFCs2KtGGsuFOdNBK/eC4SQJCs8r1mzRs4//3yl6TNy5Egldghj6OOPP1YeIYge9uvXTzKZdFN4TjWp1/lJTIgO53ht8QY5fewh0tC8T++mqCAgf3zvCznjuIFx9Vvrj5WgoptxWY0p9nX5qkzFnvpmpZejb0OpLhsCkK1Ul73ob7xzY3utfD5pDkekqSUkjU0htaRTnO+XnXua1FKXFffPGKuW3HKZ6LVsu04UZUwOmfZZnIkEMkThOW7j58ILL5SamhpV3FTL9gJbt26VqVOnqhIXv/rVrySTyXXjJ1NokbD4fHmWpQwikZDkJ+bc7FTStZxJovdxfTCsYnysmD1zfNLUnjMJfk4kH85x8glkiPETd8zP8uXLZdasWTGGD+jTp4/MmDFDKT2T7MZ7b4K1wrMdfn9AZhvE4fQaKcic0uIl3JzLC1Vqq/1a2w1NQelSUigtoZDU1beWyDC2AQMHMTtaO+qYgoBEImGpD0akvrHF9bx7da3QTm1jSLZtqlb9LTIERqeyOK9XYyKE5C5xGz9Y2tqzZ4/pPig+FxUVedEvksUK0F6o2qIfDQ4aKQ1tGiluzuWFKrXZ/iNQ+PTsKiWQuPzzHUr75rm/rrXti7EdqyKhTvPu1bXqaDtavJSdnlCq+kIIIQkte7388svy8MMPR4UO9ZXep02bJhdffLHSAcpkuOxlTrxVwK2Ad+QxE4+NZgigKKWdB0jrB+po3TT3Pcvj7pk+Vnp1K3I8l7EeFowN6NNAuBCj6dO9RG17+vXP5IA+XWJqd2mV2y8/a7jteTQdIARj2/UFGNvBOK1eZzXvXl0rq3YwH8jiGtq/wrUnqqMeG6/GlK5ky+dEOsM5Tj6BbF32+sMf/qCCnVHZ/YADDlDLXYgB2rhxo4TDYZk/f776ARBAfOutt+IfAUlLvKql1VFVW60fF0043PY8CMx1cy694jIe6mY1uo4+vI+cd9owVe7CWLsL+jkIuLY7D1LxgZUKtNYX7f96bNWjLebdq2tl1o5+jrDs6NYD09HivF5WoSeE5DZxGz8wePCjB8KGVVVVXvaLZKkCdLyqtmbeAq0fhfl5jhop23c1uFIo1rw9x1TuJ8/8eXW7Nvv37WpZ/wtMPcPeEDMqIFuNO6J8TfG91mzevbpWZu1Y1TFLtm6PV2MihJC4jZ977rlH9u7dq2p5wevT3Nwszz77rGzevFlOPvlkOeqoo5LTU5IVCtDxqNpaxXdcPKFS/R9KyT87b5RltheWztwoFMP40TwZ8LKYKSzbeV9wbqdHvZkCsllfIgm81mzevbpWZscl4onyAq/GRAgh/kSyvb71rW/Jc889p/6+6667VPbXa6+9ptLg//a3vyWjnyQNcFMFPB5VWzM0j41ddfi1m6rV+db/d7c88OwymT65Sh69brzcM/049RuxM1rwsJtzFeYHop4MKy+Lk/cFtbt+fvHRqsgpYnTgSdKfB7FBKGlm1xdkUZn1N5EK6V5dK7N23HiikoFXYyKEkLiNn0ceeUQOOeQQOffcc6WhoUHV+frhD38oH330kZx99tnyxBNPJKenJCsUoN2q2trFdzy1aGW0fhUMoMvv/Ztc/eDb8sLf1klxYV5MsLSbczXq4nWsvCxO3pe6xha58+klUYVpeJJgAB3Rdp5Nm3dLwO+zrUXW1BI07S/qcUE9OZ559+pambWTiCfKC7waEyGEJKTzg2wvxPkgmBnBz2eeeabad9pppykPEMlenKqAuwWeGXhorBSK7bwHKNOwp67J0I98qehaJMGmFgkaqsbrz2WmUKw/l+ZlMcazWG03VksHOAZV4B+59gQJ5PnVeS47o1J21DbJbU9+EK10rs8YQ92tOy4bI8VlBaZzg/imK84aLi1x6Py4vVZO2kX72mk1FMuKCzzV7emM+48QktvEbfz4/X4pLCxU/3/33XelvLw8GuyMWCDq/KQ3HRUW9BKcF1ldWnCzvoCjk/cA/dZnDyG9sktJgdQ02QdTi0RQDL6tA37Z2xSUgoK8aMDzsAEVMu6I/eXp11bGeJ6Qzn7pxMp2Qc8wfM4/7TDZU9csN54/OmrMwFsTDIWloO1k6CuMLq3SuRlmY0YANJrI8/vEH45IfsAXDeoN+3xS1xxyFG6ELRgKR5Q9ghWrcCQshXmtBkMiekuhcFimTx4hTy36VJZ8ttW1B8are6+jWWPpSEdEJAkhKTB+Kisr5cUXX1RGzl//+lcZP368SmnfuXOnPPnkk2o/SU86KiyYSpE5L1WBrcYNbZ5b570vE44fqEQEf//WOmWYaIbQ5BMHKaOjID9Plny2RW55/D05+ZgBUa9Nnx4lApms/31jrSxdvTWmbSx7QWSxJFAQ95jcXKeOHAMj7td/XiUXfO/wdvv1Ctma3pLVNZ82qUoZfvCmOXlgvLj3shUKNxKSASKHn332marhBW2fiooKWbhwoQwYMEDGjBmjdH4WLFiQ8QZQNoocdlRYsDNE5uKpcWU1x07jnjBuoOT5RAU8W41r6IAKZeAYeeia4+W3f2qfFg/j6ZIzKtXrGvRLVD6fbKlpUEaW0QhATA+qsGNUTtdJPDgG40Y/b3nifbECweOlBXkdvuZe3HvZSrYLN6Yb6fBZnO0EslXk8PDDD5f/+7//ky+++EIGDRokJSUlavsvfvELpfhsrPlF0oOOCgt2hsicF/EdTuO+8PRhrf23GdeEsa0ChUbwxjYzfLS0+TkvxQoAIkj7/meXxniPtGWyOxZ8KPdfNS7ar3iFEOM9BuPeurNe7IBHRy8Ameg19+Ley1Yo3EhI55BQWkZZWZmMGNH67VLjlFNO8apPJAnEIyyYTiJzHY3vcBo3UtSdWrRK7a7Z0xSXAOC8V1cow8cq5sdK5NBokCASSF+CQ29EIdbITTsYt1PWllLI9uCae3HvZSsUbiSkc6AqWI7gVlgw20TmnMZd7KLPZSX5rtt2EgC08iK5vQYwSHy+faKMxlIb2F5aggrw4jjuT9Zvt4xB0jSQ4Pnp6DX34t7LVjLxPUVINkB/ao7gRuwvG0XmnMa9c3ej+oEejxnY3qeixFRbBtuNr3MSALQyStCXvQ3NKtPH6ToVF+wTZdSDv7Ed++3Gjb6HIxH5ZvseFbRsp4HkxTX34t7LVjLxPUVITgY85wLZGPAczbixKAURV7aXyyDkVGI3x1bjRrbXzXMXS2FBntx+2bHy+MvWc2NVkdzYNhSeIXRoxWMzv6VEGs3Oc/1j78rB/cpl2uQRttepriUsVz34tvU5EKic71d9m/vSCuXhMQoqvvHBRpk6sVK1ty8Fvb0GklfX3It7L1tJ1/dUNpIun8XZTCBDAp5p/OSQ8QO0B52ZsKBbrAyBZODmXK3HtArwWWmkmI4b2lRNQfGJT577yyrp369ruxgaKDNDoNBufPq2u3UpkHl/+NQynR0B3OivsS/VtQ1y/ez3Wo8b3FOmn32ESpVHvAyWjTCuvLbrtLW2SW6a23qsGfdOHyu9y9u0gPx+2VJdL3vrW2LigqA3FE82kX6OiwpwHeLXofHi3stWvJhfklmfxdlKIEOMn7T3Ny9ZskTOP/98032oLo9aYo8//rgqu2Fk7dr26cm5jp2wYLqJzLnRP3GrkWI1bmyrD4Zlyaqt6seM8757mG3GjbFtnNvqmzzmDj/GvhQV7ouL+XjdDrn07rfapZ1rGVHxFIbdWl1vmc4eTzYR+lxelCf9+5Yn/KHmxb2XrXgxv4QQ96S98TNy5EhZvHhxzLZPPvlErrrqKpk+fXrUyEGJjZ/97Ged1EvitXfIrrApDAt4LIDTMdo5Na8DdHe6lhVKSygS1eAR8Um3sgKViWWaPdUYlOIuhdIYDEkkAsVkvLbVe4H4Gr33Av1uDobkkgmVEj49Io1N7sZfWhiQK88eIT1QoiMUll7dS1RJi917m9TrVVxM23m0GBor3RxVGDYSUXNzyjEDbOeZ2USEkFwk7Y2fgoKCGO2g+vp6ueeee+Sss86SyZMnq23r1q1ThVapMZQ9irVu9E/U/11opGjqwqgGj2yohW/Gigyib7+cdpz89o+rTLOnSorzZf6ilco4MgYaI+B5elvcit24HYUAIxF5f8U3Ma/V4nNuf+pDGdK/IhofoxU/tYqhwX54s9AWxAztYDYRISQXybhsL1SNRzX5G264Qf3d3NwsGzdulIED7T/kSWpw8thgv1f6J26OgcdHMxLsNHhQs+vg/bvGbMdxr7+7QZW4OG1sqyLykP7d1W8NBBOjfZwn0XFbzZmWvYV+L9edB2jFT7Echhgf/MbfWvCwNjdaQdZUZBOpWKZgWHbsbVa/3V5rQghJNRn1ta+6ulp+85vfyHXXXSfdunVT2z7//HMJhULyxhtvyF133aWqzI8ePVotgfXu3btDQVteoQVguQ3EymRQnNHeGxNWsQ1OFDmkP2O/3+HhikrvenVhOw0eHAPVZSMwbqCE/IunPozxBqEKO4KGtdfiPImO227O9P3SztNNp4tTUByI+VuVk28bO8CyHfqrvT7GIzW5SvKVkI+vw/dxUyhi6fUqRP0Q4kgufU50Fpzj5JOXIXOcUcYP6oh16dJFvv/970e3YckLFBcXy69+9StVYPWhhx5SQdJ/+MMfEqoy7/f7VLS615SXF0u2g6rUdiCbBUGdTuxurLWNa0GdrIquRbaFQrF/0+Za1xo8yLJBqro+I0q7HzS0/sAbozekWpWXExu305zp+w2PzsH9Yj1Ue+qbVWyQlhmGmKaKwvzo3MBQQ3+1khoQbTygT5n0SPB+NN7HOP/Dzy2z9HrB+OpSwrgit+TC50RnwzlOPuk+xxll/MCYmThxYoxBg7+PP/54VWRVAzXHsO3vf/+7nHbaaXGfJxyOSG2tfd2jeIAFjBuhtrZBpdFnMzAgnPYjm8WZiIp3Aca4ltbtEQk2tVhnVk2uUvv1mVFO5RxgoECjx+jd6VJa4Oglgj5OouN2mjN9vxGjo2/HzuNy5aQqmdM2N5qhps2NPxR2eR2c72PluTIxQAG2V+9uVNeC2JNLnxOdBec4u+e4vLw4e1LdNdasWSNfffWVTJgwod0+veEDsNyFZbEtW7YkfL5kpJriRsiGFFa7TC7ok9h5Y7DfzRwgi+qvH2xUMTbGIqDYDoFCtIOFpNbipwaNlHBEguGIynxCUDKWr7T4FytvEvYDBEZXj+gnd1w2RvbUt0iezyfnnjQ4xhuk98ZoGVaJjttuztD25//dpc5fdWhPlT1W62tVBnaT7WZaGLZtbry6j+sbHWp3IasuwKWvXPucSGc4x8kn3ec4Y4yfZcuWSY8ePWTo0KEx2x9++GH561//qn6wFAL++9//Sk1NjRx66KGd1NvczeSCEeSkc+MGZCxdOrFSBfkaM7C0jCY3Gik4DtlYaMcq/kXzJsHTE1uVPfYYvTdI88Zo2V7qPAmO22rOcM6JJxyi0tYXvRNbxwvtXjyh0lW2W7I1mVifihCSaWSMwvPNN98smzdvll//+tcx21euXCk/+MEPVNr7hRdeKDt27JC7775bLY0hRkgziOIhmxWeO+rxmW3iaQBGteB4dH7sjnWrCmw1x2gbaeqaenMwFJGe3YrUMfg/vEX6GB94WNZuqrH0DsETtf6rGqXjg7cOlJeNOj+J6htpKr91jS2q3QKk6Yci8uyfzdWnDxtQodLgrbh/xljp6ZGGT/Q6NLaWwNDrG6n7wmC4acSjIp3rZMvnRDrDOU4+ASo8e8v27dujGV56Kisr5cknn1TBzpMmTVK6QN/+9rdVKnwihg/pmPaOphbsVgXayZPUUVVg9MlKvdmsDpdTRtg53x4kJ40+sC2l3NeuPx1Rv0ZLC15bGTMXd087NqovZPSAnTByf+Wp0pbikuVx0XSSrOpyeeXtI4SQVJExxg8MHCvGjBmjfkhywbd+PGyROWSlhKw99N14QJQ2zkvL2xlUq7+sluWf75Ch/Sta40UcPChoZ1dDUL6u3iFlbXWwNK+EXZ/X/3dXu1gbp4yw/IBfGRvIrDKeS+tLa5FQ8/1utH76VBTL9eePlvw8v2oHniqIFaLO2K69zep4GCJPLlopU8+slNkvLrfU8Am31RGz64+T581o+GjnR9HUGeeMUO3BUDWNL6LhQwhJQzLG+CGdD5Y7tHgYMyVkLePJjcIzvAnbquvbGT76mBv9Q91KIdrJK2HXZ8TTjB95gDzx6j6PhVNGWEswLDfMftv0XE59ceNVg+FjVWEeKtS3PP5e1AD6ZN12ueSMynYGnDZXMHFmO/TH6VqhuKrZEqA6//rtaj8qyKey5hshhHSU9FYhImlFYX7AVCFZUyLGfjcKz5rqMiqNG7FTYTYqJevVm4390dSQ7fr8h39+IQG/T66cPEJ+ecWxcuP5o6Vbl0I5YrC5IjIMhxWf77A8l1Nf9P3e2xJW1dnrWsLqb8QeAXh8jIaP1g5UqGecOzJmO+qTweMye+Z4FeOD3/gbApCzHfrj5lq5UdEmhJBMg54f4ho8oK28ANiuPcCd4oKQZW2lqGwXc2OMK9KrN5v1B/uhT2h3TENzUPXnl08vUYYXPE9YSlqzsVoqyouiy2TVtY3So2ux3PfMUstzGc+jX27bsbtRupQEJD+QZ+odQsYYiqtiqcuuvxeePixmG5aXzDwue5tDrubG6VoVO8QNYX9Hi9h6QTr0gRCSOdD4Ia7xwguAY0JtGjNmujtOMTf6uCLEsdgB1WWnwH+0h6wtbWkMsUvXnzdKFi//Ri0r6ZeCJoy1rh9n7It++U4z5qwyybT4mRvOH+U4JlST1/dJ6f2YPOS9mhuUybDTRirKz2uXARhvEdt0KKRLCMktuOxFPNVzcXOMproMQwP6OvrCm04xN/r29erNZiDex01/UA5CWxqDpwaaOnrDR/OEYDv2m58r33H5Dh4gO29MaXGB45g0T4z2cG8MhkwLiXo1N5rStrE4Kv4+/7TD2mWnJVLEtiM4Ld3VByMsskoIaQc9P8Q18DLYqxi3qg47HYMHkeZNMNadwtKS4znavs1D88fOK4H9WPpwaq++Jdyh4qc4F7KoRh/WR5au3mrZjqNXqyEoPboV2Y4J+jqI6yksCMhTf/g0JoVf7+3wam5wrd6wUNpuag6aSgiYLVF2lvzCtrH1Ss6AniBCiB56fohrND0XPEj06PVc3ByD1OgZZ1fJlWePUEtMhw/soeJrelcUS37AJ9McXq/vD+Jzfn7x0UqzB8tKWG7Sq0C76Q+Cht0aKMZnp6YO/dSiT+Wys4arMaEvME6MOHq1igOyt6FR9d3M04LtDc1NyiiBRIDR8NB7XDB2u3bczg2OmzqxUi3XwYi495ml6jf+dhITS0UwtNM5tOuZSm8UIST9oeeHxIUbPRe3mi/vr/gm5lu7Zkj841//kemTRyjPgtXrreI8HvnpeMn3+8Sn07Jx6o9++cfJQOlSkq+MG70HRCt5MeW7w6JjwjFGnGqLwXBrbhF54NllMnPKKGlqadUTwhJWYX6e2v6TH4x0LTaJdParzhnRpvPTqsxsVMh2c6307WjHoB0twL0zy1o4nUN/PVPljSKEpD80fkjcdEjPxeeToPhkwaJPZdBB3ZV4n7Fo6cH7d5W5Ly+XqyZVqUKleOhu2924T6QvErEUBGxuCUkASzpx9Fm/nGdnoOCYZWu2WS6Lba+pj46pvLRQRg7uFWOk2NUWQ6X1XXsapaSoQE4ZM0B+8tDb7ZSbtaWonXuaXItNdlQhWwPtdCsOyMH9ukZl610tg+rmOVEBSDvs+qAvVqsRrxBnNpKr4yZED40f4jlWXhksZ1XvblRVIaxKNsDzk+f3qYd4c0Tk8Zfap4VPm1wlqzdW2woCuhEW1MAHP/rmVPz08rOq5JqH9gkcGunepUgtB2FMWraXltYPYMzAuLtsYqW0hMIqcwtenb0NzXLD7Hej4oWYq1svOUbuWPBh1ADSL0W5FZtMdqZUPGUtOiIAmUgf9MVqzTxFuZohlqvjJiRjC5umEhY2TVLx08G95NiqfjJ0QIU8tWil5fLPed89TD5atUXW/aemXdaV1g48LEdX7ifP/Gm1ZTtYqnHjWYBHYt6rnyqP06ihvaWuMShdywrUtarZ06RKWsCDsF9FibzzydfmfRrSS44d3k/mvLRPlVrzzlQd2lMCeX5VqkNfRBXxQe+t+MayvcsnDpfaumbTkhOPmZScwPmg+Iz5RRyTm4KybgvVOhWPtfMkWPU33utkh74PzcGwEqPU5tk4JhDPuFNFsj8n4r3e2UgufRZ3FgEWNiW5iG08yrrtakkI9raTkJ+t2GFbO06CgFhiwZKPEzgOWVr4wXmNxU71xsWDPzle5v9hpSuvEB68GAN+Hr72BLlxzuKY/T26FpkaPmqMa7dLMBTeV5Vd91AyE5vU6wrpDTC7b/XxFKrtyDKoGzFKN9fJbR/g3Vj/VU07w0fzRiH13YtxZxpeXW9CsgEaPyTl2TdOx+ypaxan758Rl0J+0VgX2+PcZXvhYfr19jrTtO/dexotq6trYzISj6CjcXu8ZUHMvtW7Ea00O3+8OF2nepfXyS1OQdypGne6kavjJsQMGj8k5dk3Tsfk5fmke3mJ7TG9u5coD5IdbmNf9IKATtlegTyfqUdq7Ih+tq+DF8dIPIKOTtvjKQvi1L7b/W5xElxEir/X2HmjUjXudCNXx02IGfRxEk/Rsm/MQKzOzt2Nyrg5YpDFMUN6SZ/uJVJckKdEA6Hdg7RxFB3VtHywHfs1TR8zWlPH3X2Ya4KAQMv2smrTmD2kbUcbVmM6wuJ1mAurIqp60Ug3c+zGi+SmHTfnjxf9/FrNXSpJ1bjTjVwdNyFm0PghnmInnIcsrQN7l8mr//hcplkI8CHrCsGvTcGgXHD6MFNxPWzH/pZQSLVp1g5Sx1tC7kT29IKAZiU3NAMGbX759W5L0UAUJzV93dlVsmlz+9f17FZsei6zbCmnOU7Ei+RG5NAL3AguppJUjTvdyNVxE2IGs71MYLZXx7HMAPL5pDksEooEpSCQLw0WAnyoyfSkTUbY1DMqpbgwT579y2o544RDojo/WGJBGvlr//xCZY3F82DVdGga2rK9WkKt6s/oP7xIMKZ8kifNwZCKUykxEQ3U2jDuj52PfLV8tqe+NZOrML9VMDBe3RV9m+WlBTLvD59aau7YZfK40X1pPSas+gl9nqKAP+6HpdXcdBbppneTqs+JdBt3KsnFz+JUE8iQbC8aPybQ+OlckK2DdPNrHv6n5TGPXjdeZQgp/ZiXOqbzk1UaLhaaOx3RcKE2TGrg50Ty4Rwnn0CGGD+McMsxvFDZddOG1bdLbXtTC7wVRW2en5Z26s0Txx9q24dGlR5dYCjh0NpOUWFA6hobJeDfd143fU7kGBWvgvpgBq/O7r1N6v+JnscO/dzitT6fT3y+iBQH8tplOcFjhbmGd83qW75df3Cu3/5plXxv7EA5/3vDVLulRQHZsbtRfvvnVXLRacNcew3SzeOQDMXpbCHdrhUhXkPjJ4fwQmXXTRt2Cs8LFq2UjVtqlTLzbIt2vtmxVyKQRnYRw2LVn0snVsotj7+n0tIh/OfUZzfjMh6DgGsoMb/4t3WmNcpue/JDGdK/Iu7z2GE2t9r53lyyUS0H6vVuoPlj57Fx6k9TKCQ/OGWoPGmibYQ5xv4ivz/jvEfJUpzOBtLtWhGSDLjslSPLXl6o7LppA98OrVRkcQyMESdl5vO/d5jU1DbJ6ya6NfpzAav+4MN6yncPk2Wrt8qqDdUJt2N3DDLPEIBt9jpkcZ1/2mGyrbpBFUPtU1Gi6o092oFrYKfQq80txP3cqhijPadxB0MRefyVFZbHwKAt8EUySlk4FYrTmfo5kW7XKhvnONsJZMiyF7O9cgQ3KrtetGGnIotjoEfjpMyM/QG/zzQTSvNyYCnHrj9K26YxKEcdtp9jn92My+wYjMXqdVBu3rWnSWWp/b8n3pc5Ly+XlnBE1m6qtj2PHW7mVtP0caPm62bcCO62Owb7nXDTl0x7L2Qr6XatCEkWXPbKEbxQ2XXThtMKCPRonJWZW5Ra8iO/+7dSLjaqKaNY5R2XjZGQw9LY3voWabJRXdb6HHHQk0a8DDSljZXUnXSE9No7eHDMe3WFzJwySmY9t8xUDdrpGrhRz3ZznHaM0/zhGHirOnrfpEJZOJ4YlVQrTmcSVIEmuQKNnxzBC5VdN234HZ6WMGCc2sF+PJi12lim5yoKqIrpTudywt24EVQs7SqpQ3QxnvPDAJr8rUGqnQdMDCCnvrhRz3ZznHaM0+oFCrEWOAjfuZm/ZCsLxxuj0hmK05kCVaBJrsBlrxzBC5VdHGOnuoz9diqyOAYGC55HP7/46Ohr4VEx9gUV1O3UaOF1KXUYE7xE+IGytNUxdQ3NUlzgPDc4xlg7KxE1aHij0A48SGbnscNubrXzaUq9btR8kd1k139cK1RH7+h9k0xl4YiJ4aOvaYb96a44nU5QBZrkCjR+cgQvVHZxDDJ8zFSXsR37rVRkjz68jzoGQcw/eehtufPpJdHXwhOilarQ+qIUk03awTGnHzdQnlz0qYRRwPJs82MQFwS1ZvxcPqmqXekJ7Vz3PbNMLa9Zzc3lZw1XYzKrpG6lBq0/v5l3RovPifcaWM2tdj6oSGtKvW7UfBE3Zdd/xF1pYzQ7p9v7JpnKwonEqKSb4nQ6QRVokisw2ytHsr28UNmNJxPEGIMBT40x7Vr/2ssnDpdAnj9GX0Z7fWFBnrQEI7K3vllWbaxWD2QsGemzlrZU1yuvihYXpD/mqklVEvb52o17195GmfnoYnW+6ZOGy4H7dZGiwnwVKF1cFFC1t2a/8LEcvH9Xufj0w+WqB99u13ctDuiYyr6yc1eD7NejRNb+p0aeWrSy3bKWlpGFZbP7rhyrPGCJKB1jvI3BkEQiPmUAor9oB94pt3pLYMfeZrl1/gcxcUz6+bvmB0cqAxdjnHX18epcWjuJqDMnQzsGY7h+dus1NOP+GWOlp0WMSropTqfT50S26vyk0xxnK4EMyfbKXf9ujoIPdygjRwM64/iwd/Mt21g5XAOGgP61xuDhlmBY/H6f+H0+gclgpWWjGTX6c+KhjzpZL/9jvam6MawMLH4gHgkB2fiND3Is+2j06VEqN81933JsMqG1z0aDRotLwjju+s1H6phHfjpeDju4IqYvWv8R6wNUOQ9truJ84KLvBYE82zgXoxCiNlZs1x5ieKjZxVVpMUQ4Rv/YM1lJcvXAtKu03hkxKh15L2Q7ybhWhKSTYU3jh3ieCWIWgPpzXXAwDARj8LB+2QFCiEYjS1tygsGkfw3O+eSiz1QKOfZNGDtQfU73riiRkvzW+lN2ootYjtu4uVapQtuxraZBCRreseBDU4+OFt8DUcN3Pv6vfO+4gSq4We+N0oKco7ETCb7hneJcpk8eIXMNXjbN+PrrBxvV8iOE/GA0oi+m9cAG95L1/90Vnas1G6uV5y5eYctkC+NpMSpWNc06Ms+EkOwV0KTxQ1yDcg1O+60ezHpnAYwUY/AwwN8Q1Bt0YHdZsmpru/axH2nvepqD4Wg7RkNKEye0MhQebzMUUCpjd12z7djQfyg5K7VogxGgeXSM3h0YeH/5YGPMOL2Kc1m9sVoFi5stV22trrc0HrHshlpomBtk1J1z4mDl8DAqHZ/z7cGycsMO1V8cA6PP2J7WDsZiZ4wlUxhPi1GxqmmWDUs1hGQDEYcvbakW0KTxQ1yDmlV4MFop42K/1dKYlhmlBftaLbXgjQDvjRvtHDzgkI1kJ1aHJS67pbqmZuj87MtqMlWLHtzq2UE7Pzx5iMpSg6GnYkT8Ptm8s07uv2qcLF7+TUwKO/6v6RSVFuWrpS4vXLyoh2blOcN2Kw+dZjziNZgbhPvBqDHTUsJ2jOn4I/ZXBWbNdInczrHdcqgX4BujsaZZtsSoEJItNHQgbCIZ0PghrtlT36w8G8DoKcB27Ld63sAjgQczYm70BowZdvu1OBQYPpeeOVx++sg/OyS6qIn9af0zG9vFZ1TKzx59R/1dXduq2ow0/xvn7Au0vWf6ce0MOn08zb3Tx7a+sT14IHcpKZDn/rrW1HMGLvjeYY5zC+FGxO7YxfxgbupUpluow3OcbGE8xqgQkt7Up5mAJo0f4hoEzf583geWqsuzrh5n+Vo8QHHMI9eeoJaq7CgrMV9egwemvLRQeV769SyVllDY9sHsRnRRE0vU+mc2NmRxaefRjC+jgGEqhfNQb8uuPEMwOMTytVq/NeFGO3CMkw3hdo4JIblNSZoJaPJTibgGSwnIYjLzFOgF0KwCUPHafL9PAm0ic6YFQQf1UkVAjW0ofZ+xA+WWJ95T7WCZI5Bn3Q62QwQRz+67px2ronY0owrLPdt3Ncrb//qP6jPWorV2jGPTa8Hg/5//d5dcefYIKSvOV94fGBPVtY1RwUWrvijhPI+yiaC8bMdei/INWmC21h/YLHbBwiUFrfPnNC54XRh0TAjJpOQE6vzkmM6PJ9H6FsGlWrS+m2OCPp8KmDUuMWkZRDBI6lvCsq2mXj2ktWBeGD5u2oH4odikzOuznuza0QKYkcU18YRDVKba799apwqXGscGZtuMySvqg2GZMau95pDGYzO/JU+/vtI01d5s3I8bsy8G95Jpk/f12elaub3mJHc+J9IVznHnznEoyZ8T8ej80PgxgcZPx3Ua3Byjicwh/qTUQmTOrh2jlk3rOk5rCjeOsRJk1MQGoS6NbCXtnHrRu9KSgOTn5cme+iYphHigzyf5AZ888cqntiKPymhTY2pRS2HJEM5TYpOGDxBjP4A2N0jj98GE9LXOjbE/dmJ/7QQVm4Kt5T7ivFYk9z4n0hHOcefPcSSJnxNZJ3K4detWOf7449ttv+eee2TSpEmyevVqueuuu2TlypVSUVEhF154oZx//vmd0tdcwE1wqZtj3IjMWbVjpxeBduEdscosMGY9oQ+m/ZGI9CjdF4Bn1yYMEXiqnn4tVqMoGd4Pt+ndMfPW+krTOba6Dk5zbNYvBh0TQuxIl8+JjDB+1qxZI4WFhfLWW2+JTxel2aVLF6mpqZGLLrpITjzxRLn99tvlk08+Ub9LS0tl8uTJndrvbKUjnp/Y7fnKm4IAXngV4J3Ab+juaK+BN6euzZOCOBuUyYBRoj2UjUrR23Y1SJ/uJdLYbK/bo2U9wduhPfT3eaJaz6X3bqDf8FDZgcDoqRMrJRSKRNvw5/nkxb+vk++fODg6R3bn0XA6BsbUlZNHOJZnSPha6ZYMzea4b/cSwZmMfWwOBmVvvfm5ctEzlItjJrlLxOeT2saQbNtUrT4PigKtQrPpSEYYP+vWrZMBAwZI79692+377W9/K/n5+XLHHXdIIBCQQw45RDZt2iTz58+n8dNJCp1mx0BJGQKBZvEl3z9psHqILnonVvhQL7CnZVth2wXfGxZ9KJvp3eCYKyZVSbeyAtm1t9k260nLwlJxLS8uN41rwZFzXl4hE9rS/K3o0a1Y5r+6sl0b08+ukpZISArEb3uemBgbh2PUHBtUnN1cB7fHXH5WlRJSNJtjzOvd08fKvFc/bddHxBPd/ZuP1Lzrz5VOyq6pIhfHTHKXUIbd7xlR1X3t2rXKqDFj2bJlctRRRynDR+OYY46RjRs3yo4d5gJ4JDkKndhvdUz/vl1V0Gy7167bLl9t22uq+Ix2EVwMr4N+285djbZK0ao/L62QG85v1e1xynqCl0Uf0IsHPtSTsTSGvu2ub5FBB3VXmV7GSuAaWgkIM+0d9CXP3/48+mOwHfvdHNOR6+D2mHmvrlDzazbHM84d2c7w0fr45B9Wqv36c6HPTn3JNtzMPyHZQiQD7/eM8fx0795dfvzjH8uXX34p/fv3l2nTpqk4oC1btsjgwYNjjtc8RJs3b5aePXsmHLTlFVoAlttArHQF7kx7hc7WJRezY+xUnXt0LYrJnnIqaaG9j+zaxOsuOeNw05R5LesJnpQCv8iuhmCM4WOlnox+oPSG1r5+Hzwl1zxknoGFYxEobHyd8Zh6l8cg+DrR6xDPMZrStnGOcb3s+njh6cNi2kGfnfpSXtQqk5AtuHmvGMecLZ8T6QznOH3u984m7Y2fYDAoGzZskEMPPVRuvPFGKSsrkz/96U9y2WWXya9//WtpbGyUgoJYVUjEB4GmpqaEzomSBYhW95ry8mLJZLCOa0djczAh1eZ4FZ/htcFymdPrEKMDQ2b33ibZU9+iDBvEjPl8Ebny3BGqMjr2IWYFwoloFyU6rOqOgWEDK1SmmCaEiAKqH67cLLv3NNoKLmqKykb08TToB+Kg4HXSV683toM+Jnod4jkGjuoWkzl2UmptMOx3Oh596d+3XLIJN+8VqzFn+udEJsA5Tp/7vbNIe+MHy1lLliyRvLw8KSoqUtsqKytl/fr1smDBArWt2RDcqhk9JSUlCZ0zHI5IbW29eAW+ZeDNVlvboNLoM5XWYOPE9hsVkd3uM9sPw+DBnxwvNXvsjVukzwebWqQ03y+lXVsNYo2m5pD86n8/bqcBdNnESnnlH5/beqHuWLAkug1GEzwjY0f0c+yLETsvE7br64Tp26l1KMLqdJ3cHtO7e4kyDuNVYi027Hc6Hn1BWmw24ea9YhxztnxOpDOc4/S535MBrm1Wpbojc8vIoEGDZPHixbLffvvJtm3bYvZpf/fp0yfhcyZDAwJvtkzWlijO9zsodO6ru2U8Rl/Y1Ojx6Nal0LJdLT5HDwQH31vxjRw3op/t6xDPY6UzYbY+jb49tWil6pfVcpre26T1Takhu1F4Nqgl21W31/YbjSKfUxFWh+sQzzEl+X4pNlHb3rm70Xas2K9d46lnVioPm1NfMvl9keh7xWrMmf45kQlwjtPnfu8s0n7hEx6eI488Unl/9EDTB0tho0ePln/9618SCu37hvzhhx/KwQcfLD169OiEHmcvmr4MbmY9en0Zq2M2bd6tYmywXfN4QGQQXpSb574npx83sF0wMY5FJhg8PcZt8M7srGlUGWTG12lZR0i7jru68LrWqvNOXigtdgjj0nRvMD6zvqiMsXC43TE4j13sjL4fWju//PUSNR84t9l8OV2HeI9Bn6dNih3X7Bc+lsvPGm4579iPa3zrJcfIe8u/kWseftvy+up1ibIJN3NLSLbgy8D7Pe0VnsPhsJx77rnS0NCg9HsQ+PzCCy/IwoUL5eWXX1YGzne/+12l8zN16lRZsWKF/OIXv1DHnnXWWQmdkwrPydX5aQlHVLaQ3gDRPEFVh/aUAghgtdP5aVWBDoYj8un6bXJgn3KlvPzAs0tVdhGCcBFrgiUXeB7wAP5/Fx0lFWWF7fpRvbdJfvbYvorsRn5+ydFyp25pS/9GvmRCpdIi8rfFDhUFYsfupFqtle1AfA/4xZMfxGjoaMVUYeDcfukYVXRVa2d3XaNc96vWfhu1d/A6LFOVBHwpUeMuQ5Zcm86PXmdI0/kpLy2Iucb6/qJlaDHh22A6fih2ls5Ptn1OpCOc41Tc72EV44OlrlS/x7OuvAVS1h988EF59913pba2VoYNGyYzZ86UUaNaU5lh8EDhedWqVdKrVy+5+OKLZcqUKQmfj8ZPcnGqTTV75nilAGpkb0tYrn7w7Zh4G338jR48bB/56XiZ94q5hg0ys6wClM1qY3mhV2HUwfjF1GMkFI60W/rSvEr79SiWYt0bOdF564z7uLP7monwcyL5cI6ze44rsq28BdLVUcrCiqqqKvn973+f0j5lM8lWpXXK/lG1uroUKmFA6OM06FSE59/0bXng2WWy/r+728UR6Q2f26Ye3c7w0WvYIBZl9ovL250bRo5PInL5xOHSEopIQ2NLzBw4KS9b7TeLM4IX63WbmB8sc23d3RhtpzjfF3dVZDdq0l4pt+rvG3jl7LLW1L0VU3ojc1WT060/hJAsMX5Idql0OmcL5cvv/7ZOJn97sDJQjF6Rn503ShlAeLAidgjoA6kRawKPip3uBFSizTSAEJsy89F31QM7RlU5EnFUXrbb3xJsH2fk99lr+vx3296oZ0urVO+mppeGG6VoNySqFG2XteZ0D3SkL6kk3fpDCJHsWfZKNbm67KWqhVtUQteqhcf7jdaqbtRjNlXJj6vqJ4cdXNGuVISGMgTOGaGUnstKA1KUH2iNPWlEPEq+rN1ULV1KCuSe3y617NdNF4yWPfXNMrR/hdQ3tkhzMKyyqIyeCpwLld8BYlgO3r9ru/icL7/erQKAHzMYGvo2Lj2zUmbM+kfM9hvPHy33PmPdR+N+tHM1+oLq6i5idOz6o69m39F7Algdg3NBF8lYfiTRe8nr+7MjeN2fTPmcyGQ4x8knwGUvkmnYZkEplc5QXHEadt+Kr5xUJXNMPBhXnFUlP3nobbn/qnG2XhEshfUuL1DnmGOocYUH7oXf26cybEZ+wK+8Sog9KSoMyPWzrdWZYVhBoPDUMQPa1xEb3EsuPqNSBfjhIQ/Dy+jlQBsIku6ovhHaQfA3KrDrqyJH2mJs9MYQ+uykFK1Vs+/oPaH+71KhuyPZH17fnx0l3fpDCHEPjR8SVyyO2zgNp1ov+FaMH7NMLBgPWjaUFSrrqKDQUq8HdbiOGNzLtGyGXjsI58YSme242zKcTOuIrWvVBmo1fGosl3mQiWZcZrOKWTL20dgXrQq9nYH5g5OGOM6fvp2O3BNOlBbly/0zxnY4HsbL+9ML0q0/hBD38GsJcR2HEU+chptvxXgI4ptxz7IC9Rt/Fxfmq7id7l0KVTYXln7wG8Gz2K4BYwQp41bnWPDaSrXUZKYtAxVnlIhAe/D6oOSF2Tmi4y4OKO+KkyYPfsNA0hdijbZRFFBZZvr+YIkNmkXwHunRsr30+kb6vrgxMFsc1GvNFKcTvSecjsG59Nc4He5PL0i3/hBC3MN3J4mCb+XxZhN5/a04PwBD5Jh2OkD64FnEA5UWBmR7m5KwGfC8fL29LqYOV1lJvtp+3a/eUSrROA/qci18Y227c2ieG4wb59pZa30uvfKzWSFWtIsMKcQ6oQyG1h8sa63csEOGHlwhk08cpPSNEOyN6vBm3qOoUnRbrI6dgYn4JSf1a62dDt8TjmrS7u+bDvclhTE/6dYfQoh76PkhSVHpTPRbcTAYkRf+ts50KQteFSg6n3PiYLWtqNC+SjC8O4jPQcbUXz7YqOp5zWozKtDei39bJ3l5PuXxgefnu2MGKM/PzCmj1G8YCTiX8lA5jEcfn2MsgaEpPPvCYRkxqKcsemeDCmRGv2B4rdpQLb27FyvvSGnAp46BcaZH344bAxNeo8vONFdhNrZjh1dK0dmoIptu/SGEuIfZXibkaraXl7olKhPGJqPLKhPGKGRoBLEjt87/QAVEw1Py+Cufmi5HId7nirOGy+69zVLX2BJVTdZ7U2DgoEDq/D/EZpWhf1PPqFT1w1BGY9bV49QcWI3HmNH06HXjY1SPjYaGpr3T0WOchATn/Gy8FLZlwlkpTnup3JoqvZt009Xxqj+Z9jmRiXCOk0+A2V5ED9KqIRKHtOp0+MC2Q4vFiS5LtZWl2PcBn6+Wp+ClCUUi0tjU/kNf+1bsVpNGA21pmJVw8Pv9+4KQuxWpmBlg1LI599uDVSwPsqwe/f3HqgTGPVeObU2HLwrIjt2Nqi7Xk4vap9Ojv0+9tlKmTx4hy9dtbx1zwG86Hi0+B8tU2vhglNVJRC1z2RGxOQYGCrKxokHJJgYLjJBfXnGs7K1viSmLAQNP1VALtC67QE8Inwf4neg9h9eVF+VJ/77lSf1Qc2NImN2fnUm69YcQ4gw9Pynw/KiMHAsjIBOE0IwZRZqQIJan9NlUZmOK91ux5s3Qip8aM6wQHHz62IHSu6JYPdBhPmDZCLW9NAOpurZRDuhVJr946kO5+YKjpKJbkTxp8O7AaLnkjMNtvUwwLLAcJZGQBMSv5uGT9TvUuWB4wLDSawNh/Fgmu2PBh1EPk1FUUAkPvrQiKcKDmiH25pKNynMFw2qOhwJ8dt/ovBD7y3XBQHolkg/nOPkEMsTzw5ifJBPNyFlrnvKN/emMWUYRvDG/fyvW8LEak1lGl5sgUpzDKrUc24thfIR98pvXV8n2XQ3R/SjhgFPA8IEBUlqa387wAfh7e82+15kBjwoMFb8/oJahZr+0QmkKIVYHBg4MH3ilYKShHtixw/vFGD7aedAGXo8fo+FjPMYNVlleaOeP722QS88cLnkmhk+y7jsnWQPjuVRx12BYduxtVr/xd7xtEEJIR+CyV5LJdCE0s/7jga8X+vNyTNpy2daaBstz4CGP2BPI8yxdvVX9aCBwGQaKBqqvW6WoOz1P4UXSBAG182rAwNH3D3E++vMa+2vWRrKEBzE36v8puu/iucetvDsXT6jM6PcJISSzoPGTZDJdCM2s//psJqvXdKRoZVMLCpq2au+YBSpr5zBqE2KprLy0VR9IWwJDO9iO1xtjiLp1KbRNB9dEBhEs3KqjbI0bUUanNowChskUHvTyvnN7j9t5d7aNrU9ZfwkhhMZPksl0ITSz/jmVZfCyaKVVcUycQ2/8aDFCz/11dbs4JLUs9cLHctW5I2PKU2ixS8AuiNmNICBqitnvd25DL2CY7HvKy/vObX/sPEROi1rp/j4hhGQW9CMnGS2GxQy9SFwm9V8ry+DlmOziWIyqydo5kLZ9RFs/tBghszgkbEe2lzGGCMYUYnRQSBUp75qaNNLWNWNLEwTEj9WYtWOc9rs5xqt7KpX3ndtz2XmIcE9l8vuEEJJZ0PhJMpkuhGbWf6uyDMkqWqmVjzCeA+ng089uLRmhlZewen3PrkWm+2HgoMBpQX6eEkJEMDM8Q5rhowkC4gf/txMNdNrv5phMEx502x8n7w3uKZT/yNT3CSEks2Cqe4pEDgOF+VK9uzEjdH7MiFfnJ9428bIb5iy2PPbe6WOlrMT8HMiSgm7PjTavv2f6cXLT3PdsxRMryovaBAFb1DJWIuKD2n47UcF9x1ifxw1uZAS8FAR0SmF1OpeT8OVVk6pUVFQ6CRimEqZhJx/OcfIJZEiqOxfSU0SXkgIJNrVISaAtuiHDPtDbCbm11eFCtEY0SLcDOjVYbrIDho/K9jE5hxIEdIy5sd+PmlqPvbjcUX/HSXzQab8a90vLPdGycSOul0oBPqdzOQlf4njcURQMJIQkGxo/JCnovRswTFDYE4aBViZha02dTBg3UAYd1F0teWhxRGZLU3g44hlY1xKOtmM8VyAvbFtkEt4Vs/0Iep56ZqXAAYoaXxedPkx5kWa/8HFUf+eqc0a49sxYjRtg7E8tWqnGjLFrGWkYOxSlL4MwYSc87FNZLgIGHkqb5Kp3hxCSHtD4IZ6jVIwNXpTRh/WRSydWyuMW2VxaNhYwel9OP26g/Oyxd2PicGIUk19cLms3Vat2YGcY63RNm1QlT7/+mWpHv1/L9kKBU8T96M/5y2nHyS2PvxeX/o7ZuPX9bQyG5ORjBsRknOmzy7C/2KXL1is6Q1WZ5SAIIZ0NY35MyPXCph0Bng/j8hGAV2XtphpTz45WGBQeIGRtHVPZV/bWN4vf74spH6E/Ht4YoD+XXscHd3XvihIpLsiTea9+qoQQjTo/B/YpU7W9jBli2jngnfnl00vknuljpU95QULj1vcXYzCrJQYQPI6A3wJf6t6OKgbHJMPOqvhsLt3HnQHnN/lwjpNPgDE/JBeBl8Ts4W6nCo3jzzx+oLzQppqsZXbdMX+J5fFuVZdxnKYAbdz/8LUnmBo+WrsXnj7MtUaP1bjt+qsHBsiO3Q3Sp3txyupYZbr6OCGEJAo/2YinWCkdO6lCa/s1ZWVHFemG1rga+77YH+OkTNzQGFT9QRFTM/Q1qmCvwLsF75JVf/UV661qiaWyjpUXStGEJBuzWnCEdBR6foinWGVVOalCY79eWfn680Z1WA3ZyWPjRpl4+uQqaQkFJWAoOhqPGrXWX7+LWmKp9Lhkuvo4yX46IyaN5Ab8dCOegqwqBDcfvH/XaGwNHuooRQE15k8s4l16dy+RsSP6RQ0Hu+wvvRpyR45paGqxfT0ytRa+sUbO++5hMSnrejVqYxwR/p45ZZTM0hlAWl/8yHQ6Z4TSE9JneiGmaUj/imgtsVTVsdKUma0y5JSqskcPmFRmlJHswK4WHDykxpg0QuKBxg/xFKR1I6sLKeL6+BoYRFBjftyg8aKyucYOlFueeE+uP2+0HHZwRWtJine+UF4UYJY9paWP4/84VyLH9O5abLkPY/jtn1apuB9jmrsWK6PVEzNmb8GY0zxAMGq0vuBb7HvLv2nnLULGGYq53vfM0pR6XJx0d7x6sPDbO0kExqSRZMJsLxOY7ZWcDKKjD+8jl545XBqbg1Gl6ECeT/bUNysvS0l+XozCL5atCvMD0tCmmGymqJyIqrJRf8f4esT4YKmrMGCuvIzYg+tnL7bNYMPD/fKJwyWQ54/qG1nNyxGDeymj73/fWGuaZZVs3HplErmP480oy2Vy6XPCDdr7zE6VvWecHlLOcfIJMNuLZCt2hoR9ja4dEgy1HoeYRRgGLaGQBEMRtboS9vlUO3oNGByNR2NEWtV/7TE/Bu1iuU1bboIxtXtvk1Qd0lPqm0OyrWaP+H0+CYUj0tQcVCU7sAxnegafT4oKA6oI6n49Wo+BxpAxxgffTJuDYclvC/SxmxdknCHWKRl1rOyulX5MWJbE+HFq/G1WJqO2MSTbNlWrNooCflf9jOfbO5fGOk42zSFj0kgy4d1D4sJJyM8qQ0hbIoLmzuqNrYKEz/11rW05CadzuTrG55Ntuxrl3U++iRU/HNxL+lSUqqru+tgcLeAa23DMtMn7zhVvkPM32+vkjSUblUHjlDlVWpTvuRfEk/nr4LKVm4wyGLpcGus42TaHqYxJI7kHF0xJXF4EY3wM0MpAYL/VtzEEBSM2Bh/M2v/t2sHPk39YqcQPUfcLnhb8xt/Yrh3j1J/mcER+/9a6dsegH9iOvuhfh35p23CM1o5V8KXxNWbZW4ipwRKfHS0hb1N43cyNm2O0ccNgxTKfdi0mjB0oyz/f0erC68C3c3jHcB67wNbmNm8USTw4OBPnT4tJg6GjJxkeUpJ70PNDXONGyK+0wPzbml7k0EnwEO3gs/rUMdalIBqaWyvBO/UHIW12x0Bc0W6b1g5Wr6yX89q3o+kVAcxFYKLP8lssjoWSdfmIfq7KaLiho6KL+nFrnjqza1F5SE8pSPDbu37cdktj3+yok9cXb8hYD0YqyNbgYNaCI8mCxg9xjRtRQTy8zTKI9B9VTgKGqp3igPz1g43K0wPDQp8aju3nnzZM6hqaHdvBw9uYjq5PMTfri3EbBAoNMj+2r9Evn2kgqBvB3lj2My4xaceOHNx7XzX4JF8rjAlxVHZzg/lD7KCdp27eq/Ypx9h+2ZnD5Qnbccd+szeCfjG9WTxZXsxEWAuOJAMaP6TDAob79gcsv62JLhTZSfBQtePg+RFfxFV/8vw+S68FtmO/EWP/SkvyVYC0Hf16larlIM14MMYAIUg4FA6bGnPasW7KaLjFaW6QOQfvmt3clJUE1FWz89S58SqEI07jtu+rdj0y2YORbBgcTEh88B1BXIMUckdRwbZMIuO3NcQcaMsfbgQM8VC08jaAS8+slOLCPFcih3btoHip1XIVgFcC2Vzbahosz4Vx4VwIbrYLzsQcIDXezJAwzl9KrpXD3KAYK66j0/dsJ69CUSBP1n9lPm5t7uyWxvTXI5M9GMmEwcGExAe/QhHXIEUaWUB4IOkxigo6BS+q6u3jBtq2E3aI1cF+N/2BppBdO3rHj+ZVQv+0vy+fVCVPLVpp2Wct+BLncgrO7Mj8xYsXc4P9Ppu0f7deBafAVau5M14PN+fKVRgcTEh8UOTQBIoc2uNGVNBJhwRaO11KCpXOT119ewHDeATO7Prj1M59V45Vyz94qELcEIHUe+v3tVOzp1F+9ljr683iY2AYlAR8cemsdGT+4kU7F2J8Ep1jJVRoiOFKRKjQaW5a94dla029Wm7TYo+05cNsF0X04nMim3R+kkG2fRanIwGKHHrHrl275KGHHpK3335b9u7dK0OGDJHrrrtORo1qLX9w0UUXyfvvvx/zmqOOOkqeffbZTupxdoOHJwKbo8G5cTy4o8thAbw2IgUBv5SWt28nnhgG9KdbcUAO7te13RvOqR1lfGgxJOGwlBr6g1gdDTyEjUs3s2eOj4lnchOc2ZH5ixe7c7mdY6/KYDjNTet+nxzUuyzpJTeyFQYHEyLZY/z89Kc/le3btysDqEePHsqoueSSS+TVV1+VgQMHytq1a+UXv/iFnHTSSdHX5OfbB1HmKqn6Zqg/j1amYl9Zi7bzIobDoi/xxDDYqQ93NBYi3tcb5xfepKaWtvIcccy3W2XmjlzLeMaGIParzx4hjcGw7KlrTuq9w/RmQojk+rLXpk2b5OSTT5aFCxfK//zP/6ht6DK2nX766TJlyhQ59thjlSE0bNgwT86ZrcteqVKA1Z9HX/wzRmF5SC8558TBMQrLxr6odiw8ADHHOIzJTTuO43HxeisF6BjVaBfnVarLFsVavVBdTmRs6XQfZyuc3+TDOU4+gQxZ9kp746e2tlY+/vhjGTNmjBQU7MvygPEzbtw4+fa3vy0XX3yxOqa4uNiTc2aj8ZOqApPG89gV/8QDHSnQMRXRDX2x827EM6aOekncxKtY9cU4TvTtqklVMUVctTYRgPSoodyEvh0tA8vLa5nMwqbEPZzf5MM5Tj6BDDF+0n7Zq7y8XE444YSYbW+88YbyCN18882ybt066dKli9xxxx3y3nvvSUlJiZx66qkyffr0GGMpkQvoFdrFcHtRkgGWhewVYMNSXpTn+Xmc1JyNyshmfcnPC0h5THyKL6ExWbXjFrvX2/XFOM7VX1arkg3zXmnvubn8rCqVWm+vuuzz/Fq6mZt0uI+zGc5v8uEcJ5+8DJnjtDd+jPz73/+Wm266SXl+xo8frwygpqYmqaqqUoHPq1evlvvvv1+++eYb9TsR/H6fsly9przcG89UIiAexg7E4/TvW+75eZzUnM32u+1LomOC2jJECxFPA4G9rmWF0qXEvaFs9vrG2ibX40TGmNHwwfLgoAO7y45dDXLThUcp76Mx2wnAOxPI83l6LeOdj868j3MBzm/y4Rwnn3Sf44wyft566y2ZOXOmHHnkkTJr1iy1DR6fG264Qbp27ar+Hjx4sAp2vvbaa+X666+Xnj17xn2ecDgitbX1nvUbFjBuhNraBvVQ6wwQeOu0H25Kr8/jpOZstt9tXxIZU1MoYhkrU+hgVNi9/uIJla7HafSG6eOizJSW9WrRWJaC5yfeccc7HrP5SIf7OJvh/CYfznF2z3F5eXH2LHtpPPfcc3LXXXepJa377rsvuqQVCASiho/GoEGD1O8tW7YkZPyAZKxV4kborHXm4ny/Q2aP35O+Gc/jpOasV++Nty9uxtQSiujiWfJlzaZqVahTj9u6UXaVs9dWVbtWKTaewa52lrYfRpGmzIw+enEtnSqBW81HZ97HuQDnN/lwjpNPus9xei/KtYFMrzvvvFN+/OMfq3R3fSzPeeedp5bB9Hz66afK+zNgwIBO6G1uK8Aaz2OnjPz9kwbHqPcmohtjNya0gsDgGbPeVmJ+M2b9Q9795BvlTYG3RY9WNyrRytlQgUa8jpNKMfYbFZPhCbJTWsZ+vTKzV9fSTSVwQgjJRtLe8/Pll1/K3XffLd/5znfk8ssvlx07dkT3FRUVySmnnKL2I+Zn7NixyvBBrA90gMrKyjq17+lGqvRTjOeBzg+ylMx0fmZdPa5Dfdl3rtZyDVjygecDbT9m4tUwelP0ONWNsqucjWWpPXVN7eZX0/m547Ix+zK62gwVzXPjFBdVWpSv5k+v8+PFtczmSuCEEJLRxg8yu1paWuT//u//1I+es846S+69917x+XxK+BBGUK9eveTCCy+Uyy67rNP6nM6kSgG23XnCYdPzetEXnAvZTQjy1dIr64Nh19lXXlXGhhCh2biL8/xSbBijXjHZTZV7s/IXHb2WrAROCMlV0v7T7YorrlA/dmA5DD8kfXCjUOzlMbsagvJ19Y7oMQ1Nzbb9M3pbvFB7LsnPk7DPZ9tfvabOJRMqJTDRJ6FQpFMqcqdjJXDWpiKEpIK0N35I5qEUig1CfUaF4mQfM21ylYrr0aeJ69F7W9zGytjVuMISFBaR7Pprpcp85aQqT2pnxYtXNbsyTYGcEELSXuG5M8hGhedUAS/MYw4KxSDZx4wc3EuOG9FPZr+4vP0+iAlOHC61CdaoMvNOYJtTf+e8tNxSldlK8TkVBkg6KDynSoE8ncmlz4nOgnOcfAIZovCcEdleJHPAko9d5hL2p+IYPESH9K+wzIgq8In0LCtQMTPxPlS1WBv969301y6zCgVezdpNBZ11Xj3MPCOEpBIuexFPQayLHfUNQYm0U7pJzjF19S0pqw7uNG7HecnxzCpmnhFCUgmNH+IpKI9gR0mx8y3n5TGpym5zGrfjvOR4ZhUzzwghqYTLXsRToEBsFDTU0BSKU3lMqnDTF+MSXLvMqhxGyzwzg/NDCPEaGj/EU5DWjewmoyGgVyhO5TGpwk1fUqGwnamkSoGcEEIAs71MYLZXx9H0eRCbg+WnEhsNH6+OqWtoVZM2OyZVOPUlk3VsUnEfZ/L8dJRc/JxINZzj5BPIkGwvLqSTpIAHflm+X8ry9ykdJ+uYfURUWQsz3IglevHgRomNxqagdClpe3AbzpGqGKRUjttLUj0/hJDchMYPyWi8EkvMRoG+VIybEEIyEcb8kIwFXo05L61op6+Dv7Ed+90c44XHx2j4aPo0UE/G/lSTinETQkimwk9AkrF4JZaYjQJ9qRg3IYRkKjR+SMbiLCzYGutiBwKpUyHQl2pSMW5CCMlUGPNDMhZnYUFvxBIzUaDPC7FJQgjJVuj5IRlLugghpqNAXzoJQBJCSLpB44dkLOkihJiOAn3pJABJCCHpBkUOTaDIYWbhRuTQjVhiNgr0eTlu3sfJhfObfDjHySdAkUNCUgMe5t2KA3Jwv66Wb7j4xBKzR6AvFeMmhJBMg8YPSUv0XhSoEvt8PvH5IlIUaO9NwbG1jSHZtqlaHVsU8He6x4UQQkj6QuOHpB1masmIVTlj3EB5c8lGmXpGZVQ1OR2VlQkhhKQ3DHgmaYWVWjKE+V57d4P079s1qpqcjsrKhBBC0h8aPyStsFNLhgE0tH/3qGpyOiorE0IISX9o/JC0wkkNubklHD0uHZWVCSGEpD+M+SFphZMackG+37VqcmcoKxNCCEl/6PkhaYWdWjKCntdsqomqJqejsjIhhJD0h8YPSSus1JK1bK9Nm3dHVZPTUVmZEEJI+kOFZxOo8JxeOj9FUCV20PlpaAlLY3NQigqgrEydn2TA+zi5cH6TD+c4+QSo8EzSkXQsweBKLbl1q6lqMo4tL8qT/n3L+aFGcvL9QgiJDxo/OQQFAQlxD98vhGQvjPnJESgISIh7+H4hJLuh8ZMjUBCQEPfw/UJIdkPjJ0egICAh7uH7hZDshsZPjuAk+EdBQEL2wfcLIdkNjZ8cgYKAhLiH7xdCshsaPzkCBQEJcQ/fL4RkN/Td5hBIz50xqYq6JYS4gO8XQrKXrPD8hMNhefTRR2XcuHFyxBFHyKWXXipfffVVZ3crLdHEA3uWFajf/CAnxBq+XwjJTrLC+Jk7d64sXLhQ7rzzTvnd736njKGpU6dKc3NzZ3eNEEIIIWlGxhs/MHCefvppufrqq2X8+PEydOhQefjhh2XLli3y5ptvdnb3CCGEEJJmZLzxs2bNGqmrq5MxY8ZEt5WXl8uwYcNk6dKlndo3QgghhKQfGR/wDA8P6Nu3b8z23r17R/clWpnWK7Qqs26rzZL44RwnH85xcuH8Jh/OcfLJy5A5znjjp6GhQf0uKNBX/xYpLCyU3bt3J9Sm3++T7t1LxWvKy4s9b5PEwjlOPpzj5ML5TT6c4+ST7nOc8cZPUVFRNPZH+z9oamqS4uLEJj8cjkhtbb1nfYQFjBuhtrZBQqGwZ+2SfXCOkw/nOLlwfpMP5zi757i8vNi1xynjjR9tuWvbtm1y0EEHRbfj7yFDhiTcbjDo/UXDjZCMdsk+OMfJh3OcXDi/yYdznHzSfY7Te1HOBcjuKisrkyVLlkS31dbWyqpVq2T06NGd2jdCCCGEpB8Z7/lBrM+UKVNk1qxZUlFRIfvvv7888MADst9++8nJJ5/c2d0jhBBCSJqR8cYPgMZPMBiUW265RRobG5XHZ8GCBZKfn9/ZXSOEEEJImuGLRKjXbgRTgqBnL0EQFgPskgvnOPlwjpML5zf5cI6TT2fNMTK1fT6fq2Np/BBCCCEkp8j4gGdCCCGEkHig8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8ZNkwuGwPProozJu3Dg54ogj5NJLL5Wvvvqqs7uVsWzdulWGDBnS7ueVV15R+1evXi1TpkxRc33iiSfKM88809ldzijmzZsn5513Xsw2pznlPd6x+b3lllva3c+YZw3OrzO7du2SW2+9VY4//ng58sgj5Yc//KEsW7Ysuv+DDz6QSZMmyYgRI+TUU0+VP/3pTzGvb2pqkttvv13GjBkjI0eOlOuuu06qq6s7YSSZO8cXXXRRu/tYf6+n3RxHSFJ57LHHIkcffXTkH//4R2T16tWRiy++OHLyySdHmpqaOrtrGcnbb78dGT58eGTr1q2Rbdu2RX8aGhoi1dXVaq5vuummyOeffx556aWX1LH4TZx57rnnIkOHDo1MmTIlus3NnPIeT3x+wdlnnx156KGHYu7nnTt3Rvdzfp256KKLIqeffnpk6dKlkQ0bNkRuv/32SFVVVeSLL75Q9y3uWcwx/v/UU09Fhg0bFnn//fejr7/xxhsjJ510knr98uXLIxMnToz8+Mc/7tQxZdIcgzFjxkQWLlwYcx/X1NRE0nWOafwkEXw4jRw5MvL8889Ht+3evVvdMK+//nqn9i1TmT9/fmTChAmm+5544onI2LFjIy0tLdFtDz74oHpQEGu2bNkSufzyyyNHHHFE5NRTT415ODvNKe/xjs1vOBxW2998803T13J+ndm4cWNk8ODBkWXLlsXMKx60jzzySOTnP/+5MjD1/PSnP1VGpHZ9YJTii5UGHu5o89///ncKR5K5c7xjxw61/7PPPjN9fTrOMZe9ksiaNWukrq5Oufk0ysvLZdiwYbJ06dJO7VumsnbtWjnkkENM98EFe9RRR0kgEIhuO+aYY2Tjxo2yY8eOFPYys/jss88kPz9fXnvtNbUsEM+c8h7v2Pz+5z//kfr6ehk4cKDpazm/znTv3l3mz58vw4cPj27z+Xzqp7a2Vt3D+vnT7uF//etf+PKvfmvbNA4++GDp06cP59jlHONzGf/HvJmRjnNM4yeJbNmyRf3u27dvzPbevXtH95H4WLdunVon/vGPfyzHHnusWnd+55131D7M6X777ddursHmzZs7pb+ZAOJLHnvsMTnwwAPb7XOaU97jHZtf3M/g2WefVceddNJJcscdd8iePXvUds6vMzAGTzjhBCkoKIhue+ONN2TTpk0qTsrqHm5oaJCamhoVR4iHe2FhYbtjOMfu5hj3cZcuXdS9i5ggxFU98sgj0tzcrI5Nxzmm8ZNE8OYC+hsG4AZA8BeJj2AwKBs2bJDdu3fLVVddpb6JIAD0sssuUwGNjY2NpnMNON+J4TSnvMc7Bh4afr9fPQSeeOIJufHGG2Xx4sUyffp0FejM+Y2ff//733LTTTfJySefLOPHjze9h7W/8XDGHBv3A86x+znGfYy5qqqqkqeeekqmTZsmL774ogrmB+k4x/t82cRzioqKom8w7f8AF7u4uLgTe5aZYOllyZIlkpeXF53PyspKWb9+vSxYsEBt075paGhvrJKSkk7pc6bjNKe8xzsGHhI/+tGP1LdiMHjwYOnVq5ece+658umnn3J+4+Stt96SmTNnqmykWbNmRR+wxntY+xtzaHaPA86x+zmGx+eGG26Qrl27Ru9jLPVee+21cv3116flHNPzk0Q0V/W2bdtituNvrHWS+CktLY15CIBBgwYptypc22ZzDTjfieE0p7zHOwa8Pprho7+fAZYDOL/uee6555RH+Fvf+pbyomkeSsyh2fzBeMdSDe5xpHEbH86cY/dzjC+mmuFjdh+n4xzT+EkiQ4cOlbKyMuWt0EBw2KpVq2T06NGd2rdMBB4efNvQzydYuXKlHHrooWpOEVgXCoWi+z788EMVWNejR49O6HHm4zSnvMc7Br4VX3jhhTHb4PEBuKc5v+5YuHCh3HnnnSoW8KGHHopZYhk1apR89NFHMcfjHsZnCYzP//mf/1FLjFpQLvjyyy/VFyrOsbs5hp4PlsGM9zG8PwMGDEjPOe6UHLMcAtoSRx11VOStt96K0ehobm7u7K5lHKFQKDJ58uTIaaedprQioNlx9913RyorKyNr165V6ZajR4+O3HDDDZH169dHXn75ZaXv8corr3R21zMGzJ0+FdvNnPIeT3x+MWdI94WWz6ZNm1Qq8IknnqhSsTU4v/YgZfrwww+PXHnllTEaM/ipra2NrFu3Tu1/4IEH1GfGggUL2un8YL4x7x9++GFUg8aox5TLbHCY42effTZy2GGHKZ2f//znP5E//elPSpsK9266zrEP/3SO2ZUb4BszrGQoECPwDlYuVDIPOOCAzu5aRoL06gcffFDeffdd9Q0YKb9Yf8a3O7BixQq566671DdjxE5cfPHFSp2YuAMBt19//bXKPtJwmlPe4x2b37/85S8qeB/B/FiGmTBhglxzzTXRJQXOrz1Yfnn44YdN95111lly7733qozQBx54QEk0YN6wdHPaaadFj4PcwN13360ymAAylhCsa1ySzFWecDHHzz//vPqB+rgWt4ZkFHjX0nGOafwQQgghJKdgzA8hhBBCcgoaP4QQQgjJKWj8EEIIISSnoPFDCCGEkJyCxg8hhBBCcgoaP4QQQgjJKWj8EEIIISSnoPFDCMkqTjzxRCUmSAghVtD4IYQQQkhOQeOHEEIIITkFjR9CSNbR0tIi999/vxx33HFyxBFHqHpkmzZtUvuwJIYq1C+99JJ861vfkpEjR8oFF1wga9as6exuE0JSBI0fQkjW8ec//1nWr1+vCi7edtttsnLlSrn22muj+1evXq0KNc6YMUMVvKypqVHFWrdt29ap/SaEpIZAis5DCCEpo0+fPjJ37lzJz89Xf8Pr8/jjj8vevXvV33v27FGVqkeNGqX+rqqqkpNOOkmeeeYZmTlzZqf2nRCSfOj5IYRkHTBmNMMHHHDAAep3bW1t9G/N8AG9e/dWy19Lly7thN4SQlINjR9CSNZRUlIS87ff3/pRFw6Ho54hIz169JBdu3alqIeEkM6Exg8hJOdAjI+RHTt2KAOIEJL90PghhOQcGzdulC+++CL699atW+Xjjz+WMWPGdGq/CCGpgQHPhJCcIxKJyBVXXKEywPLy8mT27NnStWtXlQJPCMl+aPwQQnKOfv36Ke2fu+++WxoaGuTYY49V2WDdunXr7K4RQlKAL4KvQIQQkiNA5PCjjz6Sv//9753dFUJIJ8GYH0IIIYTkFDR+CCGEEJJTcNmLEEIIITkFPT+EEEIIySlo/BBCCCEkp6DxQwghhJCcgsYPIYQQQnIKGj+EEEIIySlo/BBCCCEkp6DxQwghhJCcgsYPIYQQQnIKGj+EEEIIkVzi/wNY4PA9tIdeWwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.scatterplot(data=pokemon, x=\"hp\", y=\"speed\")" + ] + }, + { + "cell_type": "markdown", + "id": "03e81709-393d-4c41-bce5-2dffc9cf5553", + "metadata": {}, + "source": [ + "You can distinguish between categories within a scatter plot by assigning a categorical variable to `hue`. We set the marker size with `s` and their opacity with `alpha`. " + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "86f9747b-00a3-407f-9b73-0bce40bac50d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG1CAYAAAAWb5UUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQd4nGl57n9P7129y5J7W3vt7Y1d2AVCWSAJCSGEHJJ/aKGcBEgIh3ZCCRBYOksLJRBOSCC0ZVmWZXuz1/a6W7bVu0aa3tv/up/RyOqSbcmS7PfnS5elmU/ffN87o/nuecr9aAqFQgEKhUKhUCgUVwjalT4AhUKhUCgUikuJEj8KhUKhUCiuKJT4USgUCoVCcUWhxI9CoVAoFIorCiV+FAqFQqFQXFEo8aNQKBQKheKKQokfhUKhUCgUVxRK/CgUCoVCobiiUOJHoVAoFArFFYV+pQ9gNULT63x+aY2vtVrNku9TMRW1xsuPWuPlRa3v8qPWePlZqTXm42o0mkVtq8TPLPBJGxuLLdn+9HotPB4bwuE4stn8ku1XcQ61xsuPWuPlRa3v8qPW+PJeY6/XBp1uceJHpb0UCoVCoVBcUSjxo1AoFAqF4opCiR+FQqFQKBRXFEr8KBQKhUKhuKJQBc8KhUKhUFwk+XweuVwWVzr5vAbJpA7pdAq53NJ2fOl0emi1SxOzUeJHoVAoFIqLsEYJh8eQSERX+lBWDX6/VsTgcmCx2OF0ehfd0j4XSvwoFAqFQnGBlISP3e6B0Wi66Ivy5YBOp1nyqA9FJqNJ0WhAfna5fBe1PyV+FAqFQqG4APL53ITwsdudK304q8rrJ7sMHj8Ul4QCyOHwXFQKTBU8K9Y8/KRFZ0+FQqG4lORyuSkXZcXyU1rri62vUpEfxZqF0WVDLoZ8ZATZyBiiFiN0Fh+0Fg8yWouESRUKhWK5UamutbfWSvwo1iQM9OhCPYh1HkU+nSzOdLEYkUycgcZkg7VlF7LWcjXDR6FQKBQzUGkvxZqDwl8fH0bszEERPtPJJaKIte2DIRNekeNTKBQKxepGiR/FmkOnySPVfxqFfDHfPhsURZmRbuh06iWuUChWBzfdtAff+ta9WGu8/e3/n3xdTqgrg2LNoc3EkA6NLrhderQf2mzikhyTQqFQKNYOSvwo1hwaRnzmifqUKOQy0BQW3k6hUCgUVxaq4Fmx5iho9dDo9Cgs0Oqo0RtlW4VCoViNhMMhfO1rX8Jjjz2CWCyK1tYN+P/+v7diz55rJraJx2P40pfuwaOPPoxUKokbbrgJW7duxxe+8Fk8/vj+ie0ee+xhfOc730JHx1nY7Q7cfvuL8Dd/8zZYLBa5n+m2Bx74Nd75zr/Hvfd+Cd3dXaisrMYb3/gmvPjFfzCxn8HBQXzhC/+K5557FiaTGa973Z/POG4ex7/92zfx8MO/w9DQIAwGI7Zs2Yq3ve2dWL9+o2zzsY99GMPDQ6ivb8ADD9yPiooKNDWtw7FjR/Df//3LKR49n/zk/8WhQwfxox/9BJcKdWVQrDnyBhsM7gpJa82HsawOOa0JUB1fCoVilZFKpfCOd7wFY2OjInjKysrwq1/9HH/3d3+Lz372S7j66r2y3T/8w9+hre2UCJnKyir89Kc/FsE0GYqLj370A7jzzpfgr//6LRgc7Me9934FHR3tuOeeL0+0h4+O+vG5z30Kf/EX/0uEz3/8x/fxz//8IWzevBWNjU1IJBJ4+9v/Gnq9Hu997weki5aiqbe3B9u27Zh4vP/7fz+E558/KMdUW1sn93/zm1/DRz7yAXz/+/85sd2hQwdgNBrx8Y9/GslkAnq9QQTTgQP7JwQehdTvf/8g/uzP/gKXEiV+FGuObF4DU+16ZEIjKGQzs26jM9ugL6tHWgkfhUKxCvnNb+7DmTNtuPfe72Dr1m1y23XX3Yi//du/wVe/+kV885vfw3PP7ROh8LGPfQq33nr7+DY34A1veC06OzvkZ/qZfe1rX8S1196AD37w/07sv66uAe9611vx1FNPSLSIJJNJvO99H5gQHvX1jfjDP3wZnnzycRE/9933C4nkfO97/w/Nzetkmy1btuFP/uRVE/vNZDKIx+N417vegzvueJHctmvX1RK5YoSKYq6ysmLCBPI973k/Kioq5WfO++L399//q4ljeOSRh0V0TY4+XQpUzY9iTZI1e2HfsBc6q33aPRoYnF7YNl2LjM62QkenUCgU88O0ks/nw8aNm5DNZuWLYuGGG27GyZPHEQ6HRfwwCnPzzbdN/B7TRUxplWD6iumlm266ZWI//Lrqqt2w2WzYt++ZKY87OYJTUVEUKYzKkMOHD0okpyR8CKNNTLOVMBgM+OxnvyjCZ2RkWMTZ//zPf4uAKomjEi6Xa0L4lI79JS95GR555PcixMivf/0LEUKTt7viIj/33nsvHn/8cXz/+9+Xn//8z/8czz777Kzb/su//AvuvvtuebHs2rVLQoiTefvb346//du/vSTHrbj0cGBwxlYFy2Y3NIkA8vEQTCYDDCYXciYX0tBDGTwrFIrVSigUwujoKG677bpZ72eKKhgMiICYPsPK6/VO2k9Q/v/Xf/2kfE3H7x+Z8rPZbJ74vrTf0gR2Ci6Xyz1jHxRpPNYSzzzzlNQFdXV1wmq1obV1PSwWq9w32Vm/dNtkXvrSl+N73/s2HnnkIezevUcE3uSI1RUnfn7wgx/gnnvuwZ49eyZu++IXvzhFRXJR3/3ud8uL5kUvKirfzs5OET4/+9nP5AkqYbXOXHTF5QVfDxmNCbBWweCqhdVtRSAQW5aBegqFQrGUsCiZqakPf/ifZ72/pqZGoiHBYFDEyWQBFAgEpuyHvPWt78Tu3VfP2I/DsfiBqy6XG729vTNu5zW3RF9fL/7xH/8eN998Kz71qXtQU1MrNUU/+cmP8cwzTy74GIwsMU320EO/lf1SPE2ObF0xaa+hoSG8+c1vxmc+8xk0NTVNuc/tdqO8vHzi64EHHsDhw4fxhS98QcJ55NSpU7Db7di0adOUbUv3K64M1BwvhUKxlti1a7ekq9xuLzZt2jLx9eyzT+MHP/gedDq9pK6Y3XjiiUenvNc9+ujvJ35mrY7H48XAQP+U/ZSVVeCrX/0S2tpOLvqY9uzZi4GBPkm7laD4Onbs6MTPJ0+eQDqdwutf/0YRMqVi6qeffnJKFGk+XvayV2Lfvmfx29/ejxe+8E6YTKYrL/Jz7NgxySH+/Oc/x5e//GX09fXNut3Y2JhEht7ylrdg3bpz+UiKn5aWlkt4xAqFQqFQXBwvfekr8N///Z9497vfije8gd1XVVKf84MffBevec1rpdaH4mfv3mvxiU/8X0k7VVVV45e//BnOnj0zITp0Op10i3360x8XR/sbb7wZkUgU3/3uNzE8PIyNGzcv+pjuuusP8OMf/wjvf/97ZJ8MInz3u99GfpKvGmuU+Jgsyv7TP/0zpNMZ3Hffz/HUU8Wan1Itz3ywePuzn/0UTpw4hne/+z1YCVZc/Nx+++3ytRDf+MY3JFf5pje9acrtbW1tUtzF20+ePInKykr8xV/8BV75ylde1HHp9UsXFCuNWFCjFpYPtcbLj1rj5UWt79pb43z+wieM03/ny1/+hrStf+UrX5BuKYqbN7/57fiTP3n9xHYf+cgn8KUvfU62y+WykiK6++7X4P7775vY5uUvv1vSRz/84ffw85//VPa9fftOfPCD/yxpqcViMBjw+c9/Tep57rnnMyKwXvGKV8k+2MVF6urq8eEPfwzf/vbX8b73/R2cTqd0q33xi/dKpxqLpjdu3DDv4zDSc/XVe9DV1SXdZBeCTqe5qOu0prCK8gX/8A//IJGfUsFziWg0iltvvVWKmP/yL/9yyn0vfOELJcz2wQ9+EFVVVXjkkUfw+c9/Hh/96Efxh3/4hxd0HFySkqpWKBQKhWI2GOU4e7YdZWVVMBqXPnXDVNbRo0ekvmZyofL73/9eqc353vd+iLW6bq94xUvwpjf9NV772ted1+8y5eb3D6KlZd2UNVlzkZ/F8OCDDyKdTuM1r3nNjPt++ctfSk60VOPD2p/+/n5861vfumDxk88XEA7HsVTwU4bTaUE4nEAup4pxlwO1xsuPWuPlRa3v2ltjXoj54TuXKyxLowXLZ2goeNNNt0qdDNNNLCr+/e9/h/e//0OrsrlDoymuM9d3emhlcHAAv/71LyW9RwPFl7zk5ed9DlxrrnkoFEciMXV8EZ/bxUb11oz4YeSH4bXpzKb8NmzYIDVEF8NyvKj4YliNL9bLCbXGy49a4+VFre/aWWNeiJcT1gF95jNfwL/92zfwwQ/+g5R4cEQEW8Nf9KIXYzVSGF+S2XJKzKiwpojd2B/+8MclVXehXKzgXBPiZ//+/bN69tCTgGkvpste/epXT9x+5MgRrF+//hIfpUKhUCgUSwu9cPh1OVBZWYX77vsdVgOrXvwMDAyIpwHTWdNhJOi6667D5z73OfH4aWxslHZ4Rn1omKhQKBQKhUKx5sTPyMjIhOfPbHz84x8XM8QPfehD0grItnf6AN18882X+EgVCoVCoVCsBVZVt9dqygePjcWWbH9sx/N4bMp9eBlRa7z8qDVeXtT6rr01zmTSGB0dgM9XDYPBuCTHeLmsc3aZXsPzrbnXa1t0wbMylFAoFAqFQnFFocSPQqFQKBSKKwolfhQKhUKhUFxRrPqCZ4VCoVAoriRoAEizQFbk0nT3UvD2t/9/OHTowKz3cdzG29/+rnl//8CB/XjHO96MH//456ivr8NqR4kfhUKhUChWATQBjKayGByNI5HKwmLSo8pnhd2kl7FLy83tt78I73zn3824nbPCLjeU+FEoFAqFYoWhWfTxjlF0DoSmOEcf79CgqdqFLU1e6JZ55KTJZILPV4YrASV+FAqFQqFY4YgPhc/Z3uCM+yiESrdvX+ebfW7EJSAcDuOrX/0CnnrqCQQCY3A4nDJw9Z3v/PtZx0z19HTjc5/7NI4dOyypu+3bd+Btb3sXWlpaJwaWf/nLn8djj/0emUwGGzduxlvf+g5s2rTlkpyPKnhWKBQKhWIFiSazEvGZD94fS2axUnz84x9GW9spfOxjn8aPfvRTvOMd/xv33/8r/PznP5l1+w996P0oLy/HN7/5fXz969+BVqvF+9//93IfU3jvec870N/fh3/5l3vw9a9/F1u3bsdb3vImtLWdvCTnoyI/CoVCoVCsYHHz4Fh8wSGpvJ/bra91LlsR9AMP/BoPPzx19taOHbvwr//6Bezdey2uuurqichNdXUN/uu//h/Onj0z6776+3vld7idXq/HP/7jB9HV1SkT2VkcffToEfzqVw/C6XTJ9n/zN2/DkSPPy+DTf/qnD2O5UeJHoVAoFIoVgl1dLG5eDNyO2y8XN910C97ylnfMqAMir3rVH+Hxxx/Ffff9Ar293ejoaMfAQD8aG5tm3ddf//Vb8YUv/Ct++tP/wq5du3HttTfghS+8SyJAjO4w+vOa17xsyu+k02mkUilcCpT4USgUCoVihWAJD7u6FgO3W86SH6vVhrq6+hm3M1rz3ve+C+3tZ/GiF70Yd9xxJzZs2IRPfepjc+7rNa/5Y9x++wulRui5557FN7/5NXz3u9/Ev/3bD2V/NpsN3/rWv8/4PYPBgEuBEj8KhUKhUKwQTGFVea04rtPMm/rS6TSy3aXy/ZnM6dNtePrpJ3Hvvd/B1q3b5LZsNou+vh7U1NRiOmNjY/jmN+/F61//Rrz0pS+Xr5GRYbzqVS/FwYMHsG5dK2KxmBQ6Nzevm/i9f/mXf0Zr63q85jWvxXKjxI9CoVAoFCuI3ayXdvbZur1KNNe4YDPrV6Tby+fzQafT4aGHfguPx4NwOITvfvfbGB0dlUGj03E6nRLx6evrw5vf/DaJKP3617+UqM6mTZtRVVWN9es34EMf+ke8613vQUVFJX760x9LSu2zn/3SJTknJX4UCoVCoVhBWP9CHx8y3edHr9OiqcaJzY3eFWtzLysrxz/900fw7W/fKyLF6/Xhhhtuwmtf+zqpA5oOC5w//enP48tfvgfvfOdbkUwmRex86lP3oLa26P78uc99BV/5yufxwQ/+AxKJBJqa1kkn2dVX770k56QpXArbyDVGLpfH2Fhsyfan12vh8dgQCMSQzeaXbL+Kc6g1Xn7UGi8van3X3hoz6jE6OgCfrxoGg3FpHJ6TWenqmnB49lpXLOJzMeu8XK/h+dbc67VBp1ucg4+K/CgUCoVCsQpgLMJm0kk7+5TZXmtI+KwVlPhRKCZ96soXCoilcsjlC9DrNLCZ9NCgoN57FArFJWMlipqvNJT4USjGhc9QMIG2rgBGwwkROzqtBmVuCzY1eeF1mFBQb0gKhUJxWaDEj+KKR6PVoGc4igOnhqd84mL0Z2gsjrFwEtdsrUal26w+kSkUCsVlgJrtpbjiiadyOHLGP6ewyWTzOHx6BClVhKpQKBSXBUr8KHClz9UZDsSRyuTm3S4STyMUnelnoVAoFIq1hxI/ClzptT5joeSitg1GUyKWFAqFQrG2UeJHccWzWEGjXc6JggqFQqG4ZCjxo7ii4YC96jLbgttR95SpgmeFQqG4LFDiR3FFw5Z2trE7bfO7s5Z7rHBYLs20YYVCcWXDaDQHmao0+/KhWt0VVzwGnQZ7Nlfi6aMDiCezM+532U3YtaEc6m1IoVAsJ3ptAbp0BNngIPKpBLQmC0zuKuSMDmTzy/cO9LGPfVgGj87H44/vx+WEEj+KKx5Gf1xWI27ZVYfekSh6BiPI5vIwGnRornGiymeDSadRLs8KhWLZMGgyyPYcQ3yoG4X8ue5TjfYkTJUNMNRtRaawPNHnd77z7/HmN7994udXvvLFeMc7/g533PEiXK4o8aNQjM/UMeu12FDrQnOVU8Zc0OFZr9VInY8SPgqFYjkjPhQ+yYGOGfdRCPF2MwBd/U7kliECZLfb5Wv6bT5fGS5XVM2PQjEJCh2dBjBoNfLHoQqcFQrFcqNLh5Ea6p53G96vT4exEtx33y/w2tfejXvu+QzuuutW/OM//h0OHNiPm27ag4GB/ontSrf19/dPfKj8wQ++iz/6o1fijjtuxBvf+Do88MCvsRpQkR+FQqFQKFYIFjVng0NTUl2zwfu5nbbCvSIfyvr6euH3j+Db3/4BUqkUgsHAgr/z9a9/BQ8++Bu8+93vRWNjEw4dOoDPfOaTiEajePWr/wgriRI/CoVCoVCsELTRYHHzYsink1jJBrA3vvGvUFtbNxHlmY9EIoH/9/9+iA9/+GO44Yab5Db+7uDgAH74w+8p8aNQKBQKxZUK6wnZ1bUYtEbzitYf1tfXL3rbzs52pNMpfOQj/wSt9lyFTS6XQzqdRiqVhMnESqaVQYkfhUKhUChWCKawTO5K6eqaL/Wl0eqgd1citYJ1iKYFxAqFTYlSau6jH/2kpLymYzDM76223KiCZ4VCoVAoVpCc0Snt7PPB+7NGJ1YLBkOx7T4Wi03c1tvbM/E9BY9Op8PQ0CDq6uonvp566gn8x398f0o0aCVQ4kehUCgUihWEBob6uq0wVzdLhGcyGp1ebuf9y9HmfqG0tLTCYrHi+9//NymGfuaZp/CjH/37lFb5u+9+Db7xja/iN7+5T7b55S9/hq9+9QurooVepb0Uaxp+ejAWEtAm40iPhmDQ25DXapHPT95Gg0wuj0w2L9WFFqMOhVXews5p84lMTgoCDHqduFCrtnuF4vKFBob6+p1wVDZLV5cUNxvNkupixCezioQPsVpt+D//56P42te+iNe//o/Q2roeb3/7u/CP//j3KPG3f/u/4XZ78M1vfk06xSoqKvGmN/0NXve6N2Cl0RTYiL9KuPfee/H444/j+9///sRtH/jAB/DjH/94yna1tbV46KGHJgZTfulLX5JtIpEI9u7diw9+8IPnVZg1nVwuj7Gxc6G8i0Wv18LjsSEQiCHLC7BiSTAjgfxIOxLtzyMT9kNv0EPnqoJl3U4UvI1I5fTI5gvo9cfQ0RdCIpWRyew+twWtdW547SbxoVhVaDQYjSRxtjeE0VBCihttFoM4TdeW2cWDaKVQr+PlRa3v2lvjTCaN0dEB+HzVS1rDwg9s7ALj3/9a/NCj12uX7TU835p7vTbodNq1Ffn5wQ9+gHvuuQd79uyZcvupU6fw5je/Ga9//esnbmMescRXvvIV/PCHP8QnP/lJVFVV4dOf/jT+6q/+Cr/4xS9gNK5sQZVi+bAggfjR3yHefuRcu2hOh3TkFOK9bXBuvwX6dXvxxFE/RgJT20j7hqMY8Mewc305mqrsKKyW64xGg/b+MI6cHZnS0ZHO5BAIJ9FfFsOeTRXQ82QVCsVly1oUPGuNFa/5GRoaEnHzmc98Bk1NUyvC+an8zJkz2LZtG8rLyye+vF6v3M92uW9/+9t4xzvegdtuuw2bNm3C5z73OQwODuKBBx5YoTNSXIpPFZm+YxPCZwaFAiJHH0NupBuRWGbON5fDp0cQjs8cZLpSBGNpHD3rn7OVddAfw5nekJr0rFAoFGtd/Bw7dkyqxn/+859j586dU+7r7u5GPB7HunXrZv3dkydPSqX59ddfP3Gb0+nEli1bsG/fvmU/dsXKYMhEEG8/vGDLZfj0QbRUW+feJl9A12BkVYgJjVaDjv6QzBSbj+7BMBLp+Z1gFQqFQrHK01633367fM1GW1ub/M8aoEcffVSKW2+55Ra8+93vhsPhkAgPqa6unvJ7FRUVE/ddTHRhqSjlIBebi1TMjzYek4LAydkfFgif+78gqazEcC/KmtPzihvW1eSX+Pm+ENLZPAKR5IJCLJnOIZ3Lw2a+9H+66nW8vKj1XXtrnF9lRcirAc34kpRqlpYLnU5zUe/bKy5+5oPih4KHYuZrX/uaRII+9alP4fTp0/jud78r9tlkem2PyWRCKBS64MflBYhFcUuN07k4F0/F/KTSWugNU9tBS+jG/xhyhZwUN/Nni2Xu2i+TyQC7zQSLuehZsVJE42mYTUbkCgu/mfKYl+P1uVjU63h5Ueu7dtY4mdTB79de9IX4ckS3TCKegpO6wOWywmw2X57i5y1veQte97rXwePxyM8bNmyQmp8//uM/xpEjRyZOnLU/kxeBQ9cslgt/cbMeJByOYylfBPxjC4cT0kmmuDiMGhNgcSMbHp24TTMudHLZ/HgHVwEmTwXGkvoJkTwblR4LUskMkok0VhQNYDJo4Q/Mfxxmow6afF66VS416nW8vKj1XXtrzGsPO47Z2aTVquesFPHhOnN9lyPyw7XmmodCCSQSU0sA+NyuuW6v2aC6KwmfEuvXr5f/mdYqpbuGh4fR0HDOHZM/b9y48aIeezna9PhiUC2sF4/G6IKlaRvCzz8y6dbiXxmFD//gdBoNrBt245nu+JydE/wjbax0IEM/nVVAc7UTvYPh8TOZnZoyu4iklXwdqdfx8qLWdy2tcTFSyxlWRqNpCfa39imMv4EtV8qLa13k4t4HV7X4ee973ytC5jvf+c7EbYz4kNbWVvHyoYvkM888MyF+wuEwjh8/PqU1XnF5kcnkYWncCfNIH5L9Z2bdxrbxGugqmqDv91PKzip8tqwrg8tmKOmmRbOYXPaF5LvpO7ShyYtTnWPys0GvldRdOpuTfXmdZmxo8CCfU22wCsVqQKvVwWKxIxoNyM8UQKX6wyuZfF6D3BK/T/GDLYUP15prfrHjMVa1+Lnrrrvw1re+VUwMX/GKV6CjowMf/ehH8bKXvQwtLS2yDUUO2+TZ/k7zQ/r80O/nzjvvXOnDVywjCdhg3/MSmHqOI955pJgC0+phKq+BpeUqaCs3IFUw4obt1WjvC6FnKIJEKitigiKitd4jKa/FKhTm9BPpPEKxlBQdmww6uGxGcYsuRZZYKxZP5xCKppCmQDPr4bIaJVKzON+OAjbVu1HptWIkmMBoMIlcPg+3wwSPw4wqjxWqrEChWF04nUXrlZIAUkCECVNTywGFT2nNL1vxc8cdd4jx4de//nV84xvfkA6vl7/85XjXu941sQ09frLZrDhBJ5NJcXj+1re+NTF0TXH5koAd+ubr4KrbAk0uCb1Oi4zOhrTGIh1RxKTTYmuTFy21LmRyBQlSU7CwqWrx7s4anB2IoK1rDPHkuSiSxaQXEbWuxiEaqq0niPbeoIijEnRn3tzkRV25bVERJh5jZ38YfSPRif3QpLHMbZYOL6/duKwdFAqF4vxgpMfl8sHh8CCXWz2+YSuFTsf1sCIUii959Een0y/ZQNRVNd5itaDGW6w9lmuN6b9zdiCMI20jc2qXPVsqEY6m0dY9+yc/RsF3baxEU6V93ghQtgA8c2xghiN1CaNBhxt31sBlWRlhr17Hy4ta3+VHrfHlvcbe8xhvoYLoCsU8MI3FGpy5JAsjSYFICie75g558+PFyc7Rec0J+elxKBCfU/iUxlyc7AxAo/5qFQqF4qJQb6MKxTyChCaIqXlEi8NmRN9IDKFYet5CR6bLgtHUFGPGyeRRkNqkhRgeiyGaXB3daQqFQrFWUeJHoZgDCpVofPbZYCUMeh0isbREZRZq8ogmMnMKpGyugGRq4XoBjuTIKg8YhUKhuCiU+FEoFhA388GOBtbi6BYxH8yo181ZrMwuNBZsL4RmfFuFQqFQXDhK/CgUc8DiZLadzydswvE06ivtkv6ar5iZnj0+l3nODjOjXoPaCvuCx+R2Fru+FAqFQnHhKPGjUMyD3axHzTyihK2cdosRteXzC5f6Sue8ooX7qa+wy/iKuWDAZ329G/pVMIVeoVAo1jJK/CgU48JCq9NIVxfb2yemqxcK2NFSJlGZ2SRHhc+GpioH9myqQBlNE2fZb0OVE1uavSgsYHRoM+lxzbZqWGcRSfTO2NZSjmqfdZGGiSsD102vzcOgyUE3f8ZQoVAoVgwVP1dc8bB8eCyckm6reDIjPhGNVQ5Uem0w67UwaIGrN1agtc6NroEwYskMzCY9mqqdcNuMMkeM1TjXba2Wji5uk0xnJSLUWO2Ey2qYVTjNOI58AWUOE27dVYeRUBK9wxG5jY7UdZV22E368x7FcalgIbcxF0NubABpfy8KuRy0ZitMlc0oWL3IQJmOKhSK1YMSP4ormmyhgINtI+gbjk65fTSYEHfma7dWyYgKbaEAj82Iso0Vcj/1znQDL70GIl6qPJUThc3nOzmaYsek16K+zCamiMX9FIpOqatY+BhSo4ieehb51CSfolgI6dEBGMtqYGq6CmmowY8KhWJ1oNJeiisWpmiOdwRmCJ8SsUQG+44PITVJ5FDMLDQRmveVtrtQWBh9bj+rVPWMY8jHEW/bN1X4TCLt70e27yQWabyqUCgUy456O1JcsURTWfQMhefdJhJPYzScVJOa54Drkg8PI5eMz7td0t8LXWZ2kalQKBSXGiV+FFck1DKhaBqZRcye6RoMS8GxYiacMZgZ6Vlwu0ImjUJifqGpUCgUlwolfhRXLItNS3E7Nf53dtgfV8gvbtxGIZ9d0AVboVAoLgVK/CiuSChmWNC8GFx287Ifz1qlAC10VucittRAa7IpEalQKFYFSvworlgcVgNcdtOCRdFse7+Y4uXLGa6LoaKxmEecB73DhYJpMSJJoVAolh8lfhRXLAatFttbyuadqbW+wQOHRTlCzEfe7IKlZt2c92t0eljqtyCrMV7S41IoFIq5UO/qiisWtpOXu824fns1TnSMYTScmEjLMCVGU0O6N9Nfh4GNAjSIJbPI5gvStk1HZhpBl36HnU+5QgHxVA65fF5EFbeRupjLON2TzetgqNkCq8GM1GDHuc4v+v84vDDXb0LWVrGgw7VCoVBcKpT4UVzR8IJc5jThhh3VImxSGY5l0IqbstmoFY8diprRSBInuwLwBxNiREgxVOayYEOjF+Uups40GAomcKorgLFxEcWBqOVeKzY1euG1zz/4dK2TKeihq9wIq68eSEWZDwOMJhSMTmSgQ0FlDRUKxSpCiR/FFQ+FChNfDrNevkpQ+LDmZzCQwLPHBpGdVPfD3xkJJjAW7sfuzZUSCXr26BDyk0I8uXwBg/6YuEVfu60a5c65p7pfDnC9choLYJ404+zyPV2FQrGGUTU/CsU8JDM5PH96ZIrwmQwFzoFTwxgKJKYIn8nQS+jw6RFkVNG0QqFQrAqU+FEo5oCprUAkLWMu5t5GA38wiXAsAwsHj85BOJZGKJ5epiNVKBQKxfmgxI9CMY+wCUaSC2wDJFJZBEJJmIy6ebcNRdKSRlMoFArFyqLEj0IxD9pFjLWgnqGoWaich/u6jEt+FAqFYs2gxI9CMQfszip3W+f172MBs8NqRFWZbd70GMWR7zIveFYoFIq1ghI/CsU8uKwGlLmsc95PLVNdZoNJr52zKJpUeKxwLHKchkKhUCiWFyV+FIpJ0Rl6/Eye4M6U1q5N5XCOj8FgHRC3K9Xu0Azxmi2VaKp2wjKpTX4yHocZV20oP+eGuAgYbSoei3bOOqHJ2/C4VgsGgxZGow56vXp7USgUqxPl86O44tFoNYgmsxjwxxCJp2E06FBbbofTaoCWA1CNOty0owZdwxEcOzsq6S2zSY+t63wy98uiLxY633pVHXpHougZikgUyGTQoanGiWqvDUb94up9qGEyuQKC0TQG/FHkCoDXaUKF2yLdZDRlpBhiC/5YJI2h0Zj8XpnHgjKXGWa9dsXqiszaFDSREST7zwDZJHR2L6yVzchYfMjklBBSKBSrByV+FFc0TFSd7g7gdHdwStrqTHcAFV4rdm+qkDEVRXfnOKp9rAGikCmgbyiCWDyDHa0+6DUamA1abKhzobnaKZ4/dHjWazVSO7Q44aNBOJHB/hNDCEVTE7d39kM6yTiHrLHSgZFQAgdODiM6qcaooz8Eq1mPqzZUoNJjueSjJCy5AKLPPYhk/9kpES6t0QzH5uthbt6NZF7N9lIoFKsDJX4UVyyMoJztC8tcr+nw8j00FseZ3pAYGbb3BSf8eiZT+nn3eFqLQodZM914Gup8RlokMjk8fXRg1sLpVDqHg23DMBn1eO7kEJKp7Ixt4sks9h0fxE07a6VW6VJhRgzRA/cjOdA54758OonQ8w/DrTfA0LQXmYwyelQoFCuPikUrrlgS6RzO9ATm3YbRIEZ95qN3OILIPJ1eixVi/f7YvB1jTpsRh9pGxFdoLugmfbo3KKm8pUTa9GWERX5K95uW7yChwVmFzzkKiJ7eB32qKCAVCoVipVGRH8UVSyiWnldIMI00Fk7KbK7actucURze3u+PYnOD54KHl3JSfPdgeN5tbBYjjncMwue2wjiP/9DwWEwmy1sMF//ZJj++Tu19IVkrK9v6vVaUOc0w6YsF4omuowvuJxsOoBAdBZzOiz4mhUKhuFiU+FFckTB6kc7k5t1Gp9Uimc4taiZXMpUb77i6MPHD1BqjNvOh1Whk6nzRK2hu8cP9LIWfEIutnz/jR89QWB5Nq8kjnkxLrZPVpMe1W6vgc+qRTyUWtb98OiGRorzKfCkUihVGpb0UVyTUBuzYWijlZTUbYFxEy7bVYrgowcHCaHaZzQeLqM0mw7ymi4T7udgxGvx9pvv6BgPQpiLIj3UjM9yF1FAnEPUjHovi2RNDSKQBncWxuH2aGD27qMNSKBSKJUGJH8UVC1vZ6dMzF0zzuO1GVHgt86az6AvELrALTXkRg16Lzc1e1FY4UFNuh2vcV2gykVgKGxs8MI631s8FTRetC8wZW4hYKofewTHkAv1I+/uQS8RRyKRRyKSQCY4gM9yNWDCA4WAC5uYd80ai5Pzc5dDYfBd1TAqFQrFUKPGjuGIxG3TY2OiZN5JCr54tzfNftJtrXHDMYXC4qPRbvoCz/WEcPTuKw2f8eP7MCFLZPJprXVPEWTyRxc71ZbCZ5xY2bIlvqXVflBAjkXgKydFB5BJFH6HpFHJZZMYG0NM/Bo2zCtaGjXPvTKuFfdN1yBhVvY9CoVgdqJofxRULBUJ9hR3UCb1DEREOpQGl6XQWFosBrbUu8evhv7O9AaQntWozWtNU7cKmJs+EtY3eoEGegqGQB3R66EzWedu7E5k8njk6iEAkKULIZTdiYDSG59uGcdpiwI07aoqeQRoNdqwvR5nDjOu21eDgqWEpxp4Mf5c+P2xzvxjxw+PIZVLIxqPzblfIZpBJxpDRmGG96oXQ6I2Id5+Q20vobC44t94ITdVmZBeoaVIoFIorUvzce++9ePzxx/H9739/4raHHnoIX/7yl9He3g6Px4O77roL73znO2E2m+X+5557Dq973etm7Ot73/serr322kt6/Iq1GfqsLbNJYXNb9xjCsQxMBi2aalxoqXWJwKFh4OYGNxoqHfAHE4insjAbdSh3W2Azl1yXgUI8gOETpzDW14NsOg2jxYKyxnXwNLSgYHTOFCQaDZ4/7RfhQyigWPtTX26XyE88mRGfoRfurZe5YJwfls/n4bTocdPOGunC8oeKxcZepxkumwmGcVPFi8WqKwD5+QvCiV2XlXNPwAHTzhfDun4v0v4eSY/pHB7o3NXImDzIZtVAV4VCsXpYNeLnBz/4Ae655x7s2bNn4rb9+/fj7W9/O97xjnfgxS9+Mbq6uvDBD34QwWAQn/jEJ2SbU6dOoaGhAT/84Q+n7M/lcl3yc1CsPeJpGgsOiqMyIx6l4aPsaBoejWHP5ipUe80iKNg63lBhl+0oVFjgTOHDGVbp0V60PfEIUslznU+pZAqRwAH4O86i5cbbobWyFf7cY0eSGQyNzZ5WotAxO8wTBoc+u2lC1PCxKdo8NiN8jmJt0Ln7lkZkOI05uNwOhIKRObdhlKyxwob8eDdcKqcDTBXQNVTJGmXzeaR5lxI+CoVilbHiNT9DQ0N485vfjM985jNoamqact+PfvQjid7wft5366234t3vfjd+8YtfIJ0uOuu2tbWhtbUV5eXlU76MRmWlr1gAjQaHz4xOjJKYEDTjAoIt4wdODSGWOqdYeF9xXMW5C3o+FUH7viemCJ/JREIh9B16BprCOU8htsUHwsl5ozSlY+kbiU4ZtjoZ/v5SRHqmPi5gNuqxrbUc+nmKq9c1VcJtKqAwrdiZRohMcanOLoVCsVpZcfFz7NgxGAwG/PznP8fOnTun3Pe//tf/wvve974pt2m1WmQyGUSj0YnIT0tLyyU9ZsXlAYeZ0hBwPhh1GRyNzdk6LkNGR4cQC88dISGjAwPIRac6RS9Ws5QiK9MfN5MvIJrKIZrKIp3Li+HgUpE32FBpiODaqxrh8TqnTI23Ws3YsqkOm8oBg8MlYkehUCjWEiue9rr99tvlaza2bNky5WeKnu985zvYtm0bvF6v3Hb69GmpBXr1q18tUaQNGzZIdGjHDrbfXjhMZSwVpYvSUl6cFBe/xpFAQiwJF/LEGQrEsbFh9g4qg0GH4cG+KeJgNvib8YAfbk/VxH7cDtOi/HjKPFbZrvSa5NT3M/1hdA6EEI0Xi4vpR9RQ5ZAC7cX4Ei2IxgRLZRMqOp6Ht9WDmK5C6qJMJj0shSRMcT+MtipoLG7oV/4z1GWBep9YftQaLz+6NbLGKy5+Fks2m8V73/teETusDyIDAwOIRCKIx+P4wAc+AJ1Oh3//93/H61//evzkJz+RdNiFwAuNx2Nb4jOgs79lyfepuPA1Hg6nYLEsnB7lMFGHwzKnUGFKyjAtPaTRaGHxeKF1VSGrLT5G3uqV4ysJJaPZiMoy+4xhqZPhRPl1dW64XFb5OZpI4+CxQQyOxsVbp3T8lFNdQ1HEkllct70aTttMn6DzpeBqhslsQrLnBCzR9mIbWKwArckCU2MrTFUt0Bov/nEUU1HvE8uPWuPlZ7Wv8ZoQP0xxvetd78Kzzz6LL33pSxNRnerqauzbtw8Wi0VSZ2T79u04fvy4dIx95CMfuaDH4yfzcJgXl6WBCpgvhHA4oVIEy8SFrLFRp0UqmZFW8vlwVjsQiSRmjfxQEFl9lci0nT53LHoDHE2b0T6cRtfBfiSTRXHTuFmP7mivRJFY0EwtsbHeLZPcZxu1wXEWmzaUw6ABAoGYiKbOwQg6euceENqTSMNlM2LTHJGq80Wjd0PbdA2MqTCQy4pgy2jNSGvNSMayAL8US4J6n1h+1Bpf3mvsdFoWHXFa9eJneHgYf/3Xf42+vj5861vfwt69e6fc75w2KJE1QawBYgrsYlgOT5JSIahi+TifNbaZdPA4zRgJzC102epe7bMhnZ677dviq4LZYkEiXtyPo2kT9p8OYGTk3KBSs82GdEGPtq4xBMNJXLOlUtraPTYDrt9ejVNdAfiDceTSaWjyGWld39BUhuoys5wPhVIql8PxzjGZIM+5Y0xv0YNoeodXR19I/IvY9r40aACdC3qTFnaPDbFADNl51kNxcaj3ieVHrfHys9rXeFUn5UKhEP7iL/4CY2NjkuqaLnweffRR7Nq1Cz09PVPSYydPnrzglJdi6eAFe6E5VCt5PNQGO1vLZHr7bFBY7FxfDtsCM8A0Zgea91wHvcEAq8uN3lB+ivDRGw1wVdWioCn+uQ0H4uj1F4uoqVtcFgNu2FKO2zfbcXOLHres02OPyw9Xz5NIHn8E+mgfhoMxnOoO4ljHKHqGIlLv0zUYRjienjFZIpbILDgkdaG1We2steNVKBSri1Ud+aGXD4XNN7/5TSlwHhkZmbiPP+/evVuKndkR9v73v19SX1//+tfFB+iNb3zjih77lYxGq0EslZUW8myuAJvZAKfNCKNuaQz4zutYNBrxmwnHM4hKxEQDt900YU5IX5+brqoVM8H+4Yh0dzFsWuaxYH29W3x0FvLOyeUAc0UztrzAgjF/EPuf6ZIp7QajATa3CzZPOTTGqfPBJDpTbhPnZp02j/zASWh6TqGUJS+Mf+WzKfQdeBLZqq0o6Cun6BxOeO8fiaLKZ5NzKh3nYkXBQmuzGtFrC9Clw8jFQpyxAa3FgYLJhazGuGQeRwqF4vJn1YqfXC6H++67Tzq8GP2Zzu9+9zvU1dVJ9xc9gt70pjchlUrh6quvlqLnsrKyFTnuKx362R0/O4qewfCU6APFz7aWMlS6LZfsIkURNhJK4sgZ/4SXTymVVVtux9Z1Phi0gNWgw1WtPqm/ydKtWaOBxaiDBvTZWdxjse28M2qFyWGH1pOBz11ArgAkcjrk0jo4DFN3RPdmdm3p9BroU2GE+87Mvt9cHiOjUeiTx+DeWo4Kj1UiPiW415FgAnaLQcQLcTnM4kC9mLU5etaPYGTq2nCw6jZZm9UVWjEVEkh1HEV8bFBmixXRQO9wwdK4FRlLxaKfL4VCcWWzqsTPJz/5yYnv2bl1+PDhBX+H7s5f+MIXlvnIFIuBUudQ2zB6h2fOhGJH0zPHBmQuVYXLvOwCiNGP0UgKzxwdmJEC4s+dA2Fp3d67uRL0D8znClKEPNG7RIPB83isk50BtHUH0FjjQs9YBtlJhX6UEFWww207F51gyksz3imWGeqffZSERoN4Mi3RmWwkDGc6hPUNbkl7TS7S5mMx0uayFvffWueSiNJca8zjHZtnbbomrY1+legfI1JInNmPTMg/7Z4CspEgoiefhX3z9ciYfUoAKRSKtV3zo1hbBKKpWYVPiVyugOMdo8hegqsTszYnOsbmrX2heeFouDhQ9GKIJHM4O96BlUplUemdapPAs2Ux82RB5HNZZKo8U0+SwuEfo8kCvc0JncUuCkWKnCcVFmejIWgKwO5NFRKdmkxpO6bqqr3WecUlj+L4AmszxLUJXfzaLAVco0J4eBbhcw4OU031noROs3oLLBUKxepBiR/FksBIRkf/uXTMXLDTifUlyw0jIaPB2cdNTKa9j6JFc1Hn3TsckRofwiGlGxrcM0QDhQajKbydwqWlzjU+vgLQ2t1IV2xCF2pwJOrG6Uw54mWbxSOI3YsT6PRSLG0x6nHH3gYZvMp0osNqFIPDG3fWYEuTd8GziSVzi1qbs1ybVSB+dMghNdix4HbpkB+69PxO2wqFQrHq0l6KtQuv/ewyWghKhCRTNOMDRJeLdCa/oH8PiSezUuczx+isRYmfCDuuJkVgOI7i6k2VOHByeMoxpLM5aLWsffLBx6GlhYKktM7E3Dhx8AgymXOeOSe1WtTW+LB53VaMHXoOGq0OeYsbKX8WI+m4mB/WlNnRWO2EFhpsXueF3ahbVMqHx7GYteHzxLok/QqHf9j6n88UJ9/PSz5frAVS72oKhWIB1NuEYkng9ZEX5MUw3Q15OZhrEOh0eMwSXLnATBw1hHHa+QyNxVHutuCF1zaisz+M0VDRjXlDgxfb13knanMonE71hnCyN4qchn+K58RPPp9HT+8IcvkyNDWtE5+hgdi5bZhCK/kTsduLRduLzSbSX2gxsOuNtUMrjkYr4m+x2yoUCsVCqHcKxdJQgEQhFoKeOuxMWm7Yrs100ELUVzomLvC82Gt1GhFOi73m08iL+5gOO7B6B8Mod5uwo6UMuzaUY+/mCjjHz52Plcjk0dEXRF6jg8FbDY1h5qiIgYFRmKqaYWjYiqHAzOhHmdsi+z4fiWI16eGwLXJtVkHHV05rhMFXs+B2rJcqmOyX5JgUCsXaRkV+FEsCIxkVHosIjslpoOlwThXbyJfb9pyjK1ob3Dh4cnheIVZdZpN6HXrdsAOMx85276ZqF7xOk3gTLRRRcdkMKPdYZzhF09dnNFgULOtq3TAbtEil8/CHE+gbjkKn16JjICIDTs0GMwzl9UAqhiwLoPN5aPR66Gxu9CfM2LauAteZnWjvD8koDJNBh+YaF3wu03mnpegMvb7egwMnh+Zdm5oy2yX3ZZoNHoPJV4/UYCfy6bnSXxqYa1qR0xiL4TiFQqGYByV+FEuGSafBtduqsO/40BRfHcIi39Z6N9ZVOy/JvBdeMBvK7UilcjjTE4DTboRex9RQQep8+P/erVUidA6fHUXXYAgFOvvkC9JdxMGhLrsJe7dUwm4qppQkPabVimW7pPgKBXkcRo6u3lSB/SeH4A9MLSSmLqmvdGLrOi9CsQyePTYo+/c4jSJiWH/TPRgWc0FGcbRmN3QWV/ECrtGKMIsm+XgaVHnMqPZZ5DZGZCh5WK/ETfnzbEJFp2PNDFNlGhS0Bll7bldfYUMy7cOpzrGJYu0SjMzt3VIFi6TSFickeJ46TQGaQl6crHMF7ZLaGWQMDtg27EX8zHPIJaeNI9HqYK3fiIKnflWINYVCsfpR4kexZPBa5zDrcdOOGoxGknJRz2QLcmFnN5LDor/g2poLQTPe+u12mnHkrB+9I2FJN21q9KK5xgm31YjD7aMSTUmkcwiEk9KVxVocl90owoJC7sYd1XJufcMxPN82glgyA4vJgB2tZTJDy2LQwKzX4rqt1QhGU+M+OVnYLUZJBbqsBikc5jH4XEaMBaI4cmIQtdU+BINR+Dx2EUH03ilzmhn0KR79uHiwmg3yrXzlWCsEhONZdA+FMUKxVShI6zzXuFRPxJZvXSqIzHAXstGA7M/groCprA4Zo0seY0OdW6I79A0KRFJy3g2VTvhcZjmfxYoXA1JAxI/0ECMzKWj0RpgqG6FxlMsQ1KXQQBQ1WWs5rFtuRj4ygsxon0THdA4PDN5aZI0uZPMrn6JTKBRrAyV+FEsKL3QGnQbVHgvqymwTFz6J9lziD+XUEEfPjkpdDR2NWetC2nuD6B0K45pt1egaCGFgNCYmjNMdmI36pBw3nZCfPT6Ik51jE/cz0hJNpNBc7cZVG8vhNOuhzxdQ5jChylM55bwZ6QnGUjDpC3jgkWMYC8bkPrfTikQijRP+AVRVOFHuc0j31+QiY35LUTMRLdMA3UMxPH96ZIpvEMULRdy2dWVYX2cHBtoQ6TkFFM5tk40GkRxoh23dTsDdIB1fdpMe25q9smM+Fr2Yii34i3uyTPk4Emf3IRM6tzYkExqB3u6Cdf1epPWOJRNAaa0VGncTDL7m8X0WkKKVtgr4KBSK80AVPCuWBV6YmB7iRftSpLmmw6Ll9oGw+PjIjKx8YeKLF3Ze5Nv7QhgOJmcInxKMxlBUPHN0cEobf225DXs2VyFf0ODJI/349/tP4pkTQxiLplDQzDxvNiCFIgk89MTJCeFDOrv92LG+XATNwHAYwXB8RgqKYzhKRdIkEE2Li/Zk4VOC53a03Y/h4TEk+s9OET4l2AoeO3sI+tQ5scK1KE1gPp9UlV6TQ7Lz0AzhM9mUMXH2APSFpfV14jGeW2OlehQKxfmjxI/isoRpLA4PnQtGblj7MxZOSvHwbDD+wujIaCgBw3gbf12FHW6HBQ880yVzsdjVxUhSW08Qjx7sw4nOgAigKY+l08E/FsVooCh8dAYDDBYrRiIZaWm/fmcdLGY9hkeiyGZzE8fXUOXEVevLJ/5IGb2ik/R0gTTlmAs5nDzZBY3DN+c2hXwOmaGOi+7k0qbCSAfODRuejUx4DJpE0f1aoVAoVgtK/CguSxKp3Lymi0wvmYw6Kcyey3fIYNAhGs/AyMLfcU8gDv184nCfDBwtwfvGQkmJNnG+V78/LvUzJTTaAnoHA9Dp9TDaHMhoDIgkcgjHc9h3YgjBSBK3X9OMa7ZVSY0SB8C+YE8Ddm8on+LJQ4doiq350OQy8A/5kdTPbzuQDo5Am5tWOHwe8Pyy4ZFZo0vTyQQGFu27pFAoFJcCVfOjuCzJLZC+YYqIxc1el1l+Nhv1InKoNfibklZhka2mgNoKu9T71JTbZIRHdpZUSzEaU6ybOdUdgNdlkagOW+U16QJsFiM0RotMUJ/srkwNdfysH2e6g2ipd+EFe+pR6XUWu5amnQNvWkw3Uz6XQ2Gh9vdCHhrpKMOFMzFZfaHtKEL5QCpFpVAoVgdK/CguS4wGraR15koR8brPiMu1W6pwsmtMIip+f2Ki28tpNYow2lHvkagOb3fZTDjbN3uax2UzSqptLJTAia4xSWMdPj0iqas9mytQ5rHBbNLLY85GLpeDTquVYadzCRy25VtMemSyc/sosc3cYrdBn597G6I1WlDQ0RNn3s3mfpxCAXrrwqaWhF5FixmnoVAoFJcKlfZSXJbYTQaUe63zbsPrcWO1A43VxdZvppUolih0UpkcfE4zWutcMJt1SKWzErxgNGc6NHZk6owt7oNjcZmGzn2xWJpdWY8c6EW51w6HSYPaCseUcRiMh9itRjTVuFDlNsPtMMKSGYU1PQxLNgDDpI8njCJxu3nPSWdAY1MNjPHRebczVTYhp7lwp20JGtl9Mol+PjR6A7SuSuW/o1AoVhUq8qO4LNGgIBPO6d3DYaOzsbXZh1NdQZzsGMXmJo8YFcZTWXFApilj/0gETxzuxy276nCyfUwEDT2LIvHMlE8PTdVOmbZO00LWGTntpqJYGod+Qb3+GOqrXTh1dgiN1Xbk8oxK5UUIpdMpbKmz466tJiSf/R9Eh7uQz6ahM9tgqd8A67pdSNuqJRXHguu+4YgIrNmwW01Y3+oDTrXPuTYGVxm0nho5roshq7PA2rAZ0bOHxHNnBhoNLPWbkDXYi74DCoVCsUrQFJbShvUygS20Y2PnWpIvFr1eC4/HhkAgJhcwxdJBB2NdJgZtPg2TyYBUXo+M1iIt0ExfBWNpHGsflbRWKfrA1BHNB2sq7HjkuV5EExm5n94+en1x9AaLm2n257YZsWNDOUxGPQ6dGobJpMfDz/VOjIBoqHRInQ8Lo1lnxEjO5iYv7FaDtNDThJBiiuMsrtpQhkQigZ7+EKKpLCuEpA5m98ZK3FARwuATv4BFBynE5iRz5CnaCtDaPPDc9MdI2GpEY9DX5kTnKPpHojK9vpQS44DTLc0+2ExaGDJhJLtPIBMcLk465x+7wQiTrwaG2k1Ia+aP2Cz2dUxXZ22kH8meU8jFw9JtpsmnobM4YK7bBJQ1I5Vb/kG2lwPqfWL5UWt8ea+x12sTI9vFoCI/ijUJBYchF0Om7zSS/n4gl0bGYkS6oIehrAHGinVI543irnz9tmpEk1lxXaYgspn0sJp06B6OjU9XL/7B0kmZ/jl6o2582nuxgHnQH8PuTRVoqXOJCEqmsugbiYqIYhRoaCwm2xaLposjKX7/XC8CoSTqqx0SUaLuGo2kUea2o3WdRVra+VgUU3sbtQg8+iDymQx0RgMK8SCy8RDy6WJnl1bbj7DhZ/Dc+lokjEVDwl3ry7GxwYt4KiMpKBo4cpgrx3OIQNI5YWi5BuZ0BIV0vLhgRhtyBjvSS/h+lCtoUHDWwbq5DNroIDIhv+TEctks4oNd0Ab9MNVuRNbsVakvhUKxalDiR7EmMebiiLc9I0Z6pNRank/Gkeg+AWM8BGPTLmQKnF5OJ2OdfE3Zh1GHyjIbAuGUpIt6hsIYHotJp1ZNpV3EDaefe1xmdPaHcaYnWJwZVu2E12nGU0f6Jf1kMRskHcboS4XXivue7ITDapB5Ymd7QxKhedMrtkvk6Af3n4DTZkI0noZeXxwnsVUbxdDACKq8VmjTUWSCg1OOM5/PIHp6P6ybrofJl0HGUCkix2LQwjJpEjxvmwzHPWTZ8j657X0ZPohpkEN2pBPxrhNFkTW5/T0WRjY8Btuma5Ex+9TMUYVCsSpQ4kex5qDQyfSfnRA+s5H298PorYHG1TDDtZi1Lsc6x3CmP4zHDvWJ2aHZqJPIzh/esVG6tZ47OSQFyxQx9ZUOVPtsaKl1iTgKi5OzBlvXlYlAouChW/TJzlH8fv+ojLNgRMjlMMlAUqamWBPEYmipRuJA1AKQzhRQU2ZH1n9Cmq5YJ2TMRmc/oUJO5lmlwyOwbr8T8dT5qwhGuGYrzblYdKkwIj0ni63ss6ibfCaFZNcxmDbeiAxUCkyhUKw8Svwo1hz6bAwxf7HuZj5Sgx0wuWqmXHCzhQL2nRzG0GgMqWxeUlUUPyxmZvHx/hMUPUkxP5R0mE4r0R46Kw/4o7hpZ614AT18sFd+jxEf1gz9fn8PKr0W3LizRlJj6XQWLocZLTUujIbiMmOMRn+sB/IHE+IVVGxd18FQ0MPOlFsqibx0T1EAzSJutFrE24/B2rwDMFQuaq1o1JhOJeEPpxCOJOTYfG4L3C4rUsmLV0LMr2cHehZUVZnIGMypECBpO4VCoVhZlPhRrDlYDJxPz97tNJlcMgZNLgVoiy3vjMgMjcZF+DA7w+nsZS4zEqmsRGPKPFbc90QHqnxWSXdREFV6rfCHEiJOKHJoYLhnS6UIH2KzGDA8FpfbqFc49Z2pMEoXg14jnWDXbK2S25gCYySJZomldnrOA9M3NyF54gC0hTzsVjP0Oj0KYgw4Ca0ReqcPib42FHjui+hSZ/3R2V4/HnnyJLo7eyeCMm6vC1fv3oDrtteyChoXgwZ5ETYLwmgXnw+TV6W+FArFiqN8fhSXLxo2vJ+zMKbRHtNTkzbAUCAu7eO7NpajezAsUR1GfarLbGiucUpRcmJc6JCeoYi0wU/eJ8USxdO+E4MiqFg8zagRtwvF0jh4chguuxHVZVYZi8FjON4xJmJo37EhBPQ+WNw+aX2nKILFPe4AdA5r8zak/ANAnseysC2zwaBFe+8ofvyTx9HVcU74kOBYCL97cB8eeqYdWu0iXZrnQNZ3ITfpcTQarRI+CoViVaDEj2LNkddboLct7C5scPqQNxTHVxAKC7azE16ES91RLEimSWEmk4fbYZY6Hg4y5e2MFrGlnXVGHIBKQcPtWPBMQpEU6qscYmbIbbkNf99uMcLtMMFhMUgUqKMvLPU98UR2ik8Q+cn+MLzXvhQWh0eKhRPpPLT6c4XMxspmWDddh9DRx2CpbobG4pjy+9QePL7J88TSqRQefvoUEom5I2TPPnMUw2PzzwpbCK6j0Ve74HY0O9Qs0hFaoVAolhslfhRrjpzWBFP1uvk30mpFNORyk6IS4yKhBIucyz1WESdMfTENFYmnJb3F71mXw4JlFjyzVkZGZbDFXq/FDdurpR6IYyzo5VMajioTvvg4mqKfEKH5IR+XNUUl8TWZM70hfG9/GrUveQOcm6+Fxu6F1l0l7fru6+6G8+oXY/SJnyEfD8Ox9UbkbRXjp6gRz5+BQALHuwI41RtEKJ6Rhi621Xe398y/jrk8Dp/sh8Vy4dlv1kNp3ZXQGs+JzNkwequQM9ov+HEUCoViKVE1P4oVoxixKOpv6YBapA8Mt9N56mGpDiMxMIuTsVYLa9NW5Ky+Ka3dnJtV4bGiI1FMfTHq01DlEAfo0WBCRlkEoymJCFGw0OSQNT2jwSRGw0kRC3WVDjFEzGRyuOvaRpzsCkg9T225DT1DUUmT8TGcNqOcH/fLomqPwySt76wl8s/izqzR6XEyaIXGtAUV2xvg9NmR97N9/BgSz9wn23j23gnLuqsRSWSg0QJ9o3EcOTMyUX9EjmtGRdA1V9thNBqQSs092Z74x6IoXGQLWFbvgK11F6Knn0Mhk57VUdpUvxWpyUJUoVAoVhAlfhSXHIqCTL6AYDgtHVQcku51muSibTXqZvjVzEaGZoZ12+DwVEpXVyEZgdZkhMlRCX15E3IWr4yQmC6aWMfDuh2KFGLQarC52YN4MofqMjssxlGUuS1w2U0yGJWpL87zqi2zQavTYkODB73irJzDNmcZXnbTOjxxuA9D/ihu3V0rRondgxERJBQ621rKkMnmMBZMSN3Py25qxrGzYzjdE5A0nNtpwo6WctgsenQMsJ7IgL6sHnZ7DpqzB1HI5+Dacj1sm6+FrqwRkbxN1m8kmML+44MzBrcyDcUC7NFgHNu2NuO5A23zrqPRqJfzuhgDIK5r1l4Nx9abkfH3ID3G2qScRINMVc3QOCuRwrk0nkKhUKw0SvwoLimsiwknMtJSzsLiEp39xbEO21vKUFduW9S08UxBB1irYGithL6QhtVmRjRV9NWZ61rushqxa1OFFCFTAPFh+v0x9A5F0TscwUtvXIenj/TjVNcYjOORIkal2J5e7rbINs8eK5oQPnawF6+4pRXXbquSGqDnz/hxvH1UfIQ048XQTx2BOEy31rlR4bbIVPfrtlbilt21CEeSMgm+fziKYLhYe8PD9voq4F5XDX11tagZjdmOVMGAUoCHeoeT6OeaWE9SmSyMRjOcDou0uM/F9k01EsW6WCiAUnondLXbYa5aD00hL0NWswX9DJ8lhUKhWGmU+FFcUhKZHJ4+OiADQKfD9NOBU8MwGmpQ6TYv+qJJJ2PoLdBZbNJOPR/cZ12ZDa6r6ySCc5QDS1M5bGz0oLHKidFgDDvWl4sDMzuyTAYtPE4LKn02GWmx//n+KR1Lv9vXDbtFL4LnycMDsz7mowf7cM2WKhmxcbwziNEQ/XZ02Nzkk0hRdYUNkUha0mksqF5f70EmXUBa6x5XeVP3F0vlZB/zYTYZEE1lUFnhmVP81NRXo77SiUxm6cQJU4OAsdiQJgJUCR+FQrH6UOJHcclggS4FxGzCZ3IEoa17DOWu6kU0dC8eGgzyusyUEfdrN+nRXO1ER39IvHjiyTT2nxyUgai8v6HahQqvRdJWPcMRPHKgT4aXzjzePE51BbBlnU/qeugKPRmKp7+6exueOjqAjoEQIrFiMTXTZg/u68bVmypx3bYqKbiuq7KjzGVFBYXfPFGdbC63YMt4NluQzrWKuma0d/K88jOEz6tevAs2qwmZ+cuCFAqF4rJDiR/FJYPREdbDLASjGoxuTJ/FdWFoEIqn0TkQRiiWksgKu7doXjgWSeH50/4Zv0FdwZQc63SY+jrZOQa7xTCr+KHAGA4mYOkPY0uzF0NjcSmaZqcYTQZfen0TjrUXx2Vwiju7wPRsS5fusTwOnByWqe90frZaDGipcSK3wCRknVY7Pg9+fvR6PbZvqER12Z3S1eUPRKVrbdvGGon4KOGjUCiuVJT4UVwyGFUpFRrPB6MaFAa4yDlQFAfHu8ZwpicwJVLC+h1697Q2eKWweXLt0eQIlN1ulJQYC5MpgmaDXj5sdae5Iae9s36IQslspKFfHnabEU8dGRD/n3Q2Jx1nLKQ2UMBodHJcx9pHcf32arT3BtBc5YRJN3/Mi91oHpcFYwukvhjR0kKPMrcDf/CCrdLVxeJm1vgw1XUphI/MYWM0bVz0qcnuCoViNaDEj+KSwdQToxyxRVww9eMt8BcK98HBpae7A7Pez24sRmPYvbXv+NQp6oRCxusyS6SEwofCbToOm0Eu5nR0dliNIkYolEqpr/X1Limklv2ls1LnYzaxjT6PeCojwoeCgLf1Dkdlsjw9hkx2TqKfG51Gg02NHjx9NDmnmGCnGYexlu5PJErt8Msw2XQW+KjBWBrt/WGEIkkpdK/0WWWKvcNSNJdUKBSKlUKJH8Ulgxf6phoXAqeG592OXVWMblzMLAQOLW3vDc67jWa8yJqdWmPhqd47jNJEYmk017oQjqUkPTXxexpIO/z2Vp/U1nC6O4easvV8MmajQWp5uD1TVRajHsFISgRJ8cwKyEAjM8TCsTR2tJRJbY4BaZniDq0eOY1xQsAUoyh5EWJ8/N2bKsXnh+cwGZ4PZ43ZdWmJ9hT0JuQKl260RDHiFsCZ7sCU1BwjbO29IezeVIFan011gSkUihVDiR/FJYMX8WqfFe1zpJoIXZM3NnrBqVwXc2mMp7ISRZkPRqEocsqYQpomfghTWRajDtduq5YxEIzeUICwPocC7XjnWNEHqFBAIpXBDTtqJAX2/JkRERo8xw0NbolyOJ3Fc2bajy3qJQFUTAdpxUyx3x/GjjozEsf3o5DLQWswwlTRCIOnFuG8ET0DUfQMhiW6REfp9Q1u3LyrDsFwEoFwUlJaNWU2eI1paIYOIx7kceShs9jFbwf2CmQWMxH1IuD6dA1F54y48fwpJB276+CgwFUoFIoVYFHvPv39/ee105qamgs9HsVljkmvle6mw2f90ill0OuL87KyxdoapqF8TtNFp0VmS1NNhwLEYTeipc6N4UBc0lUUMkzRUPSw02vn+nKJWMXiaTz0XK+YMfLQ/uuh05LGa63ziJszhVHXQAQepwlXb6rA/hPD6B6K4A9uahYX6Vgii3Q2L3PBJh8ZRZLZQj8hCx576gQ2e+uRi0Zk9EYsFkc0GIDF1YVM9U6caA9PePvYLEA0nkU2l4DPbZbH0GsKyI+0I3bqME9OzkOHLAqJMSTHemCsboGx8Sqk8+fSakzZ0WuIHWhUYk6rAflpBddWqxH5iB+FdBrhhA4mZwWy07aRURuZvBRrn+oJyGNPjuxQ5HnYfWbNQa8FEpEQPI5yZOnJNAn6LeqycRFt0BqQ05mviDohrU6DZKZoYSA1ZjrtjA49hUJxicXP7bffLm9mi+XEiRMXdDD33nsvHn/8cXz/+9+fsq+PfexjOHr0KLxeL974xjfiDW94w8T9vIB+6Utfwo9//GNEIhHs3bsXH/zgB1FfX39Bx6BYXng9pIszTf8YOenqDUoXWJnTgs3NXpS55m/zXiys0+EFeaELp8NiRGOlA6+8tQW9IzEZR2Ex6dBc40aZ2wwLC5dzwK1X1Uo7+0gwid881YGrNlRIsbNWU0AvHaMzeZT7rJLe4nlsW1cmtTwb6NmzN48f/+6UiIHpR8M/qxdf14i2030yRyxKT554Bm1dAUmFURRazX5s3Aa86Jqb8PChQWnRT2cLeOb4oESCdDot1jd48AfbLUDHYWjzeeg1WRRiAaQDg8gn4/JAmaF2OPU6mOt3IZnVylywY12jONg2gkA4Ab1Oh8ZqJ3ZvrEC11wKdtgB9MoDw4WMInDyARCgAvckET/NmuDZeDZQ1IJMqIE7hNxgR5+yqMjsOnx6R+iW2/jO6xhTmxrI88v4ziJ8dQCqbQdRqRTa3EcaKRmR0Don06ZOjSA92IBkaEWdrcYiuaIDRV4+M1nJZToTnazSSyIrlwuBYDHqDHvlsDjXldjRVOUWEq/SgQrFC4ufjH//4hPgJhUL4zGc+g+uvvx4veclLUF5ejmAwiIceeggPP/ww/uEf/uGCDuQHP/gB7rnnHuzZs2fitkAggL/8y78U8fWRj3wEhw4dkv9tNhte85rXyDZf+cpX8MMf/hCf/OQnUVVVhU9/+tP4q7/6K/ziF7+A0Th/4ahiBdAUC5GPni2mhlgHQ1LpDA6eHMKg34arN1ZItOVisJv1kppi6zk7uhjhYUqNj5lKZSXNRa8dzur60W/b0DUYlloZp82A4UAezxwZEPHyiltaUOW14JFn+2RSO1Np/J9Cpb0viFA0LZGf0hR4YtRr8JIbmjliTC5qTE/9wU3r8OC+Lgz4i5/sSaXHgluvZvpHi9NtQSAeQDbrxMETw0inWQ0EMUEcCSUw/MRR7LQ345bdjXjsUD9+90zXlNLl2ngKpw6dhjkWQnOVDdmhDqQDQ1PWJJ8ZQ+i538BtsKDg3YBfPNEtnXDnyOLwmREc7xzFq25eh61lGfQ8+B8IdE+anxbRIOofwuDR/Wh96euAqs147FDfxHwxfhhhhGssnJBaqQ2NHmz2JhE8+iyy6XOpzmQ+i3jPKWT9vbBtuhb5ZBTR0wdRyJ2bU5bLZhDvPAa9vw+WDdcgrbWd12vAYNBClwpCk01LgVfB5EQarKHCqhE+I+Eknj06KJE3/mzRaJFIZMRegWKSXYBMDyr9o1CsgPh59atfPfH92972Ntx9993453/+5ynbvPzlL5cIza9//Wu89rWvXfQBDA0N4UMf+hCeeeYZNDU1TbnvP//zP2EwGPDRj35UPEtaWlrQ1dWFr3/96yJ+0uk0vv3tb+Pv//7vcdttt8nvfO5zn8PNN9+MBx54AC972csWfRyKSwM7gI6d9U+8mU//VDvgj+GsI4wtjZ6LCvszksBIDbue2H6+//iQTGxnm3mFzyYRGZfDKIKFwodQEE2u/WHd0K+e7MArb25FIpmVQaeHTgdFvDA9Vurqohs0BRY/H7B2h07NHHjKURcjgXix+NhixKtv2yDpMQoFzvJi+zvHZRw/3o3k2CCv9jDoNNCOy5rCeNcZRRgLp4PDQzKs9enD/TN6tspsQHJ4BKFoDB5zAfZ4cXjrdLKhUWTDfowlTOidw3OJKS2XBRg98LupwmcSmUQUnQ/+F1pe/eYpg1X5fFrGj1eGvJqzCLcdmCJ8CCfcM0qWS8aRPrMPsDinCJ8pxxMNIt19DLp1e2fMa5sLSz6M9NljiHUcRSYahFajhbG8FtbW3YBvHVL5la83SmSK9U+ScpwFmoEePDWCG3dU4+J6HxUKxXTO+2/qiSeekIjPbFCAHDx48Lz2d+zYMRE4P//5z7Fz584p9+3fvx/XXHONCJ8S1113HTo7O+H3+3Hy5EnEYjGJQpVwOp3YsmUL9u3bd76nplhm+Mm2oy8kwmE+ugZCUodyMUgtjVGHPn9MhAiLjVkvw6jEoD+Gw6eHwbISui7PRyCcQtdQGOUei0gqHjtb1ieLJKbteKFnuzsZGI1LVIniyWEzoWc4KlPhv3ffcekIoyg6cGIYD+7rQVt3CLl4BPlMBlWVHhgSo1IDVSLHVFmhIKKNkaKnjw2MDyKdipge5gtgIG14eAwFq3fq/TodtHYv8t4GZJw1UsN09aayWf2L+NdWZYhh+OTzU45lOvHQGJL9Z7BnS9XEbeyQo78QsZkNcBTCiIUjM9y6PU6zyDtGlFPDXfLakFH1c8Aolj69sEEmseZDiO77JcKHHkYm5BdRmc+mkRzowNjjP0G2/VmYtBc/z+xi4LLyNTSf2zmhfUJ4FnNNhUJxcZz3xx+Px4PDhw/jxhtvnHHf008/jcrKyvPaH1Na/JqNwcFBbNiwYcptFRUV8v/AwIDcT6o5AHLaNqX7LhQWgi4VrMmY/P+VCoVHIJosXujmga3f7MKymowXvMa8uDzfPop0OovGKocU47J+hhdzXvBZi8IZY6xx6RyIzFobxKPk7zB1tXtDOSLxDDx2E2KprLSXTz4LCiKLWY9jZ0flf84Na+sOoLrMBpNRKxe5Ha1lGBiNSRSJYz4o0CiYtlZYUVWek/sL0W4RTZOhsOKa2dweHH2kV0wUp69gOKVBldOJzGgE0XAUOZ8XJa9EjdmGlLlcBFg6moGuO4jf7+9GzaatUrvE9N1o6JyYq6mwIxMaQSaZgJa5u7nEagGI9Z5B5c3XTDynTAM217gk3ciIVSbYL887o1wlnFajnIPoHQ2QS0aRjwWhN5mRT89h3MjCq1QUevP4vLM54Oek5JHnRFDNrtsKiBx7HGUVDdA7G7BScL1YZD/5b6H0/fS/D3bylbMWTuW+Lhr1Xrz86NbIGp+3+PmjP/ojfPnLX0YymZRID8UQozD3338//uM//gPvf//7l+zg+BjT63ZMJpP8n0qlkEgU3yhn24a1SRcK33w8nvOrL1gMTiejB1cuTDuZTAbkCrOLHwoIl80owjOVLSCZY4eQSS6i57vGdHHm+IoCtMjkchKxMRh0UpvDNnE+ViGcRN9wFHXldonWzIZ2PEJAs0N/KIWNTT4cahsuioJx6BbtsJrQMxQVkbVzg1cKkXmB50U/HMvIY7KY22zUY5T1MPE0vA4zzCYdGpqcWO9MwBrsQCw6+3G4y3yIaGwixgDDlMfn63UwlMbO9S3IjvaJamNEhbdrjBbEzOXoHwxKPY573RacHo4hm8mheyAM/5kQbtlVR9kiBdZET6Eyfp0tPlPTn6/SzwURRjqNFhbLub/BQDSFm66qk7ofg794HHq9TuqknHaTeBRNRJzyeaR0Wnmj1Bm0KOjmjsjwtWNa4O8yPdqHWP+p4jnMQ6r7KNzXt0KrX97W//kwGvVT1m3yeU752WyA2229hEd2+XOlvxdfClb7Gp+3+HnLW94iXVXf+ta3pPaG8BOJ2WzGO9/5TvzZn/3Zkh0c98m6nslQ9BCr1Sr3E25T+r60jcVy4QvPKEA4PPtF6ELgGztfCOFw4spuX9UAZoMWo4GpzylhsTEviBQWbPdtrHJJ4bDXacGmJo+kfOYz/pm+xv5QEmd6gghEknJRZxqKBc+cxcV2dYogpsWYAmP0pygqZtmvVoO6Crt0gQXDCdgq7GioYrQoLPskLHhmcW80kUZthQ0ep1G25zGVtmutd8vEetYN/emdm7BrQ0yiLaz3GImmUamJI+4PSHcPj41mhiWsNivMjdtwdiiJdTVumR1GISNLqoFEyFjE3R5xoLWhFYmOBDS5ovtzwezFwHAYuVwOFk85sq46BNtGYLRaEMzQ6TojqbhtrWUTk+J7h0IwXF0Bnd6IQo4pl8kLP2mqmAawVDdhJMQPIueeU34miUZTqCqzoa6Z3VwhqfEx6LVybuxmSo6vN0VaXm8GzE4kRgdFDM2KVgejxoR4YH5/cGMsglR4fnNLkvT3Ix4cQ0Znx0rA5422ApPXjSKRwieVykyJRLI7MrDAeSsWh3ovvrzX2Om0LDridN7ih29W73vf+/DWt75Vuq8YYWH0Z9euXSJIlhJ2bw0PT3UDLv3M9Fo2m524raHhXAibP2/cuPGiHnu6j8lSwBfCcux3LcF6EBbaTr6cUjxotBo8crBH/HkoeNjtxe9ZMMy6h6s3V6LWZ12w64VrzHqhodG4pBUofEreOEy/8DYW49KRmREmp80kxzJXSoEjLFpq3Xhu3L2Zbe0bGr140TUNeProoAgepuhYwFxfWSHRnq6BsKR9EumsPN92m0Fqh2RivEYjXTw/feQMwtG0XPDsVgOyLV5cXbsTibFONNVkcKZnDDqDAb6aWtgaNuIXh6LQa/vx8lta8LNHz8ixUEywG0wERaGAI11hWDa04poby2E4+wjSOgPiOR00OiM89RtE+Bw73gUttLCXNaOzPyvnzm4yCkMOYmU6L50BRrJ2lG/chsFjB+Zca5PNDlv9Rvxy30wfMF68ewYjqGhyosxhgzZTvMjPfDMswFTeIGtDUTQXRpcPGYN9wb8fxkwWkx3iNnxZrOTfo89plsggX4/T164kfqRT0WK44t83lhr1Xrz8rPY1vuCWB7abs82dFw0WKjP6stTih549P/rRj+RTq06nm6gram5uhs/ng8PhgN1ul06xkvgJh8M4fvw4Xv/61+Nyo1TDsJZT/z67WcTDqa6xids8LjMef75fLoBWk0GiI5PFCC/sx9r98LnqYJpD1ZfWhmKC5oKlqExJ+ExPv7HWJpNJ4rrt1egbLhbS2i16iQzxYsSoDOuC7rq2GT6HSS5SjNKwFT6ZzGBdrUPEE6NHFDQ0L6SI2H9iECaDHskMO7eKRnX8XUZYaIpoZ+t6MCEiiWkvwsd7/PAQeqocuH7zDtQ1AK0tSYTjBfRFtDi6nwXbaWxvLcPGRg+u314j3WuS1hqXkXSJpotQLKOFY912aHUJWPMF5OCAcSSM9sEgxjrPyLpK15PTDetYSCbdk0CEw14NIn5YcjIcBXbseSHiI4MID88UNzqDCc23vxoZawVMhm5ZG6NRC7OBs8tyUrdFcWb3+OD27kK0/TDyqZn1PFqjCabWPcgnogAjP6xCn/5YZptEvlL5RXyiM9qhs7mQi4Xm/XsxldUir7cB2ZX7Y7IYtNi5oVyey9kG/jI1u2vc9kHV+ygUq0D8/OxnP8O//uu/YmRkRN74aTD4xS9+Ubq2ePtS+euwnf2b3/wm/umf/km8e1ho/Z3vfEe8fggfhyKHvkM0QKytrRWfH0aM7rzzTlwOSEFogRfsjFy0mWpwy6dBDofEGqSATQ1uuOxGnO0NyVgIuh9TPJR7rHJuE0PNNRqJnrCVuhBKoX80juZqO7T81J6ftDaJDKJjGZiDKTEoLLaua9BY5UQgMjLrUTAdVldhQ4XHiqs2lOH6nbUSieGoCLNZL/U5PBaaHGoKwMtuWYfRcEpqiUKxNFKZAra3lCGTyeKpI0M41TWK63fUyv5Y+1OcTM/OML1EVfh3wkLfMo8FXX1BpJJpmKx0t6bRoh4ajQU9wxFUeC0YjZlw1YZadHeOQW/K4UXXNqLSY0NTrQsWHXD71XWSinu+bUTEC9u4GXna0uwTh+wCU0SNO5Ad6ULH6SBOHmO7ugYGmwMmXxU0Nh8lhaQTGaEaHotL3Q4vsjSf3LO5Ek1VDhT0XjT9wV8gdOo5+E8eRDxYNDksa9kMz9broCtvRiavxQuvbUQ4HJF6pVg8BYvZBJfLJuLOmAkjH0/DXtssF/BUaAzpoB9anR5GbyWMVa3ImNzQmL2wbzYj1X8G2fBYcQK90QRjWQ0MlS1I6+3zpj1LZEwe2Ju3IHr4YRSyxZSdVm+kWkMe4/PNdHoRU4kVFD6Ex1LtteKmq2pxuicgry2+9Jn+rfJZi+7hFv0V4XCtUKx68XPfffdJ2usVr3gFXvCCF+Dd73633P6iF71IRAlNB9/1rnctycExukPxQ/+gV73qVRJpeu973yvfl3jHO94h6a8PfOADUiDNaBHrkSjE1jr8ZB+IpXHktF+KZEsf/liHUuWzSSSAnx7X2odCvsFzsCXf+DP5Ao52jEndDT1u+EZPUZPM5KVehh1KpTd/pofO9ppx9aZKlDlMUlh7+IxfalVkJIXFiAq3GWd6QyJc2GnF+9hqPh1GZPZuroLZqMXZ3jB++2yXdH0xeqIZr0G6cUctbthRDaNGg30nhvDrJztlmxIUT6+8tVUGdaayOQwF4tjRWi4dX5nx8Rp8rphOYuF2Y40TdpMW7d3DciE3wIBULCZ1HlanE+vrXJKGY2QoNS76iD+QkHEH1T4LbDRrLAA7mr2oKbehfySGVConRd1MD/5+XwS1FXapMRpK18PXUgN9tFgknMjpMJbRwZNj7Q1g0GrE3brKa5UZYVaDTkQUGx255ul0ATBVwHXdy+DcfI20jGs0WmgdPqRyLEovFoQP9g7h2LEziASL6Uy73YJd630YO9UNmy4zIdIZvTW6vfDsuAlZrQk5vR0pPrfy/GqRt1XBuL4C5mwMGrb4a/XI6m1I8/5FvMYZHDYlBpH3VEPvLEOi/dC515zZBr3dg7zBCufO25BzVAEr2+0u0J7AbTXgmk2VSHKshVEvgtqs105JfykUiqVFUzjPeCpFz+7du/HhD39Y0lFbt27Ff//3f8v/3/jGN8SY8Le//S3WMrwwjo0tXYEh0yPsHmPR4vnkQKNMhxzqkxTCbNAr5Ybt1XIRW6swFXSkfUzawktQOBzrGJ0xmHTvlkqZik6RdPdt6/Hs0QExASTijmsxosxlwiMHesEsAqNL9ZUOERFneunGnBJjvZoKGzbWe2ToaCCaxg/uP4H0tBlTJV59aws8Lgs+/6MDss/psOnqvX++F/uOD2L/iSG86rZWSZlxsGfvcFSiPyywvuu6JtjNWvz4gWNSDM1uLZdNL+JH9qPRYNOWZsSSeYmGMdrT2Te1Y5ERgRt31sjFMhDL4MnDfbMedzqXl4vm+noOVQUOnRmRqEIJumrT2boUYfO5LCLydOf5OtbpNTjb3ocDTx8uzuKSbYqpGraTs1W+orocZT73FIGud3pg2XAd0jjXpLAU2LJjCD787+IJ5L72ZcjHQ4i3H0QmMCw+R+a6TXBsvxU5D00OFzrbS8+Fvk8oFo9a48t7jb1e26ILns+7Eb+jo0OiPLPB2h86NisuHl7M27qDcwqfkv8HTfwW8s1ZzbDOh1GsyWJoOJiYIXwoDphSYlcVa2jo0VOq65kMa1YqvbaiyWAyK1GY4bEYNnIC+lW1uH57lbTTDwcS0nb+4DPdknKbC384WWxt17G+pih2GM3h35esegE4cGJQZnmxjoiip6M/KELlmm1VIlZYp5NKJJBNxFBT7pD9GmWG07lCV7fbJj/HEik5fkZzJtrVx4tXeE4nOwOS7zvRMTqr8OG2Y6Fkscssm5f1YqSMReUlmEpkITi3Ze3Rrk3l0F/ASygZT+D44bYJ4UPKypzIDp4R4SPrNzyGTGbqc5kNB5APDCzp69Zo1CHVfQTJoS7k00mMPfZfiPe0wbr+WnhveS3c178aOmclksNdkLCXQqG4otFfSCrq7Nmzs5oc8nber7h4aKQ34J+ZrplOZ38I9eX2c3UyaxCXjUXOFklR0SeHNSjT4dRyRn0oljie4tljgzKiglGg6YKQKR9GXSh+HIySRFIToyhKQuqOaxqkVojF0XOZGLMVOZnKSaprXY1rwgyRwVKmf/TSim9Ce38YZrMBd17bIDU0HEr5m6c7pYaHdS+s3+hoOwt9IYubrtkpx8gC11QsDbvNDK/LLCKkt38ERptdZoHRDJHRGmY9WMdkNbF2SCNCjqlQpsZmgy3yUhvGv8feENbVODE8GsONO2rk2FgPRdGk10HGfzRU2MV+4HxTpxSB/tEwErGpz1WN14zokb6Jn/O5HCKRBHw+ztQ69yA0ITR765G/8J6LKejTAQTPTnWXTw93ydeU7Rxe+Jp3AXr1PqVQXMmc9zvPS1/6UnzhC18QF+Vbb71VbuMnSE5dZ72Pmqe1NDBdUhqAOR+MdPBCqltCR+pLDQttWTfzzNFB+MOJGREd1qSwmPfQqWJUkV1U7H4qjsmYqly4ZnR1vnpTBZ4/PSIdTCUxQBhtYCSEhcyhCIuF5y4nobkiIyRMQzmsFkmxTRYJFE0mg02ic6y9YcSFKVOKnT+4sXlinlg2a0Q2kYA/FMHx54/jruvW41jbIFIOIM8J54ERJHJOec53bKjCSCCJk5O64UrnXOG1iiBjRGeuWhDeXOpwkw4zrVa6yThWhNGfna3lIlyYdmuudkCvKUaWGHGT9u98flFCiL8ficwUqXwZ5sbb2osb6sQKgNvn6dI8vm9GZ0APIe3SiB9NJoVsdGFj02wsAA0fd+VHeykUihXkvN8CWMzc1tYm/5dcZv/8z/8c8XhcJrLT6FBx8TA6wYvrQhcipmDWctqL8BztJh1u2lmNHn/R/I+igwMy19W6pGX6+dPDctEvbl+QIuIZxsPjjAQS8LktUjfDFuxBv1W6opjuaqpxim8Ku6p6h+Pz1tEyX83H0et0Ei2Z/lzwZw4qZUsyW97zuaKP0PBzcek040DTroEIbBYdtHkn6qtd2NRaA6MhL4XRnUNhBMMpuD0u+JwmXONzo3MgijP90VkjOhz6qq90iBCaCy4JxQzXiOvGAu4SXNOSizMHsJJ4OidRJkajmCuvLbfD66AJZFEMzfecsTh3xu3g61aLgkaLvM4o9VvJrAZDYzHpfGMUi4KMNTjzzfI6b7Q6aA2mBWuYtUbr0j6uQqG4MsQP28vZgcUBp0899ZSYHNJvhwNIGQkq1ScoLg46/Za5LHOmN0pUl9thGu8MWcvIxVSnxcY6F8LbqtE5EJIUFw0DJ0duCAdCMhJkNuikW4aFzRRKRpMBAc5uiqWlqJgdW9duqigKl/FUDR+n5L/DYaXcpjSkdPorl91kOzdUiPBg7dBsMDXF+VgNlXaZ50UTR+6bnV+9IxFU+2yoLXNgx3YHRv1jeHz/afQPBESwcpCpy2kXj576Ci8iWeAMi5w1s9ekMNLFPy+m8njOjH5Nx6DXSIqMkZyrNpRDW+D6mKTYezLr6z3oGY7heLt/SoSR6+1ymLCHdUK0U5jjZcVzrKz0QqfXIzepdskfycBZUY1RfwAxPmYBqKo0iON2UbTqUFNmh7euBjmdebzT6+LJmn2wNGxG5sjs1gYlrPUbkefQ19kHyCsUiiuECw7+suaHXxwlwbbyybOGFBcPgznrGzwSBZlrCjovJE1VzjUvfCaTzeTFw+aRAz1zFnsPjyXwkpua0d0XgsthxuBoDANjEYl0lLstaKpxIRThiAynRG8mAmOFosApuQz7XCaphfnF4+0iohilKAkMevNQoDACx9qiJ58fmPVYKBxa6lyoq3KgeygKf7Rojri5ySfpyLbuMak/2tW6BfseOynCRz4fFICBwTHkB4qiqnswjBfesRc+t23KkNHJ8FhK58TXxnPHh2ZErlg7dOcONxAdhi98CJFoCh67F5r6GnSH9TKKwu0wygvs8KmhWcUN04EsKOfML9M8xWRsaW9oqUfHqY6J2wZH4/A1bkGs52ERO26XbaJOijClORTKwOupW9LXLX2XrK27ET39HPLJ2Ts1tQYjrJuuQyqvcl4KxZXOBb0LtLe3S93Pk08+iWg0KiaH//Vf/4V169ZJCkxx8fBaUeG2YMeGchw945/hAMtIB2tX7Gbdkvr8yIVZUxwtwQJb7vtC3GUpHMSehYMv+f0sFzp26DAqQ8FhMumQSRXFDud4vfKWVtz3RAcik2YfEZtZL8XK66ociMbSePDZLnksZsH4f/9IVETQy25qgdOim3NUFMmmcrh+e7VMXH/icJ+k2Ogwnc3n0dEflgGc12ytlP2+YE89HjvQI6aK584RuOvaJjRUOnDgxJA8Ns+FkQ0WbdttelyzpUoECvWM3lUOlyuKSDgqj8FlLXaQaeDyebH/5Ahu3FmLR57rlfRU8aGKIzH4XOzaUCHryFRenc8OzRbIdHieI0UFvX42uZJItB+Ey4wJ/yNNdBQafzvWN2yBraoajTU+SSPO97RyTSgqm6sc8ph2qwaZVBypSE6Ku6PRPHI5DXbtWC9DUns7e+W5TuS0ODQIrN+yG6n+NlnDYPRct5fRaoVtw9U4G9Chpab4OlsqMq56lN32Jxh74ifIRs5ZJ8hzZbHDe8PdyPtakJ/afLYq4IdHgzaHXDws1hU0s57vtatQKC6x+Dlx4oQML2VXF4ubOcm9ZGD28Y9/XMZNTDYhVFwEhQKaq+wSzegbYfdPXD7909yObd8ceLiUn56z+QL84ZS0arOQmsMoGUWhceBCNSAleCGXOhJ/TLqd5MJpMWBdrRtuu1G8FfR6YCScwYkTw9KyzSJbpu+u3liJKq8Z+WwerTV2/PlLN0vLdkd/SB6bRogttS54HEYM+OPo6BtDk0+PeGAUyWhchJvL4YLZ6cax9hF4HXVSSzTfsbZ3BnD9jmrpfHr2+KCsscVkwN23tKK+yi6Fwlzz23bX4sYd1TKclF1nDpsR126pkiLo+x4/i6pyO+68rlGGjh5vH5MiaWfKhPoKJ7a1+PD7fT0YjhRQ1rwe7kQUscCYdEIZLGbY3D6kNUa09QRlvVn8HUtm5LGpecvdZjRUOxGLZSSdRx+NQDyNXn8MA6MJESo0UbxlgwW5Mwfhduth1GngMmSRpKNyPF4cKtsbwTVXvwghY7mcw0L0DofRWqHHmD+EZ0/QxDAEvcGElo3NqK2rgMXhRDKpx969W9C6vh7tZ3sRyeowxmOsWY/qdc2ID/fAYQlKnY3eV4uU0YPjY4AuGERduU2K3ZcKdtTnK7ag7CXlyAy1I9V3WsSjsaIZxtr1SFsqZZvVBAW0KRdBbqgbse5jiOfSgNECc9MOaN01SGD+KfYKheISmRy+8Y1vlIvVt7/9bfl527ZtEyaH/+f//B/p+vrpT3+KtcxqMTmcTMnvhRf45XB+TWXzePbEkFxcZzNTvGZLJSwL+KPwGEejKWlDT4y7E0+G4mXPpnK09Ybxw9+clDERk2Hn0UtubMbNO6tlhIXcpmf6id8Vo0dcP9711NEB9HZ0Ijg4ON69xMJvLbIcjqnRwltbhw0b12FHixf5OaILSU5UDyXx+OF+HDw1DI/DLBEWLi0LpDl4kg7OFDhPHu4XJ/Frt9XCYtJKmoXdVL/b1yNppBt21OK3z3ajbyQis734PPGyHk9l8dIbmlFbbsOjB3sRjLJ7LCuFxTQbpOdO72AYNqtRurFYi3Oi3Y8NTR647GbZTzSeQVvnGKxWI7Y0e2Wq/H/9rk0iQITF1pUeK3bZB2GN9qLKawEifmTCoxOzv0oYPFXArlfhvoNj84pZPtN3XF2OoweOonP/0zPud1TX4baX3gG71yfjPeosCRhjQ9D66vDUoW4MD/rFt6iuxguH2w2Nw4dwIjfxurCa9bhtV52kCJcDg0Enjs+l1016Hr+slYKvW3PKj9Czv0B6dLCYbjXoJJLG58Zc0wLH7rsQ17pW+lAvG5TJ4fKjXyMmh+cd+eEk989+9rPQs9Axl5vRBv/LX/7yfHepWARFsbM8tT3c68G2kVmFD2En0IFTI7huW9W8LsCM+MwlfEjvQBg1FQ78+/0nZFbZdLKFAn71eLuIkKs3cG5WbtY/ngS9gAYGERgckIPny5Dt3XzNS5t3IYfR3h4MOh3YUO+SQurZ4Gin58/48dzJYfmZozQmMzAaxy8fb8crb2mR7qieoaSMwSgJDg5oDcfTuOmqGjx2qE+mtcvxpbLFDrxCQdJ6R8745TZGvx7aX6xlCkXHRGhxnAWPg2kuFl9X+KzQasulyPvE0QFJfbidJmxtLZN1pUnib57qmBA+hPvzWgsIDfRiIBSSkSe2WEgef/orhu7HtnQQulwSWe3cDss7N5Wh7fhZdB56btb7IwO9eOT+3+PFd98JjzGN8MlnkIpF4dpgwGDfUFGEAugbGIMzHIXBEYPGWTmlXo1vkssFXzurLcozHWM+jshzvxHhMxvJ/rPQmh6B+ao/QCqnjBkViqXkvN99TCaTzNCajWAwuGRDTRWXDpr9sRV5PvyBuFzo54IXe5rozSV8yPpGj0RYwrG5r0qUOo8/34tocp5P6vkswiPF+VhzbpLLIxoYnbP7UOaHpXN47uT8juQUNOyq4vBTXrBL8NMFI4Ss9zHodVIjNPmRqH3YJUYoZFgDxPqXyYHWbK5Q9GiiY7ROIxE2drAxqsWZZXSh9ocSONMTxO+f64XVakA0np5o+Z8M00fsuqLbct9wCBqre/YTKhSgzybgNmYlnTcXHmMOHceOyzyvuQj1dWNoKIiGcosIH5IPDaO6yjOlIJznmUuE4bYVW+k5WmNzs2/Zoj5rhvAwksPd826S6GmDLu6/ZIekUFwpnPe7Dzu8WOw8OHju0wovMLFYTFJhN9xww1Ifo2IZEdESiC9Yz8O7B0ZicpGei1LkYy5sNhOOd4wuWEDd2R9GOD53TYqukEUhO7cQK0EzO0NhdqHF6z4nu88WgZrYZnz8xonOUVS4rbhjTz2u3Vol09z5xQnq9VUOnO4JIpfPT9jHlFaoVLDKzjEKINZRTR7lQXgbxQ9TYNtayvDTR86ID1FztVPMEiu9VunoYwfc2Z6gzECjBcJ0qCeNFouIm1AojvQcUR0NJ5xnkthQY5UC29mwW4yIRuPI0DRwgeeq/XQn3F7nxM/x0WFsaHDJsNYSJrMJ6za0iOP2gbZhqZs6fGYEJ3uCSOXyczpsX87IOI5+1iTNDyfTZ0b7Fh3KVygUi+O8/6Le8573iKHhi1/8Yil8pvD55Cc/KT8PDAzgf//v/32+u1SsMFnmXRZBsUV89isVL/QlZ+G5YP3JbFGLGfsad7ieC4s+j7pq74R4Y0SGc7poSMgi7VJEg8XDunkMXRiRWEzBLa//LIRmATLTKfRg4v/0E5LvmeKRw9XMWtfBmV+dg2Fxm6bzNGeTTewbBUnzvfTGZpzqGsNYOCXnztlmOnZ5aTVSc0SfHh7vic4xlHusMx6n25+EpXqdfE8hNhem8jqkY1H4MoPYu6VKjm0yFGL1VTaGzkQkLUQ2mwEK5847l80gN3AGN+xqhNfrhM1mRlVjAx490IvDp4eRyXLQqxnxREa6GB9/vh9RmWOGKwyNCJvFwO2uvPVRKJaX8675qa6uxs9+9jN85zvfwdNPP42GhgYRQ+z8+su//EsZe6FYOzAKQ8O8xeC0m+aM2mh1kIJd1gfN/WDF4aQjgZljESbD7jDW1My9H8ig0rFgFOFIQjqjKMyKLeFasQEo8zlR6zGygnTW9Bj1AedusZbnXFv5TKwWg0Ra4uNt+IxeTIZT42PJLDTjNT7jh0efY7lgcUgpo1is2aI4YzHy3be2iB8OW9O5HvxVFk9zFhfFlNtuQjCSnHFMXHt2dplMM/9sWRTtL7jgrKhCemwA2lm8jrUmK4zVLUgM90NndaDGZ4HLaZPC8zAn3uu0MmPNbtYjEsgXw2MLRH48Xk9xbMUkkpEQjNnj2NNUC2PVZjx+eAgOhxnVbjcMTIuLBUJxWwrIQ20juGFb1VyG3ZclbBrRu8sXta3O6UVG9b0rFCvv8+PxePDud797aY9EsSLwIsSuJgoGFuXOBaMVvFDPOVMqV0BzjQvdA+E5hQRb6Omrw9TXfOzaWAGfw4TcHFEirdWBMlMWuzdVwuiphNXlGfff0UCnyWN0cBCWTBBupxkFjQmYNHV8Mh6nUY65vT8kkQi2+k88hkYDs0knbspMbx0+PbM2iEJkNJDA3s2VOHLWL+aLJVjM2+B1yPoO+mOSxmKB8wPPdMtoi0wui77hmKS9WGjOVntGRNwOk9T1zLaG9PKpLrNJPdNs7D8bwU2brkJLrQ/GUNu5mJdGC6O3EuaGrUgFR1HI52CqbEK2oIdBW0CZw4QKl/mcp1OhAK/LgrKWDfCfOTXn86QzGNCyoQlnzw5Ao9WiMOkCnU7EkR/qRkLvlJoVj9EEnUE/xSepBKNq4UQGrvGRG1cCLOS3VjZDazQX55zNgcHpg9ZZqTx/FIrVIH78fj++973v4dlnn5XxFvT8uf7668Xg0Ok8l/9XrA0Ybdi6zocDJ4dndZNmAGDzOp/4Cs1Xr8Ohm821brT3BWe9n3UvV2+pkrqZZ47N3uHCGpebdtbMKXwIMzKa8iZUVFlw6PQoHn/4mHgBMQW2qdGDW3fXoW5dNXJgy/Dc+zHrdLItzQBl5MW4hcBkh+ebd9aJr1AxtTPz3Fk3dJW9HHff3IKHD/ZKdxdTR6WCas7N4uyvu65vQvdgRMQOi77rKu148fVN8niMJtWU2eB2mHH0zMhEofSM884X0FzrEKE6GywuPj2cx57bb4J5xIdcLCjPl9ZsRS6dQWJ0WGqlDK4yaD01U8TedFGrs9ix67qr8fBgPzLR2Wu5tt18KzwuK472JlDZuB6BjqlCyWyzYzCclBEbOrsXeY7tmOX1w5voau2xTZ38frmTMXvh2HYjQgcfmnVdNHoDHNtuRsbopgnXihyjQnG5ct4+PydPnsQb3vAGGWuxa9cuET4UQwcPHpSIEE0Pa2pqsJZZjT4/yw3TNgNjcZzoGJsyB4qprI1NXtT5rEVHYro/FwqSBqJYYDTDZtJLPY9MBQdwtj8k9TGlFBGjKBw0So8ar92IZK6Atu6gXKzZKVWsfGE9UA5NVS5UuiwzbBQmI8Myc3n86LenZBL8BBMvZQ1eeWsLbr+6HjaTFkYTi7ozMoSUwoRpNa+dXYsZaPVa9AxH8cThfrT3hSfqZZiuorfRtmav1N6EEhkpaE7wvHMFKfzmDC1GYSj6+JhHO8dE1BVdl4vO1qw7YmQolkjjTG9I6pNYyMwoGkVRKV1HA0gKp0cP9smssbFISiI9PCPuh6kwml021zilU4pFwxydMRZijVBejoWt9xzX4bbqoE+HkelvQzbQXxz3wOfObIWhrAH6mk1Ia2YWTU/HYtFgoHcIh/c9j6HTJ1AYf06ctfXYdNVV2LixHqmCCUOBJCLhMCzhHkT6zkrnFyOFNY11OJ2uQH8EyBts82bQtreWYX2ta0HxQ0FKTyoKS25q1Bdff2tVNJm0WRQGTyB2ah8ywaGiz0+2AGNZDewbr0OurAWZnCp2vpLei9c6+jXi83NBJoeBQECGm5aXn8tZDw0N4a/+6q9kxMXnP/95rGWuRPFTurCkc3mpYeGFlxdqm9kgbsFycdFQRCRwqjuAQDghFzNemMu9VmxqpLAxSHieLz56/rCOhQKJF0K7RS/V9fwdSqJjHWPYd3xIhAJfgLz472gtwzWbqxYcS2E06yV99L1fn5y4bXwqx0SZCr/e94Y9qC+349fPdOGZowNSTEw2NxWjQ1e1lskogWgqiwDFRjYvqT+eN4/ZaTNIKobjMs4MRMSjh9ExijQWIl+1sQJ37GnAulo7OI/AH05IBIOBGwotWTuDVoqxmcriQbK77GTnmDhBU/zxtba5yYtrt1WJIDtwekRqYGKJ4nPA9bOPH4NWp5EuM6bRmKpk67zFbBD3bT4W15BijGtgzMWRC/YByRgKLFzm2hgsgNUlzsHpwsJ1XlJMrknK8NFgJIFEIgW9QS/eRE6nHbFUAdl8MULGaBXXT5uNw5RLQK/Jw2C24vSYBs+dGlmwm/DmXbXw2U3zbsOXROdgRIR1aditDEott2Fjg2c8Mok1B98f9NkItPEgNIUMCjoT8mYP0lqmmVfv+8VaZK28F69l9GtE/Jx32uv555/HZz7zmSnCh1RWVuLtb387PvCBD5zvLhWrBAocuixL7cWk+otiKkiDzqEInm8bmZIa48WZF2PWrVy7rRrlTrNc0DkQ02SbdIGlIGGtA4BHDvVh33jay8ShXCySTWXFIJHt8q+5bf2cYyn4pzQcTOCxw/1TbhcLyHEfSGng0kCiOX9wQxN+/WTnlG1PdAbk64/uWI+bdtTgkQO9ko4inLBus+rFXdkfBKrK7BLpefxQn+z7Rdc0SLqI4oc+PN+77xj+/CVbRHD85KEzMrOLZyQdaGYaI0bEfPFP79qELgqofd1yDjxEtr3T6+b50yNSK/WaOzZImzmnsPcMRTEciMssM6PBLsfWVOFCe18IY6GErDELx/V6DfZsroLLWoxCEQqfeNszyEbH04+iCEurBBjLhmBs2oUM5hZAkvpL+BE5+QzymZQcr93qgFmTRjKZxajNg2zlJiR0LtkrU3ESgTE46P8szzO/ytxFEV1a39ng+bptCwufo+1jM1KqFIi0RvAHExL1WsiFfDXCC0QWNuidjqkXDSV8FIpl47zFD1NbkcjsNQBMVZjNc7vGKtYu8XQWR8/655wwzyjGkTMjuPmqOujnaNth2/fAcHxC+MwGZ4Jxxtade+tnfGrgBXkkkIRGp0FHX3jOffAQGY1gHdB8czN/83Qn1tW4ZKK7HJ8GMp19JJjA08cGpAuMoyRC0SRa6jwSpXrg2S4kksXWbA4w3dpSJmKkaygiwofkxz/98IJMJ2YKJX8wiWPto3Jf8Vx4WwJN1U5JDzISxMgSTQD7R2ISDeJQ1Koyq/zMaNH9T3VKlMNjN4kxpctqlBTJ4dMj8OyuF8EpUZiB9nPCp7Qgk0j7+2H01kDjapizhkuPDJJdR0X4TJCMUgEhW96M470x9B8/DI2nWpyiGeGqKbfLcZsmffKiKNqxvlwGv85mX8AI284N5bJG8wWhmQacq5as1O12siuA3RvKJ55PhUKhmIvzTia/7W1vk8jPgQMHZkx6Z7qL0R/F5QUvqBz1QIEzH3RC5kysOdFATO4W4njHGAKxdNE8M53DYCAhX/FMHmf7QnJ7cd7X7JxrOJ/LlagopHRaLZ49MYjWBo+Ijq2t5Rgci8uAUdYpcVgoL+oepxX/9dAZiUzVlTsmpt1TDD11uB8hGiUWmLo7F71gLRPFE6mpsONU95gcjMtmlI4tFnZ72WHFUK2LM8W0OHR6WL7vH46IAHzm2IA4R//qiQ45b7pB0ymatUK0FCgJUYon1glJtCYbQ8rfu+AapwbboZ/HA0mTDCMzbTK6/J6zEU+f9KOzaxjpVEqmkEu6NJOXCAxrsNKTxAeFSF2ZFTfsrJFaJ6ZJi+ujFafnG3fWwGc3zit8+HzTBmAh+keiE5YECoVCsaSRn//5n/+RYmcaHNbV1Um6izVAnZ2dkp/++te/Ll+lN60HH3zwfB9CscqQgaWh2ed+zSaAmPqarQA1nsrDH1h4PywOTqRzONkxhsGxmKSdSp46dFPess6LjY0enOiYeXGezKZGH+Kp2Y3kKG4YiSh2lWlwvGsMtXE7HtxXHDfAdFRthUMKk3/2aLsID3oZUmSwhb50HozwPH2kH7furhchUxR/GkmNlcQJC6IHxxJiKMg0DVNhFAultB+Lwek5pImkxNyQHkeZZBZ2q1GiSpNhoS93m8nkJ4qqCae01/qs4mqdTy28xrlkDJpcir4BM+6T4bmM8kwTJPQGavdnEBgrjrIg+XRiyrw3rg+72jbUnSteZsMd2+l9W6tl0Ctv5nFbTToRRwvV6bCeSGqmFoDinPVYnG2mUCgUSyp+KHj4NZn6+nrs2LHjfHelWCMUC5sXd0HhRW2uixkFx2Jq0Xhx5IwwRlam3J4vIJHOSN3LLVfV4mRHYFY/HM24KKGn0A9/c2L2cwKdhk2oLrfjySN9kn5hl1oJFu9GoikpXKZgKcGIy7o6t4gfRmDYgWVmrUuhgGqfTYqQOQctEE1POR8aJTLNxbQenZonQ48hmv3RuZmiayJ9li/IpPpZT3BaSGvCqFqsgGdvy5++k/m2oG/PdNJmL7pPT0090cxxOl0DYTRWOaSYvETxNVGQouSJ2xabnhovZF/0xgqFQrHU4ucTn/gEotGozPJi1CedTuP73/++jLa48847cc0115zvLhWrHEb0WGvSPTh3nU0pQkSjvrlSGFazDo01LkktzQUvpi6nadYuAQqRKq8NDzzThbe8ZideelMz7nu8Y8Z2FD5/dtcmiap0Dsxen0Z90VLrligMi3FdNhN6hqd2+LENfiSQEHHDbUouzvzPZtGjuswuw1wp6jiPi3U4LP5uqnFi27oy9PujUovCqMzVmytxpjc4EcUqYTQU27T5lc5kxeRwfCC6uDzTf2my0bK01RcKUkvDVBnXmpf7Cm/RgDKvt0BvcyLLqe7zoHd5kWf3V47defwqdkpxbIfUTFlc0Oj0KEwabJrRmpBITDWo1FqdM8QuO+b4/Bnmc+k+D4w6rUTgSmnEuaBb92RxpVAoFHOhvZBurxe84AX493//d/n5Yx/7mNQA/fznP5c2+N/97nfnu0vFKocXN6/DNGMO1HRYx0IRMBfZTB7b1/mmzLaaDiMoO1vLxPV3OoFwCo3ilKzFD+87ghftrcff/dluaROvKrOgtsKG2/fU4x/esKcYGeqaOy3GfXicJolUUZxIKmba0Fa5gI/PCuO2jPRQCNGMsLXOLRGOYDQtYsts1kuEiCkapuY4Lf6G7TUT9S2lkR2TdQIfuxjpYRwKUlSdSmdhNesnok88Nqb7SrComFGxySKTbsz0YyI5rRGm8Rlfc6LRwlTJbTSIpnM43h3Gb5/rxSPP92MwlJSi7KzRAaOvauqvFfJTIlEURxoT/Xumqh/ZZAmHUVHUlZ73+aAHktmoUl4KhWIZIj/33HMPWlpa8Md//MdIJBIy5+tP//RP8cEPflC+vva1r+GOO+44390qLhG8UDNCwwsW60YWi0mvk+gF/XL4yZ77IKWRCBzOuXN9+YKzoCrcJrzkhmb8+skO6YSazp4tleJ2fOjU8KzCiDOorttWLYW1v3mqC611TvzxC1slWsKoEdutzXoN8pmciA92bj34bLcULpciJay3KfeYikIilUU4akQoksKGere03PNiyyhOUWSYJPJFIcIojsWkQzSRFlHCSIM+nRVhuHVd2Xj6KiVFt4wosS6podIhX7QCuH5HDX73bLfUvdCUkHPDsuNhHo7Q2FDvkuWj0GqpdeKGHTUwGvVIJLL47q9PiCiiyOE2jPzQO4mF2hsbvWCZC6NKUgfkrYOlJoxE/1nobS7obQ5oDSZkEzEZpWCsaEDOVo6jXSH88vF2iV6VoGfQ9tZyvOzGZpQ3bEc+lUQm5IfObIPZUEBdfSXaz/QiV9DA4KtGXmuc8Zx7XVZYTRx3MfP5Nxi0UgvI4zwfDxCnxSBjTw6cGpoRPSMUR83VrlnvWyuU/qZK/ysUiuXjvE0Od+/ejc997nO49dZbpZj5b//2b/GjH/0IO3fulEGnb37zm3Ho0CGsZS5Hk0Ma5I1F00WfmHBSjPfWN3hQ7jQtOvzHN+VYKof2gbC0XjNKYbeasK3FK2aCk2s85j8WYCSUxuGzfnSxHZ0FsW4zdm+sRIXXjEf29YhJ4lx4ZAaWWYqQg+NdT/SK2dJSBodZh8KkC2CmUDTGe/rogKSkePHd1lKGq9aXI5nJ4ie/O4MNjR7psqIfDdvJWTjLTi/un49FUdM1GBHTRqaXGAHjBHYOAaVQ4zYUOGxJL/dYxIDvRMeoiIC7rmuQY6MAC8dS2NTkw4A/ijPjE+J5HlubfbBZdOgbioppokOfRDo4gtHuDkk7OcqrYK+qw2jejH1H/XKsVV6rrFHvUESCLIwO8VgcpqJBpElXQCCWFBHWPRRDHhppq+ex0qRwKJDCt35+RITYbNA08PUv3gynIYtwOIK+3hE5fljd0Gp1yBY0GAykZY2mPLcajXRwlTk5BPfc7dxqNJLG6Z6ArCPXhNEzGmPOM4Fk6r61Gums6xgIY2QsLs87I2otdW6UucznH8ZeJXCZIoks+kdjUrJEry16QMlree1quVXJangvvtzRX64mhwx7m0zFlt7HHntMZnmVip1ZC6R8flYffPk9c2wITx7unxJtYZs2L/wvvKYRtkV0yCQzeRngyW6sunLbxCf49t6gREk2N3oWdQHibC62N79oTx1iiSp582e6QhygoYHPa0N8nvoiFh0z/cRJ4KzF4QXCbNbB6x7/gysll7TAqc4gDrcNYn2dF9tafHKlGR6L4SePnMZLrm+WgaJjkSTue7JDWtV3b67Eowd6pTCZ0+61Gi12byyXKFkyk5OLLc+70mOVyA27sxh14O+zE4vRJUZj7ryuSaJMFIXMpnHEBU0XH9rfDbNBh0p3se2bAuyxQ73wOi24ZmsFbLlRnHjwN+htZy3TOTHp8Liw4wUvxCtu3Ir2wbh4FLEeqZgwg7ThUxTddW0TWmocONkbxgNPd6J/NI5EKj1+EdWgrsKBu29rEXdtCqHUaGxW/x26ePtDCfQkszjdHUEup4MWFuhyOYyE4jDodDKuhHVgpWgLz2dba5m4T0/+TJXM5vHQc7041u6f8liPHezDNVsrJZK3mDcivtYcZj2uavUhnfHIOTGlWBqtshbJ5Aticsnifr6uLBYjEomieG6udYlvkqpiUiiWnvMWP9u2bcOPf/xjETn3338/brvtNvmjHR0dxTe+8Q25X7G6VPizJ0fw++d6ZtzHGV0nOsfkgvTym9bBME/ghtcWjl1gEW+ppX0yp7sDcvHb0uhZ9Jwl1gCZ9ONyiYa244/UUutC/wgvuLPvh4/DqAEdjWmORzSFmed9sieEXz/RLufH6Iecc74gXjmcD9Za44LNYsQPHygO5IwmssjkBnHrrjpExmdx8Xj4Oy+7uRmRWEaMCln7w9QU3aCpT547MSTChzAdxeJwXswohJ440g+f04JKHz+R0DKgOMG7zz81ssg02t/cWYNj9/83BnpL7tXnTiocCOLZX/0cN/yhHY8cSIr783TGQklJJ77slhb88vGzGA2nEEuy1f/cE9szHMGDz3Sjtd6FA21D0p02Oe1VotpnlTlvYhUgz6dWWspMBiPc9uKMM7a0s/ONURh2s1EEOiz6KWkwrgqFz+EzIzMeg23pjz/fD51Whxt3VCKfXdzrJp8rOmwXl6gk/9Ye8jdF4TNc/JuaXCbF19yZcb+prc1eZdyoUCwx5x0pfs973oMnn3wSf/InfyIdIm95y1vk9pe97GXi9fOud71rqY9RcREwTbDv2MC821C4cFTDQvthumY+OHOJabGLhcNPr95UKZ/qp0NBcdWGCvgcxdqXuYhncpLqmhxp4IWEhoAUPoQZG5oH1lXYJuQBhcB9T3VgaDSOmjIr6irsqPBYcKpzTARZU7UD126pgsNmwv6TQzL2gnVDhAaGezZX4vnTfvzy8Q6c6gpgNJjEyc5RiQyxU23v5qlFxKXj+pM7NyLa34HRwSG5bTYdajUZ0HP4AOp9RrmfrfF0qF5X65Z0HG9jIfRjh/qKtUJzpLRCsbQMc2WbPlNJNG2cTnONG4fahiUFPIMCa8C0InIr3FbctqsWO1p8EpWZrkTozHzsrH/uJwrA/hMDCMVm92O6nAknMmLMOB90KY/N8TwqFIpLGPnZunUrfvvb3+Ls2bNYv349rNaiSdqHP/xhqQeaPvNLsbL4Q0kEJk1pnw1erzi6Yl11M1KzvNEyh9o9FFnwEzZTaqwnoqPvxaQheFGtLbPBba9Hvz+GQdZCjF/sKUbsrIVYIJUcjmXQNzy1zZ1CqBgJKbbdUy1wNARrZaxmg0yzZzG0TGy3GEQQPt/ml6GnTPEM+WMSNbJZjTJRncZ7rBMqwUGnTG0xisPoFAuj2f1l0GnRMxTE8fZRvPyWdaj0WqRmikNk2WLPeqGNVSb0PXJ84tP/ufn05362263oaOvAphfvQnpLFYbHEiJieB9rgPZsqZK03E8ePiNF0LOls2SfGogw272pQga1cigqBVEJik5+saZI/J3meDKZ2uocCKPaWzlrbt9g0OFUZ0AijPPBQbp9IzFsaXCv2ens5wtfY7187hYyeMzmRUDbKuzzumArFIplFj/EbrdLgfNk7rrrrgvZlWIZ4XVrroLW6VAUzPXmyoslu6AWg/jhaOaf07QYGOanZwudgktdUMx0MBW2mAJZ8auZvk92po1fXC1Gg0RGeHFhZxdrfCiC3A4WDBeKRe+hpHR5MVo0OQbFIt/o+NwvFjfznJk+og8NhQ8jKezK4u2yL01BHoc1Q48f6hfvHqfdWKz5Sefw3IlB7Go0I5lIyDFOtiicLILoM8SUm1Gvwa+f6pTjKsFCdvoavfFlW6V9fnIsR47HyunvpVmZBRFk0mbPIbTTvHEofFiLxPVgVGqueW6ERe9z3c/XQTS5sDMzYRE0o1BXivjhM1pKlS4En4vJXk8KhWKFxI9ibcALHSMBi4HFvXO54/JNl9GBxWAx65f0E+rki+H5JNQYkdFxhMWkY+EFRHxqcjmpZbGZjXLhp1ChEGGEh4KFYsGgs0sx+PH2Mbl/cvaHLfUs8OZjsD6Jv1df4UD3UFiKpvkQLJCmnxH3y4t6KULEKNbVmyqkXqYEDzGd18JqtyHsn92buTi1voDycjd6/YkpwqdEivO1BsKo8LIYvSgWK90mOPUZZKN+5JMZcW42GZxoaamSomWjvij2JsNjr/TY5EHZ5r/Q8y0CaZajLhSKka3FwA66hR7r8qIA27if00Iw3amiPgrF0rJWu0MVi8TnNEkx6nzwIklH4nR69ugOoyBspV7It44dWGwRX8r3aUY7mB7iFyMJM+4fn+bATjR67GjGX9EeuxEN1c4p21KE0JuHsGA3k8th14YKaYFncTOLkdm9xSjY2f4gzvYGsaXZI/5Fo5NMF7lO21p9InRGAnG5MNGDh+fNSAo/0VN00fRRxn3k8zLUc0LETBIKPHxGlx45MorqzdvnXTsp8Hb6cGp4bhlI40W223M3DWVmWFN+RAd6kIxEkE4mkYrHER4eRL0lgesa9eJFFEucq7fRjnsO7VxfBq9jflNLQm+dudpZKaK4LykMnwfn+LDXK0n7MILJrsCFPH0ozmUArtI+CsWSoiI/lzk0h6O53q8eP1ts2pmFbS3l4pMyHw6rXtI8vLjOxYZ6j6SqliR1oWGxLH2JghJZIYwitNS5xHiQ3V3iHRNKiUhhfQ3bhDksk342ZU4zrt9eI5007CoiJZESTWiltoffs0D4t+PDTMcfVlyd6dYcjKSlG2xDg1vEFGuCpJW9wo7mOhf+87dtxeGo+Zw8Pi9UpRQQIxncd2kt7GaDiNBgNAkUzl3wKOiY8nn8+T788Y27UNFQj972zlmXRG8yw1S7AW2PTZ2vNZmB0ahMUOdQWGs2hLFgcErqjBfbMq8TtU4N4m1P409vfiG2rfOJRxE9kCiGWOBtM2qxod4rpoJzXXhpEski7/nw2U3YtbkC+44NzvU047ptNXBZDeNDZq8c6IbODjk2CsxFa70HtqX6m1IoFBducnglcLmZHBa0wNGOAB4/2Dc+dbwI0zLbW8pw81W1MM3S8TMddiIf7xgTb5fJ5na86NMwsaXaOZE440WWk9n58uL5cz7Tot/ANRq09QalSypf0EhkpOQ+zMNc3+DFxgY3jraPiTgqPV7JI4VX+23ry9Ba60RbbxiH20Yk4lOqbWGxKdNQjdUu9AyFEYtn8djzvSJsTAY9cvm81DhR7G1vLUOV1yJDSxllYmqJrw+9XidRH84ZY4cY04Kt9W6xFKBx4bpal3REMfJTOm+eBvfNWhv66JSOm2tGXyC304hGexYjh5/CaG/XhBjIZrIwOZxovfE2PNKlRfdgHO39IalJmixsXA46Q7tgN+txy64aPPq7pzA4FBAhJ7VEGg0a68pw4/ZKYKgNHosGztargPL1Mt+LC5ea3K2nATqHolKczfUorXE6lUFVmQ07WsoWZWxJL5snjw7i4KlzlgDEYTHi+h3VuKq17IoNQTNCeLwzIB8qKJxLr2HWZLU2uMWOQfk947J5L74S0K8Rk8NVL36eeeYZvOENb5j1Pk6X5yyxr371qzJ2YzqnThX9W6508VMa0hmJZ6R7ipEUzpmqr3LAZzeI6eD5pKGiyawY7LG7iwM+6XRc+nTKC2TJSZpeNKzjoJt0U40L9RULu0BTYAyHUnjicB+C0QwGR6Pir0NsVoOIEKab6NJ8tmds4mI6WfzIcWg0uPXqWqmXaOsNSVcXhUdTjVsGhmayOUk9cMjqNVurpMaFHVz8mWvTXOOSOigKvUJBI2LrYNuIDCflYzE6QmdmbsdC54HRmKxDW3dAvqfzdGE8WsX98GLGWqIbdtbKxYyO0Vy/Sh9HQRiw/+SgdJbVVlqxpc6JWlsGhuQYorEkjA4P7GWVsLg9+I/7T2EklJA1EGfgeFr+Z6SJf/I8Fgq7v7i9FpHuU0jqHDJNnuta6bHAmA4iGxiAw6QRQWpwl8Gw8ZY5PZVKInY0nJQ6I7vNCKfVCNsc4yvmfP3ptAiwxX6ITtlZWRMpMGc91RV+EeLfFDve2JnJHDQFvs9hliimivgsLavhvfhyR6/Ez9LAqfGh0NSwMMdncKwGh6q+5jWvEW8ho9EoHkSTudC2+8tR/JRg+QWLfvmsz+rhsuj9TJ3tRRhZ6PXH5py/xDQQh5Ca5ntxajR48ugAnjs1LEXBs70462SelQdeh3nCe2iG+NEC12yvwUPPduNAG9vZrdjU6MPDB3sRi2eko2lzsw88FAoat92Mm66qQWdfSC72jOpwna7fXi37YuH4sfYxKSgORlMirth2T/H3yptbpHj1aPuoCL3TvUHxZ2GHV2ku2tZWH67eWCHjRFjbwtdEyevl98/14tFDfeLVw/OgpxCjQxzbcN32ajFRbOsJ4hU3rxOzxF88elZ+l1ElPl6pI0g64TgfbXMl9lZl0fX0QzAYjDBbLcXaqXgMuVxOXoMOG8WHHQaHB8ZNt0pUaj4onti67nJZZ30d87jZGl8SnpyBNpsxH9eU61maZK84B9fX7bYiGIyd19w9xdp8L75c0a8R8bPqa34oaiaLmHg8jk984hN41ateJcKHtLW1yaBV5TG0MLzwLkVXzWwXrmgqO26MN/tFjR5AFBBXbyyf07E2lc2ii/Oo5hA+hN429OHhFO+BOfzzmNLaf3wIxzrG5Gemyh4+0CsFzYT+O5FYGjkJX2gwFIjjuZPDIiho+shJ6W6rHk8fGcAL9tbjgWe7RcxQdPF/ul3TxZkmgxQvrAtifREv/Cx0ZtqLURkutcNqgMWol0/zEymwbLE/ivthFKqxyiG1RpwGT02aSOclrdc7EsO1WyrFc4gjKV7zgvVyDPTpmexbVIKmgxzQGouNiBjNZNLIhGa2m7NbjeLXbHOhIFXi878mqG9ne84pesKJrAhIClFetPnmR5HWWueCx2ac8nt87V1Jhc3nQ+lDxOr+OKpQXB6sevEzHU6N5zT5973vfRORITpLr1u3bqUP7YqmZNpWinbMBS+QscZiYfRssMaHnjsLvf8PjERht85dbEsH5n0nihESn8ssE9lLwkfgPDCTDsEIJ7cXi70p2q7fVi2zw1jHQ/ddiphsroBEMoPhQFIKg7e3+nDVhnIcODU8sU+mLTg5noXUHPcwMl5TxYhJKJKUCxvTPCzsLVFMH8blWNj5c6qb9UvnXH74HY0UKYroxkwx9cTzvXjVC9bDwnRe16gMCK0us8tYDdYaNVY7cPS0Hxa9EU6PD9Gx2dWhdJ1ptTCUN0gn3YUgY22iKRGItAgowRqjnsEwBv1R7N1SjSrPOdGnUCgUq4E1JX7Gxsbwne98B3/3d38Ht9stt505c0ZC+b/5zW8kDZZKpbB3715JgVVUVFzwY5XSEktBKQy32HDcWoSXtpEgU0Xz1/QwWhFPZ8V0b9b9MHKgm2rSNxtcS25Xerzp/1OEsf7FSlFgN4m/jmaaPw1TRrl8UuaVleqK2E3GYZLs6OJ4DEarKNg8DjNGAsW5XEfPjOKOvfXS6USjRNbYMOrDiA/riUowujRZKDBdxq46CiGKoqA/Jbfze47cSNB7yGKQwlduwygSz2ckmBCRQ6E1OJaQ6MrLb2yEf3u1FKCzjoZjJDiglXVW0s5v0MPctA2p2NPIpmc6fFOYOevXQ2PzQs+K+At4HVM0PS+Rq/yszzuf68NnhuHZVQfLHGJXcWW9T6w0ao2XH90aWeM1JX5++MMfwuFw4LWvfe3EbUx5EYvFgs9//vMyYPWzn/2sFEn/z//8zwVNmecbOXOWS43TOb/fzlqBvjDsGmOkhLUpjDgwc2IyGWCxLBxFMBkNc65vIhsRc0GOO5ibAjY1eeU71vlM2bdpXFRpOMJCP+Ejo9Vm5H/ezigEfWUoaiha2OLN55yCg8W4Hf1BXLe9Roqq/cGk+KywyJdFyozskNM9QSl2ZopObGw0GphMeliyc0ejjBRibuu5Yx1LTBx/gQaE4Jwt7QyRwkLxMo9l3GtJA71Bhxy0MniUgojT2ScLjpOdAdRU2GAq98K38yake08iNjosfkPEbHegYes2uNdvgdZovuDXMeufuBzTn4PpojiayqGmcqrnkuLyf59Yzag1Xn5W+xqvKfFDMXP33XdPETT8+ZZbboHXW7wYEs4c420PPfQQXvrSl5734/DiGA7PnHR9oVAB84UQDicuqsh4peGFjAXNbV0B8bwhjE743GbsaC2XFuuBafO0ZkuP6TWQYrjZYMCNhcys56F/z2zQG6W23CYjLKS1fVywUvikUhl5/uih4nWYZO3ZqcSuq9JEdY+rGEVhYTOPp1QgzfQS61RYl/Lgs93SQdU7HJHUF7vMbttdJ9EgTrTnjC8a+LGdnSZ+nNcVCifmHVnA6Mfk8zZzjESi2K3F6A/rmJjawvjPjDbRYJERo2eODSCZyklE0mwsptdGQ4lZI2ROmwGnOsbE6+j5AOBzb0dldQbaQgYajQ4wO6CvLkcolgNisQt6HVMo8rkurf989A6GUeliobdKfV0J7xOrGbXGl/caO52Wy6fgucTJkyfR09ODl7/85TPumyx8CNNdTIsNDs5urLYYlqNKnS+EtdphwMhO+0BEWsYnF2SybJcT0B8O9mDvtmqc1QSneABNp8pnk3qf0jpwv9FkToz+GNVgyqa2woZgxCm1OoywMPVEmL6il47PWYzEsE6Gqa3eoWLbOGG0p7HKiboKqwwa/dXjHSJI7rq2ESaTTgQERQ1dnTnMlI/HffCcrlpfLm3hDz3XK6KC6RweA9vUj3AyeQFiGPn7/d2iTihQWHfEOV1OmwljwcSc583oDA0nJz//7CBj1IwihlT7zqXNmJLbvYkT4oclDbd3a7XU0nANyr1WPPl8vxQtl7nNM+ZhaMcNCNk6zcdlgXgPH89qlGhVU6UTBb4WF/G8U1TSpycQSUtxtcUch8Oih4vjKAqL69iiUGKUUF1sLv/3ibWCWuPlZ7Wv8ZoRP/v374fP58OmTZum3P65z30O999/v3yVxh/09vYiEAigtbV1hY728iOWzMlU8pLwYXqGURO+uJlqYX0Li1y3rPPhyJmiQGI7uVw8s+zwKcBuNYibcKnmJZbK4VjHKEaCMaTTxR3zd6rK7airdMDfNozrtlbJY9EMjkW1fSMRieqsr3dDWyhge7MXrbUuyXMZTDrmfaBnCisLmZbOsRKdAxGc6BzFLVfV4dGDvTLPioKIdTQ8B6a6OJaDU9G/88ujxSGSeSCZzopbdDabk9oe+iSxhZ3mfmxR1457sty0k35COolwUPhRMFHY0OsnFM+IbxAjONx2snDkzxwj8dSRAdk/7+MxdfaHsb3VgVAsiVt31WHfySG0dQflvDhAtXvIIVEk1hyx0JrRp+lw33qNRkwsd7aWF2uIGB3Tz242OTFNvjC1Lb3bH5VhrDSDlPPV6WC36KWdnvPMFkOll6MrVu+boEKhuPJYM+Ln+PHj2Lhx44zbX/SiF+Fb3/oWPvzhD+ONb3wj/H4/Pv7xj2P37t24+eabV+RYLzd40esfjYmIoUhwOkxIpfMSiWCkRYp3wykpvF3f6MZtVzdI4a0/lJDf4QXdYzeJEKGTNC+wiWwBv3uuVwwBi2MnDOKVU0AeiUSx8PeaLdVSZ1Ns6U6LYNm7uQqbG70waFmUDiSzBTFVLPny0DSw0mNENJZDe28AL7mhWaI8nYNhKSi++7YWETuJdEYEDoUV01nrap147vgQYomspLEMRq0cs1y0NRoZTcFIE3/esaFCDAspAl6wu046uLivP7ilGcFwWtrmuZ/Geo+knjwOIwq5mVESrgNN/m666v9v7z2gI8vPMu+3pCqpSiqVSjnHVrc65zDTk8fj8YwDYJtsA7YxsLDLfsviQ9hDWODgZcln4bCsF7Mf2PhjwQZjMzb2jO0ZT+wwPZ2TupVzVimUKkj1nd9766pLUpWkDupW+D/n9Ey3VKq6919X9X/u8z7v81bI6av90tE/oOF/n3z/NjlQJhIdG5DxiSFpPOSX1sZqOd08qcoUnqtzTQNaaizyu7X8t/C5NUtHYjIZiqqviZyf0vxsKfLfGjTKzUJ0dlYC8U442vxRlngf8B+19U/IV169qY/j/SFpm2shGo3Jd9/pkncfqxa/L1Pf+1SABOr5m4qXgYHBGsK6IT8DAwNzHV6J2L17t/zv//2/1ez8oQ99SHOB3vWud2krfLJBmAa3Dza8kbFp7YCi/PHaue55wzD9OZmqMLgz0yQ4bQUEQlrsyeO0ftNOjgJS4vdIcHZWXjzZJl9/o3XOQMxbRanm+eO1MjQypWpHvs+jJmW73HN4b4lUqddnVlwup6oSL7zeYqU3z6AmEfqXJkd2lcoTB6q0XBUKRZU4VRR6dbwFfWTbayxSwogtpFnUHA0vnKQby6OmaG3dRj1BdZq1ZoL1Dk0pATvYGJYrrcM6tfzwjlLNLYJ7vHm2V1480SY9Q7f8YviF3vdIrezdkp8i7G/WGgHiECVSe8pEgldek+HvXJPBwVGrnIevqqJOfmjvE/K1phydeYYR+sLNAfnAo/UyqtLyLXZBzXtsKizhmZj89VcuSkuP5cMieJDjfe/xOsn3OqVvZFou3hyU0fjsNFt5433YUZcvJy736Lnje4Ic6QxZh0MfQyDjyYu98tzxWjl7tV+Vq4XgGA9uLxa3yyQVGxgYrC2s+YTnB4GNnPB8J2AzvdoxKk0dI3L+xmBKgvTMkWolIeTjJLusKDE9frBKn+OfX76hxuFEMGYC7w+mX7rI8L0Q/mdTWIgIicdFPrcMjIfkL754TsdRAHtj5nV55Y+9b6f++7VznfMyaABEjM374s0hnYCOyoE35mqb1TYO8BRBAPC5oF4xtoLXJ0/nuYdr5V9eviGZGU6mEchPvH+X+m/+15cvJF2bDKdDfuqDe+RoY6FmBg2NRzQTKRyJ6kgMVJWWrlHZV+WSsRNflZ7rl6W8IFu6yDtKWMcsn0/Kn/5h+b9npiUwFVXVjHJabWmODCX4jaYiM0oIj++pkG+ebFtEPCBrH3h8i5y62JMyl8mX49Zr9auvNSsBSrbG5BY9/3CtljIJOezqH9fn43one4gASJ/HaYjPJvmcWA8wa7z6cJqEZ4ONAtQJDL1kyqREfOgpHVCp+DTlLzZJDMYLiQ+qUIHfIyde7xW/N0Mzc/DPsHFSjgH8m/buokNl8trZrjnikwyMe7jRMZp0TAAGajZufEUoWBOTISU5mowcjOjx8/p8jREQbb0BNQuTSk2mD3PN2M+1SytN5BJjLfAbJQElJM77zNV+aaj0y+tnu/Xx9qR5yESmK03VGPdEh1y5dlkJFYTjVtxh/JzGx2Xq+knZU/uonG0OaDcbigsKl420dIf0dE/KwcYSudwymJR4UL7CME3pLhlQ4Vp7xqTIn6UEdGGKtA2yk5gV9/CuEtnfUCCNVX7NK0LRwpM0m6TUt5rQIbFxcmYIl4GBwVJY2ylEBmsCbCpDY1NzJCQZ3JmUhSylgrJIMtClhLkXLMyzYYJ6a7c1ww3lBwUhWdVyOBCUgZGwnLrSt+Qxc8dBaztG6WTAaE1JDeNufWWubvJ4esoKs+TJw1VyZGepqjKU3Jjh9dDuMg1mZIzFTSbJx4+tvtyvYy54LVKYE9Wlx/dXyCP7ytWHxBDUl9/u1GnsdEklgq6s4aERmbhxdi4MkM170To6RAZuXpXGglmNGuD4akt9eh6ENuKTKinwaj4Rpbz2Pmvu2UJUFOXI6at9OqE+GazDc6gSVl2a2tRMaz5kq380KO9cH5SmzjElnZAxiM/9AtfJRDiqA2zP3hjU//NvU/U2MDBIBaP8GCwL7qYZBooXBPOsrVosJD9s2CgnyJ7JyimUl1BdMMGyqTL53Qabt53DQ0c0BCHb7VKSlKgk8dcp7bxKnS/DpkdnFsdD+SrZY8knYoxFJBpV4/C5pkEJTIbk2WO1avJtah9VUkH2z8j4tP792WM1eizMAMODhKeFSfNMWUdqRb0CZP6gvJy41KsGZYzRW6vy5BtvtUm+D+N3tio2c4NPXemSkxGT0UEIWab0jVjmcs6ddbAfx14eDU2LU6JWlkZ2huyqz5eqohztfuPYMID/2l++sWTcgAYPBiP6mPQkRFWHmJJBFIrqeSYDxnfIFuXJE5d7JRi0PD/X24al0J8lB7cXaaTBahfVuRKZF9fWPTZXngNX29KktixXdtXla+ebUYIMDAwSYZQfg2XBBka5B+MqpIXWZQZ16ubvdqmSQNcRyhCbZuqNJqYEATN0Y23evJEIKDVspDbS09I05C9ZCY3H4R9a6ngxFEOmKF9Vl/i0bMXxovDQLs7GiAGYFntmU9G9NB6MyFe+e1NJGgnQnA8maZ6DPycv9Shx2Fmbr+epnVITYVV8iv0e3Xz5Oqbil9/uUOIDrEGkw0oiMYFz/qwnpIx/Q2Qisw6ZcUD2eHWL4On4DiakZzi1Pd9Od3Y6LfKICRvD+Mkrver/Ydnxqy21NoB15zhTNQSwfpx7WZF3HqGwwXvIVPhQxCI84QRPlT3m5OSlPjVcryY4fAbXNneO3vIlORyq9o2Mh+TVs13yMuXR0aAEtVNtVQ/HwMBgHcEoPwbLgg2V0QqUUsiawWuS5yXkLu6ziD8O8zBqRKL5NhFTwYgcaCyWf3uzTdp7AvKuo1Vy/vqAEgGHI6Ykob03oIpCVYlXN9mF5Ifv0YK+d0uR3Owa00wdLXtMRXQYqf3wkUBQwwF5Dle6Q7LdXt0UOVY2dgjarEDe0uVG16gqHLSr3+gc002SIERKUHiDICkcF8bkd671K9lhyjrAv4TSgfGYDivKXahbKFkuV7p+nyGktL9DbOgWm5mNquoEuUGBQWG5PjAjz9Rsl9DVV5W4hcJRJWsoT+QNUUpyxETya+pldNYjYxMTcnh7iSotqEgEPXKujxyokAPbiuSti6kDPq21KVDyN5PCkMixYWRu7x1XD1IiB6K7j4XGUD08Ni1ucgcWvgZzxkaDUlmQndIDdrcYD0WlreeWemhlR0Wt6fLx8zpD12COW84M9Mm+bcVSnp+1asdjYGCwfmDuhQxWBAL1IDfA3jxUuIkP4eQP87bo9koFNlJKTHQnVRTnaPv5h57eKnsairTcw0TyY7vLNNkYgpVsk9pS6RdfVrp2XO2qL9DSDZlDlJLefaxGx2IAUpPx26Ao8TQa8hcvHdnKFEoWXV5s4OT84McBRPuMT4ZlYHRah4ry+GxPhhIVfEklBbfmkqG88JqoOTUlOTrwlEBAurqY8s6gVEgGpJDN2VYoGFmBagYgZacv94mUNIjHl6dqD2pQME6AIFSoOWlp6VK466hEnFmad8SIjcQWc4jV25d7NTcoMyP1rzaK1KP7y1MSH5Dvy1CSx6iMH3p3oxxsLNI12l6bp3EE+IoutwwpoUvFJQhrXHZC7R0C0k2yeOL1ForOalk2seTK3zlf1vPtK30yHB/LYmBgsLlhyI/BikAl5dD2Ei0ZLQSbOoblPXUFagimu0nNt/lZSkr4GcosDCytKvLK9z6xRXoIHuwOaDmIbJ7ivCy52jIsD+8pkzRHTMYmw1rCYNMnj4eQPtKj68pypGswqBk3mH77h2n3ztfNubIoW559qEaO7ymT7328QbZX+WRnXUFSo3ZOlksO7yiWyWBYSR1lHJ2v5XbqH1ra+RrEh+9zfHzfnYnPxUpXpksLAkYZjO+RmUMn1XRoVkkLGzPKBCoRZIHOM46Fw7EnoXNkqDooLa/ciErRo98rucXF1jFr+WZaiZwzI1Man/mAzBRuk8mpqHpcIFcQMdYYD46GTY6HNQDy4+/frcRlIUrzs+T7nmiQHaxNvbU2c+UvHdlBeKNLjmwvlboyn7gzULv6VO1prMmX2nKfnsc71wZUFUMJTAXM4ollM802wsfE3zX9+86vRw45GLpVbuP6GAmEZCZJkjTKGSQNosy4FPt8MWtzdFxfa30C9b2EDvHl8oqvgYHBZoQpexmsGAzipOsJ1aKtJ6CbiteToYNGSTnmY5T/H91VJm19AbnSMqTKCC3sh3aUSk62S1p6A3K9fVge2VumG1FLz5gSjGJ/lqo6fA9Vg+ceGg9pQCKbVXFhlhKiwUBIB55OTUXkPQ9VizO9Ts5c69fgRTbAHTUF8p6HaqWyKEtC01FtX8eojRqDD4QPfjxAlMvIFCIEkTEYuTmZSlKco0H1BXEyqEY8hnlgjObYXpOvKgKKDTPGIANs/p19AT1OCB+G5pxsp74Wz1NVUhgPM4ypT+dGl1U6hByx+WAOZ40ITKQbrseRL3Xv/QmJDHbKWOtlncTuKSwXb8126Yt65XNfuSbve7ROaitypXtgUtr6RlTVQqWpKcuV8cmQnG8alOeOV8sv/dhhudIyIs09YxruuLMuX2d7lfjdet5bK/2Sn+vR+ID+kUk9Ls6JKfLMIaPc+eS+ctldn68xBkOBoGTF32+eC4vWUhUkzhFOwXUxGZ6Vjv6AXLgxqO8tZUVKhQyMXUKkSgleF4Jqg/dqIsWQVcz4tgGcAM6p8IyST1K/R5ir5nAoUa8s8UpOpmvDlsX4PZqYjkp7X8Aq28Zi+v4zwoWRMSaG22AzwYQcJoEJOVwajvidsn3l2AMrtSV+IiQnL/Wqj8W+w6YywYiJA9uLJSvTKYHJiHzl1RsyOBZaHIK4r0J21ltpyJduDmnr9MDItBp6ycyhPHagsUhVm8stI/JP37muioL9WmTxoCT9+Pt2yd66Ap3LZT23tcNq6WnGKtNhyP3W2x3yzvUB3TgZp2FNbQ+pgoOHBmVkb0OheoEoK5EOzUR5Ep45LlQiyn38DJ6o9z9aJze72OQHtMhmb/R4pg5tL5ZX3+mSax0jUsNwUSEQclLLYozhsFKbB/UcvuexOiktzNbjZ71OXOyVKNPqszM0hfqVMx16jAvXj2TrnCynErzsTKd43JZRmj8oNuGwVSbjJzELt3SOSo43U1Uk7QJjyKuIEtBiv3uuRJjBWjDSw+uRgaEJeeWdLvUtLQVIcFVRlgxNhOUr322W7sHFrffkQhGU6EkRj7AUmA337bfb9f1kbVj/hQZtzPFPH6mW1nhnIetwaGepnLncuyhyAPVtf2ORVOsYk/v/sbianxPkUXX0T8rZ6wOLOgH5vd1VXyhbynMWDcndaNhon8VrEU4TcmiwUcGekeyi5o4a4kPasfU4a+SE5v+IaAloR12hfPNE6yLiA9jE3rrUo+QHEnKtbUSTmCEIgHIMHhy6s1CJXjrVFjcHz1jeD1q0MQY7HPKFb1yT/B/YL6W5Vqt2soni3my6ljI1kRolACWB7i7yb/j9YSNlgjxeHz2/6aiqHhwbx6SVKYnJ4OiUKj201zPTCxXhSnqatv2j6uApgkRlpDtkW41fju8t17gAUp4p81G2wrj8ZvOwlpKGx4Lyz6/clKcOsWmPzu1HkDE8RP/63eZFxAdPEcpUe9+4hlLy/+xMl9RV5GonmiuhPAWJudk5pgoagLgtxKkrvfLEwUrJcqXPdXTxoQZYY8zpjLdYSCDmpWj73RIMz8jX3mhNSnwAydmYw58/VjPfVb0CQIZRsgizVJ9UGqNI5scwoGRNxKMOlADOzEq/dsYtfi1IAYb2HE+GKpgbCSMTET23ZN17EL2LNwe0FIwqaG6HDTYDNk+h22BVoQZUDLhx4mMjHC8d4cXYtaVQmtpH5nk1FoLN7NTlPu0AY9dnIyJ8kD+oPuzhJDO/fq5LDdOoIpAV7vwxGbPZUh6jy+rtq72SQQkrBfpHQjqJ/vi+cinM88iZa31qvoZgUCrBR8PX2aAJOnzX4Sq53Dw45yHSbjeHQwkOxuOygiydk3X2er88dahKzdQ28O3Az663jUiWx6ndXJBD2vH/74vX5M14dxZ+KbrDIHSQMp83Q78OQXhkX4V09k7INPO+EoCy1FibL6+d71Zi1to9LtPTM1qiO3WpVwlpKMEYPB2enZexlAy8fhcEL4mnh+MuyyPLp1jXKREoaxDWoztLtYzWPzatnXJL4UrzsIwsSPxeEWIx7eijBIna50vIJELx2bulUInoYLwzD8LDWuHzSgVINMZ3SqgbBZwLnZHJiI8NCA9laBOHZLBZYJQfg3sGey6WDe60maSOQRhlpMDnkfbedt2EFrZP2yBf59TlXtnTUCh5uW4JRWfmVAOdrF7sVc/N6Su98tCe8pTHglpzuXVYnjhQKd54+GAi8OH0jQTVL4SZ+fmH69QPMhSYlod2laoao96i6agUH8jSUhebA6U2VA8bLleatsKjGhxoLJHzNwa0HMT/G6vztLVf835iot1nbb1jMjIWkq+82qI/zxR3FC3MwfiQIBa0+TPQdCoUkV31pWoWp/vNOi/mnqXPC5rcUpWrZTEIH2RsJjarCodtRkYtw4x9uLFYn38qHJ03mDYVmNW1pdyX9A6J56ku9qrXaDAwLWPjIZWbMVSjIKTFS2WQveXAuZCSXVBXoKrV7YB3dg9G+PJcHbXR0h0Ql9OhyhMlPCIAEstavK+YxZdC/8iUkr/E3Kn1DMjy4EjqUTA2UBy5eSCc0sBgo8OQH4N7AvasZHeW+rW4zyY6O6MjEfDBUGKaXKASAQ0WdKWrP4V0Zn9OhlQWV6hpFjMvJTRHPCGZjX4pTAWjKS0M/CiEA3T0j4u/ZUgn1kNkWrrGJD83U8+J/B9aunns8X0V6jdKbKVmjIM/N1MO7SiRwbFJzfjhqJhd1trTo+dJSYpuo7HJkHT2T6rBOvGOm/PFo0NpjufOZKgrqc9ZGVKhHVXW44KRWT1njLm0eaOosZ5UeiBclKMwZvOYhaULCOREbb5kZ6QvqQAsLIfo8zhSf59jJcunqtBq/5/vlXEsKs+lAutrGcPltoFHivPaXuVXszZeMSIJ7DXg8P0+t/pazlxNXapLPK+N5AbhfFbynpsUbIPNBEN+DO4J0tIt30miCRZ1AA/N2ERMyzaQkQJfppqe+Zi1Av/mf+CieOB7oTOKPYpREn3Dg/pcKDQE79G9db09Wzf/pVDgd2vAYTLMzFi+FL5LaYfhnenp1rBOQImNv3P8kDQe9913OmVXbb48fbhKjyUSndFjoTyGP6m50yrvaAuxmoxpx45qiQvDsx5JvPSCDwcSSAwAP4/vJhKZmTfPizWDDNo9CXwP3w+vSxkOYsGaMxuMcpmdDs3/F7aRQz55b7xF2fEuLMeyGyLZRprjs8zjrJynxV9HxSmOZ0MtB+aU3a7qsxCQR48rTQlqQ7VfhgMhPTbWl2gC1mAl+zuENXFY7HoHChbnZJP9VKCEudT8PgODjYSN8xtu8ECBAkLpYeFHJwoGd9pszt861a6+H7wwbOKQD3seFmCaOxvtU4erNLH562+2Sp+aUy1FBBPv195sk56hKfngkw3qY1gKx3aWLqkOFfrdUl/pV6MsJbv6Cv/c95jz5XRaJlrICkSBvZmp5XRs0ZWF0fbEpR5rnlm6NY4DYgF4POUpusEwSVPaggihDFH6IheJfZivk4jNxoTXJ7HUsqXCL1YSjQUM07XluUo0OCtUFzb1DM0Jine7aSBlpjiThOjYA0u97nRtq18OeJ/4IcjhdHRWxoN03k1Z0+xXsEdiiuccEt/jZGB6fEke5EfuGjrahDXwuKS+NEcayn2Sl52hXyOXqbLIu+xz1FfkpiTN6xEQOTv8cyngpbMH6xoYbHQY8mNwz8DU87oEAgG4k0QloWUbQ3JpvkdqSnPUpEwmDl1bjGOgdR3yBDFijAReHPw2eBDCYSsQkE2UTRcvDnepRf7kQzfBsZ0lqsosdSeb5UyX5x6qlRyPU8kKnoc9DQX6PTxKeIxQlyABdEhBNDDXYojFX4NKFQnPalr17i0EBooqMmw0eJf4Gv+H9OzdWjQ3uJVOMR7DOkAQIIccZ1G+x0rNZvJ6sVfJWaKiQlmC58cbZINIgTzfrXXIzLCM2skSLCiJqUoza80nW4qUQM600y00I+80Dcp33u6QF0+2ybdOd8hr53ukfyy0IlNwbrZTnjhYNXdeCwHZe+JQpXjd916E5lwTSzn8vaHSr+uQCgRalhdkb6gSEOdCwwB5W6mA0rmlIndDnbeBwVIwOT+bKOfHkZYmo5NhLZcgMJAZk5HGINKVHxMkJDIbk7GpiJYRKMX4szG4WsoIz9QxMKFdT0BVCjY+h0PNsJPhsBT4sjR8b3ScsQPpqmLQMo5qQqbOP37rugSmImo65fK0cxv4YOb1CMajHPXEgQr57tkuTYqm2wvwHBiSSXYOhSOyq9YyJw+PW11hOreLFGeC76Kzku5K01lQaekoVJZiw3lNTIXkRueojE6E9XEoJXSXMbST4yKpmCTl7bWFUpibqcrUhHqMrAwh9STFZ4jx8xhOKU/RxUZJz5/j1u/zXJTXeocmJN1h+Z2qSn3SWOVPmp7Mz0yFZ+Vi85AqYZiFMVYzSNUihB5VLXTdea+is3pOqGysF2Uhzo/n4Vro6J/QsRAobrxPKGX4nKpLsmVyekZOX+uV4txsyVLiZJXUyArqGZzS86gt9SqZWubKkyudo3MRAbzbvA7herT915Vmq2/pfsCa/zWjSh/DYzl0XWUH5D1DqotzVGF7EFjtz4nwbEzzqRgBYpfA1ARemC276vLV6GwNBeYam9EuRtYLxQxFaKnRNesFa+WzeCPDaXJ+DNYKtLNpLCQnLvVqqzmKBftqVYlPju4qtcLNVnKNpqVJc29An4fBpMyk4s59S1WePLS7VMrz3BKbsSayMxeL/BsIBX4DWo4DU2Fp6xwVz1aXeDLTpLMvIkOBcf3A5W6czRQChepiTxaHUIQjVvAexMCZniGjE9a0dtrcUXc4DxQQPrTpMJqdscjG1mq/XG4b1ZZtcnR4XoAaw1DQHTV5mmMzI2nyrZPtel6UsNyZkLBieXRfudTEN3cIAqUuknEhLJSrdm0pkM7+cbl4s1/niw1r1k9Yj43t81LLkJKwx/ZX6NgPxl6QfH36Sp92IbE2lMXIonl0f6VkZaZruYpNKNkduGYl9U/Ijc4RmZqekTxfhs5mQMF519FqOd80kBAsGZOh4aAqVHwYoXhAPuh22lKea0m+DocSMszB6mtyUAr0yJ4thcIIWAhCdUmunLzcqwnPrDHPBWmhpAjBm5ieUbPxcgF7jB555kiVbqh4vThvyjF5ORkSY9bCfUrXswzcDp3xhYLINcR5U7LULr6V1PPWKTLSHHKgoVC2VeVpJyFrwU0AeUmQX/5N8Of11mG9PnmfAMnlKIEoQ86NuzwGmwxG+dngyg/Ep3tkWr70rSYZT5Jvgtrw7odqZX9D/pIEiDDBC63D8vXXWySaRCniA/SHn92ugX6MtbDBZswdNiQBA+8PPtOoJOPrb7Raz8udZUa6lZcTnZXvfbxe283PXO2XwVGrTGTvR7aKBLnYs6VAZ1O98HqL5gtBRvgD60fC37ulQL02/++/XlLSQ4cVpCWxRfx9j9RpvP+f/8NZbXtfCDw/n/zAbtlakyt/8nfv6KBR9mjuhI/tKdfQONrYj+0q0xZ0zNmoLCgItLXzmp0DEzrmgrIex/Hl7zQl3eaZVP/hd22TYh/zxJI8wCFypX1UR1F0D03OBffZniZSpgk0vNQ8pIoRreOoPpTJUIbIGcJHBarwwlTlyRe/dV3b4ONPP3dc/P2pI9Xqj/nrf700p+JZ5nBLKeR13/9YvSpUperXSf4xwvvf1j8uZ68NzHVZQfDsawglj/VLTJNeTQSjs/LlV25KWzx7yN7L7Vdm8O4zR6rvaOTGelclUIYIEMWXlgyUYg9uK9Y5f+sVD3qNNwOc60T5MZ6fDY7IrMjLb3cmJT62QvCd0+0yOrF059ToVFi+faotKfEBeHNaegLaFp4INry+4UmrsyhmZQGR43Pr+1bXF/simx+bUjQamze3yZrKfuvvyO8ENmO+ZYM+sK1YDdU8D8oNSgZBg0T5Z7osPw+lJfcCXwm/JN94q82ac5QEHMe/fPemjAbCEg5F58o+kCpSgnuHpvSY6b6i20vnd5XkaDnx26c7dNI7Xpl/e6NZvvFmq5ISb5YVWrgQIxMhefWdTplVFWQxxiYjqtrxPtrEx15f/rDuzZ2j8tDOEtm7rUjTmZ85Wq2T5glLtIkPCIVm1KhtK2F2x5tNpFiXa63D+n6mygPiuvm3N1tVEZsbjJoElE/IGEpsL0+8hiBo524MrLglfjksJdzwocw1YRMfoINNEx5DPhMzvyB5mwm8581dgZTEB1Au64nP2jMwWO/YXL/hmxBDgZC09y6T5huZkWvtIxrYl2rTaO4OJM3lsUG3zrXWER2cmAgIiS2fYxwmcZjuqUQooYlvjkzmpgRG6zNGXmZO2R+1/J3p4iQk0+LNhzBlHco9zZ1j0j8c1PwbNvWSAq+8fr5bMjPT1cMStP1DcR9NRoY1SZ3NjjJXMrD/oRbhk/ieJxvkXYer5T0P1cmx3WVK2phLhQEaXxBriMpCKYixFfy7a2BcHt1XIWVFKECTcuZqnypCicQuETe7x3Q22qLjSHdIK2XGWdrVF3/fBiGM7P6vnO7Q9WCeFapYYi4RgASeuTagYZG8F7k5bp1WT0KyToj3ua006vYRLYHZHWwLwTle7xidG3uxeP0c0js8qaWupTA+GVb/0Z1CfWgzMRmeCEvX0JT+n/LNwnTqQDAiF5sHl30+FL3IvWg9W0dA1WT473IgGdz+XTUwWM8wnp8NDDZv7uRWUk0gHTfVHR13hd2D89Ob2cAhDxgn2QQ9bpf0DE5qiYe5SKggPB/fs5GZ4ZLh8WklI3SGYWq2weMhJmyU/cNTWqph9ASPtY+L//G4rXgWpiPiy3bpYxdurjyOPyPx14JMETDIdHbOhflPxbkeXRtGbVDGWrhuqCCoPCQlQ6iYYo5KxGb+fU80yOmr1ggOyAEKFEeI4RgDMaorShTdXUy9Z+Amx037PDzk8QOV8vKZDiVWiUAihggUZM8nh+zDoxMhJT+oTKlAyrQSpPGQZahOlXE0G9PsoQy/R4kaShLnws9DlPJz3VpapFTZUJmn/+a4kqlATLNPtRfyvpG1sxKQc1ScewelL4dDWvrGNUk68fjwqeDhwcBsHyDqEmXZ5UCJELKcLBl8owLyuJLUb0aD2EGcBgbrGYb8bHAkm82UDBCPVORHyz2kGFL3L8qW8qIcvVNk2CWbDB1O+IV606a0wyhxM7SfsiC+oe7fVqyEiLZbV3q6NHeNankFVcbpTNfn4s77sQMVShLouILEgDyvW2dYofq8fq5TwxAnCDpccNh2Dg6Rf5RbJicjqnLoscSPbZrhpfFQQPtw8R5pAKOWkiw/CqoHpIbUYAgi4yggKZEoRCSqJT1nerqqJWysvHZuTqYqUhCtxHIPf6UcV1qAZ6lQjc8rfb/sdbTeoyUIQjxccSnYmUTM3ELNw7SOF4qhrACyh2m9NN8KkqSbDpOzRY5uvTYEUWewLXE8K83M47xvV1DgZ250B+RC08CiI2Ajf+dqv8YrbCnzWUN2xSrtLadc4IPbbIWdeEPmsu+BXn+bbXEMNiQM+dnAQDEgSZgNPFGBSQY6jhgpkQzRaFTLO+FoVLuvXjnTqSZmG6grlHMYMokB2PbQ838UIoL5IB+vnOnQMhwKyOh4WE3SzPBiEObZpgHdKNmseK3+oSkdZ3GwsVhnE7GZsRHf6BjRuV0l+dlaAqNjSEdnLDhmyBndY/wMLe68FvlBzKBia6OM9NThai2tUUpiHpWtQCSKD5CdhspcVUEgQ5AZTMIQOUpKmLJRqVBTMAajIqFEcR74kQZGgqpmoCJRtkMNQoGanA5r+3mixwKViIyehWBdygu9mtAMEbM9PxwPHiL2ItZEk52F182ZCz1MBjqtOEXu4HkUJI2J9DqlPt7uj9LD4NLLNwf135wrnWB2VhGPZc121OalbIHGGM1xt/UsXU6BkJApdLu9F7SsX20dTkm9+DreJaIRaPHP9jiloiRn2UGr1WU+PbfZTWSIhfijFiYmtCcDNzEEly6X+m1gsNZhtMsNDrqIdtRZwX2pQFmDVuRUeT98GcWHsEHUikTiAyjJ0L1VU+rT10tEYa5bydGr5PH0BFStsTsAGCnx5oUeDTPcXp2nGy+loPc/Wq+bD6U0UpxpH4fksCHzd24+a8t9cupKnw4OZfNcqJiw4R5m3tbotG7UkDC6+FCWuPOnXBeYCMlDu8tVAeKjHAKQ+JnOM0JQ8EJB+urKfOrpIdmZ7iqgpEHnkaWpegY54TGoKZXFOXrOPGc2KdEzt2Zl3ewc05b7ROwm/XpBycta/5iuGyoLxwORowy3T43eGTr5HRKJvwhyx5yxpZKtOU4NtIvFlBBSDrIVKogQ60HpjmGqfB/SBonknCBVnCNlPUgrBm/WNRl4SoIsMYAvBZ7HJp8rBQoEmUvLjWyA9PM4Hp+ZniaHGouXFC7oRNu/rWhTER/gdDg0DmEpcE1x3RjiY7ARYMjPBkdsdlYe31+hkf3JQAkJsuHzLL35oGZQGiHszJ4fBSGxg/gwzmLwZeNgswSQAspBlK7YcGlBt0II8+c2UTqnAlMhbb0WR0x+6Jlt6iN55/qAvHWpVy7cGJTXz3XL21f7lEww8XxfQ5F6DuhgYkOGADDgk9flNVFEGGKJ12dHXb7k+6z5WSgYeJI4YspbGRkOefpwpRzdWSqTU5ZywnMwFZzHlBVmyYefapALTYPaYk5WDwRGTcSRGZ0hxWNRgjAKo4zw+pwr3VaYa3lNyEp+jlvJC0GPkDiUGqtkZGF7Tb48tLskZWtodma6HNpeImX5Hjmyq0xudI5pB9npK/36h6nuGJ5zvJmyrTJXGqv9qoxBsCpKrHRfd2Z8fVzpUl5EsF2hkhodKqrlMsujxXvKEFdUKcpdvM9cJ7xfqGkkXbOeH3i0Xv1dNvTc4+TJBqM3juwo0ZiDZKD8tn9rEW/9bQFfFhk9K4FFUK0Ii62VufLofmtQbjLi8+zDNVJRMJ+UbgagupUXZqmJPxm4PnY3FOp1bGBwN7j1OZH2QGO1TM7PBs/5sRGemZWW3gk519Svmy8EYXttgWyvyZP8uI8lFdjMLrQMq+KBV4ZNEQKAB4SAPTZ+5nLhlXj8QIWOWGjqHJWW7oAOtnzzYq+ODWATpQzE2IbaslztAsMMPDM7q2GAu+oL5GbHiG7sEANa0IcDQRmfjKhig4L0vkfrdVQGIYv4i/gF4rEoUpAOBojSVdYzNCkdPePy0J4yKSnI1k6rvuGgnjdG2NqyHG1XR+2qKc9T39Hpy71q0GWTJ0eIu9x3rg3Iza5R3bwpwVHy47ggSsf3VijBuHRzUNUXxmFwTqwJredMcIc0qOo0O6vED1WGeWW03h/ZWaqGbVr1q0u84lrGIMMGPjIZlRfeaNEcHw12dDgkL9ctngynvi7K28N7y/T9xA9DGc/lTFeDuTfbJSV51pT4r77WrMQUde1y87D0j0zpOdWV+1VlunBzQPOKHt1frp1q5AeRo8SHFe8VRDAvK37dOETDDmmpR82DYNL55vU4ldRAqjAQk3lE1AHXDe8ZIz64djLjidS3+wFq5R7Nj1ZIBvKgmPhum6m50nuGg/LO9X71NxHCiIJFxk9pnlvn1D0IrIXPCZIWCOtEmeTa4f2m81JHz8Rn761nrIU13uhwplhjPq9RxftH+VwPaV5UWZFX/NkZc6n09zPnx5CfTUJ+ANklZKyQzcLdPYnCqXw+C4//jYu92snEpo1XxJ4+ztVDBxLek6Jct+ysL5TAxLSWp/J8HlUSyPVBOUJ9KMjNVL8OM6IGR4KW+uGwfEOUdPAHEalMhg4bLv4UWyGxX4d0ZuZw4R9CeWFzQ/Xgg3o0EFJyRupzkd+tJb+27lEdX6HqBqUQxjPQUUY3UGmOvHG+RzdRykiQhKlwVJraRqW9d1wVEpKaOcgPPrlFs3/4N8oP5T5AuQClh0iB+nK/doUNjAVVJYIM8Lr4TQ40WsoNXXH80u/fWqiEjZLDSrqc2PAvtgzruaIo0fJPWYrzJrsHXxT+KM0SisXk2293qPeI10AFO7S9WEuMzx6rke+c7tD3E3LJxqajSWIxJUHjE2EdebC7vkDXko0QBWj3lnxp6RmXkbGgtsc/e7Ra/R+XWoalrQcSO98MTSjevobCOXXQbkm3Z5nx9bsJNqR1nRylpT7BWJunDlUlVTYZ94I3jKPzuNNlNsHM/SCwVj4nAISVcijrx+/6eic9a3GNNyqcSdaY64mxRyj5C/2neM0Oby+WHJpn7pKOmPEWBkmhybx80MeJy0qID+B6RLWA+EBqwPSCWJbQWFBJTDAU0TIQ3h2MvZRhKPEAZmgx7POfX74h3YNT834ehQQVCAXnx967Q18ThWBsQf7L2ERYfRvMFrvWPqzKAcSK0lZrD/6giKoZ+bmZcmh7qbx9xfIUJYJfRAhcJBLV0RcoEtc7xjTlGQLBJg5pYFNkhZj2TtkLtauqOEfviK1ZXhF11XJHg9LzzRPtqij9wLu2yatnu9V3pCZmX6bs22qRANQROqm2VfrFpe01FulYCVDdUHwghChpBB9CpGLxnCWSmy/cGNCZX/ivEstCrMs33mqXdx+r0W46RpJ8951Obb0PhUeUpCVGBkCsIC8QV5SAugqfnGsa1LElkNDe4Sn181C2omNvITgnVB7W+sC2QlWANM7AYXVT6WPuckPlw7K0wKvXVSrwfR6XqiTsjv8uPGjis9bAJmRPtt8oxMfgwcDhcEjfaFCHVSf7nR8dn5Y3L/ZYVYMVEpd7AeP5MViREkbpaDIhWXgh+JiknEZQnp1fA8NHcbCnhzPBnZTYhcQHUFKBpKAOQIAK/JhtF3NzfnUYYgqJ4JeKTZ72cUpPqEeUUpjKPTQalJNXerUEt+g5YjEtyZQV+eSF15t1YCleH5twsXHbBSjKUviKSvI9kpXpUpUIIzW/xHx9a3Wetq2/QaCiK01qynLlbFO/+oVQjfg/dz9fe71V2vomtARFFxVS722/D7MMf8XjlCmvnuuWNy90K2Ek0frkpT4lX8UF2XqnTjv7QkDYrrUNKyFlffD1UOrCwI5ny/ZqQdbwF2HWpjRGOZLXhGjNPx5rftlSdXtmREG8VgO8LB6z4ryspN/n63zfdGYbGDw4zMRicjWegJ8K3HRyI7rSaJZ7AaP8GCwLZMTpcFQqaRPumx92OAeH5beBICW21tOujony/I1BLXe9dq5r0Y+iIFALxluUKenavky5pNCfJVO9gUWtzJTB2IjxldBJxIausmof86ysJGcUid6hQR0qmgyezHT9hcOXgw8GHwvqDeUae0I84G8oWQ/vKZdQlLTqiBTlZenQU86LdeH1KfdhZiYVmTWiOw5jN91meJboaNpW5ZfdTM8mS+gO7qa5Ec/3Z8mLJ9sWBSTiiaIMxygTfDqpUpXJ7MGw/PffvKrdYc89XKtqErlElLYqS7waBXCldUj8Xrc8c7RGE7RRlBIDXiBLBEcSksiA2FQlBIgk+Uj+mrxVmd2FX+jYrlIdD9LcPablP1K969Wjkrmu51AZGGwETIWiMhJIPkIoEURQ1Jbm3DdFxpAfg2XBnT35PXhrAOWMxG0M/8a26nw1BWMG1mTh+M3+0Kjlv9lZF9OvQ3ISQdcQXh9KRGWFXk3XRaFQAhKLSUWRV83Ltp+Eu3mMvigSEJJ3ri0OCrQ3XQhYrtclrnSftvMjhgSDURmbCutzUOrhNSifPXOkRsuA/D2x351zI1Ea4/aXv3tDcuJZPFbOjfV3SBTdVmTKkAgNuIvpHphU0kNJD+jwVbcrZWv4ckAJs6fKL4Q9/4y1w8Sbk704LwhoSQ+iEnMocUFBo3RIqznfu3hzSI8PhQoliJJWU8eI/myiwoO6hHeK11uubIcJfNlwxrsAl1uRL1NK/CX61vHeQLSMm9HA4MEjusLfRT6X+L29X+qPIT8Gy4ILl24iNsKtlX5NWaacwSaMuZbuIBQQJrGTuxOEVCSAmUGQALJpUElQJazW9wwlIKgRbLx0RGHgtVUjvkenFHfx/J3XO763TBWWqeki3ZRtP9FCcEyUa0YCYekZmpJTV/u0BEeXmScjTWorcjWtmE0ZYzKt9NUlPqmv9KnRmQ2bFnUIWZY7Xa62Dat/B1P04FhQ1RCOm/DG8mKvqmJ8fd66kZY8PKV/IC4Qiljszk2WkxC2YFhLWpTnFo/0cKjZkKRmTITJoObVOOlEIWPdUX4SwWcP5JLWbzxWyUB7PGVAwvFQy0hQWjJUcZWZiD3wFiyd/GNgYHA/gddRPyOW+QzAomDPXrwvx3XfXslg3QIlgJLWjc4R3SgpT+Gv4UJlE6bTB0AU8PcsHKRpe2cK/Lj6S3QCOgSnudvqiLLBc1Mq2sqw0PhIC5Qi/uA5eWQvQ0HTNYWWbGJ8O5Sr2PgxV9NCSdmLDi5GZfA6kCMd+BkHCs3xveXaofTcw3XSUJUrnX0TamLuTBvXcpp6SByiKgvdCT/8nu3aJs9oDkgP38O0HIlMSigSlaFAUAndQ7vLtDWesouOUZidlalgRElJWX62jrW4m3mZ/CxmYcp9HGdi1wSlKsgkrfdqzC7JSfoceKLwXdEFNzYxrWQo8f3ioyfbk6GZShieb3aO6vPyucWHF0ZwwLoy2oTZWUvGJKQ5lIiuRsnLwMBg7SPb7dROX2YgLgWCa/m8uF+fFcbwbLAi5GQRcOfTv0NYICCUwhjpYJdc9jYULtlmeK1lROrLfTpugE4knbcUH0JKhg2bOx1lzz5UrSoRuSs7awu0vPXw7jJVlJhWzs8d21ki0+FZudg8pH6iwbFpbV2nmwxvEaQFFYRsokSweROaiDLy5vkuefpwtRIKbetN8BO1dI1pWWjP1iJNgiY08MTFHlU6UKDwzVD24bwhEFMhxmjMyLaaXH08a4MCk5/r0dIdhIs2+ruBHcKICofRG4JDyZA/EBU8RWTUQBQXKkOA6fX4lBjV8fCeUvXH1JQSHJkjRX6PlORlaRgmEQEkc/N3Igco4VF65HwgPPZUeogoydJLgeiCnBQBhwYGBhsfaYS41uYlbcKwwU0bI4Pu502S+VQyWBFoVaarCcWjoz+gSguXqWbYuJ2ypcov9WU5EmHyeGRG82YwPkNsIEukQzMDy5vllI+9f5d85dWbcupyn5ZPeAzlI9KY33WkWsta/iyra4yyC6ZpNl+6q9j0USJOXurR12fW0JYSt/jd1JWnJaskV7DEkBzNHLAMlKjIzLyxFfyCQaJQYiAKP/zcdnntbJeWgFCd8PBMBMM6l4oONUzMqEnlRZayRQkPRYcSHYF+HLur0CJNjx8ol4qiHCWBKCLk5kBOCJO0RyakO9M0owaiws9ThluonnhcM+IIjli1M1eWhJ05kh5DgfNpJhGfI/iHbCKCWoz6wwcIHySRmRlthyfBmfIVd177txWq14mp9GX5mfL88Vr57tkukRglLJ4npu9VfaVfSVJXX0CO7CpRApmbnankic4Np8MiWwe2FWnpkHVD/eP94u+8nxZBy9HkalvtxvNFOZH3QkeBuKy5bBsVVq4Rw2DJy3HotWPaxg02Khzx0tZUeEZi8Rlx9rDcwhy3HN1VKueaBvTz9dbPiDaQEPR6J2Gnd3W86yHksK+vTx5//PFFX/9v/+2/yYc+9CG5cuWK/O7v/q5cvHhR8vPz5WMf+5j8+I//+B2/3kYNObxbcKFOxQ21qCKUoyAiKBu0gmfEJ8MPT4TlavuImpj54GdD3rWlQAITYensC2i7dkNVvkCfOnopo6VpCQtChT+IX6Dq0lwdzcCkdMZEcJWiGuGt+dbJdukfnpTjO/OlyDEqo23XJTAyZpGhkmKp27NHhiRP/ueXL1tT2+MlG72r0JKVQ0kDuRLToYiWvzif1t5xNWhj/tVE25xMa66YK03OXhuQiy1DOgYDDwuEBnJHtxk1bTqtqFlD4Gg7Z3grpUHUsG01eTI4PCmN1fnSOxKUs9cHpKVrVAkh0QD7thZLY41fPOlp4nbOiGOoVaaaTsp0902R2Rlx5pVI9tYj4ipvlOFolrx2vlsVmeHxaVVvOG8UKY4J1YbxDdEZkfa+gHaaoUxRqsRwXeTPkkKfS2aiMYmlOTSvh3OnVMbjOG/IU1PbsJYCayv9MjI2LdfbR2VkfFo3cNYLkkMJEKUOMzg/x9gMyCx/KJuV5nvEwxDMWEzGpylzjknv4ISV8OxMl8oSn+Yi2Y/ZaCZP8qNIOSf7ipsExp9ApklKTmaR2iifE2sZZo1XB7Ps0yNBLZNTEvcwbig9TVPyCb91xG8GGDJNZyafl3wO8ztBAOm9cvpsuITnV155RX7+539eXnrppXjXiIWcnBwJBoPy/PPPy9NPPy0/+ZM/KWfPnpXf+q3fkt/8zd+UD3/4w3f0eob8LAYXbv/otJy83KP+Fjq7KBdxZ8sdP+WQx/ZVyND4tI6S4I6e94oNFZXgrYs9etfPpkhbNQbp2ZlZeexgpW7kupEOT8Vnf+Vpizim6scOVGiZhqyYLZU+6R+ZVkL03iMlIp3npeXq9fissTQlKVqGSk+TY089IqdH8uQbp6zW+sRfLhVTnGnynodqtOTzrZMdOlUe8oAy5Uq3xkE01hVoqCFPeuJyj7x9pX9RgjGKC6oKv9RvX8FPVKHnrx1rrE1kVknbJz6wSxOF/79/u6yjHhaipsQnH3l3jaS3nZbhN77MRbjoMd6GA+J+6PulaWBGXjvXLV3943NdcBwPnqtH9pVJLdlHTQOa5cO62CoUahbKw/a6fE2i5r1k3AiltEyXUwkixnIM3we2l6j36Z9fuaH/hvRQEnzfI7VqIKelHtID6aL0yXHkZmXI44cqpaYkR85e69fvPbKvQpW3E5dI+V58Tlw3D+8p09LY2v8kWhnCszENh2Rtk/0eMcusptRLkPmG+5xY6zBrfO8xKyLnbw5qA4h9jXs8GRIMhvWGc1tNvuyo9s99BtvNGfqz91gJ3XAJz9evX5fa2lopLi5e9L2/+Zu/EZfLJb/9278tTqdTtmzZIm1tbfKZz3zmjsmPwWKwYb99jTKV9YERXJCajJTZPjChioFdyoBXQygu3BySkXFrFATlKxg/GyGbI0nI3C2gHgE2YsiUnd3zyjud8uTBKv13MDSj5mRftktygj1y6XqT9ToE+MU9LhAgjqX36gXZvfu4vJmVIYGp8KIbbcpdyK1vXezV2V2AUQ4l+flKaijj/OurzarOHNtdJj5PpioqbGqQOMo/GLTxxaBoMSoCDxKKEuQu8Xe6uTsg//Jqs3z4qS1a8tK63AL0j05K+miXjLz5laTEB0x1XJOBsi651OPUCfM7a/P1tXgpPEgQyqstw/peDY5MLUq2tsFssfFgRH1Jc0NrI1ZXV3gmprkcl5oHxLm1RFUhwDkzu8zhSJNvvNmmHi3WC6+QTcCIEPjqq83y0ed2qCLIsaE+8Z6lmr7Oe8UQ20f2lG0IAyKlvavNw0mJj/1hj/RPN53xQhmsd6SlWflqNvFJhuttw+ohLPG75/yha0FzWRefN9euXVNSkwynT5+Wo0ePKvGx8dBDD0lra6sMDg7ex6PcuICEYCheSHgSwWR1xktMJDwGcs+Q0O74+AE8KWwK+FyG4vO3ID5KJkhMdqUpCSJHiP2Ur/GalJ4gK2wcqBNHGnKk98Y1VSLUO5KRrqRDk43TLAUIAjbccl2O7khuyMWvUuBzq+/nsf2VWgKjjd7vy9TZXATzIc1CIBii2tIzJpdbhjVQz27HtI/PCj+MakggoxYW3szwaKLdgyGrld8Gag2vTzzABx6tk8GxkEjVPkn3Jp+s7Siqk6sXm2R2ekJJCa3+BA1iBIes9Q5O6lqiuqRqdQckPJ9vSvW7YRNXh1y4OaidZTaO7CxR8meDNYZo2QneNt6+0qcEEnJL2W1obHrJFGjmtAVWKQX6fmMyNCNdAymCQONQj1Tv+H1NszUwWA1EZmblRufi8TYLwWNu5eavDawb5ScvL08+8pGPSEtLi9TU1MjP/uzPqg+ot7dXtm3bNu/xtkLU09MjhYVLd6MsJY/eK9gy3ErluLUGjrtveOnocU+mSzo7R5WcZGWSISO6KUIg+DsECrZPaziqCUSGtnRUHkdcAXC7nNqijqKgmcWWo1pbJCFXE1MRVRpKc9LkWt+ghgyykaBc2BkSmKL5Oj8fGByUqn3Oeb9ybMJPH6kWX3amvHymU14/362+GUY6oDBRGsKTBFHjGHk8pmt8PvwbU3MVylCvtcFR2gqHZnUOEqMUvn2qPemvOAGKlO/wMVkEMF12NxTq89F+PzQwLOndFyU3O1221jws5UU9MtN6dl4wYCS7SIZv9Eh6bYm09IX0OxAxzhfjN8cdjcyqukbGUar3i/cCJQ5PEh1kiXBKmnqXIFFjE1Nq+u6InytqBV1wnCDPzZpD/vw5dL7dUnY6+sfF5azUDCi8RJTSrHb51Hd7+InwBqyFO8K7QWgqoiXP5YgNYZ5sBk6nY8N8TqwHmDW+t5ieJnssMu96t/+e+DVU4PDMrGQtuFF6kFjz5CcajUpzc7M0NDTIr/zKr4jX65UXXnhBfvqnf1r+z//5PzI9PS0ZGfPnJGVmWum2oZBVarld8KZRF77X8Pk8sl6RkenSOm7q7zslPT0dE5m43dbjbEWAcD/ARPk0B8RCdPwDLel1Fblzj9WumAU5wNYcdozUaaq+HN9TIQ4HaoNTS1ILyykQFL7HZszrMjqDuWQQKiaQP3W4UstnjG/gsbppxzsSGL2BmsTYB0IPLRbj0NERKEBMkMfDQ7ZQR7/lCcNTA6Ep9Jeo14dyUjL2Y3U9xFTtgVzs21akoZCQA5DmyNTXGRsalTMjYxLYViPbq3dLrPOifp81wSPCGqbHIOe3PkQmVX0i28erZTU8S5x7qveLD37IPQZllLlE2KVKi4Bavwt2fV67OeKP4zVYf46Mr6dRB5s7V4e+RnF+tkYIjMY/+DA5owYl+vZsZGa6xO9PPqNrPWE8NLPk70ni+WZ7M+e69TbK58R6gVnje4PoyJS4dRp78mvcBqo8vxfcQK0VrHnyQznrxIkTurG63dbC7d69W5qamuSzn/2sfi0cnp9Ca5OerKw7+zBlUwwElg5kuh2wEfDLFggQ6rf+THZsVrlZLmkOph5sOp5OarDl88DoBkIhAvlyJDrDvC2ZU2asrJkJLWe1do3pBsn4CdQVFAzUHbJlHA7oQEy/BzEam7B8KhlVeZLj98nI0GK5FRUEM3Zz15gcOrRDysoL5ae+N1/C4Rn1Y0AUTl3qkWK/RyfDq4IxE4uXaMJqviaHiJEPEAD2aZ6TshbKkyczIoUHKrRNnOuklAC/mVmdt6VJycmEC4flZSor8sr5GzfVKIwXJnEa+eRMmuR5/RKZnlAC0nStVcoe3i456dclFkE9i4lMDIq/qEgmHBDF+SVIVLSegQkNFESJoRRmvw8LMTPjlmydLzab9DF0u9meLMImbTWGDrbqkhzt2uJr/IE86YiLhPRGyCBt8Vdah1UdYmYPxBPCRfmScuNCYSSL8MqRe9dk8KBAfnY0Yo39WAoleR4JTYdleiq0YT4n1gPMGt9bzEZnhduw8YTPET5TIT6hUGTO0JyV65FYdGbVf8d5bzeU4Tk7e7EKs3XrVnnttdektLRU+vtvdeEA+98lJSV3/Jqr0QnAL9t67TCgJGHNc0puXB0NhLQ7CnObfcHzfzZRwvMoxYBje0qlrTcgF24MqVKB8tNEPTgWU+LB8zMpnb/DGtgwIUTMzaK0hCLzzJEq2bF/t5x59U2JBK31pEuMtknauSE+oGTbDglHRcL8R7NznOqLoQWT9wEJlkwhiFYirrWPyLFdJToxnbIaJRsmnAPMwHhU6F6iffzdR2usX/YM51zGjRr64l4fR5qVynywsURyPC7ZVs3AVo9OgcdPA7ErzM2SmdislNbvFxktlrHuThnuH5CbXWNysKBaZnqbdDON9d+Q7YcflhevQyYXe2QgZ5GZmOxvKNJSYapOionJkJbFiAtIdsdGJazQ71bi+g8vNc3xuUvNg9qZxftHGY8PGfKBxiZvffBxzkd3luj5kbB9ZGepltfIG+Ja4LgIh4Rg2vyH1nrMv+v1dyMRtO1DnIl5SAWuETriIil+l9bz58R6gVnjewNiPshU0+T7BVCPZvwziBFFdJpG11BZe80XPlF4Dh48qOpPIsj0oRR25MgRefvtt2UmoUPmrbfekrq6OikosAZxGtw+HEnuzPG0sOEnQ2amU6qKsmXv1sJ5P0u7NVk3kBIycZgU3tQ+qiUkxixAdBi5gMcEoBwRarizPl/Vksf3V0ggPoaBzAiJT1mXwjrZsatBgxP5U1nk1Q8ze5TFU888LK0Tbvn6m+2a6MyfF0+1K9GqLvNZ2TdpoioUfiLC/5j9BWjdhsxgTua5IWSUqyTeVYUSBtk61FiiCkt1sVdJEAqRZhZlOSXPl6FKFgbsrdV+efexajl5qVe+/kardj91x0d5kJr8nbc75KUT7fKtM73yZvO0THpKpW73HpkYD8qM26/kAwXFU1ghFVXlkp+bXNHkMbSnkzWUpb6nuOk8g3LTrV/1XK9bDd/8PyliIrvrC2R7bb6+D9uqrdBDcpgIdDy6s1RJHQodZT97bVD1njpcJf5stxIf/EhTwbCaxPmeDd5jFDj72BgbwjrdDuxk8LUC+3j4sN9Rmy+5OckHy/KYnfWFkpt9d2nfBgZrAbOzMVWDidlIBRpByIFba36+NZ/zg5z+gz/4g5rnQ34Pxud/+Id/kC984QvypS99SQmOnfPzyU9+Us6fPy//9b/+V33sBz/4wTt6zc2a8wOxmQrPanmDjY6yB8SAu1nL/EuAYUgJBnfwnAsJypqEXJUrPrdLO50Gxqa1EwlTJz+Xl+OWmvJcTR0+c6VfFRVC4PA70G5eUZitBmI8PSgceE6O7S7RLBo2UMIHuUzxCKGehKKz8r//6bx87NkacYx2Sm/TNRkZHlEPSmVlmew8fFBuTmbLqxcHJcvjUqKCOkOwH+UmRk4wHgPzLl+fooV+YEI3cbxA6Bc//Ow2Lc3xeuQKTYYYxyGaWFzgyxS32yV5XibSZ2oJieTrntGgtHaPaacYJkDOoxxvU0G2XLoxoCM9GIFBgjLq0avvdKlHCEJFqS4tXjaJRaakKs8lO0rTpS5yQzLGu8Vdf1AclXvkW1dDurGiQJG8bBlnrUGlDZV5cmB7kfh5Hxwx6R0OyuBoSPpGprQ1nfVD6cr3Zqi6Mx2ZlZaegJalCKzk/Dnmhqo8Lcuw9kMTYVXbyA0i7NDrdckPPL1N2/sv3BzQmWe8NpPvUbQglRA7NnmM5FYQpktyczxys3NE15T3qcDnkcM7SqSh0i8+j2UmXwkcaQ7tKISgQvYgnJTpnHFD/f0E1w4lW1r88YRBBFG5vO50TblFgaRzMdnaJpPc1svnxHqGWePVQTRGqOq4fraj8mZ5rPBXwk8ri7Lvm8qy4UIOaVn/oz/6I3n11VclEAjIzp075VOf+pQcPnxYvw/hIeH58uXLUlRUJJ/4xCfkox/96B2/3uYkPw5p7R/XslViPgwEhY2triwnIaQKkhSdG1NA+Shx89LSj0Aqoroxc9fvyUjXzfalU+0aWMhj2Czs9nVKH/hBdNDmzIxsrcqXb55oUxOx2klIZnY4ZEd9vrz3eL28cb5LR1Ts3VokjWUZ4nXO6n6SnpUtF9sm5F++e1PVBEgF5SBUJGaT4RmCMBzfU66bJr6j0XHKNjFVryaCUe3gQvmACJFtw+tC6Ci70aFFCQzFhzLX/oZi2dOQr2tx/saQkivUHHsddNioFxUgpkQBknWwsUizj965RnnWmtdFCnamM02ISOLDA6/4h59qkD1lqCcRaZ/KUuUox2OFAaIq+X1uNWjzvlBS4n1DlYGwdQ1PyrdPd0h3/4SkxT8M+DlUNkaI5GWla5wQHxTBcFTLZTwP7xN+HP1UcIj0DAeVDGOwtrs3uIZJ5EaBwmtEiZJRImzyjDUh1RhCh3LECA68TbzXmB05bggMH4woJOm3GR5I+33PwOTc7DKOiHVgxliB1xrAel/gEE3rvtQ8pF4xG7wfjGDZXuPXsM1gZEbnyS1a23X7ObG+YdZ49W8GIjSdEOkxM6s3WfdzXteGIz/3G5uN/EBmbnbjwxlI6tcFO+sLZFtlbnJDb9LnFN3IyW+BbADKLGyEJBPbZa5E8NR4g/CJYJZ9+YyVzpwIyNbWqlz50fdsl89/7bLUlPuVxKAEMHuLGVwQLBQYylYQn8Q2eMYLNLWP6FgJvCmaLn1zcO4XlE2bVnjGbFxpGdH5VD5vhpZ4CnIxKo/Hjc/p+vycD9PchwIh+c7p9nnHyobPZogS8tzxOh1pwTT59x2vkxOXe+Vmp+VNmvO9ZLmUwFAW4jwfP1ipOyVZSMd2lWmq85bK3JTtovUVftnfUCADEyH57Jcv6pT7ZGAA6kee3ynZCW3WyT7Iuoen5NSl3lsp0guSWymJQYouXL913dDVZXuuwKHtJTrDi6yfRFAGfeJApRLKlYBfG1K2U4UHQiBJ187LTt55ci+RbG2STajet6XwtpJN1vrnxEaAWeONvcb5Gy3h2WB1wZ0/CcpL7RkQBnw1K8lpgEyNT0fknWsDWt6xn5c7fu7YkULxAiUOuLOOY0bNooy5wOybDGy6zJmitPTBp7fK/32xSdOM8RNhvJ0MhqV3gCyeHBmk7JawE2rb9XhIR1po8GLMoR1d3I3bv6KoQ0xlB0w+ry3L1Q2O4/n26U7NrEncwPFB4Q+63t6z6FghMPiFOIYz1/p0hAXQUMeZmA4etTdz1gUVinZwfo5jhFjVlubo9290jsjRXSWa4FxbnjNvNII7XnrcvSVfHOkib57vSUl8wPWOUR2OenxXiXbBJQNrdbl5KOXmDiBqbT0j864bCB9lRsp7AKXmXYeqFpGfIpSujDTttFvJ9dQ/OpWS+OjxRmblatuwPLSzdEFYwr3HStYGwzPXjj/uIzMwMFhbWPOGZ4PVBRvLwOj03GaVCnhxyKRZSSotJObNCz1zfhQbuP3Z9OkEYjJ64nNBjEYYl5CXpUoJPptk4Plor2boJspMWWGWVJXmqJ+Ckhb7EVk4PcNTGmS4EL3Dk1oK21KRp4oO5SIUI8ZFYFrG43T+xoDGtbd0BZQsXW4ZkjcvdM8RH0pztKtT0rraNqIb/PbaPFU5UHASj1U7wVxO6eqf1FZ7Sh8AYkNJESWHgEUIDMTOGn6Zq8Mw7SnpAPLArLMD24ulotinM7EgT9vrCqS+Mk/nhl1rG5W+kZAmbS8ML1wIkpoT07gXAsUOBSoV8IPx8xDVxPeREiHvhQ3Wl3RwiOLcY9IdUleWuyLiY68jqtlyGCBQMZT6nO4V8GkttTYAzo36aML0DAzWJozys8lBeYopvCsByoQVUJd602Jja+3A95L8OVEF8Pa09oyrWZgp6kDbIKOzash941y3khgtOWVnqBKCQoOyQ9oyk8Cvt49oGQ01ADNpdrbl34FUQKDw5dCZBMHAi8Jz2F1JbMhkzfBPlBuyehhh0dw5ot4XOyQRksSoDEZT2Nu73VJPec4qfzm1W4t06Ms3B2VfY7G0947pYFYGeubmuHWjVGVnMqLPTZoxAYCkO1OuwRMEAYNc+rIypLl7VMMU6bCywwbtLjfGgvzMB/eId2uhtuhfahlS9cauXkM8IVql+ZaCZntjFgJShz+HcMpk18RUaOlrAgI4MRVW0jyP4MZiWjrk6/axkwGSl50xpwztbywSf7ZrxV4AzgF1cjlAFK0Zb6uXIqtrswRpTAS/V4nKo4GBwdqBIT8GugGv7HHpy3bUYGpGoUgFfp4NHlSX5irhYQ9EhWmopmPILVuq/LJzS4F2FNEZBMFA4RgOBFURQqXBM6PdZ/ENlk2GcgQlsScOVmonFEZdVSFiVqmCP2xePN/uLUVy/uaAkimehwRpXoOf4zltozJqD23w/AwECO8Pvh/bs8T5kDeox5HmkO++0ylPH66SwOSAkiw2brw8ECDWeWZ2VokZQ0kZGUK5BlUNlQzFC0UJAkZ+DgTm5KUF5TQNEXKoEnT2en9SAoHRvGtwQkuIEKxkwLNkzyhb/B7hj1qaQPC6dokuGR0mRJJOLIgeKhVddwX+LIvQelZOfOYSo1fYCo/ytJpgbSB+K/U+QLjn00MDA4O1AEN+NjnYhChBsYkt5WFgTyHLYblNC7O4NfYgNSAMjMGASFQWZmuKc6YzXZq6x5Q8cWdNJxSenQg9lPEyC51MbDu0epMYbPtVKPHQdQTRodSAKvTY/gptz+a82IBtzub3ZqgxGOJDuCDqEN1Jk9PM9HKqHwmVAdOulS5tBSeiZGBwVjKU4JOB4OA3Qimig4nvkSVEizulMzq1MEpr/o+HCfMoKhF9PfJvyMNBSWLSOooYgGg9srdcrncs9mFVllDycmqoWLL3IhyJytYqvw5hhXgl+m8SsYusGW+GREPJ3yvIH6W4ZMZ0wHtUV5GtAZSpCDElvuwirxzeXiw+T4aamznm2+2x4OcqS3K01LkUWD/yqFYby62NDS3tJSRfGxgYrB2YgrSB5LhdWnZZCmUFXs1jWQ74PyhtrOSumKlZWFPIaEG5oST0le/e1EwalBSb+ADIxevnunQiOUoJ2Tlshp4Mq/UbBQchA+LQ0Teh3VrvOVajQYKVJV5NU8Yv8wPPNEpz16icutQn/SOTOmML6WI6ZBmOeV2UI6aSD4+FlPRhzoVnQDoYCJoIvk5LfU62K15ywew6LkXxOVWcF6rOo/srVPUg14bJ9QwE3VmXLz/07m3WsNbCbJ2aTo7QE/sr1OMyEggtUjUggKwFKlgy4JtiSjwDM0ndTvTa2KAsxVqkIj4AElFbboVKpgKaT0OVf8nuKoh1LuGPd9Hyys+RFbJwDtn8YxHZVpOn7eWrDUz/9ky6VPDnuLWsa6peBgZrE0b5uU+w8my0YqGb5ZqaKxOLaQozyg+ll4VgVtOhncXxmQ2UICyyYpc7+DsbszVU1Oo8utG5tEGVTTFLiYu1O/C/3qFJLfdAQNhcmPtVlJ89Z6BlztT1thE5vqdMyzl4cihBMWQT0oXhGRJBgjImbqaLZzgd6u9BfaGTSxwxJTmkLuMZ+pdXbmrnFwoO+SyjE9PayfOeh2rl9KUeJU39w9bYDW1dp5Shg/yYUD+jpUCSoclCwiBtpSk7tWTG642MTcnW6gI50FCoqca9FVapz+Nx6jngjULZePZojeysy5PBsZD888tNi0gWCs6Th6pkSwUKSFgXHuXGnenS94GREaMTIT1OZnZ94NF6ee1sl65Rvljrx/ey3Onyg89sl9LcDC3XpQJmZBQkynIt3Ywfmf99MnsaqnJ1PfBrMVeMK0JVvXjpCUP2wW3Ft3WHZU2Lt9RB/GO2KZogyWO7S+X05b5FfjKuxx31BVJRkH1fMkV4ja2V1tpApBeuDcQHIpuRznqs+uEYGBjcAUzOz2rn/GAono5K93BQegdIKiZpN0vViJxMaxNdK4COYSqmTZfyjieTTT1X05j5GkrLbMwhZQVZ4s3OVGMv5lo2f86J+S3+rAyZCEU0vThVBxkk4pH95ZIX9/4Agvi++PINff2rrcOa17O7vlBDAfEQxeKT4GtKc6W80CM3OgOakwPBwdBM2YvFptsK0zSlMVQWvDEEFVI2I30UgrV/a5GqOf/40jVNd95ek6clDMzS1vT2NFU0vuexegkGI9LUOabPg5eGSACSmim14WnheRur/VJV7JW2vgn19tDd9Oi+cp0jdnhniXpvMh2i5unhyYiW1N65PqCEhdRlko7LCzySRkhjepoEghHpHJjU14KQMgersTZPM2x4k4LqbRqR7oFJTW+O2SXE4hwdDcKx+nMzpSgvWyYmI5qZhJpGqCBrUuJnGPDSJZtbcEggGJb23nE1LvO+s74YmCFtXL7M6+kfndauNwL/8Pjs3lIgpXlZKyYAECYCAXl/ILQQDFQrSDBJ2pp+nWY9BjM57zuPgRhDUFEv7//v0q214brl/a0t9Ul+Tubc2twOTAbN6sOs8erDuU5yfgz5WU3y43BIU9eYDuXMdLvmwuEAGywzjZiHdT8TMFcC++LhqAjlu94+rP9mrMRUMCrlxV45cbFHNx4UE0gOfhZ8LszC2l2XL4OBaTlztX/RXTplKUpNZflZqhjYQBH7+lvt2vE0NjGtE9BfO9ut5NEuo+FhYa0IOGTeV2mBV/7ma1fm2o7ZcPDfQEh++JlGHavARvrtUx3anYUiQ8mMjZlOLbwbkCYSeElcTgQKzvG95fLe4zXicqbLiyfbtZsrXcc3WNcG+gaJz4e2F8mNjjE5c21A1SnIDJPVm9rHdJzDkV2l8sPPNuoxozTRBcTGjkDCa0NYDjSWyJMHKsQVNyGnpaXpZmpPT2eQqP2i7f2T8sLrLTI2uaAslu6Qw9tL1ViNlwjlxm55h1xod1Z4Rq879Vrdxq8+1wSlNJ8va96HWmhmVk5d7tNyG4RTVcFZypAh8WZlaJBkdiZG+QVJsCifah6meMbYlLCau5N1UlWV+mR/Q6GWzuxz4Vyt57TiE9bC74sGe85YSeN3ArMxrz7MGq8+nOuE/Jiy1yqBD+iekSndMMmwWQg2YYLvvJ5KyV1jQWh8gLNBoWSgPgB4CmMFGCdBazcqCOoQpk4I0EQwLH3DDi1/YSLeUu7TBF9as7mbB6gTmHs9bOoLCB9dMcyIotyzrSZfvvpqS0KbtqVSsIrpTmuy+8HGYiUupCvb3VKYmdlwKS+xOTZ3BeT/e/Ha3ObocNASbvmXXrjWIl63RcSuto4kXYeLNwelodI6v5norDyyv0LLMC3+gPqLMICTG/TauR49Bspu9ryyl062zylf5Brt21qgXV52d9rwAlWMc4IQPbqvTGYikLxZCYUWf3CMTITV7Iy5l/JdYis153n6Sp88sq9cyTWKXFv34uniet1lVUnuCjxcidcEHXGJgLCevT6o563ntCCbCSIIASYskuuC34PxIMGIAe1049ghzbzfpy73qA8qGTp6A2qe3l2fr+tvdditnRuGNVXCNjAwWBGM4XmVMBOL6fTypT6i2ayau8eSkqMHDdqtSRW272gpC7GZstlDfACqRWAqrIoKoORBOznjGDRDJt0h5fkeOdxYrH+qirzixiOSbFFiMZ3aTkoxvh98PXRD4TeyJ2ZDaHKzMrWDCkUFH8+5pgE5d71f7zAgKXiNaC2HaEEO+HkbEK+ju0q1TFJemK3KCgrFwtZl1BKIF89JizXdW0OBoI4z6BuZVOKFAvTKmQ5Nvkb14PGU/p46XKnzyBJLfrTvN3WMzc38SoWz1wdkbDJ1vg7XCWvLa2W70/XcFhp8aaUnjZqyG3O9Ul13+HhWEli5FJjRRpfaUqBjj3Pi2LuHJq016xhRtQ71jTiCS82D2nG31O9KW29AS5QGBgYG9wJG+VklsPmn6shJBNPReWzmGkuCheCosTauYrFJsbnfWDB2AsLD16fDlvGZcDxMsMHQjLjiQzhXdmfsUK8IJOv01X41Gbvis7gObCuSE5d6tYRWlG+RGnw+bPKHthfr61HqwePCeuKH+eZbbXKze0w9GCQvcxwoFLSf055Ndg8KFeSGfzMuwwZlNo6jMM+jpSV8TTtq8zQYEH8HwYoMCH3mWI0+Dxs5vhz+/+ZFkq3nKyClBVk6QZ6OMNSdVKGSvBamZW++1Sm2EBwTQYeA8/FluSTL7bMGioZmrAwj5pkFw/q+oEalAutLrAAE9U4AceJYVhLih7HbnZmuKtDCY0KpI/CS83a50qUo1520DEy5DrLk9i1O7TYwMDC4XRjys0pg9tJKav8YWtei62rh/sNxcve+0F+xcPOzY01mbyPYDXI1NhXWkRhjUxHduHm9ifGQvHWxR7u1yO2hXEIGD6ZdFBA6qphczoiL9x6vkxdPtqmZmM0T301X/4SqE4QO8rNkB6Fo5eZkaCs7RmAIHqMp6KaijEb3lq3a8DoMPkVNSYzxg2yQowM521FXYKkYwYganBcSH4APhjZ4lLLlyMZShIX3JJEY6BR7h0OnuOd4MuZ8WZC05ejmrbydO1d/OJ+VAIWtrXc86bmp7yl+0YyNh7R0mSqoMFVatYGBgcHtYm3JDRsIlGgwzS4HPCL3I5vkdoF52C4HsUeSscLdNybhpVKfIRFs9hm3cU4QAzwvkAqCAjELF/gyNe0YVQlFgDLXvq2Fmu7Ma1hmZWszxHf08tsduulDzjgcPESoE1src5X0oBKRZcR7AkmhM428G4IMeW6671B8tFU8Rvp0jhIEu6srMXNo7rijs9I/MqXlNjKKEoeeJgLFii40lC0UsVRQIpPQAbcQvB9cLwuhoc9xYzSVLEjhcmobCtFKk4pTJnUvuBZSgcf1DU0l/R5G7tz4DDbCMVMRKlvVMjAwMLgXWHu77gYBIXG0Hi+H+opcJRprDdlup5QWeueNpMDfQRkqEXR8UXKxiRDkoqSA5GTnsmoPPzVF63IgJMPjISUrECc2b/5OgKHX7dKMl7HxaSVgdEPxGnsbipR0UG6CVNzoHFPDNJskmzoJyrTGM0MLNQgzLj/H9zFEozI9fqBSdtYVaDkMAoqnCV/QQ7tLtUsJozKP5z3q6l9sHAYQKUILUSyGF4QS2mjrnZA9Wwrnhpdi8iULJi/HrcZle3RGTblP8rypCQWq0XLBg5z7rnpGgyydhkzZDqJ5p4BwEeJHjtBSoBzJgFlLPVsMCCvhj/bctVQdaPk+j+TchkHbwMDAYCmYT5NVAl0pEAU1CKfoYiEErvw+BbPdLujG2l6dJ4OjU9qFg68Gf0YoHJHGmjxtpdb8FYdDyxb8vzgvSz0tO2ryF3VzzXtuh0jX4KSak2djjLOY0U4oiACEgM2SUhJK0NzPxCx/FJstPp2DO0rkcy9c1vZ6/Em2YlJdkqNt7f3DQTm4vVjzV+z9dCru86FEhdGZFOV9xA0Ue8XpTNfcHQaKQpautXWIz2tlBUGImjsIbZxNqtbgSRqfjghiVzLBhaBFzNysDaUdSmP4clgi1hWyRxYQZIwxa6kmImjScbFXuvrHk5bXAOuwb2uRvHW+O+X636vrjq49iBZenmTPBZ+hLJjjdupxUc5cdE6xmASnI7KzvkCutAwlneFlEzruEdZiidjAwGD9wZCfVURWRpoc31MuV9qG1ctig7JNRXGOek3u5u57tUErODOmLjYPy8DwpN7p45HZVuVXkkG7cu/AlCoXlKdQE3bWFujjJkIzauCdnbHu/gt9mbpBEviIUZbnIY+H4eGRmYiSDjZ0SkRlRdlKBmgLhwRRXmLPi8Ucum51pT7xetLkI8/vkOGxoAYCQtDYbCldkR7Nz01NR3Q2F3k/EB++RwYEKg1t6pXF2eojQYXBB0TyNqGBHX3jqgI9vr9CZ0qV5rvlQ083yBvne5R42PsvHWMP7SmX+jIUPof8uw/vlZdOtMu1dqtLDjK0d2uxPHusRmrLsnQTH6nOl5tdo+ILZ8wpYKhne7YUqOqz3CiojDSHHN1VJldahzSNm5RhwHOzZihZ2ZlpmlHExHfKTbZXJtl1h4+LtQlHrZIZLeUQspUQI46VvCBX/HhQcRJLXYyb4PuU4LZU5iZNDwdkO+HBKvRXyvhEWCaDttFeNKASYlSQs/zaGBgYGKwUJuRwtROeYZiYaWMiI2NBlfWzMinlWCWQ9QDiXcanrY4iylGUbyAREBW8MNys055OeQoPzaXWUXntXJc0o+yoGuOVR/dVapcW5IKvs2kzImH3lkIlCf/2ZquGCVLKKvBTEmKiOv4ba4wGCgHGZTbmmrJcyXY5JDA9o0nJPO/X32zVx6FOoY7gF4KlsNmTuUPZBSLDmnMOtMND4i7cHNYhpyV52RIMRfR1D+8oldoyn3z9rRZp7xmX/+eHDkhhTqZMR2dkdCKs63Aa1MQAAD+eSURBVMAa5Ga79Lw1yCstTULRGVX5IBN0gTEIlfKfy8WYBtGW7kxKeBC6yKwmZ/M86nPyZmpMwMGthUuqZrfeE0jLjHbX8Rus6+92zvtZHgPZREGDSCRed5CuSU2sHtHxHrZ/ipBI1C7UsLQVhpexnvi2KCfqyA9nuh5LIoni0ZBoxkEkA6XLxw9W6sBbngfDO2QNAg4p2wyfUiaAb/Vh1nj14TQhhwZziMWkOC9bXBKbuxjWC/GxO9e8+G/ieT42MhcZXmPy+sVe+corN+cKRCgATFH/wjeuKrHwZmfoZswGR0ZQZ/+4JjaTWXO1bUTTfhk90T8S1AGlAB8QRmdapjEvN1TkynserpMvvHhNc3ZQp+h4YuwEZSUUCAzLlJpQcSAVEKQM15R2gKWlO+RDTzTIt093yuXWYd2kQ9lRbbmmlf2d64PyxMEKqS3xydlrg3KlbUSe3FcmrhmHFOVkiiRYuXg/SWO+2DYsX3utRUuA2HKzslxzal9NWY4mOJN3c+btTv0aapnb7ZozJtOtxTwoTNPMPFv+PYlp2cnjutX6vZA08e9sJqsnGO/t624iFFVP08IEbkpTrDHrtbM2f0WmQJ6T8p+PIaoJg1QTr3Geh5BCFDXa/nl+W7FChaOU6k63Eq0zFlxXm4H4GBgY3F8Y8mNwz9A/FpIXXmue54xBRUCdQQ3B00OJgzt6G9zhv3q2U8uDBN1poGIoOrc52kbq7XX5mq8DUJdOXu6Vrr5x/ffVtmFNen7lTJdMhy2fEEQJNYXk52O7StTHg6+IfRTFh9lQEB28ShjT8WYBe7/muT75vbs0m4eZYE8dKE953mPBsHz7ZNtcyzZ0IrHMSbmN5GpIBYoLXiJyk3qGpuYmwesYijSRsqJ6XYPV3PBRhPDXLCQ+ibjRMaoDavOXMGDfLiBADeU+qS72qmrF+6hGc7czofXewCA5Vvv3wmBzwXR7GdwTZGamyzvXrRwdG9zVo/zY4y2gLaQzJ8a4QD7sAZ3ve6RODjRiUg6pAgRJwp/yriNVOmqCIDxUoLKiHO3WosQF8AqR+/Ouo9U6rR0lh9eAaFFWg8DsaSjUri3KTNuq8zXjJ8+XqV+j2ytZ+jJG3mM7S62p9Qu8WRCIyfCM9I9NazfXroYi2VLhn0fsbEDCIF6EFLIeBAyibNnEB9DizTm29YxL0J7jtUrQ6fIpWs8TsRrp4xofkIZK5JRcj0uy4h1wBgapIkPCMzEZGg9J19CUDFMyjpeuDQzuBkb5MbgnIFyPklIi6JJiw+eDivwdMm6yPC7d6CmTMALE9ouQw0M20C6Mv9rxlaHlK/wor53rVi9Qab5DVRSUILJ5tlXnzb0WCc34cfD7QIJokyc3BqPt3/zrZX1MVWmOPHmoUksszMeiNo3nhbJYqjZ2SBOt+4lhjgzzvHh9SNUljEY3ukbV64MB+sC2YrnYMqhpxDZmZkRC6rtB3XHE/TfOuTEhNiAB48GItPQEZFdN3qqRAnw5KwkMpF3eeq/uzevq+aP3GK5jsAJwmTR1BeRGx8i8jlk6B7fX5ktFYVZi9qiBwW3BkB+De4I0R5q2KaPk1Ff4pKrEpyZjWsurinPUUDs6MS1F/qw5k65CDc0O/Tk2ZdQaSlQ83h4Cmrh5xgd5q8maskkiIFqMtqDbiteljZ50aJvc3Owc0z94kFA1CD3EexOOLm7Btu861WBd6tPoAsBd54mLvXps5A5xPihQlLB0qncspl1i3zrVMZcUPTY5rS351WU+Vb7ITOJnUZMoqUHkAKSOzKfOvnENYcxcpfwnO1NnObDeK3xo6tdKc+j4FogpihNT3HlPMMcbxcdgqWvveueoXG4eWvQ9SuKnr/TKbGOJ1JR4zXVkcEcw5MfgnoCw4B31+eLzZmgJ61un2lWtefZYrXp5Ml0YW7OV7BAKiFEZ7qJdPRnpGkj4zrUB2VqdJ9WlPlVmEsEeTPfU+GRIyRMt3Ym+oKQZM7UF0j9qlXey3HRDufT1xidCUlPm0/Z4kpdRnpJlMaEQQZQcsRmdIs5Gjs8I4oNxN89nDVbFVN0X9yNR6mO0xiP7y+X1s91KgGilz3A5deApa8ExADrO9m4t0q63qy3D2taNBwYvDspMZvryCeF3AuZskZeUaop64kwySlR3vLk4HNLeP6ElxkR/EWvEe4yheg3mexqsAWDIv95mRUYkAzdPl1uGpDjfs+bmIhqsD5irxuCeIBye0c0M5eZ806CqMOyZHf0BaajK1bt+Nv4cb4aWfOrKczXfhrlPhCNS6jq6q0Q3Q4jQQvMrUvfs7KyWn1q7xzQQMFlong0sAZigCSfETL1/W7Hm/2BuphWSn2eWF89JRlFpfpYSJDKJ8AWVFWTJEweqpKVzVLI9ZBTNqurDOVB6Y6L8q+e6dLwF4zf4OYBi9faVPi2nkU9DKYwS2LW2YS39aWt7OkqXaNgi3iV8Qjvr8rVEB7mDZK0mJ/C40qW2bPmk6Kp4NMCdgHPoHJzQsSULjdWsER6tC82DpmphkPTaoaS8XGmWrlFS1e9WnTTYnDDkx+CODc5uyEJCG3U4HNUZV4kzzZraR7WEU1Xi1ewXCADkAeJRxCiJXaXyI882yv6thTqCQk22sZgOMkV1oAV8a5VfFZL0OGnYXlMgu+rzNPeHC5gyCmMfGJNAXgxE5P2Pb5Ha0hw5vKtMTl/tU/MyJl9Umn946boU5GTK00eq1aA9NBrU42G6O2oHGTc/9Mw2bcOnVJWb5Zpra8cnVFOeo0oPhA/gX4IMQRi0IwW/zGRECYyW2LrG9BgJ8kN9guxQ9tJ294x0uXRzUJOQeV1UJUghYYP3ArTh8x5B0OzwZAgNcQH4owAqVoHfo4GQvDf8IR2b+IBbz2PNSlspmBh/pWV4kb/Hfh7KGgybDSQQIx1vkp5mzKx3CdZwPa8j18ZSNzaJICnd8pIZGNweTNnL4LbAvRgdTnYpg426sTpPCv1u9dPk57g0rwYFiNZ0fD+oIN/3xBYd/UANn7IPygOhg5RfKHcV5nnkA49tkXA0KpdvDikR+Hffv08GR4LS3heQUCQqBxtLtDurxO+RmeiMvPtIpexuKFSfT2t3QD00x3aVSm25T1OZu/qnJBqZkQ88Wq93koNjU+pLwvRMmF+jJ09LcGevDygBorOJf++sz1ciw2v5s1xWNhMt+JEZLZH1DU9rR9qRXaX6c81xszYKEmUuykn4alB2qsp8+jyUBV3p6dJYm6f5RYNjQSUh6hvK86jSNThqJSQ3VOXpz99N6zdEhxDIroGAkjgIGgSxNN9j5QjNzsqRHaVSXR6Uq61W0CHEDvWO9yUvi/BGKwyREgQde5yPNztT07ohRkvdOZHhtFDxwRTPpsYdPWSMsh/T3g9sLZLRyZAmQFN+hBSimOGNMu7olYH9HyI/OhnWa53fMXK1UFWZM7iS4My1BK6PFT1ulUrDBhsfJuH5fiQ8b5BU0cloTL72eoucudo7r6WddmVCB/HPNLUN69dQaUIRK7sFMsJm39E7rmMx6qv8qnacuTqgZuRcb4ZugkW5bvnhZ7fL7i1+6R4Myitvd6pSlOVxxu8GQ5oM/exDNbKl3CcXmkfky680qVKBb4gdgNEIdHr90LONMhoIaVmKfJ0gZbiZmJbZIGz4kfCdjASCUlGSoyqNMz1d2+JfP9ulpulH91XI88frNEzwUvOwkrCugUlVdphLBtlqrMnXMt3ZawO64fO8lOhoo0fZIsDvetuw/p3NH+WJtWH8Br95kKmJqbA8vKdcSvI9Ulnkla0V/rva9FF7bvYE5JtvtcrIggGnjMB4/nitlBdkydvXB+XfXm9RkzZryCuGQ1GpKPHK9z2xVQp9LrnWNqbk0iIsaVJc4JWZSFRN3lsr/ZKZZDK8I+71oeQF2HfJUYL4JJ4VBI9yJGXRizcG55XYIKkEVe5pKBCn4y58R+sId/o5AfEhgf3tq/0ysqBJAJWRuAdS1tcTARqZDMsrZ6xA0FTg9++pw1XizXRuus/itQynSXg22EigwPO115rlxOXeRd+bCs/Id97ukCM7S7W9ndwcLW+lWdO4KeWcu24ZmPHB/P03rynZubUTxqQkz6MdU5/58gX5zz9yUC63DKoiYmXSWESUu1ha4E9d7lGV5v994YIEJi3TrsPuBotZPWD/9mabPLK3TE5c7JkzGKOGoCZ0DUyoMjU6HpZDO4rl/37z+tx4Bzqu3n2sWq61j6ofB59QbnamtMbHMnA3Td4Qr8fzYrrk76VF2TJwI6gbESWkYDCiZQcUpKHAtOR4MzVYcGB0Ws+BEhtKCqMyIF2ezHTZWpUntaVeiYbv/AODc+wenpIvv3JjrtssEazlv77arKTuH168qjO9FiLQOiJZ7lY5uL0kPmzUUsTSnWkaKTA5FVHFjmGwWytzZfG9t0Uyrb9ZxAeytxAoPBPTYbnYPDTH9XgPIVpjUyFpPz8uvSNTsq+hUHKzM1SxMvdqyUuMb13o0etpIbgGIP9c16VxhXE9gPe7KC9LhxmnQnmxV3I8jHS5r4dmsEFgPD8GK0Lf6LScurKY+NhgiChzmzwJPhFAmvHVVksNKivI1lKYBuwlfAYTUpjtydBNNjMjTc7dGNCZXK+f61bVwWq5dmh56bvvdEpDdb6SGpczOXeHjFB6opxFOU2DEQuzZXtNvs4Nw3fDHjAyMa3EDJXGBsoNr0mpik2YO5dLzUOWf8LB8aXr1HkIjA1KgMV+q1ML5QblkLRnpt4TcEh5h840iA+ACGjooU6jd+mgVUgiY0FsMnfHcIgS1GTExwZmdBKy1fydRsK1V7bX5Km3CnIHMl1OOX25V+et4Xtq6hrTGWnX20eltTegpO8r370pb13uk+iCDZV/kubNWulokRT+DUobFrEcUwUM4gjZZW16Bid0zc7fGJDe4Sn5zukO6WAwqrF3zAPXJYQ0GfGxQZOAGu7XCfGxN6ZD24v1RiIZUFT3bmEO3n0/NIMNAkN+DJYFxuYLlCWW+Oxkk2PjIsjQNjxztwkpoisDMLOrqcMqoSSCz+TAVEjNynR98YEOkTq8s1RK8rM17JA/fBAe21WmxKazb0LvDpOBw6S0xDFDeBhUyq7ZMzQpnf2T2ub+zJEqJSZ0HTHGIREtXQHtdOL12FRQS4bHQ9LWG1DFis4vhqtS3iIHiLvp8amI7N9WpD/POXs9LlWNRsenZXdDkfow7CGt9jnzMyQ95+W6lXA19wRkeHx+2eJ2MToZ1cGxSwHVDJ8Vys4TBytVgYGAcjwNlXnqiaIU2dQxquQRctfea40GWbipouhdbhleZDplgGp9pV8CE/NLXTZQxHgN1oqwR7w+JPl2DYzPS75GQSQROzMDb1i/DJnunnlAfWyPj3lZCpTD+P1cT3A70+Th3aVyfG+5esBoKuD38rEDFXJkR7G41qmh22BtwJS9DJaFml6XyNSxQbkLJYMPJe7cISCoDLa/gxZ3yBEb2kLwNVuFIAgwP9ctX3+jde7nAYoAnVwff/9umZhmArs7+fHGFRxSYMcmwvLt0x26UeN/wJcD4YG4HN9XrqRD52olAHLG8WK6ZnOGGEDobBLXPh1R5YcP4uFAUMYnI/p6dIzxGLxPR3eWSt/QpP77+L4KnQ6PgpHIBPjs3laD6TpH3rrQrV9jfe52M1xK9QGQsIYqvypQrLFdFgSoa5jXMZ9DTiApzEBLBdaKOWmM9oDw2MBf1Vjpl57BKRm9Mj3vPWe1OefdWwrUl2Qd96wSpcRjsaFjQbKsjCber4LdZXGKa8CarMRXEYuv8XoDfq8Sv1uN+tww8DuT7PPDwOB2YciPwbLAbMqGvhzYCFER9tTnyfBYrnYQcZtOCjJGYu7e8bYkA5ssd/94htgcKXklEh8bGJ5RIZRkOZPf+fHRCLnhMWebBuaNpoDUUJJC0WGq+buOVGtQYSJQrCBumIAZ70D5ZuGeDHFgXTBwD45Oqz+B/GmUJh4/MDw1R5aCwbCaviF0kELOky4viB6GbIiPvekTB3A3gEAmG52RCAzfRBIwiy0Z2RgJhOTkpV5V2VDLEtcv2fvGZjQwGhRvac48Twm+w/pyn/hzMqRnYFLGg2HJcKYraYRwokbY6dsYnMcmkqte5C/ZniwI9lQ4Klkr7Aba6NAU8hWsBWoZ3rL1CC6pWJzw3N2tgYHBLZiyl8GyYC7Vni2FOnphKRRxh1aQJWkxhxTlZmoL846aPKkqztZW8KlgWPZssUpDCz+Y6R5CXcKQ3D04lZT42KD8lJfjWTLfA7KGx8aRMM4BLw6bvrU/x9Rzw2a9MOmYYaowqAs3hnTjxewbnF7sqYBATQWj2u1VV+bTLjPKXO09gTniA5o6xnRd8CtRWqKsRxs4/75402r9B3UQpBWQzKXgz87QlOylUOzPkuGxoIyNz+8Es8HxYOqGzLpdS5MxSoeQQOaoLXw7IEX4mTp6AqqclRdk6/n1DExIS9eYqmcQRUgmZDBZqB3kCvJst81zbOvIurLqSBOHXjfLoTA3a54yZ2Cw2WHIj8GKUJibqeWbpS6kp4/USIHX8uGwQUE2aIXGRwIwvhble6SuYv6HNd6YwGRI1RWnCwXIahlPhbaeMQ00ZGNMBTZZNlxHnAhZSlG6khn8ONwtY8rFgF1eyHwul/4hiHB3fYESLAgACgVjLlKpH+T9EGRIl9XQWFBCSUgbxl061fZtLdJOM8p3/B9VyQbE8l2Hq+cFC94JZmfI7ylZUkEi48id6VrSJMu68X260lI+DzPK4v4u/FrJOol8ngypKvXJ2ERIVRsM5jbJ4Ws7awuspG+nQ1WrhdhRky/jU6H5qpwx/cyBNS+JJ6QvpQ6RL2UsMgYGt2DKXpsIKA6UGaKzhNdZYw5Wmp+SFhN59kiNKjivn++eV1Zh83rmSLUc2lookcjs3GuRrWPl/ORoKepy65D09o/L+47X6XOofyPXI9kep+bnbKv2S22ZT260j8ioz61lEciEfYR8dmfEu60GR6f0NRkdQYZQptPK+QlFIlJd4lOz7ch4UMpoQR8OWhtm3B+NSRnTL51NKDq0zF5pHdENHNPy6+e7xJeVKY/sLbcGtEZn5ND2ErnUMqRqkQ08RLvqC2RHbZ44YlaHGSSO8h4vx2aO0uTNtozRH3pqq/iyXfLmhfndWLT5P3+8XrZX50kk/nVHWpqMozbFGInhVBIJmbRhJUlbQ0P1WJzWUFnWuzg3Uz789DZ58USblq3m3kOHaNAh+Tm9QxNKxngPUKNscMxMsd9S6Re3K00qS6zhr4lKFs9D2CGbLu8JBIgE6+T8MCZ76vP1ekARS1R3aJnf31isRBavUW5Oppqb9Xwy0rWESD4Sg15tMCCW0L7NkPuzUmQ4rXDPM9f7tTU88X3gmt7TUChF+v6YNTMwWFchh6Ojo/LHf/zH8vLLL8vExIQ0NjbKL/7iL8rhw4f1+x//+MfljTfemPczR48elc997nN39HobLeSQjZIsEILn2IBIS8ZjUVKQrZ4MuqZWGoCW7krXchLqxWQoIvk5bvWuFPgyJRqe0U1ueCKsmxmkhNRjTLyYgWl7x0DMjonhlXIHycwEEzJhndIQ7eEvnmrXJGhKX3T+oALF4mSDdnL+z53ss0drtTsKFYUNkteGPPHcmU6HvHSqXTcCPD7k6fB8KDS0umOcDkVmlbjtrs+XWXHo+w5ZoJxWV5YrNzuHpW/I2kzw60C6MExDcijTUNLRuVy1ebp+4yGrTf5m15j+Oy09TQpz3bqBY37mZ7ZU+ZXM0DLO+0BJhw3dTlTmALuHJuXMtX71NuFR5bUhZYQfEp/DWvSPTsvNrlEtXfFvSkgQFohUWjzoMBiJysDYtHaaQYxIbiadeToclW+f6tALA/IE+WFMAMTH7yUKIF1fhEBEOm3O3xzUTit8N5BPzjkjHaJlEdK924qkvsy35DUE2ZwMRVVp432A8Bb63OpPIplpKjSrA3FbegJ6rKwtvioStG1AwhgY6yWhegPibj8nWP3xYET9V5QHKUny+8RQYUMW18Zn8WaAc52EHK4L8vOJT3xCBgYG5Dd/8zeloKBASc2XvvQl+ed//mepr6+X48ePy8///M/LM888M/czLpdL/H7/Hb3eRiM/wciMvHmxVwIL0n7nppDvLJVSf6o79+Qg4A4iwVrZ3ReQhs5BNu4+7fapLvfp6ARKSPbmRZYMZGhwZEp21OXrxo56w7FhBGa4Z2amS1uoCcfDU5PYH85kdwgVqbUYjBmdAYnKzsrQ3JjRQFBmorN6TrQAQzqsY9P/xp/m1ok+ur9CinPdujkQG5Se7lTCwZiNNy70LgpZg8Awc4zNBTWEtlvuqhn5gUnYKtc5dCOnPZ+NnbIbQ1aZCA+B2Fadp3fjHMfkdESzSijn8OfM9QF58cT8DiwbTLJ//uFaaWofUZKVDCg7e7cUzKtnc/2BuWvP4ZA3L/Zo0CPgfXQ4rMckqkuP7GNtMoW3F0IH4eXBGLhZL0qI22rypbYkZ8WJ1FZmU9zEuuBnIK/T0Rm5eHNYR3LYGzaPJwdp39ZC9TRt1I38Xn1O2DO9NPBzYy7Vuv0s3gxwrhPys+Zvodra2uT111+XL3zhC3Lo0CH92q//+q/Lq6++Kl/96lflox/9qAwNDcm+ffukqGixmXbTw+GQc02DSYkPYDM+c7VPniTv5TY6aKLRxd4WZkCdpYNIja6Z0jcUnCM+gDt+Ag7xfuChOXGpV545WiP9Q1Nznhrmgx3dXSbF+QwKpYw1O+ejoRRCecenoYBuORFvD6eUwugLj8faGHmmc9f75eCOUqujCOUobnJOBP4evEH2ZhqN8scq77B/MGn9zQl+/tYvcGLZCy8Ld9aQS9aQ12FzH5sMy0hCXg8kCPP0tiq/9A5OKOG52jYq3QPj+r7w6viQSoty5shaMrR0j8nVthFpiadNJwMT7ylB1ZR4E85r/gcQpJGkbY6L8pvVAT2bZG0yrPZiEWms8ms+Emne4xMhVX/wTGVlWN1eK8VSGzLHm5GWJgdRuar86rlicVC18Gzht9+oxOdewqyRgcEGMDzn5eXJZz7zGdmzZ8/c1+zE30AgINeuXbPKFHV1D/Q41yrwjSwVEQ8gF6gAdzMFGlNlZ//EXEsyJS7KMolA+SHUzzb6akBbT2BewjK42jqkwYQkEGdnOiU322WNN8hM1/LY0Z1lOi9rqY94vE39w5NattH2+fipca1Quqmt8KuSArlKdt5a6vJm6MytwtxbP4+/pbosRw7uKNENmrIcJl5UKwCJSyQ+Nmhx53XxF5H3829vtejjWAOeG0WJ483xZujoCZ6b9UoEXWcnLvXojLCl0Nw9pr6uVODcGNj68N5yNaBzzKwX89o4RrrF6NRLNBar0sP3qvKkvixH1bLMdEqFq7DRxmKS43ZKdVG2VBd7JTfLGqJqVAwDA4N7hTWv/Ph8PnniiSfmfe0b3/iGKkL/5b/8F7l+/brk5OTIb//2b6tClJWVJc8995z83M/9nGRkJE8AXgnsUsG9gC3DrVSOu1fQgYfDESUJyxGbvuGgKhN3etfITw2M3iJQkCG6hRLb0emcQvWwOnastegfDeroicTjowyGHPHQrhIZD0atf8fVEW+WUyaCUVUFEn/G/nvi1yB0TGh/fH+FBKYi6jeajs7K9DTek0n59ql2fZ9LC7N1Mn1uFkrH/PMv9rsl/0CFdmzpzKnJiCow3QMDulZ0cQWCESUbqCEoKfxZ2IbPs/L6+H1IRMZfQ4UpDxXL75Gm9lE5fa1PJiYjqrCgbKHOYACGVNpdWhduDmrpL3OJbi6OFYIEgUgFDg/fDQQzN9utoZG8P15PhkYW8B4tvGTs6xc/UYrJIquEzdGm9KA+JzYTzBqvPtLXyRqvefKzEGfOnJFf/dVflWeffVaefPJJJUChUEj27t2rxucrV67I7//+70t3d7f+/07ABkrN8l7D50s+p2Y10TNqlYOWg3ZR+ZbOzlkK5Lzg1fF44qF1znRtLU8EvwysLYZW+3v4dTIIP1xwjBmZLsnzZ0teEttWZGYy5TlxDHN/dzGpHOPvrA7lTHOmycDAuIyMWxPV3fHnGBwLyfi1AXl4d5kqS8ng93m026upc1R/1n4dDODTY0Gdr4ShGC8U55ZMpcjNceucM77POnizXVKUny2vnevWLrFwmPlWDi0LskaQLDxJlKUwsWJSx5vDzy71nkJaPG6X5OVlpXwMr3Hqau9cfg5kTOedjYelo39CGir9sn9rkV4Xa+E63kww67v6MGu8+ljra7yuyM9LL70kn/rUp+TgwYPyh3/4h/o1FJ9f/uVfltzcXP33tm3b1Oz8C7/wC/JLv/RLUlhYeNuvwx19ILB0qeh2wKbPhRDAjJskyG014XY6ZHra2uyXQm65T4/vTpUfDSp0O6Wn32pLjkat7Ba7HATCEYe4XemqgtD9BfBzTNFBFbw1PoPSUmx2Vg1zyRBj/ITE5jZuACGAkIRCET0HlJiwyynnm/qlq39Cyzp9w5NSU5orVaU50tVH2/Wtcw0GRU5d6pFH95YnzUNBOXrnSu9iI3J8gOmVUFS6+yekojjbGq+xwBPF1zwZ6dI3RGlwRktadMq9fbVPiQ9gEjq+ocm4CsPf3zzfLU8cqtS0bDrNSvOzlKgkrtdCoBDNzsykXD8O5szVfhlcwtR/salfPT8FCaGLD/I63gww67v6MGu8sdfY5/NsHMOzjc9//vPyu7/7u1rS+u///b/PlbScTucc8bGxdetW/X9vb+8dkR+wGi51nfZ9n93veGbyczxakkoFOr7YVMNLpCqvBLS8k9EDQQiMh7TtnInoNmgRZwwE7cs65NNhpRrTBZVIusqLcnSoYaq1IteEEQm0wy+EEp+ZmHQOTMhDu635WmB0Iqwt3RebB2UoMC17GwqkrfuWGRvgjaKc5lsQNMgvE5PMbT9TIiBgRXkebdnm7zwGszedaolgQCvHhorDudMCj+rF8dlnTlmP7Jt5pbJQVMbGw9r63d0/rj6dLjqhlvDa1Jb6dCZSqvWbiswoUVuO6GI+z2ssWvS4B3EdbyaY9V19mDVefaz1NV7bRbk46PT6nd/5HfnIRz6ieT+JXp4f+7Ef0zJYIi5cuKDqT21trWx2oGLs3VqobcnJgIpA2B0k6W6Bx2R3Q6GSGsy89RW5Gjho+3Dw1zDnidRgHrN/W7GEwtF56cmEHhJ2mLjh0orNHxuYbMmVwW+T+BhgdVuFlFTRQm53amm+UIL5eGgspAnFieAwLJ/S/PPi+BhuulQJ6cjOElW6eD2I5JaKXM0TsoPmaNMm0ZgAwbKCbB0eCtFKpBXMvSLoj59LDEEcHJvS58B4jUm7ujgn5bEwoZ55Y0sRGwzuyYjcQjCqAxP0/Qbrb0KcDQwMVhNrXvlpaWmRT3/60/Lud79bfuZnfkYGBwfnvud2u+U973mPfh/Pz6OPPqrEB6/PT/7kT4rXm9y/sZnAho6SgXfkRueYqgdsfqgZhXke2VaVJwW+lYccLv1iInWlPlU5RsZDMhQIyrE9ZbJ1LE/LNrOzszrxHXNxeXGVGnPPXh9QpYggQCacN5RbqoUizSFD49ZYBM4DtaQgN1NwoTjFIcd2l0hzz7hcaR2W3uGgpKWFtEX70I4SCYej0tlnGYXBws20uWtUW6o5hhVtxkt8H0O2My1NfuCZbZq6PDI2Lb7piOzcUqhdaihrLZ2j6hsiKRoDMx1sKMK0798aiRHT6eWYnZlGr6SRLqtMlxzeUSI1pT7xpDtkb0Oh5Od6dDo9I0No7mc2Wn15ripiy4xgWzGxsDN57hcIQpwKzcjoBCMwYkoCWQ/SsU37toGBwaYiP3R2RSIRefHFF/VPIj74wQ/K7/3e7+mHNMGHkCCyfj72sY/JT//0Tz+wY15roMzCFOz9DQWa14IfBkMtHhQyX1BI7hXCMzE5daVPzjcNaJmJvZN26h21+ToDi5A6NjkSjBmuyWbNHk8GUGtXQEtGlQVuGR6Pynfe6ZSmjpE56RSCQQjik4eqpMTvkfbBCbnUPKzeGDrGAJsk3VQECZLijBKjBDArY55HiPRgTNmJoAxFds0if1SMUpxXSVgqVJbmSFPHaDyccUqvSZ27VJAlH3xiixQXZGswIUnTmJeHA0F5dF+lvqbLk64Jy4DXR9GCDDKGAjy8p0waynPUEA0QuWpLvDqTzFa2IAgrJQkMYF04siIZmLlGoOP9IB6EW1+5OSQdfYF5uUp4wnbVF0ppvvueXqcGBgabG+si4fl+Y6MlPN8voF9882S7nGsaSPp9WsE/8vwOeeNct1xtG076GAZh/ujzO+TLr9yQ3hSBf5SV3v/YFvnsVy7oqA2g09vT0jQcsb13XEdcPHOkUnOEAISvNWG2FMfyxMFb3wd0ax1pLE46A4nxIN8505F0cGlDtV/aeifkxZNtSioTJ9JXl1CG8kkgGJaKgqy5XJzJ6ahu7IzT4O8Q0SyPSwebJootlLueOFChM9XuFVCULrYOy/W25CnRAFIGyfQmTAJfreuYZzrbNKjjPFKVZo/tLlPCu5E/rjbL58SDhFnj1YdznSQ8rwvPj8H6QN9IUBWfVCA7BqWGUMBUKC3KVlWImVqpQMmHwaioKAsBOSENuLVnTBUYOp8AM8Hww9AuDphrht/o1nO6Zc+WgpSbqycjTUtWCyfJ8y+PO0O+83bHXM5PIrZW58vJK32a4zMVV26A1+Pk1kOO7CzV0liB36M5Q4nEh5IYr0mH3L0ESs62Sr+UFSYvC5PRtL+xaMmcoHsJErFTER9AWfRyy5DOaDMwMDDYFGUvg/XD9s/dGFgydZmZXG9f7ZWCJfIfCPh76WSbRJi1lSKYke6qr77aLHk+tw5yTATlrOI8j45uuNg8pAGH6ouJ4SFJ1w40DNHMFRsZDercLYzZmJDxI6UCnKg0zy1PHKxSBYkxFWzKNeU+6YgPVaWslsidKOFBsOxy28RUWDy5jNOwnm8mGlMP1sHGYlWtKAPyeFQXhp3i8SE+YDXKTqzt4e3F0jfCRPVRPUbOgZIb88Hysl33pdwF0WII7nLg/STwkmRqAwMDg7uFIT8G9wQYVJkwvhQYPAoRocvKSjhevLniW6GzKid7/siLRCBr0q5e6M9KWrIkW4jk4onJ8DzDLoSDNvmnDlYqsZidmVXStlJfC6SFMtDe+nxprParSdzny5TP/9u1uRTqRDCyItFQjcfG4YD43VIw6LpiHhdpzk8crJBIeEY9Ucwws1rjV4+AYIymFFeW79EcJB2z4Upf9ddNBC9DrtFKoHPVDPkxMDC4BzDkx+CeIC3dIS7X0peTdns501XZSGxvTwSEyJM53/eyEKg4lISsEaaLQQs5pSTmY9FWPzkZnitt1ZXlaqeV/mi8hHW7Gz2PV5WItOp4eGEy4C9KTLnmvFOV1fg6j3Tc4THdKTRviRLbfX5dG5r2nb6yst7CkqOBgYHBncJ8mhjcG8yK7N5SsORDhgMh2VWfr+WVVL5VggZp5aYckgpMQj+4rXjehPVkPhI8Lbtq8uSJA5Xy+IEKObi1SIdkLlmbu01MTUVk79aipKnQeJvI5oH0ZGZYnWTJyAUEgLLbZmzn5pwpdS4Hj9spXqP6GBgY3CMY8mNwT4CqwwRuOrFSYXBkSvZtK7YFl6QgtfmhPWWamJwK7b0T8viBKk2MTgWUnwONRRIKzWh5h+yg1SIXJflWfs9C8Hqd/eOyvTZPy2x4jpKBwap0eW1GoDwV5brF501d5gT4sjz32PhtYGCweWHIj8E9Q3ZGmnzvEw3aVbUQZPQ8dqBS6kt98q6jNVqCWghtPz9ULVXF2fI9j22RnCTDO7PdTnnsQIVsrcqR739mm/4br0osTsDI12Eq+Uef3ynFvls/j7dHnTZpDv37vUSGwyEffnqrvP/ROlWtdtblq5EakFOE6vTI3oqkIykgPgwQXa0swXSXdd6zDstztRaBD+vozhJVxpKpYpQvt5TnbkplzMDAYHVgcn6SwOT83DnoJKelu3toSq60DGkAIfO86K4q8GYoS8GwHAhGpHNgUq61DavPp7wwWxOe6TJit8YGMjIZ1c4qpptzlVIeYWwEc65mo7OSliHSPxLW9nkeQ+lpV32BqgQoUKFgRDf+/rFpOd80qPPNKEERgMjUcl7rXrwfcBoSra93jcngSFA9RxVF2RpUSIcbydR2Jxrnw6gNfE10nnEuq3IHkiYyGAjLxZuD0jMwqf+uK/NJY22+Ditl/dbSdQyBJSCT0mibzlGbkVyvW3OSiC5wbIJPqc30OfGgYNZ49eFcJzk/hvwkgSE/94YEYYDm8uIKiyzIv7Eek6aTzK3HxCSSkOybuHZWNI9Vtrq1fg557VKPfPHbTXJ0Z6lUFGYxH0Gutg5LS8+Y/Ph7d8rO6nx5+WyXnLzUrV1FiSBg8Hse3yK1xd67ek9oyT9zbUDnhdnIwIwdswIKDzUWi8/DOljfS/zFXLWJx2kOefvagHzndMeibBzKic8dr5PtlcxPm11z1zEkiDWy12szTd7ejJ8T9xtmjVcfznVCfky3l8GqgH01tMz4BDbfUGjpX45kvzz8cl1oHZG/f/Gavs5r57q1bGSPlGDf/MabrdptdepS7yLiY6swX/nuTfno8zvEd4dDXWlJv3RzaB7xAeF4wvNoZEZOXe6Vx/ZViCtu4F7tzRwz+Y2egHzrVFvS82ZK/AuvNUve8zulKGdxWfFBA9JjNiUDA4PVhvH8GKw7TEdn5dV3upT4pAKdXm+c75HCvMXeokQCxDyuO/UAMZaiq398ycfwGsPjofs2IBQl6tTlvqTExwYp1Odu9N9z75OBgYHBeoH59DNYdwhMReRi8+CSj/FmZ8j1jhFxLpMhc711RAP+bheQGXw+hBQuh7a+wIql2LvFRDC65KgIG6Qqk5hsYGBgsBlhyI/BugMGaRKlU0G7v2IxHSKaKgjRBp6YOxsZRUL1yn4wysjy+wTCI5MlZy8EozVSBU0aGBgYbHQY8mOw7sAIDOZ3pQJ7uiM+W2u5ahPzwTJct/9rALnyJmnFT/oaORn3bRo5Kci5S4wGsZGbk6kp2QYGBgabEYb8GKw7kONDh9dSYNjokZ0l6rlZCvu3FemMrzsBHWP8WQrMMKsq8akKdT/A6I4d9fnLPo7zzrxPpTgDAwODtQbz6Wew7hCejsrxveWak5MKkJKH95QvaTQmlblsiUTq5ZCR7pDdWwo1OygVtlbniTdFsvNqYCYyK4caS3Q6eyo0VOVJQ0XupmojNzAwMEiEaXU3WHOgXTsyE5NgeEYiM9a08UxnuoYYMkSUvJ/CHKd88nt3yzvX+mUiGNEkYB44MzMjBbkeOdhYLLkep/zAu7bJ6+e65UbX6FwLdV5OpuzfViyHthfrMNE7BcdR4vfoOI4rLcMyHAjO5dN4PS4lGTWl3ns6S2wlyPWky/c/tVVeO9+tIZJ0dwESs3dtKZRju0skI9kwMgMDA4NNAkN+DNYUYg6Rtv4J7dRq6R6XsYlpJTbVpT5prMnT6eMkPTtmHJKdmS4leVkSmByVkcmQkqN8n1vTot3ONCU7JbmZ8n2P18vIRFhJkjPdIb6sDB1wei/yZHQ2lc8t+XvLtPUdooESxNgNjvVBjGTAh02w4vsfqZVH9pbLeDCsa0hScl52hsnRMTAw2PQw5MdgTRGfq+2jcqV1WLoHJmUieMuvw4ys3qFJ3czfvton+7YWy8lLvTI6Pq2m5nxvhng8GRIMhuVC04CMjAXlQGOxjspAeslj40+YCn4vCQAEiMJXjtupf2w86FlUjLBA/eKPDUN8DAwMDIznx2CN5fc0tY/I+CQqzWKj8vhUWK62DUuW2yXnbgzK2EQo5XN19k9I/0hQU58NDAwMDAwSYciPwZpAWrpDh5OSUUN44FKkJicrQy7eHFg2z+Zm56jJsjEwMDAwWARDfgzWBGgFHxsPKaFhoncqMK8LE/TYRHhZ8jMZjNxRerOBgYGBwcaGIT8GawKUp26VqJYuVWln1woUHX06U/UyMDAwMFgAQ34M1gTo1Cor8mqnlCfBNLwQ2W6XPra8OGduUnoqFPizxO0yKcYGBgYGBvNhyI/BmgCdURWF2ZLpSpP8HHdKwWZLRa4MjQbl8PbiJc3MZAXVV/gk9oA7rgwMDAwM1h4M+dlkgBQwYTx9GdXkQYAkZFKXc70uKcrLWkSA6spypbwoW3K8mdJQmStbKnNTnuPerUWS711+xpWBwcp+X8xHpYHBRoLJ+dkkcKQ5ZGI6Kj2Dk9oynuFKl4oir4b9rRUaRDhfaZ5HnjhQJe19AWntCWjnF6UwiE6eN1PyctwWqYnFZFdtvpQWZEtz55gG+XncLin2u6W21Cf+7Ayj+hjcMVAVp8Iz0j8ypdcgM9oIz8z1ZgpzcE0ToYHB+oYhP5sAfE5fbRuRGx2j2i1l40bHiJTkZ2kY4FoZckn5y5uZLrtr82VbpV+DDx1Kz2LiSk+LExpr5+GrhTmZUrSzRKJMWc/OlGg4KpHIzH2bom6wAeFwSFvfuFxsHpJwfDSIHZ2Q53PrWBTCLM0lZmCwfrE2djyDVZXtb3YH5Grr8DziA/jw7h2akrev9Mt9Gjp+WyTImeYQl8MhToeI0+FIqeRAdBgl4c3KMKTH4K5/X3pHpuSd6/3ziI+NkcC0nLjUK6Gouc4MDNYzDPnZ4GA4KHesSwFpf3QydbCggcFmQXQ2JtfaRpZUdUgg7x2eVKJkYGCwPmHIzwbH2GRYgqHoso9r7Q6I02kuB4PNDYbTjgamV/T7MmNURgODdQuz221g0AnOlPGVYDocNR4Gg00PSsMr+TUgZXy5hHEDA4O1C0N+NjAgM56MlXnasz23Jp4bGGxW0Fm4klm4ma50caaZj08Dg/UK89u7weHLdi1LbPisrynzycwCQ7SBwWZDttspBT7Pso+rK89dMxERBgYGtw9DfjY4GO+wrTpvyQ/q8mLyfjLu41EZGKxNpDscsr02f8kQUNrdi/M8prPQwGAdw5CfDQ5axqtLvLKvsVjcGfPnXPEBj+JzYGuRuRAMDOKxCUX+TDmys3SRYko5rLQgS47tKhWX6fQyMFjX2BAhh7Ozs/Lnf/7n8o//+I8yPj4uR44ckd/4jd+QqqqqB31oawKOmEhdaY6U5mfJcGBaxqcikuFKk6I8jxXWZqpdBgZz4PehPD9L8g9UyMh4WMYmrYTnIr9HcjxrJxHdwMDgzrEhbvj/4i/+Qr7whS/I7/zO78jf//3fKxn65Cc/KeFw+EEf2poBAYFuZ5pUFGTJjmq/bCnziTfDEB8Dg1SKaUZ6mpTmuWV7lV+2VuSKzxAfA4MNg3VPfiA4f/3Xfy3/8T/+R3nyySdl+/bt8id/8ifS29sr3/zmNx/04a05YFPgg50/BgYGS8P8vhgYbEyse/Jz9epVmZyclIcffnjuaz6fT3bu3CmnTp16oMdmYGBgYGBgsPaw7j0/KDygrKxs3teLi4vnvncnuJdpx+nxoaH2/w3uPcwarz7MGq8uzPquPswarz7S18kar3vyEwwG9f8ZGfNbtTMzM2VsbOyOnpOZPXl52XKv4VtBfojB3cGs8erDrPHqwqzv6sOs8epjra/xuic/brd7zvtj/x2EQiHxeO5s8anvBwJT9+wYYcBcCIFA0AQJrhLMGq8+zBqvLsz6rj7MGm/sNfb5PCtWnNY9+bHLXf39/VJdXT33df7d2Nh4x88bjd77N40LYTWe1+AWzBqvPswary7M+q4+zBqvPtb6Gq/totwKQHeX1+uVEydOzH0tEAjI5cuXNe/HwMDAwMDAwGBDKT94fT760Y/KH/7hH0p+fr5UVFTIH/zBH0hpaak8++yzD/rwDAwMDAwMDNYY1j35AWT8RKNR+bVf+zWZnp5Wxeezn/2suFxmUrmBgYGBgYHBfDhiZjrfIrAk9zrUDBOWMditLswarz7MGq8uzPquPswarz4e1BrTqe1gCN8KYMiPgYGBgYGBwabCujc8GxgYGBgYGBjcDgz5MTAwMDAwMNhUMOTHwMDAwMDAYFPBkB8DAwMDAwODTQVDfgwMDAwMDAw2FQz5MTAwMDAwMNhUMOTHwMDAwMDAYFPBkB8DAwMDAwODTQVDfgwMDAwMDAw2FQz5MTAwMDAwMNhUMOTHwMDAwMDAYFPBkB8DAwMDAwODTQVDfgwMDAwMDAw2FQz5WWXMzs7K//gf/0Mee+wx2b9/v/zUT/2UdHR0POjDWrfo6+uTxsbGRX/+6Z/+Sb9/5coV+ehHP6pr/fTTT8vf/u3fPuhDXlf4X//rf8mP/diPzfvacmtqrvG7W99f+7VfW3Q9s842zPouj9HRUfmN3/gNefzxx+XgwYPyIz/yI3L69Om577/55pvyoQ99SPbt2yfPPfecvPDCC/N+PhQKyW/91m/Jww8/LAcOHJBf/MVflOHh4QdwJut3jT/+8Y8vuo4Tr/U1t8Yxg1XFn/3Zn8WOHTsW+853vhO7cuVK7BOf+ETs2WefjYVCoQd9aOsSL7/8cmzPnj2xvr6+WH9//9yfYDAYGx4e1rX+1V/91diNGzdiX/ziF/Wx/N9geXz+85+Pbd++PfbRj3507msrWVNzjd/5+oLv//7vj/3xH//xvOt5aGho7vtmfZfHxz/+8dj73//+2KlTp2LNzc2x3/qt34rt3bs3dvPmTb1uuWZZY/7+V3/1V7GdO3fG3njjjbmf/5Vf+ZXYM888oz9/7ty52Pd93/fFPvKRjzzQc1pPawwefvjh2Be+8IV51/HIyEhsra6xIT+rCD6cDhw4EPu7v/u7ua+NjY3pBfPVr371gR7besVnPvOZ2Ac+8IGk3/vLv/zL2KOPPhqLRCJzX/ujP/oj3SgMUqO3tzf2Mz/zM7H9+/fHnnvuuXmb83Jraq7xu1vf2dlZ/fo3v/nNpD9r1nd5tLa2xrZt2xY7ffr0vHVlo/3TP/3T2K//+q8rwUzEf/7P/1lJpP3+QEq5sbLB5s5znjlz5j6eyfpd48HBQf3+pUuXkv78WlxjU/ZaRVy9elUmJydV5rPh8/lk586dcurUqQd6bOsV165dky1btiT9HhLs0aNHxel0zn3toYcektbWVhkcHLyPR7m+cOnSJXG5XPKVr3xFywK3s6bmGr+79W1vb5epqSmpr69P+rNmfZdHXl6efOYzn5E9e/bMfc3hcOifQCCg13Di+tnX8Ntvv83Nv/7f/pqNuro6KSkpMWu8wjXmc5m/s27JsBbX2JCfVURvb6/+v6ysbN7Xi4uL575ncHu4fv261ok/8pGPyPHjx7Xu/N3vfle/x5qWlpYuWmvQ09PzQI53PQB/yZ/92Z9JVVXVou8tt6bmGr+79eV6Bp/73Of0cc8884z89m//toyPj+vXzfouD8jgE088IRkZGXNf+8Y3viFtbW3qk0p1DQeDQRkZGVEfIZt7ZmbmoseYNV7ZGnMd5+Tk6LWLJwhf1Z/+6Z9KOBzWx67FNTbkZxXBLxdIvGAAFwDmL4PbQzQalebmZhkbG5Of//mf1zsRDKA//dM/rYbG6enppGsNzHrfGZZbU3ON3x3YNNLS0nQT+Mu//Ev5lV/5FXnttdfk537u59TobNb39nHmzBn51V/9VXn22WflySefTHoN2/9mc2aNF34fmDVe+RpzHbNWe/fulb/6q7+Sn/3Zn5V//Md/VDM/WItrfEvLNrjncLvdc79g9t8Bb7bH43mAR7Y+QenlxIkTkp6ePreeu3fvlqamJvnsZz+rX7PvNGzYv1hZWVkP5JjXO5ZbU3ON3x3YJH70R39U74rBtm3bpKioSH7wB39QLly4YNb3NvHSSy/Jpz71Ke1G+sM//MO5DXbhNWz/mzVMdo0Ds8YrX2MUn1/+5V+W3NzcueuYUu8v/MIvyC/90i+tyTU2ys8qwpaq+/v7532df1PrNLh9ZGdnz9sEwNatW1VWRdpOttbArPedYbk1Ndf43QHVxyY+idczoBxg1nfl+PznP6+K8FNPPaUqmq1QsobJ1g/yTqmGa5w27oWbs1njla8xN6Y28Ul2Ha/FNTbkZxWxfft28Xq9qlbYwBx2+fJlOXLkyAM9tvUIFB7uNhLXE1y8eFEaGhp0TTHWzczMzH3vrbfeUmNdQUHBAzji9Y/l1tRc43cH7oo/9rGPzfsaig/gmjbruzJ84QtfkN/5nd9RL+Af//EfzyuxHD58WE6ePDnv8VzDfJZAPg8dOqQlRtuUC1paWvSGyqzxytaYPB/KYAuvY9Sf2tratbnGD6THbBOBbImjR4/GXnrppXkZHeFw+EEf2rrDzMxM7MMf/nDsve99r2ZFkNnx6U9/OrZ79+7YtWvXtN3yyJEjsV/+5V+ONTU1xb70pS9pvsc//dM/PehDXzdg7RJbsVeypuYav/P1Zc1o9yXLp62tTVuBn376aW3FtmHWd2nQMr1r167Yv//3/35exgx/AoFA7Pr16/r9P/iDP9DPjM9+9rOLcn5Yb9b9rbfemsugWZjHtJnRvMwaf+5zn4vt2LFDc37a29tjL7zwgmZTce2u1TV28J8HQ7s2B7hjhiWTQIzxDpZLSmZlZeWDPrR1Cdqr/+iP/kheffVVvQOm5Zf6M3d34Pz58/K7v/u7emeMd+ITn/iEphMbrAwYbru6urT7yMZya2qu8btb369//etq3sfMTxnmAx/4gPyn//Sf5koKZn2XBuWXP/mTP0n6vQ9+8IPye7/3e9oR+gd/8Aca0cC6Ubp573vfO/c44gY+/elPawcToGMJs+7CkuRmxV+uYI3/7u/+Tv+QPm771mhGQV1bi2tsyI+BgYGBgYHBpoLx/BgYGBgYGBhsKhjyY2BgYGBgYLCpYMiPgYGBgYGBwaaCIT8GBgYGBgYGmwqG/BgYGBgYGBhsKhjyY2BgYGBgYLCpYMiPgYGBgYGBwaaCIT8GBgYbCk8//bSGCRoYGBikgiE/BgYGBgYGBpsKhvwYGBgYGBgYbCoY8mNgYLDhEIlE5Pd///flkUcekf379+s8sra2Nv0eJTGmUH/xi1+Up556Sg4cOCA/8RM/IVevXn3Qh21gYHCfYMiPgYHBhsPXvvY1aWpq0oGLv/mbvykXL16UX/iFX5j7/pUrV3RQ43/4D/9BB16OjIzosNb+/v4HetwGBgb3B8779DoGBgYG9w0lJSXyF3/xF+JyufTfqD7/83/+T5mYmNB/j4+P66Tqw4cP67/37t0rzzzzjPzt3/6tfOpTn3qgx25gYLD6MMqPgYHBhgNkxiY+oLKyUv8fCATm/m0TH1BcXKzlr1OnTj2AozUwMLjfMOTHwMBgwyErK2vev9PSrI+62dnZOWVoIQoKCmR0dPQ+HaGBgcGDhCE/BgYGmw54fBZicHBQCZCBgcHGhyE/BgYGmw6tra1y8+bNuX/39fXJO++8Iw8//PADPS4DA4P7A2N4NjAw2HSIxWLy7/7dv9MOsPT0dPnzP/9zyc3N1RZ4AwODjQ9DfgwMDDYdysvLNfvn05/+tASDQTl+/Lh2g/n9/gd9aAYGBvcBjhi3QAYGBgabBIQcnjx5Ur797W8/6EMxMDB4QDCeHwMDAwMDA4NNBUN+DAwMDAwMDDYVTNnLwMDAwMDAYFPBKD8GBgYGBgYGmwqG/BgYGBgYGBhsKhjyY2BgYGBgYLCpYMiPgYGBgYGBwaaCIT8GBgYGBgYGmwqG/BgYGBgYGBhsKhjyY2BgYGBgYLCpYMiPgYGBgYGBwaaCIT8GBgYGBgYGspnw/wNefxMuaHSBUAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.scatterplot(data=pokemon, x=\"hp\", y=\"speed\", hue=\"legendary\", alpha=0.5, s=60)" + ] + }, + { + "cell_type": "markdown", + "id": "f3741251-2a2b-437e-b68f-084fb4399e9f", + "metadata": {}, + "source": [ + "Finally, if you want scatter plots across multiple categories, a [relplot](https://seaborn.pydata.org/generated/seaborn.relplot.html) lets you distribute categories across rows and colums in a grid. " + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "7385237c-6a5c-4041-af46-559d6d84d1fa", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABi4AAAHjCAYAAAC0DeeqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QV4XGXWB/D/uMUrqaapuwv1luKlRRdbnAUWPljc3d0Xt0W26AKFooUW6m7U3dtUY+P6PedNpyRtZCaZJDOT/283T0vm3sx9b9Lce9/znnM0oVAoBCIiIiIiIiIiIiIiojigre8DICIiIiIiIiIiIiIiCmPggoiIiIiIiIiIiIiI4gYDF0REREREREREREREFDcYuCAiIiIiIiIiIiIiorjBwAUREREREREREREREcUNBi6IiIiIiIiIiIiIiChuMHBBRERERERERERERERxg4ELIiIiIiIiIiIiIiKKGwxcEDUgoVCovg+BiIioQeI1mIiIqHp4DY0czxURJRMGLogaiClTpuDOO+9EsnC73fjggw9w3nnn4ZhjjkHPnj1xwgkn4NFHH0VeXl59Hx4REVHSXYPnzZuHzp07V/jxz3/+U2339ddfq//esWNHfR8yEREluGS4hk6bNk1dF6dOnXrUa+PGjVOv/fjjj0e9Nn78eFx66aURv8/rr7+O9957r8bHS0QUL/T1fQBEVDdkkj9Z7NmzB1deeSV2796Nv//977juuutgNpuxZs0afPjhh+qmb8KECWjXrl19HyoREVFSXYPFAw88gO7dux/1+bS0NPXn6NGj8fnnn6Np06b1cHRERJRMkuEaOmDAABgMBixZsgRjxow5/HlZcLd+/XpkZGRgxowZGDt27OHXCgoK1Gu33HJLxO/z8ssv4/rrr4/58RMR1RcGLogo4VJf77jjDnWT99VXX6FNmzaHXxs0aBBOO+00nHnmmXjiiSfw7rvv1uuxEhERJaMOHTqgT58+Fb6elZWlPoiIiAiw2WyqQsDixYvLfF6CFVarFeeff756ti1t4cKF6tl32LBhdXy0RETxg6WiiBqAiy++GPPnz1cfkoY6e/ZsDB8+HLfeeutR25544om477771N9lNciLL76oggADBw5UJZkkaCCrP468qbrooovQu3dvFTyQVN6DBw9WekyVlZoovQrlSPJec+fOxU033VQmaBEmq1VuuOEGtGzZEsFgUH3urrvuUim2Dz74IPr166dWsgQCAXWMDz/8MI499lj06NFDHbtkb5QubbFt2zZcc801auwyPilNJam+pUtWPfTQQxg5cqT6GieffDLTc4mIKCmvwZE6slRURddhuU6//fbbqtSjXENPOukkfPzxxzV+fyIiSg7JdA0dOnQoli9fDq/XWyZwIcc2YsQI7Nu3T1UQCFu0aBEyMzPRrVs39d8LFizAP/7xDzUeuWbKe/373/8+/Mwr7y9effXVw38X69atU6Uc5forH/K8u3379qPKQH722WfquVi2mTVrVqXngIiorjDjgqgBkImC22+//fDfZaXkGWecoSYH7HY7UlJSDt8cbd26FU899dThfT/55BMVIHjyySfVTdzzzz+vtpEbG41Go26gLr/8cgwePBgvvfQSCgsLVYrqJZdcgv/973+qhFN5pIRERYxGY4Wv/fbbb+p9Tz311Aq3kYwL+TjyptRkMuG1116D0+mEVqtVN3ByvLfddhsaN26MtWvXqjHIOZLgg9wEyjZS6uKZZ56BXq/HRx99hGuvvRY//fSTOi9yMzxz5kx1kytfY/r06WpbCaCcffbZlXxXiIioIUima3CYXB/9fn+Zz8nx6HS6Cvc58jos20rJKQlyyLW2b9++ajxyXS0qKlITK0RE1LAl0zV0yJAhKqiwatUqlbUoAfw5c+bgxhtvVP8tY5FARpcuXdT2cnwS7JBjlYDGZZddphbJSUBGMjEmTZqkvp6UR5ZnYzkuWWT3t7/9Deecc476Gps3b1bZHLLN008/ra7db7zxBi644AJ8++23aNSo0eHjk68lgR9ZmCfXZCKieMDABVEDIDd44Zu6cGkHmVR/55138MsvvxyeYJ84cSJyc3PVKoswmeD/z3/+g9TUVPXfUvpBJhPkpkqyDOQGsG3btnjrrbcOT1jIihW5eZJ01wsvvLDcY6qsxERlJANCggLyUZrc+MkNXGlyPHKjJ+Qm7ZFHHkGzZs0O98mwWCwq4CA1R4WsdpGvH74ZPXDgADZt2oT/+7//w6hRo9TnevXqpW7qwitlZPWPpO+GAynyNSTdt/RNIBERNVzJdA0Ok8mTI8lx/PzzzxXuc+R1WCZTvvjiC1W7++qrr1afk1W0ct2W8UgPK1lpSkREDVcyXUPla8tzopSLkq+xbNkyFaiXa58skJPnSDm2q666Cg6HA6tXr1ZBByGBCwliPPvss2pcQp5Bpdm3ZEzIMYePS66z4b/Lc6s880qfkPB5lADK8ccfr8oql256LtddCYwQEcUTlooiaqDkJq1///5qpYWQlRWSRXDWWWeV2U5SUMM3e+H/lhsrWQHicrnUDZdM6kvQQCYl5KN169Zo3759pSmm4W3L+5AgREWODE6ESYqvNAot/SFBhTAJdIQnS0R2drbKnpBzIKUs5Fhl5Y7cSIaDEpJBITfL999/v7qpk1Utssr07rvvRseOHdU2coMpEy9yg/nf//5Xpd3KDbE0JiUiIkqma3CYlFmU1ailP6RcRWWOvA5L2Uc5bhlT6feX//Z4PGr1LBERUbJcQ6U5tyyYC/e5kKz9Vq1aqYBLOBAhr8l4li5dqr5euL+FZJlIsMbn86kghgRtXnnlFfV+8rmKyLVWSmBJ9kj4GCWAIcchZbdK69q1axVnnoio7jHjgqgBkzTSe+65B7t371YTBLKyQ26KSpMJ/tJkhYesgJRUWlkhIhP5chMlH0eSkhAVkcBCRaQ/haweKU+LFi3wxx9/lEkNFo8//rg6frFy5UqVSnxkQ7Qjfffdd3jhhRfU+GVCRW7WSqcEy6rP999/X6XT/vrrr2olj9xwygoVmbRJT0/HvffeqyZi5Gs9+uij6kNSa6XvRTjNl4iIKBmuwaUnjaTJaDSOvA6H64xXVPpRMiOJiIiS6Roq2Q6S6SAku0KyLcLk7xKEWLJkiSqvKOWdmjdvrl6TYIY8Z0qwRoIPEvCQZ04JxFS0sC98rf3xxx/Vx5EkA6U0yQYhIoo3DFwQNWCSCvrYY4+p0g5ycyQrOo68wcvPzy/z37KqQz4nNzoyCSGT+1IyoryJB0lLrYiszqxObVBZKTNhwgRMnjy5zKoaubELk9rZVZHxShaFNHyTJmfhcUt/itKrPOXzEoSQQIisbpFzJTe3ctMrn5NjlZ4X8rFr1y78/vvveP3111XDuB9++KHK4yAiooYpEa/BsZSWlqb+/PDDD8tdXCALFYiIiJLpGiqBC+k1IWWgVqxYoXo8hUk/DglIyHgkKyScbRFepCdZFtKLQ0pGhYMM8vUqIxknsr308jiSBD2IiOIdf1MRNRCywkRWlZQmNzxjx47F999/j40bN6qGmEeSZtNSOil8EzZlyhS1ykNukiTjoVu3bqoPROmVl7Ii5IYbblCpt1JqqTzRrtQMkxsvSW2V+p5SwzScWlva+vXrq/w6spJFzse//vWvwynEcjMbTpmV1yR9WMo+vfnmm6q3hWRkyMe0adNUkELGefrpp6smaFdccYWaZJFaqNL07csvv6zW+IiIKPkkyzU4lsL9pWQSSRqjhsk1Vko3SllG9osiIqJkuoZKRr4sgJOeEzKu0tc/IcEKCWgsX75cPV+GycI6KVEsmf9hsp00HS99bsL9L8KkTNSGDRvUM2w4UCEZGrfddpsKlLA8FBHFOwYuiBoIWdkok/Vz5sxRN2lS5iicZisT7/LfpW+EwiT9VrIJLrnkEvV3Ka00YsQIdeMkwk01JcPgtNNOU5P/Ul5JJv2lqXWsyc2YHIMEFM4880ycc8456oZPbj63bNmibl6lQZk0PysvqBEmgQghjUKlqZukDEsmh2RVhLM25DxJ6ag77rhDBTik54UENmSFjJwPeU1ShaXpmZSQ6ty5s2o2+s033+Ckk06K+diJiCgxJcs1OJbkminHLH2kdu7ciR49eqhr6Isvvlim5jcRETVsyXQNlSwPeXaVzHxpoF269HG4XJQclwgfZ/jZVfp4fPrpp6oHhzyzSjlj+XrSr6P0uZI+GZKxIQsEZBzS4FsyOy644AJVAuvzzz/Hb7/9pnpkEBHFOwYuiBoIyQSQVRnSRPrJJ5/E+PHj1eflhkn6O8iKlfJSWyV1Vm6AbrrpJrWyRYIFN998c5mbq/fee09N3svqFJnAl8n8//znP+pr1wZJA5abNuk5IQ2zJVghdUol7VfeU0o1SUkpuZGriNwIPvDAA+o4JcVYghLyORmHBEVkVYustJGb1+eff16l58p7yESKBDvCZark75KyK9vt27dPrQ6Vm+gbb7yxVsZORESJJ5muwbEk5+Ktt97CZ599hry8PHUNlXMh49XpdPV9eEREFAeS7RoqGR8ShCjd36L0a5IRIe9fuoziXXfdpfpfyHOnZJFIgF+CMpJNIT01JOgi181rrrlGPQvLuZK+FpLhIYvzZFGALMaTr92pUye89tprOO6442ptjEREsaIJVdbJh4iSnqwoOffcc1WjryObScvkv6SXPvXUU/V2fERERMmK12AiIqLq4TWUiCj5MeOCqIGSckryIVkLstrjyJs9IiIiqh28BhMREVUPr6FERA1H2c49RNRgSDNMSYOVEkmPPfZYfR8OERFRg8FrMBERUfXwGkpE1HCwVBQREREREREREREREcUNZlwQEREREREREREREVHcYOCCiIiIiIiIiIiIiIjiBgMXREREREREREREREQUN/T1fQDxKBAI4uBBR8y+nlarQVaWTX3NYDC5WopwbIkrmcfHsSUmji3+NWmSGnfX2WQ5tw1tbMk+Po4tMXFsiSsZxheP19hkObcV4dgSE8eWuJJ5fBxbw7jGUt1jxkUd/SPXaDTqz2TDsSWuZB4fx5aYODaqjmQ+t8k8tmQfH8eWmDi2xJXs46tPyXxuObbExLElrmQeH8dGVDsYuCAiIiIiIiIiIiIiorjBwAUREREREREREREREcUNBi6IiIiIiIiIiIiIiChuMHBBRERERERERERERERxg4ELIiIiIiIiIiIiIiKKGwxcEBERERERERERERFR3GDggoiIiIiIiIiIiIiI4gYDF0REREREREREREREFDcYuCCKExpNyQcRERERERERERFRQ6av7wMgasj0ei0MRj3MZgP0upI4otcXgNfrh9fjQyAQqu9DJCIiIiIiIiIiIqpTDFwQ1ROL1QijUY8/Fu/Aj7M2Y+c+OzQaDdq2SMP44e0wuGdzuFxeuF2++j5UIiIiIiIiIiIiojrDwAVRPbDaTNiT78KDb89Bgd1T5rVVmw+qj+aNbHjs2qGwWo1wOb31dqxEREREREREREREdYk9LojqmJSFKnL6cM/rM48KWpS2+4ADd746AyFoVGYGERERERERERERUUPAwAVRHdMbdPjg+5VwuP1Vbru/wI3Pf1sLnUFXJ8dGREREREREREREVN8YuCCqQ0ajDj5/EPNW5kW8z28LtsNk1EN3qHk3ERERERERERERUTLjTChRHdLrdVi0di8CwVDE+zhcPmzcUQCDgf9ciYiIiIiIiIiIKPlxJpSoDmk0GhWIiJbLI2WlNLVyTERERERERERERETxhIELojoUCoWQmWqOer80m1HtS0RERERERERERJTsGLggqkNerx8DumbDbIy82XaTTAtyW6TB5wvU6rERERERERERERERxQMGLojqkN8fhD8QwOj+rSPe55QhuXC5fAhG0ReDiIiIiIiIiIiIKFExcEFUxwK+AC47tRuaN7JVuW2nnEycMbI9fF5mWxAREREREREREVHDwMAFUR3zePwIBgJ47sYR6NY2q8LtBnVvhieuHQqX2wu/n4ELIiIiIiIiIiIiahj09X0ARA2R2+WD2WzAY9cMxc69dkyauRk799mh0QBtW6TjtBHtkJVmhtvlVYEOIiIiIiIiIiIiooaCgQuieuJ2++Dx+NAo1YTLx3WDTquBdLEIBoLqo7DAWd+HSERERERERERERFTnGLggqkehUEkAg4iIiIiIiIiIiIjisMfFW2+9hYsvvrjC1++77z6MGTOmzOeCwSBeeeUVjBgxAn369MFVV12F7du318HREhERERERERERERFR0gYuJkyYgJdeeqnC13/77Td8+eWXR33+9ddfxyeffIJHH30Un332mQpkXHnllfB6vbV8xERERERERERERERElHSBiz179uCaa67Bc889h9zc3HK32bt3L+6//34MGjSozOclOPH+++/jhhtuwOjRo9GlSxe8+OKLyMvLw+TJk+toBERERERERERERERElDSBi5UrV8JgMOC7775D7969j3o9FArhrrvuwumnn35U4GLNmjVwOBwYMmTI4c+lpaWhW7duWLBgQZ0cPxERERERERERERERJVFzbulZcWTfitI++OAD7Nu3D2+++abqgVGaZFaI5s2bl/l806ZND79WXXp97GI6Op22zJ/JhGNLXMk8Po4tMXFsDUusrrPJfG6TeWzJPj6OLTFxbIkr2ccXLT7LRoZjS0wcW+JK5vFxbERJGriojGRUvPrqq6r/hdFoPOp1l8ul/jzyNZPJhMLCwmq/r1arQWamDbGWlmZBsuLYElcyj49jS0wcW/KrjetsMp/bZB5bso+PY0tMHFviSvbxRYLPstHj2BITx5a4knl8HBtRAwlceDwe3Hbbbbj22mtV74rymM3mw70uwn8P72uxVP8fVDAYQlGRE7EiUUn5B15U5EIgEEQy4dgSVzKPj2NLTBxb/IvVREgsr7PJcm4b2tiSfXwcW2Li2BJXMowvHq+xyXJuK8KxJSaOLXEl8/g4tvhWGwF9auCBi2XLlmH9+vUq4+K1115Tn/P5fPD7/ejbty/eeeedwyWipHl3Tk7O4X3lvzt37lyj9/f7Y/+PUf6B18bXjQccW+JK5vFxbImJY2sYYn0ekvncJvPYkn18HFti4tgSV7KPL1J8lo0Ox5aYOLbElczj49iIGkjgolevXpg8eXKZz3388cfqc/JndnY2tFotUlJSMG/evMOBi6KiIqxatQoXXXRRPR05ERERERERERERERElXeBCSj+1adOmzOfS09Oh1+vLfF4CFM899xyysrLQsmVLPPvss2jWrBlOPPHEejhqIiIiIiIiIiIiIiJKysBFpG644QZVPuq+++6D2+3GwIED8d5778FgMNT3oRERERERERERERERUSIHLp566qlKX//Xv/6lPkrT6XS4/fbb1QcRERERERERERERESU2bX0fABERERERERERERERURgDF0REREREREREREREFDcYuCAiIiIiIiIiIiIiorjBwAUREREREREREREREcUNBi6IiIiIiIiIiIiIiChuMHBBRERERERERERERERxg4ELIiIiIiIiIiIiIiKKGwxcEBERERERERERERFR3GDggoiIiIiIiIiIiIiI4gYDF0REREREREREREREFDcYuCAiIiIiIiIiIiIiorjBwAUREREREREREREREcUNBi6IiIiIiIiIiIiIiChuMHBBRERERERERERERERxg4ELIiIiIiIiIiIiIiKKGwxcEBERERERERERERFR3GDggoiIiIiIiIiIiIiI4gYDF0REREREREREREREFDcYuCAiIiIiIiIiIiIiorjBwAURJR2NRlPfh0BERERERERERETVpK/vAyAiigWjUQezATBaLIcDF2k2PVzeEDweP4LBUH0fIhEREREREREREUWAgQsiSmharUYFKDQBL4oW/Ig9f/4Bv/0gNDoDzG26IX3QacjK6YZih1cFMIiIiIiIiIiIiCi+MXBBRAlLMivSU/RwrZ+PfZNeA4J/BSZCwQBcGxarD3Prbsg+7x5oNHq43QxeEBFRzen1Wuj1OkiSn2T1+XwBZvcRERERERHFCHtcEFHCSrFo4dnyJ/Z9+0qZoMWR3NtXIe+zR2GzGqDTsf8FERFVn8mkh9Vmgi3FjO37HFi7vRD7ijzIyLTCYjWqgAYRERERERHVDDMuiChhS0SZLCZsn/y+5FdUub1nx1o41s6DuU0/OJzMuiAiouhJYMIfDGHCT6vx+6IdcJUqQZidZcUpQ3Jx2sh28Hp89XqcREREREREiY5LwogoIZlNejg3L4e/aF/E+xTN/0HtR0REFC2zxYhCpw//ev4P/Dh7S5mghdhz0IkPfliF+96cDYPRUG/HSURERERElAwYuCCihKTXBFRvi2h4dq4FggHodPzVR0REkZPyT2azHve9OQsFxZ5Kt121+SBe+mwJvL5AnR0fERERERFRsuHsHRElJOlUEfRWPnlUnqDfpxqpEhERRcpg0KvSUPsL3BFtP2vZTthdPhgMulo/NiIiIiIiomTEwAURJaQgAJ01NbqdNFpojWaEqm6JQUREdJjZYsAPszZHvH0wBEyasUkaMtXqcRERERERESUrPk0RUULyBXVI6TUmqn2snQYiGAggEJCwBxERUdW0Wg30Oi227C6Kar/NuwqZ4UdERERERFRNDFwQUULyeHwwZLWAqXn7iPdJP+Y0uH21elhERJSsqpWux8gFERERERFRdTBwQUQJO3/kcvvQ5LQboTFZq9w+te8JKsjhdvvr5PiIiCg5BIMhBIIhtGiSEtV+LZukIMTahERERERERNXCwAURJSyny4+QNQstLn0Shqzm5W+k0yN9yJlodOKVKLL7OIlERERRc7m8GDu0bVT7nDayPTS85hAREREREVWLvnq7ERHFhyKHHzZLFlr982W4d6xF8ZJf4S86AI3eAEtuT6T2PREhjRaFxR74/extQURE0fN5AzhhUA4+nbwGxc6qaw7269wUWWkm2IvddXJ8RERE8UKv18Jg0CNUqlpiKBCEx8PMdyIiig4DF0SU8ByuAJxuF8xZ7ZB5wpXQ6LTQajTwBUIodofg87GxBRERVZ/fH1AfD181BPe+ORuuSiZfcpql4s5LBqiG3kRERA0pYGE0G9T1b8qC7VizNR/BYBDZWTacMjQXqekWeN0+BjCIiChiDFwQUVKQElAulw8uddMMZGba4Mx3MMuCiIhiwuX0okVjG168eRQ+/GEV5q3MU/0vwmxmPcYMzMElY7si4AtAo2FjbiIiahgMBh1sKWZ8NnkNvpuxCW5voMzrX05dhwFds3Hr3/vDrNHA7ebCMiIiqhoDF0REREREEXA6PEi3GHDzBf3g9QWwZO1elX2RlWZGvy5N4fUG4HH51ApTm81U34dLRERU67RajbrmvfrlUkxduL3cbaTl04JVe3Dry9Pxwk0jYQqFmHlBRERVYuCCiIiIiChCkt0Hlw9Gow4DuzSFJFYEg1D9LMJZflIug4iIqCEwmQxYuGZPhUGL0nbus+Otb5bjn2f0ZOCCiIiqxKcqojhgNOphsRhgNhvURAgRERHFN8mucDq9cDi8cLm8LE1IREQNktGkx8RpGyPefsbSnYCmpLwUERFRZRi4IKrHlFqLxYj0DCvc/iDW7SjEhl1FCECjGpfJayyPTURERERERPFIgg8Olw+rNh+MeB+fP4jpS3YycEFERFViqSiieqDTaWFLMWHZ+v346vf1ZW70JFjRt1NTnH9CJ+Q2T1P1tEs3/yQiIiIiIiKKh8V4B+2eqPfbX+ACH3GJiKgqDFwQ1UfzshQT/jd1Az77dW25jcsWr92Lpev24rpz+mBE7xZw2N3q80RERERERETxIBQKwVCNvk5Ggw5aVhcgIqJEKhX11ltv4eKLLy7zualTp+Lss89G3759MWbMGDz99NNwu92HX/d4PHj44YcxZMgQtc2tt96KgwcjT1Mkqo/mZfNW5pUbtChNVqC89uVSbNldrHpfEBEREREREcUL6e/UrJENGSmmqPYb0LUpqwoQEVHiBC4mTJiAl156qcznFi5ciOuvvx4nnHACvvnmGzz44IP48ccfVaAi7KGHHsLMmTPx73//Gx9++CE2bdqEG264oR5GQFQ1KQNlthjw5ZT1EW0v93JfTFkHvYHJUURERERERBQ/JPjgcvtw4jE5Ee/TvmU6crLT4PH4avXYiIgo8dV74GLPnj245ppr8NxzzyE3N7fMa5999hmOOeYY9bq8NmrUKNx8882YNGkSvF6v2nfixIm47777MGDAAPTq1QsvvPACFixYgCVLltTbmIgqy7bYursIW3YXRbzP4jV74Pb6YTSyeRkRERERERHFj4A/gDNHd0BWmrnKbaU81GXjusHt8bEUMhERVanel3GvXLkSBoMB3333HV577TXs3Lnz8GtXXHEFtNqysRX5b5/PB7vdjkWLFqnPDR48+PDrbdu2RXZ2tgpeSOmo6tJXo05jZY2YS/+ZTDi26H+u1m8viGofybrYvseOds1TY5pOy+9dYuLYElMyj62+r7PJfG6TeWzJPj6OLTFxbIkr2ccXLT7LRoZjiw15RpWJpaeuG4Z73piF/QV/lfYuTa/T4OYL+qFzTiY8bm+1f075fUtcyTw+jo0oSQMX0rdCPsrTrVu3Mv8tAYsPPvgAPXr0QFZWlsq4yMzMhMlUtp5i06ZNkZeXV6PmyZmZNsRaWpoFyYpji1x1V5bYbCb1EWv83iUmji0xJfPY6vs6m8znNpnHluzj49gSE8eWuJJ9fJHgs2z0OLbYMJn0ePOu4/HbvK34ftZm7NhrV59PsRhw3MAcnDGqPVJtRpgMOlhi0MOR37fElczj49iIkixwESm/34877rgD69evV/0whMvlgtFoPGpbCWRI0+6arBgoKnIiViQqKf/Ai4pcCASCSCYcW/Q3c7ktUqPer3ljG+x2N3y+AGKF37vExLElpmQZW6wmQmJ5nU2Wc9vQxpbs4+PYEhPHlriSYXzxeI1NlnNbEY6tdt53dL9WOHloLvz+EIKhEExGneqDEQoE4bS7UdOfTn7fElcyj49ji2+1EdCnupEQgQspC3XTTTdh/vz5ePXVV1UvC2E2m1WviyNJ0MJiqVkk0O+P/T9G+QdeG183HnBskX4tHzq1zlSBiN37HRHt06tDY6RajSgqjN0DSNlj4vcuEXFsiSmZxxatWJ+HZD63yTy2ZB8fx5aYOLbElezjixSfZaPDscWOei+PHy6nR5X51mgApz0U05LHYfy+Ja5kHh/HRhRbcV+gbO/evbjwwguxdOlSvPfee6pBd1izZs1QUFBwVPBC9pE+F0TVodNpYLEYoTfq4fL4YTDqYTYb1E1XTYVCIbXa5KzRHSLe529jOsLn9dX8zYmIiIiIiIhqmZRHDk9y1kbQgoiIGoa4zrgoLCzEpZdeqjIupDxU586dy7zev39/BINB1aR7yJAh6nObN29WvS8GDhxYT0dNiVwP1mQxwGIyYO6KPCxYvQcerx8ZqSacMCgHOdlpcLm9cLtqFkTwevw4bkBrbNxRgJ/nbq1020vGdkXXtlmwF5Xf4IyIiIiIiIiIiIgo2cR14OLJJ5/E9u3b8e6776pm3Pv27Tv8mvy3ZFWceuqpuO+++/DEE0+o8lAPPvggBg0ahD59+tTrsVPiBS1SUs2YtWwX/vP9KhTYy/ZI+X7mZrRvmY7bL+qPdJsRLufRJcoiJStPHA4Prj6jJzq0zsA3f2zEzn0ljcvC2rdKx3nHd0Lfzk3htHtUpgYRERERERFRVTSxKBeQhM/8ghkgRESJI24DF4FAAD/++CN8Pp/KujjSlClT0KpVKzz66KMqaHH99derz48cOVIFMoiiYbWZMHneNrw9cXmF22zcWYhbXp6O528ciXSroUaZF9Jku7jYjWE9m+P4gTnqa2/dXQSNVoOOrTLQskkK3G4fHMVu3lgRERERERFRpfR67eEyx3pdSVVwaagrpYp9Xn+DrE1f3jmRhYQN+ZwQESWSuApcPPXUU4f/rtPp8Oeff1a5j9VqxWOPPaY+iKrDZNKj2OnDO99WHLQIc7r9eOrDBXjpltHwuH2qdmd1qRsmZ0npqeaZFrRsZFWfl0BFQYGjRl+biIiIiIiIGgaL1aiea39ftAM/ztqMrXlF6nmyVdMUjB3WFscNyIHP569R5YBEPCdGox5/LN6BH2ZtxrZS5+TUYW0xpgGeEyKiRBNXgQui+qDV6zBx6tqIAwVb84qxcUchWjaywFXDfhdCykBJdgURERERERFRtBP0BQ4v7n3uDxw8ojeiPLu+8dWf+OSXNXjk6qHIzrTA6ShbFrkhnpPXv/oTExrYOSEiSkQluXJEDZSU/kyxGvHHou1R7Td53haEWDeUiIiIiIiI6onZrIc3EMJdr808aoK+tEK7F/e8PhPFLh8sFgOSmZSF8vojPyd2d/KfEyKiRMXABaGhNy2Tkk1SKioaBwrd0DJwQURERERERPVYPUCyKWQSvioOtx8f/bgaOr0OyX5OJkR5TmQfIiKKPwxcUIOn02mh1UYXhDAZdAjWcxMKWUlithpLPixGWCxGNRYiIiIiIiJK/sbT0nBaejhEas7yXQgEQzAYdEl7TnQ6DaYtifyczP5zt+ozmaznhIgokbHHBTVocoPi8QbQs31jLFu/L+L9+nRuAk2o/gIWJrMBew868fPcLSr7w6DXoXfHxhjZtxW8Xj88bi8CAXb3JiIiIiIiSkZ6vQ5rtuSr59lI+QMh/LlhP3q1awSfL/L9EuucHIzynAST+pwQESUyBi6owfN5fTh9ZLuIAxcWkx7HDciBw15xvczabDLm9gXx6JuzsXrLwTKv/b5oO975dgXOP6Ezxg7Nhb3YrcpgERERERERUfKVPXZ5/VHv53T7Va/HpD0nnmqcE0/ynhMiokTGujLU4Hk8fvTr3BRdcjMj2v78EzqplRh+f90GBSTLwuMP4uYXpx0VtAhzuHx477sV+OK3dbClmHjzRURERERElIRCoRAyUkxR75eVZlL7JiMZV2aqOer9slKT95wQESUyBi6owZNyUU6nB49cPbTK4MU5Yzpi3PB28Lija+YdqxJRz09YjAK7p8ptP/9tHbbvtat9iIiIiIiIKLlIieCOORlolB75RH2q1YBeHZrAG0UppUQ8J1lpPCdERMmAgQsiAG63H36vD0/+33DcfelAdGubdfg1o16LMQNa45VbR+O8EzqpElF1XYLJZNLjYKEbyzfuj3ifiX9sgE7PBmNERERERETJuADP5fLhlCG5Ee9z3MAcuL3+pC0pXJ1zcvyg5D4nRESJjD0uiEoFL6QElDTlGtA1G1qNBr5AECaDDm6PHwF/AMVFLtRHBqlGp8Uv8zZHtc+sP3fjpvP7QafT8iaMiIiIiIgoyfh9AZw5ugMWrNqDtdvyK902t3kaLjq5C9wuL5L9nJx1bAcsWL0H6yI4JxeelPznhIgoUTHjgqiUQEBWaHhRWOCEw+FWjbiLi10qy8Lt9tVL0ELI++YXR9cM3B8IsskYERERERFRkpKFd263F49fOxSDezSv8Nmvf5emePr64fB6/ElfEil8Tp7gOSEiSnjMuCCqJM209J/1zViNsk8GvRb+qltiEBERERERUQLyuP1ACLjtwn4ocngxaeYmbN1djBBCaNU0FaeNaKd6PkhWgcfjR0PAc0JElBwYuCBKAFqE0K9LU/w0Z0vE+7RtkaYCF44gy0QRERERERElK5l8lw/pjXjumI7QaLXQaTUqCz/oD6iKAg35nJwzpiO0Wkm90CAUDCIYCDbIc0JElGgYuCBKAHLDNbBrtloVcrAospJRsorE7aq/8lZERERERERUd8LZA3q9FpmZNuTnO+D3N+yFbMyoICJKXOxxQZQApFyVxxvApWO7RrR9m2apGNWvNXw+3qQRERERERERERFRYmHggihByKqZfl2yccX47pU23M5tnoaHrx6CQrsbBkP0fTGIiIiIiIiIiIiI6hNLRRElAKnLebDQjQfemYOHrhyMvp2b4sdZm/HH4h1wHUp97dg6A6cOa4vhfVrii9/WYc8BB/7vb70B+BAPJNhiNOoP1RYFAoEgvN5AfR8WERFRpXj9IiIiathkEaHFYlT3BFKK2est6Z9BRES1i4ELogSg0Wnxy7zN2L3fgRue/wMj+rbEqUPb4p9n9YLL7VOZFYFACL8v2o5bXpyGbXuKoddpcdP5/eDWadUkS32RiR6LWQezyQB/4V74Du4GNFrYsnORkm6F2xtSY2AvDiIiiic6nQZGkwFmswG79tmRd9AJvVaD9q0ykJJmhN/nV72kiIiIKDlZLAZo9TqYDDqs3ZaPIrsXFrMeXXOzYDDqEQqG4HB46vswiYiSFgMXRAlAJvXzi0uacnt8Afw2f5v6aJRuRqrVCJ8/iP0FLvVamD8QhNPjr7SsVF2sTElPMcKxfj52z/0Wnt0bS72qgaV9H2SMOBfpjXJQ5PCrXh5ERET1TRYE2FJMmL5kJyZO24gtu4vKBOQHds3GBSd1RvMsG5wOD0KMvhMRESWVlBSTClr877d1+HneVhQU/xWgsJj0OHZAa/z9xM5ISTXDfuhZnYiIYouBC6IEYdQf3a/iQKFbfVTEoNfC76m/larpqUYcnPoxihb8UM4WIbg2LoFr0zI0Gf8vpHUchEI7My+IiKh+6XRaFbR4/as/1SKBI0mQfd7KPCxaswd3XjwQvTo0gsPO1ZZERETJwmYzqioBd/x7BjbtLDzqdSnXLKWb5y7fjWf+NQLpqWYUM3hBRBRzbM5NlAC0CKF/l6ZR7dOuZboKXASD9VMmymrSwv7nHxUELUoJBbFv0r8RKNilynEQERHVJ6NJj0kzNpUbtCjNHwjh6Y8XosDu5fWLiIgoiRiMBjz54fxygxalHSxy4743Z6lMTYOB02tERLHG36xECUAafw3omo2sNHPE+4wf3lbV3q6PDAYpo2GymFAw55vIdggFUTjra3Deh4iI6lNJXyYDvplWurRhxaQs4/+mrodWH9tbao1Go46lPss9EhERNUSpqWbkHXBgybp9EW2fd8CJOSt2w2w21vqxERE1NAxcECUAKUshDawvPbVrRNvnNk/DqH6t4PX6UR9MJj1c29fAX7An4n0c6+ZDE/Sr1SpERET1QTInFq7eU6aOdVWkD4Zep1V9nWpCghTSBFRqZTdunIKsLBsaN06FNcXEjA4iIqI6EggB383YFNU+38/cDF05pZ2JiKhm2OOCKEF43D4M69UCdqcP7363osJMCglaPH7tULjdPgQC9VMmSlaJendviG6nYAC+/D3QprSorcMiIiKqlFxaN+woiGofjy+A/QUupJjktjpYo2bgm3cV4dvpGzF/ZR7c3gBsZj2G9W6JM0a1R9NMK5wON/z++rm2ExERNQTSq3Hr7qKo9tmyu0iVadZqZdFhrR0aEVGDw8AFUQJlXdiL3TjhmBwM7JaNidM24vdFO1RjMNGxdQZOH9kew3q3gMvlVWWi6lW1SlSxMzcREVXcNFsm+KWMUigUgs8XiHmAXhYFVKfEYk2uXiVBCzNe+myxyt4ozeH2Y/K8repDgheXjO2K4iJ3vS1MICIiOnLBmtGoP3xt9vsDSRFgD0V7Za+P+sxERA0AAxdEiRa8KHLDZtKryYtrzuqlVnpKiQq5UfS4/SgqdNX7hIasMjFmt41uJ40W+oxsuL286SMior/IhIjOoIPJqMfarQdR7PQizWpE5zZZcHv9CPj88HoDMXkvraYkczEassKycboFLmfk5aVKs9pM+PcXS44KWhxJFiyYDDqcfWwHtZCBiIiovkjQXW/Qqb5Q67cXoMDugcWoR5fcTNX/KegPwO2un7LFNRUIhNC6aSrWbMmPeJ9W2akl4078mA0RUVxh4IIoQZt1w+OH2+lVq1tkTYjcYMULj8eHrNzu0KU1RqBof0T7WDv0g0ZvgM9Rz5kiREQUN6Tng0anw6eT12LKgm2wl8omTLMZcfzAHJx3QidoddqYZBrK9XVwj+bqaxc5vBHtM7x3CwTVKtPoZyukd8Weg06VQRmJr35frzIvZMJIMk6IiIjqmsmsV42ov/59A36aswUHi/4KppuNOtVr8e8ndYHFaoTLGdm1NJ7oNMD4Ee3w6/xtEe8zdmhb+HldJiKKOQYuiBI8AyMeyyvJcXncHqQfMx4Hf/1PBHtokD70bLgS776WiIhqiUzq+0LA7S/8oSb3jySBha//2IB5K/PwzL+Gw2zW13h1p2Qsuj1+XDG+u6pxnZ1lU02z84s8mLZ4B+au2I2Auvb+VSLj7GM7IlDNyQqtXouJ0yLvCeUPhPDj7M0YOySXgQsiIqpzJpMeJpMBd78+C+u2HZ2RIP2Zfpm7VV0vn7puODIkeJFgD3kOhxuts1PRrW0WVm0+WOX2WWlmjOzbEg47syGJiGJNG/OvSEQEwOkOIa3fSUjpdWwVW2rQ6KR/wNAkRzUUJyIikoCA1WrEA2/NKTdoUdrOfXY89M5cWKymQ1mI1SeZDBKwGNKzOQ4UujFpxiZM/GMj1m/Px2XjuuG9+07EcQNblxyjBrjxvD5ommmp9vXLZjFiydp9Ue2zaM1e1e+DiIiorpnMRjw3YXG5QYvSCu1e3PfmbJWdodcn1jVLyj35vAHcd8UxaNkkpdJtJUPzsWuGqsUEsSpbSUREf2HGBRHVClm1WmT3ofEp/4SpZScUzfsOvoO7y2xjatUZmcPPhbFVVxTafexpRkREh1d0rth0AFt2F0W0vdTX3rC9AK0aW+GqZsko6aVhtRnx7ncrMXnuVlWrurT/TV2PY7o3xw3n9UHnnEzkNEtFuxbpcDqq19siTPp0RLd9gIELIiKql2tzod2DeSvLPtNVRBYATFu8E4O7ZcPvT6ysC7vdjZRUM168eRQ+/nE1pi7cBkeprE7pbzWsVwtcemo32Mx69p4iIqolDFwQUa2RlScFRSFYO49Aq97HwZO3Cd4DO6HR6mBq3h769CaqJEdBsQQtGLUgIqISOr1OZTtE49sZG/Gvv/WRq0/076fTqqDFkx8uwIJVe8rdRi5TUvoi74ADz94wAqFASJWFqMnlS0orpqeYUOyM/JjTU4xHBVWIiIhqm/STmvTH+qiue9/P2oTR/VslXLkoIcEIyf686JQuuHx8N5UhKU3IJVDRt3NTleWpCYVQzKAFEVGtYeCCiGo986LYGYTdFYAprTV0GTnq8+5AEJ583uQREdHRTEZ9xNkWYdt2F8No0MFRzWyLqQu3Vxi0KE2O68MfVuGik7rUOFPQ6fJidL9W+O/PayLeZ0z/1ggycEFERHVMo9Via5TX5q27i6HXadUkfyIuVHMeai4u2Sa9OzQ6NA5ZoOevdoYnERFFjnnmRFQn5EZVaoDLzZ98eDw1a6BKRERUmpoOqUaLC2mLYbYY8F0UGR4S5JB+GDWt2+33BTB2WFvodZEdeKrVgOG9W8LLaygREdWDUDX3qGELqnonz65FRW4UFrpQVORi0IKIqI4wcEFEREREccXjC6BV08obYh5Jtq9OY0yDQa/KP23LK454H6fbjwWr8lSmRk1LKuo0Glx7du+IGpbfdtEAuD0+lc1IRERUl4LBIFo3TY1qn1ZNU9U1S0ojEhERRYuBCyIiIiKKKwGfH+OHt4tqn9NGtEMwEH3gQgICBcXRN9jem++KyQpSl9ODkX1a4pa/91MZFeXJSjPjkasGo0ubTLgTsE44ERElvlAgiPEjors2jx2WC5eb2QlERFQ97HFBlIBkosRkMgBamTGRj5D6v9/nh9/PVZhERJT4JRn6dG6isih27LVXuX2bZqnompuF/HxntUoZSm+MaJlrmG0RJqtQpcn3wK7ZGNG7JWYu24nZy3fD5fEjxWrAsf1ao3+Xpmrix1nDZuBEREQ1uTY3yrCiX+emWLx2b5Xbp6cYMaZ/DpwO91ELBuRZVi5nf/W+CMHj9idkHwwiIqo9DFwQJRiz2aBqce/e78DPc7biQKFL1dnu1aExju3fSpXJ8LhZRoKIiBKXTOZLP6RHrh6C216ZgYNFZSc9SmuSaVHbSaPr6kx4SMA/t3karGa9KgEVKQkmxGqxgIzX5fDA6/ZhQJemGNA1u2QyR0prhIIoKHCyzAYREdU7yfq785IBuOPfM7C1khKLNosBj1w9VDWxDl8r5bomz7EWswELV+85HKRPtRoxZkArdGmTpa7lbvaPICKiQxi4IEogFqsRLm8AD782C2u35Zd5bdriHXjvuxU47/hOGDe8nVq92RCzLyQbRVbxEBFRYpOJC7nuvXLraHz042pMW7IDnlI9LCwmPUb1a4VLTukKTSgEVzVLKEmgX3pNHNu/NX6YtTmifXp1bIz0FJNaRWoy6REIyMTMX69X9zokx+JyshRUTcnkmNwPSByLq3eJiGKbdSG/YJ+7cSQ++WUNfpu/DcXOvwINep0GQ3u1wCVjuyLFbIDT4Tl8XbSlmFWmxlvfLD9qQcLkeVvRorENt17YHy2b2OC0eyr9HV9X5K3C71cXCwjCQ0v0ZuZERLHCwAVRAmVaSNDi5pemodBe/qSGrBT9z/erUOTw4YITO6G4yNVgSkpIg1SLIQSj1YpQqCRgk55Scs7c7gBXqhIRJSCZxJfAwBXju+Oq03tg2fp9aoIkzWZA745N4Q8EEPAF4JaJlGpeW7V6nVoZev4JnVWZpoqusWF6nRaXn9odWi2QmWlDMBSCVqOBx1tyDJIFGZ5vSEm1wOPxwevxMxOylskkj8pK1YegN1vUvYBGo4XP7YLbp1Hfh4ZyT0REVJskuz8UDOLc4zrhklO6YdmGfcgv8qjMRakCoNNqEPAHDgcthCxEmLNiN178dHGFv4t37Xfgrtdm4olrh6FlY1uZnk6qvJTZoJ75pLyjXHvlGmx3eNV7eQ9dg2PFaNTBbACMFosqYyXXk6DfB7fbD7c3gEAgdhcUlYli1kOn16lsFBlbRoYNDpcXQX8QbvYIIaIGjIELogQhN2pPvD2nygkV8dXv6zG8d3M0y7TAleSptnITm2bTQ+NzoXDO97Av/wMBRwGg1cOS0w1pg8Yhq30fdVMrN5pERJSAqzs9fuj1OnTPzTq8kl6yHaqbWajXa2G1mbE334mJ01ajR/vG6NAqAw9fPQQPvzMX+RU06zYZdbjjogGwWfTYc8CJG174A0a9FvdefgzaNE/D5Llb8PPcrerrykRE+5bpqpGp9K5wuVn+orZIsCgtxQDvvu04OO87ONbNR8jngcZohq3LEKQfMx7WzBYosvvg90ffwJ2IiMqS8sTwBlSJw86t0g/1qgD8Xj9cvsBRv6NlDdkrny+tMoDs8wfx5IcL8P59J8Dr8anFZxKUtlqNWLB6D76dvhGrNx9EIBhCVpoZxw9sra6zks3hcnpqvFhNxpFm00Eb8qNo4Y/IWzoFgeIDgEYLU8tOSB94KjI7D4LT5YPT5Y9JgMRmM2PDjgJMnLZRldDy+AIqCDSiT0ucOao9GmdYVBCoIVZTICJi4IIoAchqU+llsWLTgYj3+WbaRlz3t95y+4dkJTeW6akGOFfPwv4f3lB1wA8L+uHa8qf6MLXoiGZ/f0D9ymPwgogoMcmEcywmnSVokZJqVuWnZJIgxWLA1Wf2wu2vTMdpI9rj9TvGYMqC7fhpzhbs3FfSGDwz1YSTBrfBSYNzsWu/Hfe8Pguv33mcCnZccVp3OJw+/OOxyWoVZpiUKFq/vQAvfLIYn/6yFo9fOxQWi7HaJa2okqBFqlHdB8jihdJCXjfsf/6uPlL7nYRGJ16BwiJO/hARxYoqceiq/Heq3qDDj7M3wx9h5qGUkZIgRY/crJJyfzotbn15OjbuLDxquy+mrMfXf2zATef3w6Du2XAUu6udXScLI9JT9PBuW46937yAkL/U9ToUhGfHGuzdsQaGxq3R/KKHAYuxRsELCVpYbSY8N2ERZv2566hKCr/M3ao+zj62Iy48uTOKi9zM3iSiBkeLOPLWW2/h4osvLvO51atX46KLLkKfPn0wZswYfPTRR2VeDwaDeOWVVzBixAi1zVVXXYXt27fX8ZET1S6NVovJ87ZFtc/sP3fBqNdBp4urf+YxlWLVwr1hEfZ//1rZoMURPLvWI++Th2GzGpL6fBARUdXMFiM+/3WdClqI3h2bYMfeYmzeVYSXP1+CR96bh/RUI/5927H435On4vPHT8UHD5yEzm2y8PpXy3D/m7Oxv9CN+SvzcNm4bmqC5PEP5pcJWhxp94GS8hcanVZNVFDspNr0OPDzO0cFLY5UvPgX5E/9r8rSJCKiumO1GDF14Y6o9vl1/jZodVqVbSGLBY4MWpTmD4TwwieLsHLTAXWNry7JpvTv2Yg9/3umbNDiCL7927H74/thMWlV8Ly6QRIJWrzw6eKjghblVVP4auoGVW6LiKihiZsZvAkTJuCll14q87n8/HxcfvnlyMnJwVdffYXrrrsOzz33nPp72Ouvv45PPvkEjz76KD777DMVyLjyyivh9XI1GyWX/OKyDcyqIjdwTo8/aRt7ldQ5NeHAbx9EtL1n1wY4Vs+B2RQ3v/aIiKiOyQSDlJeQSYCwVKsBBUV/lYZaveUgnp+wGBc+8BNuenGaysS4+KGf8fC7c7Fg1R5V7iK80lNKQX30wypV2qIqe/Nd+OaPDaqGNcUuIzXoKEDx0t8i2r5wwQ8IeV2qRjoREdU+eRaV57Zon2Xzi9xqwdmUhduxZXdRldvLtfmdiStUj4jqNO+WXaQ084Ff3690QVyY78BOFC36RfXBqA6TyYAde+2YubTyoEXYF1PWqTFWN1BCRJSo6v2ufc+ePXjwwQcxb9485Obmlnntiy++gMFgwCOPPAK9Xo/27dtj69atePvtt3H22Wer4MT777+P2267DaNHj1b7vPjiiyr7YvLkyRg3blw9jYootmSORLInomXQa+Evv0x3wjOb9HBuWlZSczRCRQt+QPMug+FwslwUEVFD9Fe5ir/qSHh8QdXo80guj19NKlRE+l1IlkU0ZRx/mbcVF5zYWTU2rWkdbgLMhhAKp38X+Q6hoLoXsB1zJrjGiYgoNk2lQxrNoR4XIWhCIdUoO9y8Oly2Sa6zUv5INGtkxclDctE5JxNmox5Ojw/L1u3H5HlbUWAveXg1GXTq630/c1PExyPNvWXxQZvslKh7Sklmh3fvNnj3bIl4n6JFPyN90KlwuF1RX9NlEUM48zMSskDi5zlbcNIxOfAd0UOEiCiZ1XvgYuXKlSo48d133+G1117Dzp07D7+2cOFCDBo0SAUtwgYPHqxKSu3fvx+7du2Cw+HAkCFDDr+elpaGbt26YcGCBTUKXEj941gJl6ZJxhI1HFvdkB/HAV2zVb3tSMkqUAlcuDXl/zzH0/iqw6ANoHD9wqj2kZJRCAZhMukO30wnmkT/vlWGY2tYYnWdTeZzm8xjq6/xyUTBojV7y3xu865CdGydoRphhidVItGvc1PVwyIaBcUe1TcjK8WYsBMP8fRzaTCZ4Nq0LKp9nJuWImP4OdDrQ3E9tlhL5rE1hPFFi8+ykeHYqk8y1yRDYcP2AkxZsA0Fdi/MRh0GdW+GIT2bw+P1w+fxq+CD0+1TZRmXrtuLG87ti76dm2DeijxVClkWCaTZDBjeuyXOP7ETfl+0A29/sxx9OjVRwYCtecVRHde8lXnIbdYx6n8Dem0IzvXzo9rHX7AHfnsBjEZr1L2TrBYDlqwtez9SFbl/OWVobkz/fdc1/ptLTMk8Nop/9R64kL4V8lGevLw8dOrUqcznmjZtqv7cvXu3el00b978qG3Cr1WHpDJmZtoQa2lpFiQrjq329e/SFFlpZlWaIhLjR7RTf1b1sxwv44tW0OtCyBd9Okko4EVaWioSXaJ+3yLBsSW/2rjOJvO5Teax1fX4vP4APEf0opASFPIxZkBrfD9zc0Rfp1fHxkhPMWLGkoprbldEMjxSUsxIdPHycxn0RVd+RO4dNDodMjONcT+22pDMY2sI44sEn2Wjx7FFx+sLYNc+O555bRa27ykbWPhj8Q51ffzH+B4Y1rvF4YzGv43pgAtP6oJ12/Pxj8d+RX5x2ec4CWI0b2zDDef2wWPXDEWrpinwB6NvRC2ZkHq9Dik2U1T7BX0eOHzVSMXze5Ga1Sj6/Q4da3Tb+6HXaWGthX/fdY3/5hJTMo+N4le9By4q43a7YTSWfagwmUouQB6PBy6XS/29vG0KC6N/kAyTyH5RkROxIlFJ+QdeVORCIBD9xTeecWx1x2gy4LJTu6kGXlXJbZ6GkX1bwunwVHjs8Ta+aNlMGuhs6dHtpNVBYzCjsNCZsCU6Ev37VhmOLf7FaiIkltfZZDm3DW1s9TU+adqZnnL0ZMYPszbjkrFdMWPpThTaK5+4kEmDi07uqoIdqbboG2Wm2Yyw290JnXERLz+X6akmdS8QKD4Y8T46azqCfj+KHO64HlusJfPYkmV88XiNTZZzG83YdDqNqvggGQWysl09M2gAl8uHYCAQ9cr6aHosyHtqtFrVp0HeV4JQkq0gGeMejz8uvm8Gkx778t24/dUZRy0ECJPrqDyzSgkoWRTgcXnRvJENM5ftwsufLzlcPupIu/c78MDbc/DoP4eqa63Qakr6V0QqI8WIQCCA/PzoFrhZzLrony3l+2ZOQXGxK+qfi/QMKzJSTCrjJFKyvbyPwx5dwD6eNLTfJ8kiGcZWGwF9qhtxHbgwm81HNdmWgIWwWq3qdSHbhP8e3sZiqVkksDZuSOQfeG3d6NQ3jq32BYNeDO3VHHZXT7zz7fIKb/jatkjD49cMg9vti+gGN17GFy2P3oCU3sehcO63Ee9j6zRIPXB4o1zdEo8S9fsWCY6tYYj1eUjmc5vMY6vr8QX8QTWJsviI8gzTluzAgG7ZeOTqoaoJd0XZjdLX4s6LB6gJpk9/WYdbL+yHtycuj6g5t2jXMh2N0swoKHBUeB1PFPHwc+n1eJHSfSQO5kWWKSNSeo2G11f5scfD2GpLMo+tIYwvUnyWrd7YLBajKn80Y+kOTJqxGZt2Fqheg00zrThpcBuMHdoWRl0ILqcnpr/DpeGyLcWkAuLS90DKKHl8AVhMelV26cxR7dGiSQocdg/8/kC9fd8kkGIxGfDEh9MrDFqUJiWfBvdoDrNBr66Tr365rMrzJts98/FCvH/fCeq4+3XJxsLVeyI+xhMGtVHX+mjH7PFqkdJzNA5O/W9EzbmFOacbtAYT3I7oqwA4nV6M6tcSn/26LuJ9jhuYg2CS/DtsCL9PklEyj43iV1wXKGvWrBn27i37YBn+7+zs7MMlosrbRl4nSiay6sZe7MbxA1vj7buPx6nD2qqb2TBpbnb7Rf3xwk2j1KqcaBuSJRoJzBgymsLUsmw5ucqkDT4NsmiJiIgaJmkYKqUrJOuhNJlIeenTxdi0sxCv3TEGV57eAy2bpBx+PTPVpJpqv3nncSp48dA7c1XwQ1aVSl3uSI0f3k5dvxI9aBEv5Jqe2vcEaPSRZb5oTFak9BgBt5cP3URUlsVqhNMbwLVPT8GLny7Bhh0FaqW//L7ec9CJj35cjcsfnYwNOwthjbIMUdVBCzP+/cVS3PLSdExfslMFLYSsxp+6cDv+9fwfeO+7FUhJNddrfwOTSY8Vmw4g70BkGT1y/ibN2ASNTosfZ2+GP8KV2rJ4YMHqPao/xhmj2kd8fCVlHE1RZ6eE7w8kM9/asX/E+6QNGg9XNa8nAX8A44a3g05SSiLMthjcoxm8Xj7MElHDEteBi4EDB2LRokUq1S9s7ty5aNu2LRo1aoQuXbogJSUF8+bNO/x6UVERVq1apfYlStbghdWgxcUnd8EXT5yK/z05DhOfGY8nrxuGfh2boKjQpSZFGgKX24cmp90IrbnqtL+0gWNhbJrbYM4NERGVv1JMrgMS6D9yssAfCKkSFg+/O0cFNv5922h8/fQ4fPXUOHz44Ek4c3QHrN2aj/vfnA3HocUBX/2+HpeP74ZmjaxVvvfArtlqdaVMjlBsSLktmQdrPO46CUtUvrFGi6an3Qif18/VgkR0VPBAUunuem2mClJURAIJkpW3a78TFoshJu8tQZA3vlqmmlJX5sfZW/DxT6tgscYuaBI1rRa/ztsa1S5/LNoBs0mPqQsrH9+RJs/bikAI6JqbhRMH5VS5vVy3bzqvL7ye6j/rOT1BND7lGuhSs6rc1tZtOKzt+8Ltrt41XSoAGPVaXHNWryq31es0uOPiAerZNyAnhYioAYnrwMXZZ58Nu92Oe++9Fxs2bMDXX3+NDz74AP/85z8P97a46KKL8Nxzz2HKlClYs2YNbr75ZpWpceKJJ9b34RPVGllFIv0rDhywqxqXBQVOFOQ74XJ5E7bmYHU4XQEEzelocfnTMDQp/4ZWVmFmjDgPWWMuQZGdq1yJiBo6t8uLTq0z8cjVQ9A44+gm2Wu25OPdb1dg7vLdasGA0+FW19uAz4+B3bJx1Rk9YTOXZDxOWbBdTco8dd0I9GhffnNOCZCceEwb3H3ZQDgdDes6XReKHAFYOgxA07Nvq7A+uS4lE9nn3gNjmx4odiZ+uUgiii3pK/HV7xuwr6Ckh2ZVpYzen7RS9R+MRQbDgUIXfp2/LaLtv52+STVoll4Y9UFKRR3ZVLsqHp8fWo3sF11fhoJij5qwl2fea87uhbPHdFAT/eVp3zJdVR2wGHU1WqQmQQifxoSWlz8NU4uO5W+k0yNt4Kloctq/UOzw1ahvooxtdP9WuPn8vki1lv/z1CTDonp+yBjl/oWIqKGJ6x4XklXx7rvv4vHHH8eZZ56JJk2a4I477lB/D7vhhhvg9/tx3333qWbekmnx3nvvwWCIzQoIqn9SR9okN4ZaDTQajUoZ1YRklV18rZiTlTp6g07VQdVAg5D8LxB9I7VolNwoNeyZ+GKHHzZLBlr94zl48jaheMmv8BcfUAELS25PpPYeg0AwhIIiThYREVFJ2Q8JRkhPqHfvPQFL1u5VK12LnV5VgnFozxaqnJTb41dZjuFJCWnMKvcgUmNaap3LPlJ3e8m6vchINeGhq4Zgf4FLlcXIO+BQEzwdW2eq0o4GvVbVJo9lQ275+jLpFZK7Du1f90ceT80mUmJNjlHKhITvjUTAF4jZuZBxFxT7kZrTCzn/ehuOtfPhWDMHQY8TWlUaaiSs7fvB4/agsJgLGIio/N9Tv86PPJNg+cb9yC9yq2tGTZ71dHodJkbR40B+t0+auRlnjmwH1MMctry/UbJToiDXKCH7OaPITjAZdOoZTq4Vci0+97hO6uOXuVuxctMBFUBqnGHB2KG5aNMsTS3gczlrflLsTj8sZguaX/wYfAd3omjRz/AX7oNGq4OpVRek9TsRIY0ORcXeGl/H5Hw6it0Y1D0bI/u2wsxlOzFnxW6V2ZNmNeLYAa3Rp1MTOF0+dd/C6xcRNURxFbh46qmnjvpcr1698Pnnn1e4j06nw+23364+KPmYzQaYLQbs3GvHz3O34kChG0aDFr06NMax/VurmwWPSpmsvwlpvV6nmrjJPZmktK7dlo9gIITsRlacOrQtMjOsanVEbQYwGjqHy69uhM3prZE+5lI1mSMre+RestAhDaS4upKIiP4iD/9upxdetw9dWmegS06WVBIq6ccZCqmyi+XdW6iSEG4/bDYjRvVtiWG9WqgFFvL1ZB1ops2IC0/qXHId0mrV15BMDXsMV/nL+5ktRljMBhU0mblslypdZbMYMbJvS/Tu0BhOtw8el7deJzlMZj1MJiMK7R78MH0D8vaXBHM65WSqwI+sVpaSHrEIYEjwQjIvdG43zDl9kZnbW72XTAr5QjocLHDFVTCHiOLLjr121bMoGvNW5uH4Aa3gib4v82Hq9/jafVHts3jNXpx7XEdUnRtSC0Ih9O3cJKpm2T3aNVILAXp3bIJpiyMvFyUT9tKIWshiRX+xWy0UlH6PJwzKgU5Xco2V3o4FBY6YXu9cbr86ZpMlG+mjLlKLJyUEEwhqIIkjPl/sSg/LtcnlkPsRPwZ0aYoBXbPLji3fyesXETVocRW4ICqvQdpDr83Cum35ZV6TpmXvfbdS3bSdNrK9KpdUH9kXRqNO1SX96IfVquGY94hj+OaPjeqmS2pSmjUa9leoRXKzKqth5SZemtZlZlrhzHfEVVYOERHFFzVhcKhfRTQcjqMnuEpXRS+5DtmQH+PrkEye2FJMWLX5IF7931LsLyhbemPKgm1ommnBjef3RYeWGfW2QlMWnmj0Wjz54XwsWrO3zGsSaPn4p9U4eXAuLh/fXR2j1PqOBan9LYsZyuJ9ABFVzlON3kNub6DGv18lwBpuxB0p2V6nrZ+K3z5vACcMaqOefSM9bmmuLfl2Z45qH3HgQkpEjR3aFn5f2e+LBLrlQ66xKbVwjT1qgYPbh+gKXFWfBCokY6QuxkZElEjiuscFNVzywOvyBnDLS9OOClqESQrlhz+uxoSf16jggVoIUYfkRlPe98VPl2Di9I1HBS3Clq7bh1tfmg6tZGaYGCskIiKi6i/qWLZhPx55b+5RQYuwvfkuPPDWHKzZlq8yM+qa3OvoDDrc9vKMo4IWYVLiY9LMTXhuwkJYbWbodHV8E0dEVEp6SvQNr7PSav78KRPT6SnR/Z6W7f31VG2gJIs9hHOPr6D/wxEky0Kaa9vtHlXOaXCPZhHtd/rIDip4EcvyikRElJgYuKC4JKWXXvhkcUQpu1//sQFb84pVsKOuj3HeijzMWLqzym13H3Dgza//hL6eGqkRERFRYpNVmFI+4vkJi1BV1QipC/7MxwtLggi6ur3d1xv0eOfbFdi5z17ltrP/3I1Zy3bGpMktEVF1Sa+E3OZpEW8vTaKH9W5Z42wxt8enyh9H47gBOfVWBlcW7hn1Opw6rB3OOrZDpdv26tgYd186EE6PX5VWdjg8uP2iARjYNbvS/aRnxYUnd2YjaiIiUhi4oLgjD9kHCl1YselAxPt8M22Dam5Wl4xGvcq0iJSURpCUU6nNSURERNGRCXhZpGCxGNWfdT0hX98MRj1+W7BNlSeJhPS9mLZYggJ1t2hC7nGkUfj0KOqYfzdjE0wmQ51nzhIRhUkvwvEj2kW8/Yi+rRA61Di6Jvy+QEnPH31k1zObWY9R/VrCW0+9E+U5fcXG/bj3jVk4fWR7vHDjSBw3sPXh45ff41Im+d7LB+GBfwzG2xOX46up69VzutfrV6WQ7rl8EB795xDVy0F76Pe+XqfFqH6t8NLNo/CP03rAXuxhmSQiIlK4/JvijkanxeR5m6PaZ+7y3bjlgn5/NbKqgwdzu9OHtVvLL2NVHknpnbZkB0b1bsG0VyIiogiprAG9TvWVWrXpIOwuL1KtRnRt20jVJQ/4AmpCJNmZjHpMXbg9qn2k58Xw3i1Ql4s6Zi7bWWH5zPKs316AgmI3jAaZ2OL9ERHVPemlMKZ/a8xZvrvKxtPNG9lw1ek9juq/UB3yTGgw6XHDeX3x/CeLKu2ZIdkOt13UHx5PoE6edys4CPw6fxs27izENU9Nweh+rXDmqA644dy+cHv9MBl0KHJ6MXnuVrz9zXLsK3AhK82My8Z1h8vpUddqf0EAHVqk4c6LB6jf+1I60GjQqjLQQX8ARYXOeunNRERE8YmBC4o/ISC/OLo2WP5ACC63v85W68mNY77dE/V++UVuGR4RERFFQHo0yAr+Cb+sxdSF2+Bw/zVRlGIxqJWefz+pC7Q6DdzVaLKdSGTRRLT3RwV2DwwRruSNhWAohAOF0bcyldKgTdOjrzFPRBQLwWAITqcH91w2UJX3nbJguyq5d6ReHRrjrksGIhgIqCyNWHA7vTimezM1kf/G13+WWypZJv9vPL8vurbJhMNeV+2iK3gGLi55BpZAw09ztqiPRulm2CwGeLwB7C9wlTl3EpgO7yvnWT5ccr12+dTnNBoN7KGSzxMRER2JgQuKS7JaI1ryYB6oozkLWQUSaUpvabKqhJUQiIiIqma2GOALhnD7S9NUw+kj2V0+fDt9E+av2oNn/zVClY9yu5M3eCErbKW2eLT3HeVNvtUWKftRnXs4WW3LFbZEVJ8kECGT51ee3hOXntoNP8zagg07CtTnJMti3PC2qheGx+2L6bVGvr692I3eHRrjgwdOwtwV0vtnF5xuP1KsBozq2wr9uzSFy+1TQYv6/F0pxyrXlSNJwLqioHW4THKonAMvCVbwlz8REVWMgQuKOxqE0L9LNn6cvSXifdq1TIdBmn7VUdqsNERr1siGzFTT4VUnkRjUrRlXkxAREVVBVmFaLUbc+MIf5QYtStu934EH35mD528YqSaeypscSQZuj1/VDt+13xHxPr07Nq7TMlqBQAgDu2Xj/UkrI94nPcWIFk1SVHkQIqL6JKWbfD6XKk04bliuygbQHMomQzCIwoLa+T0l1y3p/+D1+NCnfSP06dAEGi0QkkfbUAgFBc74eIYMhdCvc9Mqy2mV1qdjE3X9StJLMxER1bKG1dWQEoJMOvTv2lSlnEZq/PB2cHt8dXZDpFJc3T7VTC1SHVtnoEUTGzye5F0NSkREFAvSrHn5xv3Ymlcc0fYbdxRi3bZ8mM3JuyYn4A/gjFHtI95eymdK89RAHTY4lVXITTOt6JKbGfE+Jw5qo/aToAcRUTyQfjtSwsnl8MDp8Ki/u0uVKqwt8ntQyihJPwin3aP+dLm88RG0kMCON4ATBuXAZNTBYtIjO8uKJhmWSksSynUrFv1AiIioYWLgguJOuO7l5eO6RbR92xZpGNWvJbwxqjMa3QRCB3WzVhWdVoMrxnc/tBK0Tg6PiIgoYen0Wnw3Y1NU+8j2Wl30ZYoShdxDNEq3YMyA1hFtf/LgXNUHpK4bl8uK4SvG94BeV3VxTFmkctaxHeo0uEJERNWvOiBeuHEUPntsLN666zi8e+8J+O/Dp+Das3qhTbPUMttLlmCX3Kw6CfoQEVFyYuCC4pLUDj2mR3Ncc1ZPVS+5shJRj18z7NBKvWCdr8QJBYJ48rrharVJRWQFyp2XDFDH6nYd3WyNiIiIyjIZ9dgWYbZFmGxfXu3tZCIrf68/pw9G9GlZ6XYS3Lj6jJ6q9Ehdk3uyNtmpuPvSQZX2A2uSacFT1w1XpUfqOrhCRETRkSw+q80EXyCI2ct34R+PT8YZd0zCGXd8h3vfmAW9XovnbxypFuvJtr06NsZ9lw9S161kLeFIRES1L3nz6Snhsy4cxW6M6d8aA7o2w7fTNmLqwm1wHFqtISUIThvRHkN6NlcptLFexSFNxKS2qTAa9QgGfeWm6ErqrtTgfv2OMfhj8Q5MmrEJW3YXqdcyUkw48ZgcjBvRTj24S7pvefdscmMn76HVysN9SKUI8wGeiIjqklyHdGqFvAbBYFBdhxJtniHBDrfa9dedDjduvqAfxg1rizkrdqv7Eynb4fb6oddqMax3C7VYwm53q+3rmvzcyDF2b5eF9+4/Ed/P2IRf5m1FwaGeYLIiV+6N5B7P7wvA4Yi8VxgRUSxI7wqTSQfdoSw9efbzN/DMr/A50WjCz6RyL/DXNcRqM2P1loN48sMF8JS6tsjvfGli/u8vluJ/U9bjkX8OweCezdAkw6qCFpItSJExmfQwmw3q7zabEU6nr16u40RE8YSBC4pb8iBuL3ar+pkXntQZV5/ZE15fADqdFsFAEB6vH0WFrphmWsiNgk6vk3kbrN58EG5fQDXg7pyTqXpayAP2kTcPkkUhdTuH9mimVjjKtE8gGFKrPu0OryopJUGL8hqPSg1vk1mPvANO7NhbrG4Y27VIR0aGVZW+klWLXKFCRES1QQLnct0zGA0ocniwaXuBun61apqCFo1TVO8oyYCsj9raMinSOjsVew5G3gi1ddMUdZ+Q7GQiSaPxolMLK7rkdIZnxxoEXAXQWdJgbt0Ffp/UR/fW62SHCl7YPWoRyBkj2+GiU7rC5w9AKz90MobCfQjs2QBTkxwYUvVw+zTqnoeIqDbJc6TRpIfFbMDWvCL1DCbZ8R1aZSA1zaKe6aRkcUM/J3qdFh1z5JwYD/en2LanGI/9Zx78lfQj2n3AobIv/n3bsQxaRCElxQSjNgCNVgv3tuXwepzQWdOQ3rorgn4f3H6NCmIQETVEDFxQ3FM3PB6/egiXyX6ZyK+NSRSLzQSnx4//TlqFmct2wldq1U1WmhknD8nF2cd2gNvtheeIDA9ZoeP3ew8fowQg5BgrCjpIKq0txYz5q/Lw1dQNapVKaT3aN8L5J3RGp5xMOO3uuGnIRkREyUGuVVLyYcPOQnz261r8uX5/mddlxf5ZozuozEaH3V3nK1EDPj/GD2+Lhav3RLzP+BHtEAgkf+DCZtHDpPMjf9pnKF4+DSHPX8EdrdmGlJ6jkTnqfOi0ejhd/noPspi1GgT9XjiW/AbHqhnw7tmGkM+tXtfojbB1G4bMURfAYLOi2MFJLiKqHZJVYUsxYcqC7fh2+kbs2Gs//JqUJu7fJRsXnNQZLRunNJjyRuFz8tv8bapPVHnn5MKTuyCnWSre/W5FpUGLsL35LkycthGnDW9by0efHDLSDND4nTj4+2ewr5hx+PootNY0pPYeg8wR50KvM6KomGWniajhYeCCEobcPEoZpdpgsRqxr8CFe16fBXs5q2wOFrnxyS9rsGjNHtVTQ+pRVLSCpCTIEKp0skiCFhN+WYOvf99Q7jYrNh7A/Ztm459n9lRZHFI2qwHcOxMRUR3WqZ6+dCde+9+ycq8vm3YW4rkJizB+eDtcNq4b7MWS4Vh3FyK5xvbu2ERlf5SeSKlIbvM0dM3NQn5+5Bkaichq0cMYcmHne/fAX7jvqNeDbgeKFvwA54bFaHHp4wiZjXDVY1NUKXthM2ux++P74dl19D1PyO+F/c/f4Vy/AM0vehQptiawOxm8IKLYKlk0ZsLLny3BtCU7j3pdHt8WrN6DJev24o6LB6B3hyYqaJ/MwgvpXv5scaXnpFGGGeOHt8farfkRf+1f5m7Fecd3qreszUSRnmoAnIXY+dE9CNjLLmQUQWcRCudMVNf0lpc+jpQUI+x2Bi+IqGFhc25q8OSmTW/Q4f63ZpcbtChNbthe+nwxjKaS2pPVYTIbMHPZrgqDFmEykfTWN8uxcUfh4VqXRERENSXXFCn58HoFQYvSJs3chN8Xba/Rda86ZKLD6fLi0X8OReMMc6XbZmdZ8cjVQ+B0epN6hazKkrEasfvTR8oNWpTmz9+NvM8fh81qVFmg9cVm0WHvty+XG7QoLeiyI+/Th1WvDrkvIyKKJYPJoJ69ypugL00yCp75eBEK7J6kf/6Sc/LV7+urPCe5zdOxYHVeVF9bFv1J2Si9lGCmCrNdDAYDdk94qNygRWm+fduQ979nYD7Ug5OIqCHhkwE1eAajXqXHFka4emH2sl2qpJQ0Mo2WTB5I/dD/TV0f0fYy//LllPXQV+O9iIiIyqM36PHFlPVqNWUkvvp9g7p21fUEuNvlg0mvxcu3jFblGo98YJceWGOHtcVLN4+CXpv8PRLMJj1cW1bAt297RNt7d2+Ee/cGmM36esu2CLqK4Fw7P6LtZeKmePkfMBv5eEJEse3hIL8/pRRSJPyBoJrQ1yZxEDV8TiZFcE5MBh08pZp0R0r2qce4edyTwL5jzRz4C/dGtL17y3L4Du5GamrlizmIiJINZ0OpwbNYDPhh1uaIt5eJnh9mbsKZo9oD3ugf4qX8xvY9xRHvIynLTrcESnSqVjQREVFNVvhJ4+uFqyJfPbl7vwNrtuajTVNbnTctdbu86tp52aldceVpPfDnhn2wO31ItRnQq0MT1YA64A80iAagkvSyf8EPUe1TNP97ZI39P7hQ90z6EIrm/Fhp+cwjFS/6GS17H8dyUUQUM3INmbdiN4ockT+4SRbC1Wf0UhP8gUDd9niqC0aTDnOXR3ZO7C4vMlJMUb9HeoopqbMga0oaoO9b9HNU+xQu+AFZYy6ptWMiIopHybuMgCgCqpE2NNi5r+r62aVtzSsuKRIeJZ1Og407C6PaR+73du61Q6vlP1ciIqoZuQ7t2m+PONsibOOOAnXNrA8SlHDaPXA63Oiak4FBXZuiS+sMVX9cGqg2hKCF0BmM8EaYbRHm3b8dOn39lDuRHxfvvm1R7SPj0+h09fazRkTJR6530T5/SbbAwSKXumYmo1BIg027IjsnC1fvxdBeLdREe6Q6ts5AeopRLS6g8mn0huiv6fu2qWskEVFDwplQokPBgai2r8P3KtmHq1WIiChGqnMdQv3z+4Mq40N6Wcif8t8NilowUYc3LEREDViyP35FOj6V6ejyYVjvFhF/7dNGtFOLCpL9HFbXX+sReU0nIqoKAxfUoEnzT7n+t2ySEtV+Odmp1QomBAIhtGuZFvU8RcumKQgGG9gEDRERxZxch1o0SVGr4aPRvmW6umZS/Ql4PTA0bh3VPsbGLRH010/vD/lxMTZuFdU+hsYtEQoG+LNGRDEj17u2zdOj2kf6OjRKNyft7yJ5vmzbIrJnUnnklZ4f/xjfHdlZ1iq3H9yjOYb1bgmvJ7n7TtWEPNaHAj4YorxGGpu0UtdIIqKGhIELavBcLi/GDs2N6kZv3PC2CFZjpaesPOnQKgOtmkYeKOndsQlSLAb2tyAiohqTsg0yIdO/S3bE+zRrZEXX3KwGU5IpXskcUNrAsVHtkzZwHNz+eirx5dcgbeCpUe2T1v8U1deEiChW5No1pGdzpFojL5s3om9L1aQ7WTP7vB4/hvZsEfE5+W3+NlVa6oWbRqJH+0blbqPXadQz9R0XD1BlHGWhBFVMfrbkmheN9IGnwheqn/KPRET1hYELavB83gBOOKYN0mzGiLYf0qP5oUBC9BM4kqXhcvtw9rEdIt7nnDEd4avGexEREZXH7/PjnOM6Rdyq6cxRHdS1K1lXniYKt8cPa9teMDRqGdH2xuxcmFt2gtvtr7fJQq01HdaOAyLaXmtNQ2qv0XB7k3OikIjqhzTXdnv9GDe8XUTbywS8PKtVZ5Faop2TU4e1jficNGtkg0GrwSNXDcGbdx6H8cPbYWDXbAzu0QyXjO2Kjx86GZed2k31n6rOc3JD43AFkNJ1CHRpjSPa3pzTTV3/HQ53rR8bEVE8YeCCGjy/P4CAP4BHrh4Cm1lfZaOxW/7eDx539VNfJW12ZN9WqvZnVa48vQc65WTW26QDERElH7fbh9zmqfjnmT2rDF6cPCQXxw/KUaszqX5J4Ej6ezS74AHoUstf8RqmT2+KZuffD4fLW699smRipukZN8PYrPLJMa3ZhuZ/fxBeb/KucCai+uPz+HDOcR0xrFflfRp0Wg1u+Xt/ZKWa1bUy2c/Jucd3wtBezas8J7de2B+ZKSbY7R4UFDiRZtHjghM7qefiG8/ri1MGt4Hf64e92M2G3BGS8yTzEHLt09kqL2UmJaWyz7kTHp+UUqyzQyQiiguVz9ISNRAumQjIsuKlW0bjvz+txqw/d6v04LCMFBNOHNwG5x0vKxd9NSqXIWmzshLl0lO7oWNOBr6augFbdheV2UZKcpx3Qid0b9sIToebzbmJiChm5JIiZRzGDMhRPZ4++3UdVm46UGabNs1SceboDhjRpyUcdin5wCfleOB0SRaDDS2vfB750z6BfcV0hLx/rb7UmKxI7TkKmSMvgCeghctVvwEnuV/SaPRocckTKJj5JYqW/oags9Q9j06PlC5DkDn6QgSMKSh2MEBG1JBptRoVUFd9CGP4+CMBUbnu3XphP1Xq6LsZm1Bk9yDNZoI/GESh3YPu7RrhwpO6oHXTVLicHsQLvV6rzolch2M5aR0+J7dd2B+/tN9a5TmRbcNiFdT56/tdUpkgUppDqy4izRyNVwVFXmSmZZVc0//4BPaVMxHy/1UuUWtOQWqvY5E56nz4gxoUF7OUIhE1PJoQZ0SPIjcFBw86YnqzkZlpQ36+I+lWkSXb2CwWA3R6HQLBkJrEcXkDyEozqQCClMnw+wIxW0UiN2oWixFGkx4799qxbU+xah7XrmU6GmdYVIqty+mrtaBFsn3vSuPYEhPHFv+aNEmNu+tsspzb+hibPPibzQZ1HTpY5MbGHQXq+teqaSpymqXC7fLB6/XVWp1qfu+qz2TSw2KQeX8tXFtXIuiyQ2tJhSW3uyoF5vZpaq0nSXXGZjDoYDECRpMRrm2rEbDnQ2OywJLTHSFo4PJp4mJ1M38mE1cyjC8er7F1cW51Og2MxpJrkUGvVUELnU4Lu9OLgC8Q07JD8nUtViM0Wg3MRr1aqCYZBf5ACKFgCH6/X2W21fcMicGghdlsVL/j9TotgqEQdFotnG4fQoGgOsZYfd+qOic+n1/1hIzVOZF7D5NZD71BD4up5P1kjE6XT1VB8Hjk+beinxM9jCZDyc/JoXNid3jVfolcnio11QyjtmSOwbVlOYIeB3TWDFhyeyDo96mFCA5HcgQtkuF3dUU4toZxjaW6x4wLolJcLnlo9qkH7J7tsmC1muB0elBY6Iz5xI3ZYkRIo8EPszarCSO9tuQGbP32ArRobMOofq1htpRkgxAREcWa6rvk8qoPq0mP3u0bH17pWpDvqPeJG6qYBCU8npIHSUOzbtBqNOr7WVjsi8sHSln04fMBOrcHxiYdoW1acrzF7qCaFCOihsls1sNiNWHeijx8N2Mj1mw5CGmnlJ5ixHEDcnDayHawpZrhcnhq3GdJBestBnj8QXw/YxN+nb9NPYPJda9DqwxVxnd475YqgC+B+/qSkmJSE/RzVuzGpBmbypwTyZQ8fWQ7pKZZVFZITX/fqyCCnBNfAJNmblZNuMPnpGPrTIwf3ladk5L7hZqfExmXzWbC2m0HMXHaJixcnacCJGajDsN6t8QZo9qhRaMU1ceh9NhkkYUEV+aWc06OH5iD8SPawZZiVuck0fpxqWCMQQPPzk3wHtgBfUqWKgcp2ZSFiyfD0qYHTJnN4NFr4/L6TkRU25hxkQSrVOoTx1Y9VpsJW/OK8fB7c+GsoH9FVpoZj10zFJkpxloJXvB7l5g4tsSULGOLx9WgyXJuG9rYyhuf0ahTKz9lIkUmHmRyPlFvU5P5e8exJaZkHluyjC8er7G1eW4liACNFve+OQubd5Utm1s6Q/1f5/TB8N4tVP+E6l4TZCJeJraXrNuH5yYsgq+CcUj5xCeuHQqjThOTifpopaSaIMn991VyTiQb4vpzeqtSjnJOKpqor+r7Fj4ni9fuxXMTFpcpk1xaq6YpePzaYTBqw4v8qkeu8fIM/MzHi1QAoiISmJGSyjI2OW75OZHFfve+Mfuo8sqlz8kN5/XB0J41+zmpa3JOUm0G7P3mBTjXza9wu/RB45F57IWqtFSil+5Mht/VFeHY4hszLhIXm3MT1UM5qgNFbjzwzpwKgxZCVrvc/fpM+AIhVRKCiIgoGck1TlaPBrVarNySjyXr9yOvwIXMTKtaYSnBDCIiSq5JMJPJgHveqHiCXsik/CtfLMHS9ftKAh3VZDIbVVb70x8vrDBoIXbus+Ou12apMkaSgV/X10K9Xod7Xp9Z6TmRjJBXvliqgjAWm6na7yelqNZtL8Az/11UYdBC7Ngr52Rmjc6JBEkkaPH8hMWVBi3Et9M34fNf16nqBId/Tl6fVWHQInxOXvpsCZZt2F+jn5O6JOckNcWIfd++VGnQQhTOn4SCWV8hzVa3P5NERPGAT4JEdUxu+j74fhU83qp7ZRTavfjs17Wq7wYREVEykYd2KU+Rl+/GsxMW4bKHf8Fj/5mvJpZueWk6rn1mKn5fvBOpaWZVSoGIiJKDwaDH1IXbK52MDpPF8+99twIWs0FlYFTnWiMLx979bkVEZYR2H3Dg+1mboa/jwIXBqFelmiQrP9JzYjqUqVidcyIT/O9+G+E52e9Q5Y2re04k+LBjjx2z/twV0fZf/b5BBSOkRNSUBVGck29Lfk7CzbvjmZwT777tcKyZG9H2BXO+gSYUqPOAGhFRfWPggqi8BmUWIwwmA1wev/pTbnZjcQMkEy/yNRet2RPxPr8v2qFuUGTFCRERUUXkOiHXL7PVqFZhqj/V9QtxyWg24s/1+3Dry9Mxf2Weqld95ETJ2xOXq7ISslJTVqLW2bEZdSrbQ2qvh88lsx+JiGouPGk+aeamiPfJO+DEik0HqvV7WCa/t+4uqjSL4Ug/zd5c7UBJdWi1gNGgw/czN0d3TjYegNVqrNY52bKrKKLAUdhPc7ZU+5zIIrxvpm2MeHvJAJH30+q0UZ0TCTqt2nxQ9U6Jd2ZDCEXzJkW+Q8CPosWTYY7+201ElNDi/zc6UR2RmzBJSZXgwoylO7Bw9V64vX5kpppw/KA26NQ6A06Xt0bN2mRSae6qPUdNzlRGAh0bdxSgVWNbwtYTJCKi2g24m8wGFeT+fdF2LF23T2UyNEoz46TBuchtkaYacNdns9EjyeST3enDUx8uqLREhZCyEp/+sgZnHdsBfn/V2Yo1IedQzqU0C/1h9mZs3FmoamU3b5yCccPaIj3dAo/bp/pvEBFR9a5Z8nyzLYJV9KUtWJWHds3TqvGOGsxflRfVHnvzXThQ6IZRp0UwWLvXnXAGilPOyZ7oz0mHVunRv6Em+nOy56BTlTuuzjmxWgxYum5vVPssXrMX44a3i/qczFuZh9xmHRHvDGYLXJuXRbWPa+MSpPY7udaOiYgoHjFwQaRuoDWwpVgwdeE2fPjjajiOmNyZPG8bWmen4s6LB6BxuhlOh6da7yNZG3KjHi13BGWliIioYU4ApaSa8f3MTfjs13VHXWN+nrsVbVuk4a5LBiLNaoTL6UU8kNWXX/+2Bt4IA/I/zt6MC07qDJ9HW2tBfAmmSJbFm18vV6UppExFad/8sQEDumbj9ov6q+u52x0/gSAiokQhvz990oG6Gs9D1Wm5HKrms5QsADDV0cp9WUAn7xctKT1cnT7Usk913s8r5yTKrJdw1me07yfbVyfhRfaL99bc4XMS9EU3pxDye6CR9BwiogYkot96u3btiuqDKNFYbCWTPq9/9edRQYuw7XuKcdsr07Gv0F3tpl+yarNxhiXq/STrQ/YlIiIq/eBrSzHhs8lr8Z/vV1UYGJfyGLe8PB3FLp8qDxEPiwVMRr3KDomUw+3H9CU7VQ3w2jkmrSoL9fh/5mPyvK1HBS3CFq7eg9tfmQG9Uc++G0RE1SA9FWwWQ9ST0vI8VJ3Sh/I+sm+00mzGOnv+qu45yUg1Vat0U12eE9k8GAohIyW695Pt5VJcrXMSpyUyS58TOY86W0ZU+8n2oTrIACIiSrjAxZgxY3DcccdF/EGUSGTVSKHdgw9+WFXltrJa5+mPFsBqMVar54WUlujfpSlsUazead7YprI9vMy6ICKiIxo77trnwJdT11e5rQTln/3vIhV4r++eF1qtFgV2D5zu6DIQN++Ssk21c0xGkzRF3YpFa6ouZSFlKz74fmWdN24lIkoGgUBQTUgP6NYsqv1OGNQGoSpKC5ZHSgwe2791VBP8Pdo1gsWkr1ZmSHXIM6IcXf+u2VHtd8IxbSQqUDfnpH0jmI3VOydOpxej+7eOap/jB+VA+o5Hc07k/ubEQTkIVuPnpK55XS6k9BgR1T4pvcbAG4jzqAwRUX0ELp544onDH3feeSd0Oh2GDx+Oxx9/HG+//TaeeeYZnHzyyTCbzXjooYdifYxEtV6uYmIUzcJ27LVj3bb8ajX9kht1SekdMzAn4n1OHdYWLrePGRdERFSjZpfrtxeoQIcEPBJVdRYNVP01SxqVToqiAejvi3aofhjSu4qIiKIT8Plx5qj2EW/fq2NjpKeYqtVfSBZ/SePrY7pHHig5fVR7eL1128soFAzhjCjOSe+OTVRWgqMaJYzD52RQFMGjM0a2h7ea/Z0C/oB6ptXrNBFnTcj3y+cNqPeN5pyk2ar3cxJLJpMOGRlWZGaWfNhsR3fUlmqTaQNOAbSRLYLQpWTA1nEAXG4uZiSihiWip62zzjoLZ555pvpYsGABzjjjDLzzzjvq8yNGjMD48ePx4osv4m9/+xt++umn2j9qoliW2bAa8cfiHVHtN3n+NoSqOXkiN+qXjO2K3Aiay8lN+tihbeGr4xtnIiKKb7JKUjIGZy7bGdV+UgapvlMupCSGTLbIatZotGmeBp2+pKeHpZolG8sjJZ/y9jtUSchISVmueSvyWC6KiKga3G4/OuVkYuyQ3Cq3TU8x4ubz+8HjqX5fIb/Xh+v+1huNM8xVbjuqb0uVIe+p4z5GDocXXXOzcHIE50SuoTed31cFBGpyTq4/J8Jz0q8V+sk5qeb3QAIleq0G//e33lVuK8EN6SspC/dcLh+6yDkZ3Cbic+Ktwc9JTaWkmJCSZobVZsbqrQcx68/dWLx2HzQ6HVLSLCqYUfqchLQGND7ln1V/YZ0eTc+8FR63R91DERE1JFE/bc2aNQuvvfZaua+NHj0aX3zxRSyOi6jOVm5KFkRFfS0qUlDsgbaaEz9yk6LR+vHM9SPw7ISFql72kckUMiE1ul8rdYPtcnpqrREpERElJtXI0+OHL8rrg5RoUvUo6lFJ9qEfxw5ojR9nRZblYDXrMbx3S9z7xiw0ybTg4lO6IjPFpK6RNU1IlHsBdV6itL/QVd8xICKihCSZ5A67B1ee0QNpKSZ8M22Dyko/UsfWGbj70oEwG7RwOb01CpRIqcQXbhqFpz5cgFWbDx61jUGvxalD2+KSU7uqY6vrCeJgMAiX04erz+iJdJtRVQQor6F1+JxI6WF7sbvWz8m4YW1x8dianxO5Xo/o3RJGvQ7vfLschfajv5/ZWVbcckE/5DZPhdNRcn2XP68+s6fKuKnqnJj0Nfs5qYm0NAs0Wg0++3WtWiRSenxGvRbD+7RU9y6paRYUF7nU54scAaR3G44meiMO/Po+gs6io76uPr0pmpx+I3RN2qCwmIsZiajhiTpwkZmZiT///BPDhg076rW5c+ciOzu6uoxEtb0aVTIjZFJCbpA1Iakh6itz0yUNOXVaTYWNOMtjNGhVk7HqUit4QiHcefFAFDk8qjzFzn121UisbYt0lUprMujUDV4se1tIWQur1QhfIKQmWyRgI41d5QavNnpoyPvpDDpoZJZMU/KQIrVp6zt9l4go0cklqDpliqQ0BOpoLkayIrR6XanAQgg6jQbFxW61SvTs0R3w67ytEQVfThmSi627i1S5K/mQXhQPXzUYuc3S1KRGTci1yWSMvl9FeRkjct+h0WnV4gbJypDeGRpNoM7qpBMRxaoXkZS3Ccjzk0ajnhksVhM87tg9M0ifBZl4l5JRZx/bAb/O34YVG/era0KjDAvGDs1Fq6apcLu8MZmMdrt8MJkNeOyaocg74MSPszdjz0En9DoturTJPJzpYC+WRWP18zu7JKMhhLPHdMTfxnRUE+ArNx1Q56RxhgWnDM091PvQX6OgRUXn5IdZm7E3v3bOiTx/O+xu9O/cBMMeOAlzlu9WH3KtTLUaMWZAK/Ts0BhOp08FScLk+iljPWt0B5xzXEfsPuCATlvy/O71B5FiMahsC1eMfk6qIy3NDLmTuevfM7BpZ+FRr8txTl24XS1YfPL/hqFplhXFhS51TgqLfUhp1x9tbhgC+9p5cK6dh6DXBZ0lFSk9R8PSpjs8Lg+DFkRxqnPnzrj++uvxr3/9C4nk4osvVn9+/PHHSLrAxTnnnKMyLtxut8qwkEDG/v378fPPP+PTTz/FPffcUztHShQhmZA3WYywWgxYtm4f/li8E3anV63WHNa7harlKamncqMmNwtur1/Vw1y8tuqGnGH9u2SrIEhNyOS9fMgkxzljOpTU7VZfM6QmdIpdsbvx0ukAi9WsSlosWbsX05f8dU6G9mqhaoh6/QG4HB4EAqGYBCzkJlhiQT/N2aJ6gkhgqFmWVQVlGmdYVfDGXccp2EREyUKyFkSX3Eys2ZIf8X4Du2bXesKF9NCQCXsJ8P88dyvWbDmorgHZmVaMHZaL7Cwb/D4/9EaNWiH5xAcL4K+kkebgHs1w/gmd8eA7cw5/TlbmPvzuPLx77/EwGnU1mkiTrEYp3yirVx0RNgyXS3b/rk0PZ0TKtdxsMeJgoRvfz9p4aGJFg06tM9TEj1wT5brHAAYRxTtbilkFc1dvOYgpC7ejsNijavYP7NoMI/u2hNEXUMGEWGSEy9fw293Q63UY3a+l+ggvOJMHicICR42z6kqT38PykWE14O8ndlZBZgnSSLaDN05+R//1jGhQDaqPGyhNrTWHg/9yToLB2jknF57U+dD5l1dCMT8n8uytFsx5/OjbsTH6dGxcZoFhQb6z0qwOeWXFxgNYfijA1UQFc9qqcmL1SaPV4pkPF5QbtCityOHFfW/Oxrv3naAWd0gpLBmvZF7o3B6Y2/RDVm4fVRYz4A/CG9ThYH5JgIOIqKGKOnBx7bXXori4GO+9955qzC3kQiONuW+88UZceOGFtXGcRBFPJEhNyQ07C/DSZ0uwL78kDTNs2pKdqtnX/53dC306NYFDVo94Azh9ZLuIAxcy2X9s/1YxWeUiajv7QIIW1hQL1m7Nx8tyTgrKPyfXntVL1XN12L0IBKp/gyoTSFabCe9PWomf52w9ajLquxmb0KtDY9x5yQCVniwBJCIiip48+J82vB3WbFkUVbPLwkJnrR2TPIibzUZ88MNK/Dh7y1HZFJNmbkL3do1w1yUDYTJo1MKB524YgQk/r8GiNXtUwDusWaOSYPdJg3Px/CeLjipjIas0v5+5GacNbwvUIHBRUroqgDEDczBpxqbIG4BajSgqdKlrGbRaPPr+PCxdt6/MdrKadMIva3DiMW1w5ek9VXZIXTd8JSKKlNTn37nPgef+u0hlg5c2c+kuvDNxOS4b1w3H9m+tVs/HqpytrOavyyyH8OIpyVzMzLQhP98Rd6V5JfuiJn09olWXC8rkuhtpdoQEtVJSTfj813WYOH3jUSXF5F5D+qXcdelAWKzGOs+6SE+34GCRW2VTRCK/2IM/Fu3AyD4tgVLPwap8tTNY8jNptaDQIT+TfE4mIoq6xoBExO+8807MmTNHBS6effZZFcSYPXs2rr766lo5SL/fj5dffhnHHnss+vbtq4IjS5cuPfz66tWrcdFFF6FPnz4YM2YMPvroo1o5Dop/ZosJ67bn44G35hwVtCjdn+LJDxdgwco9sNiM6oawV8cm6NG+UUTvceHJXdTKzni7ua2I1WZRkz0Pvj3nqKBF6XPy1EcLMHdlHqy26q9Y0ek0Kmjx3IRFajKpohW0f27Yj1temq5Wp8gqVSIiip5MgA/p1ULVdo7Epad2UxmHscisK488bEvQ4qXPFuPb6ZsqLAElZS9ueXmaKlsoTTibZ1lwx8UD8MEDJ6kMjJsv6Icnrh2G1+8Yg0bpFtz12kzMXZFX7tf6ec4WWC3GkqzFGgj6Azj3+E4quFMVqVUtE3c+b0nWpE6vw60vTz8qaBHmD4TUxMozHy9Q10gpUUlEFG+kfKwELe56deZRQYswu8uHV79chp9mb1G/z4hqk1zb5efynYkr8Plv68rtgyIku/+WF6fB4w/CbK7bZ0t/MKQW5kVD+ntJ/xAiSj4FBQV44IEHMHToUPTs2RPnnnuumj8vzW63q22GDBmi5rhvvvlmfPDBB6rsVGm//fYbzjrrLPV1pF3DY489BqfzrwVo//73v3HCCSfgjz/+wPjx49GjRw+cdNJJmDhxYpmvs2vXLlXOqn///urr/Oc//znquKWq0vPPP48TTzxRfZ1+/frh8ssvV/PtYXfddRcuvfRSPPjgg+r1sWPH4oYbbsDIkSNV5mJp9957rzqWWKj2b0ubzYYmTZogLS0NvXv3htdbe5HtN954A19++SUeffRR9Q1o27YtrrzySuzduxf5+fnqZObk5OCrr77Cddddh+eee079nRoWmQgwm/R45uOFVfarkPTXlz5fom6GZD9ZAfnglYPRs33jKoMWJw/OVenRiUBu3GQi6bn/RnZOXvlsiSrtkZJSvQcRo9GAOX/uxuw/d1e5rdSUfeub5dAbGbggIqoOWZ3ndHpVbWpZbVgRmdO/6oweGNG7RUmPpVpisRgxf1WeyuSriiwueP1/y1TdZ8k8lEaV0ttJAt4yYTZ9yQ7847Ff1TW9stILsnJRSj5K4Lwm5Bj0GuCp64ajUbq50r4WD1w5WJU+lBIPeoMeb09cgd37HVW+hwRfZi7docpoERHFE3kekkDs0x8tKLf58ZHem7QCRU4fbAxeUC0/y0rVACk9XJUCu0dVFzCaDKhLcvexLa84qn225hWX9NnkQgaipOLxeNTE/pQpU1Qw4tVXX0WzZs3U/HXp4MX//d//4aefflJ9MV588UU4HA4VNCht0qRJan67Xbt2ql2DBB6+++47ta8qp3jIvn378Mgjj+CSSy5RyQWtWrVSyQYbN25Ur0ugQxb6r1u3Ts2p33///Wp+fcmSJWXe74477lDz6JKQ8P777+Puu+/G+vXrceutt5Z5v4ULF2L37t3qmOS1v/3tb9izZw/mzZtXJggi7STOPPPMmJzXaj05ffvtt+qkygmSiV8ZtER6DAaD+rzRGNsagxJlGjduHIYPH344yiPvKVkXmzdvVu8r3yi9Xo/27dtj69at6ht29tlnx/Q4KL7JRMCMZTtR7IxsUkZWgspKzRMH5aiUUpnYefSfQ7Bs/T5MnLZR/Slz/TJJMapfK9U4LivNrEpEJUqdSYPJoCZ/Ij0nMoEk9chPGdKmWu9nMuvxbRQrTmYu24VrzuqlemLEQ01ZIqJEUxKICOHp64dj0eo9qoyCZDTI/aX0bDh2QGucMbI90mzGWr9+SU3maFYdzl2xGz5fb1XH2++XHktB1XRbGljWB7kXSLcY8fbdx2PKwm0qczA8GSF1tE8e0gZjh7ZVkxTSE0quXfIfM5bsiPg95Bo5ok8rtQAilnXbiYhqwmo1YvmG/apBcyTk99e30zbi7yeVXR1KFEuyOOCbaRsi3n7p+n2qj4QE4Y4sxyyfk34mQvU08fp5HSaimJK58jVr1uCLL75QC/yFZCNII+zwAnsJYMgkv8yhS3ZDeBuZ8w4HGyRQINuPGDFC/RmWm5uLyy67DNOmTVM9p4XL5cLjjz+usjfC20i1ItlG5se/+eYblXHx/fffo0OHDmobOTbJ1AiTRAQJntx3330qi0IMGjRIZYY89dRTqq+1JC6EKyLJ/LsEZMK/T+XvkmQQPoZff/1VBUzOOOOM+glc/Pjjjyp6c9ppp6mTIVEkIYN++OGH8frrr+Omm25CLDVq1Ai///67ihI1b94cn3/+uQqOdOnSRQUw5IRK0CJs8ODBeOutt9TJbdy48hX0lDxkxcKUBdFNdvy+aAdOH9leTVa43X5VAqpTq3Tce/kgGNXKz5BK43S4vKqMhKwITTTSVC8avy/cjtNHtIv6fWQCR24UJVU3UrKydtqSHRjVpwUDF0RE1eRx++HzBtA9Nwt9OzeFXqdVWXZy/bI7S65fserLVFlvC6fbr4ImkZJjnLpoO04eXBIslwUE0iQ7GpmpJpiNejjtHsSCy+WFz+fHiF4tcMKgNoebhmq1GpXd4vf6D1+vpKfTrD93qaB/pDbuKFS1sCW7pCYNxYmIYkkqCP4W5XPUtMU7cOXpPeBySFC81g6NGiipGiCLA2RRRqQkEDF5/jacLr2vpLyIVqMWR8jiur35LmzZdVA1+G6TnYZmja3q/knKRtdkUYfsmdMsVS16jJRsL4s15IOIkocEJWSCv3v37mqCP0zmzp955hkUFhZi7ty5avH98ccff/h1CapKwECCGWLTpk3Iy8vDP//5zzJfZ+DAgUhJScGsWbMOBy6EtE0ICwcUwiWlJENCKhSFgxZC5tVL7yPz69ICQkj2hCQIbNmyRc3Di9IVljIyMg6/R/jYJbPiww8/xEMPPQSLxaKCJVIqq/R2dRq4ePPNN3H++eerAyrdwFeyGw4ePKgiS7EOXEhtLGn8fdxxx0Gn06kTI99QOfnyzezUqVOZ7Zs2bar+lPSV6gYu1IUyRsIpgMmYChhPY5PvWUGUEzPS20GOvfT3WyYk5MOr1yE11YziYtfhfhax/LmoC3qtnJPoJnMkzfbIcxLRe+m1OFgY/cSRlPmQu1L+m4sMx5aYknls1RWrf/PJfG6jHZtMuMuHTLZLEEAm3MOrCWv7+iXHmF8U/TVArlESwJDjCwWDqon1Rz+urrBH0pFOGtJG9e0oKRVVs3JRpUn/CvmQSQ9RelLjr3OpwcHC6ANChQ4PWmRZEyZ780j8N5eYknlsDWF80Yr2d75Wo4n6mUF+l5W8l/6o2taJIpl/bhJ9bDabGcWyeDDKS2XhoZ9jWVxgthhVb0XpjyElp0rr0CoD5xzXEf27ZMPj9lY7iGDQaXDaiHaYFEXG6dihuar6Q3n/ThP9+1aVZB4fx0bS30IqE0ngojzymrQ7kMn/cAZY6QX7pb+OkOSAhx9++KivI20TSpNgQVj464bLO0mwJDPz6JLCEmCRxf5hM2bMwBNPPKGCJtIaQhIFrFZrma8l5LUjSTxAYgWTJ09WiQQSwCmdKVLngQuJvEjGRXkk3SQcIYqlDRs2IDU1VdXQys7OVlkWt912G/773/+q2llHlqYymUyH64tVhzykZmYe/c2oqbS0v36Ykk08jM3rC8AUZb8Ek1Gn/hFW9v1OTa3/sdXonEgpiyjI9tLnojr/BopcZVNyI30/s9kAmzW2Jebi5eeytnBsiSmZx1bf19lkPreJMjZjNa8BkiFiPfTz4PH6MWZAa0yet7XKfaWU4/jh7dX1ozauIVWRa6XcR0RL7lWkLnysa8MH/T4g4D8Uv9FAa6y4V0dD+rmsDo4tcSX7+GrrGut0+6L+fWbUl2yfnp745zyZf24ScWw+yRSNsNTxkaRqgsGgh9Gox3fTN+LDH/9qLFvahh0FePLDBSp4ccGJnWE49PNcHY3SNRjQNRsLI8gOkUxRKeMp/36kP2cyfd+ikczj49gaLpm3llJNFU3aS/8JmdOW4IUE/EsHLw4c+CtrXXpJh/tODBo06Kivk56eHvExSdBC2ikcKRwcEdu2bVP9NCQLRKoXtW7dWi2EmzBhggpoVEW2l+OUvh3ydSUrpHRGSZ0HLiQKJHW3pBP5keTzpaNEsSBZE9LwQzqsDxgwQH1OOqpLMEOCJGaz+ajG4OGARTg6FC1ZAVdUFFl9z0hIVFL+gRcVuZIuHTCexiaNuPp0ahJVqSLZXkpbeN3euB5bdckqk76dmmD99r9+KVVFtpeaoNE2IJeHpOwsq+oDImUwInVM92bqvaTOaKwkw/euIhxbYkqWscUq2BDL62yynNtEH5vceDfOMKteEPsKIi+rOLB7tqrtkJ9f0txar9fhmrN6Iu+AQ62SrIhMsD145TGQxYrhfeuaTIoM6tYM7323MuJ90lOMaNnYhsJCZ0wyLuRnxGIEdFoNiv/8He4tKxAK+qFLzUJa35NgaNJK9UFxe4MN8ucyWhxb4kqG8dXnNTb8zDB/ZV5Uz1ESbHYeyrxIRMnwc5NsY5PjtqWY8eh78/Dk9cORk52KbXsib3496NB9xZ8bD1QYtCjtyynr0bZFOvp1agzvEX0xoukRc8fFA3DXazOxaWdhhdulWg147Jqh6t9oRfcuifp9i1Qyj49ji2+1sTj9SDJ5/8cff6h58RYtWhz+vGQjrF69WgU0ZJtXXnkFU6dOPTy5L4uppbdzmDTklq+xY8cO/OMf/yiTaSHBDKmCJBWIIiEZENLfYvny5WouXUi1JOkZ3aNHD/XfK1asUPPo0pi79NcNBy1KZ1xURJp0S48MCcBI2atwQkG9BC7kAOQkSzmmUaNGqc9JJEYGKv0tpKFILC1btgw+n+/wCS6d3TF9+nT1w3Bkmkz4vyWSVV3h0kCxJP/Aa+PrxoN4GJtW68f44W3xv6nrI54MOGNUe1X7u7Jjj4exVZcsuhw/on3JOYlwfuSMUR2g12mqNWYp13Hi4Bx8NnldRNt3yslEs0ZWFOTHLlCYLN+7qnBsiSmZxxatWJ+HZD63iTG2IDxevSrd9N+f1kS0R7uW6WjTLE31jwqPT/6Um+OHrhqMidM24qfZW8oEQmSCfnCP5rjw5C7ISjWpCbP6aq7p93vROMOKbm2zsGrzwYj2OXFQG7g8JT21akpKTKRY9SiY/Q0K505EyFd28rB48WQYm7dH9tm3w2JMQbEzdgsEEufnsno4tsSV7OOLVLTnQErjSV+fD39YBXeEv5+kT2AoGEqK853MPzeJNjaLxaj6WqzfUYCZS3filKG5eOub5RHtK8+V3ds2UiUov5wS2fOo+GrqenVvIX0vq3NPUVTkVpO6z/5rBD6dvBa/zt+KQvtfiwCNei1G9G2Ji07uihSLAcWFrqT7vkUrmcfHsTVcZ511lqoMdPnll+Oaa65RvSRmz56Nd955R/Vslt4W0qdCEgGkJYKUapI57f/9739Yu3atmlsX0iJB+kk/8MAD6u/SI6OoqEjNuUsPiopKUZXn9NNPx0cffYTrr79efU3JhnjjjTfKlHiUrydlH5999llcccUVKjng66+/VkGY0v0yKnPSSSfh0UcfxZ9//on7778fsRR14EL6V6xbt079GU5rkQ7pMhDJiJBeFLEUbuYh38RevXod/rwcg6TgSADjs88+U/025BsqpNlJ27ZtY579QfFNJgFS04yqxqRMdlRlVL9WyM60oqCgdibN40FxsRtpGVaMH9EO306vuu7m6H6t0DRLAgnVW70a8AdwxsgOqkn6vvzKb8hk8ukfp3VXTdGIiCjxyUKA00a0x2/ztyHvgLPKLL1/jO9e7kIDyfqTB6NTBrfBWcd2wLqt+Sp4IVkWXXMbqXrScr2Jh1W+sjrzivHdcddrs6rsyyEZKTKewKHm3jUhDzZpKUYc/O1DFC36qeLj270RO9+/Ay2veBYWsw0uXnOJqBzye9dg0uP8Ezvjg+9XVbm9ZGdI0LYgigw7okhotFp8P6vkufWHWZvx2DXD8NOcLdiWV3nWhcz3XXlaD5UFVOz0RbygQGzcWYid++xolGKAu5rXSVmJnpJiwrnHd8RFJ3fByk0HcLDYDavJgJ4dSvqu6rWapJ57IGropOqPlFd6/vnnVRCguLgYLVu2VFWEJCAQ9uKLL+Kpp55S20nzbennfMEFF2DixImHtznnnHNUP4l3330Xn3/+ufra/fr1U1kbUpopUtJaQRpnS/+Kxx9/XD1DnHvuueprhMtTtWnTRh3Lq6++imuvvVaVopLm3R9//LGa75cG3507d670fSTDQrI7pEdG6bn7WNCEIsn5KId0MZeGG9LoQ+p4SbqLZGCEI0SxIlEgiUxJDbAHH3xQBTLkm/n222/j008/VTXCTjnlFIwZMwZXXnmliu5I43BpYCKdzatDHpYPHoxd2QFZESdpSZIOmGzRyXgbm1p9mGrG298sx89zK66PPbx3C9zy9/5w2N2qEXcijK26rFYDTGYj3vr6zyrPya1/768au9rtnhqtknH5ArjnjVkVTlzJqpM7Lx2IHm0bwelwx3y1bLJ878rDsSWmZBlbkyapMfk6sbzOJsu5TZaxyTXY6fHjntdnYdf+8r/H0tPitov6qYaYZqO+0vFJgENKMsmfcssq21V03a4vUtJi9daDePKDBfBUcGxSSvHxa4bCZtarFZ01ZbEYoDu4Gbs/vi+i7c1teqDZeffiQIGnQf5cRopjS1zJML76vsYaDDrYUkz4/Nd1qplxZUGL+644Bn5fAI44CCA39J+bZBub/Du47JFfcKCwpPTw+Sd0wslDcvHQO3OxZXdRhQvi/nVuHwzt1VwtDli1tQCPvj8vqve99e/9MLBLUzhjcI02mXSwWEwqmCKkJLLD4U3q71ukknl8HFvDuMbW1M6dO1WZJglWSOuDsBtuuAHbt2/HN998g0TkdrtVTOD//u//cOmll9ZvxkWYpLbIh9TBknSXIzuix4p8XUljeemll3D33XerQEmnTp1UzwvJthASgZLIkQQqpDO61PyqbtCCEpv8ErUXe3DVGT1VWqlkXsxatgtef1CVP5Ja1GeM7oAOrTLUhHm8TX7UBqdqbKbB1Wf2VDd9ck5m/1n2nJw+qr0q2+SvYdBCuFxeNaHy+h3HYfqSHZg0Y5NaxSKk/4WUkho3rJ1679oIWhARUf2xF7tV8OK1O8Zg+pKd+H7mJtUAU37XS0NKKUUiWYCSPeFxeVTgojKSkeF2V69BZ12Ra1mXnEy8f/+J+HHWZvwybwv2F5RMuLRtkabGKxmNsoozFkELYTYA++d/F/H27q0r4Lfnw2RKUyuriYiOJM9Fksl27vGdMLp/K/XMIL/HpbydBI8lYCHloXp1aHxoIjaxgxaJwGjUqaoSMgEu10M577Hoj5RIPvt1HaSiyfM3jsTs5bvw46wtWLP1oLqvSLMZcdzAHIwdmqvuMeQexFRJw+u64vEE4PEws4KIyp/jvuuuu1TgQvpCyO946SUxefJkPPnkk0g0O3fuVMEWKYkliQxnn312zN+jWhkXkvohfS7kwOx2O7788ktVk0saiEgaSaJjxkXij01u7kwmA3QGHaxmA3z+IAx6LVwen1qFIZMHVf3ox+vYqksqqaWlWeELhGAx6VVJC1n16vb6odOUlJUKBEIxbeBkNOlhNklgU4NgKKRWwzicXlXiIxb1vRvK9640ji0xJcvY6ns1aDKf22Qbm0y2GE0GtYJXZUsEQ+q64HT7EAoE1YrGRB5fhRNMeh1sVqOqr63VlFz73C6fymaM1RjlPGakGrDl2QuBUORfM2PY2bAOPAPFzppdf5Pt+1Yax5a4kmF88XSNTU01Q54KLGbD4WcGlVEWDMHp9CTsOU6UnxtZBKY36NVz2uotB+H1BVXmXsfWGaqnoPQkqep443VsVUlLt+LxD+Zhydp9ZT7fskkKThmSi+MG5ahnWfk5Nxp0WLZ+H7buLsLxg3LgOBS4cPmCuPKJvxrdRuLV245Fps1Q78H9RP2+RSqZx8exxbd4ybgItzd47bXXVMNuKRXVvn171Rcj1j2j68Lu3btxxhlnqLJWklAwZMiQmL9H1OFoObEXXnih6h8hJ1XKNQmJEknNLGn0wWwHqm8Sk1ArNN0+uBweFciQzzW0FSqlBQJA/qEm2G69DgaDFikpZnV+aqsZvawslQ+ZtAqvFGKGBRFR8pPgdDhALQ87cg2Q60KpPnBJR43XG4Db5VUBm/R0KwrznTG/xqrFALKSM4qghQg4CqBBEn8DiChmZEGTcDq8MBq1SE21wGl3J+yEVaKQa6XVZsKefBc+/mmpalJd+vFVghenDmuLccPbqu+NZGAkm1AwiHHD2x0VuJAeFO9+twIf/LBKZVfIvUWxwwu7y4fnbhihFuIJCTxkZlhVD5ZI+1y0b5mOFk1SUFgQu8WrREQVkV4Q8pEMmjdvjnnzoivNF62o6zs9/fTT6NGjB3766Sfcc889h1et33fffSrNRbqVE8UTmSyXTIKGHLQ4kt8fqNMyWeHvAYMWREQNT0lfiuQOWpRW2wsl5N5bozdEvZ9Gb0IoFNtedESU3KTfJIMVdcdiM2H1lnzc+vJ0LFhVNmgh9hx04v1JK/H4f+bDajOqIHmykbLD0gNLMizKIxlA+wpc2L3foYIWkoUiZaDt9pJgm/B6/KrkWaT+dlxHeDy+hHxWlZ8Bi9UIi9Wkfn7MViPMZsPh/hpERIku6sCFNBG57LLLoNfrj2rEPXbsWGzZsiWWx0dERERERIdI5orGYIKxaZuo9rN2HIgAkm+Si4goGagSR54AnvxwgSpzXJlFa/biwx9WwRAH/RxiTQJlXq8Pj14zFI0z/mpcW57mjW146KrBh3p//PV5qbzQvW0jXHpqtyrf77zjO2Fg12x44ryf1pEk48SWYobJYsTURTvwypdL8cIni/HxT2uwv9iD9AybCmAQESW6qK90JpNJdQsvT0FBAYxGYyyOi4iIiIiSiKx3Uf0uGnjpxpqS8ycTLGkDT8X+H16PaB99elNYcrvjYL6r1o+PiIiip9Xr8M3ktSW9RCLwy9ytuPiUrmoCO9myYuzFHqSkmvHyLcdiws+r8fuiHapJfJjNYsDxA1vj7yd1gQYhtf2RmYnSaF5KarVploovp6xXvUJKk0yNv43piP5dmsJh9yTUfYlkWdhSTPj813WYOG3jUT8zP83ZosZ392WDVDaGlG4mImowgYthw4apxtz9+vVDkyZN1Ock88LhcOD999/H0KFDa+M4iYiIiCgByQO23qCDVZpWB6Rpdcnn3fXcADORub1BpPcYiaIFP8C7d2sVW2uQdfxl8LgSa2KGiKihkKC+NJyesnB7xPu4vQFMXbgdI3q1gN+ffBPT9mI3UlJMuOzUbvjHaT2wfON+2J0+pKcY0b1dY/ilgWMwBLu9bNCidHaiNOvumpOBx68Zin2FLmzdVaSazuc0S1X9QqQfhrxPIl0b5WdF+qC8/c1y/Dy34uv/+u0FuOXFaXjpllEq80L1/yQiagiBi9tvvx3nnXceTj75ZHTp0kUFLZ566ils3rxZRbZfeOGF2jlSIiIiIkqoDAupuSzTAT/M2oyf527B/oKSrN3W2ak4dVgujh/UBiaTAX5/+RMPVD5ZXet0+dH8okew+5OH4M3bXP6GGi0an3otzG37oKCYkxZERPFIp9OiyOGFwxXd7+ktecUY1gtJKxyUkDJaPdpmqbknmXPyuD1ISbEgP7/yZtoSkHC5fOojxaRHz3aNDn0+iMICZ0L2tJBzIdkjlQUtwgrsHrz82RLce/kgBi6I6smBQheWrN0Hp8cHq8mAvp2boFG6pb4PK7kDF9Ix/Ntvv8UHH3yAuXPnIicnB06nE+PGjcPll1+Opk2b1s6REhEREVHCkCaRG3cU4rH/zC9T4kFs31OMN79eji9+W4/Hrx2KDJsRAX9QTd5IwEMmG0pqVifgrEIdcbn9gFmPlpc9Dcf6hSiaPwnu7WukSAa01jSk9jwWaYPGAUYrCu3SdJTnkoiIEo9kRshHmJTHqs7XSAZ6gx7fTtsY8fZL1+9TQTEJeCTLOSBKBOu356sydfNX5iFQ6nlGp9VgUPdmOOe4jujYOrNejzFRVKubU2ZmJm6++ebYHw0RERERJTyLxYC9+S48/O5ceCupve1w+zBvRR5OHd4W3kAIKzcdUE1JmzWyokOrDLjcPvi8/qSr3x3L4IXXF4C5dS8069APGp1eoj7Q6HTwOp1w+jTwMtOCiCiuSVmjjFQzUiwG2KPIumjbPO1w+UVKfhKwkenPRWv2RLyPrFn4df42nDa8ba0eGxH9Zc7yXXj2v4vUM82RJIgxZ/luLFy9B7dfNABDejavteO4+OKLMX/+/HJfu+KKK3DnnXdWuv+8efNwySWXYMqUKWjVqhUSKnCxf/9+fPTRR+oEFBYWolGjRhgyZIg6KWlpabE/SiIiIiJKGAajHv/5fnGlQYs0mxEPXTUE/kAQT324AEvW7pVy1YdJ/WlprHnqsLZwOrwqA4OOJn1DHE6/+pDa1+GMFSZYEBElBlXSyOPHcQNz8O30yFbTS0+MY/u3htNRUoKRkp/qLevylblXikRBsSfqfYio+pkWFQUtSpPXn/3vQjx9/fBazbw45ZRTcO+99x71eYslccpVRZ1jt2bNGowdOxYffvghzGYzunXrBp1Oh7feegvjx4/Hrl27audIiYiIiCjuSTmCYqcPS9ftq3AbvU6L+684Bvvynbjn9ZlYtKZs0ELsOejEe9+txNMfLVSNKKXJN1U9+SWBDAYtiIgimwgOhkIwmAzqOmO2mmCxGlXZwroW9Adw5uj2MBkju9adNLgN/P4AMxIbECn5aDRE/7MpP1NMzCGqG1IeqqqgRZhsJ9vXJrPZjCZNmhz1kZKSgkQR9W89acQtfS5+++031efi+eefV0GMX3/9VWVbPP3007VzpERERESUEKUMpIxBZZPno/q1hM1iwHMTFsEfqHyWfd7KPEz4ebXK4iAiIooFs9WI1FQz/ly/H29PXI5nJyzC618tw6K1e5GWZlF9miSLra5I/wGzQYd7LxsEQxU9HAZ2y8YlY7upUorUsEqKWc0G5GSnRrXfMd2bqf5XRFT7jbjluSUa0gND9qsPhYWFuO+++zBixAh0795dVVKS/3a5yj+eLVu24B//+Af69++Pvn37qr+vXbv28OvFxcW4//77MXjwYLWNlJlavnx53Qculi1bhhtuuEFFaErLzs7G9ddfj9mzZ9f4oChxhG/mpCxB8o5Nk5Rjq8sbcSIialjcnkClr48d2hbfz9oc8Yqkn+ZsURkX1WnIWdfktoHXWCKi+GVLMWHHPgf++dQU3P/WbPy+aIfK/Ju5bBeem7AYlz7yCxasyoMt1Ryz3+fydSSTo7Kv53J60DknAy/eNAqDezQ/alvp/3Tl6T1w96UD4XR44PNVfq2Nljz3VnWMDW0OQqfTqExSY4SZMNF8vyvar6I5CFkQ4nb7VBnNSDVvbEPX3Cx43AxyEdW2JWv3qeznaEjPi8qy1GvTXXfdhVWrVuHVV1/FL7/8grvvvhsTJ07E559/Xu72t9xyi5r7/+qrr/Dll19Cq9WqOEA4I+yqq67C9u3bVUWmL774An369MEFF1yg3qMm9NVpzC1RlPIEAgGVhkLJTSYNDAY9zBaDSjmUSYeMDBvsDi8C/kBC16CWGwW5MTEYDWqli9cfQEaGFQ6XF0F/UN0oJCq59zGbDdDqdWqlhjTzlF8uFqsJPp9f3czIfxMREdWEXEoaZ1RcN7VV0xS0aZ6G3xduj/hrOt1+TF+yE4O7Z8Pv9yIeyaSG2QCYrFYE/T6EggFkpJnhdnvh9gZZzoOIKA5YU0zYkleMe9+YrXoslafI4cULny7Bdb4gRvZtCUexu0bPlnqDXpXrkedmo0EHp/QpCATUs2Xpxy/5u8PuQaNUI279ez94fAGs3ZqvnkmbZlrRvmU6XG4f7MXumF5TjEY9dAYtUuS50B9Qxx0KyiIEH7wev1rpX98kCCDHaTLr1WSZHKeag3DKc3pAZazEkmTjhDTSS8Sgvm/qnIRCCPiD8Hp9cJcTCJDnbZPJAJ08b1tKnrelNKZ8//xevzrG8iY1j/w5Cc9BON0+NbbSPyeSZSO9UH6YtRlb88qflyt9PFee1kP9zPA5n6j2OT3Vmy+U55zaMmnSJBWUKE2yId59910MGzYMAwcOROfOndXnpQH3f//7X6xbt67cr7Vt2zYMHToULVu2hMFgwBNPPIFNmzYhGAyqRt5Lly7F3LlzkZGRcTjQsXjxYtUjW6o31Vng4rrrrsNzzz2HnJwc9OvX7/Dn5WBffvnlw9EWSk4WiwEms0GtSvl+5iZs3lWkPp+RasKJg3IwfkQ7tYJFmmgm2sVRJvWtViMWr92Lb6dvwp8b9qkbBLNRh5F9W6mao43TLWp1SzzcvEVDVqlK3dateUWYOG0jZv+5W92o67QalWp8+sj26NwmSzV383pju3KHiIgaFlnAINcWaRwqzUaP1Cjdgv0FrnJfq8yW3YU4pls24o1MDKTZ9NAGfSha8CPylv6GgD1fvWZs2gap/U9Bes9RcHsDqoE2ERHVPVnBLs+pEjiQ3kkVBS1Ke+PrPzG4Z3MVmI72GUkm2eX9Vm06gInTN5b0cgqG1OK4Yb1a4IxR7dE6OxUO+9FBCJfLB7h86n27tZEJoJJJ84ICZ9Sreas6J/KM6PYF8M3UDfhtwTYU2ksWB7RvlY7xw9up52CZOHe7vPX6nC69R2Yt24VJMzZh7baSa2yq1YAxA3Jw+qh2SEk1q+f0mp4fvV4Hi82oJhK/m77xqHMi2Q6j+7aG0WRAUanyLrK4U85l3kGnet6esXQnPN4AJIGiT6emOH1kO/Tq2EQdY+kgS/jnZOWmA6oxe/jnxCg/J71Lfk5aNf3r50Q+PG4fnvi/YbjvzdmH52OOJM/5N57fFz07NIKj2FOjc0JEkbGaDNXbz1x75XDHjBmD2267rcznwgkHf//73zF16lR88803qgzUhg0bsGPHDrRr167cr3XzzTerYMUnn3yCQYMGqRJT48aNU8HklStXquvUscceW2Yfr9cLj6dmv4OiPjuSNiJveuGFF6pojKSJ5Ofnq0FKlOXtt99WH+ELofTCoORgsRjh9AVw08tTVcPM0gqKPfhiynp8M20j7rhoAHp3bKwurokSu5CbIYNJry7+KzYdKPOaTDRMnrdVfVxwYmf8bUxH2ItdqvllIpCbKFuKGW9+vQz/z95ZgMdVZn38Py7xNlZL2qbu7kZbSila3GXx3WVxX3aBZQ1YZFmWZVkcdpEPKZRiLdTd3VJJU0nSNjpu33NOOiGee6fJZGZyfjzzpCT3ztz73jv3Pe+R//l+VV6dsrSVW4/xa9zADrj/muGksCrBC0EQBCFkaFFN8hXTRnbB3KX7m/GdI1O6IineAHf+NhR++hwCtapB3IUHceKbf6F02afIvOZJxFsTUSHBC0EQhLAHmMk5TEFzylI/WaasgoIcyHOX7MOFk7oDKtZH5Iy2xhnx53fWsH55dSh7f+H6fH6dM74bbjq/f4MVFJVrMl+LjsnaHYV4/n91+03l5pfixQ834OP5u9lJTgmMHFBpJoLyj+QzImcXnWt9yYGk8uCHBnc9vxB5tSoMyu0edvZ/tXQffn3pYEwc3InHMtQESp0OfN1Io/6F/62vd0xe+nAjPpm/h8ckMcnCwQuqBqHAyQff7sKnP9VstEtxFEqMpNfgnml4/KbR/HsKXvB9YjXiT2+txpodBTX2c3v9nCxKLwqW/OK8n+8TCiSR/+L5uyfz/UVjsPPASf6s5HgTpo/KwvkTu8NE1T0VrqhLKBWEaGVo7zQOGpKfTSm0/ZBeNVsxNCdxcXHIzs6u83vy3992223Ys2cPBx9mzZrFfS6oR0VDUBxg5syZWLRoEVasWIG///3vePXVVzlOQO9HDb8/++yzOvsZjcbwBi4oWEGv6nTp0gWDBg06rQMRIhvK9tDotHj4xUUoKm64cQwZYn95dw2evn0cumYkwNGKmRlKodJMMhjqC1rU5n/f7+JmotNHdOFsiWiApKDe+mpbnaBFbZZvOYqXPtyAuy4fCre7ZmBKEARBENTg9fhw/Tn9sGXv8TpSBuQ4Iikpyi5SUxrdvWNixIUu4ix6eI/noeCTZwB/w+fiLSvC0fd+i863vMCOimiW1RQEQYg2zGYjZ+m3SzRzwEANtP3VM/vAYXcrDwjEmfDM+2vrBC1qQ3I/VJ142TRKjAtNjipUzBYjduYV47kP1rLDuyGOHLfh4VeW4u/3nQHDqcSE0/pcc6WUkkarwZbc47A5PEiKM2Fgj1S43F74PD9LT1Ngg6SX7n5hEQ4VlDcaYHr5442ItxgwsHt7xdeqNtY4C7btO4m/fbCuyTF55JVl+Pv9UxAfb0IAGny+cG+doEVtNu0pwh/fXIXf3TyGx5EqNJ55b22doEVtKAmE7pNLp/58n1DwguSeB3VvjxF9M7iSiAI/FESpIIUIr58TSQVBCB9UVT6qfyZWbDmqeB/anvYLNzt27MDixYu5F8XgwYP5dx6Ph+WgyMdfmxMnTuCVV17BrbfeiosuuohfBQUFmDRpElavXo1evXqhoqKC36NHjx5V+1Gz7z59+uCaa64JX+Diz3/+Mx+MzWbjagsq+3jvvfdw9OhRzJgxg8tFhNiDjAuK5DcWtAhC0cU3vtyGZ+6cwLrOkR7gJz1JMiKaCloE+e93O3H22K5sSEW6XjU5RxxuL75etk/R9os2HMYVZ/ZGktUQ1f08BEEQhNaFnA7klHjmzon423/Xc5PToD1wuKgC+4+U4ozhXdhpo4Q4sx4Th3ZCucIs2XBhNutxdMHbjQYtgvjKT6JkxReIH3MR3JGf1yEIghATcJ8/i4HXp0/cMhYlFeqSz2h7qgqg91GyriVHe15BmWLH1ReL9uKiKT24AqG5m2031fvwjTlbG3XQBzl2wo6vl+7DzDHZp3WMJPfk9gX4c5eSlFK196KgA1VqXj2zL7Q6DZwODwxGPeavzms0aBGErs2bX23Dvx6axlJKaiWjqNqCZLze+ErZmBw9YeNqHJLKpu0/nt940CLIht1FXB3Ro1MS8o6VYeVWZfcJBUZq3yekAEGJovQKNvWm6opI978IQixz6bSeWLujgJO6m4Ik4Wj71iA1NRV6vR7ffPMN2rVrh5KSEvzrX/9CUVER+/lrk5SUhIULF3Jg47777quqrqBeFwMGDOC+F3379mU5qcceewwdOnRgSSna5o033jitY9Wq3WHTpk2sWUUNO4g//vGP3PPiyy+/xA033IAFCxac1gEJkQdNghazAd+tPKh4n735JThSZGPDLdIhg4h0R5VC2aGUeUMNyiMdnV6LrxbvU2R8BaGx0OpUPxqEVoaMWLPVCEucibN36N+0IKGFiSAIQmtAjgNqRvngNcPx5m9nsNTimAEdMG5QB5RWuHDRGT3YYFfCrHHdWCs6knpMUdDCW1oEV/4uxfuUb1oAo8kInU4ezoIgCOGA7OEDR0px4GgZXB4vNz9WA8ntEEqdwZTwRz0OlEJyRPOW74fu1OeEa0wogaCp5s7VmbfiAMtFBR3kaqF9y+we3PW3hViwJq9G0IKocJDs0z7c++IiaLRaDjaRD2KuwgSHYICFkhEpMVEtiYlW5B4urSNH1RjfrDjAUaAfVh2scz6NQedJzS9IZlvdfXIA+gbuEwrU0EuCFoLQuvTskoIHrhnBgdDGoL/ff80I3r41yMjI4IbZ1OOCZKLuuusu/h359bdu3VpnewpyvP7669zPgrY555xzsHz5cm4VQT2wdTod3nzzTQ5i3H333Tj//POxZs0a/OMf/8DYsWNP61hVP9FffPFF5OTk4LLLLoPD4cCcOXNw5ZVX4ne/+x2/KEIzbdq00zooIbKgygLqaaFUCzQIaUOeM7aullokQYaXyUgVF8dV7bduZwHGDshENDizN+4pUrXPxt1FsFxsiBoprLYOl1BbKjUDqQ8LNXaj6H5asoUdfZ0zEriZnlTQCILQGpCGM73IiXDRlBzOWkWgMiOQnl+P3DAKf3xrdaNNUscO7IArz+oTdhmNpiA5Bvuetar28dvL4D5xFDpTKnw+kYsSBEFocTQarN5eKcWz73AphvZKx2YVa7+hvdNhV2FHWy0GXk+pgbLwqSdBa4yJUkh54USpE0adFn6/T/V8SdJUv3lxcZMVL/mFFXj6rdX4w23jYHN6FVVbVGfN9gJ075AItVBggKpD1VBY7GAFBupfoYaNuwthNuqx91CJqv027C7kfheCIEQ2tHb5668n4JMFe1gysHrPC+ppQfJQVGnR0kGL9957r9G/n3feefyqzSOPPMI/R48ejV27fk7QolhAsKd1fVDlBqk0NTf6UCouXnjhBda8osbb1Kj7ggsu4L9RlIYqL4TYgpwM7hBKQmmfaAj4U/am2lJSt8cPbRSkslNgRk32B0Hbh5pJI4Q/MEWN10m+7MvFudzErTrfrjyInl2S8cj1I7k0O1S9V0EQhNOFghe1MRi0GNQjFc/fPYmfY+REqT4fd0yNYwmGs8Z0hd1GDSnDI6GhFA3JMdRqxq0E2kdjbpFDEgRBEGpBGejB9dA3yw/goetG8JyjRMaDmD05B36F809weah27ewO8/qLxiSU9T1JFIVSzUDyxSs2H1EkO01QItbhonKkhqD7Hsp5Ef5AAC6P+qpOuubkGwjlGAMIwQfRBtfpdM7BJu5q/TaC0FpQUOLRG0bhRKmDg9mk3EL9/agRd2v0tIhmVM86VBZiMpn430uWLEFiYmJVY27qfWE2y0os1qDJITG+8pqroV2SOeKaaNaGJj/KAKGG29QYTCnJCSY2biIdygBJSTCrKnlNSTA1mvkqRAZkvJEk1D8/3cTarw2x51AJ7n1xMV68dzLLmjhVNMIVBEFoSWgapWaSGclm3HfVcDjdXuw+VMKOkYx2cejWMREOpwflZY6IkogKEtBooEtop3o/XVwi2x+CIAhCy0N+3nYJlT6KzXuPo6TcxdKF//t+l6Ks2ezMRJSU2BR9Fj3aae2cnGCGzVmh+BiT403cryCcY0JrPrUkxBnhDyEwYDLrVUk+EV8u3oebLxjATms1zmpap4eSX0hZ0KGMCV3zlER1+9H9QSiVy/x5v/DeJ62ujGHSQ2/Qs7wbBRrJZrQ7PPD7fKwmIKaUEA1QkGLayKzWPoyoRrWQPelVffLJJ9i4cSO+/fZbTJkyhR1o1GGc9K7o70JsQQ4EapbVp6vyMia9TovJQzuHrcFYqNBkZ7O7MWVYZ1X7zRidzZmWkQ45eqjJmRqmjugiskJRAGUubd9/otGgRRAqyX7pow0wRkHPGUEQ2mY1BgUnNH4/+mUlY3BOKgcziovtXCkWiUELwu32Ia7PWGj0lXJ9SjB1yIEuLiXi7SNBEIRYgar1zhjemR3TxLPvr8MFk3Iwe0qPRvcbMyATD1wzHDabS5WD1O5w8+ep4czRWfCHca6jMZk6vEvVmCiBKiRNBn1I85dBr1OVSEfkFZTz8Y3om6F4HwpY0Do9lLEM+AO8DlZT0TCoZyo7088cpc4pSfcHyY+NH9RJ1X70OQF/ZNpEzb3OTUqyIvdIGf763lpc+MCXuPjhubjooa/w6mebUVjqRGKSlSVHBUGIfVR/0x944AFuwHHFFVdw84077riDf3/uuefiwIED3IRDiD3cbi8umJhTo5HMhMEdWZftihm9MXNsV84UCTJ+cEc2HKJhYe7z+nDhZNLdVrZ9l4wE9OqSHBWZ626XFxMHd0KCVZnDmrI+yNjzRsF1a+tQ43U1jf+oPLHM7g6pvFsQBCFcgQCHwwPHqb48kV6VQDYOJYHG95+geJ/EkefC6ZIsQUEQhHDOLbR2HX2qPyE16X7sX8t4/ffiPZMxY3QWLKfsY0q+GzOgA/78y/F46LqRsNvcvA5WA62jzhnfDVkZ8Sx3eOWM3rj4jB4Y2jut3vUmZfmP6pcJl8sT3jEx6DC6v/KejRTs8bhDP0a1VRDB7c9T0dOBJFgSrMqTCapTXu7kzH5VYzIxhwMJAynhop1V0T4UF6H7IuDz832i1ykbmHaJZozsmwFXjCcYUtCCJI7/+PZq/Pa1FVi7o4BtLYKqLhauz8ddzy/CW3O3IT7BLMELQWgDqPZg9e/fHz/88ANyc3PRs2dPWK2VD+gnnngCw4YNQ1paWkscp9DK0ARJxt70kVnolB7P0f5yuwd7DhVz6ebgHqm49cIBWL7lKH5aewi3zx4Ir0ojrzUzPZMTLbjhnH54a+72Rrclo/aha0dwJk2kO1QIylIlBwkd8+9fX1mjKVB9xuE9Vw7j84qGgFNbh753ahrB0e26YPUhnDu+a4selyAIQlvC4QbanXkjnId2wnPySKPbWnuPRlzfsSgpk35DgiAI4cTj9uJXlwxmCVXqs5CbX4rb/jwfk4d1xrkTuuPOy4ayU5QCHMXlTk76KisNXaaQKgVeuu8MbNhVyJXPJoOOHf9Otw9fL9uPuUv38bqMAiUPU4DE6Qm7dr/H5cGvLh2MPfmVY9IYZwzvgqG90lBWpqxHRX09HbIyE7l3hVKyMhJ5jLp3SsKscV0xb/mBRrenANCvLh6MrfuOc5JhKGgRwK8vHYy9CsaEqjOocbutwskJZXQdH35laZP9JW+dPRBWkx4V5U7uVfjrS4fgxQ83NLpP1X1CMkkx3OOB/BFxcSb85d01HLBojLlL97Nv5tKpPXksBUGIXUJKvY2Pj8fgwYNr/O6ss85qrmMSIhCaIEmu4faLBmJ3XgmeeW8ta4RWJ9hE87EbR8Pj8cJRTyPOSIWaflLGg9VswLvztnNQpjZZmQl48JoRSE0yw25zIVpwOtzcGOgPt4/DSx9uQMFJe70ZHL+8eBCXANsqoufc2jIVDvUZu8UV6krdBUEQhKaTH3RaPTre+BcUfv48HPs21tlGozMgYeh0tJt2A8ptkSt9JQiCEMvParPFiBfunoy/vrsWW3KPcxDhu5UH+ZUYZ2TH98QhnXDRGZWO0FCe1dTLwWw24qP5u/H9yoMctAhCmfVUzUEVGFR98daX2/Cry4ZwZYa9FdZf9Y1JbSjgcu7Ebrj6rL7soA/VaU7STeeO76YqcMGKCAD+8OYqPHnLWO65+cXCvXzdakOS1tQra3PucfZV9OwcWuCitNSJhEQznr9rMv763hpszT1R/5hM6IZrzu7LATFK+KNXh/ZW/PXOCXju/XXIL6zb34TusV+c15+VKWynHO0OuwvjB3Xk93ztiy3cf6U2HdrH4d6rhyErPT7m1+lms4ErolZtO6Zo+88X7sVFU3pw9ZAkXgpC7CKaIYJiDEY9lm8+ihc/XF9VrledI8dteO3zLdh54CTuumIY9HoPN4dujsg7TWLUBFOr0YA/mqoC3D7W52wOqMkVGagkf0VVJUs3HcaaHQVwuX3cBOvMUdnI6ZzE8hXRFLQgyFFNgZmuGQl47eFpbJRSiWWF3QOrWY8JgztheJ90boBKxlA0VJIIlQ1t1UJGsSAIkQXJt2l0Wu4XRpmeXl+A5z16FKuQWY55dDoNjEYDGwUaLSVUgHtNkbRGa2cf2h1e+M16pF/yEPy2UpStnQdPyTFoNDqYOvZAwtAZCECLsgp3vQtruvZms77SztFqKgPMfqp+9DaLHRWNyJgIgqBUVkarr5xDCVrHkAQPOeXrS+aiwMITt4zB8RIH5i3fj4KTDg4o9O3aDmeOzuY+BxXljnqfM8FmwVXPJd4kwNK8FOSgv5lMBs66p8qO2tD8vnTTEazbWYg/3DYOf7tnMu/b3EGL4JjQMVIiocFkgE7nUzQmVA1SWFw5Jn26tmMJ4cbGRCkBDTB6QAeWU6ovia42lEyXnmKFz+/HzgPFPKa/uWwoLpyUgx/XHsL2Ayf4eFKTLZg2IgsdUuPYif3xgt04f2JlwCNUyssqgxdP3TqWx2JerTE5i8aEFSncsFdLdiQfQXqSBf+4/wzszivG/DV5KK1ww3xKfmrsoI4sNU1Bi6DdQj/JBzGkZyrefnwGO+xXbDnK140aoVMfkn7d2nGlRawHLQitXocvFu1VvD19p6gS5+yx2TXsKwpk6GndSzYjmw8BtiHIZhRXR8tDj2N6FtJCJui/o2ez71SQTxDUIoELQREWiwEFxXa8+NGGeoMW1Vm04TCXgs4amw2v9/TkEMwWAywWI/YdLsV3Kw/gRKmTm3uRMUNyVTTZk8HVHNmLXFVic8Ht9GBEn3R+6fQ6+MhIC/hRUmyL2omOjpvGye3yoEfHJOR0SuJJRKvTIuDzoaTE3uqOH0Ed8RYDOqfH15vR0xBj+mfiVOhPEIRWhh0cZiPKbC4cLSxDn+x22HuohBe6NNdRcHJQj/bsSDFbTXA7SWfb1zYd2GQLmA28oF+y6TAHCuKtBs6MJb1nCrzTHNeaczQ5I+hlMsUjfuyl0GoD0Gm1oPVZuZMc7vVrUtO5WS1G7DpYjO9X56G4rFJjm7JxyRnj8frgYjun7Ty7g2Oy8+BJ/MBj4uIxGdY7naU52uKYCIJQ1zlPzwqb04svF+Vi/5Ey/n1n6isxoTs37iXHcm1nvcvp5Ve8SY/Lp/fiOUan03JFgNPubjApjioTrBYDtu47gQVrDqG0wsUO6ZH9MjF5WCeen0ku6IX/bag3aFEdcko/8foKvPHbM7nXYnPaFUazgefIOQtzOXO9ckwSuE+EkjG54szKMQkmsjU2JmqwmAy8lqcAyWOvLsfJsoalfbJJ5eDaEfhmxX7MHNOVVQ/o+t7z4iL0ykrBzLHZHJww6LQot7vx7coDWLQ+v6oSg5qqU0AJpxm8INKSLLh6Zp9T9kWAg0F0zez2+n0cZIuQxHaXtDiWoQ6OpSaABqXH6O+kbEHr9EHd27Ofg+5J3tbvR3Gxvc0kFpL6xcY9Rar2oT6OVAFDUL8Lk6Wyx8n3qw5yxYzX50dasgVnj+vK8mPBPmpCy0AJx/RsPlxYwUGlwmI7S51RcJj64prMBv6eSBKKoAYJXAiKo9//t2CPYuf2V0v3cRMymoBDXVhSU6ZyhweP/msFG15U+ZBoNcLt9WHdzgK88/V2XHRGD24QTpkKzfXwIyOBjAea+OLjTCi222LmwcrBGRLkPjWxp6TEobjY1WxBCzLmggaaBEJaFqfLy0bavz7bomh7CnL0zk5h41cQhNaFshsNRgOe/WBtVabgvS8uwsFj5TW2W7n1KN6Zt4Pn00umkjPBVW/GZHNlR9EzHNDA7/dHRKCe5pO4eBM27TmOVz7dVEdCYfGGwyx1eOdlg9G/W/uIqBqk6+OqmmMtsBc3bENY40w4XurEg68sqxOEpozLt77azpIiJGUZqmxJtNHUmLz51bY2NyaCINQf+H/xo/VYvulIjaQ6qpj/YlEuBxTuv3o4TWnslK9NcC7l9R6vhxp/VpOywDPvr8WxEzXtaOrv+J85W/DgdSPQtUMSVmypv9cRfU7Pzkksd0QBapIzIsfqdArGNkMGctNjslfxmDQ3wSbb1Ez55vMH4rm7JuHj+bs52FBdWjop3sgqBxdP7cnVE9Qf5Oyx3Xi988//28zbUCUDvRqC7ClykDbXeqe0VH1PDw5EONQ7xslnQut0JfdkLBK8T9wev+r+KZSQSVUWZDN+8N1OfLV4H9y1xu7blQfRo3MyHrlhJKxWI/t7hOaFEo5dPj+eeGVZne8pJR+9/+1Oloy77hySnnO1meoLb9kJOPZvgt/tgNZogaXbYOgT27f2YUUVErgQmoQmT2LZ5qOK9yHnwprtBRjYvV2DGQlNRWornF489I+lGNIrjRuHUTaq3emF0aBlCacFa/LwzYoDrBd943n9OYuhtR0WbbkUkKpTKBOJjAeKqlNGJOl+khEsQYzmh7J9yLj/ZvmBOs7O2pAv8qbzB3BWsnxHBKF1MRp1/Mx84OUlLNVH/aEeemUpbA0scmm+++93u1je7/pz+rFUDskkNeccT1KQVFlJjwd6RtAz3GZ383OmNas8KIGBJDXIWdTQo4uyNv/wxio8esMo9O/enisnowGyc8hBf//fF9er102QQ4cc9dS0lRw55SE4UKIJytBTOib0k5JXYn1MBEGoiV6v47mBsvZ3HDhZ7zY0X6zedgwP/WMJnr1zEksdhTqXUaXF4eM2PPLK0jqO0CBU9UHOVmq4XXvJ071jEn5xfn9OHqJKSnJEkyyk3eXF7oPFXF12uhWD5LAlh+Fj/2p6TEhy6ZlfT4TfR5WA4ZnfWaXHH0ByvBkvfbSBK+eoKubGc/uxhDHLIlmNGJiTiu37T+K599fy3D+yXwYHpynBY96yA1UVJI2tSW+W9U7UUqnmFOBkVTW9Uml7khSjAOM/P92M+avzGtyWmq5TotCL90xhO0wqL5oPGk+PP4B7X1zcYEUVVb98sTiX+27edfkQ9t/Fsp/IdWQvipd/BvuetdTo5+c/aHWw9hyBlHEXsaSs0DQSuBCaRKvVoqjEwQ8aNew7UooB3duF9JlUQvbKZ1vwp1+OZwcNaZD+/t8rOHBBkPE3a1w3vHjvFHz4/S6Wkuqcag0pu0E4PYcXGQlHj9vw+aJcLN14mI16MhyH9EzDBZNyMLhXGmt+tlQWT1uFDHkqRabvCC3eGjLmSY/17iuGoX+3dtxUTxCE1kVn0HMggrI2KYvw8ddWNBi0qM6XS/Zh8rDOyM6IR1kjEgtqIOcPaQAvWJ2Hucv2V2W4UxXDWWOy+fisBj03jwy3D4CcUyRn+OKHG5r8bFrz/O2/6/H+kzPhoT4hEZ6hSHMkjf0zry5v0EFfnQ9/2I1JQzsj2Rq7i2yqriEH3sP/VDYm//t+F0uFxfKYCIJQF4ORNPBzG3TQV4fkhf73/U5cMrUnEELggqoQrVYDnnlpbYNBiyCpSRYsKKjpML3xvH4sabQ19zg3v16/s4DnK0oOGD+oAy6YnMMOV3L4nc4alubxzxWOCa2ZeUzO6BnWbGe7w40zhnfmjGvqUUEvkn3qnZXCUoAUyPnPnK01Ku0qZaGpX4kPf7pjPH772nI+/vrQaTW464qhGJhTWX0pRCeU8HrG8C7473c7Fe9D94lOo8H2/ScaDVoEob4jf/9oAx67cZTYD80IJUG98P7aRmXgglC11aQhndAvOzlm/Xe2natQ+MULCPjqOT+/D/Zdq+DYux7ps+9BXO/RLXIMDz/8MD7//PNGt9m1axeiAQlcCIrQnEa5X+3fUaZppRzFKedrLYd2ZRaiAzddMAArNh/BG19urZO9QlrQ9KKy1yduGYvNe4tYDxOIzQdfJELam/HxZjZAP1tYs4kWOZk27C7i1+CeaXj8F5UPYwleNC9kbNH35YV7JnMW1ZzFudh5sJgzF1K4qXwWzp3YHSa9joNHknwkCK3/3DQb9fhh9UEOQhwusjUqeVAbctb85rIhzXIs5Dgvsbnr1Zqm/yfHMD3bH7thFHpnJYfdEUDOqR9WHYRLoWOFsvPIETJhUIfT7q/V0pAdlJtfgryCxqvlqkP2zi/O649YhRpxky68ujHJxS/O69eixyUIQuRA60eqDqRqY6VQn5xrZvblHoZqpeXoWb15z3FFzaQr+Xnxe/2sflxV8Ke3V7MKQXUoGZB6QtJr1riuuOWCgWy7h7JOqhqTFfvVjwlLOocn0O/1+DBrfDd8+MMubqjclOwTrWNG9cus6sNI652/3TWJ1zuUyEFBmuB6Z/rILJxH6x1DcL0jC55ohSp9SQry4/k/3yeNQYk2I/pmcMIK2QRKoT4aZTY3S6yJf6J5eg6RHb5uR81nXWOQ32LwTWNiMnBBlRYNBi2qQX8v/PwFdLzu6RapvHjsscdw3333Vf3/hAkT8Oijj2LWrFmINio1gAShESjTIT3FymWtasjplFxlvlUaVUYkp8ShqMyFtbsKsXZXEcqdXiSnWPlvwWAGRTeonHfzniK8Pqdu0KJ2Jg1VYozp34Gz/8kpJIQHKp0mp1btoEVtNu0pwh/fWsWVGZRRKTR/8KKs1M7N3P5w2zjMefZ8fPHs+Xj3iZmYPbkHtP4AV1rEchmmIESTTNSmvUUot3swvE86ZxypgbSzWdrJcHpzHS3UKHn0kVeWNZoZRTJVf3hzFY4ct7NjJJyYjHr8tE7d+Py07hBnnkY8Wo2irMDqkIMrrrqtFGMEoOHG9GpYvCE/psdEEIS6zrHc/FJWAlAKOSdp3qX5VzUa5c8lSrqjJtJEWrIZF07JwTPvrasTtKgNNa9979sdrDYQ6pjsPVSC4yVOVWOyOdQxCRGq7qCseEq+aGo5SBUpj1w/imUSg+uX6uudp24dW2O9c9GUHGgDst6JBcgHpNdq8OtLm07SId/UI9eP5L6PFH5bv6tQ8edQbIsCeFTZK5w+Or0WC9YeatRvV5vNe49z71qqsI41SB6qqaBFENqOtm8JEhISkJaWVvVq6HfRgHxThSahCDYZAaTFrRSKfpNThowMcrIkJFqwemch7n5+Ie56fiGe+2A9nvtgHW7/64/sONmRV4y4eDMHHsiY6ZyRgPe+2aHos0giZ9GGfHhOSRQJLQ9pqWq0GnyyYI+i7anyYtfBk5xRKTQ/wWZupSV2nDhRgZJiG44fL2d5F7dbskgEIVKg4O3J0krnQrzFgFKVVQyUfUYLNJJwPB20eh0+XrAbJQo+n+bWt77exs3Ewz3PqB0f6q9liIJFKN0HSsa+dhCJekjFagIA2RS1m683hTPGx0QQhJrQV50aW6uF5t1QnhMUFFX6rKbei2eNzj7VV24gr09XblXWH/LLxbksRUWyVGqh8ypW+ewkTpa5wv7spHXJ2IEd8dC1I7hSoqHm2n/+1XhkZ8bDWatPZvX1DlVikDxUSYmNmyzLeid2oPtk/KDK+4T6VzR4n/xyPLIy4rmnJkmuqi20IRtT4lzNA429WhuOqLC7cZpLmohsxG3fvUbVPtQDg/YLN5999hnOPPNMPP300xg+fDh++ctfYtWqVejduzfy839OHqv9O6pqe/311zFt2jQMHjwYF1xwAb788ssWPVbxIgqKy/YundYTSzbmKyrbu2BSd26MRfYQBSTenrsdXy3dV++2u/KK8dQbq1gC4eyxXRFAAGt3FODEKeeOEihbZdrILDiVVvIKp4XOoMP3KiQ8iC8W7cO9Vw0DYrAcMJKQTCNBiGwspkrTi56fpOusFoNeB6cn9AU6JQjQ5/6oIrudpDJogWcOY0k9yVeoHR/a3hcFz0Ay+KmiRA1kT1EWaqxKYNB5mVVe71gfE0EQakJfdZqH1GIJMXGKGgWT/JASVm8vwK2zB3HvnSG90vCvzzYr/hxaW3+9bD/On9hdtexx5bMzhDEx6cIuIUtrlIpyJwb3SMVbj8/A6u3HsGLL0arm3NS0u2/XdrA7PE3KUwaf+/L4jz2C98mQnql4W8F9Qhn7xhAqkclmlLSH5oHl4ENY0xgN9ByKrS+xY/8mIKBSgs/vg+PAZiQMOgPhJi8vD4WFhfjiiy/gdDpx8mTTvZJeeOEFzJ07F7/73e/QvXt3rFmzBk888QTKy8tx9dVXt8hxxlh8S2gpqHKifaIZ9109nLMbGmPaKZ1Jt8sLo8nA1RANBS2q8+ZX2ziIQd/zDSpK/Qhq1CUVF+FDq9GovkYkGUUOO7lGgiC0VbxeHwb1TON5lOQuhvZKV7U/NbGkDFAqpQ8VqoKkTFCbU10AYt3OAt43XNACVe34DOudDvdpBHXCRgAY2TdD1S6DeqTB4/XFbHBaEwDrVKuBemjF8pgIglB3Du2dXdnMWSk03w7ukcb7qiYQUPxcoufQf+ZsYYmbOIuB1z1q2Li7iNdXaqHz6hPCmAwKdUxOE3JSUoUEVUwM7N4et1wwAHddNhQ3ntsPXTPiUVxsh9MR2X2qhDDfJ90av098Ph+sFgOyMiql2pQyun8mNGSQCadPIMDjqQaqmkmON7G6SyzhdztC288V2n7NAVVadOnSBT179mxyW7vdjrfffpt7ZUyZMgVZWVm4+OKLccMNN+CNN95ASyGBC0Ex1OxqWK90PHPnRDbiascvqDk26Vb+8uJBHP0mA85iNuCznxrvgVAdkh4KaCozUdVCgQshfJIOaq9RcHuRdBAEoa1CAQeDToPRAzLx3coDGNU/g6UVlUJJAVQBWR8U0KBqiqb0/ukZTLJDaiFZnnDi9/pw4eQcxdvTafP4eCLfFiBZA5JBSFAhC0KVrLRfrEIyHyRJKmMiCEJDkIOLqvEmD1UuXzxmQAfodaEF/MmpOW1EluJqsOWbj+JkeaXziWTs1EDbh9Kvh8fE78ekIerHhPpOtBbkJyDHNMlBkTQQ/2S5H3EkC7XuE0fj9wn9k5Jsz5nQTfH7dkqLR5/sdnCqTOIR6ofGv3unJPYHKmXWuG6s0BJr33mt0RLafqbQ9msOunbtqnjbvXv3wuVycdPvoUOHVr1IOurw4cNctdESiFSUoBh6qNhtTnRsZ2HNQbvLi9z8EpZlyGxvRef0BDgdHlSUO1iD0mw2IPdwKfILKxR/BjUKC/gDSElQ7sghyPiiktdyl8gQhcuIUONsIyiiHtxXEAShreL1+HD9rH64+4VF3EjwhnP64fn/rW9yv15ZKRg/uCOXz1cPQlDvIJ1ex9JDlH1OUlLkAPF6vLwgq70g8IcwxxKpSZawSjKQJFVSkhVnjcnGdysPNrn9OeO7c5ZreWnrZSwphRxvTrcXN5zTHy9/srHJ7Qd0b4+hvdNZ1ztWCY7J9ef0wz8+2dTk9gNy2mNIr9geE0EQ6uL3+nHVWX2wcusxbjLdGFTpfd2svjzvhvRZoP4RTlw5ozfemru9ye2pv2P7JCtLTKUkmmFzKl8Dc+axzx/ymFw9sw9WbWt6TKxmPa4/J/QxEYRIhJIYpo/Mwrxl+3HwWHmj21J88OYL+sek07y1oGGkgNItFw7E7/69okl/T+f0eJw9Nhv2Jp5X0Yil22BAq2P5J8VodbB0HYTWwmxufF1IVU1Bgt+ZF198kWWiamM0GlvgCKXiQgjxoVRe5oAu4Ef/rimctZGWaOaGwBQRp6AFodNpWMJJ7fufLHNixuhsVftRo69gFo4QBvwBnDkqS9UupEdZYVPftEkQBCHWspKS4oz44+3j8M7c7ejfvT3uuGhQo5mWJBH1h9vGclZ6MEOSmlcnJVuQf9yOlz7aiIse+gqXPPI1Zj/0FZ77YB0OFFQgKdkKY61MUY/Hi4z2VlVZUeT8oSqRcDe/pOy622YP4vmjMWaOycaN5/WHI4rmGJfDjcnDOuGm8/s3KqFIDvrf3zKGM1NjPfBPYzJlWOcmx2RgTip+fzONSWV1ryAIbWsONem13Ji3oQbPBFVv/fGOcTzf0j6hQPPyRz/swvRR2Ry8aCpo8eC1I/H3Dzdw8gA9y9QwfVRWHTWDlhiTp28fh0Rr6GMiCJEI+YFcTg/+/MsJnPnfWLLrvVcNR/9u7UWSrJlxOd3o1SWZE5yp/1hDZGUm8HWiNUVryNW1NPrE9rD2HKFqH9qe9osEDIbKyueKip8D7wcOHKj6NwUr9Ho9jhw5guzs7KrXokWLWCpK20Ld1qXiQggZKrmlBaPVauIHT30B61BUgagBaO/sdpxhuHXfCUX7zJ6S06B8RihYLAYYTzU6i4szwW53KyqnNZn0LNVB0NhQxmhTkXxuZmQyVDmtKPiipPkpbU+fF5Reogf/6eieq8Hl8rDjIKOdFQUn7YqOlRrOkaYqHa9kNwiC0NalFzu0t+Jvd0/G0o2Hue/Fvx6ahm9W7MePaw+htMKNvt3ascOenrW0LT3fy081q6SgRXy8Gf/4v41YsOZQjfemuYeyLulFckT3XT0MgYCrag7jknqHh2WVlGS2E2eM6ML719ahpec5zUNq5y+l0GfaKpz49aWDcd6E7vhi0V7Osg02Nh83sCNmT85Bp/R43i6adHLpOtExU0UJnccXi3OxcN0hlNs9PFdSc9cLJuVgUI9U2EkeoQ3IGagZE5vNFbZG8YIghAdaewV7KdHzgNaX9QUnKZDbLsGE1x89Ez+uzcPcZftxqKAyy7pjajxmjeuKM0dn89qQ5tvT4USZE4/8cyl+f9MYnlPnLd+PRRsOw+bwsBN0WJ8MnDO+G/p3a4cXP9qAFZuP4oFrR/DvPvxht6IqCgo2kD58WVnoFYNNjsn4rpgxKpvXi6c7Js0F2TLUWJmWsrQ2JDunuZMQKXmDPoOgz6B5I5ID3rV9EJQw2lJJIzTu9Fk1fRdUhYCohIJxpPjx/F2TsGbHMew5VJlAS99Try8Aq0mHqSOzYNLr+DsQrecZqdB4klz8YGqq/rsZmLt0H75flcdJybROoCSs8yd156Rnlolz1B88pfuRvreVPqNKH1drytqFQsq4i+DYux4BX9MBYo3eyNtHCr169YLVasW///1v3H333Th48CDeeuutqr8nJCTgiiuuwEsvvYT4+HgMGzYMq1atwrPPPovbbrutxY5LAhdCi0GVFzmdklVPoJ3SE1ji4t6rh+OeFxayA6cxLprSg5sxURXI6ZJA8hlaDffLWL2jAE6XF+2TLBjYI5WzZ0hzmwyI2sdsNhthNOm5nHhX7gk+945pcejROZnLEKlReW1DjAMPZgNPsAePlrFxSe+V0zmZAwIup5eNh9rGFRlfBqOO+4ds338ShcV2duBQ5kBCopHHrvYxNjd0THaHB49cPxIPvbK0Sb3022YP5PPNK6xodEwEQRDaCmS00/N87IBMWCxGkOuf5C9+cd4AlszRQMPNPXfsP4nDRRXcXNQab4KPnPZmA16fs6VO0KI2yzYfgUGvxZ2XDakhqUOLYNLtpuDGmu0Fjb4HVWZQM0RXtXmFFxUmPc9DJAl5uLCCn/EkZ9U+2crPd1pANkeQmhYrdOyZKWb88pLBuP+aESxRSY5smofIMVVWao/KBSjZChVlTphNelw1ozduvXBg1bmR/UFSHtSYMpKdLGEdE8rOc7e9MRGEWIfmQL1Rx8GAzXuO85qL1kJ9u7bjNQPJwNQOTNMc6tF7MXFwR67UpzmI5gF6MgQ18U83m5eeM9mZidiwqwh3/HUBJg7txLrsd1w8mAMSlFVcVGzHtysO4oX/rUdJuYuzvYN/o7n3xQ/XNzo/0Rz98PUjOSB/usH3esekSjGBegSc/pg0B7T2JYlLMnzoetuoEjXeiME90zh4QXPf6TrrKQCgN+jhcHuxYe9xXqump1jRr1vwnvJFxFhU90EEOIIDrN1ZCDuPiYkD9gaTHgGfnxMpm4PK5EcDTGY9jh63Yf+RUr5HsjskogtJfzs99fogogE6dgrGDOudgV5dUthX4vb6WdacHOducoJHePAq6qXlK1wceLhgYnde19C9Rfcc2fN0X5HNHlRoqQ7tozPoWfp2y94iFJe7uOKbngtGs4HXP9FSKWbq2APps+9B4ecvNBq80OgMSL/wbt4+UoiPj+cgxHPPPYdZs2ahT58+eOihh/CrX/2qaptHHnkEKSkpHLwoLCxEhw4d8Jvf/AY333xzix2XJiCpz3UgZ+rJk7Zmez/KHElJiUNxsS2qsgFP99xo7k1OicNdzy9EXhNag0GG9U7HIzeMZI1qi9UIh9uHv767FrvyiuvV6LxsWi/OGm2OTMv4RAtKyp14d94OrNhylBfKQRLjjGwAUpmwz+tHRUWlxjg9hK1xJnbcfPDdTmzNrVkh0qF9HEeWKXuQItDBaDGNW1y8GUs2HsZnC/fWGR9y/lxxZi/OtKWMgKCDnzJbaVyo4fm85Qc4gh2EEl6H983AdWf3RXqKpclMgua4L+ncC4odePb9tfX2MiEjlDS8B/dKw8P/WILCYgc6pMZx9UXtMWlO2up3LtqRc4t80tKUywuFa56NlbENBrNp6nln3g4s2pBfIyhMxjs1JL3unH78vL/y8W8UO+tfe3gaEsy6Gln7tLCzxhnxnzlbOSOqdlYozeGj+mXivquGn+qX4anKkIyLN2H+6jzMWbyPgyrVIacALVR6ZSXz4qWxxWEo144ysCqzM3/WWY1EQju3yvMjInlRHc7vXLjHJFaeJ23t3GLl/CJxjm3JsaWvNq0ljp6w471vdnDfp+qP9dRkMwcKLpzcg6XhGquyClb+qX1ONHZutO5y+QK46Y8/1DguklyinkpOtw9lNM9V+xsFK8aRtKLLy2u9tTuP4d+fb62xZgvSMTUO91w5DF07JDZLAl5taL5OTrZG1HeC1rEurx/vfL0DyzYdZqdykDizHlNHZOGas/twUkJDGdmNXTe6pyxxJhQVO/DuNzuwbkdBjetDPRrPHtsVF0+le8odEZV78Qlm7h1KY7J002FOoKwxJiOzcO3ZfVmqOeiDCBVKPCEbbt3OQnyyYA/25pfU+Hu3jom4ZGpPjO7fgXubtsR901LPE3oG0HfuUGE53v9mJzbsrvk8SUu2cDXWhVN68PeTKjebm1iYh1rDrqVgJgXoPvh2J68vKqp99ykIPH5QB17/WI06/t629hyrFNeRvShe/hnse9bW7Hmh1bE8FFVaRFLQIpKJmsDFF198weUqhw4dQlZWFn7961/j7LPP5r/l5+fjD3/4A9asWcNlLZdccgnuvPNO6HQ1dZ1jzdiLBJo6NzJO1u4qxN8+aLrxKD3TSJszOz2Bs0KCDzGzxYAjx234dsUBnCh1wqjXsqwGaYdy5NbpOe3MfTIY8osq8Niry+FoxIDJ6ZyEv/xqAmc90GRHk+OyLUfx8kcbahhFtZk0tBPuvmIoN1Wlr1x8ggVvfbWNy3gbg7JcyWCn/QwGLSxWE554fSW25B5vcB8an8dvGo2enZMbLQVurvuSro/VYsTuQyVYsCaPK2TMRh2G901nqQc61r9/tLGOwU4OuLtOjUlzfy/a8ncumpFzi3wi0akSK2NLz1KnN4AH/r6Y57qGSEux4JlfT8QPqw/iv9/tUvTeM8d2xQ2z+taZE8ipEQyWfLPiAHIPl/DColNqPM6Z0A3xFgPPscGFPS14ExLNLDFFklaNzee/vHgwP+cpsaAhSzNWrl19yLlFJ3Ju0UssnF8kzrEtObZURUgZ0X96e02jkkpDe6Xx2qYlEp6aOrfEJCue+2AtyxQ2BTnFX390Os97lO1PzmitToN2CWas3n4MK7Yc43VmYpwBU4Z34UB/wQk7EqxG8uo1ezZxuL8TZCMYjJUyxhqtBn6/H5pApcQw2RZmixFlDg8e+seSRhUVOqXF49nfTAR8DY9JQ+dGgbA9+SX4wxuragRF6usf9eQtYzkgFi6p5YZ8ECRH9tA/ljbaWJ2aGT9z50ToNaQ97wrdsZ9gxhcLcznhsjEuOqMHrprRBxXljmZPGmip+zIh0cKVyn95l54ngUb70fz2xtFwOt3NrlIRC/NQuM+NpdYNejz4jyWNJjvTmuTPv5qA1ERTyMGLcAcugnjLTsBxYDP8Lge0Jgs34o6UnhbRQlRIRc2ZMwePPfYYHn30UUycOBFff/017r33XmRmZmLAgAG46aab0LVrV3z44YfIy8vjbakpCJWrCK0LOTzGDuiIi6eW4dMf9zbq5CA5oe4dk9jYCxIsVWwXZ2TJAJLOCCDARlBz6VlTcIQO4Pf/XtFo0ILIzS/lIMz91wzn/Y6dtOPljzc2GrQgFm84zI2Izhnblf9/0fr8JoMWxFtzt7N0VE6HBGj1Ovz7iy2NBi0IMtKefms1Xn9kOmfUtnQzVcqGIVmrLqlW3HhOP/gCAZa92nuoFL/528I62bhBSB+Wyq/PHkt6q9IcSxCEtgtX71mNePDZnxoNWhCURfjkf1bi+bsnceUdSVM0BS3kzOaBdQIX5ACiFwUwzhqdRS3zqv5GAfqy0poZoCQPNXdpZR+OxqBAxaufbuJgf4cUS4vLFwqCIAjRBTmryLH/l3caD1oQG3YX4c2vtuHamX3DrnVODWfvu3o4Hv3nMuw5VDM7vTpUnU+Nr4N9H0mq6K4XFqGoxIGBOe05W/iGc/ux7J3P78fBo+WsSkA/SRLrj3eMj9r+AmTDUFCCpF5ojbt6ewFL+yXGmTBtRBfuS8QNxM2VY9KUDDStHZ9+cxX+eLu6MeF1r69yHdxY0IIglYTXPt+Cm87v32qBC7K96PX4a8sbDVoQpGzAY3LHeGi1VM2q/vNIHoqkuZoKWhCk7pDTKQnDeqZVJZRGMvHxJpTa3Pjre2sbDVoQVG3y9tfbcPXMPoDYpxEhFfjUm6uaVGihKgz6rrzx2Jn1ygdGMhSkSBh0RmsfRlQT8YELyk4n7azrrrsOV199Nf/ujjvuwNq1a7F69WocPnyYO5p//PHHSEpK4mYiJ06cwDPPPIPbb78dRqOxtU+hTcO9EGxOXHlmb9YZ/PSnvdhdS/ZpUM9UXD6tF3qekpWobZxwI9EW1LPTG3T4buUBbv6ohFXbjqLc5mYD9f9+3Ko4C2Hukv245Iye/G8aB6VQGefvbhrNZaNNOYuCkLzIl0v24eIzcgB3eL6n5JiirJFXPtnMElhK+HLpPs7ooABXJMtiCIIgtLQDZ9Oe4/VK7tXHgaNl2JJ7giUMP56/u8ntSS9cp61svlgfwQBGU44J6mkxZ3GuomOkR/r/LdiDu68cJgtDQRAEoQaUkPXF97uadDAH+WF1Hq6f1Y+zfsPpsOKKQ42GK+7/78c9+G7lwRpV5NRnkKoLSSLRpNdyJjA54pZvPsJBC4Lm6wf+vqTBz9hx4CTyC8o5k/h017w6HcmyUL+P0NZVVC1RKbsVqFeHvja0La3/flqXj7fnboOtmiQlQYEMkjB+4JoRSG9nRZnCTGmqxCHJn9QE5WOi02u5mqCp3otBflp3CL84rz8HD1qj+S8lQZI01PESp+Ixofsks50V5eXqJaMo+eSTH5u2GYPQ/U7qCVSZEOkBNeoP8vnCvTVkthqDJFKvndWvUg4uAuTC2ir0HSAp8Y27ixRtT8laC9fnsxyfJL62LSI+cLF//34OTpx33nk1fv/GG2/wzyeeeAL9+/fnoEWQMWPGoKKiAjt27MDgwYPDfsxCTci4JDmgQTntMbJfBj+caNIlw4h0FCkbw+P2wFZOQYvwz4rUAOib5QcUb0+HOHfpPlw2vRcbpUopqXAhr6CcHUgNVSHUx+a9RdxIivT+lE7GxPerDuKas/tyQ9Vw6ULTp6zYomJMyl1Yu6MAA7q1a7aGY4IgCNEGNan8ask+VfuQfOL15/RTFLhISTDDc5pNKGlxsXFPUZMVIdVZue0YS5a0llNAEARBiDw4EG7Ss8SsUsgZ/eO6Q5g0uGPYHVacYOXz4/wJ3XD59F6chBdsHEvVEtQX0e/1VcmXkIP4awWV9dWZs2Qfbj6/f8gSTVRtQM2WaX1N8y6tb+0qkgbIgUvBpHjqQeH28TUiRQQKGjSW3UxyX9+uPMj9shqC1v6PvroMT906Fr+6ZDCe/2/TEtIEJeHddF5/5ZWrFiPLaCqF1tW0Xj5zZJdWsVH0ep3q+4TG5OYLBqj+LLq+J0od2Hmgbt/Qhth/pIyltNvHG2r0SIs0SE7baNBxIEoppLLx09pDmDKskwQuWhOthhNZ1TBv2X5MHdHltHpdCNFHVAQuCLvdzpJQ27dvR+fOnbnqYurUqTh27BhLRlUnPT2dfx49ejTkwAU5YZsLMiaq/4wl1JwbGT30SrLokdK9XY2KjOoZIuGEj1sD7qGhhkOFFZyF0lQpYn2TpNJG5dUDJWRAqt2PSk4dTg87jOrrAdLc9yV9DkmYqB0TMoqohFq+c8qQc4tOYvncQqW5vvOxMLbkYCCJPTXQ9u0TzYq2nTayC0shnM6Yk1OAntdqoDm+4KQdmSnmehMTYuHaNYScW3Qi5xa9xPr5qSWS7Wo6tnK7u052flMcPFoGDO7YKudGcxitY6lpdFZ6PLIzSCs9ALfr516LweMiJ6raOZ2S+qgJrdpzqwxYGDiZ7svF+7DrlLIBBVXOGN4Zs6f0QHK8iSWv6ktko0AH7U+yXXMW7OZEuaAKATUNP29i91N9Jb3c0Lj22s/u9OKNLxsOWlQPEvztv+vw70fO5EbstGZsikONjEnt60Y/7S5PkzJUtaGkQqI57yml0GceKlCezEhQFQrZY2qPl7bPa0TqrCEOHi1FRt8M6PX+iH2e0HegrMLN96IayLdCQcdIflZGEi1xbvRe9OxTQ/C5QAGrSK8EEtpQ4IIqJ4iHHnqIG3Lff//9+O677/DLX/4Sb731FpxOJxITE2vsYzKZ+KfLFXrjImo809wkJloQq0TzufkDAc4oqe/BZzLoMHZgB2S0s/J9Qdk1VFEQcnjlNB6udIzq99E0eW2a89qdVGksMppKg4OyZJqbaL4vm0LOLTqJ5XNr7Xk2mseWnAlqn/H0fFcCyVhMH5UFs1GPOGoAGiK0uAsFOs64ODPi4mLz2jWFnFt0IucWvcT6+cXKWrY0lAbDGg1L/MbHVa71I/m+UTpH/7wDuKG1mutGza8p+HPfS4ux73BpnWQ56oP1zYoDuPn8AZg5tisHVGpDSgArthzFix+ur5N8RrKU1MuRZB//9MvxSE60sMMwiMvtxcff7VTsPCRJJKq0nzmmKwcvmkKjYEyqXzdbCLKUmlNVry1xTyn9fHXb038I6futDcGZQPcxSZ/RK5K/c85q8m2KoftLE/nPykijWa8b9WINcf2TnNz8102IXCI+cGEwGPgnVVvMnj2b/923b1+uvKDAhdlshttd01kaDFhYrdaQHQhlZXY0ZySRvuBlZY56M9+jmVg4t8QkKzqnJ9TIjKH+FZdN68VZqsdLncjNL2GnDTUXu+WCARyhpyivQa9VJd9kNevRo3OyquOjZ7PZqEO3Dj/LoSkhOcHE2TYlJfYGM12b89rR+6WlWFWPCTX+ogym8mbsYxIL92VDyLlFJ7Fybs1l3DfnPBsLY2u2GpGdmYhjJ5SPSVZGQpV+dkOQTPX9Vw9niYviYnWVhfU1dezRWd08pNdpOPBfXu6oV2YiFq5dQ8i5RSdybtFLLJxfJM6xLTG23Bch3owEq0Fxj0Gie8dE+L1+FNtObz5r6fsmLt6MrMwEbgCtlOzMBHg9PtgrlDlgSanAYjXjsVeXNVoNSUvA1+dsRbzFgNH9M7lCJIjRZMCuQyV4/r/ruC9VQxw9YcPDryzFy/edAYfdVTWf0/26aL2yvobVe15cOr2nosBFVkZig2NS+7oFk/VSEkycaKgUqippDhspFKg3SHaHRGzbp/w+ofuKfBJqj5eqY2hftXTrmASbzcVN5yP1O0cVE0lxJr7HqYGzmmtPgh/Nee1jYR4K57kZTAZe/1DTeKXQfUzPIFpbqKUlglRCeIj4wEVGRgb/pKbb1enRowcWLlyIUaNGYffumvrOhYWFNfYNhZZo+kVf8HA2Ewsn0XxuNBHPGtcVr32+hf+fnCx/uG0c8gvL8dQbq7hhWnU6pcXjwsk5bGhceWYvvPvNTkWf0y7RjC4ZCVx0QQ6nYGlqUwzrnc4T8rRRWXhr7jbFTezOGp0Nu8PdpGZnc107eg+9UY8JgztygzalY0LnR8GVlujDEc33ZVPIuUUnsXxuamnucYjmsfV5fCzHsGrbMcX7XDC5e1VggOSYapOWbGEt6X7d2sFWcfo9pPx+Nwb2SEVaikWRxAMxZmAHDp40Vb4fzdeuKeTcohM5t+gl1s8vVtayVBFA1YCfL8xVtH2l9FEX2CqcEX9uJKl03oTuqgIXF0zKYQe60mMwGI1YvCFfsYTjO/N2YPKwznA6KiWjKDGO+h6QzJOSJRjZGXOX7cPZY7Lh9XpPNfBWXzlD28ebKxNTm4LW202NSfXrRuves8Zk48MflDWgNuq1OHN0NlwOd6s8M3xeP84Z301V4ILuE6p5UXu8tH1KshX9u7dX/Hk9uyQjs70VpZwEiWanOX0QOoOeE07nLN6nOJl0yqnvQ6Q/TyKN5jw3nc6H8yd2V9Xn79wJ3bj3TqyOr1A/ES++Ro234+LisGnTphq/p2BFVlYWRo4cydUXQUkpYuXKlbxPnz59WuGIhWiDsv3JcCb9zziLgRuHURnrH96sG7QgqLH2K/+3Ca/830ZcOKUHuneqKVXWmPFFPSfoQXvJtJ6K9iGj8tJpPeFx+RDwB9i4UjoZkxOMdFjDCTWmu2RqT3amKWH2lMoxqR20IEPaYjVywzdrnImzkUlOShAEIRahxoADurfn7C8lUOVery4pSDAb8NrD0/D07eNw5qgsljakhdsTN4/B649NR++sZHbynG7QgqDntMPhwUVTeijanpwal03tFfZ5SBAEQYh8aM1w4eQeXFWuhJljszkZKxqcVW63h6sbyOmrBKro75AaB1e1aogmq/FNBnyloqntyTIn1uwo4OpJwmw2sLyUmh6KJDtlsRh4fg/aFSRHqQba3ulu2i4Y1DOVx4/WzUohe+PcCd15HawEWlfT+ro1GnMTTqcb405JUithcM80ZLaPQ3m5M+SAGjWXVwr5IMg+jYo+Av4AP0+U3o+zxnWD1+eXxtytDI0/JbKO6Kss4Tw12YyJQzo3awWQEB1EfOCCpKBuvvlmvPLKK5g7dy7y8vLw6quvYtmyZbjxxhsxffp0pKWl4e6778bOnTsxf/58PP/88/jFL34Bo7H5tfiE2IMnZH8Af7h9HGZPzsGJUiden7OlyUl6wZpDrB36yPWjoDuVddIQ5FCi6DAZDC6nB+MGdsTFU3s0aZTecdEgdO+YxIYNlfbedH5/DO9T2Xy+IWgB8LubxkCv1XAz1nBCTq3UJAvuvXK4ojGhLJPqjd5MZj2Skq2wuf347w+78ez76/DsB+s4G8uv0SAhySIBDEEQYg4KCtjtbg6cN7WA7ZgahyduGcPbOxxurljL6ZCAG8/th99cNgQ3ndcfvbskoaTYDofd3awLTnpezxidjVljuza6HTk17rliKDJUOh0EQRCEtrP+Mum1+O0vRnNPwcagIMC1Z/fjZLNowOejQL8bT98+np1yTUlEPXbjKM78Vjpfa7Vadrrm5tfsa9EU63YUoCrso9FwIEMNVG1J62SSjKFjpeSzob0aX5fWZmTfDG4w3RiUxPHYDaPYhlEDrXtp/fv7m8Y0GRCj9TStq6tLZ4Ubj8fPPUb+eMe4Ju8TGpNHbxgJryf07wDZY327tsMvzuvf5LZXn9UHQ3uns98iGiA5qziLnu8bqqRpDEryueqsPvCG2U8i1A89+x68dgRympCjpSRjeqbSfRxrMlxC02gCzZGGFwaon8X777+PgoIC5OTk4M477+SgBXHw4EE8+eSTWLt2LZKSknDJJZfw32lSDwX6Ipw82XxadyTzQ3pqpJ8XDVkiSiHHOuklJiVZUVJi48k3molPNHO7K3KUr1Yo10FSHK8/dibyjpbivW92Yt3OghrltmRkUKXFpCGdeEINZnTQPUGVBOt3FuL/ftqLo8crkJJg5kbhlBHTs0sKZ0SQnrjd5qqqSKisRDDhm+X7MXfpftYcDULN0sYNqpyIk+OMrEHa2Le7pe5LcljRMVJlyv++31XvmFClxYTBnfjcgmNipgwenQ5/fW8NNuwqqvu+GmDikE74zeVDeYJrLEMiVr9zhJxbdBIr55aWpl4ft6Xn2VgZW4IyGTU6Hf73/U7MX3OoRqNJ0gKn6sArzuzNWYXOEJpQNgd6vQ5x8SYs33KEg8rVG4LSc5oWulfM6I3sjIQa81d9cwX1ikpMtMbEtWvN+5LGkvS9yaRvCdnF5jg3Or6gtAg1lI3U1UcsPU/a0rnFyvlF4hzbkmNLa0laM5wsd+G/3+3Eyq1HazSIpkA9VZCT/I/d5m6RLNuWvG+oepweyR98vws/rT3E8ljVnXAzRmfh0um9OCCjZk6nY9YbDbjqd9+oOh6S2rr1wv5wO70wmvT4fk0eflxziPsCUEBCCf96aCriTXq+FlS1cfiEHQ+8vETRvpQN/8GTM7kXIvW4IGnh+sbksum9OFGiscSHxq4brbFLbW588N1OLN9M99TPf6cqDqrKoIx7WitHQsY99bogKWj6DtQ/Jtk8Jn6fDxWhNLWv1RvFGmdmVYmP5+/G1lqyURTYoEoLkga1V7haxEHccj4IwBpPcqZ2vvarth7jfiBBOqfH49zx3XDW2K4ckKEEoOYmFuah1jg3epaYzAb834978O2KAzX61FAQkmS9yMdl0GlUBzRbYo4Vwk/UBC7CSbQYe60FnY/BqOcHDN0+dAdRQ2ab3cPOlGgt3aIgjNagx7W//0aR1meQP9w2Fv26tuPeFQ6XD7mHS/geolLOjmnxPB7kaKfsm+rQAt5qNUGj1cBo1FUGfjSVAQhy5pNxYrd76kh8VBqreljNBuw/WsaTM2Uq9cpK4fek0muqfGjN+5JLmM0G6A16Nr5yD5fymFAZNI0JGedURh0cE6qiMJoNuO+lxTWapNcHyak8ddtYVJQ3rHEba9+56si5RSexcm6R6FSJlbENQs9DnUEHk1GPnQdPosLu4aBFn+x2cLq93A+jtedZmmtogUFSFRRAP1JUwYvh7p2SWaKBstioUrA+C5PmBi0F780GuDw+GHRaXliSk6L6vBDttPR9SYEAs1nP86zRoOOsTfpJY+rzkMOH5B0CrX5ufD/rtYizGuH2+NmxoNVoOFOXnHWR9p2NtedJWzm3WDm/SJxjwzG2lWsGHQct9hwq5udYeoqVk53oWUHzQ0tl2Ibj3GhOp/XdroPFHCRIjjfyus3l9sHjpjWRusxvmm8Tk6y49JGvazjlG6Iy8SGbE8eoibHb64NBT+NNQeQAjHod9h8txbxlB7BoQz4fV0P896mzeY6htSqt95JT4vDnd9YoSvqjylAKQpEdo9PreO2988BJTtJISjChd1YKHE4vVxU0Jd/U1HVjSSu9ju2QXQdP8j2VlmxFt46JETn/xMeb2PNOigVk+9kcXiQnGFkWlIIafq+X/QLNZj9YDDw/l5S7cPBYGY8T9eJMTTKzZBkFdFoqEaKlv3OJiWYENBr2rezKK2b7iCqAu2Ym8r+pyqalVCliYR5qrXOj5wHNAxazAbvzivnepH9TMM3rI9vWd9qBRglcRC+iuSKowmIxcobGgjV5nPEfbDCdGGfE9JFZOH9Sd87EpKyYaIuJkSPm2HGbqqAFQdmm5EyfvzqPAwlkmFIJ7bqdhUiKN2LmmG4wW4w1xoQd+xYjPP4A5i7OxXcrD3KlRTAThCSUzhrTFWYL6kSVaaLwet1wOTzISDIjM9kCIACvu2kjL1xw+TAFTxweDsr06VJZ+kcGUEmxrY4ziyapd77e3mTQgqDMkK+XHcC0EZ15HARBEGIJDkq4vXA7PSwBRQFuu92FsjJHxJRGc78Lu5uD8kkWPVK6pvDv6fjKS+tv3E3zImVBFpU48MWivVi04XCVc4QaiJ8/MQejB2RyBly0SBO0FjSvUsYkOXy+WJyLtduPse1CdgxJqlClJzXVpKbsrWUXkGPEGmeEy+vHFwtz8cPqgyitcP+c9TihG6aPJM1672llzwmCEP1wZr3Tw46rXqfkQmjNVFxsj7r1ZHW4Ut5ixJbc4+zYD5zKHqYkhKWbjnCzbArOBALqntUU4CcH7PjBHbFofX6j2w7MSWWJoX1HSvHaZ1u4qoWSBagAblifDMwa1xUDclJ5Ppk1vitn9j/5n5X1rsmo7wQFyMvsldnQdGlonnn42hH4y3trGw1eXDmjN1c6UOIZ2zIuLztCu2UmVFUMlpbamy15oTKJr/o9pYnYe4ruE0oK3bz3ONacuk+oOsVF98nGI5gyvDOyMxOhd5MP4PTndDp/mnfpRUkyfbOSf16nl9gR7ZSd8qlQ8Gpg93Y1zi0cValCaNAzkF60BuicGocuafF8r9ptDSerCm0HCVwIqspdbU4v7npxEQqLazomymxufLZwL75csg/3Xz0Mw3qnn2oIiuhCE8IuGg1+Wp+PVz7dXO/fP1mwl8eE5DPsp8bEEmfC3vxSPP3mqjoNyo6dsOONL7fh0x/3cjUHZT7Ut6inB3k0aIdXZjT4Gq/gMejw49pDit9z3rL9OI96htTT2FsQBCEWoIU9ZRZR4IJ+RkrQojo0nynJfiKHOkkhfPbTXi7fr832/Sf5RRmoNO9RMN7ljM7qzZaG5ksKAD33wVqWwKgOzYcrthzlF5XVk7Qi2WLhDl5QcgYd4+bc43jmvbUsC1Kd/MIK/OuzLSwJ8Kc7xiPBSvKWErwQhLZO0HEVC1A2OyWpPf3WKk5mqw9aN88ck41bZw9CRblDlXOOKuypN2NjgQvKVH78ptH49xdbOMGuxv4BYO2OAn5RwPu+q4fj2ffX8jxMz+UHXl7Ma9LqXDgphytEqhOsAH3k+pHYfbC4Mpi+o4Cf+/EWAyYN7cTBdJJErgpa1EjG87fpe6rqPnmz8fuEeovdfOGARhUHQqG1K3hbEgpeKVGhECILsmWjwcclhJeIb84tRE52n0arxcP/XFonaFEdKjl95v112HOoBGazMeoekqSl2lRT6dpQpkxjlQLBMdmbXzkmlHlDY/jUf1bWCVpUp6TChUdfXQaXx89yELEKGWzUB6O6nmdTkDQJjTk5cARBEITIhhbl3686WG/QojpUGv74ays4WBPshyDUhAICf/9oY52gRW0Wrs/Ha59v5qSTcEO2zoFjZfjLO2vqBC2qc7zEiYdfWYYASDIzdu0cQRDaFhS8jYszceC2IWd0kG9XHsR732yH2WpS9Rnk2KPqNepHUB80hz5wzXC8O297naBFbVZtO4aXPtyA+64ajk9/3IMlmw7jN5cNrbHNtJFZGNIzrd5kBXJ+lxTbkZUeh3uvHIbP/noe5jx7Pv739Cxcd3ZfxBl1KI+gqtFIu0/+quA+mbfiAD74difbU4IgCG0NCVwIiiAdys8X7uVFppIAwJtzt7GmJ03I0QJlY1DQgqQqlEKyTgNy2mPR+sNNj8lX22AiPWqjDm/P3c56lU1Rbvfgwx92sUZnrEIVKycU3Ff1BXZoX0EQBCFyIYkockq//23jQYvqwYs1249xDw2hJpTEcLzEwUEJJVCwiOwIkqEIJ2TrvPnlthpNMRuCZDI//WkPdAZZkgiCEBvQGpj6BlBAQAlfLt7HQV5KFFQKVTzabS5ccWZv/OK8/oirleQ2ql8mb0NV6kpYtvkIjhy3YcrwLvjfdzvRKzsFWRkJLFl02bSe+NUlg2CzuRqsdGf5IYeHAxTHj1ewDv7x4+V8jJHQADtS7xPqLaKkPwgxZ3Eu94GRxD1BENoaskoQmoQyNqgxznerDireJze/FIcKy2EyRZfjgZqLXzatl+JMz9mTe2DV1mNV/SmaGhPajhqQbdjdeFZFdchBodfpWFIpFuEm5SFUlFhMesnIFQRBiHAoaLF4Qz7PfUqZs3ifZODXg1anw+eLchVvT04rcnSEM/mBHDEkL0INMZXyw+o8bvRODWcFQRDa2rOagrxfL9vPiYJqIMkgkg6aMSoL7z05E3ddPpRlAscN6oCrZ/bBtysOqOrdOG/5fu55QQHvpRsP496rhuH9J2fi4jN68ucolVyiIAYFOKJOMjrM0Nz8hYr7hIIWdI2oN6QgCEJbIjY9oUKzQg7zgpN2lJRXNuJSyprtBVHnWKay2w6pcbjr8iFNHjs1lpw4tJPiLFLiRKkTG3cXqTLkSE5q3+ES6GO46mJI73RuEqcUyirq1pEarYlFLAiCEMkENMCGXcqD9cS2fSe4UiPabIiWxmzSY/OeIlX7ULNPaqYaLrQ6Deubq4H6pB0pqoBOF7t2jiAIbQerxaD6Wb1pTxHPe2oh+SWqaigvc2JMvwzceuEA3HnJEHRob8WmvcdVvRcdc1ZmIism0PFktLPCYXNxryRpjtv8WM10n6i7Rhv3FEEbwn0iCIIQzUg6m9AkJMfjDqGpFe0TbW5lCiiQgTZ2QAd0TI1nmab1uwprBBpyOifhoik9MHpABzz26jIcLqqo970S44xITjBxxglVWthPNRp1hlAu64zgpmKnC42PUa/F8L4ZHOxSwtQRWbA5PfIAEwRBiHA00HCvplCcMZVygNFmSbQc5NRye32qbTG1vbtOu2F7SDajHxprixySIAhC2Aiq2KpdO9P2DQXrDQYtz4c+X6DBPhH0e4fDXfX/xmRrCMfg5/lCr9NWPscDlVUdQsvdJ64QrpEkdQiC0NYQv5+gyLGcFK+uYRjRPskMTZSeL2WWZKXH49EbRqHC7sG+I6X8e6rGoL4WHrcPDocXuw7WlEIgQ2JUvwzMGtcNg3umccNp+p1ep2Ht0HiLAWkp6lfm7RLMXHYbi9B5nSx34ZqZfbFl7/FGG5YTKQkmzD6jBzc9D6czRhAEQQjtGU/PbTWYjTquEojVeS9UyAmVkmBW1G8sCCVQNNYgu7nRajRs/6klKcEo11sQhKiHHmO0ZkxJNMPmrD+5raFnNUkBBaF+F0aTobKfAQUQ/H6YDLrKBLhAABUVjSshUCCD5t4DR6HqGFxuL88ZNNfIMzkM90mCif0FSqHtpcm5IAhtDakzE5qE9CzjLAb07dpO8T4GvRaThnZWrIUZaXDGoMvDjhPqk9anSxL6ZScjyaJHaYmdm5PFWfTo0zWlap8EqwF/umM8br1wILbkHsf1T36HK347D5c9+jXufG4hSsvdSG9nxZBeaUiMNyo+ls7p8fxyN+HQj1aoYRsFhKiC4vc3j+F7rSHSki34w23jsPdQMQdzYnVMBEEQYgUNAjhrTLaqfUij22Z3N9gEtK3idnsxbUQXVftMH5kFr8oqjdM9xgmDO7GDTSk9uyQjOd4UtTajIAhCdewON84Yru5ZfeaoLAT8lQ7p+AQz4uLMWL7lKB74+xLMfugrXPrI17yufGfeDpTaPUhIsjTa/9Dn9WP6qCxVx3DG8M5Yfar6/azR2ZULYqFF75OpI0K4T6oFuARBENoCErgQFOF2eXHh5BzF208Y3JFLIGNhEUrn4HB4+EVO9qANR4GNCyf1qMoOffLWcazTfPtfFuCTBXtQUi0ThuSk/vPlVtz25wUoLLbj9zeNUfz554zvBofTE7NZL5Q14nL7sG5HASocHrz+6HT84rz+6JQWz30vqGIlp1MSfn3pYPzzwanYtv8EisucVWNC9xk1A7VajfyifwuCIAiR0zsqOzMR3TtRXyJlXDi5B/y+6LcfmhsPBS5GZcFiUlYwTYkAk4Z2YhsunDZTwB/gz1XKBZNyathXgiAI0YzX4+Mm1yS5pIR2iWaM6pcJl9PDQQuSD/rN8wvx4ocbsDe/pGo7kh2mJt63/Xk+flxzCNY4c4N9MSiIPG5QRyQpTJYj2d7po7Ixb9l+lkXunJHAa12hhe+T8d1U3Scj+mbIdREEoc0hgQtBETRBjuyXgcnDOje5LWXP3zZ7ELzu8C2UWwNaZI/qn4HJQzvhyhm9ubT2mffWwN2IJAP1unjklWXc7OySqT2b/IzhfdJx1piu7KyIZXweL66c0Qcffr8LT7+5Cu2SzHj5/jMw57kLMOfZ8/GXX01gh8aD/1iC1duO4czRXdnYs1iMSE6JQ1GZE6t2FGD1jgKcqHAjIcHCUlKV+uiCIAhCq/aOcrrx0LUjGq2oC3L9rL4sNeQ81RdK+BnSGqfX/VcPb1LjmqQUH75uBNsq4ZaV8Hq8uOWCgVwtqiTRZdygDnCLI0YQhBiBArj0iL77iqFVvQwaUyl45PqRsDs8LAtFgYhH/rkMhwrKG9yHihFf/Wwzr4nMVmPDiWEuLx65flSTjnE61t9cMRT5heU4cLSM52unwy3B5DDcJzoa+8uHKLtPbhgJu9Mj1aiCILQ5pMeFoKLvgwt3XT4EqUlmzF26v04zKZpwh/ZKxwPXDOdMSTKW2sSYXDEUXm8AT76xsoY2aUNQJcYnC3bj6pl9cPS4DSu2HGEDtDpkYE4f2QW3zh4Ih90V843RSPJJq/VwgIKyi57/YB3+rtvAklpUNU2VLASVPN964QC4nG5Y40xYvuUIPv1xLxvZ1aEKjcum9+LAj7/CJVqggiAIrYjT4UGi1YTn75qEZ95bi9zDpXW2IbnFa8/ui6kjsrjPlFA/TrsLA3Pas7TiPz7ZiKJiR51tqBfXby4fipyOSbDbwj+WZP9R4sBzv5mEv32wDmt3FtRxgFF2L/UDu+6cfnyM1HRWEAQhVnDY3RjdPxOPXj+KgwyUvFYbqi6/96ph6JQWB3uFi6stvl91EPmFynpjvP31Nowb3BEuvbbetSIFhEmK7093jMMLH27gdWdtUpPNHGjOykzAa59twfN3T0KCxcDHL7Q8NM5jB3SA+bqR+NfnW+q9TygJ4N4rh6HjqftEEAShraEJxKr+zGlATs6TJ+tO7KFC+pMpKXEoLrZFnAOajs1g1HPUgRoqcgQ/UJmhUV80n7Y3mY3QaDVYsCYPOw+chM8f4AoCWoBSOSpVZ7hiIFNS6XUjeaIyhxe3/nm+4vemrNP3npgJv98Pu8vLZbn5RRV8Dbp3TMLMsV05+4VKhuuT26JMy/h4E+iwKGBEV4oSNXweH8tyNOf5hROTSc+N6BzBMTled0yo+sRsMeL9b3fg84W5VfsmxhlZ93PMgA6Itxrh8fr4Hu6SEY/yMmfMZKdE4nVrLuTcIp+0tISIm2djZWzbwrmRlB89v/MLyvHdqoMoLndyL4ThfTIwflBHON1euBzN29uCMlj11G9Bo6mcL2kYA36u6GhJE7glrx1LJFqMsFgM2LznOJZsPAybw4N4K0lDdcaA7u1ZTrGlMmaVnhvN6SazAeV2D8ubHDth40qQXlkpOHN0No+/uwE7p7WIte9cWzm3WDm/SJxjwzW2tZ/VNA9oAgFe17Skt0LNudH6y2QyVK6btRr46cACAV6b1LcvBXDNFgM/q9ftKOSeFfRspjUL9cDonZ3CfQ4ouK/VAsnJcfj1cz8pDlwQT946Fv2yU1Be7qzx7NXotNBq6aXhZ63JqMOO/Sfx07p8VNjdsJgNGDswk+df+n+q9KDEOVqb+r20nlS2lq8cE/IlaBWNSXMRC9/3hu+TI3A4vXyfUA8MmjOpIofm9Fgglq5dbeTc2sYcK4Qfqbhoo+h0GpgsRuh1OixYm4d1Owu5z0ByvJGz2gfmpNY7QbJMQYUTer0OU4Z2wpShnaHTa+EjJ7HPj7LSupl/sQ4Z19SfQQ3kYDhUUIbUBBO0AeD8id1r/N3janghHxdvgsmox668Yny38iBOlDo5c3Fgj1R27icY9ZxhE40VL3TM9DIa9Th/Uv1jYrEasWLL0aqgBTlBbjyvP84e2xU7DpzENysOVI3JgJz2yEyNgzXezFmq0TrJCoIgxALkgKLkhtREE66e0ZuTIMhZQlWaZWWOZq2Oo/cl5z59BmWwbtpdxFKOpBFNzcL7VHMYRaX8lt3NyQ09OyWiR6ckdnxw3ycEUFJij4hgfXBOJ6fWRdQnrZoUBgWoIilgIQhC68BJcRYjP9e+XXEAW/edgMfrR2qyhW176rfgiIBnNUkyWS0GbNpznJP3Sivc3OOQeg6Qc5meZ7Rurv7spWdy8FndLzsZfbNTajyri4vtVQF0g0EPm9OrKmhBrN9ZgN5dkmsEi8vsbny1aC8OHi1DAAF0SU/gXkIUKOnaIZG3peOgtRIFLeYs3of9R0o56EBVIOdN6I7UZCucTjr2hteTNMdWjkkRFqw9VDUmJC9NgZn6xkSo35dA14PGKS3Fwn4BsmFo3UoSUTx38jbSL10QhLaJBC7aIDQRUinqvOX78d/vdnF2e3UWbTjMFRQPXTcCHdvHwW6rW5Lo9fr4RcZmfFwcituwU5gMCGcIi2+S2iIjhRtsKUygiE8042SpE396eynyammfrtlRgPe/2YELp/Tgnhv8GVEYvAg2lKtvTIKNuP/vxz38/5TZ8/D1I/l+vfuFRXX0YGlMPvh2J2ZP6YHLz+yFinJnm71PBUEQImbOPFUZyDYEZ281r6Qfv2+CmecKkhOsLW3507pDLL3wyA2j0C7BBEc9dk40QE4ORxQEXqLVFhEEoWWhKgtKyHr/2534ask+DlhUhwIE5Gh/9IZRSLAaW02+iI4xr7ACz763FoW15PlWbTuGN7/ahutm9cWMUdmoqCDpO7/qZzWtaVzeUNaTlZ9lMuu5GuT5/67Hiq1Hazi4N+wqwpdL9rGE7kPXjuSqQ0o8fPGjDVi68XANyWLaliShB/dM4zWW2aypt5rfGm/CoYIKPPP+2jqShTQmb3y5jXtWUXVdRTklJojHvT5YRSHBjCUbj+A/X27l5MbaUN8vkhTr0SmZpRUleCEIQltDmnO3Qag3wKc/7WGDonbQIkjBSTse/sdSHD1h59JFoXHSki2q90mJN6vKQCGjubjMhfteWlwnaBGEskk/nr8b//58C1cmNNW8M9ogg5yCE8GeFlef1Qcd2sfhkVeWNtjEjsbko/m7+X6PizdLw25BEIQYhh7x1jgz3p67nZMzagctglBW6/0vLea+U2LnCIIghBdao9Ca9J+fbsZnP+2tE7QIQjb/fS8tgs3l4+SlcENVBRS0ePSfy+oELYLQevq1z7fgy6W5fE6hQI79eIv6tVsKVe9rNTCbjXjs1eUsR9WQY5sUFl75v03QG/T4/b9XYPGGmkGL6lAVxQN/Xwy9Uc+V8LXHhIIW1ES8vj5LwTGhng0UkKI5Wagful+oWuWljzbUG7QgSEngd6+twF/MHiUAAGxaSURBVJ78Eh57QRCEtoYELtoYVEJKTZ9oMd8U5PClJppWkloQZ2+j1QHUV8FC+p4KoebRVALt8SjPQqQS4uf/t57LiJuC5JL2HCrhPhixBBnmVPZMUCnyuRO64eWPNyoaE9LX3ne4FGazFJoJgiDEKuTYIilGyi5tCnKsPPf+Onb4iJkjCIIQ3jUpSbzOX53X5LbUJ+fFD9ezDFLYgysWA6+HGwqsVOfdeTtQZnNX9nwIpdocAYzql6l4H5q3ZozOZtnczxfuZRnhphg9IBNzl+5jSa6moAD/23O3VfYeqWdMvAoqJd+Ztx3l9tDGJNYxGnVwef0c9GoK6in67Ptr2cYhyW9BEIS2hAQu2hg6vQ5fLPq5oXFTHD1hw/b9J8XZ2wjc98PrwxnDOyve57yJ3eF0KW82l5Bg5mux62DTBmmQOYtyEYhBT0zwlKYM64wjRTZFRnqQzxft5e+AIAiCEJto9Tp8rsLOyT1cys3CueGqIAiCEBYo61/NmnRr7glOvgunA5w+iyoPGqoqqA2t6+YszuV5KCQCAVxI/YAUMrRXOjdwJtknSlpTUp0xZkAmy0UrhZp5c+N06rVwakw27i5CUUmYxiSGoTXp3CX7FCswUA+RlVuP1qmAEQRBiHUkcNGGIIdvnNWIxRvyVe03f01eTDrAmxOvx4cbz+2P7MyEJrcdO7ADJg3tDLcKzWdfIKAoI6m2vihl4JCxGSuQZmz3jkn872F9MrB4o7p7edXWY2x4U58XQRAEIbagTFCTQYflm4+q2u+HNXk/R8UFQRCEFiXoBKfG0mqgtZBGG0YbXqPF/DWHVO1C8kvx1tCq+CoqXOjZJZmbMzdFu0Qz7r5iKAL+APbklbCcUFMM6pnGwfpjJ+yKj4kqE9fuKPjZWa7VYv5adWvSRacxJrEM+WUWqfTL/LjmEDS62FnbC4IgKEG8d20Iknvy+f2KZHWqU1rhglYsjSbLe+n17G8mcSZLfcNl1Gu50uKBa0ZwYy01jUgpW6VMZfNQKil1uHwx1eeCxjgzNY6N+niLgTNPQhkTuZ0FQRBiD5rvnG6fIvmK2nYOZF4QBEEI25rU7vQ02F+hsWd1IMxzSqnK9Vdw+1Bklinz3ulw44Zz++O6s/vC2oDiQf/u7fHCPZNZNtfj8XGvJiXEWQwoU7l2Io6XOqrOh8ZE7XvwHBvimMQqNBQ0HmrXsnStRSpKEIS2htSZtTF0Wi30Og28PuVmn8mog1+pplEbxuX0cIThvquHc3OtecsO4MiJCug0GvTokswapIStwslGplpMIZSFUrDE5VX/WZEK3YYupxeXTesFp9vLBrtajAYt7OrWIIIgCEKUzBGGU5m8aqC5RMwcQRCE8BAIBEKSu6G1UDhdtrT+Nas8Tqr6C55jKLhcXt6X+vhdMDkHP607xDJZ1GOD+iOePa4r0lOoT6IPFeVO7nlgUXiMLreP1/VqsZoNVedDwRW17xEcw1DHJBYJDgXZH1TVomYslUpLCYIgxAoSuGhDcBaHy8t6mGt2KC/NpSZhEtdXbmzSi4zx2ZO7V2UF0fi5nZ6QAhaEXqvBqL4ZmLdMuSZpr6wU6HValHOzt9jB5fJgaO807D1UgqG90zFvedOarkF6Z6WwfJaaahdBEAQhOgg+2/t1a8f9uZQyun8HaMOaxysIgtC2n9UJRj26dkjEgaNlivfjqvZwPqv9AYzom47V244p3mVY73Q4nMr7GNaH2+3jF/WTmDSkE8YP6siLSQ00PFeVFP8s9UR9Fnt3TeFgAgUmGiM3vwS3zx6IOLNesQIDFe4P75POPR2ZQAAj+2ZgzXblvgRat53umMQidocHw/qkY4EKOTK6H/2yjhUEoY0hUlFtDK/Hy9kbSqGS0klDO6nqxyBUSho57G44T73o36EGLQiHw40hvdORlmLhJmzUSyMrM4HlkhrivInd2JiNxQCcrcKFnC7JGNE3A2nJFsX7nj+pO1dsCIIgCLEJ2SvnT1Ru55BO+PC+6Zx0IAiCILQ85MB2Oj0soauUDqlx6Nu1HZxhtOM9Hi+mjciCRUVDcGqu7Wum9RfNS1RV4bC54KhwwV7h5D4Y1aGAAgWCJg/t3OT7UZBo/9EyTB2ZpfgYhvfN4IoOWtsSHrcXU1WPSY9mG5NYgsbkwknK7RWqKJ05tiv31hQEQWhLSOCijUEGEOliUjaIEq4/py9nb0iGeutCRqnH68NffjUB7z4xE3/99UQ8e+dEvP/kTDx6wygM6ZVWo28DVRZMGNyJFwWxCN2PtnInZyPdcuEART0raEzGDepYZXgLgiAIsYfb7cHoAZns4FLCzecPgMPhEekFQRCEMEL2+BnDOyOnc5KirP9bLxzAfTHCKTcUXH9de3ZfRduP7JeBnlkpYQ2uEH6vH1fP7IOkeGOT2/6w6iCumN6Lg/ZNQTJGN57bnwM41cfE6/PhmrP7KDq2Uf0zuTdhuMckWlQEOqXHY/LQToq2v3x6L/55OsmQgiAI0YgELtoYtDC321x49MZRjQYvyBFMhsrU4V3gcqhv4iU0H3QtrHEmeDx+/Lj2EG56+ntc8dt5uPyxebjlz/NxqKAc9141jAMYpKvaOzsFT902lhcEsWzYBO/lIb3ScdflQ1kCqiH6dK0cE7vdJUE4QRCEGMbnq5wbnrx1LCdqNAQ1GP31pYPZ0cQ9qgRBEISwQfa40+HBH28fz47thqDejPddNRz9u7VvlTUpVc6fNSYb181qPHhB8kkPXzeSq8LD3cuBEtWMOg3+/MsJjQYkqGr/nAnduN8fJcNRJX9jqgt/uH0c2iWY+DpVh67DzDFdcW0TwQuaXx++dkSrjEk0QENC9spdVwzDhMEdG9320mk9cdEZPfh+FARBaGtoAjKL1GtInTxpa7b30+u1SEmJQ3Gx7Wd9yFaGNDPJGb7zwEnMWZyLDbuK4PL4kBxvwuRhnXDBpBwkWI2w25zsBGiucyNHQVyciX8Gx5qcyf7IGJaIvG50nQ4cK8eT/1nZYPMukox6/KbRyGhnRXKCiaUyapcSR+r5nS50L1msJm5CPnfJPixYewgny5zc32NgTioumNQdg3um8X0WC9k+sXLd6kPOLfJJS0uIuHk2Vsa2uc6NeizRfgSZeBTEbmwej6bzMxh0/KKAPtkNlAXa0H5k55C9sXnvcbZz6KfX50dKgpmzfM+flFPZFNNGNkjzj4/cl9GJnFv0EgvnF4lzbEuPLTWXtlqNWL+rEHMW78P2/Sf4Wd0+yYzpI7Nw7oTuMOi07OBtCbeFknPT6bS8HiutcPExLtqQjzKbm/tKDO+dzvJQVGlBDvrmruyuPaeTekJDc5bFauTtF67Px9fL9uPg0TLuCNI5PR6zxnXl8aSkNpIwtliMMJkNWLIxH3OX7se+w6W8bcfUOG4APmNUNvwBqnB3tdiYqJnTY/H7HsRo1CEuzox9R0rxxaJcrNl+DE63DwlWAyso0FjS94HGMhYS8GLp2tVGzq1tzLFC+JHARZQbe6eDRqOByayHwaCH2aRnY4h+V2F3w+/1KdJ7VnpuBoMWJrMRRoMOuYdLcfBYGTes7tklhUskyYhyOtwRNT6RcN0sFgOKbR7c8+KiJhuukdbo3++bgkSLHjabOyrOrzkhQ11n0CHe+nOZtIuqTtyVDdNjRQYk1q5bdeTcIp9IdKrEytie7rnRfKE36DnAvXlvES9601OsGNgjlbMxSRM50qrwlJ4fObZ0eh00Wg027Cpk5whJYgztlQ6f3w+fp36bhQLbJpMBBqMOJuPPetwVVH3n8beodKDcl9GJnFv0EgvnF4lzbDjGtvJZrYfBaGDHd5AKm4v7AJA0bEuh5tzoGLX6yrVGcN1Mc67P4+XkqOZ0q9CcbjDqUW73YGvucbi9fk5QG9C9PTe69rh99fYypPOh/WjepCQuguZJkkSkNVH1c6Tgg9FEfgBDVXCEtj163IbCk3Z0TItHSqIZHhedn7ve5tr1jonTw9etoTHhOd2g4/fbsLsQNoeHkyeH9k5nO8WnwA8RC9/36lDwJmjrWMyGqrG0kV/GVzmWsUKsXbvqyLlFNhK4iF6Ud1USYg6aEKn0k14VGg1PmPS75g5lkdPAYjXgp3WH8PnCXOQXVtT4e4/Oybhsek8M65PBmY+R5lhpTXQGPd77ZnOTQQuCDOcPvt2JOy4ehLYIO6DcXjjtLuj1OiQnWzk7K1onVkEQBCXQ3G2JM6Go2IF3523Eup0FqB6nJQf/WaOzcfmZvdnx4IqyxS9lhXoDAbwxZyuWbMhn500QcnCRNvT15/Tj7Ry1ZEQoYE2/czgqkzVays4RBEEQQqfyWe3hV/BZHYkJR+xMJye+3cXHSXNJc+eA0vtSJUN+UQXe+2YHNu0pqjFnkRQUVU+QbBBVTtR28HMPCq+b/0bVDLQeKit11LseogCXz+tHwBTAvGX7MH/tIRw4UgZPtW0pUEL9LLp3TOJ1Ve3ronZMqCrE6fHj7TmbsGzzUa6uqfqbSc8VkTSnU6JCbYmqWIaGjO5/wAOX043k5DiUlNhYKloQBKGtIz0uBIYMDDJEmnsxT5UWFLR4/YutePnjTXWCFsTe/BL86e01+HJRLjtftFq5LYNlo26PD6u2HVO8z7LNR/gakqHaVmmJRYQgCEKkQlJ5e/NLcd9Li7FmR82gBVFa4cbHC/bg0VeXwUyVj9UqDyIds8UAm9uHu55fhAVr8moELQgK6n+/Kg93P78ILp+fsxXDbecIgiAIzUfwWR3J0DxSOZ8oO06qbCCHPa1z4xLM/JOC7UHp5OpY44zYnHscD/1jCTburhm0IEgO9/1vd+LJ/6zi92xszdfU8VGiFwVJ/vLuWrz62RbsySupEbQgtu47gUdfXc7rUbI3TmdM6JyLK9y46/mFWLThcI2gRTAJb97yA7j7hUUInFKGaIsEh1DsFUEQhErEQyy0KCQPtWDNIXyz4kCT2777zQ5syz2BuLifpX7aMjqdDtv2nVBlvJOxuTuvmA1kQRAEIfYD3F5/AE+/uaqOU782uw4W4x+fbGRZiGiAHDqke/6715azo6Yxikoc+N2/V/D2lPEpCIIgCBExj8WZkJBoxsptBXjxww3441ur8Y9PNmHrgZNcDUHBh+C0RbJLFQ4vnnlvLbxN9KaiSow3vtwGg6nhgH1TGEx6/O+7nVjdRJIcrUXp2E+UORtNEGgMWpvSvo+/tpzlHhuDpKr+8OYqWC2mqrERBEEQ2i7i3RRaDKqcIKcKNZlSyqc/7YFWnO4MGWpOBX1GauN0e8VxIwiC0AYgLeS5S/dxPwslLN5wGB5fgOfmSIccONTP4shxZTrtecfKsW3/CZjbaIamIAiC0LJBCHK+00vJMou2j08wY/nWo7j299/ipY82cNXC5r3HuUKeAhi/ePoH7D1cCmu8md+T5vTPF+2tU/XQEPNX50Gn1XDlhFroPEhucZ6C5ELC5w/wOp2OMRQoaWLppsM4Udp4IkKQnQeKkVdQxpLTgiAIQttGPMRCi0GVE1RyeriorjxUQ5AxR1kYlDXZ1qFS29Rki+r92idZRCpJEAQhxmEdbKsR3608qHgfcjx8u+IAtDpdVPR4mrt0v6p9vlqyn5uECoIgCEJzBdFJ2imlXRxXT1AwghrUUqVEsKF1fdC2C9Yewt8/2ghbA72lqJrw96+v5IpIej/6rB/XHlJ8bC6Pj7c3hJCMQJ+1fPMRboytlCUbDkOno0CJNqTP+3q5ujn9yyX7oZGERkEQhDaPpKUJLQYZNvuPlqneL7+wHH2yUtDWoWZn/bu3R0qCCcXlLkX7pKdYkNM5CSXF9hY/PkEQBKH1oGxOt9uneH4IcqigHIiCojyTQVdvX6zGoEQJo0EHZTUagiAIgtBYk2wjHG4f5izYzdUN5fZKJ3/n9HicM74bzhyVBY/bB4fDXbdPodeP1z7f0uTnkAzTcx+swzu/P4uDCPYGghwNcbCgPKReCKREfOBouap96Jwo2GI1qA8mGPQ65BdUqPYJ6CVwIQiC0OaRmUBoUULxjYjM0c+GrMPpwcyxXRXvM2tcNzgcnohvaicIgiC0DjzFxugUwacWo+cmCIIghG+etMabsGF3EW7+43x8vjC3KmhBUFCdghK3/3UByhwerpaoT8ZR6XqM1AZWbD4CQwiVDKczpYe25A59na7282h7mdIFQRAECVwILYbPF0CPLsmq9tFqgKzMBPh8yvS6Yx2vx4dLp/ZE367tmtx2UI9UnD+pOzxu9X0xBEEQhOiCHCJUXZCmUlKwW8ekqGh26XJ70bVDoqp9sjokwO2ROVAQBEEIHbPFiNz8Ujzz/jp4fQ33mzhe4sQj/1yGADQwGn8WsiAZx0UbDqv6TJKV0mo0SIxTJ5fcvVMSr5/VQvvkdEpStY/FpEf7JDOv8dXi9viQrXJO75qZCF8j4y8IgiC0DSRwIbQYNpuTnQ5qHA9De6fDajbAXi2rpS3j8VSWHz99+zicMbwLN2CrjV6nwYzRWXji5jFw2N3wKmzoJgiCIEQv1MvI7nCrqsqjbM4Zo7M5KB7p+Lw+nD+xu6p9LpiYA7/MgYIgCEKIUGCf+jG8NXeboooJkk76bOFe6E5VS9D+FIAoq1An41ha4YZGq8H0kVmqAglThnUOKWnN5fJg9IAOSIpXHiiZTJ/l8YUUTHC7vKrn9PMn5SAggQtBEIQ2jwQuhBbD7690vF8yraei7cknf9n0XpWim0KNXhcUkLjj4kF494mZuGZmH0we2omNx+tn9cV7T8zEzecPgN3u4m0FQRCEtgEFIGaN64p4i0HR9uQQIacKzc3R0uepW0dlyQ+9slK4ypOcMYIgCIIQCiaTAUeKbNhzqETxPj+sPgiz2cD9HYNyhaZqFRhKMBt1HCi5cHIOBySUQH02aD4PJWmNqiacLi8H/JVg1GtxyRk94A9RFYHm5lH9MtEhNU7R9kN7pSGzvRVOp8zpgiAIbR0JXAgtitPhxtgBHXA5BSQagRwpt180mEtWKyocYTu+aMHt9qKizIGA14tzxnXFbbMH4rYLB+CsMdnw0t/KndykVRAEQWg7VAYgAnjq1rGwmht3dAzrnY5bLhwAd5Q4AciBY7e78dSt49ChfeOODmqUGqw6lB4XgiAIQqhotRqs3Vmgulri6HEbdDod/7/T7cWwPumq3iO4PQUIHr9pNEzGyvdqiHEDO+Cqs3pzJUOoeFweXDglB1NHdGl0O2qQ/fD1IxFvNcCpsnl4jTnd4cYfbx+H1GRzo9tSwgJ9Hs3pgiAIgqAuFUAQVEIZIGR0UCVFz6wUfPbTHmzff7JGwGJor3T+e4/OSbDbXFyp0ZAhSS9ySoRD79J4ymDU63URI7/EwQkJUAiCIAincNjc6Jgah5fvOwP//X4nlmw4DHe1OYuyG88d3w1nj+sGh90VFdUWQSjT0mIx4MV7J+OjH3Zj/po8bmIahCQuzhyVzTaE1+NtNDNTp9OyzUHOE6UNUwVBEITw0trP6sCpfgxqoX00Fj0fu9mo52qI+avzFMs4UjIaSQI77R7kdEzES/dMxn+/34X1uwqRkmDmbcpsLlhMBpw3oRumj8ridbPXG/qcTutbW4ULv750MPdK/GJRLg4cLav6Ox3P6AGZuHJGb6QnW/jzGkLJOt15qpH5S/eegQ9/2IUf1+TBVi0Q0i7RzONw8dSenGQhSgKCIAgCIYELISzVAn6/H4Nz2nPG54lSB/ILy6HRaNCtQxJnb/h9flSUO+oNWlDprVavZUONMlgo64O0Q50uD2eZNGcQw2TSwWQ2QqutLEayOz2wxplgMOq5l0RZmR3SN1wQBEGIJMiZYDEbcOsFA3Hb7EHYk1cMp8eH1CQzsjMT4XB6eI6NlCC8GhwOD4zGAC6d1hPXnt0Xuw8Vo8LuQYLVwAkRFKxwO931Vh2SA8xo0rP0B/UEoSar5FByuDzcC0MkKARBEFofvV4Lg0HPaz5/9We108PSRKFm+YcCSRe3T7Ko3i85wcSBFnLc00+qFKT+EwvX5ze5L81vtL6ll8li5J+Z7eNw52VD+N8k6+TzV45JZVAlgPIyZ7OsgSmZobzMgdF9M1iGmCpHCk7YOHGPGn8b9Br4PD4OcNSGgzS8TtexNJbL7eUAC40BrdFJHqp28IkSGqmHyFUzeuPGc/thd14xbA4vJyKQ3CPN+Q5bdCVZCIIgCC2LBC6EsEDOkvJyJ/87wWrEwO7tqzIySkvs9e5DOqHWODMHOj5flItF6/PhPOWYyOmchPMmdMekoZ1Zjqo5nA+JiWbo9Dqs3HoUXy7ehx0HKitDyACbMLgjLpzcg+Uo3C4PG1WCIAiCEClUzoMeGAw6dMtMqMpYLS62s9M+2hMg4PZyBmaX1Dg+NzqlslJHg44bcqZQZueSjYfx1ZJ9VXrlJL8xaUgnzJ7SA2mnMkjDUcUpCIIg1P+sNlsM7OCnZ/X+I5UZ/9TngRzpsyfncMVBZVV+y89lFASfOKQTXvtsc43qxcbo0zWF17fBNS1JIm3YXYRfXzaE599FGw43GrS4+Iye+HjBbnyxMBcuj4+D9BdM6o7FGw5j7tKaY0LBkNlTcpAcb2q2MaHAiIPX024kWfRIyUquXKd7vKiw+xoMNsXFm5F3rIzX6cs3H+WAE0H9qej4R/bL5GOsXTnB/++iOV2LrLT4qjm9pNguFZGCIAhCHSRwIYQd0qxuCio1JWPomxUH8OZX2+poVufml+LFDzfgs4V78ac7xrPBS+WnoZKUZIYvoMFjryzFroPFNf7m8frx07p8fl08tQeuPqsvG6HhzP4RBEEQBCVQlmKsZipSgEFJkIEcYdBqce+Li6ocPkFcbh9+WJ3Hr+tn9cV5E7tznyhxlgiCIIQXWr9RbOA3f1uI/MKKGn9zuLz4dsUBfL/yAG65cCBLI9nC8Kym+dNoCmDSsM6KpZ6owTUH2E/h9fgwsn8m60796tIhmDW+G+Yt24/V2wtYPYCCHMGkOKoefODlJdh3uJT3vf6cfhxcv/uFRfWOCa2Nv1t5ALdeOBDTmnlMaL2tRJ6JqhnjE8x4e+52fLlkX52/b9t3gl8UwHjiljEcmKhv3ax0ThdaHvK9UCVMdbkvkeoSBCFSiKrm3Pv378fQoUPx2WefVf1ux44duOaaazBkyBBMnToV7777bqseo9A8mMwGLNl0BG98WTdoUZ28Y+V49J/L2ElBmR+h9rKgZmq/+/fyOkGL2nz6417MWbQXeqMhpM8SBEEQBKHlIIeK2WLEo68uqxO0qM0783ZwUgJJcwiCIAjhg9ZtRpMBj/xzWR0HfXXIJ//a51uwausxXh+GA+qZRIEBqrRvCqoKoT4QrmrV/9R3giSe/vruGtz4h++xbNMRXDGjDz7+0zn48rkL8MFTZ+Oqs/qg4KQN1z/5XVXQond2CmaN64rf/XtFk2Pyr8+3YM228I1JdcxWI/7vxz31Bi2qQ8GLJ/+zElariR3iQuRBkmBUnZqcbMXeI2VYvOkoVu0ogNMbQGKShfuMUeBJEAShNYmaiguPx4P7778fdvvPskLFxcW48cYbOWDx5JNPYuPGjfwzLi4OF198caserxA6ZNiQVvd783Yo2j6voBw/rc3HuIGZ8HqbruaojcVixNqdhdh5oPGgRZCPF+zB+ZNyeCIXyShBEARBiByMRj2Wbjxco8FoY7z/7Q7O5CUZKsn8FARBCA/UP3D+qoM4XNSwg74678zbjglDpnOAoKWrLijTXKPV4G93TcLz/12P1duP1UmkI9nBc8d3w9Uz+3D/h+rHRAl1+4+UYs2OAv5/cvDTK85igMWkY+mrP/9qAp59f10NOSpq6E3VgErH5K2vt2Pc4PCMSRCSo6Q+lf+3YI+i7bfmnsDWfSeQ0yFB1s0RBlVYUNCCEjOpkudkWaWsd5BBPVNx7cy+yMpIYMmvaJcdFQQheomawMXLL7+M+PiaWQ8ff/wxDAYDnnrqKej1euTk5ODgwYP497//LYGLKJ9EydCrPXk2xldL92HqyC7c76K+OZWMLP0pQ4sMUTbu/KdKIDUafLkkV/FnUZnugjV5OGN4F0AMMEEQBEGIGExmfZNZoNUprXBjxZajGNqjPRwOCVwIgiC0NJTBTUlqc5ftV7xPUbEDm3YXoVfnpLA4wEmC2GQK4P5rhsPm8GDesgM4dtIGnVaL3tnJmDYyC36fn6UGqZdjdahZ9ReL6q4t6X3oNXtyDw6wl9l+TrgjyajxgzqybJaqMdlzHL060ZioT94LBVpPf7fyoOL+H8ScRbl48NoRsm6OIMg3QkGLJ/+zCpv2FNW7zeY9x/Fw7lK+dkN6ptbboF0QBCEcREXgYs2aNfjoo4/wxRdfYMqUKVW/X7t2LUaNGsVBiyBjxozBa6+9huPHjyM1NTXkzwxVdqgh2YLqP2OJlji3gEaD9TsLVe1DmZVu0iQ16mtkTNJxUUYPWcjfrzyIDbsL4fb40S7RhBmjs1l7k2IYSqstgmzcXcSNwZvzPgk3cl9GJ3Ju0Uksn1uoNNfzM5bHNpbPrSXOL6jNvDe/shG3UtbvKuRFudh+ypBzi05i+dzawvmpJZKfZ/Q+Nqe3UTmk+li3sxC9uiSH7dxoTemwuWAy6DB7SncKuXDWuVajqVGlV/t4rGYDNu893uBnZndIxI9rD9X4Xce0eA5kKK22CLJuRwEHc+obk5b4TlAC4Mbd6tbpm3OPw2zSw2nQNioBrYZY/r6H49yMZgNLcjcUtAji8we4MuhfD01FvNVYo5dLqMi1i05i+dyEyCfiAxdlZWV48MEH8dvf/hYdOnSo8bdjx46hV69eNX6Xnp7OP48ePRpy4IIWvikpcWhuEhMtiFWa89yoosHtVd9Y1OsL1DkOyoAhDc5PFuyukxmyaMNhdGgfh0dvGInHfzGaNTi9CmUiXB4fZwu1xH0SbuS+jE7k3KKTWD631p5nY3lsY/ncmvv87NV0xpVCiQ96nQ4JKSY0N7F87eTcopNYPre2cH6xspYtVlFZX/1ZrdPrEB8X+c9qavLdEEaDrs5a16iv+7vmGpPmPDenywuPimqL6mORnBzZ92Sk0ZLnRk3i569R1nye/COfLcrFjef2Q0ozfvfk2kUnsXxuQuQS8YGLJ554ghtyn3feeXX+5nQ6YTTWbKhoMlU+TF2u0EvZSEaorOznXhqnC0Ul6QteVuaIOf3kljg3g8mAdolmVftQAzSLSY/SUnuVxmdcvBnvztuOOYsblow4esKGB15egj/9cjx+cX5//PvzLYo+r32SmTNGiottiFbkvoxO5Nyik1g5t+ZyhDTnPBsrY9vWzq0lzo+cdfEJFs6OpQQDpZDN4fP5UFzcfDIIsXzt5Nyik1g+t1g5v0icY1tibOn9rGYjdFoNZ3QrpV2SGf4oeFYnJVmRkmiGzVl/9USF3Y12CTXXuhUON5LiTM06Ji1xbtRQnc5NDcHtm3PdHAvf99Y6N5PJgIUbD8PlVm4n/bT2EG45f0ANX0uoyLWLTmLh3GIh6bitEtGBC5KGIjmor776qt6/m81muN019RyDAQur1Xpan11bq7I5oC94S7xvJNCc56bT+XDW6Gx8orDpFzF+UAfO5nCfmoCpcXZ+YXmjQYsgTrcPL324AX+7ezL+991OlNubztYkmSmTQQt7RfRfT7kvoxM5t+gkls9NLc09DrE8trF8bs19ftS7asKQTtyLSikzx2Qj4A+I7acSObfoJJbPrS2cn1Ii+XlG70FSvqP7Z2L5lqOK9qFKd1p/+bwtc32b876xO9yYNqIL3pm3o96/r9p2DGeP7VqjH9PBo2Uc0BjVP5P7LqkZE6+n8WNvznMzGPy8Tl+0Pl/xPlOHd+Fzi/TrFmm01LnpDAEcKihXrYhRZndDG2i+Z4tcu+gkls9NiFwiWqDs008/xYkTJ7ivBVVd0Iv4/e9/j5tvvhmZmZkoLKypsRj8/4yMjFY5ZqF5nA6UmTGop3Kprwun9OBsk6aaojXEwWPl2JNXzI3WmiI7MwE9Oic3ayZTKOh0Gg7QxMUZYbUaub+HIAiCILRlfF4fZk/JUbx9v27tkJZihTMEiSlBEAThdJ7VPRRvP6x3OuItBl4nRjpejw9nj+sGQwO9OMjp3yE1Dr2zU6p+R0ns3648iHPGd1M1JnEWQ7P0HVCK0+nlebNjapziSsjzJnaHT0UVpNDyaKAJYR9BEITWIaIDF8899xzmzZvHlRfBF/Gb3/wGf/zjHzFy5EisW7eOy/uDrFy5Et26dUP79u1b8ciF04UcCPddOQwpCU3rKF4+vRe6pMdXOR3IQDIb9Vi66Yiqz1y84TAbgI0RZ9bjketHwuP1odptF1YMBh0scSYkJlmxO78UizYeweodBfAEgMQkCwczBEEQBKEt4nJ5kJFixdUz+zS5bWKcEfdfPVyCFoIgCGGGHODdOibiIgXBC5Lzu/uKoXBHQdDi554OAdxz5TCuiqiv2n/O4lz+O81DQb5fdRBZmQm4cHKOItniu68YBk+Yx4Sak9sdHjx6wyiWaW6KX148CGajLqzBFaFxtBqge+ckVfvQfUqvaJUIEgQhuonowAVVTWRnZ9d4ERSUoL9dfPHFqKiowGOPPYa9e/fis88+w9tvv43bbruttQ9dOE1cTg+MOi1euGcy+nevPwhFWTc3XzAAl03vBVuFi3tOEBqNhpubqW0cVmpzoUtGApIbCJbkdE5iOan2SRaUh9BQrjkwmfSIizPh84W5uOGp7/D711fin59uxvP/24BfPP09/vjWahwtdiAu3lSvoSwIgiAIsQzZAnabC7Mn98AdFw2q4RSqTp+uKXjxnsmwGHVscwiCIAhhdoDbXBxkpqa/VDlQHwNzUvlZrdNooirI7LC5MaJPOn77i9FIS67bzPZ/3+/C4cIKvHD35KrKizKbG0/9ZxUn5V1/Tj9OmGtoTGg/naYy2S/cOB1upCaZ8dxvJnLwqaFg0wPXDMfkoZ35OguRg8ftxeShnWBt4P6qj+kjs1gu6nT7WwiCIIRCVGvLUADjP//5D1dfzJ49G2lpaXjwwQf530JkYjYbOMxPzX3IuRDw++H3+est+3U43DCZDXjq1rE8UdKLSm6pYZnX50c6STu4vKgopwZBgRqGsEGnPiZHVRqUOfL24zNYe3TNjgJuWkWBjDNHZaFLegK8Ph/KyxxoDUgKymwx4revLcf2/Sfr/J3Gc8PuImzJPYHHbhyJvtntxFAUBEEQIgqqiqTGkGQL0L9pbqdmnxqN91SW6ulDGYFkG0wa2on1v5dvPoL1u4u4WjIlwYyzxmQjo12lPJTDXrNXmiAIghAeSCe9otzJPRNIToiq37fkHufkM0oUmzW2KzefdjrdcDo8YV936fRaaLQaToqj9Sr1QqKqvmCyXGPQepQS6/plp+D1x6Zj4+4iLN98lOe8hDgjpg7vjJzOyTzv/fmX43HshB3frTyIk2VOfLYwF+eM74oLJuVg8Yb8qjFJTbZwbwwKClDwINxjUh1aY6bEG/H8XZNx8FgZ5q/JQ2mFm6srqHfJiL4ZcDg9sFU425yzu9LO0dM/uNk6nT/dDxQwiITeAHQM5OM4d3w3fKygpyj5R+heFLkvQRBai6gLXOzatavG/w8aNAgfffRRqx2PoAwKQJCEUcFJO75asg/5RRWsrUhZGudP6s4SR5TxWDuAQVUDNOFTAynS/TxR6oBRr8PAHu1x9thu/DcyJqkcNwgZB15fgHtkbN5zXPExjhmQCb1Ow0ERyoyZNa4r9Dot/79OS4Yr4HG2nrFhNOnx6meb6w1aVIeO9y/vrMVrj0xjo1tKcwVBEIRIgILvVosBm/cexw+r81Bc7oTJoMPQXumYMSYbRlOAnTHNIUVAtoDD5oLb6cGwXmkY0isNVeZCIIDSktbtUyUIgiBUBprJCe5yajG6bwZG9s2oelZTglu4n9W0djJZDLA7vPhiYS725pfwfJLZPg7nTeiGTunxcDg8iir1yFlNwXHatnfnJPTqnFzZKCBAPwIoKbZVBUGSrQZcPr3nz8dh0MHr9XHiXHZmIjvDaY1Hx8LrX9L7aWUocELnlpFsxlVn9uZzo/Oh9MGSEnubC1hU2TlWA9btKMSPaw+xogMlR47sl4FpI7I4CdLFdk7rjo3H5cEVM3rjyAkblm5sWF7bZNTh8ZtGw2TQSkKkIAitRtQFLoTorLLQ6LR44vWV7KyozqY9RazxOXZAB9x71XD+XTB4YbEaUVzhxoOvLEN+YUWN/dbvKsQH3+7CBZO6c4kxZbRUz9T0uD24YGKO4sAFVVWM6pfJjpT/fLmVsxBqk5ZiwcPXjUSntDjYK1xh72tBlSYL1+Ur2t7l8eHLxftw6bSegAQuBEEQhFbGGmfCsZN2/PmlxZzEUJ11Owvx7rztuHR6L1w8pQcqKpzNlpVITjGq4BQEQRAil0h4VlOWPDmeX/54I1c6VPe70xqWelCQzOBjN4zm7SjQrjiQ3kR1RFDyidZ8JPn7ztfb8fWy/ZyMV5usjAQ8duMoJFqNrV41SIGKps5NCRSs0lKioKZyvKIx6EHXbf/RMjz7/jqcKK0pK712RwHe+mobrj27L2aO7cqVRq3ZL4JsLApE3HvlME4eIX9M3rHyqr9T8ub4QR1w5Yw+SE4wciKIIAhCayGBC6Hly2wNOtz30uI6wYfqBs/yLUdx8rVl+NMd4zkDQW/QotTmxv1/Xwy7s37HO2WdfPrTXlTYPbh19kCUlTo4syUY/BjWJ501QKm8tiluuWAADhdV4JX/29TgNkXFDjzyylL85VcTkEkSE2E0rvUGHQdV6JyV8sPqg7junH6c1RGNxp8gCIIQG5ip4rLYjof+sZQD6/Xh9vrxwbc74XB6cdVZfVBeZlckxyEIgiAIpwvJGFusJjz1xkqWdWqInQeKcd9Li/DiPVM40FGf3HGoUFUFOb9f/ngTflp3qMHt8grKeW1NvSCpN0hrSkadLnq9FgaSazYbeJ1LfgCzSc8yUz6vr1nHtyUxW40ctPjtv5bXG2wKNmV/fc5WtoPOm9C91eSng7jdPvh8Tozrn4mpI7rgSFEFCosdMBq0yOmUXBlE8vrCnrApCIIQVc25heiHHO7vzNvRYNCitiFIVQIGo46rNF7434YGgxbV+W7VQew5VAxTtQZT5KinLILf3zwag3umNWog/vrSwVxt8fhrK5r8LHKsPPP+Wpa6oH3DBTlvSC5LDeV2Dxt94TxOQRAEQagOyTlaLUbOQGwoaFGdzxbuxdHjFZV9MARBEAQhDOj0Osxfc7DRoEUQcu6+PmcL9IbmzQGleW9r7olGgxZBKhwevPThhqieK1lWKc6MxZuO4M6/LcQlj3yNy387D1c+Pg/vfbsTdo8f8QnmiF/L0vFZzQa2cxoKWlTnvW92cCN27oMRIZVOJFtGcmV9uiShW0YCS0nZyp3NUk0jCIJwukjgQmjZDAqDDj+tbdr4CjJv+X7uhVF40o5decWK9/tiUW4d45EyNEh388lbxnDTM2oURs2lyLhon2TGpVN74u3fzcDkYZ3x0fxd3AxNCdQ8bdu+E2E1NsgEYr1XtUS2nScIgiDEOGazHrvzihUlMAT5fFEuO5EEQRAEIRzQum7ukv2Kt1+66Qivs2it21zojTpe0ypl674TLEkUCQ5wtVgsRjjcPvzq2R/x6qebayToUeIiyWTd9pcFWLLpCKzx5lM9LSMTGv91uwrryEM1lpBI0kzaCLJz6JjId0KBCpItqy7BLQiC0NpE3ywnRJVM1LqdBXCoKPGkDJaDR8uRX6iuumD19gJuVEZlvtX1ImkCpjLIrhnxuP/q4Vx6GqTC5oLf5+eGWV8vO6Dq8xasPYRu5/dHOCOM3TslqdqnXaIZVpMBxa2sfSoIgiC0XQIaDeavUZ7AQCzdeBh3XzEUDrtGpA4FQRCEFqeo2M4STErxeP1YtvkIxg/IbBYnLyX8kfN4w+5CVfvNX5OHCyd2RzRBwR6dXotHXlzEa/+GoPn/H59sRFKcEf27tWv1fh4NotXiR5V2zuKNh3HLhQOld4QgCIICpOJCaDEoM+JkmfrJuKTCpdpRwU3PXN56szGo7wVlD5CO5PHj5ThxogJFReVs/Hi9pO3oVxVcIUorXNCGMfPD4/Fi2ogsmIzKMzPOGpMNu/S3EARBEFoRmpdJEkENJMvo9vgjOsNSEARBiB3UzlNEcZmr2Xox0Xxnd3pUv19ZhYsr86NNSvqrpfsbDVoEofF4a+527oERqTYBqTmovX/ougX3FQRBEBpHAhdCi0EBA2u1vhNKsZhCK5s0GnRVzbkbPqbKIEf1/6cqDb1OndFAVRrhjAd4vX4+7pljshVtT43azp3QnZuaCYIgCEJrQfOyWUXQnSDfhIGzT6PNHSMIgiCEE5LpocbIcfFmflmsRu6VqBZa26nex6QLTcq3Hmi+o7WsWkxGfdQoA3MvCKuR195ThnfGKw9MxX1XD0O/bu0a3e9wUQV2HSxm6clIhNboau0cum6E2DmCIAhNE5lPfyEmoGqGYb3T2UhRmvUfZ9ajR+dk1dUMvbJSOPhQXSZKCXRcTpcXQ3unY832AsX7Ub8MTZjzW9wuD64/pz8KTtqxcuuxBrejPh7U14NiMXa3BC4EQRCE1kMTCPCcuXB9vuJ9hvRMg8frk4pBQRAEoeGAhcWI4jInvvxxLw4cK+OmgJ0zEnD+xO5IS7bC6XTD5VRWVd85PR7JCSaUlCtTC6Cl6tgBHTi5rDmgNWyCUY9uHROx/0iZ4v3GDuwQ9jVpyI24LQZs3FOE+avzeJxJSWBwzzQ8/ovRXH3xtw/WNSjXtW5nIbpkRKgklj+Akf0ysGaHcl/C8L7pcIRQYSMIgtAWkcCF0GJQb4mERCM7LFZsOapon6kjs3g/Cl5ktLOyk14JF0zq3qBhqtNpuLSUDIP6AhtejxcXTs5RHLhIsBowcUgnlJU1Xd7anJB+qt3mwoPXjmCDj0psqzcyM+q1mDi0E644szcSLAbeVhAEQRBaE7fbizEDOyAp3ojSCmVSCjQne9zqJBwFQRCEtoHJbOBein99by1Wb6uZzLV573HMW7YfQ3ql4eHrRsJs1nCz4aagRLazRmfjo/m7FR3DoB5pSIwzoqy0edaDtE6l46Sgy0sfbVS0T6e0ePTJTkFxsbL1cmthjTPh8HEb/vLuGhTVkoeigMQH3+7EpdN64q+/noBHX11Wb+DGTSoCEerkJ0nnqSOyWNJKqfz07Mk9RBlBEARBISIVJbQoFBS48dx+iiSjqJn0FdN78SROGQjUsEpJ4UWfrikYN7AjO0eCUKDCYjEgIdGCxCQrDGb6txmJSRb+fXU9SWrg3a9bewzvk67onG44tz9cbq/q6o7mgM6xvMyJiYM74uX7puAf95+BJ24egz/9cjzee3Imbr1gIOKMOglaCIIgCBGBzxdgZ8zN5w9QtD05mwb1TOO5WRAEQRBqN3YmKShycNcOWlRn4+4iPPjyEhiMeg5yNEXA78dFZ/TgxLmmMBl0uPn8/jXWns0Bvd/kYZ05ga8paCl76+yBp/piBCK40sKAI8dteOSVpXWCFkFcHh/e/3YnPv1pL35/85h6ZZfITxChLS646sbr8+G6WX0VV8l075ikKKAmCIIgSOBCaGGoKXai1Yg/3TGes1IaIj3FwlkWZISRs8Lp8GBQTnvcd9XwRvtPkCbmU7eOg8PhqgokkEGblGzB/mMVePaDdbj44bm48rff8M+n31qNnYdKkJRk5RJjgqQoyNH/6A2jMLJvRuMG4oUDMHloJzgd6hu4NRfcTNzu5uyalDgDendJQtf0eLgcHtgqnGIECYIgCBGFy+nhqotfXjyY59KGGNorDb+9cTTPySITJQiCINTX2Pmzn/Ziz6GSJrcl2aH3v90BnYLeEVTZ7vP6eT1KlQyNyRo/detYpCVbeL3a3Gs8es+nbx+H3lkpDW6n12m5Ar9vdgpcrbgmbQpKJLRajLwedyuQ1Pq/H/ewhBQFb6qj02owbWRWRFcoOO1uzBiVjevP6ddogIWCFg9cMxw2W/M1dhcEQYh1RCoqhtDrdTAadadkkQJsgNGrpSDHPwUJgv/2+z31OhrIAZGRYsGbv52BpZsO42SZkw0QbpQdADLbWzB2QEd2uJNDnqDjp/1G9k3H2787C3OX7cOPaw7hRKmTG5f1796e5aEG5qTyxB/MzKTjocZsL324Hos2HK5xHPR5lH1DL6quoEAF/Y6yW4L7P3rjKDaEv1i0Fxt2FXEGSHK8CVOGdcb5k7rDatKjotwZEQ4VqhrRarX8k8aLJLG8EZigSvcGNWEjI47GjcY6EsYv3NB3k76jwe8n3XfNpYsrCIJwOtDz2WSqrEZsiWc1vY+t3IkpwzphzIBMfLlkH35ad4gdFDSnk8b1hZO7o3d2O577pdpCEARBqA3NURazAd+sOKB4n/lrDnGPQLfTU6Nant6L1ih6fWUeJ1Vl2O1urhD4xwNnYOXWo/hqyT7k5pfC5w+gQ2ocZo7Jxpmjs+H3+Vusup3WwyYzOICyaU8R5izeh+37T8Dj9SM12YLpI7Mwa3w36LSArSKynd/UTHv7/pM4etymeJ95yw9g1viu+G7lwarfjRnQAQadBhX2yA1ckJ1TUeHEueO7cZLj0k1H4PX5OchEP6l/54CcVOR0SmLfRXNX6wiCIMQyEriIAdgxbNBBp9Vi7c4C1pCOtxgwom8GjGYDfB5fs2Xhk9OVynNNZj33n9ixoxBeX4AbmvXr3o4rLDz1OGS9Hh90ei2mDO/MgYEDR8rYOUJNtbtkJPD2pA9Zx9FR4WKH7wUTuuOqGX3484M6pCRDVVJir+FYsViN+PcXW+oELWpDeprPvr8OD147nD+XjD5ylFB/jS6pVtx9xVBYTIaq7Svsbh5HClq0NhSc0Rt1MJsMHISh68DNzXqkshQWjT9dh9akxn1ywo4dB06y0VZ5n7Rv8D6JRWgBpDfo4fb4sHpnIexOL9onmjCsTwYHFum7IcarIAitATtu6FltMuBwUQV25xWztFN2ZgJ6Z6ewbKPb1TzSiLyoL3eyc+jiKTmclRikak4vtke05IUgCILQetD8QetISoJTis3h4QBAny5JcDj8HKgg+SiSDt6ae4LnPoNei/7d2iM12Qq3y4OyUjuG5LTHqH6ZHFwnKHjhcLg5s97bwpn/VKVI66RenZPw6A0jYToldUXzo40+3+Pl5LpIJ6DRYMHaPFX7LNl4GHdeNoQTB0sqXMhsb8WvLx0cFX2v2FYKBBBvNeKc8d2wflchJ12mJJgwtHc6S2AFAn5Z9wmCIKhEAhdRjsViZKPgjS+3YfHGw3C5fzZiKMI/blAH3Hhuf3boB6sZTsfBQc21dh4s5iZau/KKa/ydSmbPndAN503sDrvNXTUpkwPbbDFi/uqD+HxRbp2si24dE3HZtF4Y1T8TDjtlINQ0xPj/3T4+/mB1QX1+DTJmKxwefL9SWRYOZdIcLqxA+wRTVWCH3pud/g4PXAY3kpPjUFxsixgHOwWp6Jp/+MMufLvyIMpsP19TiulQ1irpa3ZKjYfd5myVLBy+T+LNHKz4bwP3Cd0jdK9QtlLt6x1L0PelxObG259sxurtx2oG2Ux6TB3RhZ13Wp2m2cvNBUEQGoMq4egZRQ6d//2wi7NKq0POggsm5eCsMdmcRNBcFZxsG7jBczoF4pOTrTz3R8o8KwiCIEQmtNYprVBf6VBc5oRGk8xrRZr3qLL+62X72alcnb5d2+GamX3Qs0syr1FoTRhMmgt3UJ3WDPT5lcdQmRQWbRXrdMxlFer8D9TcmoIy8VYDcjonsWw09R+JhkrMxEQLyJJ55+vt+HHtoRqNuml9TIEw6v3ZLtGC8rLmaeouCILQFpDARZRncrv9Adz/90X1NruiDPfFGw5zVv4zv57AvSZC7c1ABhMZelTJ8M9PN9XrEC8qceCtudux40Ax6276/f7KzHuLEf/6bDO+X/VzyWd19h8pw1/fW4urzuqNi8/oCZ/P2WB2Z2MGG1V0fP7TXpafUsoXi3NxywX1NwyNtKRPMrZpLB/713IOCtQmKIVF2UOUnUP9P+whGPenQ/A+WbjuEF79bHOD98mbX23DzgMncf81w+H3O2PSYUXBwiMnbHjs1eU1DNcg9DtaNJHT8NnfTILJHIDLGflGuSAI0Q/rTseZMG/5fp636+PYCTte+3wLdueV4M7LBqO8rOG5OVSkukIQBEFQCk0ZlPijFqulUgqR5r0/v70aa3YU1Lsdra8ef2057rx8KMYP7MC9AyNhnqJDiITjUAsds8nUdH+R6pCcNDU/f/q2cRy8oOqT6AhamOFlv8xi5BdW1OvDoKRJWvf96Y5x6JyeIMELQRAEhUhz7igl2Ozqyf+srDdoUR3Kyn/8tRVstFEfhFCgqokjx214tYGgRXVoUv5kwW4YTAaWqqJKi4aCFtX573e7sHnvcVitDTfxbqpZG+2vBtqetFKjAaNJj39+urneoEXtgNVf3lkDp9tX1YA8XNB9crjIxoGqpu6T5VuOchM2KteONbgM3aDDE6+vrDdoUR0ybul6mc2h3feCIAih6E6T3EZDQYvqUC8K0pymOUgQBEEQWguSaKJeSGqCF6RAQHK6lF313+92Nhi0CEIJcC9/vBGFxQ6WURRCRxMARvfLVLXPsN7pcLm9MGiBslJHVAQtCK1Ohz+9s7reoEV1aF34+9dXVvpyrHJ/CYIgKEECF1HsdCAt6n2Ha0o7NARlua/ceoyz9kNBp9exk1lpNQNlkptNeu69QPJQSvn0pz1cOREK1PSK+gioweOpbJYV6ZATnLRVF63PV7S92+vHnMW50OrVZbmcLiHdJ+bQA2qRCgVj5q/OqyHl1RiUfXO8xMHfa0EQhHA8oz75cbfi7Wk+sZzKWBUEQRCE1oAqtCl4MXlYZ8X7kGwyZfFTUpHSpt6UHV+5Jg3vOirWIGnICYM7IUGFg/6CyTnczyJaAhZEcrIFBSdt2LxHWQIlrQ/nrzkInV7WfYIgCEqQwEWUotFp8dXS/ar2mbtsHwxG9ZF9MvTIEU2VFEqhCTnvWBn25JXU6WnRGCRzRI24Qqm6oEqDdklmVfvQ9rRfpEPN139YnafqWMlxTtUk4XI06fU61fcJNZJfve1YzGU0kYNvnsLFUZAvl+wjAdQWOyZBEATCaNTB7vSytKBSqLKT5udwV/EJgiAIQnV8Xh+uPqs3khNMTW4bZzHg+ln9OElt+eYj3KhbKUs3HeEedLQOFkKD5CWdbi9+cV79ssy1Gd4nHf27t4+qoAXh8QVU+2W+WX4ABiorEQRBEJpEnpZRikGvw+GixksRa0ONqKkCQi1arRbHSx3w+tRpazpcPhw4Wqb68/ILKrhpqFr8Xh/OHJWtap/pI7OqGnNHNAHgUEG5ql3K7R7YnZ6wBS6oaqKoxM6VIWo4eKyMTi9moPHWabX8fVMDfZ8lm1kQhJaG5vRjJ2yq+zgdOFIGjTyjBEEQhFaEnNp6rQZ//dUEpCVbGtwuOd6Ev/xyPKxmPdxeWpOqW0d5vH6cLHWKbX6auBxuTBzSEbfPHojGhpKCFo/eMIqbokdjE/JQ1n20XtTppKpHEAShKSR1Lkohh4MmhEk1VELbM8DNmtUSqoFI5ahjB3ZgQ5WqNpqCgjjTR2XBaQ+tYXk4IfMtlLEMpwpW5T2p/gNP576MRILOQLWnFWPDIAhChMINPkOcT+QxJQiCILQ2DrsbiRYjXntkOpZuPIyvlu7DwaOViVBdMhIwa1xXnDG8C68NHTYXzBZjxK+jYhUKQlSUOzF1RBeMHdQRXy7OxcL1+Sgpd/FafEivNFw4uQd6dkmGrcLF1ywa7Sr1677gDtEVpBEEQWgNJHARpZC+Z9eOichV2OOC6NYxEc4QSi/9fj/S21lhMujgUtFDIt5iRM8uKao+i2IW2ZmJ8PnU9aogfL4AHE4PZ2s89q9lnCnT4OdoNXjgmuHw+yq1UiMdqj/p3ilJ1T7tEs2wmgw4qbDPwulC90lGeyuMei332FAKGaqxtC4g45U0eLt2SMLe/BLF+9H20ZZhJAhC9EHPmc7pCaz5raZCrldWijyjBEEQhIjA4XCzk3tkn3RMGNIJhlOSTiRPROtBW4WT7XFCc2q9oQZqAN4+ycJOd6F5ghfUa/OSqT1ww7n9q/7mcHng8/hQUmyvTKyIUrp2SFQlwUnbkwQ03a+CIAhC44hUVJRCDvcLJuWo2uf8id3h9agPXJDRR5PqxKGdFO/TPsmMzhnxyMpM4IlZKcP7ZLChaLeHJt9E1RNZmfH4y68mICsjod5tMttb8eQtYzAwJxUOe9OVGZGAx+PFtBFZqqS+Zo7tCrvDHTYjkO4Tvy+g6j6hEu8hPdOiQ65LBU6XB+dN7KZ4e0q6oe9nQIxXQRBaGI/HxzIbo/tnKt6nc3o8O32czujLhBQEQRBiEw5SONwoKbbh+PEKfp08aeOKjGDQgnC7PRjVL1NRX4wgU4Z15vlSHMvNR2UFjBtFReU4cYKuVzkqypxwODxRHbTQaTQ4f1KOqqqLcyd0i4o+m4IgCJGABC6iFJfLgy7pCex8VwIFEAb3TAu52ZXf68elU3tWZbM0xcVn9GAjhAy+y6f3Ulxtcdn0Xgj4T28St1e40KGdFS/dNwXP3jkRs8Z3w+ShndiR//Tt4/Cvh6Yhp1MS7BVO1RrfrQUHj/x+nD2mq6LtqRndueO7cQO7cEKfd8nUntAr7FFyEd0nTk/MZfG6XV5MHNIZaSkNa+9WZ9zAjoi3GqKuGZ0gCNEJPatpvqWqCyVcOq0XP6uj2bEgCIIgxC40PzU0RwWr8mdPVpb0RyoDtJYN9zqqLUFrv1gxKcrKHEiKM7JktRJofThpaGd4XLGVuCcIgtBSSOAiSqGJ3uFw4be/GNVkRQNVGDx92zjOvg/VQUwZ8cnxRjx03cgmndKkKzpzTFd23jodbozqn4mrzurd6D7kO/n1ZUNY/spmO/2SXOep7JvOqVZcM6M3bps9ENfN7IOcDgkoKbFzZUa0GUselxfXndMPYwY0bhRRE7qnbh3LWR9ud3gNbrpP2iWY8PB1I5q8TyiwMmN0Nt8nsQZlZ7mcHvzx9vEs2dUY/bq1wz1XDoM7xqpOBEGIXOhZ3SE1DvdcObTJvlKXTuuJ8YM68jNNEARBEKIRWm+cN7E7ZozOanQ7StJ75IaRklAkqCLgD+C+q4ajb9d2jW5H60JaH1K1hVSxCoIgKEN6XEQxNNmZocFzv5mIT3/ai+9WHsTJsp+d/olxRpw5KoszJQM+H1dAnA52mxsDu7fDC/dMwoff78bKrUdr6GOTjMTsyT0wekAmKipcVaW1JMd08Rk9ud/Fpz/twdbcE1X7kL+E5KEund6Le3BQA7XTLLioFdyJHUcLVa/YbS48eO0ILFiTh6+W7ENeQXmN7CDSeL1yRi/Emw28bWvA90lOKp6/exI+/GEXVm09VuM+IZ302VNyuGSb9GdjtQSbStcTrEb8/b4pPA4/rj0EezUDNaOdFWeP7YrzJ3XnknZZHAmCEC54frS5+Dn83J0T8dH83Vizo6BGcgMFVS86oyeG9EyF3eaMuco4QRAEoe1A6w1q/nzb7EEY1CMNny/ai9z8n3tF6nUajB3YEVec2Yslj2mOFARVVRdJZvzxjnGYsygX36w4gMJiR9Xf48x6TB2RhcvP7MVr9vLSn/8mCIIgNI4mIHX/9Ro2pI/ZXOj1WqSkxKG42FZDb7O5MBh00Bt0sJgN2HekFOU2N0sF5XSu1KOmMlfSlGwuLBYDdHodvP4ADh4tg9cXQEY7C1KTLXA5vSxjVdvBodNpYbUaodNrUVLuQn5hBWd5UiNu6mlB8lBUadFcQYtouG6hQmNpNOlhNhtwpKgCJ0qdMBq06N4pmbM96Hor6RnR0udXdZ/4AjhwrIy/Vxnt4pCabG7wPonFa2cy6aHV67g/yd5DJXC4vEiKN3GlFJWte9xeVccYSefW3Mi5RT5pafX3DmrNeTZWxrY1zo0q82gu0Rv0cHl8yDtWzoHmDqlWpCSYOUO1rTyrmxs5t+hEzi16iYXzi8Q5NlbGNgitP00mA0xmPYqKHSgstnOVONnlJJ9I66hYSXyLpesWLedG/g5a99Ha/MCRMvZ7kK+jZ1YyPF4/98OgIEc0nltzEcvnJ+fWNuZYIfxIxUWMZOLTi2QcMpLM6JBiYY3PslJHi2SzVxpzHg6YdMtMQFycCRUVTpSW2BuUX6LjKC93Vk3ofbNTTv3eh7JSe7MfY8w3orO7WQ4r2WpASpyRf++0uyJqEql+n3RNj+ffkfOrpLhtXW+upHB54XZq0Tk1jh2FPA4ldslgFgShVamqTHScelZn/PyspjldEARBEGIJmt+oKtrpdCPepEdy5yRYrSaUlztQYZPqZ+H0sNvd/JNsqi7p8cjOTGC/jNPhUZRYKAiCINRFAhcxZoiFU26GgiU0EVPgovLf6iZ04fSg8Y4GeaFgYK2tQwGnWJXFEgQh+pFntSAIgtDW1lE+H6kCmCIq+UuIfsieKhU5KEEQhGZBmnMLgiAIgiAIgiAIgiAIgiAIghAxSOBCEARBEARBEARBEARBEARBEISIQQIXgiAIgiAIgiAIgiAIgiAIgiBEDBK4EARBEARBEARBEARBEARBEAQhYpDm3IIgCIIgCIIgCIIgCBGATqeFRlPZRNznk8bhgiAIQttFAheCIAiCIAiCIAiCIAithFargcmkh8Fo4KCFy+2DyaiDPxCA1+2Dy+WB3x9o7cMUBEEQhLAigQtBEARBEARBEARBEIRWgAIWVqsJG3YXYs7ifdi0p4h/r9UAQ3un48LJOejfPRV2mxNut6+1D1cQBEEQwoYELgRBEARBEARBEARBEMKM0aiH2WLE02+twrqdhTX+RgUW9Dt6TRjSEfdeORyBgBMejwQvBEEQhLaBNOcWBEEQBEEQBEEQBEEIIyQJZY0z4m8frKsTtKjN0o1H8Oqnm2CxGsN2fIIgCILQ2kjgQhAEQRAEQRAEQRAEIYyYTAYcOW7D8i1HFW0/f00eyu0elpYSBEEQhLaAzHiCEEWYzQZotFrodBpQaza/LwC/j5q1eVv70ARBEIRmQqfTwmjS8/OemnMazQYYfAG43V74fP7WPryowmIxQKvXUV4ra4VTk1OdRgO73QWvV8ZSEARBaD20ei2+WJSrePtAAJizOBeXT+vZosclCIIgCJGCBC4EIQowmfWwWIw4dsKOr5bsw6GCcvLBIDszERdM6o72yVY4HW4JYAiCIEQxWq2Gda6NRh0WrT+MZZuPwObwIN5iwIQhnTBxSCe43F447W4EyHshNAhlo1LAx+cLYO7S/di89zg8Xh/aJZpx5uhsDO6ZynOmrcLV2ocqCIIgtFEsJgO27D2uap8tucdxzcw+cLTYUQmCIAhC5CCBC0GIgioLyhZ94j8rsXlPTcN2a+4JfL1sP4b3ScdD142ERqOB0+lptWMVBEEQQg9axMWbsXLrUfzrs82wOWsGotfsKMDrX2zBry4ZjBF9M2CrcMJPXTuFeqU3rFYj3v92B+Ys3gdvrSqVpZuOIKOdFY/eMAodUq2oKHO22rEKgiAIbXvu96is/vN4/NBqRfFbEARBaBtExYxXUlKC3/3ud5g0aRKGDRuGK6+8EmvXrq36+4oVK3DRRRdh8ODBmDlzJr7++utWPV5BaC4o69Zg1OPBl5fUCVpUh5q5PfzK0ko5EQNJYgiCIAjRhMVq4gqLv/13fZ2gRZAKhwfPvL8Wq7Ydg1mac9YL+XIsVgNe+2ILPv1pb52gRZCCk3Y89I8lKDjpQFy8KezHKQiCIAhUCdg+yaxqn3ZJZnh9vhY7JkEQBEGIJKIicHHvvfdiw4YNeP755/Hpp5+ib9++uOmmm7Bv3z7k5ubitttuw8SJE/HZZ5/h0ksvxYMPPsjBDEGIdvQGPT74bifySBqqCfYdLsUn83dDL4ELQRCEqIIDzhrgn/+3qcltSSHq5U82ch8MvT4qzLiwEhdnRm5+Kb5dcaDJbZ1uH/72wToYjXoOeAiCIAhCOCHJwmkju6jaZ8aoLPikR5MgCILQRoj4ZdrBgwexbNkyPPHEExgxYgS6deuGxx9/HOnp6fjqq6/wzjvvoHfv3rjnnnuQk5PDAQ2quvjPf/7T2ocuCKcFOaVMRj3mr85TvM93qw7CQtJS1IFUEARBiAoo4PzdyoNwK3REUMPuBavzuCJPqIVWw41LlXLgaBkOHClDfLy6jFdBEARBOF08bi+mj8yCxaRsPk+ON2HsoI5wS19DQRAEoY0Q8YGLlJQU/Pvf/8bAgQOrfkc6/vQqKytjyaixY8fW2GfMmDFYt26dNK4Uol4mavPeIpYGUUpJuQu78oo5e1QQBEGInkbSizbkq9rnp/X5Ig1YC4NBC4Ney31C1LBgbR680i9EEARBCDNer597XDx07Qjomkg8o/ntkRtGcj9DXwMyiIIgCIIQa0S8dzMxMRGTJ0+u8bvvvvuOKzEeffRRfP7558jMzKzxd6rGcDj+v707AY+yOhc4/maZbOw7ShAVRHYhUhZBNpFyBTe01bLUSlFsa3tFaAtaq9QroijgUsBea6sXfNp7EbRWFFG0LhVBEbBsAgIiImEJJCSZ/bvPe+zEhHUCM5nvzPx/z5OHZOYb/d45yXnPN+855yuXoqIiadiw4Wn9f2O5/YLOnK/8bzIhtvj+/7UQUV2HS3xybrM6p/wdTnR88URsdiK21BKrPJsM760nM0OKS/3Veo0er++hzdtFxbrtMjMzzGqUYMip9nupc10Y+0WH2OyUzLGlQnzVRX9mT2xBf0A6nNdQfje+t/z+/9bKV/tLjznmnOZ15D9v6Cb5TWuLr/yb/G9DbPFCbPZK5viIDUjRwsXRVq9eLVOmTJEhQ4bIgAEDxOv1SlZW1RtURn72+6v3IUCEbrPToEEtibW6dXMlWRFbfOTlek7rNXl5WeYrGrSdnYjNTskcW6LzrM3vrd5AOqeaK+V0W4lw2InLeKWmxbLtdOZqdel7ryt5GftVD7HZKZljS4X4osG1rJ2xtT+3ocz59SDZtKNI3lmzW8q9AamdmyUDLs6X1i3qSdhxzESHvByPdbHFC7HZK5njIzYghQsXb7zxhkyaNEkKCgrkkUceMY9lZ2cfU6CI/Jybe3p/VPpBQHFxmcSKViX1D7y4uDzplnUSW/zoTJrOrRubZcHRfhCTk5Uh7Vo1jOqcEx1fPBGbnYjN/WL1QUgs82wyvLdZOR7p3r6p7NpbEvVrurdvJn5/SI6UeMVW8Wi72nVypFPrRvKvbQeifk2vTs1FJ68WFR07yzWVfy9PhNjslMyxJUt8bsyxyfLe2hJbWprIec1ryznfvVAiG0fpDlIlJeVmZaDNscUSsdkrmeMjNndLhsleqcqawsX8+fPlgQceMDfefuihhypWVZx11llSWFhY5Vj9OS8vT+rUqXNG+03Gmv6Bx+O/6wbEFnv6/6xVJ1P6dDlb3l4d3d7nAwryJRgKia8aN2yj7exEbHZK5tiqK9bvg83vbUYgJFf3ay0v/mNbVB9M6GzaK/ueJ8FAyNqY49V2+t+66tLzoy5cNK6fIwXtmknx4TLGftVEbHZK5thSIb5o0Z/ZG1sgcHq7RtgQW6wRm72SOT5iA2LLig3Knn/+ebn//vtl1KhRMnPmzCpbQ3Xv3l1WrlxZ5fgVK1aYVRnp6VaEB5xQKBCSm4Z1kLq1Tr3tU/062TLyu+3MawAA9tBic+1cj/nAPRojBrQx2xv5/dEXqVNFeZlfenRoblYsRjOz9dZrOovPH+QiDAAAAABcxvWf7G/fvl2mTZsml19+uYwfP172798v+/btM18lJSUyZswYWbdundk6atu2bfLMM8/Ia6+9JuPGjUv0qQNnzOsNSI4nXR78WV9pWDfnhMc1aZArD/2sr3gy0qq12gIA4A5lpT5TqB7e97yTHndN/9Yy8rsXSnmZr8bOzSZagNCCzr3jeknXtk1OeFxmRprccWM3KbiwqZRX88boAAAAAID4c/1WUUuXLpVAICDLli0zX5Vde+21Mn36dJkzZ47MmDFDnn32WcnPzzff9+7dO2HnDEQjOzvT3MdCJM3sRevzBcy/x5s92rBWljx99+Xyzidfyivvbzf7oOuNRM9pVsd8yNX3ohbi9frNsQAAOz9w1/tV3Dyso1zZ93xZ/I9tsuLTPVLqDUitXI9c0vksU7TQIrYexwqBEztyxCe1a2fLfeN6yaadRfLSO9tk3db9EgiEpEHdHLnsOy1leJ/zzT2kSo/4JBzmvQQAuPt60XH0ejFo7f7yNtKtObOzPeZfEce8914vkwQBoCa5vnBx2223ma+T6devn/kC3E63pcjJyZLsnEzZe6BMPt12QAKhkLRoUlu6XtBEyr0BCfh1z/Kq2z2Vl/vNDNKeHZpJ/275/x7AigSC39zPwuabJAEAvqHFiMOHy6ROjkd+NKy9/Oz6iyqeKy3zSygYkuLD5Qk9R5uKF+npAWnToq7cObLAbK2l9IOfcl9QnFBISopZtQIAcOf1YlZ2puw/XC7r1u8VfzAkzRvVMqsEvb6ABP0hU4xHfGRmZognK0NyczyyZss+2b3viHgyMqRz60bSrFGe+LxBszOCjikAACleuACShc7UyKuVLZu/KJL5r24y/x59j4orLjlXrh/U1mwBcvSWT1qY0BUV+qUDWsVYCQCSj14MK783IA0a1JKiolJWWJwGXUlRXOw135eaen86qysAAK6lK+rzamfL9q+K5bklG2TD9oNVntf7Hg7t1UpuHKJbRvrZIjhOq1xy87Jl4fLPZMk/d8ihkqqTHC48p4GM/o925l/d5vN4OyYAAFLoHhdAstCixfvr9si9f/jgmKKF0kHR80s3y/3PrJDcvCzxeDJO+N/SggVFCwAAoqP1CooWAAC3Xy+u3lQod819/5iihSou9cv/vrlF7nnqA8nJzZKsrBNfL6L69Ppbr8P/65kPzXX50UULpdfxej3/3tqvTHtFJhQCAOKDwgVQA3JyPLLvULk88X9r5FSTMj7ZvE+eW7JRPP/e1gIAAAAAkNwz/YvL/PLo8x+fchb/+s8PyH+/+Kl4sjw1dn6pQK+//+fVjbJ6c+FJj9PmeXLhWiksKjf3wAAAxA+FC6AGZGRmyMLlW6NeSvr6hzvNjI/IvSwAAAAAAMl7vbj47a0SDEV3vbj8o116z+6TrtJH9PS6W9/LpSt2RnW8Xte/8NZWyeD9B4C44lNRoAYGQRkZafL+2t1Rv6bMG5R31uxm1QUAAAAAJDG9VszOypS3Pv4y6tf4g2F5c9UuyeSD85jQ6+531+w21+HRem/tbnMfSyYbAkD80MMCcaaDmYPFPjO4rI5de0u4jwUAAAAAJLH09HQpKfNLeTVvtv1lYckptyFGdPS6+8vCI9V6TSAYlqJir7neBwDEB4ULoAaczlgmnTt9AQAAAEDSSzuNaz8+MI+t07n85podAOKLwgUQZ6GQIw3r5UpeTvW2fbqgZX3dthQAAAAAkKRCobDUqeWRerWzqvW6Nvn1+UAnRtL+ff1dHXp9r9f5er0PAIgP8hxQAwNRvz8og7q3jPo19WtnS8+OzcXvD8T13AAAAAAAiaM3ei73BmVIj1ZRv6ZWTqb069bCXGfizOl1d48OzaV+neyoX6PX9/r+6/U+ACA+KFwANSAUDMmIAW0kJyu6m6ddO6C1GbwyewMAAAAAklsoEJKr+rc2BYloXHnp+eL3h/jQPEb0urvcGzDX7NHIzsowx+p1PgAgfihcADXA5wtKXnam/GZsT8n2nLx48d1erb4ZiPpYbQEAAAAAyU5n7nvS0+S+W3pLbvbJixf9C/Ll+4Mv5Hoxxvy+oAzve54M7XXylS96PX/P2J7m+l6v8wEA8VO9TfeB06T3rMrISK9YCqtfqaa8zCdtWtSTxycOkL8s2yzvrf1KAsFvZ8i0PaeBXNOvtfTs1FxKj/iYPQMAAAAAKaKs1Cctm9aWJybp9eJn8u4nu8UX+HZGf+sW9eSqfufLpV1bSOkRrwQrXUvizOn1t16H33JNZ7nogiay+B/b5LMviiqe92SmS9+LzpYbBrc1Wzvr9T0AIL4oXCCuPJ4MyfRkSG6OR7y6lDXsSJ2cTPH5gxIOhsXrTZ1ZIo7zzWC0To5HbhvRxXzt3FMswZAjTRrkSqN6OeLzBqWkuDwlCzsAAAAAkMr0ejEvxyO3XNVJbr2ms+zcc1j8gbA0rp8rTRrkic8XMNeLbCkcH4FAyLy/Xds0NhMKDxz2yr6icsnMSJNWZ9U1x4SDIdNOAID4o3CBuMnNzTJFi9dW7JQl72+XPQdKK/aD7N8t39zHoVHdHJP0U+mDelOs8QZMUSe/cZ6uRzHxHz5UZoobAAAAAIDU9M3kvoBkZqZLi0aVrxdLuV6sqZull/vF6/VLridTzm1W2zzu9wZMYQMAUHMoXCAucvOy5Ig3KHfN+ofsO1Re5TmfPySvf7hT3li5U8aP6CKDLm4pR0q84qTYKEwHPYHUWXACAAAAAIiSbgXFdlCJox9P6L1HAACJw825EXO6kiAtPV2mzHnvmKJFZbrIYu4L62T15kLJyfXU6DkCAAAAAAAAANyJwgViLtOTKS+/+7nsP+SN6vg/v7LB3AMjTe/gDQAAAAAAAABIaRQuEFPp6WmSm5Mpr63YEfVr9uwvlY07DkpODjuXAQAAAAAAAECqo3CBmMrISJeDxV45cDi61RYRn2zeJ8KKCwAAAAAAAABIeRQuEFNaewicxg3E/MGQufkVAAAAAAAAACC1UbhATIXDjtSrnS3p1Vw80bh+brVfAwAAAAAAAABIPhQuEFPBYFgy0tOkoF2zqF+TmZEml3VvKYFAKK7nBgAAAAAAAABwPwoXiLlgICjX9m8d9fGXdDnbFDsoXAAAAAAAAAAAKFwg5rzeoFzYqqFc3e/8Ux57duNa8tPrLpKAP1gj5wYAAAAAAAAAcLfMRJ8Ako/jOFJW6pUfXtFBGtbNkYXLt0hJWaDKMXo/ix4dm8sdNxZIOBQSn4/CBQAAAAAAAACAwgXieK+LIyVeGdKzlVx1aWt5b+1uWb/9oARDYWlaP1eG9j5XcrMzxe8LULQAAAAAAAAAAFSgcIG4CYXCUl7qE783IN0vbCoFFzaVNH0iTSQcDEtJcXmiTxEAAAAAAAAA4DIULlAzBYxyf6JPAwAAAAAAAABgAW7ODQAAAAAAAAAAXIPCBQAAAAAAAAAAcA0KFwAAAAAAAAAAwDUoXAAAAAAAAAAAANegcAEAAAAAAAAAAFyDwgUAAAAAAAAAAHANChcAAAAAAAAAAMA1KFwAAAAAAAAAAADXSHMcx0n0SbiNviXhcGzfloyMdAmFwpKMiM1eyRwfsdmJ2NwfgxvzbDK8t6kYW7LHR2x2IjZ72R6fW3NsMry3J0NsdiI2eyVzfMSW/DkWNY/CBQAAAAAAAAAAcA1KTgAAAAAAAAAAwDUoXAAAAAAAAAAAANegcAEAAAAAAAAAAFyDwgUAAAAAAAAAAHANChcAAAAAAAAAAMA1KFwAAAAAAAAAAADXoHABAAAAAAAAAABcg8IFAAAAAAAAAABwDQoXAAAAAAAAAADANShcAAAAAAAAAAAA16BwAQAAAAAAAAAAXIPCBQAAAAAAAAAAcA0KFwAAAAAAAAAAwDUoXMTQoUOH5Le//a3069dPCgoK5Ac/+IF89NFHFc9/8MEHMmLECLnoootk6NCh8sorr4iNtm/fLt26dZNFixZVPLZx40YZPXq0dO3aVQYNGiTPPfec2OTFF1+UK664Qjp37izDhg2TV199teK5L7/8UsaPH2/atG/fvjJ79mwJhUJii2AwKI899pgMHDjQtNuoUaNkzZo11rfdU089JWPGjKny2KliCYfD8vjjj8ull15qjrnllltk165dYkNsy5cvl+uuu860ocb20EMPidfrrXje5/PJ1KlTpXfv3uaYiRMnysGDB8WG2Cr7zW9+Y+JLlnYrLCyUO++8U7p37y49e/Y8brssWLBALrvsMunSpYuMHDlSNmzYUMNnbgdyrH39dCrkWXJscvTV5Fj3t5siz8YXeda+vjqCHGtXuyVzjlXkWTvzLDkWruUgZm6++WZn+PDhzqpVq5zPP//cmTp1qtOlSxdn27ZtztatW53OnTs7M2fONN8//fTTTocOHZx//vOfjk38fr8zYsQIp23bts4LL7xgHjt48KDTs2dPZ8qUKSa2hQsXmlj1Xxu8+OKLpi3mz5/v7Ny505kzZ47Trl07Z/Xq1SbeIUOGOLfeequzefNmZ9myZU6PHj2cxx57zLHF448/7vTp08d59913nR07djh33323c/HFFzt79+61tu20rbSNRo8eXfFYNLE88cQT5pi33nrL2bhxozN27FjTvj6fz3FzbNqntG/f3pk7d66zfft25+2333b69evnTJ48ueIY/X7w4MHm2LVr1zrXXHONM2rUKMdNjhdbZfr3pX3LwIEDqzxua7vp+Q0bNsy54YYbnPXr1ztr1qxxrrjiCmfcuHEVxyxatMjkiZdeesnZsmWL88tf/tL0MQcOHEhQJO5FjrWrn06VPEuOJce6RTLnWEWejT/yrF19dQQ51q52S+Ycq8izduZZcizcjMJFjGgi1U7qo48+qngsHA6bznf27NnOPffc41x//fVVXnPnnXeaTssmjz76qPPDH/6wymBv3rx5Tt++fZ1AIFDlOO2M3U7bSBPL9OnTqzyu7aJxvfzyy06nTp2cQ4cOVTz3l7/8xSkoKHBVojmZq666ynnwwQcrfi4pKTHtt3TpUuva7uuvv3bGjx/vdO3a1Rk6dGiVxHqqWLS9unXr5ixYsKDi+cOHD5tEq+3s5tgmTpzo/OhHP6py/OLFi52OHTuauPS1OtDQQWCEXnBqO+tFi5tji9ALkF69epnnKg/2bG437SP18X379lU89s477ziXXXaZ+TtU+vv58MMPVzyvv7/9+/c3v8/4FjnWnn461fIsOZYcm2jJnGMVebZmkGft6asrI8fa027JnGMVedbOPEuOhQ3YKipGGjRoIH/4wx/M8syItLQ081VcXGyW2eqyt8p69eolH3/8sRaPxAarVq2Sv/71rzJ9+vQqj2tsPXr0kMzMzCqx7dixQ/bv3y9uXyq8e/duufLKK6s8/sc//tEsqdXYOnbsKPXq1asS25EjR8xyThs0atRI3nrrLbNMWJcFaxtmZWVJu3btrGu79evXi8fjkb/97W9mmXplp4pl06ZNUlpaWuXvsG7dutKhQwfzu+3m2MaOHSu//vWvqzyWnp4ugUDA/C5qPxKJN+K8886TZs2auT42pX3g5MmT5eqrrzZtWJnN7fbee++ZNmncuHHFY7pE+I033pDatWvLgQMHzO9n5dj091eX4rohNjchx9rTT6daniXHkmMTLZlzrCLP1gzyrD19dWXkWHvaLZlzrCLP2plnybGwAYWLGNHOp3///iaRRixdulR27txp/ri//vprad68eZXXNG3aVMrLy6WoqEjcTgesv/rVr8yefWeddVaV504Um9qzZ4+4fbCnysrK5Mc//rHpdL/3ve+ZPRhtjy3i7rvvNslI9x3Ui5FZs2aZPRbPOecc6+LT/SKfeOIJadmy5THPnSoWfV4d/furx0Sec2tsOrDRAXqEDvL+/Oc/S6dOnaRhw4ayd+9ec8GZnZ1tXWxKY9m3b5/ZP/NoNreb9i/5+fny+9//Xi6//HKzP+8999xj+lMbYnMTcqw9/XSq5VlyLDk20ZI5xyrybM0gz9rTV1dGjrUntmTOsYo8a2eeJcfCBhQu4mT16tUyZcoUGTJkiAwYMMDceKjyQFBFfvb7/eJ29913n7lJ0tGzOdTxYoskHb3JkptphV/pDIDhw4fLM888I3369JGf/vSn5gZ0NscWsXXrVqlTp45JODpLRW+qN2nSJDPLJhniizhVLHphpY53jE2x6k3q9MJry5Ytcu+995rHNLaj47IlNp2F8uSTT8qMGTOOG4PN7ab9i94scfPmzfLoo4/K7373OzOjSPsXnZljc2yJRo61p59O9jxLjiXHulky51hFno0f8qwdfTU51t7YUjHHKvKsPbGRY+EW365FQ8zo0ilNqAUFBfLII49U/PEePaiL/Jybmytupp2VLl98+eWXj/t8Tk7OMbFFOqq8vDxxM53BoXSGyrXXXmu+b9++vWzYsEH+9Kc/WR1bZIbGxIkTzSwAXbKndLaKDgK1sm57fJWdKhZ9Xukxke8jx7j9b7Dy4OGOO+6QlStXmgFSly5dThi7DbHp+Wlf+ZOf/KTKLJzKbG43XSqrv3s60Iv0NbpUX2fCffrpp1Viq8yG2BKJHGtXP53MeZYcS451c2zJnmMVeTY+yLP29NXkWDtjS8Ucq8izdrUdORZuwYqLGJs/f778/Oc/N8uo5s2bV1Ep1+VThYWFVY7Vn7Uj0FkEbvbCCy+Y/et0to3OVNEvpRXycePGmWWNx4tN6b6EbhY5v7Zt21Z5vE2bNmYvTZtjU2vXrjVLMSvvV6t0/0Jd+m17fJWdKpbIEsbjHWNDrHqeo0aNkjVr1ph9a3U5f+XYDx06dMygwe2x6e+nzrbRgWukb3nqqafkq6++Mt/rRabN7abtovuzRgZ66oILLjD/av9ic2yJQo61r59O5jxLjiXHujm2ZM+xijwbe+RZu/pqcqydsaVajlXkWfvajhwLt6BwEUPPP/+83H///aZDnjlzZpUlUzpLQCvLla1YscLMZNEbE7mZzrRZsmSJma0S+VK/+MUv5IEHHpDvfOc7ZsmY3jCrcmzayekNtdxMb1ZWq1Ytk3Qq++yzz8zemRqbzliJLMONxKavOVFV3U0ie2Xq8r6j4zv33HOtbrujnSoWbS+9idSHH35Y8bzuz6jtq691s8OHD8tNN90kBw8elAULFhxzvhdffLGEw+GKG5tF9qTU/ULdHJvOsnn99dflpZdequhbbrzxRrMvpn6v+57a3G56frp8WJd/V/7bU61atTK/l/r7WTk2XT6tg1y3x5YI5Fg7++lkzrPkWHKsm2NL9hyryLOxRZ61r68mx9rZbqmUYxV51s62I8fCLdw9yrCIdqzTpk0zN60ZP3687N+/39ygR79KSkpkzJgxsm7dOjNw2rZtm9l/8rXXXjOzPNxOq6XaMVX+UtpR6XPXXXedGQzpzbN06eaiRYvMkk59H9xOl7dpG+i+mX//+9/liy++kLlz58r7778vN998swwePFiaNGliljRqp61Lp3UgP3bs2OPuYejGZKoDAd33VAc/O3bskNmzZ5s9T2+99Var2+5op4pF22v06NHmb/DNN9807TlhwgQzKNb9e93swQcflF27dpm9M/UGZpG+Rb90gKt/h8OGDTM3HNSBg/Y1enOwHj16SNeuXcXNf39H9y26/FSXper3+rzN7aYD14yMDLPMXWfj6GBc26hnz57mQlNpX6JL+RcvXmx+b++66y4zOLz++usTffquQo61t59O5jxLjiXHkmMTizwbO+RZO/tqcqyd7ZZKOVaRZ+1sO3Is3IJ7XMTI0qVLzVLGZcuWma/KdL/J6dOny5w5c0xn/eyzz0p+fr75vnfv3mI7HfQ9/fTTZsaKxqqDI73hUmSfTbfTmwvpHnyzZs0yVf3WrVubfTO1Q1Ya29SpU+X73/++SUQjR440r7GBzoDSwasO8vQGezrbQZcS60BIl9kqm9uuur+HOrNKZwFowtWEqjMBdKlq5eWPbqODOZ0lpv2LzlQ5mg6AtD/RGXJ6wXn77bebx/v162fiTAY2tpvSgbnOKtLBuu4FqgNXvYCcPHlyxTHar+gHAvo3qkukdWaODv70tfgWOdbufjpZ8yw5lhybDGxstwjybOyQZ+3tq8mxdrZbKuRYRZ61t+3IsXCLNEdvBw8AAAAAAAAAAOACbBUFAAAAAAAAAABcg8IFAAAAAAAAAABwDQoXAAAAAAAAAADANShcAAAAAAAAAAAA16BwAQAAAAAAAAAAXIPCBQAAAAAAAAAAcA0KFwAAAAAAAAAAwDUoXAAAAAAAAAAAANegcAEgoQYNGiSTJ09O9GkAAJB0yLEAAMQHORYA4o/CBQAAAAAAAAAAcA0KFwAAAAAAAAAAwDUoXABIuEAgIA8//LD06dNHunbtKmPHjpWdO3ea53T57ZgxY2ThwoUycOBA6datm9x0002yadOmRJ82AACuR44FACA+yLEAEF8ULgAk3JIlS2TLli0yffp0uffee+Vf//qXTJgwoeL5jRs3yqxZs+T222+XGTNmSFFRkYwePVoKCwsTet4AALgdORYAgPggxwJAfGXG+b8PAKfUrFkzmTNnjng8HvOzzlKZO3euHDlyxPxcUlIi8+bNk+7du5ufu3TpIoMHD5bnnntOJk2alNBzBwDAzcixAADEBzkWAOKLFRcAEk4HcJHBnsrPzzf/FhcXV/wcGeyppk2bmqW2q1atSsDZAgBgD3IsAADxQY4FgPiicAEg4fLy8qr8nJ7+TdcUDocrZrIcrVGjRnLo0KEaOkMAAOxEjgUAID7IsQAQXxQuALie7gV6tP3795tBHwAAOH3kWAAA4oMcCwBnhsIFANfbsWOHbNu2reLnvXv3yieffCK9e/dO6HkBAGA7ciwAAPFBjgWAM8PNuQG4nuM4ctttt8mECRMkIyNDnnzySalXr56MGTMm0acGAIDVyLEAAMQHORYAzgyFCwCud/bZZ8vYsWNl2rRpUl5eLpdcconMnTtX6tevn+hTAwDAauRYAADigxwLAGcmzdESMAC41OTJk2XlypWyfPnyRJ8KAABJhRwLAEB8kGMB4MxxjwsAAAAAAAAAAOAaFC4AAAAAAAAAAIBrsFUUAAAAAAAAAABwDVZcAAAAAAAAAAAA16BwAQAAAAAAAAAAXIPCBQAAAAAAAAAAcA0KFwAAAAAAAAAAwDUoXAAAAAAAAAAAANegcAEAAAAAAAAAAFyDwgUAAAAAAAAAAHANChcAAAAAAAAAAEDc4v8Bk0Sq7GvSXRgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "favorite_types = pokemon[pokemon.type.isin([\"Fire\", \"Water\", \"Grass\"])]\n", + "sns.relplot(data=favorite_types, x=\"hp\", y=\"speed\", hue=\"legendary\", col=\"type\", s=100)" + ] + }, + { + "cell_type": "markdown", + "id": "c6a20904-416d-44be-a4f3-2107200fb3c2", + "metadata": {}, + "source": [ + "#### Your turn\n", + "\n", + "**1.5.0.** Plot a histogram of peoples' heights." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "3b268a30-42ff-4ab8-b2cd-c58a76121f9c", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'histplot' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[35], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mhistplot\u001b[49m(data\u001b[38;5;241m=\u001b[39mpeople, x\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mheight\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "\u001b[0;31mNameError\u001b[0m: name 'histplot' is not defined" + ] + } + ], + "source": [ + "histplot(data=people, x=\"height\")" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "f145ae04-2796-4420-8d98-ce74d5bd4c83", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAALm1JREFUeJzt3Ql4VOW9x/H/LCEhQCARArRehYtl0bLJIli1aJELKq2orRcQK4iitooLRdHWjQfqgogXlUJRLCK4VeWiLVTqQuWKgAu9lYBFESsSwhKIELbMnPv8X5i5MyGQSXImM+ed7+d55pnkzOTN+86Zc+Y373nPeX2O4zgCAABgAX+qKwAAAOAWgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYI2gZCC92HI4XP0Fl/1+X0LPswltzgy0OTPQ5syQKW32+33i8/mqfV5GBht9A+zcufe4zwkG/ZKf30jKysqloiIsmYA202Zb0WbabKtManNBQSMJBKoPNhyKAgAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1CDYAAMAaBBsAAGANgg0AALBGMNUVAJC+/H6fubktHHbMDQDcRrABUCUNNM3ycyXgd79jNxQOy67ScsINANcRbAAcM9hoqJm/uEhKdpa7Vm5hQa4MG9jJlE+wAeA2gg2A49JQs3nbnlRXAwASwuBhAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDWCqa4AgLrx+33mlqhAwB93X93zAMBLCDaAh2mgaZafKwF/zUNIXl7DpNQJAFKJYAN4PNhoqJm/uEhKdpYn9Dc+n8/0xoRCYXEc55jP69CmQAad2dY8HwC8gmADWEBDzeZtexJ6rgaVYDAgFRWh4wabFvn06ADwHoINUIfxKjURDjvmBgBIHoIN4MJ4lUSEwmHZVVpOuAGAJCLYAHUYr5KowoJcGTawk/kfBBsASB6CDVCH8SoAgPTChSoAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANbgOjbI6KkPdDLI2HsAgLcRbOA5yZj6IC+PCR8BwAYEG2T01Ac607X21oRCYWl/cr4MOrOtWQYA8CaCDTJ66gMNMcFgQCoqQtK8WY5rdQMApAYDCwAAgDUINgAAwBoEGwAAYA2CDQAAsAbBBgAAWINgAwAArEGwAQAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgjZQHm4qKCnnsscfk3HPPle7du8vw4cPlk08+iT5eVFQkV1xxhXTr1k3OO+88mTt3bkrrCwAA0lfKg82MGTPkpZdekokTJ8prr70mbdu2ldGjR0tJSYmUlpbKyJEj5aSTTpI//vGP8otf/EKmTJlifgYAAEi72b2XLl0qF110kZx11lnm9zvuuMMEHe212bhxo2RlZcn9998vwWBQ2rVrJ5s2bZJZs2bJpZdemuqqAwCANJPyHpsTTjhB3n77bfn6668lFArJCy+8IA0aNJCOHTvK6tWrpXfv3ibURPTp00e+/PJL2b59e0rrDQAA0k/Ke2zuuusuGTt2rPzoRz+SQCAgfr9fpk+fbg4/FRcXS/v27eOeX1hYaO63bNkizZs3r/X/DQaPn+kCAX/cfSbwSpsj9fP5fOZWJ5E/9x0u76ifXRIpz+3XtlavRWybo79U8bQkvR7Jei1seG+7iTZnhkxsc9oHmw0bNkiTJk3kiSeekJYtW5rDUOPGjZN58+bJ/v37Te9NrOzsbHN/4MCBWv9Pv98n+fmNEnpuXl5DyTReabNuyMFgwJWygoGABPxHdhB+98qNiOx0kvXa1ua10DYft8wkvR7Jfi1seG+7iTZnhkxsc1oGG+11ue222+SZZ56Rnj17mmWdO3c2YUd7bXJycuTgwYNxfxMJNLm5ubX+v+GwI2Vl5dXufPWNUla2T0KhsGQCr7Q5Uk+tY0VFqG6F+Q5/wFeEQhIKH26z3te53Eoir6fbr22tXouYNotz7Kcl6/VI1mthw3vbTbSZNttG25lIz1RKg82aNWvk0KFDJszE6tq1qyxbtky+853vmLOjYkV+196duqioSOwNcPgDw+43i1fb7DiOudVF9FCMc7i8o352SaS8ZL22NXktqmzzMcpM5Hnp9lrY8N52E23ODJnY5mNJ6UG5Vq1amfv169fHLf/ss8+kTZs20qtXL/nwww/NoOKIFStWmFPCddAxAABA2gSbLl26SI8ePeT22283gUXPdpo2bZq8//77cu2115pTuvfs2WMGGOvhqVdeecUcthozZkwqqw0AANJUSg9F6RlQeoE+DTMTJkyQ3bt3m7OgNLzo4Sg1e/ZsmTRpkgwZMkRatGgh48ePNz8DAACk3VlRTZs2lXvuucfcjtWro9e2AQAAqA4nvgMAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsAbBBgAAWINgAwAArEGwAQAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFgjmOoKAJkkEPCndXn1KVl1D4cdcwOQmQg2QD1okptlPmzz8hpKpkv2axEKh2VXaTnhBshQBBugHuRkB8Xv98mCJetk6469rpXboU2BDDqzrfh8Psn010IVFuTKsIGdTPkEGyAzEWyAelSys1w2b9vjWnkt8r3bA+T2awEAyrsH6AEAACoh2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsAbBBgAAWINgAwAArEGwAQAA1iDYAAAAaxBsAACANZgrCoB1AgF/lb9XXl4TOqkmE2sC6Y9gA8AaTXKzTPjIy6t6ctBjLU9EKByWXaXlhBsgzRFsAFgjJzsofr9PFixZJ1t37I0u9/l8prcmFAqL49Q8mBQW5MqwgZ1M2QQbIL0RbABYp2RnuWzeticu2ASDAamoCNUq2ADwDgYPAwAAaxBsAACANQg2AADAGgQbAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsEZaBJvXXntNLrjgAuncubNceOGF8uc//zn62Ndffy1jxoyR008/Xc466yyZNm2ahEKhlNYXAACkp5QHm4ULF8pdd90lw4cPlzfeeEMuuugiufXWW+Xjjz+WQ4cOydVXX22e9/zzz8u9994rCxYskCeeeCLV1QYAAGkomMp/7jiOPPbYY3LllVeaYKOuv/56Wb16taxcuVI2b94s33zzjbz44ovStGlTad++vezYsUMeeughue6666RBgwaprD4AAEgzKe2x2bhxowkvgwcPjlv+1FNPmcNPGnBOO+00E2oi+vTpI3v27JGioqIU1BgAAKSzlAcbVV5ebg459e3bV37605/KW2+9ZZYXFxdLq1at4v6msLDQ3G/ZsiUFNQYAAOkspYeitOdF3X777fLLX/5Sxo0bJ0uWLJEbbrhB5syZI/v375e8vLy4v8nOzjb3Bw4cqNP/DgaPn+kCAX/cfSbwSpsj9fP5fOZWJ5E/9x0u76ifXZKssmtVbmybo7+4VHYi/z4Vr3OCba6u3HTfNry4PbuJNiPlwSYrK8vca2/NkCFDzM+dOnWStWvXmmCTk5MjBw8ejPubSKDJzc2t9f/1+32Sn98ooefm5TWUTOOVNuuGHAwGXCkrGAhIwH9kB+F3r9yIZJVdl3K1zckqOxXlJlJ2dW0+ZrlHPjS8sm3E8mKd64o2Z7aUBpuWLVuaex0UHOuUU06Rd955R3r37i2fffZZ3GMlJSVxf1sb4bAjZWXl1e7I9I1SVrZPQqGwZAKvtDlST61jRUUdT/33Hf6wqwiFJBQ+3Ga9r3O5lSSr7FqVG9NmcVwuOwEpeZ0TbPMxyz2yPaT7tuHF7dlNtNnuNms7E+mZSmmw0YHBjRo1kjVr1kjPnj2jyzXMnHTSSdKrVy9zjRs9ZNW4cWPz2IoVK8zfdOzYsU7/u6IisTfA4Q9Pu98sXm2znlWnt7qIHpZwDpd31M8uSVbZtSm3yja7VHYiUvE6J9rm6sr1yrYRy4t1rivanNlSelBODzWNHj3aXJfm9ddfl6+++kpmzJghy5cvl5EjR0r//v2lRYsWcvPNN8u6detk6dKlMnXqVBk1ahSnegMAgPTqsVE6ULhhw4by6KOPytatW6Vdu3Yyffp0OeOMM8zjs2fPlvvuu09+9rOfmdO+hw0bZv4GAAAg7YKN0t4ZvVXl5JNPlqeffrre6wQAALyH88MAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsAbBBgAAWCMpwaa4uDgZxQIAALgfbDp16iR///vfq3xs9erVMmjQoNoUCwAAUCfBRJ/49NNPS3l5ufnZcRx56aWXZNmyZUc97+OPP5YGDRrUrVYAAADJDDYHDhyQxx9/3Pzs8/lMsKnM7/dLkyZN5Prrr69NXQAAAOon2GhYiQSWjh07yosvvihdunSp238HAABIRbCJtW7dOjfrAAAAkLpgo5YvXy5vv/227Nu3T8LhcNxjeqhq8uTJbtQPAAAgucFGBxI/9NBDkp2dLQUFBSbIxKr8OwAAQNoGm3nz5sngwYNl0qRJnAEFAAC8fR2b7du3y2WXXUaoAQAA3g82p556qvzzn/90vzYAAAD1fSjqzjvvlJtvvllyc3Ola9eu0rBhw6Oe853vfKcu9QIAAKifYDN06FBzJpQGnGMNFC4qKqpN0QAAAPUbbCZOnMiZTwAAIO3UKthccskl7tcEAAAgFcFm1apV1T6nV69etSkaAACgfoPNiBEjzKEoneU7ovKhKcbYAAAATwSbuXPnHrWsvLxcVq9eLQsXLpTp06e7UTcAAIDkB5vevXtXubxfv37mFPAZM2bIzJkza1M0AABA/V6g73h69uwpK1eudLtYAACA+g82b731ljRq1MjtYgEAAJJzKOrKK688aplesK+4uFg2b94s11xzTW2KBQAAqP9gE3s2VITf75f27dvLmDFj5NJLL61brQAAAOor2Dz77LO1+TMAAID0CzYRy5YtMwOFy8rKpKCgQHr06CFnn322e7UDAABIdrA5ePCg3HDDDfLee+9JIBCQ/Px8KS0tNad49+nTx9w3aNCgNkUDAADU71lRegG+Dz/8UB566CH5+9//bgLOmjVr5Le//a188skn5jo2AAAAngg2r7/+uvzyl7+UH//4x6bHRgWDQbn44ovN8kWLFrldTwAAgOQEm507d8qpp55a5WO6fOvWrbUpFgAAoP6DzUknnWQORR1r5u/WrVvXrVYAAAD1NXj4P//zP+WBBx6QnJwcufDCC6V58+ayfft2c4jq97//vTkcBQAA4IlgM3ToUFm7dq1MmTJFHnnkkbgL9w0ZMkSuvfZaN+sIAACQ3NO9J02aJKNGjTLXsdm9e7f4fD7p37+/tGvXrjZFAgAA1O8Ym/Xr15vpEubMmWN+1xCjvTfDhg2Txx57TG699VbZuHFj3WsFAACQzGDz9ddfm8kvdSxN27Zt4x7LysqS8ePHy65du0zI4awoAACQ1sFm1qxZ0qxZM3n11Vdl4MCBcY81bNhQrrrqKnn55ZclOzvbXHkYAAAgbYPN+++/L6NHjzZzQh1LixYtzLib5cuXu1U/AAAA94NNSUmJtGnTptrntW/fXoqLixOvAQAAQH0HG+2p0XBTHZ0Ms2nTpnWtFwAAQPKCTa9eveSVV16p9nmvvfbaMadbAAAcze/3STDod/UWCBzeveulOIBMkvB1bEaMGGFO7dYrDt9yyy1mkHDla9tMmzZNli1bZgYaAwASCzXN8nMl4K/VDDfVapKXI7tKyyUcdpJSPuDZYNO5c2eZMGGCTJ48WRYuXCh9+/aVE088UUKhkHzzzTfywQcfmMNQY8eOlbPPPju5tQYAi4KNhpr5i4ukZGe5a+VqT02r5o3l8vPbm/9BsEGmqNGVh4cPHy4dO3aUp556Sv7617/KgQMHzPJGjRrJWWedZc6I6tq1a7LqCgDW0lCzedseV4NN5HAUkElqPKVCjx49zE3t3LlTgsGg5OXlJaNuAAAAyZ8rKuJ417QBAACob/RTAgAAaxBsAACANQg2AADAGgQbAABgDYINAACwRloFm40bN0r37t3jpm4oKiqSK664Qrp16ybnnXeezJ07N6V1BAAAlp7u7aZDhw7JuHHjpLz8/6+8qVcyHjlypAk09913n3zyySfmXi8IeOmll6a0vqieXu1Ub27jomMAgLQPNtOnT5fGjRvHLXvxxRclKytL7r//fnMhwHbt2smmTZvMXFQEm8ye/wYAgLQNNqtWrZIXXnjBzAzer1+/6PLVq1dL7969TaiJ6NOnj8ycOVO2b98uzZs3T1GNkar5b1SHNgUy6My2zFoMAEi/YFNWVibjx4+XX//619K6deu4x4qLi6V9+/ZxywoLC839li1b6hRsgkF/Qoc7Mumwh5ttjpSxrXSffLN9r7ipsCD38A++w/Ph1Enkz2PLcqPcyv8mSWXXqtzYNkd/cansRP59Kl7nBNtcXbnJ2B9EytT/4errEVNUpuzH2G8jLYLNvffeawYMDx48+KjH9u/fLw0aNIhblp2dbe4jE3DWtjchP79RQs/Ny2somcbNNuvGFgwGXCvPlHnk8Jbeu1V2MBBISrkRySq7LuVqm5NVdirKTaTs6tp8zHKPfGgkc3+QjG0lU/djmdbeTG1zWgYbPfSkh5sWLVpU5eM5OTly8ODBuGWRQJObe+Rbey2Ew46UlZVXu5PRN0pZ2T4JhcKSCdxsc6QsLaeiIiRuCoXD0fs6l+07/GFXEQq5W24lySq7VuXGtFkcl8tOQEpe5wTbfMxyj2wPydgfJG1biemxyZT9GPttu9us7UykZyqlweaPf/yj7NixI25cjbrnnnvkT3/6k7Rq1UpKSkriHov83rJlyzr974qKxN4Ah3c2dr9Zktlmx3HMzU3R8pyYn2speljCcbfcypJVdm3KrbLNLpWdiFS8zom2ubpyk7k/cHtbiT3klmn7sUxrb6a2OS2DzZQpU8zhplgDBgyQm266SX784x/LwoUL5fnnn5dQKCSBI13IK1askLZt28oJJ5yQoloDAIB0ldLRRtrrcvLJJ8fdlIYWfUxP6d6zZ4/cddddsmHDBnPhvmeeeUbGjBmTymoDAIA0ldbDqDXgzJ4921yReMiQIfL444+bM6j0ZwAAgLQ7K6qy9evXx/3epUsXc40bAAAAT/fYAAAA1ATBBgAAWINgAwAArEGwAQAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKwRTHUFAMArAgG/J8oEMhnBBgCq0SQ3S8JhR/LyGqa6KgCqQbABgGrkZAfF7/fJgiXrZOuOva6W3aFNgQw6s634fD5XywUyFcEGABJUsrNcNm/b42qZLfLpBQLcxMFdAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1uI4NzIXH9Ba5tLsbl3jnMvEAgFQg2GQ4DTTN8nMl4P//IMJl4wEAXkWwyXCmp8bvl/mLi2Rb6T7T0xIKhcVxnDqVy2XiAQCpQLBB9FLx32zfK8FgQCoqQnUONlwmHgCQCgyEAAAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsAbBBgAAWINgAwAArEGwAQAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgjZQHm127dsndd98t55xzjpx++ukydOhQWb16dfTx999/Xy655BLp2rWrDBw4UN54442U1hcAAKSvYKorcOutt8q2bdtk6tSpcsIJJ8izzz4rV199tbz66qviOI6MGTNGRo4cKQ8//LC88847Mn78eCkoKJC+ffumuuoA4AmBgPvfYcNhx9yAdJPSYLNp0yZZvny5zJ8/X3r06GGW/eY3v5G//e1vsmjRItmxY4d06NBBbrnlFvNYu3btZO3atTJ79myCDQBUo3FulgkfeXkNXS87FA7LrtJywg3STkqDTX5+vsyaNUs6d+4cXebz+cytrKzMHJLq379/3N/06dNHJk2aZHpz9HkAgKo1bBAUv98nC5ask6079rpWbmFBrgwb2MmUTbBBuklpsMnLy5Mf/vCHccuWLFlienLuvPNOcziqVatWcY8XFhbKvn37pLS01BySqq1g0J9Q120yunDTSaR9JiRGcqL5sW6hMRo6tSyXA6irZce22St1rmu5Ca7ntKpzXcuu43vbi++N2GaWlJbLN9vdCzaReqbb/jFT9tuZ3ua0H2MT66OPPpIJEybIgAEDpF+/frJ//35p0KBB3HMivx88eLDW/0e/ZeTnN0roucnowk1HulEEAwHzc+S+TuX5j2xsfr8Eg3UvL9lla5u9Vue6llvdek7HOte17Nq+t7343qj8P1xdh0c+RNN1/5iu9UqmTGxz2gebpUuXyrhx48yZUVOmTDHLsrOzjwowkd8bNqz9StSu07Ky8mo3XH2jlJXtk1AoLLaKtFPbWBEKmR2/3otT9+PvkfuKipA7lU1G2T6Jttkzda5ruTFtPt56Tqs617XsBNtc43JdkLSyY3psXF+HR/aJ6bZ/zJT9dqa2OS+vYUI9U2kRbObNm2fGzejp3A8++GC0V6Z169ZSUlIS91z9PTc3V5o0aVKn/1lRkdgbwHzgJ/hcL9MxS9EdvnPk97qW51JZySw7eljC8U6d61pulW12qexEpOJ1TrTNNS3XDckqO+6QW5LWYbruH9O1XsmUiW0+lpQflNMzoiZOnCjDhw83p3zHHnrq2bOnrFy5Mu75K1asML06/iPdtwAAAGnRY7Nx40aZPHmynH/++eZ6Ndu3b48+lpOTIyNGjJAhQ4aYQ1N6/+6778rixYvN6d4AAABpFWz0DKhDhw7Jm2++aW6xNMg88MAD8uSTT5qL8/3hD3+QE0880fzMNWwAAEDaBZvrrrvO3I5Hp1rQGwAAQHUYqAIAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsEZazBUFAECE3+8zt5qKTJB4rIkSdQJkvcFuBBsAQNrQQNMsP1cCdZgPUGeBrorOcr6rtJxwYzmCDQAgrYKNhpr5i4ukZGd5jf7W5/OZ3hqd6brybOaFBbkybGAnUz7Bxm4EGwBA2tFQs3nbnhoHm2AwIBUVoaOCDTIHg4cBAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGtwgT4AQK0ca06mdCsTmYVgAwCokSa5WWZagmPNyQSkEsEGAFAjOdlBM+fSgiXrZOuOva6W3aFNgQw6s62ZHgGoDYINAKDe5nOqTot8eoFQNxzMBAAA1iDYAAAAaxBsAACANRhj4xE6UE9vbuPUSgCATQg2HqCBpll+rgT8hBAAAI6HYOORYKOhZv7iInMWgps4tRIAYBOCjYdwaiUAAMfHsQ0AAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsAbBBgAAWIO5ogAAGSMQSM73+XDYMTekHsEGAGC9JrlZJnjk5SVn4t9QOCy7SssJN2mAYAMAsF5OdlD8fp8sWLJOtu7Y62rZhQW5MmxgJ1M+wSb1CDYAgIxRsrNcNm/bk+pqIIkINgAApOn4Hcbu1BzBBgCANB2/w9idmiPYAACQhuN3GLtTOwQbAABcwPid9ECwcZGmar155boLAADYhmDjEg00zfJzJeAnhAAAkCoEGxeDjYaa+YuLTHekmzq0KZBBZ7YVn8/93iAAAGxCsPHAMdYW+cm5UiYAALbhuAkAALAGwQYAAFiDYAMAAKzBGBsAANLY8S75EXmsNpcFCVs6XQPBBgAAj0/VUJvpHEKWTtdAsAEAwKNTNehlQLS3JhQKi+MkHlBsnq6BYAMAgEcvI6LBJhgMSEVFqEbBxmYEGwAAMlQgCVP2pHrsDsEGAIAM06QG43e8NnaHYAMAQIbJSWD8Tm2kw9gdTwSbcDgsjz/+uLz00kvy7bffSq9eveTuu++Wf/u3f0t11QAA8KySJEwDlGqeuEDfk08+KfPnz5eJEyfK888/b4LO6NGj5eDBg6muGgAASCNpH2w0vDz99NNy0003Sb9+/aRjx47y6KOPSnFxsfzlL39JdfUAAEAaSftgs27dOtm7d6/07ds3uiwvL09OPfVUWbVqVUrrBgAA0ovPSfMT37VX5sYbb5Q1a9ZITk5OdPnYsWNl//79MnPmzBqXqU2ublCTzyfi9/vNYa9EXqHI8/eUH5SQywOmsoJ+yc3J8lTZ1Ll+yqbO9VO2F+uczLKpc/2U7cU6B/w+aZzbIOHPzprQAcl63R7PDx7et2+fuW/QoEHc8uzsbNm9e3etyjx8pcbqXxylYaUmdIUmixfLps71UzZ1rp+yvVjnZJZNneunbC/W2V/Dz05X/7ekuUgvTeWBwgcOHJCGDd0//x4AAHhX2geb1q1bm/uSkpK45fp7y5YtU1QrAACQjtI+2OhZUI0bN5YPPvgguqysrEzWrl1rrmcDAADgmTE2OrbmiiuukClTpkhBQYF897vflYcfflhatWolAwYMSHX1AABAGkn7YKP0GjYVFRXy61//2pwJpT01Tz31lGRlZaW6agAAII2k/eneAAAA1oyxAQAASBTBBgAAWINgAwAArEGwAQAA1iDYAAAAaxBsAACANQg2AADAGgSbKuh06//1X/8lZ599tnTr1k2uueYa+de//iW22LVrl9x9991yzjnnyOmnny5Dhw6V1atXRx8fOXKkdOjQIe42YsQI8bKtW7ce1Sa9vfLKK+bxoqIic4VrXd/nnXeezJ07V7xMpyCpqr16+9GPfmSeM2PGjCof96qZM2ce9T6tbr16fVuvqs1vvfWWXHrppdK9e3fT5gcffNBc2DTiww8/rHK9x05b47U268VbK7dH227retafj7V9v/baa+Y5oVBIunTpctTj06dPF+vpBfoQb/r06c4ZZ5zhvP32205RUZEzatQoZ8CAAc6BAwccG4wcOdK56KKLnFWrVjlffPGFc9999zldunRxPv/8c/N43759nfnz5zslJSXRW2lpqeNl77zzjtO5c2dn69atce3at2+fs3PnTrO+J0yY4GzYsMF5+eWXzXP13qv0vRrbTr395S9/cTp06BBt19ixY51f/epXRz3Pi+bNm+d07NjRueKKK6LLElmvXt7Wq2qzbtOdOnVyZsyY4WzcuNG878855xznjjvuiD7nueeec/r373/Uevdqm9Vll13mTJ06Na49O3bssHY96/44tq26Xxs2bJhz4YUXOnv27DHP0fd8+/btTXtjnxt53GYEm0r0jd69e3ez8Ufs3r3bfPAvWrTI8bovv/zSvNlXr14dXRYOh82Obtq0ac727dvN459++qljk1mzZjmDBw+u8rHf/e53zllnneUcOnQouuyRRx4xOz5b7N271zn33HPjPuAGDRrkzJkzx/Gy4uJiZ8yYMU63bt2cgQMHxu38q1uvXt3Wj9fm2267zbnqqqvinv/qq686p512WvRD/J577nGuu+46x0uO12bdf+lyDe5VsXE9V/bss8863//+96NfTtUbb7zhnH766U4m4lBUJevWrZO9e/dK3759o8vy8vLk1FNPlVWrVonX5efny6xZs6Rz587RZT6fz9x01vT169ebn9u2bSs20Xa1a9euysf0MFzv3r0lGPz/qdP69OkjX375pWzfvl1s8Lvf/U727dsnt99+u/n94MGDpn3//u//Ll726aefmjnj/vu//1u6du1ao/Xq1W39eG0eNWpUdB1H+P1+OXTokOzZs6fabcGLbf7qq6+kvLz8mO9lG9dzrJ07d8q0adPk+uuvj3sN1ntwPWfUJJj1qbi42Ny3bt06bnlhYWH0MS/TDfqHP/xh3LIlS5bIpk2b5M4775TPPvtMmjRpIvfff78sX75ccnNzZeDAgXLDDTeYmda9StuloW748OGyceNGOfnkk82OQMcZ6Xpt3779UetbbdmyRZo3by5epju+Z555Rm677TZp1qyZWbZhwwZzDF7X/aRJk+TAgQNmctlf/epX0bZ7gY6jiB1LEau69erVbf14bdYP61gaaHTdf//735eCggKz7J///KfZFi655BIz9kxfo1tuucWMx/Bim3XbVs8++6wsW7bMBDndrrVNui+zcT3H+v3vfy85OTly9dVXH/W6VFRUmOUa7lq2bCk///nP5Sc/+YnYjh6bSvRbrar8IZ6dnW12/rb56KOPZMKECTJgwADp16+f2Ri0nbqTmz17tvnwf+mll8zgPK/SjfuLL76Q3bt3y4033mh6rHQA4bXXXivvv/++GVhZ1fpWNqzz+fPnmx385ZdfftSHQcOGDeWxxx4z4UZfoyuvvDJuoKmXVbdebd/W9X0/fvx4E2TuueeeaKD79ttvTQ+HbtNPPvmkCe46wFrDrhfpe1nDjAYV7Zm844475L333jNfxnTQsM3rWXvhXnzxRRNeIu/tCF3veqKIDjR+6qmn5D/+4z/Mvv7ll18W29FjU4km30hXfeRnpRuAfgjYZOnSpTJu3DhzZtSUKVPMMu2p0a7spk2bmt/125x2h+q3H91JerH3Qg9F6BkfgUAguk71G6xu+LrB6zJd37EiOzztsfI6PUvi4osvjns/6+/6rTbyLV5973vfM8v0rJoLLrhAvK669Wrztq4feDfffLOsXLlSHn/88WhvjPZa6OEXbZ9u10oPS69du9b0eNx3333iNfrla9iwYaYXKrLPatGihfzsZz+T//3f/7V6Pes+XNulZ8FV9vrrr5te2UaNGpnfO3bsKN98843Z51122WViM3psKol0V5aUlMQt19+1K88W8+bNM70X5557rvmWE0n7GgIioSb2A0+lc7dtdXTjjt2pRdqlXfGtWrWqcn0rr69z7YLW01oHDx581GOxoUbpN149VOXl9RyruvVq67au9ddDrp988on5EKt86FkPR0dCjdLeDh2LoduCF2n9I6Gmqn2Wres5Emx0/eo6rSwnJycaaiI09NmyfR8PwaYSTbWNGzeOu6aDDqrVbzQ6BsEGemhi4sSJZuc3derUuC5a7bbU7spY+q1Hd4Rt2rQRL9KeGe2Vqnydjn/84x9yyimnmPWq1/bQbzcRK1asMAOoTzjhBPEyHUCrbdD3daxHH33UdE3rmZERX3/9tZSWlprXxAbVrVcbt3U93KrjKHRc1XPPPXdUO3QMil7fJvYaLnrISgOwV9e79iRfddVVR+2zlLbJxvUcu33HDoqObV/v3r2j1+mKfV0ioc9mBJtK9ENejzfroZm//vWvZoPXwzD67U/HoXidDpydPHmynH/++TJmzBhzdsi2bdvMTY+964fdwoULZcGCBWbn96c//UkeeughcwxXdw5epN9G9WwBPcymO4LPP/9cfvvb35pvtNqNrd242nV/1113mXEGujPQAZf6+nid7ryruuierv/NmzfLvffea94TenhCe/A0AOpFzGxQ3Xq1cVvX97Vutw8//LDpkYts23rTgKfrV3s39HCzBns9c0Z/1rEYlcOBV+g+S8fK6SE3PUPq3XffNSdCXHTRRWbbt3E9R8ZL6ReRyl9alPbg6BmA+gVGXw89E1DHFuoZVrqd244xNlW46aabzLcYHVynAxA11WuXbmz3rVfpWTB6psSbb75pbrGGDBkiDzzwgDndW4+3awDSY9W6w9OBtl6lXdV6uO2RRx4x4w7024yePTJnzpzoWTM6UFoH0OproG3Wb4H6s9fpB1rkTKhYOsZIz6bQgcN6dozu/PWKxPohp+vfBtorU916tWlb1+CiX0R0+9Zem8r0Q/3EE0804U4/5PXLio4z6dGjhzk07cXxc0rft3q6s35w63taB8rroVfd1m1cz7Hbtqpq+1a6/9arDOvA8R07dpiQF7n6su18ejGbVFcCAADADRyKAgAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgDYINAACwBsEGQFqr6ooUXKUCwLEQbACk9XQYQ4cOjVums80/+OCDrv+v8847z8wMDcDbCDYA0tbixYvl448/jls2Y8YMMwUAAFSFYAMAAKxBsAGQMjpvj87hpZMR6vxVOknjyJEjpaioyMxzoxMbKp3IU3/Xw0U6eeerr75qlumM5Eon8dS5j3QOIC1Hn6fPD4fD0f+lE2LqrPY6V063bt3MJJnvvPPOMev28ssvmwkGn3jiiXp4JQC4hUkwAaSMTkqpM67feuutctJJJ8mmTZvMxJy33XabmaSwuLjYBIwXXnjBzMasEx7qhKw6iekNN9wghYWFZrZmnah14MCBZjZjHVi8aNEiE4p0VvcLL7zQTBA5atQoM8uxToioyzUc/eIXv5A//OEP0rNnz7h66WSSv/nNb8z/0OcA8A6CDYCUOHjwoOzdu9fMuHzBBReYZb179zY9KzrLfDAYNGFGaQ+L0t91JvKCgoLoMg02Z555pjz88MNmJnf1gx/8QN566y354IMPTLBZtmyZrFmzxvS+9O/f3zynT58+8q9//UtWrFgRF2zefvttE7g0QGkIAuAtBBsAKaEBRXtl1NatW2Xjxo2mR0WDRST4JOLiiy82twMHDpgytNdHD2VpL82hQ4fMcz788EPJysoyh6giNAQ9//zzcWV9+umnprdGe4LGjh3rYmsB1BeCDYCU+dvf/iaTJ0+WL774Qho1amTGtOTm5tboWjU6TkfHzixcuFAqKirkxBNPlO7du5sen0gZehZVs2bNoj06x/LZZ59Jv379zNib5557TkaMGOFCKwHUJwYPA0iJr776yoxf6dSpk7z55pumV2X+/Ply7rnn1qicSZMmyZIlS2TatGny0UcfydKlS81hKQ02EU2aNDHhpnJYWrt2remlidCBxTNnzjSHxqZOnSpbtmxxoaUA6hPBBkBK/OMf/zCHj3Qsiw4c9vl80V4cpSGkqh6Wyss0EJ1xxhlm7Eykt0fL3rlzZ/SsKB1Do4eldKxNhJY/YcIEE2Qimjdvbu51eSAQkHvvvTcpbQeQPAQbAClx2mmnmV4V7V1Zvny5GVtz4403Rk/BLi8vl7y8PPPz66+/bgb6Kl2mPS0rV640h6G6dOki7733nixYsMAsmzt3rlxzzTUmKO3bt8/8jR5e0sNTemVhPcPqf/7nf8zPn3/+uYwePfqouukYm1tuucXURf83AO/wOUy6AiCFVxbW07L1sFTTpk3NmU5XXnmlGduip1trL4wertIzny677DLTg6JBQ8flfPvttzJnzhw55ZRTzBgbDTc64FjH2Pz0pz+VDRs2mDOj3n33XdP7os+fMmWKOeylgUevg6OnmeuZWEoHFuvPekaW0t6eyy+/3FwrRwcU5+fnp/jVApAIgg0AALAGh6IAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAEFv8Hw3bARsCmCz+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=pokemon, x=\"attack\")" + ] + }, + { + "cell_type": "markdown", + "id": "9b0c9120-fff4-42b2-8ab6-3aa2eba47806", + "metadata": {}, + "source": [ + "**1.5.1.** Plot a bar chart showing peoples' average hours of sleep by age. " + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "ee30c851-14b1-4901-9182-4304d54d53a6", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "15d94323-2d65-4100-9916-101516f6ccf1", + "metadata": {}, + "source": [ + "**1.5.2.** Plot a bar chart showing peoples' likelihood of getting exercise by income. " + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "13eeecd8-2518-4ed9-aac5-727a96b5bf80", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "b2705fef-470d-494c-86c1-8b3bd34b3660", + "metadata": {}, + "source": [ + "**1.5.3.** Plot a bar chart showing average reported health by age. For each age, show average health for those who get exercise and those who don't." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "4ee2eb69-2f9a-42e7-b5d3-9499631bfd06", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "84b1e240-4f75-4c86-8c1f-1026aa223717", + "metadata": {}, + "source": [ + "**1.5.4.** Create a plot showing the number of people at each income level, for each education level. " + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "d7e02da8-beab-40e7-95d0-74a5c2bc838e", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "ac717580-4157-402c-9262-b2b50dfe606f", + "metadata": {}, + "source": [ + "**1.5.5.** Plot side-by-side scatter plots showing the relationship between height and weight for males and females. (There are so many overlapping dots that the plot will be more informative if you lower the opacity of each dot. Try using `alpha=0.1` and `edgecolor=None`.)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "b00dd7d6-226b-469c-86d8-b71b328aa576", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "e9ff7225-5d08-428b-90e8-ee60f4a4049a", + "metadata": {}, + "source": [ + "## 2. Crafting a data argument\n", + "\n", + "Everything up to here are just tools, worthless without a clear research question and a convincing argument. Choose a research question that interests you which might be answerable using the `people` dataset. Then do your best to find the answer in the space below. This answer should include data analysis (code cells) as well as written argument (text cells) explaining what the data means and why you believe it answers your question. \n", + "\n", + "Examples of research questions might include:\n", + "\n", + "- Do older people tend to have higher incomes?\n", + "- Do people who sleep at least 6 hours a night tend to report better health? \n", + "- Is it more common for males to be bisexual than females?\n", + "\n", + "**A note of caution:** this lab has given you tools for exploring associations--patterns that tend to co-occur. These tools *do not* equip you to argue that one variable causes another to change. For example: Plot 1.5.4 showed that people who are taller also tend to be heaver, with a lot of individual variation. But are people heavier *because* they are taller? Are they taller because they are heavier? Or maybe neither variable causes the other--perhaps they're both caused by something else. If you want to be able to answer questions like these, take a course on statistics." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "6f934273-b829-4bc2-a7f4-a27a3fc44a99", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here. Feel free to add new text cells and code cells as necessary." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8b4b852b-402c-45d4-b3bb-840e47b249ed", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.ipynb_checkpoints/proposal-checkpoint.md b/.ipynb_checkpoints/proposal-checkpoint.md new file mode 100644 index 0000000..10ee5c6 --- /dev/null +++ b/.ipynb_checkpoints/proposal-checkpoint.md @@ -0,0 +1,88 @@ +# Project proposal + +This planning document will also form the introduction of your +argument. + +## Overarching Question +DO PEOPLE WHO EXIBIT RISKY BEHAVIORS (SMOKING, GAMBLING, DRINKING) ORDER THEIR STEAK IN THE SAME RISKY MANNER AS THEIR BEAHVIORS (RARE). IS THERE A RELATIONSHIP BETWEEN THE TWO. + +### What central question are you interested in exploring? Why are you interested in exploring this question? + +THE CENTRAL QUESTION WOULD ASK DO PEOPLE WHO HAVE AN AFFINITY FOR RISKY BEHAVIORS, SPECIFICALLY (SMOKING, DRINKING, GAMBLING) ALSO HAVE A RISKY BEHAVIOR WHEN IT COMES TO EATING THEIR FOOD. SPECIFICALLY IN THIS STUDY, IT IS ABOUT ORDERING STEAK. +I AM INTERESTED IN THIS QUESTION BECASUE IT IS INTERESTING TO SEE IF FOOD RISK BEHAVIORS ARE ASSOCIATED WITH ACTIVITY RISK BEHAVIORS. I ALSO AM INTERESTED TO SEE IN THIS STUDY HOW INCOME LEVELS EFFECT THESE DECISIONS AS WELL AS EDUCATION LEVELS, WHICH IS ALSO IN THE STUDY. + + + +### What specific research questions will you investigate? + +*List 2-4 specific research questions. Each should be answerable +using your data set.* + +1. DO MORE MALES THAN FEMALES ORDER RARE STEAK? +2. DO PEOPLE WITH A BACHELORS DEGREE GAMBLE MORE THAN PEOPLE WITH A GRADUATE DEGREE? +3. DO PEOPLE WHO ORDER RARE STEAK ALSO DRINK? +4. DO ALL FEMALES WHO ORDER RARE STEAK ALSO SMOKE? +5. DO ALL MALES WHO ORDER RARE STEAK ALSO DRINK +6. Are males more likely to order their steak rare than females + + + + + +## Data source +538 WEBSITE +### What data set will you use to answer your overarching question? + +*Give the title of your data set and provide a link to your data.* + +TITLE OF STUDY IS: STEAK-RISK-SURVEY + +WEBSITES: +https://github.com/fivethirtyeight/data/tree/master/steak-survey +https://fivethirtyeight.com/features/how-americans-like-their-steak/ +https://docs.google.com/spreadsheets/d/125buas5LwUrDXEgQh0DPniGkA6-fWeupBgaXgUqXoOI/edit?gid=1253281910#gid=1253281910 + +### Where is this data from? + +*Describe the source of the data set--not just where you downloaded it, but +the person or organization who gathered the data. Explain why you trust them.* + +May 16, 2014, at 5:08 PM + +How Americans Like Their Steak +By Walt Hickey +Filed under FiveThirtyAte +DATA LAB +https://github.com/fivethirtyeight/data/tree/master/steak-survey +https://fivethirtyeight.com/features/how-americans-like-their-steak/ + + +### What is this data about? + +*Describe the nature of the data in the dataset, including the number of rows +and some of the columns which will be important to you.* + +number of rows= 433 +COLUMNS= 8 +COLUMNS WHIC HARE IMPORTANT ARE: +1.gender +2.how do you like steak +3.income level +4. degree +5. gamble +6. drink +7. smoke + +## Methods + +### How will you use your data set to answer your quantitative questions? + +*For each research question, explain what you will do with the data set +to answer the question, and how you will present your answer (e.g. a chart or a table).* + +1. DO MORE MALES THAN FEMALES ORDER RARE STEAK? table +2. DO PEOPLE WITH A BACHELORS DEGREE GAMBLE MORE THAN PEOPLE WITH A GRADUATE DEGREE? chart +3. DO PEOPLE WHO ORDER RARE STEAK ALSO DRINK? +4. DO ALL FEMALES WHO ORDER RARE STEAK ALSO SMOKE? +5. DO ALL MALES WHO ORDER RARE STEAK ALSO DRINK +6. Are males more likely to order their steak rare than females \ No newline at end of file diff --git a/.ipynb_checkpoints/steak-checkpoint.csv b/.ipynb_checkpoints/steak-checkpoint.csv new file mode 100644 index 0000000..6227563 --- /dev/null +++ b/.ipynb_checkpoints/steak-checkpoint.csv @@ -0,0 +1,433 @@ +smoke,drink,gamble,cooked,Gender,Age,Household Income,Education +Yes,Yes,Yes,Medium,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Male,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium,Male,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium,Male,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium,Male,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Male,45-60,"$25,000 - $49,999",Bachelor degree +No,Yes,No,Medium,Male,> 60,"$25,000 - $49,999",Graduate degree +No,No,No,Medium,Male,18-29,"$0 - $24,999",Graduate degree +Yes,Yes,No,Medium,Male,45-60,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium,Male,18-29,,Some college or Associate degree +No,No,No,Medium,Male,30-44,"$50,000 - $99,999",Bachelor degree +Yes,Yes,Yes,Medium,Male,30-44,,High school degree +No,Yes,Yes,Medium,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium,Male,> 60,"$100,000 - $149,999",Bachelor degree +Yes,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,45-60,"$150,000+",Bachelor degree +No,Yes,Yes,Medium,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium,Male,> 60,"$100,000 - $149,999",Some college or Associate degree +No,Yes,No,Medium,Male,> 60,,Graduate degree +No,Yes,No,Medium,Male,18-29,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Male,45-60,,Bachelor degree +No,Yes,Yes,Medium,Male,45-60,,Some college or Associate degree +No,Yes,No,Medium,Male,18-29,"$25,000 - $49,999",Graduate degree +No,No,No,Medium,Male,18-29,"$100,000 - $149,999",Some college or Associate degree +No,Yes,No,Medium,Female,> 60,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium,Male,> 60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,> 60,"$25,000 - $49,999",High school degree +No,No,No,Medium,Male,30-44,"$25,000 - $49,999",Some college or Associate degree +No,No,Yes,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium,,,, +No,Yes,No,Medium,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,Yes,Medium,Male,30-44,"$150,000+",Graduate degree +Yes,Yes,Yes,Medium,Male,18-29,"$0 - $24,999",High school degree +Yes,Yes,Yes,Medium,Female,18-29,"$25,000 - $49,999",High school degree +Yes,Yes,Yes,Medium,Male,30-44,"$25,000 - $49,999",Some college or Associate degree +No,No,Yes,Medium,Male,45-60,"$150,000+",Some college or Associate degree +No,No,No,Medium,Male,18-29,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,> 60,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,45-60,"$150,000+",Graduate degree +No,Yes,Yes,Medium,Female,> 60,,Graduate degree +No,No,No,Medium,Female,> 60,"$25,000 - $49,999",Some college or Associate degree +No,No,Yes,Medium,Male,> 60,"$0 - $24,999",Bachelor degree +No,Yes,No,Medium,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium,Female,18-29,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,No,No,Medium,Female,45-60,,Graduate degree +No,Yes,No,Medium,Male,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Female,45-60,"$150,000+",Bachelor degree +No,Yes,No,Medium,Male,> 60,"$50,000 - $99,999",Graduate degree +No,No,No,Medium,Female,45-60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,30-44,"$150,000+",Bachelor degree +No,Yes,No,Medium,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium,Male,18-29,,High school degree +No,Yes,No,Medium,Male,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium,Female,> 60,"$150,000+",Bachelor degree +No,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,30-44,"$100,000 - $149,999",Graduate degree +No,Yes,No,Medium,Female,> 60,"$25,000 - $49,999",High school degree +Yes,Yes,Yes,Medium,Male,18-29,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium,Female,45-60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium,Female,18-29,"$50,000 - $99,999",Bachelor degree +Yes,Yes,Yes,Medium,Male,18-29,"$0 - $24,999",Some college or Associate degree +No,No,No,Medium,Male,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Male,18-29,"$25,000 - $49,999",Bachelor degree +No,Yes,No,Medium,Female,30-44,"$150,000+",Bachelor degree +No,Yes,Yes,Medium,Female,18-29,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium,Female,18-29,"$150,000+",Some college or Associate degree +No,Yes,Yes,Medium,Female,30-44,"$150,000+",Graduate degree +No,Yes,Yes,Medium,Male,45-60,"$150,000+",Graduate degree +No,Yes,No,Medium,,,, +No,Yes,No,Medium,,,, +No,Yes,No,Medium,Female,45-60,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Male,30-44,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium,Female,18-29,"$100,000 - $149,999",Some college or Associate degree +No,No,Yes,Medium,Male,45-60,,Some college or Associate degree +No,Yes,Yes,Medium,Male,45-60,"$0 - $24,999",High school degree +Yes,Yes,Yes,Medium,Female,> 60,"$25,000 - $49,999",Graduate degree +No,Yes,Yes,Medium,Female,45-60,"$150,000+",Graduate degree +No,Yes,No,Medium,Female,18-29,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,45-60,"$150,000+",Bachelor degree +No,Yes,Yes,Medium,,,, +Yes,Yes,Yes,Medium,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium,Female,45-60,"$100,000 - $149,999",Some college or Associate degree +No,Yes,No,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,30-44,"$100,000 - $149,999",Graduate degree +No,No,Yes,Medium,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium,Female,30-44,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,> 60,"$150,000+",Some college or Associate degree +No,Yes,Yes,Medium,Female,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Female,30-44,"$150,000+",Bachelor degree +No,Yes,Yes,Medium,Female,45-60,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium,Female,> 60,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium,,,, +No,No,No,Medium,Female,18-29,,High school degree +No,Yes,Yes,Medium,Male,45-60,"$150,000+",Graduate degree +No,Yes,Yes,Medium,Female,> 60,,Graduate degree +No,No,Yes,Medium,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,No,Yes,Medium,Female,> 60,"$50,000 - $99,999",High school degree +No,No,No,Medium,Female,45-60,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium,Female,30-44,"$100,000 - $149,999",Graduate degree +No,No,No,Medium,Female,45-60,,Graduate degree +No,Yes,Yes,Medium,Female,30-44,"$50,000 - $99,999",Bachelor degree +,No,Yes,Medium,Female,45-60,,Bachelor degree +No,Yes,No,Medium,Female,18-29,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Medium,Male,30-44,"$100,000 - $149,999",Graduate degree +No,Yes,No,Medium,Male,18-29,"$25,000 - $49,999",Graduate degree +Yes,Yes,No,Medium,Male,18-29,"$0 - $24,999",Some college or Associate degree +Yes,Yes,Yes,Medium,Female,45-60,"$100,000 - $149,999",Some college or Associate degree +No,Yes,No,Medium,Female,18-29,,Some college or Associate degree +No,Yes,No,Medium,Female,18-29,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,45-60,"$0 - $24,999",Bachelor degree +Yes,Yes,No,Medium,Female,45-60,"$150,000+",Bachelor degree +No,Yes,No,Medium,Male,> 60,"$50,000 - $99,999",Graduate degree +No,No,No,Medium,Female,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,45-60,"$150,000+",Graduate degree +No,Yes,Yes,Medium,Female,30-44,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,Yes,Medium,Female,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium,Male,> 60,,Graduate degree +Yes,Yes,Yes,Medium,Male,18-29,"$0 - $24,999", +No,Yes,No,Medium rare,Male,> 60,"$50,000 - $99,999",Some college or Associate degree +No,No,No,Medium rare,Male,18-29,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,18-29,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,> 60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium rare,Male,> 60,"$50,000 - $99,999",High school degree +No,No,Yes,Medium rare,Male,18-29,"$100,000 - $149,999",Graduate degree +No,Yes,Yes,Medium rare,Male,18-29,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium rare,Male,30-44,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium rare,Male,18-29,"$25,000 - $49,999",Bachelor degree +No,No,No,Medium rare,Male,> 60,"$25,000 - $49,999",Some college or Associate degree +No,No,No,Medium rare,Male,45-60,"$0 - $24,999",Some college or Associate degree +Yes,Yes,Yes,Medium rare,Male,45-60,"$50,000 - $99,999",Graduate degree +No,No,No,Medium rare,Male,> 60,,Graduate degree +No,Yes,Yes,Medium rare,Male,> 60,"$0 - $24,999",High school degree +No,No,Yes,Medium rare,Male,45-60,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,> 60,"$150,000+",Bachelor degree +No,Yes,No,Medium rare,Male,45-60,,High school degree +No,No,No,Medium rare,Male,18-29,"$100,000 - $149,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium rare,Male,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,45-60,,Some college or Associate degree +No,Yes,No,Medium rare,,,, +Yes,Yes,No,Medium rare,Male,18-29,"$0 - $24,999",Some college or Associate degree +Yes,Yes,Yes,Medium rare,Male,45-60,,Graduate degree +No,Yes,No,Medium rare,Female,> 60,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Male,45-60,,Some college or Associate degree +No,No,Yes,Medium rare,Female,> 60,,Some college or Associate degree +No,Yes,Yes,Medium rare,Male,45-60,"$100,000 - $149,999",Bachelor degree +Yes,Yes,No,Medium rare,Male,18-29,,High school degree +No,Yes,No,Medium rare,Female,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Female,> 60,"$25,000 - $49,999",Graduate degree +No,Yes,No,Medium rare,Female,> 60,"$100,000 - $149,999",Graduate degree +Yes,No,Yes,Medium rare,Female,> 60,"$0 - $24,999",Bachelor degree +No,Yes,No,Medium rare,Male,30-44,,Some college or Associate degree +No,Yes,No,Medium rare,Male,18-29,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,45-60,"$100,000 - $149,999",High school degree +No,No,Yes,Medium rare,Male,18-29,"$50,000 - $99,999",High school degree +No,Yes,No,Medium rare,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,30-44,"$100,000 - $149,999",Graduate degree +No,No,No,Medium rare,Female,> 60,"$25,000 - $49,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,> 60,"$150,000+",Graduate degree +No,Yes,No,Medium rare,Male,45-60,"$50,000 - $99,999",Graduate degree +No,No,No,Medium rare,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium rare,,,, +No,No,No,Medium rare,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,18-29,"$25,000 - $49,999",Some college or Associate degree +Yes,Yes,Yes,Medium rare,Female,18-29,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium rare,Female,18-29,,Graduate degree +No,Yes,No,Medium rare,,,, +No,Yes,No,Medium rare,Female,> 60,,Some college or Associate degree +No,No,No,Medium rare,Male,18-29,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,No,Medium rare,Female,45-60,"$100,000 - $149,999",Graduate degree +No,Yes,Yes,Medium rare,,,, +No,Yes,No,Medium rare,Male,30-44,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium rare,Female,18-29,"$150,000+",Graduate degree +No,Yes,Yes,Medium rare,Male,> 60,,Bachelor degree +No,Yes,No,Medium rare,Male,30-44,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Female,18-29,"$150,000+",Bachelor degree +No,Yes,No,Medium rare,Male,> 60,,Graduate degree +No,Yes,Yes,Medium rare,Male,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium rare,Female,30-44,"$100,000 - $149,999",Graduate degree +No,Yes,Yes,Medium rare,Female,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,30-44,"$25,000 - $49,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium rare,Female,> 60,"$150,000+",Bachelor degree +No,Yes,Yes,Medium rare,Female,> 60,"$25,000 - $49,999",High school degree +No,Yes,No,Medium rare,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,45-60,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium rare,Male,> 60,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium rare,Female,> 60,,Bachelor degree +No,Yes,No,Medium rare,Female,45-60,,Graduate degree +No,No,No,Medium rare,Female,> 60,"$25,000 - $49,999",Some college or Associate degree +No,No,No,Medium rare,Male,45-60,,Some college or Associate degree +No,Yes,Yes,Medium rare,Female,30-44,"$25,000 - $49,999",Bachelor degree +Yes,Yes,Yes,Medium rare,Male,30-44,"$25,000 - $49,999",Some college or Associate degree +Yes,Yes,No,Medium rare,Female,18-29,"$0 - $24,999",Graduate degree +No,Yes,No,Medium rare,Female,45-60,"$50,000 - $99,999",Bachelor degree +Yes,Yes,Yes,Medium rare,Female,18-29,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium rare,Female,18-29,"$25,000 - $49,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Female,30-44,"$0 - $24,999",Some college or Associate degree +Yes,Yes,Yes,Medium rare,Female,18-29,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium rare,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium rare,Female,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,30-44,"$25,000 - $49,999",Graduate degree +No,Yes,Yes,Medium rare,Male,30-44,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Female,> 60,"$25,000 - $49,999",Some college or Associate degree +Yes,Yes,No,Medium rare,Female,30-44,,Some college or Associate degree +No,Yes,Yes,Medium rare,Male,45-60,"$25,000 - $49,999",Graduate degree +No,Yes,Yes,Medium rare,Female,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Female,30-44,"$25,000 - $49,999",Graduate degree +Yes,No,No,Medium rare,Female,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,45-60,"$150,000+",Bachelor degree +No,No,Yes,Medium rare,Male,> 60,,High school degree +No,No,No,Medium rare,Male,30-44,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium rare,Female,30-44,"$100,000 - $149,999",Graduate degree +No,Yes,No,Medium rare,Male,> 60,"$150,000+",Graduate degree +Yes,Yes,Yes,Medium rare,Female,45-60,"$50,000 - $99,999",Some college or Associate degree +Yes,No,No,Medium rare,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Female,30-44,"$150,000+",Bachelor degree +No,No,No,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +No,No,No,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium rare,,,, +No,Yes,Yes,Medium rare,,,, +No,Yes,No,Medium rare,Male,> 60,"$100,000 - $149,999",Graduate degree +No,Yes,Yes,Medium rare,Female,> 60,,High school degree +Yes,Yes,No,Medium rare,Male,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium rare,Female,45-60,,Bachelor degree +No,No,No,Medium rare,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium rare,Female,> 60,,Some college or Associate degree +No,No,No,Medium rare,Male,30-44,"$100,000 - $149,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium rare,,,, +No,Yes,Yes,Medium rare,Female,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,45-60,,Graduate degree +No,Yes,Yes,Medium rare,Female,45-60,"$100,000 - $149,999",Graduate degree +No,Yes,Yes,Medium rare,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,45-60,"$50,000 - $99,999",Graduate degree +No,No,No,Medium rare,Female,> 60,,Some college or Associate degree +No,No,No,Medium rare,Female,18-29,"$25,000 - $49,999",High school degree +No,No,Yes,Medium rare,Female,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium rare,Male,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium rare,Female,18-29,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,Yes,Medium rare,Female,30-44,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium rare,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Male,18-29,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Female,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium rare,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,,,, +No,Yes,No,Medium rare,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Female,45-60,"$100,000 - $149,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,No,No,Medium rare,Female,18-29,"$25,000 - $49,999",Some college or Associate degree +Yes,Yes,Yes,Medium rare,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +Yes,No,No,Medium rare,Female,45-60,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,45-60,"$150,000+",Graduate degree +No,Yes,Yes,Medium rare,Female,45-60,,Graduate degree +No,No,No,Medium rare,Female,45-60,"$25,000 - $49,999",High school degree +No,No,Yes,Medium rare,Female,18-29,"$25,000 - $49,999",Graduate degree +Yes,Yes,Yes,Medium rare,Female,30-44,,Some college or Associate degree +No,Yes,No,Medium rare,Female,30-44,,Graduate degree +Yes,Yes,No,Medium rare,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,No,No,Medium rare,Female,45-60,"$0 - $24,999",Some college or Associate degree +No,No,No,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,No,Medium rare,Male,18-29,"$0 - $24,999",Some college or Associate degree +No,Yes,No,Medium rare,Male,18-29,"$25,000 - $49,999",High school degree +No,Yes,No,Medium rare,Female,> 60,,Graduate degree +No,Yes,No,Medium rare,Female,30-44,"$50,000 - $99,999",Some college or Associate degree +No,No,No,Medium rare,Male,30-44,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium rare,Male,45-60,,High school degree +No,Yes,Yes,Medium rare,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,30-44,"$100,000 - $149,999",Graduate degree +No,Yes,No,Medium rare,Male,> 60,"$150,000+",Bachelor degree +No,Yes,No,Medium rare,Female,45-60,,Some college or Associate degree +Yes,Yes,Yes,Medium rare,Female,18-29,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium rare,Female,18-29,"$25,000 - $49,999",High school degree +Yes,Yes,Yes,Medium rare,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium Well,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium Well,Male,18-29,"$25,000 - $49,999",Some college or Associate degree +Yes,Yes,Yes,Medium Well,,,, +Yes,Yes,Yes,Medium Well,Male,18-29,"$50,000 - $99,999",High school degree +No,Yes,Yes,Medium Well,Male,45-60,"$50,000 - $99,999",Some college or Associate degree +No,No,No,Medium Well,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium Well,Male,45-60,,Some college or Associate degree +Yes,Yes,No,Medium Well,Male,> 60,"$50,000 - $99,999",Graduate degree +No,No,,Medium Well,Male,> 60,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,Yes,Medium Well,Male,30-44,"$50,000 - $99,999",Bachelor degree +No,No,Yes,Medium Well,Male,> 60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium Well,Male,> 60,"$150,000+",Bachelor degree +No,Yes,Yes,Medium Well,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium Well,Female,> 60,"$0 - $24,999",High school degree +No,Yes,Yes,Medium Well,Male,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium Well,Male,30-44,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium Well,Female,> 60,,Bachelor degree +No,No,No,Medium Well,Female,> 60,,Graduate degree +No,Yes,Yes,Medium Well,Male,> 60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium Well,Male,> 60,"$150,000+",Graduate degree +Yes,No,No,Medium Well,Female,18-29,"$25,000 - $49,999",High school degree +No,Yes,No,Medium Well,Male,45-60,"$50,000 - $99,999",Some college or Associate degree +No,No,No,Medium Well,Female,18-29,"$100,000 - $149,999",Some college or Associate degree +No,No,No,Medium Well,Female,18-29,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium Well,Female,30-44,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium Well,Female,45-60,,Graduate degree +No,Yes,Yes,Medium Well,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,No,No,Medium Well,Female,> 60,,High school degree +No,Yes,Yes,Medium Well,Female,30-44,"$100,000 - $149,999",Graduate degree +No,Yes,No,Medium Well,Female,45-60,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium Well,Female,30-44,"$25,000 - $49,999",Bachelor degree +No,Yes,No,Medium Well,Female,18-29,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium Well,Female,18-29,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium Well,Female,> 60,,Some college or Associate degree +Yes,Yes,Yes,Medium Well,Female,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium Well,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium Well,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium Well,Male,18-29,,Some college or Associate degree +No,No,No,Medium Well,Female,30-44,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium Well,Male,18-29,"$25,000 - $49,999",Some college or Associate degree +No,No,No,Medium Well,Female,45-60,"$150,000+",Bachelor degree +No,Yes,No,Medium Well,Male,18-29,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Medium Well,Female,18-29,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium Well,Female,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium Well,,,, +No,Yes,No,Medium Well,Female,30-44,"$150,000+",Graduate degree +No,Yes,No,Medium Well,,,, +No,Yes,Yes,Medium Well,Male,45-60,"$100,000 - $149,999",Some college or Associate degree +No,Yes,No,Medium Well,Female,45-60,"$150,000+",Some college or Associate degree +No,Yes,No,Medium Well,Female,18-29,"$0 - $24,999",Bachelor degree +No,No,,Medium Well,Female,> 60,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium Well,Female,30-44,"$25,000 - $49,999",Bachelor degree +No,Yes,No,Medium Well,Female,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium Well,,,, +No,Yes,No,Medium Well,Female,30-44,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium Well,Female,30-44,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium Well,Female,> 60,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,No,Medium Well,Female,30-44,"$100,000 - $149,999",Graduate degree +Yes,Yes,No,Medium Well,Male,18-29,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Medium Well,Female,45-60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium Well,Female,18-29,,Bachelor degree +Yes,Yes,Yes,Medium Well,Male,> 60,"$0 - $24,999",Bachelor degree +No,No,No,Medium Well,Male,> 60,"$100,000 - $149,999",Graduate degree +No,Yes,No,Medium Well,Male,45-60,"$150,000+",Bachelor degree +No,Yes,Yes,Medium Well,Male,18-29,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium Well,Male,45-60,,Graduate degree +Yes,No,No,Medium Well,Female,45-60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium Well,,,, +No,Yes,Yes,Medium Well,Male,30-44,"$50,000 - $99,999",Graduate degree +No,No,Yes,Medium Well,Female,30-44,"$0 - $24,999",Some college or Associate degree +No,Yes,No,Medium Well,Male,> 60,"$150,000+",Graduate degree +Yes,Yes,Yes,Medium Well,Male,45-60,"$100,000 - $149,999",Some college or Associate degree +No,Yes,No,Medium Well,Female,> 60,"$100,000 - $149,999",Bachelor degree +No,No,Yes,Medium Well,Male,30-44,"$50,000 - $99,999",Graduate degree +,No,,Medium Well,Female,30-44,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Rare,Male,> 60,"$150,000+",Graduate degree +Yes,Yes,Yes,Rare,Male,18-29,"$50,000 - $99,999",Graduate degree +No,Yes,No,Rare,Male,> 60,,Graduate degree +No,Yes,No,Rare,Male,30-44,"$25,000 - $49,999",Bachelor degree +Yes,Yes,Yes,Rare,Male,> 60,,Bachelor degree +No,Yes,Yes,Rare,Male,45-60,"$100,000 - $149,999",Bachelor degree +Yes,No,No,Rare,Female,> 60,"$0 - $24,999",Some college or Associate degree +,Yes,No,Rare,Male,18-29,"$50,000 - $99,999",High school degree +No,Yes,Yes,Rare,Female,30-44,"$150,000+",Some college or Associate degree +No,Yes,No,Rare,Female,> 60,"$25,000 - $49,999",Graduate degree +No,Yes,Yes,Rare,Male,45-60,"$100,000 - $149,999",Graduate degree +Yes,Yes,Yes,Rare,Female,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Rare,Female,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Rare,Female,45-60,"$100,000 - $149,999",Graduate degree +No,Yes,No,Rare,Female,> 60,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Rare,Female,45-60,,Bachelor degree +No,No,Yes,Rare,Female,30-44,"$0 - $24,999",Some college or Associate degree +No,No,No,Rare,Female,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Rare,Female,45-60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Rare,,,, +Yes,Yes,Yes,Rare,Male,18-29,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Rare,Female,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Rare,Male,> 60,"$150,000+",Graduate degree +No,Yes,No,Well,Male,18-29,"$25,000 - $49,999",High school degree +Yes,No,No,Well,Male,18-29,"$150,000+", +No,No,Yes,Well,Male,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Well,Male,18-29,,Some college or Associate degree +No,No,Yes,Well,Female,18-29,"$25,000 - $49,999",Some college or Associate degree +Yes,Yes,Yes,Well,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Well,,,, +No,No,Yes,Well,Female,45-60,,Some college or Associate degree +No,Yes,Yes,Well,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,No,No,Well,Male,30-44,,Graduate degree +No,Yes,No,Well,Female,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Well,Male,> 60,"$0 - $24,999",Bachelor degree +Yes,Yes,No,Well,Female,18-29,"$100,000 - $149,999",Less than high school degree +No,Yes,Yes,Well,Female,30-44,"$50,000 - $99,999",Graduate degree +No,No,No,Well,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Well,Female,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Well,Female,45-60,"$50,000 - $99,999",Bachelor degree +No,No,No,Well,Female,45-60,"$150,000+",Bachelor degree +No,Yes,Yes,Well,Female,45-60,"$100,000 - $149,999",Some college or Associate degree +No,No,No,Well,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,No,No,Well,Female,30-44,,High school degree +Yes,Yes,Yes,Well,Female,18-29,,Some college or Associate degree +Yes,Yes,Yes,Well,Male,30-44,"$0 - $24,999",High school degree +No,Yes,No,Well,Female,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Well,Female,30-44,,Some college or Associate degree +No,Yes,Yes,Well,Female,> 60,,Graduate degree +No,No,No,Well,Female,30-44,,Graduate degree +No,Yes,Yes,Well,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Well,Female,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Well,Male,30-44,,Bachelor degree +No,Yes,Yes,Well,Female,45-60,,Some college or Associate degree +No,Yes,Yes,Well,Female,45-60,"$150,000+",High school degree +,No,No,Well,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Well,Male,30-44,"$0 - $24,999",Some college or Associate degree +No,No,Yes,Well,Female,30-44,,Some college or Associate degree +No,Yes,Yes,Well,Female,> 60,"$100,000 - $149,999",Bachelor degree \ No newline at end of file diff --git a/.ipynb_checkpoints/untitled-checkpoint.txt b/.ipynb_checkpoints/untitled-checkpoint.txt new file mode 100644 index 0000000..e69de29 diff --git a/538.jpg b/538.jpg new file mode 100644 index 0000000000000000000000000000000000000000..397bb082dfbad579bdf9481fb3d722902054f6a0 GIT binary patch literal 28931 zcmeEuXIN9;w`Qb>bm>JjC?Fja=>k!aE+8l!j0i}H5Ru*z1OcTAC@2Dvt{_CDw*&}9 zK}5QO5Q_AcP(mPuIluqZd!IY=%*>bhGKcIhIVWfDwa>fPe%HI!;rQ3_EaQPbMt8;& z7eEX=Cm4B79Cv}hAkYbBV6^`X_`e({7=SUJWI4sk#tvLicN)ZSf{~GdiSeIN16M}@ z=Rr(7%)I9>Uq8ub<;rrwpI_x^dci4)8`T{G)R;@YrW@@d?jgBxYp3dYzU1 z=50=4QE^FW*@utiUutUW>KhuHnmch_-95cuzx54|jE;>@{Q5mPH^1n_>Umu1OFF;|bv5 zG4g;QAljY6L>bV(T6H9BzQvLu^r{O{ks4s`R`hG|gR{}2f)cO!l)M;*YYI1V-Jj;q zW6TM7s({^`Mxu^E$;x>CIbv>zW6G$lzs|VrQ-Qya6YY}CUBR>Rrh@ZrEpz5UJ8~o?4M%nh5pR-?Rsvkd}DC;l&Ahl3S zOyH`05Q|)Bq2AF_YQ^L1#!ZReD}{+5ng6h1Ovri1Am&SCS3=SJ$(A`z=nbN8Pg#+R zT1i*EZEz*K_P&hcqKVi6L)lws_J@s4M8f!}tPlIH<@l%jqlyd7 zHV(F0x3v@4j5!!NX4CVR8ek>{-HmNSvLEH&7beOX0uuoG51U;AVi;Ao9gFq&sLDjV z_pZu^#gXp}a>MIqB6nh7@PI0CUK4*T#Wdv_%?B1w7 z&^eE0rU9rR;-xVu8nfA zob~V3-4W`~?AAkD$}tG)zp`id16hOJ9GO*~bnBTw2oW&p^H(`#IU-mi9@iJ{jPijsJ%i~j~h^10-cg$nL?J;n*DQ@MVCf0|H8;@GeL4Ij*vQBr(%=}x{e%oT2Hn7?9D@ia2aiD+E61ROrbzHH zr~uw`3?egn9)rFG-O!sZ#9a7~&TJw%kg#LWNva)Lc^>;>((qlC(~9014Th~5(ka_D z%ZmbUsdWwx7B=l7u0O(q3RZ=rzl_C!#?^$%iyZ<%_p#U#pn6t*&m9HU%A z;PLEq(Avm~orVzNB2huap>{yPhW>pz%iAI5{Qhl+gdhPW6F=*u2(al8^xXoT{j4vk zt!z%Ga3bWWW1a_lt_3lWO!1?_rV*!+9VT=x>YcU(3kDTgzO~Mw6md4aL}LdqS3twGIbr+_;gCnJvli# zLUf|syX>Llh~0Gqerv!?e$c<#J%8fC0_G`2I}(BvB4-R*V@3qm5pzjg-WtB=$mY|KvHPi&6Uy?*u7hw3AGz)y z>Mj$rBXYT~JVJicWs8Q7L9?01pq&7_V-QJc8oBaIexGC_DD!(d=0eQ(?~g%eP1FvV zk3meRV^C%e_83$hynYNa?6|iH^leWo*oUyKI%;%ovhA2%9QVzk*k=jKZTmJBKXym5 ze`#|4BXgFOrHn_<{!aa-L)4DeicwCG@)u;GZst6k%KvT_h4Zy`(bjc526Z>QY)W;V z>-Wf4l^Aw7r}-zMNDa&ZjIJ2y93$!Dzq;ddK<8OioKMP_rw0IKQ0dy=)k|p3b zjzJ|WGb#kRKa=F}qxB7;9N(_ZOZ9IGye2gsRokALjhBo$$*n2Uf1pmvnZc*xk%LiY zY1`*O;;#%@Pwf+|?7a;xU!kNWYffs%WjQt6nr?F<1c)D!t-Fj)$^$^0R-_r^F~Ff?Wr z{Uhy>vTAnjmaCV&PRDcJnzxz!x$%z6ejz8BJd~ubaNAtw&u&*m+0IS(~c5+3E%zBJ+k<#zQD9Y? zA*DTM3YL`Fk~tn@a}EY>lAo0m3#JsN1wezf4Q?E z_n9T6k`5*A#W85R`3OsAT_p6=1pPSeB~cvOyowG!!fAdOlbX%(ZS2y z#V^748tSnDRJICA(+&3EDqzNQ^j=kk%uA7g3VwOlJFu@aJW?frry8Jf6p)P?k>rgt;KUhMcAm3)801oc5O(wGU^b% zqh2B)TjiUDUZh8W-!^+DQ11{Adhbb(`d*+QsuhIj7qAa3)GxH|~05Y2aIrShDN7p276+MzPn^%=L zUmq7|$_C%=E(8-8p{!H~0^k_i(^4_#hZNl-oCdjI3Xe*`p>ie|R+h0~jRlv-{Kf`8hC_I7hm3C*!|qzMkpp@hjT6tHu=amuYJIwFvHi`pP7_@A`uRBN2%Ut?xQfgu4J5@}(voj8r8&Z`I;Ysr3=9dxrF6 z(G5XF=H$y4QIz0RX3BUAeaEnga&rx z@mqyPiDgRB<8LAYb97F?f?_H^(ewHF;Vma9VfYqB==S&{H>XFLPn!y}ZoEJG60M!V z9N9)Whv-};y(gGsQ}rZ6i|kz(BIb z{B$*_sJt{=WQJw*g7pf{Uff?!?pNid28{IYvpQS5PBM3t6DHjxtdgv1MLvFe0 zaK@8a^RuZKXJhuyA|m4V-QANXULtTF-+3Gi}Bi~ntfEPeP}p+4h3t>d(KL!?h#&SV%nD+vrwL*upyC| zQ`=N#R^~m--%7e zu#|%Ol2On5&?YGC} z{@zHp@ceG0Htooo4|Ac(t z%{Q%>8v^#oSqS|8sUx^6b($yDKUI6L3OR?`v?SEb)8Ec>8g*inVh$_`R1>|AK|#K{ zuWYM7KlwDE<8}EtK0Vhh*B`2T4C-(wcECQ&J9+c|SGrWahwIN+-+)+X4w6lY>Nekh zW;;%gJ8nx!$NPf=YrzZB+txJIa;+7Kla`lX%!XYfeY(G>p;=Pyt&Bsqk$#Q)TuSzg z5^dRQq47}I37Mo>GK`3uucb2*Vtpo4{ss?ED}5lv$jkDu#ZNkPy*-S-B7AP2=(#CH zC?Y)`M_eV(9CSm(f|R+*iBYCTnBjTC^ys>;vdHxdJ^F5=qDNrTO#t-~f9L}UNG-AQ z7?e^tUdLBv=B@Y6w@i4>Fw^_$Lluvh*K4;ub(s+X^hwB05R?zQaYcFWBTB)iQ{Jv$ z{%9JJbt=F#cWTJRX?SqIi2^0u=rtbE;|vuYxi*S&_&GbIFke0D9#;T+!z3f|vIund z%j|5lA?z)Aief`mp`n8H7r1$Peap?jZv`{G&p5j@lk^-JKZ}W7d3`4~*4Z$V=&Hv; zZ>Nh8D-1I&OG7m*U|#N&FU~qVMrVM_Vh0iO@zd}~CC zna!KS3W6T$E@?^0*i)PumBlMh-&e1Gw%@&9n1E`n9)T-ASQv9 zWV!7Q7rVP=P8F5{UOz8)U@#+vUU$RO`G@uN5@Bn2M)Cm;%iF2}LzA8CYbOFD(%)=t z{N-xeDr^2cDA#^ERNSryC5D{MMsZ7%?GT8w4nEq*mjrA7h>! zpwf2X7(>mf2s-O3MJqCd%(+1MO*JpMUKlEIr@=MKE#L!AHAO}w(SG4YE(^=z)#r!y z`{LFK3b}=QFtia3X)Ha!UtEW^DEourL0lx;%_+y1PEcK|9KA$udBP`^@XS+8&kRI7 zADlRUm-lffI!g^pmS^ekm7|+QIB^TYF3Ywze;FyT$NypVOu?!NNN-kCxI!C9c|@ry zY;ow$;bcGVD6gjSlY8zr>D=V5D`M`4o^e*WC+$R3cph?sB_TVZPB*}|k#aG+ z)UiJ-M6U;_Bs|(uKgOKO&lkR81ar(vf*SfUTnyFZ~!^gjSc*1JGP-y%#TwEEHtD%S!|DJmkrzzcW9_Ri!pTaA1a zw}TLobT%*nKD*W6U*x>jfRP%jEWYeKNe-U&(}_Q8QygOajYT}VE9R8ADD?^1={-5N z8^WUlDJ0u2R_f?~yeIYg)#~ME#TjSc&S+W1Yf0oj#2RfuX4C0h)nwl=Z1>UhM2bXB zm_)PX#jA{();5uuB2jPKA+3W5ZJWE!uV_WTp@5vBg!%AB&zquGg;&0_vKXWH5c0l%;#DJZmSsFcIknqNJ>8y0p zl33Kt-XCYhs3-_}mp3DCvuvLhtVj7gsu<)Xto*3TwY8@4x`Kw_4om7yiSw@$n0S6B zRy!MYz@Hr%wF6UP>(!-5tWNP(hV6l;g8!7J7~AIRfPu+}miI}1vfms~ zIZ%QAq&lFuB#SdAZvOEU;EUN(jFHe8yh`e$PYQU;gBRL?O_yKTf z-Rt?r$}$3`THx=}_|V3ZLm8WWPaM}$``=mj`8pU&FLvhwIgQ@Y06CJaVA~pfxH&{O z9JN{N4lCLzo3rfX{+)`OPk5#jh)l~VEvvwNay0RDrwg~F_+8{XZ`}VT`u4!njK^1? zPRNcs$iHKLkc}&VtW-0x2yM4KRDyCtHXe)|gZ4_bY5!2fQb2Jk|AYMX5RjuhEB)nZ z`P`KL-52?1>2xy+dMACylFDmIx6pS10^|n^#~@SRihb#M&u$1C^(>*7E=5eO;Yuj% zTtDM%TD6#$DqwT^%GGlg!1}km2HP>Bvo;XV;EqA87^P5LH^A%p%!g`^L2S<76b8S! zk>1_@kTmu-6=e18ViP(ACE6N5386k74vbRygY(w?R`XN!;v31w@OlZ}uI9Gk|HmORW2^@an6pnFDZcG1Tm-@#ZgAJxWf4$B@|9|d!2^Zo4Tw2~8V zp(R-zE%!kz>j6kCLw^9y~B*_7!dxV5cKZ!9Nrzm0i==kqT!{;z}9TqRJG}uZ=e+Fkm>$iJ#ok&kooW3)-Ze$n zgHA1Eo{2V1e%kb;X+doc%ZZ(R2WHw+P9TXQ6Kjj+m3eiW-)&m$o6KE!pwcOoYG7ld z#s1O+umT?W$)85&O@vGv24m|Et(Z7v;EkxrrKw>s! zr$+CV(%mQTB-F+nf?MhafO%6)>pBL3$g!P{uMPw!5p^Dl$-9mMyoK7YrPvuxbS#L| zYMYH*g*ob$7UB6iePRnqW`XpH47g<1K)`!AVsB&Q0g7r!XQ#@JKOA;eyv6r(as*s9HU9t{0}xb-e@K3q*@N6Ol+F-!%e0zKo*YR6ebkS3BeX z?0jSe@50L#Gf%Pf^w?pnp&FVjiH@yJi)(&W9opd3N-Swh&NO-w`DWu@kab67UR6O%bC+dx+C!@tPW{Ala%Sf4?KE+gBI+(<}T4Mv1MER?Z2BQmP=Dd^YF zzChmxJk0%u+FyJh8ZkE7N(PCu9ca^|u%4ED_sEci3EZY*r@p{<(Z#|=3k`|B55OMe z@QT6*Er$}Uk!h1@9ceMaM;5WcBt3EBt!*|CwgJ7#AH8miUi{-t2S+>CDrm|L z3);sroRY^r*1c90GItE3@-NJ$rPgU~_yut~bz1jzNMv>inu*=&ntf=TZ*YC>$6c-^ z3?P8Sgwen0iO}BH=_0!j+PuzWPou#4B+Jyf_Y@BtLvO@K4gnz+w(C;8noMAG8W#D$ zG6Bhf5I}Z@5w^asSbH~I)<>2p{>|pG=~eNVJ{LMxyI6MR~DYMpl#Rbgx^f9a_ z?Q~HlBrfN)B_Tf0<7@+@E^;5(|E~ceXU*6#XhQ^mUSauVp4)j>ecp|1Ar~KfF!>>% zTx14qL*h^+0C<-&=eXGsKhBBN66{`FBtqkS>Eq**T_m{AE@Oba$(!7hXPm$6Xieqs zzneo&_0B?*sXz!2Vo2 z(;DQ+!5^B6VI!vCaf4uQJ?W7lN$jw425H)zf_b36I9PwJa?M2HZh`LWwvdOnQ&zNk zBkC4MX(i-sN-$N9hN|0rziu}%IgUN2L%VY0sb|)&b4G7|tRzNkPPZ_L-A_DX__3<| zX|^f(bf)1K8Nc^D>8Kyri+T*m4vk1C@}0SvL*o((%pIWP}_Qw7k+4d&phs`?wh<0ZNcaRF;3Zf_G8`{wc{!}=5Vh+W+mecQD zz1~1~=_!)MOP|mC>{L;I>B`ufAoL%68knt;u1-BqG>Y+)7A&%>y=?H<@a7#^Zoc$C zEH;uMpouxp?zEVEO)~p@)^Ma#;q=Oc|5wCdDF30*8H<}QZ)y7fBs|eR%`Gr!{=sf3 z2ZIlRL&+>RM_zN;>ju#j2FI^L$QL!*om_++%-;Kigq&AD26+usSV&7#e%adZ0=~Vs zF0z-{PiNIddma7A)94(4QUZ)y8jY0{gPN@6lbGFNFQ;E~a1+ZA&`-UD{sz`0UnQ-O zH)kU}8b;_6J|VYd!52TJ`>>pQS7vly@0r~YmJKpnbx&pl{l1?3V$O-v(_G4CyHQ+xLYt_LS^S(U3T#oAU2%%Q~X+3$zD;{*>1!r~2-OrM929N`E{C!B$wyCMTU-!gz5lJ{b${ z<)1EX;mX<&HKFJm1j|hnf%8+PTFcv3sd@fH8_e);>!8bh=muVS=KJ63US~_BLz9m| zbsC*6^0V+>I3HR1W^-%Xh-!VbzAi=L*3@jOeq-T>wZD&9gg^N-Su|{inAaUR?W+|R zi9%W?Cuu-xk9!FFn}sw;)|x}cK)G}{Kaz19GqQ=3in<$+8f7qF>od8qBvuPEt`N8U zI@0$MBRG4%{3ojmSs?*&x3whmJF(iwAP;4-bV#%gj4(Ba?`oNj=z6(+=aY7Y({LS zRH8Ot9`Vj%CbsAASToXz)~hF~Gh|EVy@wsghixEvfQ&>5o(Tc=d18OP+(%ET@kO6$ zq?T9B&Ejw~iJny5p*IoZ=uS(r474LHskyE`)3f3^+v+_$?Sr}sT?h0e9i zcIFPrSw^S~vIByBV95}9mmH*#hLD)7M{_QI&pLYe27YelyqG8K){?sI180?|xuD{g zPcC-@yC5KaxTmpDne@bnkm&S{KwVqUFHIw&i)Bt>uS1F?v^;S#k@3>Zp|i8Mu#bm7 zR&MTK@Z+WFwEaU>U=9Geu#$Tsan~{#TN{GIM%&&VT!8aBt=@5#g+=h&=B)V-%JVWz zJ-OT%-Lz&9YDeYMSQsxNM$FdD#8pk}ZZ*tl4G(Ur)UQg_23=(6+Lw6r0(JA=AzGPM zfSr9iqd{&VJ^(!O=}4pM(Fr@uu2QB=U51E)?*T|6!PQ^<=G@)G`?CQviJxD|$ta?r zPENafH_BxCxU8oG>Dam7e*p5w>_b-1Hk2CD@sM<_UapL*@6>(lr|(8U7a&*>BTz1+ zmzfE^+{2GD0ugSS)>|Zau z<^JID5S+egW0nPn&NRA|BJB`3jgVfQpb7x_J=+C3P8~_njm!k-6VNhWP9Qhz z8-WbqJD;N|IvXI>T&(a1Sj;;JEgvHZ49b^k2!yzu@TB}pM7tOJOe2B5kj`usvnxCH zw9-+z3;PehsV7Y?@5LbmiI0xP8^WjV*ES5PapXQR zaRb@h)>7yKX-V2GqI(8Y?rG6l=$hWzdT;$)YxDp9UJ>QH#j7dM{7r%{=C9Hc{QA>& z5!y{!CLmjKA^K-d@A!6wmnFfAz>_&s7e)0a`jT{tuaVZe+(`_p7Z*0=yqcAY?|PeM zh+^8(!V42+IsW6ijzrMzzt54z0x{3V=05lZox8Rr=IT3#{Uptj7_B@)9VmMz4O299S5SKg61}Futzv~ea{$>a55I)xhC}{1H_nNj<^&lPs_z9 ztm65o;E)gkwkLS}GfePFzs?M}_MuSRB>IJN;lx6YneT-@r;pZ`;hIXe zYLZIEBC8qlY!i#NTUb??>7O4o)Zf8$z|#Pb`X4g0vVhaHtA{Ds)aVkh6i->TZ?H!x_n$xSRklyGu!JPR5OO&ziD$`E{P3 zoIj!YBUFuKw~3<2PSQt_TywQ`jR_XShcCDFGNUy0928EH-6bR?=E6X)<;qxIhICc* zyvl0DE=wK#>E+s#OOHbKDeqM;LkXr)_l7AXxBMT1(ArDF6jbeRh17t zN8t6#Fonb$)n`&gHCQrO*JO3P=Lb{q4cMf;C36Gr`2R7`! zBHmz~6ZtU!2j0}d3{tR%irA~nU=jkzi6S(pRpA;`-hi8}7+O)Cx#8*gAGqtNLH`4j zum^YV?2DtwtW`C1wq*j2BHc^pB`(%py+5`wW!@4b7WOmmtI585WYh)p7o;2aZ`%oy zGdV!*^;nm7T9R6bS&Ad+bmZr|r(gCMGZp&z88c#W=x3&fmWv!SuMVZYjU zS6j5~(q=B4D$$}7GcE#){ADN0@uXA5Z^JE zh7dY~^H>q`RVTu9X+qgo61>v8#*x*}gZAt9lFalomCV$)P)FMB$`UW@WIHG9$R2#j z<4j*s=Bhgu-4q#v3Bg_9&i>IT0z1DYmN2Y2WQM#W?cE4jCz`^gbkSq$}lS zsBWv2qyD^FI=bdmI*OMjoljoVV^(xKaM}n-*GwTsMb( zQSaEfj^a~A@=yANr%yH~Bq}Oh$Xe+sZ{${qq1bt?J-!V6nGy-4LYTqiD<7!$X!*sy z>}Jj5I@b&EIHb3ytKZ0xU5TavxsRh0;5+pht4` zNLL7Rqyt%&VnhzPGYUWlSYe|L-j1(!SA@Lz{moLUHr!6wxbsxI{gkallVy54ET1DZ zX=Q5WcDQ^-q8_$X5A`r9qGaVj=u(YB=>4;&KZ@^*%-42D>=dctp|2dNmAme9v@u)m zx``hqbRe_r1-Lp*?B5@)?DYKude$J63E6QM@^?+@81z{RMIS}~ME?@Pi4MjhJs>B& zMd_JQ1#9)25zF>#wu5k;2=qmd=`+zdx$7cgF`SWr8o_*#e3{773$4w~LB+SS&qGhI zmKoP3ZRXgf`v-6lvGQ%FlY!%)NTlk#8g+2THGcTj_A&r_iFGvjVi`4u`x$n938(v%@Z*IV?}Xz>zyCk-cz(alhl*Zd#5fU?5EoI zI5UZ8oOq0i)=A7|0Qi}a!sOTm^rVHkCGH+GQTch`NU@^Ua^1A{pLc7d}h)8~%OsQFEqK)O$mU@cW&E(#`Jz2m)pL$PTFUq4EKaaODrf32SbNm#|svWD$v(xZIH@=1k6xkhFSjVZxO9YxSz6znrE~l6luO zu9YG&9dg|I!r|wQ7m2D+9b&xT8uEhEk$j0c`0I zG@etVD3Fz-ka$(jJ6$=?5a%1-ZU(-SRVuOXZfjSvR+E%bDAMdP-bZr)Pv3zmMI6N8 zlk}8YiI%ZC`g0W~dzNzYDQ;%@!&>0M#+>Zq_57w46Q+bsdMwL*Kl&U z(=o^la!Z~7BMkw3wEUmiS=YD762#8LJa*HUz%q|~0r7@D&nZnOEOa-Qz747{lWJSc ziVIS`a=u68tlRm7MzwEJ6f#!&uxl0CnXwDa)N7&@sa8~4(pi1yg6nMkVeeNo_~Z_f zPo0qd<;Oxmr$c6Q!Z%A_P@F=&mEPXj9B;@d3+5qDtR-|pKsYp_Uyq9b zPpoY!ieK)`%JC~HbLkl}eOq@oUBsAKSZu$838>EbK;EPXN8X{mq57%io$R+Bua%ci z4=E*Q8^#q!L{&C%^u4{*{89@dtIN7_)kDol#M+wdK7(n7;M~%$k9Bs+&zm4~s38!T zpWlU=hODr^_60B4TT>qkT>B>di)~(qg@~V<=pv;;*g~gnOend#bPf+6U3tv%@mbzF z`2+eJQjiXS?;Jvle2uF6;z7RC3cWvY20Z-7M`+DZXHg4%>p+_AeZ6p>5l82i@eg9W|(I3YI04RkmBB$;op^hLs%f??xNZKYS#{D_Z=iF z@E{>T&^8elxGfZUjhu%pUTuCQAM~I(cXurteuksy&7{p;TkBJYyRm(VyMt2|Br9SA z4wVeleA(o`i24)?acX;aH|g$|r=@0Y@wWT5^hv%B8G(TFzLCe8vo_z_$6L_udD=7M~2a@ zx=H}KA-^PjM0UDWrqv}4fU6^sz_7h>WVq%T1ER(=fnshV6H8y?0i?c zg3GuUT>NpSU{&Lk%N60KXMYmZhm6pBYHLDXg|JacKxvb45yt1##$IX^IMfGxc=0k2@6X}gir$Z z(cmPM5EThv^yJ-5Fv6-lG;AqGb117H?DgRzUL3ti!P z9iwXM&z3Zc<;p*Qq>CrM_iR!y5=Os=g^w?f^l#T=U&P7pz?Ki7mhDuaKsE+YU3&4I zg9mEhWw;Hnx2NKF#K;B5pnH=@dYo<$P|Jsk*Sk!95k&YyzS9}L{Gz)MniN~)UE^|i zHTg`)q0dx6?Sk&(DEWD1R;o0uu$AFJc`ofF)snFACyuW^vt&)Z^mfzanSQGl5zWC{ zIZK`W87j^Ace~pDJj+&Q{e%!mnEb!ZcoG9Pz;#$Eh3b6_!l;E)pd_|xa-DSNVA7>X zvj$=jw4d$bJE6qkjlS8AORlF-nVAjeBNir0YqeHv8jP_!G$T{zx{rr-bY#IHn!ral z%f<~-gn^_ZO*R#41DXAZ-SKGvlSFEcLBH2`8)i`(>qMw2`P;176h2;0rKYBS;?cwW z`GspO#`6Y^H@<&&>-+%9umrKu{>c?&gkFUbCpO0Pvgg{kt%+QvK`;~M{MX)6-@8vz z>${j{-QDMFyVm1lpaVzkiK2Fy$o?Z^YCQQ4p{xrl8VPruvt(V}{NOX;J5v0(M{n4ymQJhyq8}{c@e{4|UHeCxsz$wN$$PmPCH-!lumfR|hwCKfpV;9( z^&D|KS`PwqOiR?^nTK$$?t})1@^0G=`zb!~=Im}db?zppnypvl$B8{OPz5qu1g+se z28khr4CWzRt2_6|gSczonA<)XEVb1=(D@}`q<~Aft@1?pM0R=kw17piE));%oY=#r zs}7ehvxY0T?6+Y{!zVV-#G_u)OR`!CIsas;qKnW*PF*2*U&!Yqm8Sqq*d5E@pO<>@%i_NEPzdVgM+_~09^67c4x$d544Why*C(C-2e=jU>$d*%8h+X%% zCP)rG1+BVaUl>u-&c~n%I)erBx94`^78Z{DCDfIJN(q9zfN<6}jBnOyXlPd@cr`V} z2OKQLX@9K>lWV%)_3{)%)-Fq}=-$lwba1%$U+h4zTgmrTixk=-Om7|9yW5bXgr@Rz zX~#p8=3XVo=%~FkqB8?a0Qas3kg?b!P?lsvETyVdxdTkN4Ne7wkXBvp7_@k8GmJ@a ze0APe9a``BUf6!;ENidtT-x=K#0J9P9Cq^x#V*pZmRPiQPyDB}$6Y<8rd`z)Ma3@` zQ;*+iq+%uYnR2T|6z>)d$m`qSkASyn;QeO?jegNA$R`K|bQbD)!t&F<<6NzQp~cUA zPEKvmy}Vs|w+=9WSbAr4<$qRa;2duqaVOLcs4rVJjw|^p7R9*S*ghB3FBk0|3DUSM zqPbrwckxf@R0zM2g0*P}bkL|*`A`vc8oA**3fU_)rN^xk&Esa@)eYen|W| zm6n>u33zGzJU91r>ysj9En8cjS)lkO_0&HMY308#r0jC)TM9Sj5>O$~Kve=VLvH54 zmgcpJsuKe8o?XWviXcGH_w>gGe@~dT4e5cXnj>{*O!jCuMsW3~ogH0n4)t>+`8`b^ zik54SIVB;U2;V$ga&H|4LR?s#^vykrF9>>n4+r;#@tG+Mt11Za@bi8*0fAItWtS$V zoGAE@S?rb`NadeYcUmIk?>a&R`Rg8p#$0i573h3N(Fec3szHy25gSPQWM(1+2d%~8 z2JYCA{pY9UZ`FW97t-UXEa1raFW572!N3+lzDo)?@urUx(Fckw` z&9TpW?5n(uFwWI`Q;a_VwlzHn3$U$Kk|pT4EXdLA*9R!7ptMD^284b4b5GaBf)l#W zp0y)ybN_`ca>pTSvb*!H&Ld;Dw&+6SACu#p4}Lg!zQY}Or5FB)d;6w08pMRr*v25UIMYzO;Y zrnbUFH`kha403{grDAC>k*+Q9$(Byhna}xt4~GX!-`B_!F6 z%&nJCLe8elGFWzRoWRq0(DZfm+uA(H0)FG{LVugZS@7+jyYw{w$E4DA(@_Z)aS_lj zTw@1U6P?$%Dz+C@58h;^*sVSZh1~j_zTr2~-#nrNF6nPxwDfjT(Zk;smIa6M+|0?b z$iQar(*jSG362@<>iwc+A!qZIDOadAX+7RV4sx9B517VhdN)Ohcu@;aO6XyWO=&%v z=tljU7#p)ei_rr`T9DP|*x#i+pOGDvhBao$gW1f&{qB!Quv|^zwQ=5?5}9PNHtD3M z08xi9S(eD%3$9)ISWXUTM@UcX^^R-|!2{dQ%`XXhq;W773P_$S(yAf4Ny`f$MtxMZfu9Hs82l}bj}8v;mdsrhyOgQ>~&-G`iYv9B9iv3Cyq`ufgl z_stAXs>RQo8kZ@$9-UYOIHAyCm8kDH9k$HLiLHJS~JK)jDQqc@pi-{51;Fa^ZMGqIy; zJ=@nUC&6>JWwZTl4=6XB3cvJ*xGyu@)Ur|tW3bOhlq)c9?Tn&94 zqEQqP@2`T>qA;L`7Dy@z3$&9t5LjklN6FzQg_V#0?HWFG;l-8Vk4m+_QurJ+> zuV!h-il*%WwN{gA6+xWE6{~;2(7oVmNKtAntp)P1jgjO@u5c|P!|pV;4hNZ?K%TAK zNZg%7U4B_`|K#G;C&kJ8ESld+ST+YJH&%jCzXpgbw#n~z`dlWjOMTspl}s18(rX=X zn+ztw$cvOap^ZKntJ-7K?C+KS^GM#eZVjvlAz{NDU-|v(FLj-0?}m8FnmqBPMYe7! z1qoxKfWVmSwh1Q#SottWsOVJ>sHx9}f4WJUO6!vhHOgU`tw!}=wEl@^03SFDh|e^N zB~3CO>x}hOjy{5HEE3S>gy3{}ms*1=W%%@sy6OIf$Y;S~ppzB?cik7HceCkiFkt#> zEXWfdBK1d9ou=>LM8|4XEW;M7#Qxeg-q}*k8GSwkx>oMMltqR9z)mc}GxG z(K`3uHWUaPJ|18<^nr8>iZDp;Faur{Y(sw%dh=Dph`m6&vaKZN$-*b65w*Z3a3`McBh9Aviw z-5jDwfG0yb1nsmXKRbqw=+BV2wWiLF`lgV!@VJZ!QU-wDqrhIO6 z<$)20{Kz1cr=1HcRJ~6CqLZMB0TeezE;5W3rxvAeN$+X>xv^C;?O(D^;+Bf*N>o2g zZxrWC)#xJMKWWn5la_)|M+|`*I0vc{yi1`zj*j0`Rk2+5t%9;L5QR)rlOAsI{)=Ne z$)Znue6>wi>1P4Mo4(xKeANj)Ch($D5viR!XRHgVz9)`!QK4d?mgIl(B8s&f=qU%AO%4$pEkD7R5CAD)6yxIWDUHDt_Mkw_Acb5N#r@ImmWN z1u2P;iDV^bQZAE;P`jb+Pg29%f)SkI?7qtN~k!LPCd+Xvp^f6cjP%LwC(xoaUk3!C%HaELEJ~N-j1(c`_t( zOkVn(B{uqZ=)&f>8KZCXIDNrvcA(jlq z**bb;6&3<1moCwJDBV^V9|z=ZfMjZVOp~NIR~Y+*!0uSW2A1dvxbqH%-vZJt@@Iu# zs9A`$VYROOMJ9vUs5TUZNRR9rtu2?;}>@CO;(?K#8#B$iu)j<#R2M{_=f!K6ZwFauXm|42aQt}Gnm~(dSsQK!A-mq z*P@LL9${xCmuXoDa^>fp0E^^<)gwTQQ~NDqml$hP&;Xs-nhp!A*~cWxe31E{fq2~wmjM4YCOBNOu zCqT37@OA9pGcZ~(b)Z=WtxY`W@xq)9eRp$2O_>e0yL!|{t9pB~1x7Ngae9IGk%(_} zi08JxATgrqH@saokYGsh30D+grtM?iy7`BNs5nhd^^BOSCa^s(Qs_DYv3}UgvmJC9 z-q=^vTe{lM{?&SZW?t}5Mo+uSm;BinPLNY!V%JEkcahJG^f*=5J8WrPRN=81(sxmF z$JXQF^DPOO-zj`xu3N6PucG~#Ks)8)NTZ=vGXf!W9uckaD2_xGN2=FFU#d+zV|M<$cCXZGG}XRX=md7jVryHqS> z3{tsX0DJ7n&abnvk=&!mo-suLxA%fIwx9}plD|DKwhaHCQZ7z- zW*A~J3}1@Ij{09!5Gas4cdImrs5kcng0Wdgxi5yG%pnl&whgN%Hg-K>f_3-SuDkSI z;buh%9^&jo$a&+jm@xQ8PR>SXX7_cEPXe&3*NRNRZq=*eS#&y?#-%qrOtGM$qU`MK z^M-iFy7@~8am7&Uoo(IboNr^*+ZGm_8W%I9HMiDQ6R!+MVB4ZlGhI1n$I&-82vQ)H zevk@@1FzH;Q@C5I!hThZ!RL~>f3o|iYw337_HTwojDY>B6h#43je(=}2IrBziAz)n z5fOuye=Dt5JPZdl-v6P>uhU-@NdZmVy?_U;eh&^!#*XPyl-@7Q%&D6- zHq0%9XFpZ+CCc;QEhHQ=W_Rr>j|?J*Y9hboXvH*aCV4jK2iQ6ROtl*cFnsaj0I24n zC!tz*Cs$-nwJcoVNMRakyky*6Ak_3=DkE{#M0BpLZa&b**vuNc zVTjoQPp0?pth(;kIpP|M(rNT6Jy{*|S^Rhh(tFIlL=EtMBf>%)L5otGdMzWb;C2*F zf=zLri0u2g7ft!5`_CR9DMUW0y=LO^n<4nh&Sk|-3{vVi3N1jdYyP5V%)akh@hfk2 z5eNA<7iSrXhRBKN1?fV`BnRcVyP1oZG=y!tD}6M2t!&e5xf!(NrSqjrslDX5UJ)+E zJIY&{$|FAw1wi8-dkNCOV?_XN^Ui11(-|yNU4 ze;pGi2g_y0-Jb_&iJ$H#Opx}k!=s*_Gpwp@+=8TOc&@%;b zNFlQhv+wAeIDleUe}4!ZA=A*WRQKjVME{QmqhBArx)QOQer`!caK2+F4t;~_T5RpY zUz*^dp|?nq`>HOartr;X^oK$U%jFygpLNl*N_n-C#+q1%?a$T6m^ek+QQ_e3wGeyC zO4IVNE+Qx3#0(o6Ou9n}hZ=X~$e>ajiXuL4;AdNW6At7_Qydc!zt&V|5-)sST6ZIA zsFEj-7>U72DEpIQde=IEXI_awekh&fZuMPVi(JA4zt4~6+sPR!@=E{>|KJbR%3e*8 zq|^E$?n}l~yNi3sy;a21D`Po}_B!L+4eP3GJ%?j(E&T;(|E?D2nF%Z!=sJCeRO7l83nC#tU$3$*QXlM;fy1~>~ zU^=dFT_$Vs9OOrLwn>OH0M{C@ZV|~C4xs3DiZHLExyMoFCDe=uqg&}i-8L@iRW1hT?xSlpb>qVVq&-p&7ljvt+661Ij@>r!8(R z{WpVEEee&sX4u*olxElv6!YqlXQxNHBCFDe?LLG$^&7=)r(LT7k)okoVry9Jh6aos ztA9$l`0E1MrI7@{`Pu5XU#w#N_AxA8VA<4&YqAl_xgSPhj*=j6r|@>GXOTtX5YJI# zKS5yjdRzT-{(`*9pzEC4F?~~4wWn-*YQZ^c?Eu*xJ4tF%1l%?P1EPFNaW0;9CFqWM z)zB+-&^j;GXU?a?i(T*fg+1Kb8XY}o%521dNaJ1y!Lq+H_kt#ea}Jua4tI*a`)f5s z)&`R67uI3}^0dH{p73pCp1gMJID9#0*Fp(##X3*u{@2~Qa)GzJ{T!$zF7%n%d3Uq~ zHG8pNdWXMn!OYd^P`8j6A1DwuCHYNs=+3X&h z#)@z3GAvH@HT7>4MNJ7){W6`P+rctD$!cf*$ORthNQE^a0$ph3=&T)he5-+Ai?wWq zVH4Hb9=yK+m5o7PrRMe!1gLssT7=UfJ0F;u6QSJQ;o#YZ+JlJ z$}<1qDB6cAyPz-$qZg?$+@jwUlX&$}4NYTJoHq4YecLkUrSRJv1anKBt1ORazbbP< zz95R%=bEJe1jP7yX$DZC)x@_icQq;^#($o_ z&ptM^gP~T~m=Uv+-f~CeF>3t5W=Iji_0(Owmt#!Rnrd&R7(|%5*~3!C;)-Bti#z}w zo%yLd&T&8Zrhw?#`5Tx%qQ;>#Dt8va%^p7H7` z1nNWnD9aPkX8!3>Po%jDT_Ch+79l{QSqdRRhvQQuB;wMHi=~Zu zTc^QJ*=&MU;?s-O=DC3MTenI-xm%!&X7mR{SdpI*djhRTM_)>sj|`X7b+^c^&qdWO zg_uTER94&Sswa$&<`5mQ_sVTK)0H#_9eU~P5~A7z-1(cqsX1$YXcADE{nf8^WczEQ zTJ(2lSpZyn!&n%KpWAkF0gy=id^y?{S0R1|$Mpg5DCw%3l|xHcU>#3HT@?zliCe*u z!jo4hGI5X!{KvEz!h?FnCmkQ@i>|l!^V7Lj9{gVCshT3Z-{z{t}@VyZ6TUT|t5{quJr5go1D}Lt| z;@q~kNYvt|PU=xZ7AxT}`<5`k4IH*^P>{o@y|v2a58bLQkXj-`=(zFOaGh_*zKR1j z&(*q(y$TDC%)GXfB>B z&wnnz+_Bw>Ilfm;t-~MQvFr@(ebxCQ;iNFoW%$-pKNGl@#0@>c^wPA%eX$Df`V-z? zaSn$fNxVT7WXf*G6SiJbw_8Q-6dM1^Qu)D~y-t=r0_q|Hl!!wn~c$n$oSO zT@w*%Xl^H-MX+ae^9^A#-gB}D^Qo17nmTm1T}p*}^gB(xX5!eLsKt7Z?W_HF6MVnF z_?sdr&dNFu(bwXq=@?UO&Z4FWtPdMbua6@P>GR4hTjMJC!zU9q zy4m~wMVq`lqR($Vd{A{YkVB5Npt*8cLvX?@=T%4nXnxt1?=!F`BvR=&gZ%e4XH$Nq zw1_eR_uLM5#v#wDrCrHvx2$P?7^mRV3(IfH7iBN8^HALlCoGL{3TY944BZU0(nu(i zKbGswK*srI*aa_Gtx!9TG^z6D6sE!oow7Mso`c;d>-?G6Jn;;^5DEC)xzp(eYhJ#+ ze;{asYViHfWX|@c!%Pyk80K5jBR(1I*HHJh+izeC2-!CDATC|+Imyaiqv_txR)9#1 zYmFTbKdd?;!HmWN@2DHKw8avROq@Y<&pvil9m1ks__e-$#1*P_i7|z<2dzNiX{vUw zGcKlnS~IMvZ5ZDMcoas>>eU*ejLIc}5{WOHoP|`XQj+X1{G9V%n(yo@#Y`4@8mv9C zj>&He^Qw*CGSbLQHouthvKhL(Lv_n)4@h zqlHG3s-q!p^~%!&eIf<^*B+7p@4qQSR8lT~s@hqBeFocu8ql=PPzjhUddE23@~7G$ z3o#|;*l@`f)~V)I(PVdZ#6k(@@yhi23w^nQ+mGNKA^{(Qdpzyk4})^c*YSblTS^D` z1U2iKFH<33We(1(FX|d2!{f-DJ)!iuAo$ZWk_!XI@C_2rRy#J2Rf|UH92pEciRCR_ z>W>G^Y|BI1LY1+IxKOVq%Fg2RvH8uB#uERso1MdUZB16)K~lm7y*J{4?X!^c;JoR+ zLi==%FeCzw{rO?(n;jwH(0K%B8BZHI#O0qN8%H&S8JdA>#uSA@$MoA!W6Pggaf66# z>6&C6c6EJ%Y1C$Rhl=WIRpc~V?9X&{VQLXvr@FvU*=`?b zk*5ze!6@uKdv%nfl<+-(YcR znF*$P@AO(x%BF1+SI`gog75;(S+N>wy4j89Po@_XO?7ZZ?`58$k&RR3H#C>M0eN*y z3|E>oewMlrc-x|EjXa$#BkaJ-Ru6r4gCa~={6AKM0P%nRp8p&~mz4>|LS_L|bJ5iPo3ZZf2sS&Pi<2$z} z=*dm@%zIaoA8T-w?p)9p6N5Wb-8-`JMwJLRn`DG=NnqtoeS&#uYT9XwM+}5%KCd-o zV8i2S>*|#!L{g;SNp2T`n_gaPP=-0!>iMt!;@jP47VvFd8KQl@bNz7b<<53so}S6K zy^_(7ICvI;BvH?MsxgXtY|XZc@zRhUGDyKJa&KqS9&-<%L~HrrQE(xe$_pIfHF4Pv zz(|7J_g?wl)VqO|(-#}}pNG4A&ledFSRI!^1lE_iDZhO1yxkN(dn2_~lo0lzAXh3` zCqTi>i-aZu#j_!=$&=9<_ZDaRr*$z78p@OKF#pS=b3nk0ukf|JVixSZ-nJl|3Fu3t zvnU0!NN3RL>MO=MYA}7xKAj)YQ}vs{^+)&|+OXRn;Nli?cva3BV1L(m!DNO3IrU{ml@6$aO;zg*pYw4tmni}|!*1(oGTpF%Q zF6cd!>h`qksfTWM9hkXMtY_@OQZcJZ50zH6iHrX|3gEg(X> z|0yrWy|{(#FX;hmL;(e~xIm}vn?1yEAHVIfNKYwBvuUfm!Z?49>B0^QJXKqMS}t}a z|6T_xnLTQ6p52XqqMWG3)lW1uGjoak;)x%{j;i2d^Z^6up5pa9&z5U@pPmVKrgOND zsiJf$*0`Jfm~V=X5ebQqSB#@XekvT_rI%8ZQhqatj@sDG!4_cY%++gnVPP`!K6|$} zFSL?GgY6$HnM7pt%`8Xc3Hf7u=UO8}Ss`tfV>JGVI4nVh!oE)@$EZL!01!F24A~+) z@RKCXpd$!QzA;$!RkZSdA_CoT%Q zaTYUPreSUL^+v9!csl4)FHYowCKq&fkyc!;NGPt58_3kQK z?LYBg)&oFDy48v3o;UrD=yiShEiFM?U~#xK4sdMg=}(-lhC9}^M0d4lY)v}pIO0>K z4ZfUJxjFDy7|1Yr=ScGyfJ2K!4!0P`BBa8!E z(>b?)d%23U+)*NwfIfe(arW_bLdr@yBSe!X84eTh||i9nUD$pblq2k{!l%C7@G zO#?Hh9h4@5zEp6FH8sg;Wi>D74OpcE*HaSzHgl`#kcHGS2fdi!yhWlww5c(RZ7?iv z%S6iBNj{tDj|ouF?$dN8Lb*qxPhBma!xtgF(?*j`_EeGO=&%r2$8QFuh?oDD8S?)& zMgITc`?2C+P*+!IK=xtgS3DkjSEfB3sKUT-PCUQe>CX`jdfxZllO)Z>lJw~)L)Kai zxo-V0v&oFC$*+=KW|b7niYn$dg0eXAUA}7f0l3&}mr~@ESe`~Q6m-4-{7>U&bI(9^ z&`fSCR0`M@(=o zle=fQ9tX?A;i!5Q35emb{- z|I9~(v#$_xHf?P{Uq<*gSNBtjK-2woFhP=1M1@$B_w(^G_2qd^-|-1~N&|yu@_98K zyPk)*gnF&zsE5Q(+9oHzL6mLq;Ef9WBSO@`)-w>eoKBW5i+ipmH{=494%sB}pz>lJe_4uHSK7MWWn8XFPxfo4ShgGX zSB-yWXDMafPWt??sJ8zF(=8upbx!#wL}X5QpW&T0?Ki8(&P%QAj6$dFyZn{+hbo!U zy!Ra~W)xZ*>sMmAJXOV{rY3hMvMb2(%s28 zSd33{5Kx#s5{I&^z-zu%%B<`%oT^`JMxwq_KPW0gMdwFajQE^ zEBM_usoI<|e&v40jY#rxl$;t)Sb$tIlv%l9gDxqnE-5Ee`SQM*|MEsIPp2qa=($LQDTpWf+-$pjQYDju7w2;bR{pym0=c&@pia6_Xd)^c)Z zAtTW{Ku;0#Ls*9Z!OoS2A+sg0h>ukf88N4`a(qHb!Q^8?s#47THQp9(C7DO}gJ$-e7(-yGye448Oha&Ff~fh7XRY zn~?Sv>&FhpB$KAs)LS6Pht)(lT|(S=+gHj1Xvm04v>hw?71=__Cf7y@HuW9M^?S_KK_Yx z3o5Ex`2w3(R{?znPpKJtN2b28c$^X1*r_k3anV>2u{g(QGUn}#2sCuu16QWL;ZRAu zs9l-Qac3|JC|;|o5o(cr@bP$B_IWlvl(!MsTMcb{n=efXPN>@6W7B5wl*68K=gyo> zy`d1lHKcv1nan(xmOQ?m+3TLqjQKnfD5R%1k!_G++6WG7$QpRUggS5LWQR>zwR>HM?=&ele{z_VOEGZS}Zw8r(CR#|%m%cK}4O1lhA z_N3>z)}L*fG>>gii|!TXXV9<^#G6u zsh2^2N@pcDU5SFuQO6Nysahsv8nVjG65nm}A*WC;({#9R>bp|)d>-1inNL;2S+Uaf zt1*3TVocQs@srL?Gs&StwwK83UtqI^CkwJi!&DyVQi&E( zaRp_A+?a(XSVTd8?gHrWxA;tFEQsC?zk5lpWWaOe!a(L1{yDHY{J=H zmx0T83`{?N^s)FgSM}oyg`d~(mF@(_HuQv|`iZO!zx{qm9iGrD@n?b0Bkek&{@TV` z!R6o{XX)mTt&v&BgXS5*G^COSXN57Gs`UUT^GakEJhe`jmG(ohWX{emU0%yrA4N*Oc79FteH(bA z3nz>;zq9RSdVSps@YZ1-6ID?9+~Phc-6(E;Z$2 zv3#L11%x_D-wgElM|MG z{njC?J27@jV;bt@umz{QYN*<-c^$fGbg^ba8xQn$52vJE#{YP2-p(3a^_*eOPrtf& zN%t*HgmTc87i=`4I0J&4^;k6WW_{aKe)iRh4Ygc49X>4n2SnTFLn?6j10ojVoM)zQ zf7X>hB{8;qfv#=0g|B9OlF6!><4Kg8sXDl-EpF8%(kkd!b507K-8~;;r%0h;if!@G zVV%*26JGNK%Q2E8d8>(|s$Aet>*u`jLdNgbUYU*Ms}jsi%SumKlg2fKw#!vo4DSHyNqG{6L+$8N;oAuz}YaWW{NGx(4l8o>2f=e}u9gTh5Gsu?F zH&L=j3bVF0a~qQ!_Ea75OhqA^jUNhH5UESzqjKGvkj^uF3_*N*QskA1)`dzqdv{Zf zoBX^D$TiHrbVjjAzmCb&R4HA%KpK+mr5jP1PDXTTajpxWX(PuXi2ZC3eOjNIVPdVz zpr`-&5GTbDdlGA1YV)G0Mq0jf)<z{f*nSZ>OS6Eq^Zgm_fI z6ghOu?T{(0^!w||bvlsVF!B6zb2bm>>3J5gZh2;(N?MJs>ZVC|^wxjJ%GRwM1&keu(qY^*6D*NWw?F@ zr5?0%LLeR0XJKy-+YHd<L#?La4}r|(zHgTer< zLsHh}PVaNHr#y+c#xA_bkS`iI&L3KL;f5 zGC=wSlGVZ{=;q6@lLT%Gb3959;hwfh6Pwf=7ChjYu!l6gIm`XZq?h--D4(1@NWNC0 zmEnx5yU&x9gGDUKNOQ&gn{jE2rn9*)*NQbhs>Z>7l?sEi?9im^C{XWoO}2 z+|h$$smVxTYWn7*x^ICgVkFLWKk;Ce6=T88+B_j$8wvVuQBsA=p=Y>Gk(vJ%XZ|f9 zw}*YZE5h)%=D$U#fd?o5r4!oH>1<=F1bxg8PtOpsF%*_AI\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
smokedrinkgamblecookedGenderAgeHousehold IncomeEducation
0YesYesYesMediumMale> 60$50,000 - $99,999Bachelor degree
1NoYesNoMediumMale> 60$50,000 - $99,999Graduate degree
2YesYesYesMediumMale18-29$50,000 - $99,999Bachelor degree
3NoYesYesMediumMale18-29$50,000 - $99,999Bachelor degree
4NoYesYesMediumMale18-29$50,000 - $99,999Bachelor degree
...........................
427NoYesYesWellFemale45-60$150,000+High school degree
428NaNNoNoWellMale45-60$50,000 - $99,999Bachelor degree
429NoYesNoWellMale30-44$0 - $24,999Some college or Associate degree
430NoNoYesWellFemale30-44NaNSome college or Associate degree
431NoYesYesWellFemale> 60$100,000 - $149,999Bachelor degree
\n", + "

432 rows × 8 columns

\n", + "" + ], + "text/plain": [ + " smoke drink gamble cooked Gender Age Household Income \\\n", + "0 Yes Yes Yes Medium Male > 60 $50,000 - $99,999 \n", + "1 No Yes No Medium Male > 60 $50,000 - $99,999 \n", + "2 Yes Yes Yes Medium Male 18-29 $50,000 - $99,999 \n", + "3 No Yes Yes Medium Male 18-29 $50,000 - $99,999 \n", + "4 No Yes Yes Medium Male 18-29 $50,000 - $99,999 \n", + ".. ... ... ... ... ... ... ... \n", + "427 No Yes Yes Well Female 45-60 $150,000+ \n", + "428 NaN No No Well Male 45-60 $50,000 - $99,999 \n", + "429 No Yes No Well Male 30-44 $0 - $24,999 \n", + "430 No No Yes Well Female 30-44 NaN \n", + "431 No Yes Yes Well Female > 60 $100,000 - $149,999 \n", + "\n", + " Education \n", + "0 Bachelor degree \n", + "1 Graduate degree \n", + "2 Bachelor degree \n", + "3 Bachelor degree \n", + "4 Bachelor degree \n", + ".. ... \n", + "427 High school degree \n", + "428 Bachelor degree \n", + "429 Some college or Associate degree \n", + "430 Some college or Associate degree \n", + "431 Bachelor degree \n", + "\n", + "[432 rows x 8 columns]" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n", - "\n", - "file_name = \"YOUR_DATASET_FILE_NAME.csv\"\n", - "dataset_path = \"data/\" + file_name\n", - "\n", - "df = pd.read_csv(dataset_path)" + "steak" ] }, { "cell_type": "code", - "execution_count": null, - "id": "heated-blade", + "execution_count": 30, + "id": "8d7c325c-ef3f-4072-a51c-1e87325a3c96", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Gender\n", + "Male 212\n", + "Female 200\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "df.head()" + "steak.Gender.value_counts()" ] }, { + "cell_type": "code", + "execution_count": 31, + "id": "2899053c-9446-4772-8cc2-113a238b967a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAANRJJREFUeJzt3Xl8VNX9//HXzCRgQAahZaksQtDiBiS2AmEvigqClra4VbQuFOuCoH4LVURoq9BqBcUdIqLYVviivyrECCJCRSvUr2LRVtGgBSyFyhJCAMnM/P5IMzUGBbJNLn09Hw8fk7n3zLmf4Xoyb849cwklEokEkiRJ/+XCqS5AkiSpLjAUSZIkYSiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEhLdQFBk0gkiMe9CbgqCodD/r8hpZBjUF8mHA4RCoUO2M5QdIji8QRbt+5KdRmqY9LSwjRp0pDCwmJKSuKpLkf6r+MY1Fdp2rQhkciBQ5GXzyRJkjAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRIAaakuQKXC4RDhcCjVZaiSIpFwuUcFUzyeIB5PpLoMSSliKKoDwuEQRzVpQCTsB2rQRaMZqS5BVRCLx9m+rdhgJP2XMhTVAeFwiEg4zG/z/8rmrcWpLkeVEAqFiETCxGJxEgk/UIOoedMGXHTWCYTDIUOR9F/KUFSHbN5azMYtRakuQ5UQCoVIS4tQUhIzFElSQHm9RpIkCUORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJElAHQtFzz//PD/5yU/o06cPWVlZnHvuufzv//5vhX9gc968eZx55pl06tSJc845h6VLl1boa+fOndx888107dqV7OxsRo0axebNm2vrrUiSpICpU6HoscceIyMjg3HjxvHggw/Sp08fbr31Vu6///5km4ULF3LrrbcycOBAZsyYQVZWFtdeey1vvfVWub5Gjx7NihUrmDhxInfddRfr1q1jxIgRlJSU1PK7kiRJQZCW6gI+78EHH6Rp06bJ5zk5OWzfvp1Zs2Zx9dVXEw6Huffeezn77LMZPXo0AN27d+f999/n/vvvZ8aMGQC8+eabvPLKK+Tm5tKrVy8A2rdvz6BBg1i0aBGDBg2q9fcmSZLqtjo1U/T5QFTmhBNOoKioiOLiYtavX89HH33EwIEDy7UZNGgQr732Gp999hkAy5cvJxqN0rNnz2SbzMxMTjjhBJYvX16zb0KSJAVSnZop2p833niDFi1acOSRR/LGG28ApbM+n9ehQwf27dvH+vXr6dChAwUFBbRv355QKFSuXWZmJgUFBVWuKS2terNkJFLaXygUqlCzAiL0n8cQnsMgKht76emR5JhUcITDnr/DQTyeqLCOuDbV6VD05z//mby8PMaOHQvAjh07AIhGo+XalT0v219YWEijRo0q9Ne4cWPWrFlTpZrC4RBNmjSsUh9fJhIJk5YWqZG+VTvSIp6/oGrcqD7xeIIjjzwi1aWoCjx/wRaPJ5IBNxXqbCjatGkTY8aMoVu3blxyySWpLicpHk9QWFhcrX1GImGi0QxisTglJbFq7Vu1JFQaiEpiMUjdX3JUBfXSwoTDIX73wt/YvLV6x7hqQQgi4TCxeNwxGFDNmzbgwjOPp7BwN7FYvFr7jkYzDmoGsU6GosLCQkaMGMFRRx3F9OnTCYdL30jjxo2B0q/bN2vWrFz7z++PRqNs2rSpQr87duxItqmKkpLqPVllEonUThuq8pKXzBJ4DgOq7Lxt3lrMhs07U1yNDlUoFCItLUJJScwxGFBl5610gqBmPmcPpM5deN2zZw8jR45k586dzJw5s9xlsMzMTIAK64IKCgpIT0+nTZs2yXbr1q2rMDDWrVuX7EOSJOnz6lQoKikpYfTo0RQUFDBz5kxatGhRbn+bNm1o164d+fn55bbn5eWRk5NDvXr1AOjTpw87duzgtddeS7ZZt24d7777Ln369Kn5NyJJkgKnTl0+mzRpEkuXLmXcuHEUFRWVuyHjiSeeSL169bjuuuu46aabaNu2Ld26dSMvL4+3336bOXPmJNtmZ2fTq1cvbr75ZsaOHUv9+vWZOnUqHTt25IwzzkjBO5MkSXVdnQpFK1asAGDKlCkV9i1ZsoTWrVszePBgdu/ezYwZM3jkkUdo37499913H9nZ2eXaT5s2jcmTJzNhwgRKSkro1asX48ePJy2tTr1lSZJUR9SphPDSSy8dVLthw4YxbNiwr2zTqFEj7rjjDu64447qKE2SJB3m6tSaIkmSpFQxFEmSJGEokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJAKSluoDP+/jjj8nNzWX16tWsXbuWzMxMFixYkNy/YcMGTjvttP2+tl69evzlL3/5ynZdunRh7ty5NVO8JEkKtDoVitauXcuyZcvo0qUL8XicRCJRbn/z5s156qmnym1LJBJceeWVdO/evUJ/N9xwA926dUs+b9iwYc0ULkmSAq9OhaL+/ftz+umnAzBu3DjWrFlTbn+9evXIysoqt+3111+nqKiIwYMHV+jvmGOOqdBekiRpf+rUmqJw+NDLWbBgAUceeST9+/evgYokSdJ/izoVig7Vvn37WLRoEQMGDKB+/foV9k+cOJETTjiBnJwcxo8fz/bt22u/SEmSFAh16vLZoVq+fDnbt2+vcOmsXr16XHjhhfTq1YtoNMrq1at56KGHWLNmDfPmzSM9Pb1Kx01Lq94sGYmU9hcKhQiFQtXat2pJ6D+PITyHQZQceyEch0HkGAy8snFX9pmYCoEORc899xxf//rXycnJKbe9efPmTJw4Mfm8a9euHHfccYwcOZLFixczaNCgSh8zHA7RpEnNLNiORMKkpUVqpG/VjrSI5y+oIv++fB8JOw6DzDEYXGVhKBrNSFkNgQ1Fu3btYunSpQwbNozIQQyCvn370qBBA955550qhaJ4PEFhYXGlX78/kUiYaDSDWCxOSUmsWvtWLQmV/jIuicUgceDmqnti8Xjy0XEYQI7BwIvFSsdgYeHu5M/VJRrNOKgZqMCGosWLF7Nnzx6GDBlS68cuKanek1UmkUhUuA2BgiE5XZ/AcxhQyfPmOQwkx2DwlZ230gmCmvmcPZDALrResGABbdu2pUuXLgfVfunSpRQXF9OpU6carkySJAVRnZop2r17N8uWLQNg48aNFBUVkZ+fD5SuC2ratCkAW7du5bXXXmPEiBH77WfKlCmEQiGysrKIRqO8/fbbPPzww5x88snJ+yBJkiR9Xp0KRZ9++inXX399uW1lzx9//PHk3amff/55SkpKvvTSWYcOHfjd737H3Llz2bNnDy1atOAHP/gBo0aNIi2tTr1lSZJUR9SphNC6dWvee++9A7b74Q9/yA9/+MMv3T9s2DCGDRtWnaVJkqTDXGDXFEmSJFUnQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEhLdQGf9/HHH5Obm8vq1atZu3YtmZmZLFiwoFyb4cOHs3LlygqvzcvLo0OHDsnnO3fuZPLkybz44ovs27eP3r17M378eJo3b17j70OSJAVPnQpFa9euZdmyZXTp0oV4PE4ikdhvu1NOOYWxY8eW29a6detyz0ePHs0HH3zAxIkTqV+/PtOmTWPEiBHMnz+ftLQ69bYlSVIdUKfSQf/+/Tn99NMBGDduHGvWrNlvu2g0SlZW1pf28+abb/LKK6+Qm5tLr169AGjfvj2DBg1i0aJFDBo0qNprlyRJwVan1hSFw9VTzvLly4lGo/Ts2TO5LTMzkxNOOIHly5dXyzEkSdLhpU7NFB2slStXkpWVRSwWo0uXLlx//fWceuqpyf0FBQW0b9+eUChU7nWZmZkUFBRU+fhpadWbJSOR0v5CoVCFmhUQof88hvAcBlFy7IVwHAaRYzDwysZd2WdiKgQuFJ166qmce+65tGvXjs2bN5Obm8tll13GE088QXZ2NgCFhYU0atSowmsbN278pZfkDlY4HKJJk4ZV6uPLRCJh0tIiNdK3akdaxPMXVJF/z1RHwo7DIHMMBldZGIpGM1JWQ+BC0ahRo8o979evH4MHD+aBBx5gxowZNX78eDxBYWFxtfYZiYSJRjOIxeKUlMSqtW/VklDpL+OSWAz2//0A1XGxeDz56DgMIMdg4MVipWOwsHB38ufqEo1mHNQMVOBC0Rc1aNCAvn378sILLyS3RaNRNm3aVKHtjh07aNy4cZWPWVJSvSerTCKR+NJv3KluS07XJ/AcBlTyvHkOA8kxGHxl5610gqBmPmcPpE4ttK4umZmZrFu3rsLAWLduHZmZmSmqSpIk1WWBD0XFxcW8/PLLdOrUKbmtT58+7Nixg9deey25bd26dbz77rv06dMnFWVKkqQ6rk5dPtu9ezfLli0DYOPGjRQVFZGfnw9A165dKSgoYObMmQwYMIBWrVqxefNmZs2axZYtW7jnnnuS/WRnZ9OrVy9uvvlmxo4dS/369Zk6dSodO3bkjDPOSMl7kyRJdVudCkWffvop119/fbltZc8ff/xxWrZsyb59+5g6dSrbt28nIyOD7OxsJk2aROfOncu9btq0aUyePJkJEyZQUlJCr169GD9+vHezliRJ+1WnEkLr1q157733vrJNbm7uQfXVqFEj7rjjDu64447qKE2SJB3mAr+mSJIkqToYiiRJkjAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkANJSXcDnffzxx+Tm5rJ69WrWrl1LZmYmCxYsSO4vKipi1qxZLFu2jI8++oh69erRuXNnxowZQ8eOHZPtNmzYwGmnnVah/y5dujB37txaeS+SJClY6lQoWrt2LcuWLaNLly7E43ESiUS5/Z988glPPfUU3//+9xk9ejR79+7l0Ucf5fzzz2f+/Pl06NChXPsbbriBbt26JZ83bNiwVt6HJEkKnjoVivr378/pp58OwLhx41izZk25/a1bt2bx4sVkZGQkt3Xv3p3+/fvz29/+lltvvbVc+2OOOYasrKwar1uSJAVfnQpF4fBXL3Fq0KBBhW0NGzakbdu2bN68uabKkiRJ/wUCv9C6sLAwuf7oiyZOnMgJJ5xATk4O48ePZ/v27bVfoCRJCoQ6NVNUGXfeeSehUIgLL7wwua1evXpceOGF9OrVi2g0yurVq3nooYdYs2YN8+bNIz09vUrHTEur3iwZiZT2FwqFCIVC1dq3aknoP48hPIdBlBx7IRyHQeQYDLyycVf2mZgKlQ5Fl1xyCT/5yU/IycnZ7/4//elPPPDAAzz++OOVLu5A5s+fz9y5c5kyZQotW7ZMbm/evDkTJ05MPu/atSvHHXccI0eOZPHixQwaNKjSxwyHQzRpUjMLtiORMGlpkRrpW7UjLeL5C6rIvy/fR8KOwyBzDAZXWRiKRjMO0LLmVDoUrVy5kmHDhn3p/q1bt7Jq1arKdn9Ay5YtY8KECVx99dUMHTr0gO379u1LgwYNeOedd6oUiuLxBIWFxZV+/f5EImGi0QxisTglJbFq7Vu1JFT6y7gkFoPEgZur7onF48lHx2EAOQYDLxYrHYOFhbuTP1eXaDTjoGagqnT57KummD/++OMa+wr8W2+9xfXXX893v/tdrr/++ho5xlcpKanek1UmkUhUuA2BgiE5XZ/AcxhQyfPmOQwkx2DwlZ230gmCmvmcPZBDCkXPPPMMzzzzTPL5gw8+uN+bIe7cuZP33nuPPn36VL3CL/jggw8YOXIk3bt3Z9KkSQf9uqVLl1JcXEynTp2qvSZJkhR8hxSKdu/ezbZt25LPd+3atd+v0Tdo0IALLriAa6655pCK2b17N8uWLQNg48aNFBUVkZ+fD5SuC0okElxxxRXUr1+fSy+9tNx9jI488kiOPfZYAKZMmUIoFCIrK4toNMrbb7/Nww8/zMknn5y8D5IkSdLnHVIouuiii7jooouA0hst3nLLLfv95zQq69NPP61wOazsedmC7U2bNgHwox/9qFy7rl278sQTTwDQoUMHfve73zF37lz27NlDixYt+MEPfsCoUaNISwv8F+4kSVINqHRCeOmll6qzDqD0jtXvvffeV7Y50H6AYcOGfeUicEmSpC+q8rRJUVERn3zyCYWFhftd3HbqqadW9RCSJEk1rtKhaOvWrfzyl79k0aJFxGIVv76aSCQIhUL89a9/rVKBkiRJtaHSoWjChAksXbqU4cOH8+1vf5toNFqddUmSJNWqSoeiFStWcOmll/LTn/60OuuRJElKiUr/AyNHHHEErVq1qs5aJEmSUqbSoeicc87hxRdfrM5aJEmSUqbSl8/OPPNMVq1axRVXXMH5559Py5YtieznH+I76aSTqlSgJElSbah0KCq7iSPAq6++WmG/3z6TJElBUulQNHny5OqsQ5IkKaUqHYqGDh1anXVIkiSlVKUXWkuSJB1OKj1T9LOf/eyAbUKhEHfccUdlDyFJklRrKh2KXn/99Qrb4vE4W7ZsIRaL0bRpUzIyMqpUnCRJUm2pdCh66aWX9rt93759PPXUU8yePZtHH3200oVJkiTVpmpfU5Sens7FF19Mz549+cUvflHd3UuSJNWIGltoffzxx7Nq1aqa6l6SJKla1VgoevXVV11TJEmSAqPSa4ruu+++/W7fuXMnq1at4t133+XHP/5xpQuTJEmqTdUeiho3bkybNm2YNGkS5513XqULkyRJqk2VDkV/+9vfqrMOSZKklPKO1pIkSVRhpqjMypUrefnll/nkk08AOProo+nXrx9du3atcnGSJEm1pdKh6LPPPuPGG2/kxRdfJJFIEI1GASgsLGTWrFkMGDCA3/zmN6Snp1dbsZIkSTWl0pfP7r//fhYvXsxll13GK6+8wsqVK1m5ciUrVqzg8ssvZ9GiRdx///3VWaskSVKNqXQoeu655xg6dCg//elP+frXv57c/rWvfY3/+Z//4bvf/S7PPvtstRQpSZJU0yodirZs2ULnzp2/dH/nzp3ZsmVLZbuXJEmqVZUORS1btmTlypVfun/VqlW0bNmyst1LkiTVqkqHou9+97s8//zzTJgwgYKCAmKxGPF4nIKCAm677Tby8/MZOnRoddYqSZJUYyr97bOrrrqK9evXM3fuXObNm0c4XJqv4vE4iUSCoUOHctVVV1VboZIkSTWp0qEoEokwZcoUfvSjH7F8+XI2btwIQKtWrejTpw/HH3/8Iff58ccfk5uby+rVq1m7di2ZmZksWLCgQrt58+Yxc+ZMPvnkE9q3b8+YMWP4zne+U67Nzp07mTx5Mi+++CL79u2jd+/ejB8/nubNm1fuDUuSpMPaIYWivXv3cvvtt3PccccxfPhwAI4//vgKAejxxx/n97//Pbfccssh3ado7dq1LFu2jC5duiRnnL5o4cKF3HrrrVx11VV0796dvLw8rr32Wp588kmysrKS7UaPHs0HH3zAxIkTqV+/PtOmTWPEiBHMnz+ftLQq37NSkiQdZg4pHTz11FM888wz5OXlfWW7fv36ceedd/LNb36Tiy666KD779+/P6effjoA48aNY82aNRXa3HvvvZx99tmMHj0agO7du/P+++9z//33M2PGDADefPNNXnnlFXJzc+nVqxcA7du3Z9CgQSxatIhBgwYddE2SJOm/wyEttH7++ec544wzaNOmzVe2a9u2LWeddRYLFy48tGLCX13O+vXr+eijjxg4cGC57YMGDeK1117js88+A2D58uVEo1F69uyZbJOZmckJJ5zA8uXLD6kmSZL03+GQZoref/99hgwZclBts7OzWbp0aaWK+jIFBQVA6azP53Xo0IF9+/axfv16OnToQEFBAe3btycUCpVrl5mZmeyjKtLSqvff0Y1ESvsLhUIValZAhP7zGMJzGETJsRfCcRhEjsHAKxt3ZZ+JqXBIoWjfvn0HvUYoPT09OXNTXXbs2AGQ/HfWypQ9L9tfWFhIo0aNKry+cePG+70kdyjC4RBNmjSsUh9fJhIJk5YWqZG+VTvSIp6/oIr8e6Y6EnYcBpljMLjKwlA0mpGyGg4pFDVv3py1a9ceVNu1a9celt/0iscTFBYWV2ufkUiYaDSDWCxOSUmsWvtWLQmV/jIuicWg4vcDFACxeDz56DgMIMdg4MVipWOwsHB38ufqEo1mHNQM1CGFoh49evCHP/yBkSNH8rWvfe1L23366af84Q9/4MwzzzyU7g+ocePGQOnX7Zs1a5bcXlhYWG5/NBpl06ZNFV6/Y8eOZJuqKCmp3pNVJpFI7Pcbd6r7ktP1CTyHAZU8b57DQHIMBl/ZeSudIKiZz9kDOaQLdyNGjGDv3r1ceumlrF69er9tVq9ezY9+9CP27t3LlVdeWS1FlsnMzASosC6ooKCA9PT05ALwzMxM1q1bV2FgrFu3LtmHJEnS5x3STFGbNm2YNm0aN9xwAxdccAFt2rThm9/8Jg0bNmTXrl2sXbuWv//97xxxxBHcfffdtG3btlqLbdOmDe3atSM/Pz/51X2AvLw8cnJyqFevHgB9+vThgQce4LXXXqNHjx5AaSB69913qz2oSZKkw8Mh38WwX79+PPvss8yYMYOXX36ZF198MbmvefPmDBs2jBEjRhzwa/v7s3v3bpYtWwbAxo0bKSoqIj8/H4CuXbvStGlTrrvuOm666Sbatm1Lt27dyMvL4+2332bOnDnJfrKzs+nVqxc333wzY8eOpX79+kydOpWOHTtyxhlnHHJdkiTp8FepWzu3bt2aSZMmAVBUVMSuXbto2LAhRx55ZJWK+fTTT7n++uvLbSt7/vjjj9OtWzcGDx7M7t27mTFjBo888gjt27fnvvvuIzs7u9zrpk2bxuTJk5kwYQIlJSX06tWL8ePHezdrSZK0X6GEK9IOSSwWZ+vWXdXaZ1pamCZNGjLtt2+wcUtRtfat2hEKhUhLi1BSEnORZ0BlfbMZPxx4Ivf87v/YsHlnqsvRIXIMBl+rZkcy+qJvsW3brmpfaN20acOD+vZZ6u6QJEmSVIcYiiRJkjAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkANJSXcChGj58OCtXrtzvvrvvvpuzzz77S9vk5eXRoUOHmi5RkiQFUOBC0W233UZRUVG5bbNnz2bRokXk5OQkt51yyimMHTu2XLvWrVvXSo2SJCl4AheKjj322ArbbrzxRnr27EnTpk2T26LRKFlZWbVYmSRJCrLAryn6v//7PzZs2MCQIUNSXYokSQqwwIeiBQsW0KBBA0477bRy21euXElWVhadOnXi4osvZtWqVSmqUJIkBUHgLp99XklJCc8//zz9+/enQYMGye2nnnoq5557Lu3atWPz5s3k5uZy2WWX8cQTT5CdnV3l46alVW+WjERK+wuFQoRCoWrtW7Uk9J/HEJ7DIEqOvRCOwyByDAZe2bgr+0xMhUCHohUrVrB161YGDx5cbvuoUaPKPe/Xrx+DBw/mgQceYMaMGVU6ZjgcokmThlXq48tEImHS0iI10rdqR1rE8xdUkXA4+eg4DC7HYHCVhaFoNCNlNQQ6FC1YsICjjjqKXr16fWW7Bg0a0LdvX1544YUqHzMeT1BYWFzlfj4vEgkTjWYQi8UpKYlVa9+qJaHSX8YlsRgkUl2MKiMWjycfHYcB5BgMvFisdAwWFu5O/lxdotGMg5qBCmwo2rNnDy+++CLnnHMO6enptXrskpLqPVllEokEiYSjOYiS0/UJPIcBlTxvnsNAcgwGX9l5K50gqJnP2QMJ7ELrl156ieLi4oP61llxcTEvv/wynTp1qoXKJElSEAV2pui5557j6KOP5lvf+la57X/+85+ZOXMmAwYMoFWrVmzevJlZs2axZcsW7rnnnhRVK0mS6rpAhqIdO3bwxz/+kUsvvbTCt0SaNWvGvn37mDp1Ktu3bycjI4Ps7GwmTZpE586dU1SxJEmq6wIZiho3bsyaNWv2u++YY44hNze3liuSJElBF9g1RZIkSdXJUCRJkoShSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkIICh6Omnn6Zjx44V/rvrrrvKtZs3bx5nnnkmnTp14pxzzmHp0qUpqliSJAVBWqoLqKyZM2fSqFGj5PMWLVokf164cCG33norV111Fd27dycvL49rr72WJ598kqysrBRUK0mS6rrAhqKTTjqJpk2b7nffvffey9lnn83o0aMB6N69O++//z73338/M2bMqMUqJUlSUATu8tmBrF+/no8++oiBAweW2z5o0CBee+01PvvssxRVJkmS6rLAzhQNHjyYbdu2cfTRR3Peeedx5ZVXEolEKCgoAKB9+/bl2nfo0IF9+/axfv16OnToUKVjp6VVb5aMREr7C4VChEKhau1btST0n8cQnsMgSo69EI7DIHIMBl7ZuCv7TEyFwIWiZs2acd1119GlSxdCoRAvvfQS06ZN45///CcTJkxgx44dAESj0XKvK3tetr+ywuEQTZo0rFIfXyYSCZOWFqmRvlU70iKev6CKhMPJR8dhcDkGg6ssDEWjGSmrIXChqHfv3vTu3Tv5vFevXtSvX5/Zs2dz1VVX1fjx4/EEhYXF1dpnJBImGs0gFotTUhKr1r5VS0Klv4xLYjFIpLoYVUYsHk8+Og4DyDEYeLFY6RgsLNyd/Lm6RKMZBzUDFbhQtD8DBw7k0Ucf5a9//SuNGzcGYOfOnTRr1izZprCwECC5vypKSqr3ZJVJJBIkEo7mIEpO1yfwHAZU8rx5DgPJMRh8ZeetdIKgZj5nD+SwW2idmZkJkFxbVKagoID09HTatGmTirIkSVIdd1iEory8PCKRCCeeeCJt2rShXbt25OfnV2iTk5NDvXr1UlSlJEmqywJ3+eyKK66gW7dudOzYEYAlS5Ywd+5cLrnkkuTlsuuuu46bbrqJtm3b0q1bN/Ly8nj77beZM2dOKkuXJEl1WOBCUfv27Zk/fz6bNm0iHo/Trl07br75ZoYPH55sM3jwYHbv3s2MGTN45JFHaN++Pffddx/Z2dkprFySJNVlgQtF48ePP6h2w4YNY9iwYTVcjSRJOlwcFmuKJEmSqspQJEmShKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBkJbqAg7V888/z7PPPss777xDYWEhxxxzDMOHD+f73/8+oVAIgOHDh7Ny5coKr83Ly6NDhw61XbIkSQqAwIWixx57jFatWjFu3DiaNGnCq6++yq233sqmTZu49tprk+1OOeUUxo4dW+61rVu3ru1yJUlSQAQuFD344IM0bdo0+TwnJ4ft27cza9Ysrr76asLh0iuC0WiUrKysFFUpSZKCJnBrij4fiMqccMIJFBUVUVxcnIKKJEnS4SBwoWh/3njjDVq0aMGRRx6Z3LZy5UqysrLo1KkTF198MatWrUphhZIkqa4L3OWzL/rzn/9MXl5eufVDp556Kueeey7t2rVj8+bN5Obmctlll/HEE0+QnZ1d5WOmpVVvloxESvsLhULJxeIKmNB/HkN4DoMoOfZCOA6DyDEYeGXjruwzMRUCHYo2bdrEmDFj6NatG5dcckly+6hRo8q169evH4MHD+aBBx5gxowZVTpmOByiSZOGVerjy0QiYdLSIjXSt2pHWsTzF1SRf69HjIQdh0HmGAyusjAUjWakrIbAhqLCwkJGjBjBUUcdxfTp05MLrPenQYMG9O3blxdeeKHKx43HExQWVu/apUgkTDSaQSwWp6QkVq19q5aESn8Zl8RikEh1MaqMWDyefHQcBpBjMPBisdIxWFi4O/lzdYlGMw5qBiqQoWjPnj2MHDmSnTt38tRTT9GoUaNaPX5JSfWerDKJRIJEwtEcRMnp+gSew4BKnjfPYSA5BoOv7LyVThDUzOfsgQQuFJWUlDB69GgKCgp48sknadGixQFfU1xczMsvv0ynTp1qoUJJkhREgQtFkyZNYunSpYwbN46ioiLeeuut5L4TTzyRt99+m5kzZzJgwABatWrF5s2bmTVrFlu2bOGee+5JXeGSJKlOC1woWrFiBQBTpkypsG/JkiU0a9aMffv2MXXqVLZv305GRgbZ2dlMmjSJzp0713a5kiQpIAIXil566aUDtsnNza2FSiRJ0uHksLh5oyRJUlUZiiRJkjAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEHOah6MMPP+Syyy4jKyuLnj178utf/5rPPvss1WVJkqQ6KC3VBdSUHTt2cOmll9KuXTumT5/OP//5T6ZMmcKePXuYMGFCqsuTJEl1zGEbin7/+9+za9cu7rvvPo466igAYrEYkyZNYuTIkbRo0SK1BUqSpDrlsL18tnz5cnJycpKBCGDgwIHE43FWrFiRusIkSVKddNjOFBUUFPD973+/3LZoNEqzZs0oKCiodL/hcIimTRtWtbxyQqHSxyu/24lYPFGtfUs6OOlppX9HvOLckx2HUgpEwqUfho0bZ5Co5iEY/nffB3LYhqLCwkKi0WiF7Y0bN2bHjh2V7jcUChGJHNwf7qE6skG9GulX0sFzHEqpFQ6n7iLWYXv5TJIk6VActqEoGo2yc+fOCtt37NhB48aNU1CRJEmqyw7bUJSZmVlh7dDOnTvZsmULmZmZKapKkiTVVYdtKOrTpw+vvvoqhYWFyW35+fmEw2F69uyZwsokSVJdFEokqnuNd92wY8cOzj77bNq3b8/IkSOTN28cMmSIN2+UJEkVHLahCEr/mY9f/OIXvPnmmzRs2JBzzz2XMWPGUK+e3y6RJEnlHdahSJIk6WAdtmuKJEmSDoWhSJIkCUORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEkATJ8+nY4dO9K7d2/i8XiF/RdccAEdO3Zk3LhxB93nhg0b6NixI/n5+dVZqhQ4ZePri/8NHjw41aUldezYkdzc3FSXoRRLS3UBUl2Rnp7Otm3bWLVqFd26dUtu37hxI2+99RYNGjRIYXVSsB1xxBHMnj27wjapLjEUSf+Wnp5OTk4OCxcuLBeKFi5cyHHHHUc47MSqVFnhcJisrKxUlyF9JX/LS58zePBgXnjhBfbt25fctmDBggrT/B9++CFjxoyhb9++dOnShUGDBvHoo4/u99LbFz399NMMGTKETp060bt3b6ZOnUosFqv29yIFxcsvv8ywYcPo3Lkz3bt357bbbqO4uDi5//XXX6djx4788Y9/5Prrryc7O5t+/frx3HPPAfD444/Tr18/unbtyi233MJnn32WfO3mzZv52c9+xmmnnUbnzp0544wzuPvuu8u1qWxdOvw4UyR9zne+8x1uueUWVqxYQb9+/fjggw947733uP/++8nLy0u227x5M+3bt2fIkCE0bNiQv/71r0yfPp3i4mKuvfbaL+1/1qxZ3HnnnVx66aWMGzeODz/8MBmKbrrpptp4i1LKlJSUlHseiUR44YUXGDNmDN/73ve47rrr2LJlC7/5zW8oLCxk6tSp5dpPnDiRoUOHct555zF37lx++tOf8re//Y21a9cyadIk1q9fz5QpU2jTpg1XXXUVANu2beOoo47iZz/7GdFolI8++ojp06ezZcsWJk+e/KW15ufnH3RdOnwYiqTPycjIoH///ixcuJB+/fqxYMECsrOzadOmTbl2OTk55OTkAJBIJPjWt77Fnj17mDNnzpeGoqKiIu69916uvPJKbrjhBgB69uxJeno6U6ZM4YorrqBJkyY1+walFCkuLuakk04qt+1Xv/oV9957L4MGDeL2229Pbm/WrBk//vGPufrqqznuuOOS288666zk+OrcuTOLFy9m4cKFLF68mPT0dABWrlxJfn5+MhR17NiRsWPHJvs45ZRTyMjIYNy4cUyYMIGMjIwKtSYSCX79618fdF06fBiKpC8YPHgwN954I3v27CEvL4/hw4dXaLN3714efvhhnnvuOf7xj3+Uu9y2a9cuGjZsWOE1b775JsXFxZx11lnl/sbco0cP9uzZw9q1a+natWvNvCkpxY444gjmzJlTbls8Hmfjxo3cfPPN5cZE165dCYfDrFmzplz46NmzZ/LnRo0a0bRpU7797W8nAxFAu3bteP3115PPE4kEs2fPZu7cuWzYsIG9e/cm961fv55vfvObFWpdt27dIdWlw4ehSPqCXr16kZ6ezj333MOGDRsYOHBghTZ33nkn8+bN45prruHkk0+mUaNGLFmyhAcffJC9e/fuNxRt27YNgKFDh+73uP/4xz+q941IdUg4HKZTp07ltr3xxhsAXHPNNft9zRfHRKNGjco9r1evHtFotNy29PT0cuuFZs+eza9+9SuuvPJKunXrRjQa5S9/+Qs///nPywWkzysbqwdblw4fhiLpC9LT0znjjDN47LHHyMnJ4etf/3qFNvn5+Zx//vn8+Mc/Tm5btmzZV/bbuHFjAO677z5atmxZYX/r1q2rWLkULEcddRQAEyZMoHPnzhX2N2/evMrHyM/Pp3///tx4443JbR9++GHK61LdZCiS9mPYsGF8+umnnHfeefvdv3fv3nJT9rFYjIULF35ln9nZ2WRkZLBp0yYGDBhQrfVKQZSZmUnLli1Zv349P/zhD2vkGHv27Ck3VoHkt9ZSWZfqJkORtB+dO3fmgQce+NL9PXr0YN68eRx77LE0adKE3/72twf8im80GmXUqFHceeedbNq0ia5duxKJRFi/fj1Llixh+vTp+130KR2uQqEQ48aN46abbqK4uJh+/fqRkZHBJ598wrJlyxgzZgzt27ev0jF69OjB448/zpw5c2jXrh3PPvssH3/8ccrrUt1kKJIq4dZbb+W2227jF7/4BRkZGQwdOpQBAwYwfvz4r3zd5ZdfTosWLZg1axZz5swhLS2Ntm3b0q9fvwp/m5X+GwwcOJBoNMpDDz2UnMFp1aoVvXv33u+l60N1zTXXsG3bNu69914AzjzzTMaPH5/8dlqq6lLdFEokEolUFyFJkpRq3tFakiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSYesf//+jBs3LtVlSKpm3tFaUp22fv16Zs2axYoVK9i0aRNQemfhbt26cf7553P88cenuEJJhwtDkaQ6a+nSpYwZM4ZIJMKQIUM4/vjjCYfDFBQUsGjRIn73u9+xZMkSWrVqlepSJR0GDEWS6qS///3v3HDDDRx99NE89thjNG/evNz+m266id/+9reEw8FeBVBSUkI8HqdevXqpLkX6rxfs3yaSDlszZ86kuLiYyZMnVwhEAGlpaVxyySV84xvfSG778MMPGTVqFF27dqVTp05873vfY8mSJeVe9/TTT9OxY0feeOMNJk+eTPfu3cnKyuKaa65h69at5domEgkeeOAB+vTpQ5cuXRg+fDhr167db72FhYXcfvvt9O3bl5NPPpkBAwbwyCOPEI/Hk202bNhAx44dyc3N5bHHHuP000+nU6dOfPjhh1X5o5JUTZwpklQnLV26lGOOOYYuXbocVPu1a9dy4YUX0qJFC0aMGEGDBg14/vnnueaaa5g+fToDBgwo1/6Xv/wl0WiUa6+9lo0bNzJ79mx+/vOfM23atGSbe+65hwcffJC+ffvSt29f3nnnHS6//HL27dtXrq/du3dz8cUX889//pMLLriAb3zjG7z55pvcfffdbNmyhVtuuaVc+6effpq9e/dy3nnnUa9ePRo3bly5PyRJ1cpQJKnOKSoqYvPmzZx++ukV9hUWFlJSUpJ83qBBA4444ghuv/12vvGNbzB//vzkpaiLLrqICy+8kLvuuqtCKDrqqKN49NFHCYVCAMTjcZ544gl27txJo0aN2Lp1KzNnzqRfv3489NBDyXZTp07loYceKtfXrFmzWL9+Pc888wzt2rUD4IILLqB58+bk5uZy+eWXl5vR2rRpE4sXL6Zp06ZV/8OSVG28fCapzikqKgJKA88XDR8+nJycnOR/Tz75JNu3b+dPf/oTAwcOpKioiK1bt7J161a2bdtGr169+Oijj/jnP/9Zrp/zzjsvGXQAvv3tbxOLxdi4cSMAr776Kvv27ePiiy8u1+7SSy+tUFN+fj7f+ta3iEajyWNv3bqVHj16EIvFWLVqVbn2Z5xxhoFIqoOcKZJU5zRs2BCA4uLiCvt+/vOfs2vXLv71r3/xP//zP0DpouxEIsE999zDPffcs98+P/30U1q0aJF8fvTRR5fbH41GgdKZKIBPPvkEIDnzU6Zp06YVLnd9/PHHvPfee+Tk5Oz32F9cq9S6dev9tpOUWoYiSXVOo0aNaNas2X4XNZetMdqwYUNyW9li5ssvv5zevXvvt8+2bduWe/5l31pLJBKHXG88Hqdnz55ceeWV+93/xWB1xBFHHPIxJNU8Q5GkOqlfv37MmzePt99+m86dO39l2zZt2gCQnp5Ojx49quX4ZTNJH330UbJ/KJ312bFjR7m2bdu2pbi4uNqOLSk1XFMkqU668sorycjI4Oabb+Zf//pXhf2fn9H52te+RteuXXnqqafYvHlzhbZfvHx1MHr06EF6ejpz5swpd6zZs2dXaDtw4EDefPNN/vjHP1bY98WF4ZLqLmeKJNVJ7dq146677uLGG2/krLPOSt7ROpFIsGHDBhYsWEA4HKZly5YA3HbbbVx00UUMGTKE8847jzZt2vCvf/2Lt956i02bNvHss88e0vGbNm3K5ZdfzsMPP8zIkSPp27cv7777LsuXL6dJkybl2l5xxRW89NJLXHXVVQwdOpSTTjqJ3bt38/777/PCCy+wZMkSF1ZLAWAoklRnnX766Tz33HM8+uijrFixgvnz5xMKhTj66KPp27cvF154YfLfPjv22GOZP38+9913H8888wzbt2+nadOmnHjiiVxzzTWVOv7o0aOpV68ev//973n99dfp3Lkzjz76KCNHjizXLiMjgyeeeIKHH36Y/Px8/t//+38ceeSRtGvXjuuuu45GjRpV+c9CUs0LJSqzqlCSJOkw45oiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJAD+P57COIPl6HJEAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=steak, x=\"Gender\")" + ] + }, + { + "attachments": {}, "cell_type": "markdown", "id": "continental-franklin", "metadata": {}, "source": [ - "**Data Overview**\n", + "**What is the data about and where is it from?**\n", "\n", - "*✏️ Write 2-3 sentences describing this dataset. Be sure to include where the data comes from and what it contains.*" + "![alt text](538.jpg)\n", + "\n", + "This is a data set from the website 538. It was a data set collected by Walt Hickey. It is a steak risky survey. The data examines how people value and interpret risk in life, and does this have a correlation to how they order their steak. 550 people were surveyed. It seeks to interpret if people who do risky behaviors (smoke, gamble, drink) order their steak in the same manner (rare) and risk food borne illness." ] }, { @@ -95,22 +312,12 @@ "# Methods and Results" ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "basic-canadian", - "metadata": {}, - "outputs": [], - "source": [ - "#Import any helper files you need here" - ] - }, { "cell_type": "markdown", "id": "recognized-positive", "metadata": {}, "source": [ - "## First Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n" + "## First Research Question: *Do people (males and females) who drink also order their steak rare?*\n" ] }, { @@ -129,9 +336,18 @@ "*Explain how you will approach this research question below. Consider the following:* \n", " - *Which aspects of the dataset will you use?* \n", " - *How will you reorganize/store the data?* \n", - " - *What data science tools/functions will you use and why?* \n", - " \n", - "✏️ *Write your answer below:*\n", + " - *What data science tools/functions will you use and why?*\n", + "\n", + "\n", + "**I will use the columns Drink/Cooked to answer this question.\n", + "I will...\n", + "\n", + "-get the value of people who drink\n", + "-get the value of people who order steak rare\n", + "-get the value of people who do both drinking and order their steak rare\n", + "\n", + "I will use pandas to handle my data (as data frames), seaborne to create visualizations\n", + "\n", "\n" ] }, @@ -140,31 +356,231 @@ "id": "portuguese-japan", "metadata": {}, "source": [ - "### Results " + "# Results " + ] + }, + { + "cell_type": "markdown", + "id": "68678a65-6dd4-4fff-bb4e-70492249e021", + "metadata": {}, + "source": [ + "### Number of people who Drink" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 32, "id": "negative-highlight", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "drink\n", + "Yes 339\n", + "No 93\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "#######################################################################\n", - "### 💻 YOUR WORK GOES HERE TO ANSWER THE FIRST RESEARCH QUESTION 💻 \n", - "### \n", - "### Your data analysis may include a statistic and/or a data visualization\n", - "#######################################################################" + "steak.drink.value_counts()" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 33, "id": "victorian-burning", - "metadata": {}, - "outputs": [], + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMPNJREFUeJzt3Xt8VNW9///XzISbgQmXIh4uSpJqQA0SEREJqSBKASvVao8PFZSjKLaA6NcKpUDF2mJbPSAIKJHitdWitbU1IqIIBamox8tRqqKhingQKpBJACGZmd8f/DI1TVTIdQZfz8fDRzJ7r1nz2S72zDt7rZkJxOPxOJIkSV9zwaYuQJIkKRkYiiRJkjAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSQCkNXUBn7dq1SoKCwt57733KCsro1OnTgwZMoTx48fTpk0bAKZMmcLjjz9e7b6FhYUUFBQkbu/fv5/Zs2fzxBNPsHv3bvLy8pg+fTpZWVl1qjEejxOL+SHgqi4YDPhvQ2pCnoP6IsFggEAg8JXtkioU7dq1i169ejFq1Cjatm3Lxo0bmTdvHhs3buQ3v/lNol23bt247bbbqtw3Ozu7yu1bbrmFoqIipkyZQqdOnbjrrru4/PLLefLJJxMBqzZisTg7duyu9f11eEpLC9KuXTqRyB4qKmJNXY70teM5qC/Tvn06oVCKhaKRI0dWud2vXz+aN2/O9OnT+eSTT+jUqRMALVu2pHfv3l/Yz9atW3n00Uf56U9/ygUXXABAbm4ugwYN4uGHH2bs2LENdgySJCk1Jf2aorZt2wJQXl5+0PdZs2YNsViMb3/721X6GTBgAKtXr67vEiVJ0mEgKUNRNBpl3759vPXWW8yfP5/BgwfTtWvXxP4PPviAPn36cOKJJ3L++eezYsWKKvcvLi6mQ4cOZGRkVNmenZ1NcXFxoxyDJElKLUk1fVZp0KBBfPLJJwAMHDiQ22+/PbGvZ8+e5Obm8s1vfpPS0lJ+97vf8cMf/pA77rgjcWUoEonUuG4oHA5TUlJS5/rS0pIyS6oJhULBKj8lNS7PQdWHpAxFixYtYu/evbz33nssXLiQcePGsWTJEkKhEJdddlmVtoMHD+aiiy5i7ty5VabLGkowGKBdu/QGfxylpnC4VVOXIH2teQ6qLpIyFPXo0QOAvLw8cnNzGTlyJM8880yNoScYDHL22Wfz61//ms8++4yWLVsSDocpKyur1jYSiVSbUjtUsVicSGRPnfrQ4ScUChIOtyIS2Us06jtfpMbmOagvEw63OqiriEkZij4vJyeHZs2a8eGHHx70fbKysvjnP/9JSUlJlRBUXFxc588pAny7p75QNBrz34fUhDwHVRdJP/n6+uuvU15eXmWh9efFYjGWLVvGscceS8uWLQHIz88nGAyyfPnyRLuSkhLWrFlT5QMeJUmSKiXVlaLx48dz4oknkpOTQ8uWLXn77bdZvHgxOTk5DBkyhC1btjBlyhRGjBjBMcccQ0lJCb/73e948803mTdvXqKfo446igsuuIBf/epXBINBOnXqxN13302bNm246KKLmvAIJUlSskqqUNSrVy+KiopYtGgR8XicLl26cOGFF3LFFVfQvHlz0tPTad26NQsXLuTTTz+lWbNmnHjiiRQWFjJw4MAqfU2bNo309HRuv/12du/ezcknn8ySJUvq9GnWkiTp8BWIx+N+UcwhiEZjfs2Hqqn8ioGdO3e7nkFqAp6D+jIHvubjq1cMJf2aIkmSpMZgKJIkScJQJEmSBCTZQuuvs2AwQDAYaOoyVEt+xcDhIRaLE4u5zFL6ujIUJYFgMEDbdkcQCvqCmur8ioHUFo3F2LVzj8FI+poyFCWBYDBAKBjkt8v+zrYdfoVIKgoEAoRCQaLRGL6hMzUd2f4ILv52T4LBgKFI+poyFCWRbTv2sGV79e9sU/ILBAKkpYWoqIgaiiQpRTlfI0mShKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJApIsFK1atYpLL72U0047jRNPPJEzzzyTWbNmUVpaWqXdc889x7nnnktubi5Dhw7lscceq9bX/v37+eUvf8mAAQPo3bs3Y8aMobi4uLEORZIkpZikCkW7du2iV69ezJw5k8WLFzNmzBj++Mc/cu211ybavPzyy4wfP57evXtTWFjIsGHD+MlPfsKyZcuq9HXLLbewdOlSrrvuOubNm8f+/fu5/PLLqwUsSZIkgLSmLuDzRo4cWeV2v379aN68OdOnT+eTTz6hU6dOLFy4kF69enHzzTcDcNppp7F582bmzp3Lt7/9bQC2bt3Ko48+yk9/+lMuuOACAHJzcxk0aBAPP/wwY8eObdwDkyRJSS+prhTVpG3btgCUl5ezf/9+XnzxxUT4qTR8+HDef/99PvroIwDWrFlDLBar0q5t27YMGDCA1atXN1rtkiQpdSRlKIpGo+zbt4+33nqL+fPnM3jwYLp27cqHH35IeXk5WVlZVdpnZ2cDJNYMFRcX06FDBzIyMqq1c12RJEmqSVJNn1UaNGgQn3zyCQADBw7k9ttvB6CkpASAcDhcpX3l7cr9kUiENm3aVOs3HA4n2tRFWlr9ZslQ6EB/gUCAQCBQr32rkQT+9TOAY5iKKs+9yvNRqaVy3Bw/1UVShqJFixaxd+9e3nvvPRYuXMi4ceNYsmRJU5cFQDAYoF279AbpOxQKkpYWapC+1TjSQo5fqqp8MQ2HWzVxJaoLx091kZShqEePHgDk5eWRm5vLyJEjeeaZZ/jmN78JUO0dZJFIBCAxXRYOhykrK6vWbyQSqTaldqhisTiRyJ469fHvQqEg4XArotEYFRXReu1bjSRwIBBVRKMQb+piVBvRaAyASGRv4neljsrnUcdPNQmHWx3UVcSkDEWfl5OTQ7Nmzfjwww8ZPHgwzZo1o7i4mIEDBybaVK4TqlxrlJWVxT//+U9KSkqqhKDi4uJq65Fqo6KiYU64eDxOPO4raipKTJnFcQxTVOW4HfjjxBfVVOX4qS6SfvL19ddfp7y8nK5du9K8eXP69evH008/XaVNUVER2dnZdO3aFYD8/HyCwSDLly9PtCkpKWHNmjUUFBQ0av2SJCk1JNWVovHjx3PiiSeSk5NDy5Ytefvtt1m8eDE5OTkMGTIEgGuuuYbRo0dz0003MWzYMF588UX+8pe/MHv27EQ/Rx11FBdccAG/+tWvCAaDdOrUibvvvps2bdpw0UUXNdXhSZKkJJZUoahXr14UFRWxaNEi4vE4Xbp04cILL+SKK66gefPmAJxyyinMmzePOXPm8Oijj9K5c2duueUWhg0bVqWvadOmkZ6ezu23387u3bs5+eSTWbJkSY3vSpMkSQrEXQBxSKLRGDt27K7XPtPSgrRrl86c377Clu3VF4gr+QUCAdLSQlRURF1TlKK6dGzNpIv7sHPnbtekpKDK51HHTzVp3z79oBZaJ/2aIkmSpMZgKJIkScJQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEkApDV1AZ/31FNP8cQTT/DWW28RiUQ45phjGDVqFN/73vcIBAIAjBo1ivXr11e7b1FREdnZ2YnbpaWlzJo1ixUrVlBeXs7AgQOZNm0aRx55ZKMdjyRJSh1JFYruvfdeunTpwpQpU2jXrh0vvPAC06dPZ+vWrYwfPz7R7uSTT2by5MlV7tu1a9cqtydNmsR7773HTTfdRIsWLZgzZw5jx47lscceIy0tqQ5bkiQlgaRKBwsXLqR9+/aJ2/3792fXrl0sWbKEH/zgBwSDB2b7wuEwvXv3/sJ+Xn31VdasWcPixYvJz88HIDMzk+HDh7N8+XKGDx/eoMchSZJST1KtKfp8IKrUs2dPysrK2LNnz0H3s3r1asLhMAMGDEhsy8rKomfPnqxevbpeapUkSYeXpApFNXnllVfo1KkTrVu3Tmxbv349vXv3Jjc3l0svvZSXXnqpyn2Ki4vJzMxMrEOqlJWVRXFxcaPULUmSUktSTZ/9u5dffpmioqIq64f69u3LyJEj6d69O9u2bWPx4sWMGTOGBx54gLy8PAAikQht2rSp1l9GRgZvvvlmnetKS6vfLBkKHegvEAhUC3JKEYF//QzgGKaiynOv8nxUaqkcN8dPdZG0oWjr1q1cd9119OvXj9GjRye2T5w4sUq7M844g3POOYcFCxZQWFjY4HUFgwHatUtvkL5DoSBpaaEG6VuNIy3k+KWqyhfTcLhVE1eiunD8VBdJGYoikQhjx46lbdu2zJs3L7HAuiZHHHEE3/rWt3j66acT28LhMFu3bq3WtqSkhIyMjDrVFovFiUQOfn3TwQiFgoTDrYhGY1RUROu1bzWSwIFAVBGNQrypi1FtRKMxACKRvYnflToqn0cdP9UkHG51UFcRky4UffbZZ1x99dWUlpbyyCOP1DgN9lWysrJYt24d8Xi8ynTUpk2bOO644+pcY0VFw5xw8XiceNxX1FSUmDKL4ximqMpxO/DHiS+qqcrxU10k1eRrRUUFkyZNori4mHvuuYdOnTp95X327NnD888/T25ubmJbQUEBJSUlrFu3LrFt06ZNbNiwgYKCggapXZIkpbakulI0c+ZMVq5cyZQpUygrK+O1115L7Dv++ON54403uOeeezjrrLPo0qUL27ZtY8mSJWzfvp077rgj0TYvL4/8/HymTp3K5MmTadGiBbNnzyYnJ4ezzz67CY5MkiQlu6QKRWvXrgXg1ltvrbbv2WefpWPHjpSXlzN79mx27dpFq1atyMvLY+bMmfTq1atK+zlz5jBr1ixmzJhBRUUF+fn5TJs2zU+zliRJNQrEXQBxSKLRGDt27K7XPtPSgrRrl86c377Clu1l9dq3GkcgECAtLURFRdQ1RSmqS8fWTLq4Dzt37nZNSgqqfB51/FST9u3TD2qhdVKtKZIkSWoqhiJJkiQMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEJFkoeuqpp7jmmmsoKCigd+/ejBw5kkcffZR4PF6l3dKlSxk6dCi5ubmce+65rFy5slpfpaWlTJ06lVNPPZW8vDwmTpzItm3bGutQJElSikmqUHTvvffSqlUrpkyZwsKFCykoKGD69OnMnz8/0ebJJ59k+vTpDBs2jMLCQnr37s348eN57bXXqvQ1adIk1q5dy0033cRtt93Gpk2bGDt2LBUVFY18VJIkKRWkNXUBn7dw4ULat2+fuN2/f3927drFkiVL+MEPfkAwGGTu3LmMGDGCSZMmAXDaaafx7rvvMn/+fAoLCwF49dVXWbNmDYsXLyY/Px+AzMxMhg8fzvLlyxk+fHijH5skSUpuSXWl6POBqFLPnj0pKytjz549bN68mX/84x8MGzasSpvhw4ezbt069u/fD8Dq1asJh8MMGDAg0SYrK4uePXuyevXqhj0ISZKUkpIqFNXklVdeoVOnTrRu3Zri4mLgwFWfz8vOzqa8vJzNmzcDUFxcTGZmJoFAoEq7rKysRB+SJEmfl1TTZ//u5ZdfpqioiMmTJwNQUlICQDgcrtKu8nbl/kgkQps2bar1l5GRwZtvvlnnutLS6jdLhkIH+gsEAtWCnFJE4F8/AziGqajy3Ks8H5VaKsfN8VNd1DoUjR49mmuuuYb+/fvXuP9vf/sbCxYs4P77769V/1u3buW6666jX79+jB49urZl1rtgMEC7dukN0ncoFCQtLdQgfatxpIUcv1RV+WIaDrdq4kpUF46f6qLWoWj9+vVceOGFX7h/x44dvPTSS7XqOxKJMHbsWNq2bcu8efMIBg88WWVkZAAH3m7fsWPHKu0/vz8cDrN169Zq/ZaUlCTa1FYsFicS2VOnPv5dKBQkHG5FNBqjoiJar32rkQQOBKKKaBTiX91cyScajQEQiexN/K7UUfk86vipJuFwq4O6ilin6bMvm+r54IMPSE8/9Csqn332GVdffTWlpaU88sgjVabBsrKygANrhip/r7zdrFkzunXrlmi3bt064vF4lRo3bdrEcccdd8g1/buKioY54eLxeLXPZFJqSEyZxXEMU1TluB3448QX1VTl+KkuDikUPf744zz++OOJ2wsXLuT3v/99tXalpaW88847FBQUHFIxFRUVTJo0ieLiYh566CE6depUZX+3bt3o3r07y5YtY8iQIYntRUVF9O/fn+bNmwNQUFDAggULWLduHaeffjpwIBBt2LCBK6+88pBqkiRJXw+HFIr27t3Lzp07E7d3796dmNr6vCOOOIKLLrqIH/7wh4dUzMyZM1m5ciVTpkyhrKysygcyHn/88TRv3pwJEyZwww03cPTRR9OvXz+Kiop44403ePDBBxNt8/LyyM/PZ+rUqUyePJkWLVowe/ZscnJyOPvssw+pJkmS9PUQiNfyWv/gwYP5yU9+wplnnllvxQwePJgtW7bUuO/ZZ5+la9euwIGv+SgsLOTjjz8mMzOT66+/nkGDBlVpX1payqxZs3jmmWeoqKggPz+fadOmVbv6dKii0Rg7duyuUx//Li0tSLt26cz57Sts2V5Wr32rcQQCAdLSQlRURJ0+S1FdOrZm0sV92Llzt9MvKajyedTxU03at08/qDVFtQ5FX1eGItXEUJT6DEWpzVCkL3OwoajOn1NUVlbGxx9/TCQSqfHFoG/fvnV9CEmSpAZX61C0Y8cObrnlFpYvX040Wv1t5JXv/Pr73/9epwIlSZIaQ61D0YwZM1i5ciWjRo3ilFNOqfYp05IkSamk1qFo7dq1XHbZZdx44431WY8kSVKTqPWXxLRs2ZIuXbrUZy2SJElNptah6Nxzz2XFihX1WYskSVKTqfX02dChQ3nppZe44oor+M///E+OOuooQjV8GeYJJ5xQpwIlSZIaQ61D0cUXX5z4/YUXXqi233efSZKkVFLrUDRr1qz6rEOSJKlJ1ToUnXfeefVZhyRJUpOq9UJrSZKkw0mtrxT9+Mc//so2gUCAX/ziF7V9CEmSpEZT61D04osvVtsWi8XYvn070WiU9u3b06pVqzoVJ0mS1FhqHYqee+65GreXl5fzyCOPcN999/Gb3/ym1oVJkiQ1pnpfU9SsWTMuvfRSBgwYwM9+9rP67l6SJKlBNNhC6x49evDSSy81VPeSJEn1qsFC0QsvvOCaIkmSlDJqvabozjvvrHF7aWkpL730Ehs2bOCqq66qdWGSJEmNqd5DUUZGBt26dWPmzJl8//vfr3VhkiRJjanWoejtt9+uzzokSZKalJ9oLUmSRB2uFFVav349zz//PB9//DEAnTt35owzzuDUU0+tc3GSJEmNpdahaP/+/fy///f/WLFiBfF4nHA4DEAkEmHJkiWcddZZ3H777TRr1qzeipUkSWootZ4+mz9/Ps888wxjxoxhzZo1rF+/nvXr17N27Vr+67/+i+XLlzN//vz6rFWSJKnB1DoU/fnPf+a8887jxhtv5Bvf+EZie4cOHfjRj37Ed7/7XZ544ol6KVKSJKmh1ToUbd++nV69en3h/l69erF9+/badi9JktSoah2KjjrqKNavX/+F+1966SWOOuqo2nYvSZLUqGodir773e/y1FNPMWPGDIqLi4lGo8RiMYqLi/npT3/KsmXLOO+88+qzVkmSpAZT63efjRs3js2bN/P73/+epUuXEgweyFexWIx4PM55553HuHHj6q1QSZKkhlTrUBQKhbj11lu5/PLLWb16NVu2bAGgS5cuFBQU0KNHj3orUpIkqaEdUijat28fP//5zzn22GMZNWoUAD169KgWgO6//34efvhhfvKTn/g5RZIkKSUc0pqiRx55hMcff5wzzjjjS9udccYZPPbYYyxdurQutUmSJDWaQwpFTz31FGeffTbdunX70nZHH3003/72t3nyySfrVJwkSVJjOaRQ9O6779KnT5+DapuXl8c777xTq6IkSZIa2yGFovLy8oNeI9SsWTP2799fq6IkSZIa2yGFoiOPPJKNGzceVNuNGzdy5JFH1qooSZKkxnZIoej000/nT3/6E59++umXtvv000/505/+xOmnn16n4iRJkhrLIYWisWPHsm/fPi677DJef/31Gtu8/vrrXH755ezbt48rr7yyXoqUJElqaIf0OUXdunVjzpw5XH/99Vx00UV069aN4447jvT0dHbv3s3GjRv58MMPadmyJf/93//N0Ucf3VB1S5Ik1atD/kTrM844gyeeeILCwkKef/55VqxYkdh35JFHcuGFFzJ27NivfNt+TT744AMWL17M66+/zsaNG8nKyuIvf/lLlTajRo2q8Ytoi4qKyM7OTtwuLS1l1qxZrFixgvLycgYOHMi0adNc5yRJkmpUq6/56Nq1KzNnzgSgrKyM3bt3k56eTuvWretUzMaNG1m1ahUnnXRS4jvUanLyySczefLkajV93qRJk3jvvfe46aabaNGiBXPmzGHs2LE89thjpKXV+ttNJEnSYarO6aB169Z1DkOVBg8ezJAhQwCYMmUKb775Zo3twuEwvXv3/sJ+Xn31VdasWcPixYvJz88HIDMzk+HDh7N8+XKGDx9eL/VKkqTDxyEttG5owWD9lLN69WrC4TADBgxIbMvKyqJnz56sXr26Xh5DkiQdXlJyHmn9+vX07t2baDTKSSedxLXXXkvfvn0T+4uLi8nMzCQQCFS5X1ZWFsXFxXV+/LS0+s2SodCB/gKBQLWalSIC//oZwDFMRZXnXuX5qNRSOW6On+oi5UJR3759GTlyJN27d2fbtm0sXryYMWPG8MADD5CXlwdAJBKhTZs21e6bkZHxhVNyBysYDNCuXXqd+vgioVCQtLRQg/StxpEWcvxSVeWLaTjcqokrUV04fqqLlAtFEydOrHL7jDPO4JxzzmHBggUUFhY2+OPHYnEikT312mcoFCQcbkU0GqOiIlqvfauRBA4EoopoFGp+f4CSXDQaAyAS2Zv4Xamj8nnU8VNNwuFWB3UVMeVC0b874ogj+Na3vsXTTz+d2BYOh9m6dWu1tiUlJWRkZNT5MSsqGuaEi8fjX/iOOyW3xJRZHMcwRVWO24E/TnxRTVWOn+risJx8zcrKYtOmTdVenDZt2kRWVlYTVSVJkpJZyoeiPXv28Pzzz5Obm5vYVlBQQElJCevWrUts27RpExs2bKCgoKApypQkSUkuqabP9u7dy6pVqwDYsmULZWVlLFu2DIBTTz2V4uJi7rnnHs466yy6dOnCtm3bWLJkCdu3b+eOO+5I9JOXl0d+fj5Tp05l8uTJtGjRgtmzZ5OTk8PZZ5/dJMcmSZKSW1KFok8//ZRrr722yrbK2/fffz9HHXUU5eXlzJ49m127dtGqVSvy8vKYOXMmvXr1qnK/OXPmMGvWLGbMmEFFRQX5+flMmzbNT7OWJEk1CsRdFXpIotEYO3bsrtc+09KCtGuXzpzfvsKW7WX12rcaRyAQIC0tREVF1IXWKapLx9ZMurgPO3fudqFuCqp8HnX8VJP27dMP6t1nKb+mSJIkqT4YiiRJkjAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRKQZKHogw8+YMaMGYwcOZLjjz+ec845p8Z2S5cuZejQoeTm5nLuueeycuXKam1KS0uZOnUqp556Knl5eUycOJFt27Y19CFIkqQUlVShaOPGjaxatYpjjjmG7OzsGts8+eSTTJ8+nWHDhlFYWEjv3r0ZP348r732WpV2kyZNYu3atdx0003cdtttbNq0ibFjx1JRUdEIRyJJklJNWlMX8HmDBw9myJAhAEyZMoU333yzWpu5c+cyYsQIJk2aBMBpp53Gu+++y/z58yksLATg1VdfZc2aNSxevJj8/HwAMjMzGT58OMuXL2f48OGNc0CSJCllJNWVomDwy8vZvHkz//jHPxg2bFiV7cOHD2fdunXs378fgNWrVxMOhxkwYECiTVZWFj179mT16tX1X7gkSUp5SXWl6KsUFxcDB676fF52djbl5eVs3ryZ7OxsiouLyczMJBAIVGmXlZWV6KMu0tLqN0uGQgf6CwQC1WpWigj862cAxzAVVZ57leejUkvluDl+qouUCkUlJSUAhMPhKtsrb1fuj0QitGnTptr9MzIyapySOxTBYIB27dLr1McXCYWCpKWFGqRvNY60kOOXqipfTMPhVk1cierC8VNdpFQoSgaxWJxIZE+99hkKBQmHWxGNxqioiNZr32okgQOBqCIahXhTF6PaiEZjAEQiexO/K3VUPo86fqpJONzqoK4iplQoysjIAA683b5jx46J7ZFIpMr+cDjM1q1bq92/pKQk0aYuKioa5oSLx+PE476ipqLElFkcxzBFVY7bgT9OfFFNVY6f6iKlJl+zsrIAqq0LKi4uplmzZnTr1i3RbtOmTdVenDZt2pToQ5Ik6fNSKhR169aN7t27s2zZsirbi4qK6N+/P82bNwegoKCAkpIS1q1bl2izadMmNmzYQEFBQaPWLEmSUkNSTZ/t3buXVatWAbBlyxbKysoSAejUU0+lffv2TJgwgRtuuIGjjz6afv36UVRUxBtvvMGDDz6Y6CcvL4/8/HymTp3K5MmTadGiBbNnzyYnJ4ezzz67SY5NkiQlt0A8iRZAfPTRR5x55pk17rv//vvp168fcOBrPgoLC/n444/JzMzk+uuvZ9CgQVXal5aWMmvWLJ555hkqKirIz89n2rRpdOrUqU41RqMxduzYXac+/l1aWpB27dKZ89tX2LK9rF77VuMIBAKkpYWoqIi6pihFdenYmkkX92Hnzt2uSUlBlc+jjp9q0r59+kEttE6qUJQKDEWqiaEo9VWGIt+9lJp899nhIRaLE4vV/3PowYaipJo+k6Sm0uaIZsRicT/nJsU5fqktGouxa+eeBglGB8NQJElAyxZpBIMBfvf023zyaf1eDVbDCwQChEJBotGYV2tT1JHtj+Dib/ckGAwYiiQpGWzbscdp7BTkFLbqQ0q9JV+SJKmhGIokSZIwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJCAFQ9Ef/vAHcnJyqv132223VWm3dOlShg4dSm5uLueeey4rV65sooolSVIqSGvqAmrrnnvuoU2bNonbnTp1Svz+5JNPMn36dMaNG8dpp51GUVER48eP56GHHqJ3795NUK0kSUp2KRuKTjjhBNq3b1/jvrlz5zJixAgmTZoEwGmnnca7777L/PnzKSwsbMQqJUlSqki56bOvsnnzZv7xj38wbNiwKtuHDx/OunXr2L9/fxNVJkmSklnKXik655xz2LlzJ507d+b73/8+V155JaFQiOLiYgAyMzOrtM/Ozqa8vJzNmzeTnZ1dp8dOS6vfLBkKHegvEAgQCATqtW81ksC/fgZwDFNR4twL4HmYijwHU17leVf5mtgUUi4UdezYkQkTJnDSSScRCAR47rnnmDNnDp988gkzZsygpKQEgHA4XOV+lbcr99dWMBigXbv0OvXxRUKhIGlpoQbpW40jLeT4papQMJj46XmYujwHU1dlGAqHWzVZDSkXigYOHMjAgQMTt/Pz82nRogX33Xcf48aNa/DHj8XiRCJ76rXPUChIONyKaDRGRUW0XvtWIwkceDKuiEYh3tTFqDaisVjip+dhCvIcTHnR6IFzMBLZm/i9voTDrQ7qClTKhaKaDBs2jN/85jf8/e9/JyMjA4DS0lI6duyYaBOJRAAS++uioqJ+B6tSPB4nHvdsTkWJy/VxHMMUlRg3xzAleQ6mvspxO3CBoGFeZ7/KYbfQOisrCyCxtqhScXExzZo1o1u3bk1RliRJSnKHRSgqKioiFApx/PHH061bN7p3786yZcuqtenfvz/NmzdvoiolSVIyS7npsyuuuIJ+/fqRk5MDwLPPPsvvf/97Ro8enZgumzBhAjfccANHH300/fr1o6ioiDfeeIMHH3ywKUuXJElJLOVCUWZmJo899hhbt24lFovRvXt3pk6dyqhRoxJtzjnnHPbu3UthYSGLFi0iMzOTO++8k7y8vCasXJIkJbOUC0XTpk07qHYXXnghF154YQNXI0mSDheHxZoiSZKkujIUSZIkYSiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJOAwD0Xvv/8+Y8aMoXfv3gwYMIBf/epX7N+/v6nLkiRJSSitqQtoKCUlJVx22WV0796defPm8cknn3Drrbfy2WefMWPGjKYuT5IkJZnDNhQ9/PDD7N69mzvvvJO2bdsCEI1GmTlzJldffTWdOnVq2gIlSVJSOWynz1avXk3//v0TgQhg2LBhxGIx1q5d23SFSZKkpHTYXikqLi7me9/7XpVt4XCYjh07UlxcXOt+g8EA7dun17W8KgKBAz+v/G4u0Vi8XvuWdHCapR34G/GKkSd6HkpNIBQ88GKYkdGKeD2fgsH/v++vctiGokgkQjgcrrY9IyODkpKSWvcbCAQIhQ7uf+6han1E8wbpV9LB8zyUmlYw2HSTWIft9JkkSdKhOGxDUTgcprS0tNr2kpISMjIymqAiSZKUzA7bUJSVlVVt7VBpaSnbt28nKyuriaqSJEnJ6rANRQUFBbzwwgtEIpHEtmXLlhEMBhkwYEATViZJkpJRIB6v7zXeyaGkpIQRI0aQmZnJ1Vdfnfjwxu985zt+eKMkSarmsA1FcOBrPn72s5/x6quvkp6ezsiRI7nuuuto3tx3l0iSpKoO61AkSZJ0sA7bNUWSJEmHwlAkSZKEoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKpC81atQohg0bxv79+6vtmzhxIt/61rfYvXt3E1Qmff3MmzePnJwcLrnkkmr7fv7znzN48OAmqEqHE0OR9CVmzpzJRx99xD333FNl++rVq3n66aeZPn066enpTVSd9PX08ssv8+KLLzZ1GToMGYqkL5GVlcXVV1/NXXfdxebNmwHYt28fP/vZzzjzzDMZMmRIE1cofb0cccQR9OrViwULFjR1KToMGYqkr3DVVVfRuXNnZs6cCcBdd93FP//5T2bMmMHWrVu54YYb6NevH7169eKSSy7hzTffrHL/Z599lvPPP5+8vDxOOeUUzj//fFatWtUUhyIdFn7wgx/wt7/9jf/5n//5wjZbtmxh4sSJ9OnTh969e3PFFVfwzjvvNGKVSkWGIukrNG/enJtvvpm//vWvLFiwgHvuuYdrr72WVq1acfHFF/P2228zffp05s2bR6tWrbjsssv49NNPAfjwww+59tprOfbYY7nzzjuZPXs2w4YNo6SkpImPSkpdgwYN4vjjj2f+/Pk17i8rK2PUqFFs2LCBmTNn8utf/5qdO3dy6aWX8n//93+NXK1SSVpTFyClglNPPZXzzz+fO+64gxNOOIFRo0Yxf/58IpEIS5cupUOHDgD079+foUOHsnjxYm688UY2bNhAeXk506dPp3Xr1gAMHDiwKQ9FOixcc801TJgwgTfeeINevXpV2feHP/yBjz/+mCeffJLs7GwA+vbty6BBg7jvvvuYMmVKU5SsFOCVIukgXXXVVQCMGTOGUCjE2rVr6devHxkZGVRUVFBRUUEwGKRv37787//+LwA5OTmEQiFuuOEGnnvuOUpLS5vyEKTDxllnncVxxx1X49Wil19+mWOPPTYRiADatm3L6aefziuvvNKYZSrFeKVIOkjNmjWr8nPnzp289tprnHDCCdXaHn300QBkZmZy1113cffddzN+/HiCwSD5+fnMmDGDzp07N17x0mEmEAgwbtw4rr/+et56660q+yKRCN/4xjeq3adDhw5s3LixsUpUCjIUSbWUkZHBwIEDufbaa6vta968eeL3goICCgoKKCsrY/Xq1cyaNYsf//jH3HfffY1ZrnTYGTZsGPPmzWPBggVV/sjIyMhg06ZN1dp/+umnZGRkNGaJSjFOn0m1dPrpp/P++++TnZ1Nbm5ulf9ycnKqtW/dujXDhw9nxIgRvP/++01QsXR4CQaDjBs3jmeffbbKO8v69OnDu+++S3FxcWJbSUkJL7zwAn369GmKUpUivFIk1dLll1/On//8Zy699FJGjx5N586d2bFjB6+//jqdOnXi8ssv5+GHH+a1115j4MCBdOzYkY8++ognnniCAQMGNHX50mHhO9/5DvPnz+fFF1+kS5cuAJx//vnce++9XH311UyaNIkWLVqwcOFC0tLSuOyyy5q4YiUzQ5FUS+3ateORRx5hzpw53HbbbezatYsOHTpw0kkncdZZZwEHFlqvXLmSWbNmsWvXLjp27MiIESNqnHKTdOhCoRBXXXUV06ZNS2xr3bo1DzzwALfeeivTp08nFotx8skn8+CDD/If//EfTVitkl0gHo/Hm7oISZKkpuaaIkmSJAxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkaTD1Lx582r8upWa5OTkMG/evFo9Tk5ODjfffHOt7ispuRiKJEmS8Gs+JIk33niDUCjU1GVIamJeKZL0tRSLxdi3bx8ALVq0IC3NvxGlrztDkaSU9/LLL/O9732P3NxchgwZwsMPP1ytTeXanyeeeIIRI0aQm5vLX//618S+z68pqlyP9MEHHzBlyhROOeUU+vTpw49//GP27t37lfUsWLCAHj168MADD9TfQUpqcP5pJCmlvfPOO1xxxRW0b9+eCRMmUFFRwbx58+jQoUO1tn/729946qmnuOSSS2jXrh1dunT50r4nTZpE165duf7669mwYQNLly6lffv2/OhHP/rC+8yePZu7776bm2++me9///t1Pj5JjcdQJCmlzZ07l3g8zkMPPUTnzp0BGDp0KN/5zneqtd20aRN//vOf+eY3v3lQfffs2ZNf/OIXidu7du3i0Ucf/cJQ9Mtf/pJ7772XWbNmcd5559XiaCQ1JafPJKWsaDTKmjVrGDJkSCIQAWRnZ5Ofn1+tfd++fQ86EAFcdNFFVW6fcsop7Nq1i7Kysirb4/E4N998M/fffz+//vWvDURSivJKkaSUtWPHDj777DOOOeaYavsyMzNZtWpVlW1du3Y9pP4/H7QAwuEwACUlJbRu3Tqx/Y9//CN79uzhpptu4pxzzjmkx5CUPLxSJOlro2XLlofUPhis+SkyHo9XuX3yySfzjW98g4ceeohdu3bVtjxJTcxQJClltW/fnpYtW/LBBx9U27dp06ZGq+OYY45h8eLFbNu2jSuvvLLa9Jqk1GAokpSyQqEQ+fn5rFixgo8//jix/f3332fNmjWNWkuPHj1YtGgR77//Ptdccw2fffZZoz6+pLozFElKaRMmTADgkksuYdGiRSxcuJDRo0cf0oLq+tK7d28WLFjAa6+9xsSJEykvL2/0GiTVnqFIUkrr0aMHixcvpl27dsydO5fHHnuMCRMmcNZZZzVJPf3792fOnDmsXbuWG2+8kVgs1iR1SDp0gfi/rxiUJEn6GvJKkSRJEoYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRIA/x9MceEERMMg/AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON " + "sns.histplot(data=steak, x=\"drink\")" + ] + }, + { + "cell_type": "markdown", + "id": "e0ec8c49-e490-4bac-927a-0f3c50c72c8d", + "metadata": {}, + "source": [ + "### Number of people who like their steak rare\n" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "46f2704d-6336-4b76-a7db-8cde388f7d55", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "cooked\n", + "Medium rare 166\n", + "Medium 132\n", + "Medium Well 75\n", + "Well 36\n", + "Rare 23\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steak.cooked.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "45451f54-ebc8-4acc-aec7-64ecd9842709", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP9NJREFUeJzt3Xl4VPW9x/H3zCRskYmgiFfWBAuyE6uETapIQRAXqiyiqHW3FwVuvUIpULGIe7UKaonWDa1oW1wp4goVuUorbrVVNKCARSlLQghbZub+QTN1DGoI2Q68X8/DM5lzfufMd76czHxyzpkzoUQikUCSJOkAF67pAiRJkmoDQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAmAtJouIGgSiQTxuBcBBwiHQ/aimtjr6mGfq4d9rh72+T/C4RChUOg7xxmK9lI8nmDjxq01XUaNS0sL06hRBoWFxZSUxGu6nP2ava4e9rl62OfqYZ9TNW6cQSTy3aHIw2eSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJgLSaLkCqTuFwiHA4VNNl7JVIJJxyGxTxeIJ4PFHTZUhSuRmKdMAIh0Mc3KgBkXCwwkWpaLR+TZewV2LxOJs3FRuMJAWGoUgHjHA4RCQc5tEFf+fLjcU1XU65hUIhIpEwsVicRCIYAeOwxg0YdVJ7wuGQoUhSYBiKdMD5cmMxa9cX1XQZ5RYKhUhLi1BSEgtMKJKkIArmcQRJkqRKZiiSJEnCUCRJkgQYiiRJkoBaFoo+/fRTpk6dymmnnUaHDh0YMmTIHscVFhYyffp0+vTpQ+fOnenfvz+//e1vU8bs3LmTG2+8kd69e9OtWzd+/OMfk5+fXx1PQ5IkBVCt+vTZihUrWLRoEV27diUe3/PHj4uLixk9ejSRSIRJkyZxyCGHsGrVKoqKUj9NNH36dObPn8/EiRNp2rQp99xzD+effz7PPfccDRs2rK6nJEmSAqJWhaJ+/frRv39/ACZOnMj7779fZszs2bPZunUrTz/9NA0aNAAgNzc3Zcy6dev4/e9/zy9+8QvOPPNMADp37swJJ5zAY489xsUXX1zFz0SSJAVNrTp8Fi7HlYZ///vfc8YZZyQD0Z689tprxONxTjrppOS0gw8+mN69e7N48eJKqVWSJO1falUo+i5r1qxh/fr1NGrUiMsuu4xOnTrRvXt3Jk+ezNatW5Pj8vPzOeSQQ8jMzExZvk2bNp5XJEmS9qhWHT77Lv/6178AuPHGGxkwYAB5eXmsWrWKW2+9leLiYn71q18Bu0/E3tN5Q9FolIKCgn2uIy0tUFmySgTxS0pLaw2FQoRCAfpS2NB/bkMEo+7S/gZx+whSzUFkn6uHfa6YQIWieDwOQFZWFjfeeCMAPXv2JC0tjcmTJzN+/HhatGhRpTWEwyEaNcqo0scIkqB9SSnsfpFIS4vUdBl7LS0SnJpLX4iDuH0EseYgss/Vwz7vnUCFotLDYV8/sbpHjx7A7k+vtWjRgmg0WubTaLB7D9LXD6ntrXg8QWFhcL5MtKpEImGi0foUFm4jFovXdDnlUlpzLBanpCRW0+WUX2h3ICqJxSAgX31Wuk0EcfsIUs1BZJ+rh31OFY3WL9des0CFohYtWlCnTp1vnL9jxw4AsrOz+de//kVBQUFKCMrPzyc7O3uf6ygpcQMrtTtgBKsfiUQiUF+smjxkliAwdZfWGcTtI4g1B5F9rh72ee8E6mBjnTp16N27N0uXLk2Z/vrrrwPQsWNHAPr06UM4HGbhwoXJMQUFBbz22mv07du3+gqWJEmBUav2FG3bto1FixYBsHbtWoqKiliwYAEA3bt3p3HjxowZM4aRI0fy05/+lKFDh/Lpp59y6623csopp9CyZUsADj/8cM4880xuuukmwuEwTZs25Te/+Q0NGzZk5MiRNfb8JElS7VWrQtGGDRsYO3ZsyrTS+w899BC5ubl06tSJvLw8brnlFi6//HIyMzMZMWIE48ePT1lu8uTJZGRkcOutt7J161aOPvpo7r//fq9mLUmS9iiUCMpJCrVELBZn48at3z1wP5eWFqZRoww2bdoamOPVpTXf/uhfWbu+7In4tVUoFCItLUJJSSww5xQ1a3IQ40Z9P5DbR5BqDiL7XD3sc6rGjTPKdaJ1oM4pkiRJqiqGIkmSJAxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiSgloWiTz/9lKlTp3LaaafRoUMHhgwZ8q3jX3zxRdq1a7fHcVu2bGHSpEl0796dnJwcrrzySr788suqKl2SJAVcrQpFK1asYNGiRbRq1Yo2bdp869jt27czY8YMDj300D3OHzduHEuWLOGaa67hlltuYeXKlVx88cWUlJRURemSJCng0mq6gK/q168f/fv3B2DixIm8//773zj2N7/5DUcccQTNmzcvM2758uW89tpr3HffffTp0weArKwsBg8ezMKFCxk8eHDVPQlJkhRItWpPUThcvnI+++wz7r//fiZPnrzH+YsXLyYajdK7d+/ktOzsbNq3b8/ixYsrpVZJkrR/qVV7isrruuuu47TTTuOoo47a4/z8/HyysrIIhUIp07Ozs8nPz9/nx09Lq1VZskZEIuGU2yAorTUUCpXZNmq10H9uQwSj7tL+BnH7CFLNQWSfq4d9rpjAhaKXX36Z5cuXs2DBgm8cU1hYSMOGDctMz8zM/NZDcuURDodo1Chjn9axP4lG69d0CXstEgmTlhap6TL2WlokODWXvhAHcfsIYs1BZJ+rh33eO4EKRTt27GDGjBlcccUVNG7cuEZqiMcTFBYW18hj1yaRSJhotD6FhduIxeI1XU65lNYci8UpKYnVdDnlF9odiEpiMUjUdDHlU7pNBHH7CFLNQWSfq4d9ThWN1i/XXrNAhaIHH3yQcDjMySefTGFhIQC7du0iHo9TWFhIvXr1qFOnDtFolHXr1pVZvqCggMzMzH2uo6TEDazU7oARrH4kEgkSiYCkC75yyCxBYOourTOI20cQaw4i+1w97PPeCVQoys/P59NPP6Vnz55l5h177LFcc801nHXWWWRnZ7N06VISiUTKuSMrV66kbdu21VmyJEkKiECFoosvvpihQ4emTJs9ezYrV67k+uuvp3Xr1gD07duXu+66i6VLl9KrVy9gdyD64IMPuOiii6q7bEmSFAC1KhRt27aNRYsWAbB27VqKioqSJ1R3796dNm3alLmo47x58/jiiy/Izc1NTsvJyaFPnz5MmjSJCRMmULduXW677TbatWvHgAEDqu8JSZKkwKhVoWjDhg2MHTs2ZVrp/Yceeigl+HyX22+/neuvv56pU6dSUlJCnz59mDx5MmlpteopS5KkWiKUCMqZm7VELBZn48atNV1GjUtLC9OoUQabNm0NzEl8pTXf/uhfWbu+qKbLKbdQKERaWoSSklhgTrRu1uQgxo36fiC3jyDVHET2uXrY51SNG2eU69NnXtVJkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIE1LIrWh/IwuEQ4XDouwfWEqUXwSrPxbBqiyDVKkmqfoaiWiAcDnFwowZEwsF7045G69d0CZIkVQpDUS0QDoeIhMM8uuDvfLmxuKbLKZdQKEQkEiYWiwfmqyfatW7MoF5ZhELB2SMnSao+hqJa5MuNxYH5Tq4gfh9Xk0bu1ZIkfbPgHa+RJEmqAoYiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSAGk1XcBXffrpp9x333288847rFixguzsbJ599tnk/KKiIu6//34WLVrEqlWrqFOnDl26dGH8+PG0a9cuZV1btmzh+uuv58UXX2TXrl0cd9xxTJ48mcMOO6y6n5YkSQqAWrWnaMWKFSxatIhWrVrRpk2bMvM///xz5s6dS+/evbn99tv55S9/yZYtWxgxYgSffPJJythx48axZMkSrrnmGm655RZWrlzJxRdfTElJSXU9HUmSFCC1ak9Rv3796N+/PwATJ07k/fffT5nfvHlzXnjhBerXr5+c1qNHD/r168ejjz7KlClTAFi+fDmvvfYa9913H3369AEgKyuLwYMHs3DhQgYPHlxNz0iSJAVFrdpTFA5/ezkNGjRICUQAGRkZtGzZki+//DI5bfHixUSjUXr37p2clp2dTfv27Vm8eHHlFi1JkvYLtSoUVURhYWHy/KNS+fn5ZGVlEQqFUsZmZ2eTn59f3SVKkqQAqFWHzyri5ptvJhQKcdZZZyWnFRYW0rBhwzJjMzMzyxySq4i0tMrNkpHI7vWFQqEyQa7WCv3nNkQwak72NkRw+gyB7nXpth0EpbUGqeYgss/Vwz5XTKBD0R/+8Acef/xxbrjhBg4//PBqecxwOESjRhlVsu5IJExaWqRK1l1V0iLBqTfy78OzkXDw+gwB6/W/X4ij0frfMbL2CWLNQWSfq4d93juBDUWLFi1i6tSp/OQnP2Ho0KEp86LRKOvWrSuzTEFBAZmZmfv0uPF4gsLC4n1ax9dFImGi0frEYnFKSmKVuu4qE9r9Jl0Si0Gipospn1g8nrwNTJ8hmL2O7e51YeG25M+1XenvYZBqDiL7XD3sc6potH659poFMhS9/fbbjB07ltNPP52xY8eWmZ+dnc3SpUtJJBIph0lWrlxJ27Zt9/nxS0qqZgNLJBIkEsF410sexkkQmJqTdQaoZgh2r3cH/WC9IAex5iCyz9XDPu+dwB1s/Pjjj7n00kvp0aMH06ZN2+OYvn37UlBQwNKlS5PTVq5cyQcffEDfvn2rq1RJkhQgtWpP0bZt21i0aBEAa9eupaioiAULFgDQvXt3EokEF154IXXr1uW8885LOWn6oIMO4sgjjwQgJyeHPn36MGnSJCZMmEDdunW57bbbaNeuHQMGDKj+JyZJkmq9WhWKNmzYUOZwWOn9hx56CCB5rtD555+fMq579+48/PDDyfu33347119/PVOnTqWkpIQ+ffowefJk0tJq1VOWJEm1RK1KCM2bN+fDDz/81jHfNb9Uw4YNmTFjBjNmzKiM0iRJ0n4ucOcUSZIkVQVDkSRJEoYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJQy0LRp59+ytSpUznttNPo0KEDQ4YM2eO4J554goEDB9K5c2dOPfVUXnnllTJjtmzZwqRJk+jevTs5OTlceeWVfPnll1X9FCRJUkDVqlC0YsUKFi1aRKtWrWjTps0exzz33HNMmTKFQYMGkZeXR7du3RgzZgxvv/12yrhx48axZMkSrrnmGm655RZWrlzJxRdfTElJSTU8E0mSFDRpNV3AV/Xr14/+/fsDMHHiRN5///0yY+644w5OPvlkxo0bB0CPHj346KOPmDVrFnl5eQAsX76c1157jfvuu48+ffoAkJWVxeDBg1m4cCGDBw+unickSZICo1btKQqHv72c1atXs2rVKgYNGpQyffDgwSxdupSdO3cCsHjxYqLRKL17906Oyc7Opn379ixevLjyC5ckSYFXq/YUfZf8/Hxg916fr2rTpg27du1i9erVtGnThvz8fLKysgiFQinjsrOzk+vYF2lplZslI5Hd6wuFQmVqrrVC/7kNEYyak70NEZw+Q6B7XbptB0FprUGqOYjsc/WwzxUTqFBUUFAAQDQaTZleer90fmFhIQ0bNiyzfGZm5h4Pye2NcDhEo0YZ+7SObxKJhElLi1TJuqtKWiQ49Ub+vScyEg5enyFgvf73C3E0Wr+GK9l7Qaw5iOxz9bDPeydQoag2iMcTFBYWV+o6I5Ew0Wh9YrE4JSWxSl13lQntfpMuicUgUdPFlE8sHk/eBqbPEMxex3b3urBwW/Ln2q709zBINQeRfa4e9jlVNFq/XHvNAhWKMjMzgd0ft2/SpElyemFhYcr8aDTKunXryixfUFCQHLMvSkqqZgNLJBIkEsF410sexkkQmJqTdQaoZgh2r3cH/WC9IAex5iCyz9XDPu+dQB1szM7OBihzXlB+fj7p6em0aNEiOW7lypVl3kBWrlyZXIckSdJXBSoUtWjRgtatW7NgwYKU6fPnz6dnz57UqVMHgL59+1JQUMDSpUuTY1auXMkHH3xA3759q7VmSZIUDBU+fHbuuedy+eWX07Nnzz3O/7//+z/uuusuHnrooXKvc9u2bSxatAiAtWvXUlRUlAxA3bt3p3HjxlxxxRVcddVVtGzZktzcXObPn8+7777LnDlzkuvJycmhT58+TJo0iQkTJlC3bl1uu+022rVrx4ABAyr6lCVJ0n6swqHozTffZNiwYd84f+PGjSxbtmyv1rlhwwbGjh2bMq30/kMPPURubi5Dhgxh27Zt5OXlMXv2bLKyspg5cyY5OTkpy91+++1cf/31TJ06lZKSEvr06cPkyZNJSwvUaVSSJKma7FNC+LZrvXz66adkZOzdR9ebN2/Ohx9++J3jhg0b9q2BDKBhw4bMmDGDGTNm7FUNkiTpwLRXoWjevHnMmzcvef/uu+/m8ccfLzNuy5YtfPjhh56/I0mSAmOvQtG2bdvYtGlT8v7WrVv3+NUcDRo0YOTIkfz3f//3vlcoSZJUDfYqFI0aNYpRo0YBu7+89ec//zknnnhilRQmSZJUnSp8TtHLL79cmXVIkiTVqH3+KFZRURGff/45hYWFe7za7rHHHruvDyFJklTlKhyKNm7cyPTp01m4cCGxWNnvkUokEoRCIf7+97/vU4GSJEnVocKhaOrUqbzyyiuMHj2aY445psw310uSJAVJhUPRkiVLOO+887j66qsrsx5JkqQaUeHvPqtXrx7NmjWrzFokSZJqTIVD0amnnsqLL75YmbVIkiTVmAofPhs4cCDLli3jwgsvZMSIERx++OFEIpEy4zp27LhPBUqSJFWHCoei0os4Arz++utl5vvpM0mSFCQVDkXXX399ZdYhSZJUoyocioYOHVqZdUiSJNWoCp9oLUmStD+p8J6in/3sZ985JhQKMWPGjIo+hCRJUrWpcCh64403ykyLx+OsX7+eWCxG48aNqV+//j4VJ0mSVF0qHIpefvnlPU7ftWsXc+fO5cEHH+S3v/1thQuTJEmqTpV+TlF6ejrnnHMOvXv35pe//GVlr16SJKlKVNmJ1kcddRTLli2rqtVLkiRVqioLRa+//rrnFEmSpMCo8DlFM2fO3OP0LVu2sGzZMj744AMuueSSChcmSZJUnSo9FGVmZtKiRQumTZvG8OHDK1yYJElSdapwKPrHP/5RmXVIkiTVKK9oLUmSxD7sKSr15ptv8uqrr/L5558DcMQRR3D88cfTvXv3fS5OkiSpulQ4FO3cuZOf/vSnvPjiiyQSCaLRKACFhYXcf//9/PCHP+TWW28lPT290oqVJEmqKhU+fDZr1ixeeOEFfvzjH/Paa6/x5ptv8uabb7JkyRIuuOACFi5cyKxZsyqzVkmSpCpT4VD0zDPPMHToUK6++moOPfTQ5PRDDjmE//3f/+X000/n6aefrpQiJUmSqlqFQ9H69evp0qXLN87v0qUL69evr+jqv9VLL73EsGHDyMnJoU+fPowdO5bVq1eXGffEE08wcOBAOnfuzKmnnsorr7xSJfVIkqTgq3AoOvzww3nzzTe/cf6yZcs4/PDDK7r6b/TGG28wZswYjjzySGbNmsWkSZP4xz/+wQUXXMD27duT45577jmmTJnCoEGDyMvLo1u3bowZM4a333670muSJEnBV+ETrU8//XTuvPNOGjZsyPnnn0+rVq0IhUKsWrWKBx98kAULFnDFFVdUZq3A7rBzxBFHMGPGDEKhEACNGzfmvPPO4/333+eYY44B4I477uDkk09m3LhxAPTo0YOPPvqIWbNmkZeXV+l1SZKkYKtwKLrssstYvXo1jz/+OE888QTh8O6dTvF4nEQiwdChQ7nssssqrdBSJSUlZGRkJAMRQMOGDQFIJBIArF69mlWrVvG///u/KcsOHjyYm266iZ07d1KnTp1Kr02SJAVXhUNRJBLhhhtu4Pzzz2fx4sWsXbsWgGbNmtG3b1+OOuqoSivyq370ox/x1FNP8cgjj3DqqaeyefNmfvWrX9GhQweOPvpoAPLz8wHIyspKWbZNmzbs2rWL1atX06ZNmyqpT5IkBdNehaIdO3Zw3XXX8b3vfY/Ro0cDcNRRR5UJQA899BCPPfYYP//5zyv9OkXHHHMMM2fO5Kc//SnXXnstAO3bt+fee+8lEokAUFBQAJC8dlKp0vul8ysqLa1yLwQeiexeXygUStkDVquF/nMbIhg1J3sbIjh9hkD3unTbDoLSWoNUcxDZ5+phnytmr0LR3LlzmTdvHvPnz//Wcccffzw333wzbdu2ZdSoUftU4Ne99dZbXH311QwfPpzjjz+ezZs3c9ddd3HJJZfw6KOPUq9evUp9vK8Lh0M0apRRJeuORMKkpUWqZN1VJS0SnHoj/z7EGwkHr88QsF7/+4U4Gq1fw5XsvSDWHET2uXrY572zV6HoT3/6EwMGDKBFixbfOq5ly5acdNJJPPfcc5UeiqZPn06PHj2YOHFiclq3bt04/vjjeeqppxgxYgSZmZkAbNmyhSZNmiTHFRYWAiTnV0Q8nqCwsLjCy+9JJBImGq1PLBanpCRWqeuuMqHdb9IlsRgkarqY8onF48nbwPQZgtnr2O5eFxZuS/5c25X+Hgap5iCyz9XDPqeKRuuXa6/ZXoWijz76iFNOOaVcY3NycqrkukCffPIJJ554Ysq0ww8/nEaNGvHZZ58BkJ2dDew+t6j059L76enp3xnqvktJSdVsYIlEInmyeG2XPIyTIDA1J+sMUM0Q7F7vDvrBekEOYs1BZJ+rh33eO3t1sHHXrl3lPkcoPT2dnTt3Vqiob3PEEUfwwQcfpExbu3YtmzZtolmzZgC0aNGC1q1bs2DBgpRx8+fPp2fPnn7yTJIklbFXe4oOO+wwVqxYUa6xK1as4LDDDqtQUd9m5MiRzJgxg+nTp9OvXz82b97M3XffzSGHHMKgQYOS46644gquuuoqWrZsSW5uLvPnz+fdd99lzpw5lV6TJEkKvr0KRb169eKpp57i0ksv5ZBDDvnGcRs2bOCpp55i4MCB+1zg15177rnUqVOH3/3ud/zhD38gIyODbt26cfvtt9OoUaPkuCFDhrBt2zby8vKYPXs2WVlZzJw5k5ycnEqvSZIkBd9ehaKLL76Yp59+mvPOO4/rrruOrl27lhnzzjvvMHnyZHbs2MFFF11UaYWWCoVCnHXWWZx11lnfOXbYsGEMGzas0muQJEn7n70KRS1atOD222/nf/7nfxg5ciQtWrSgbdu2ZGRksHXrVlasWMFnn31GvXr1+NWvfkXLli2rqm5JkqRKtddXtD7++ON5+umnycvL49VXX+XFF19MzjvssMMYNmwYF1988T5/wkuSJKk6VehrPpo3b860adMAKCoqYuvWrWRkZHDQQQdVanGSgi1IV9MN6hWA4/EE8XgwLtUg1XYV/u6zUgcddJBhSFKKhg3SiccTgbyabtBqjsXjbN5UbDCSKsE+hyJJ+rp6ddMIh0P87vl/8MWGrTVdTrmEQiEikTCxWDwwF8k8rHEDRp3UnnA4ZCiSKoGhSFKV+XJjMWvXF9V0GeUSCoVIS4tQUhILTCiSVLmCdfBckiSpihiKJEmSMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEhDgUDRv3jxOP/10OnfuTG5uLhdddBHbt29Pzn/55Zc59dRT6dy5MwMHDuQPf/hDDVYrSZJqu7SaLqAi7r77bvLy8rjsssvo1q0bmzZtYunSpcRiMQD+8pe/MGbMGM4880wmTZrE//3f//Hzn/+cjIwMTjrppBquXpIk1UaBC0X5+fnMnDmTu+66ix/84AfJ6QMHDkz+fPfdd9OlSxeuvfZaAHr06MHq1au54447DEWSJGmPAnf47I9//CPNmzdPCURftXPnTt54440y4Wfw4MF88sknrFmzpjrKlCRJARO4UPTOO+/Qtm1b7rrrLnr27EmnTp0YOXIk77zzDgCfffYZu3btIjs7O2W5Nm3aALv3NEmSJH1d4A6frV+/nvfff5+PPvqIX/ziF9SvX5977rmHCy64gIULF1JQUABANBpNWa70fun8fZGWVrlZMhLZvb5QKEQoFKrUdVeZ0H9uQwSj5mRvQwSnz2Cvq0uA+1z6GhIEpbUGqeYgss8VE7hQlEgkKC4u5te//jVHHXUUAF27dqVfv37MmTOHPn36VOnjh8MhGjXKqJJ1RyJh0tIiVbLuqpIWCU69kXA4eRu0PoO9ri6B6vO/3/Ci0fo1XMneC2LNQWSf907gQlE0GuXggw9OBiKAgw8+mA4dOvDxxx9z8sknA7Bly5aU5QoLCwHIzMzcp8ePxxMUFhbv0zq+LhIJE43WJxaLU1ISq9R1V5nQ7jePklgMEjVdTPnE4vHkbWD6DPa6ugSxz7HdfS4s3Jb8ubYrfb0LUs1BZJ9TRaP1y7XXLHCh6Mgjj+Szzz7b47wdO3bQsmVL0tPTyc/P57jjjkvOKz2X6OvnGlVESUnVbGCJRIJEIhivxsnDCwkCU3OyzgDVDPa6ugS5z7v/oArWG18Qaw4i+7x3Anew8YQTTmDz5s38/e9/T07btGkTf/vb3+jYsSN16tQhNzeX559/PmW5+fPn06ZNG5o3b17dJUuSpAAI3J6i/v3707lzZ6688krGjx9P3bp1mT17NnXq1GHUqFEAXH755Zx77rlcc801DBo0iDfeeINnn32W2267rYarlyRJtVXg9hSFw2Fmz55Nt27dmDp1Kv/zP//DQQcdxCOPPEKTJk0AOOaYY7jzzjv561//yoUXXsizzz7L9OnTGTRoUA1XL0mSaqvA7SkCaNy4MTfffPO3jjnxxBM58cQTq6kiSZIUdIHbUyRJklQVDEWSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJwH4QirZu3Urfvn1p164d7733Xsq8J554goEDB9K5c2dOPfVUXnnllRqqUpIk1XaBD0V33XUXsViszPTnnnuOKVOmMGjQIPLy8ujWrRtjxozh7bffrv4iJUlSrRfoUPTJJ5/w6KOPcsUVV5SZd8cdd3DyySczbtw4evTowbXXXkvnzp2ZNWtWDVQqSZJqu0CHounTpzNy5EiysrJSpq9evZpVq1YxaNCglOmDBw9m6dKl7Ny5szrLlCRJAZBW0wVU1IIFC/joo4+48847+dvf/pYyLz8/H6BMWGrTpg27du1i9erVtGnTpsKPnZZWuVkyEtm9vlAoRCgUqtR1V5nQf25DBKPmZG9DBKfPYK+rS4D7XPoaEgSltQap5iCyzxUTyFC0bds2brjhBsaPH89BBx1UZn5BQQEA0Wg0ZXrp/dL5FREOh2jUKKPCy3+bSCRMWlqkStZdVdIiwak3Eg4nb4PWZ7DX1SVQff73G140Wr+GK9l7Qaw5iOzz3glkKLr77rs55JBDOOOMM6r9sePxBIWFxZW6zkgkTDRan1gsTklJ2ZPGa6XQ7jePklgMEjVdTPnE4vHkbWD6DPa6ugSxz7HdfS4s3Jb8ubYrfb0LUs1BZJ9TRaP1y7XXLHChaO3atfz2t79l1qxZbNmyBYDi4uLk7datW8nMzARgy5YtNGnSJLlsYWEhQHJ+RZWUVM0GlkgkSCSC8WqcPLyQIDA1J+sMUM1gr6tLkPu8+w+qYL3xBbHmILLPeydwoWjNmjXs2rWLSy65pMy8c889l65du3LrrbcCu88tys7OTs7Pz88nPT2dFi1aVFu9kiQpGAIXitq3b89DDz2UMu3vf/87119/PdOmTaNz5860aNGC1q1bs2DBAvr3758cN3/+fHr27EmdOnWqu2xJklTLBS4URaNRcnNz9zivY8eOdOzYEYArrriCq666ipYtW5Kbm8v8+fN59913mTNnTnWWK0mSAiJwoai8hgwZwrZt28jLy2P27NlkZWUxc+ZMcnJyaro0SZJUC+0XoSg3N5cPP/ywzPRhw4YxbNiwGqhIkiQFzX4RiiRJqkrhcIhwOBgX9YTgXrwxHk8Qj9fcpz8NRZIkfYtwOMTBjRokL0oaJEG7eGMsHmfzpuIaC0aGIkmSvkU4HCISDvPogr/z5cbKvXhvVQmFQkQiYWKxeGCuu3VY4waMOqk94XDIUCRJUm325cZi1q4vqukyyiUUCpGWFqGkJBaYUFQbBG9foCRJUhUwFEmSJGEokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiQA0mq6AEnSvolEgvP3bWmtQaxZ+z9DkSQFVMMG6cTjCaLR+jVdyl4LYs3a/wUuFP3pT3/i6aef5m9/+xuFhYW0atWK0aNHc8YZZxAKhZLjnnjiCe69914+//xzsrKyGD9+PCeccEINVi5Jlate3TTC4RC/e/4ffLFha02XUy6hUIhIJEwsFieRSNR0OeXSrnVjBvXKSnmP0f4pcKHogQceoFmzZkycOJFGjRrx+uuvM2XKFNatW8eYMWMAeO6555gyZQqXXXYZPXr0YP78+YwZM4ZHHnmEbt261ewTkKRK9uXGYtauL6rpMsolFAqRlhahpCQWmFDUpJF7tQ4UgQtFd999N40bN07e79mzJ5s3b+b+++/nJz/5CeFwmDvuuIOTTz6ZcePGAdCjRw8++ugjZs2aRV5eXg1VLkmSarPAnT321UBUqn379hQVFVFcXMzq1atZtWoVgwYNShkzePBgli5dys6dO6urVEmSFCCBC0V78te//pWmTZty0EEHkZ+fD0BWVlbKmDZt2rBr1y5Wr15dEyVKkqRaLnCHz77uL3/5C/Pnz2fChAkAFBQUABCNRlPGld4vnb8v0tIqN0uWftwzFAoF50S+0H9uQwSj5mRvQwSnz2Cvq4t9rh72uXoEuM81eQmEQIeidevWMX78eHJzczn33HOr5THD4RCNGmVUybojkTBpaZEqWXdVSYsEp95IOJy8DVqfwV5XF/tcPexz9QhUn/8dhmrycg2BDUWFhYVcfPHFHHzwwdx5552E/73RZmZmArBlyxaaNGmSMv6r8ysqHk9QWFi8T+v4ukgkTDRan1gsTklJrFLXXWVCu3/ZSmIxCMYHSIjF48nbwPQZ7HV1sc/Vwz5XjyD2Oba7z4WF25I/V5ZotH659kAFMhRt376dSy+9lC1btjB37lwaNmyYnJednQ1Afn5+8ufS++np6bRo0WKfH7+kpHL/s0olEonAfEQ1uTs2QWBqTtYZoJrBXlcX+1w97HP1CHKfd+8gqJr32e8SuBOtS0pKGDduHPn5+dx77700bdo0ZX6LFi1o3bo1CxYsSJk+f/58evbsSZ06daqzXEmSFBCB21M0bdo0XnnlFSZOnEhRURFvv/12cl6HDh2oU6cOV1xxBVdddRUtW7YkNzeX+fPn8+677zJnzpyaK1ySJNVqgQtFS5YsAeCGG24oM++ll16iefPmDBkyhG3btpGXl8fs2bPJyspi5syZ5OTkVHe5kiQpIAIXil5++eVyjRs2bBjDhg2r4mokSdL+InDnFEmSJFUFQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSsJ+Hok8++YQf//jHdOvWjd69e3PTTTexc+fOmi5LkiTVQmk1XUBVKSgo4LzzzqN169bceeedfPHFF9xwww1s376dqVOn1nR5kiSpltlvQ9Fjjz3G1q1bmTlzJgcffDAAsViMadOmcemll9K0adOaLVCSJNUq++3hs8WLF9OzZ89kIAIYNGgQ8XicJUuW1FxhkiSpVtpv9xTl5+dzxhlnpEyLRqM0adKE/Pz8Cq83HA7RuHHGvpaXIhTafXvR6Z2JxROVum79R3ra7r8BLjytk32uYva6etjn6mGfq0ckvPvNMDOzPolKbnP43+v+LvttKCosLCQajZaZnpmZSUFBQYXXGwqFiETK19y9dVCDOlWyXqWyz9XHXlcP+1w97HP1CIdr7iDWfnv4TJIkaW/st6EoGo2yZcuWMtMLCgrIzMysgYokSVJttt+Gouzs7DLnDm3ZsoX169eTnZ1dQ1VJkqTaar8NRX379uX111+nsLAwOW3BggWEw2F69+5dg5VJkqTaKJRIVPY53rVDQUEBJ598MllZWVx66aXJizeecsopXrxRkiSVsd+GItj9NR+//OUvWb58ORkZGZx22mmMHz+eOnX8BIEkSUq1X4ciSZKk8tpvzymSJEnaG4YiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQtN+48847adeuHccddxzxeLzM/JEjR9KuXTsmTpy4z4/1wAMP0K5du+T9N954g3bt2vHee+/t87qrSnX2B4LZo8pgn+H3v/897dq1Y9WqVSnTH374Ydq1a8cdd9yRMn3z5s0cddRR5OXllfsx+vXrx7XXXpu8P3HiRIYMGbJPde+N0v/n0n+5ubmcddZZLFq0qNpqOBBU9bZU09tRbWQo2o+kp6ezadMmli1bljJ97dq1vP322zRo0KBKHrdjx47MnTuXNm3aVMn6K0tN9QeC06PKcKD3+eijjwZg+fLlKdPfeust6tevX2b68uXLSSQSfP/736+2GitDvXr1mDt3LnPnzuWXv/wlO3bs4LLLLuOtt96q6dL2GwfKtlSbGIr2I+np6fTt25fnnnsuZfpzzz3H9773PVq2bFklj3vQQQfRrVu3Kn2zqww11R+ovT1KJBLs3Lmzwsvv3LmzzB6hA73P2dnZNG7cuEw4eOuttxg6dChvv/02sVgsZXrdunXp1KlTdZe6T8LhMN26daNbt24MGDCAu+++m0QiwZNPPrlP692+fXvlFLgfOFC2pdrEULSfGTJkCM8//zy7du1KTnv22Wf3uEv0k08+4fLLL+f73/8+3bp145JLLuGzzz5LGVNUVMTVV19NTk4OPXr04Kabbkr5JYSyhyzWrFlDu3btWLBgQcq46667jn79+iXv//GPf0wud8EFF9C1a1cGDhzI66+/Tjwe57bbbqNXr1706tWLW2+9dY+HY6qyP7D/9ah09/iiRYs49dRT6dy5My+//DLFxcVce+21DBw4kK5du9KvXz+mTp3Kli1bUpYv3d2el5fHCSecQJcuXdi8eXOy1kcffZTi4mKWLVvGk08+mfIGdyD1+eijj055I/v8889Zt24d5557Ljt37uTDDz9Mznvrrbfo1KlT8uuH1q1bx1VXXUVubi5dunTh7LPP5v333//Wx6sNmjZtSuPGjfn8888B+PLLL/nZz37GiSeeSJcuXRgwYAC/+tWvyoTwdu3aMXv2bG6++WZ69+5Nz549gd2B/b777mPgwIF06tSJE088kQceeKC6n1aNq+i2FNTtqKYZivYzJ5xwAjt37mTJkiUAfPzxx3z44YcMHjw4Zdzq1asZOXIkBQUF3HDDDdxyyy1s3LiR888/P+VFa9KkSbzwwgtcddVV3HjjjXzyySc8+OCDlVrzhAkTOP7445k5cyaHHXYYY8aM4brrrmPdunXceOONjBo1itmzZ5fZ81AR5e0P7L89+vLLL5k+fTrnn38+eXl5tG/fnu3btxOLxRg/fjx5eXmMHTuWZcuW8ZOf/KTM8gsXLuTVV1/l5z//OXfddRcNGjTg/vvvZ/LkybRs2ZK6dety2WWXsWPHDq6++mrgwOvz0UcfzSeffEJBQQGw+83qv/7rv8jKyqJdu3bJN7ldu3bx3nvvJQ93FBQUMGrUKP7xj38wZcoU7rzzTurXr895553Hhg0bKvW5VratW7dSUFBA8+bNAdi0aRMHH3wwP/vZz7j33nu56KKLmDdvHr/4xS/KLPvQQw+xatUqrrvuOm6++WZgd3C94447OP3005k9ezZDhw7llltu4Xe/+121Pq+aVpFtKcjbUU1Lq+kCVLnq169Pv379eO655zj++ON59tlnycnJoUWLFinjZs6cSWZmJvfffz9169YFdv/ynXjiiTzxxBOcffbZfPzxxyxcuJDp06dz5plnAtCnTx8GDBhQqTWfc845jBo1Ctj91+Ypp5zC+++/z9y5cwE47rjjePnll1mwYAGnnHLKPj1WefsD+2+PCgoKyMvLo2vXrinTp02blvy5pKSE5s2bM2rUKFauXElWVlZy3q5du8jLy0seoioqKuKOO+7goosuIj09nY8++ogLL7yQP/3pT7zwwgts2rTpgOvz97//fRKJBG+//TY/+MEPWL58OTk5Ocnntnz5cs455xw++OADduzYkQxFDz74IIWFhTzxxBMccsghAPTs2ZOBAwdy3333JUNmbVFSUgLsDto333wzGRkZnHvuucDuPUATJkxIjj366KOpX78+EydOZOrUqdSvXz85LzMzk5kzZxIKhQD47LPPmDNnDtOmTWPEiBEA9OrVi+3btzNr1ixGjBhBOHxg/E1fkW0paNtRbXJgbFUHmCFDhvDSSy+xfft25s+fz8knn1xmzJIlS+jXrx+RSISSkhJKSkqIRqN06NAhuYv1vffeI5FI8MMf/jC5XCQSoX///pVab+/evZM/t27dGoAePXqkjMnKyuKf//xnpTxeefoD+2+PDj744DKBCODJJ5/k9NNPJycnh44dOybDwdc/+ZKbm5tyzs7y5cspLi7mpJNOIh6Pk0gkKCkpYdiwYcTjcf72t78dcH3u2LEj9erVS/4V/9ZbbyXfyLp165YyPRQKJectWbKE3NxcMjMzk70Ih8Mce+yxte6Ti8XFxXTs2JGOHTtywgkn8Pzzz3PTTTeRnZ0N7D789cADDzB48GC6dOlCx44dueqqqygpKWH16tUp6+rbt28yEAG8/vrrAAwYMCDZh5KSEnr16sX69esr7bUgCCqyLQVpO6pt3FO0H+rTpw/p6en8+te/Zs2aNQwaNKjMmE2bNvHggw/u8fBDeno6AOvXryc9PZ3MzMyU+aV/eVSWhg0bJn8uPa8iGo2WqWlfTgj+qvL0B/bfHh166KFlpr3wwgtMmDCBESNGMH78eA4++GDWr1/Pf//3f7Njx46UsV9/bps2bQJg6NChyWkdO3ZM/vzggw8ecH1OT0+nc+fOvPXWW2zdupUPP/ww+UaWk5OTPC/krbfe4sgjj0w+r02bNvH222+n9K9UVZ6gXhH16tVjzpw5JBIJVq1axa233sqECRN45plnOOyww3jwwQe58cYbueiii8jNzSUajfLee+9x7bXXlmubSiQSZQJpqX/+8580a9asyp5bbVKRbSlI21FtYyjaD6WnpzNgwAAeeOABevbsucc3wczMTH7wgx8k9wZ8VUZGBgBNmjRh165dFBQUpLwZfdcx6dJDIF89mRmgsLBwr59LVShPf2D/7dFX/yIvtWDBAtq3b59yzZI333yzXMuXPu+ZM2eyaNEinnnmGebMmQPAPffcw8svv3xA9rn0MMZf//pX6tSpQ/v27QFo1qwZTZo04a233mL58uUpJ3xnZmZy3HHHMXbs2DLrKw1ptUU4HKZz584AdOnShaysLIYPH86sWbOYNm0aCxYsoF+/fvz0pz9NLvPJJ5/scV172qZCoRCPPvpoMhh/1VcP5x4I9nZbCtJ2VNsYivZTw4YNY8OGDQwfPnyP83v27MmKFSvo0KEDkUhkj2NKX/BeeOGF5HkcsViMF1988Vsf+5BDDiE9PT3lBXDnzp1lrltTk76rP3Bg9Wj79u1l3nyeeeaZci2bk5ND/fr1WbduHU2bNk15s7z00ktJJBIHZJ+PPvpo7rnnHh555BE6d+5MWlpayrynnnqK9evXJ69FA7vPm3n66adp06ZNrbt8w3fp3LkzJ598Mn/84x8ZM2bMPm1TpZ9A27x5c0poPFDt7bYU5O2ophmK9lNdunThrrvu+sb5V155JWeeeSYXXnghw4cP59BDD+Vf//oXb775JscccwxDhgzhyCOP5Ic//CEzZsxgx44dNG/enEcffbTMX91fFw6H+eEPf8gjjzxCq1ataNSoUXI3+572UtSE7+oPHFg96tWrF9deey2zZs0iJyeHRYsWsXTp0nItG41GufLKK7n55pvp0KEDsViM1157jdWrV/PSSy8lP/nyTfbXPufk5BAOh1m0aBGXXHJJyrxu3bpx0003AaRcaO/888/nmWee4ZxzzuHcc8/liCOOYOPGjbzzzjs0bdqU888/v0pr3lc/+clPmD9/Pg8++CC9evXioYceYs6cObRu3Zqnn36aTz/9tFzrycrK4uyzz+bqq6/mwgsvpGvXruzatYtVq1bxxhtvfOfv7v5mb7eloG9HNclQdIBq1aoVTzzxBLfffjvTpk2juLiYJk2acOyxx6Z8bcKMGTO49tprueWWW6hTpw5Dhw6le/fuyV/CbzJlyhSmTJnC9OnTycjI4MILLyQrK4uXXnqpqp9apTmQejRy5EjWrFnDnDlzuO++++jTpw+33nrrt+7h+aoLLriApk2bcsMNN7Bjxw7Gjh1Ly5YtOf744/d4+OOr9tc+R6NRjjzySD766KPkOSClcnJySCQSHHbYYSmfyGvUqBFz587l9ttv55ZbbmHz5s0ccsghdO3aNeUk89oqOzubwYMH87vf/Y5XX32VTZs2Jb+KYuDAgUyePJnLLrusXOuaPHkyWVlZzJ07l1mzZpGRkUFWVhYnnXRSVT6FWmlvt6Wgb0c1KZRIJBI1XYQkSVJN8yP5kiRJGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSUpas2YN7dq147777qvSxxk9ejSjR4+u0seQtPcMRZIkSRiKJEmSAEORJEkSYCiSVMt98cUXTJo0iT59+tCpUyf69evHL37xC3bu3AnA6tWrufLKK+nevTtdu3Zl+PDhvPrqq2XWs2HDBiZNmkSvXr3o3Lkzp556KvPmzfvOx08kEkyZMoVOnTqxcOHC5PSnnnqKH/3oR3Tp0oXu3bszfvx4/vnPf5ZZfu7cufTv358uXbpw5pln8pe//KXizZBUpdJqugBJ+iZffPEFZ555Jlu2bGH48OFkZ2fzxRdf8Pzzz7N9+3YKCwsZOXIk27ZtY/To0TRq1Ih58+Zx+eWXc8cddyS/EXz79u2MHj2azz77jLPPPpvmzZuzYMECJk6cSGFhIeedd94eHz8WizFp0iTmz5/PzJkzOf744wG4++67+fWvf82gQYM488wz2bhxI3PmzOHss8/mySefJBqNAvDEE08wdepUcnJyOO+881i9ejWXX345mZmZ/Nd//Ve19FDSXkhIUi119dVXJ4466qjEu+++W2ZePB5PXHfddYm2bdsmli1blpxeVFSU6NevX+KEE05IxGKxRCKRSDzwwAOJtm3bJp566qnkuJ07dyZGjBiR6NatW2LLli2JRCKRWL16daJt27aJe++9N7Fr167EuHHjEl26dEn8+c9/Ti63Zs2aRPv27RN33313Sj0ffvhhokOHDsnpO3fuTPTs2TNx2mmnJXbs2JEcN3fu3ETbtm0T55xzTiV0SFJl8vCZpFopHo/z4osvcsIJJ9C5c+cy80OhEIsWLaJLly4cc8wxyekZGRmMGDGCtWvX8vHHHwOwePFimjRpwpAhQ5Lj0tPTGT16NMXFxSxbtixl3bt27WLs2LG8+uqrzJ49mz59+iTnvfDCC8TjcQYNGsTGjRuT/w499FBatWrFG2+8AcD777/Phg0bGDlyJHXq1EkuP3ToUBo2bFg5TZJUqTx8JqlW2rhxI0VFRXzve9/7xjGff/45Xbt2LTM9Ozs7Ob9t27asXbuWVq1aEQ6n/h3Ypk2b5Liv+s1vfkNxcTF5eXnk5uamzFu1ahWJRIIBAwbssaa0tLSUdbZq1Splfnp6Oi1atPjG5ySp5hiKJOlrjjvuOP785z9z7733kpubS926dZPz4vE4oVCIvLw8IpFImWUbNGhQnaVKqkSGIkm1UuPGjTnooINYsWLFN4454ogjWLlyZZnp+fn5yfkAzZo148MPPyQej6fsLfr6uFJdu3Zl5MiRXHrppYwdO5aZM2cm9wC1bNmSRCJB8+bNycrK+tbaAD799FN69uyZnL5r1y7WrFnDUUcd9a3PX1L185wiSbVSOBymf//+vPLKK7z33ntl5icSCX7wgx/w7rvvsnz58uT04uJiHn/8cZo1a8aRRx4JQN++fVm/fj3z589PjispKeHhhx+mQYMGHHvssWXW36tXL2677Tb+/Oc/c/XVVxOPxwEYMGAAkUiEmTNnkkgkytS0adMmADp16kTjxo157LHHkpcPAJg3bx6FhYX70BlJVSWU+PpvtSTVEl988QVnnHEGRUVFDB8+nDZt2rB+/XoWLFjAo48+ys6dOznttNPYsWMHo0ePJjMzkyeffJJ//OMf3HnnnSkfyf/Rj37EZ599xujRo2nWrBnPP/88b775JpMmTUp+JH/NmjWceOKJXH311Vx44YXA7usRTZgwgeHDh3PttdcCMHv2bG699VZycnLo378/GRkZrFmzhhdffJHhw4cnl507dy5Tp07l6KOPZvDgwaxZs4Y//vGPyY/kP/zwwzXQVUnfxMNnkmqtpk2b8vjjj/PrX/+aZ555hqKiIpo2bUrfvn2pV68e0WiUxx57jJtvvpk5c+awY8cO2rVrxz333JO8phBAvXr1ePjhh7nllluYN28eRUVFZGVlcf311/OjH/3oW2s47bTT2Lp1K9OmTSMjI4MJEyZwySWX0Lp1ax544AFmzZoFwOGHH07v3r3p169fctkRI0YQi8W47777uOmmm2jbtm3yGkeSah/3FEmSJOE5RZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEwP8D2gBGn3vH2JkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=steak, x=\"cooked\")" + ] + }, + { + "cell_type": "markdown", + "id": "ec996656-8880-4077-bc4f-01e7d600dece", + "metadata": {}, + "source": [ + "### Number of people who like their steak rare, and who drink" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "5d1555da-3c4f-4105-b7b7-83a1bfb3f833", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "drink cooked \n", + "No Medium 23\n", + " Medium Well 17\n", + " Medium rare 38\n", + " Rare 3\n", + " Well 12\n", + "Yes Medium 109\n", + " Medium Well 58\n", + " Medium rare 128\n", + " Rare 20\n", + " Well 24\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "\n", + "counts = steak.groupby([\"drink\", 'cooked']).size()\n", + "print(counts)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "32ca9aa2-e1ad-4563-b2de-55326f187e1f", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAATmdJREFUeJzt3Xd4FOXexvHvliSEJJtGkRYIQamBICWUEKSJdEVBbNgBfWl6UBEFAWlWOgECBwVRaTYQQeEgICpHpAURRAhIRyDJBggk2d33jxxW11DTdhfuz3VxkZ155pnfbBL25pmZZwwOh8OBiIiIyE3O6O4CRERERDyBQpGIiIgICkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgKA2d0FeBuHw4HdrknARUREvIXRaMBgMFy1nULRdbLbHZw+fdbdZYiIiMg1CgsLwGS6eijS6TMRERERFIpEREREAIUiEREREUChSERERATQhdYiIlKE7HY7Nlu2u8uQG4jJZMZoLJgxHoUiEREpdA6HA6v1NBkZZ9xdityA/P0DsVjCrum2+ytRKBIRkUJ3MRAFBobi6+uX7w8vEcgJ25mZFzhzJgWA4ODwfPWnUCQiIoXKbrc5A1FgoMXd5cgNxtfXD4AzZ1IICgrN16k0XWgtIiKFymazAX99eIkUtIs/W/m9Xk2hSEREioROmUlhKaifLYUiERERERSKRERERACFIhEREY909OgR4uLq8+GH8wp1P3379qJv316Fug9voVAkIiIigm7Jl+tkNBowGj33Ykm73YHd7nB3GSIi4oUUiuSaGY0GQkP9MRpN7i7lsux2GykpGQpGIiJy3RSK5JrljBKZSF6WSMapo+4uJxf/8DJEdnwao9GgUCQiheLPP08wa9Z0fvzxe6zWNEqUKElsbGMGDBiEj48Phw8fIiFhMj///BOZmReIirqVxx57iiZN4lz6SUk5zfTpU/j+++84e/YMFSpUpEePh2jXruMV9+9wOHjzzTF89dVSRowYQ/PmLQFYuXI5CxZ8yP79yfj5+dGwYSzPPjuA0qVvcdn+888/Yf789zl58iRRUVH07ftcwb5BXk6hSK5bxqmjZBz/w91liIgUqZMn/+Tppx/lzJl0One+h4iISpw8+Sfffrua8+fPk55u5ZlnnuT8+fPcd9/9BAcH89VXXzJ48PO8/vobNG/eAoALF87Tr19vDh06yL33dqdMmbKsWbOa0aOHk56eTvfuD1xy/zabjbFjR/Kf/3zDmDFvO4PW++/PZtas6bRs2ZpOne4mNTWFJUsW0LdvL/797/kEBQUBsGzZZ7z11hiio2vTvfsDHDlymJdeeh6LxUKpUqWL5k30cApFIiIi12D69CmcPn2KmTPfo1q1Gs7lTz3VB4fDweTJ73L69CmmTp1FnToxAHTqdA+PPvoAU6aMp1mz5hiNRj7//FP2709m2LDXufPOdgDcffd99O3bi8TEBDp27Ezx4gEu+87Ozub114fy3XfrGDfuXRo2bATAsWNH+fe/Z/L008/Qs+cTzvbNm7fg8ccf4tNPF9Gz5xNkZ2czY8Y0br31NiZNmoGPjw8AlSpV5s03RysU/Y/uPhMREbkKu93O+vXf0rRpM5dAdJHBYOCHHzZQvXpNZyACKF68OJ0738PRo0fYv38fAD/+uIHw8HBat27rbGc2m7nvvvvJyDjHli2bXfrOzs5i6NDBfP/9d7z11kRnIAJYu/Y/2O12WrZsQ2pqqvNPWFgJKlSIYPPmTQDs2rWTlJTTdOlyrzMQAbRv34nAwMACeIduDBopEhERuYrU1BTOnj1LZGTUZdscP36MGjVq5VpeqVIlAI4dO0blylU4duwo5ctH5HpwacWKkf9r53rN5rx575GRcY63357E7bfXd1l38OBBHA4HPXrcc8maTCazS58VKkS4rDebzZQtW+6yx3SzUSgSERHxYLGxjdi48Qc+/HAudevWw8/vrwfrOhx2DAYDb7896ZJPh/f3L16UpXo9hSIREZGrCAkJJSAggOTkvZdtU7r0Lfzxx4Fcyw8c2A/ALbfc8r+/y7B37x7sdrtLkPnjj/3O9X9Xo0Y0Xbrcy0svPcfQoYMZM+YtzOacj+9y5crjcDgoU6YsEREVL1vbxT4PHvyDevUaOJdnZ2dz5MgRqlS59QpHf/PQNUUiIiJXYTQaadbsDjZsWM+uXTtzrXc4HDRu3JRff/2FHTu2O5dnZGTwxRefUqZMWSpVqgxAo0ZNOXXqFKtXf+1sl52dzeLFC/D3L07durfn6r9Bg1iGDx/Dxo3f8/rrw7Db7QA0b94Sk8nEnDmJOByuU5E4HA7S0lIBqFatBiEhoXz++RKysrKcbZYvX8qZM+l5f2NuMBopEhERuQa9e/8fP/30I3379qJz53uoWDGSU6dOsmbNKqZNm83DDz/GqlVfM2hQf+67rwcWi4WvvlrG0aNHGDXqTeeoUJcu9/DFF58wZswIdu/eRZkyZVizZjVJSdvo3/9fue48uyg+/g6GDHmNUaNeIyAggBdffIVy5crz1FPPMGPGFI4dO0KzZndQvHhxjhw5wrp139K58z08+OAjmM1mnn76Gd56awz9+/ehVas2HD16hC+/XKpriv5GoUhEROQalCxZihkz3mfWrAS+/noF586dpUSJkjRq1IRixYoRFBREQsJsEhIms3jxAjIzM4mKqsIbb4x3mbzRz68YkyfPICFhMitWLOPs2bNERFRkyJDXaN++0xVraNu2PefOneOdd8YREBDI//3fAB555DEiIiJYsOBD5sxJBKBUqdI0bBhLXFy8c9suXbpit9v58MN5TJs2icqVq/DGG++SmJhQOG+YFzI4/jneJldks9k5ffqsu8twC7PZSGhoADvfH+mRkzf6l46gxqPDSEk5S3a23d3liMj/ZGVlcurUUcLDy+Dj4+vucuQGdLWfsbCwAEymq18xpGuKRERERFAoEhEREQEUikREREQAhSIRERERQKFIREREBPCwW/IPHDjA7Nmz2bZtG3v27KFy5cosW7bMuf7MmTPMmTOHtWvXsn//fnx9falduzbPPfccVatWdekrPT2dsWPHsmrVKrKysmjWrBmvvvoqpUqVKurDEhERES/gUSNFe/bsYe3atVSsWJGoqNwP3Tty5AgLFiygadOmTJgwgddff5309HTuv/9+9u51nXp94MCBbNiwgeHDh/P222+TnJzM008/TXZ2dlEdjoiIiHgRjxopatmyJa1btwZg8ODB7Nixw2V9+fLl+eabb/D393cua9SoES1btuTDDz9k6NChAGzZsoXvvvuO2bNnExeXM2FWZGQk7du35+uvv6Z9+/ZFdEQiIiLiLTxqpOhST/j9u+LFi7sEIoCAgAAiIiI4ceKEc9m6deuwWCw0bdrUuaxy5cpUr16ddevWFWzRIiIickPwqJGivLBarezZs4cmTZo4l+3bt4/IyEgMBoNL28qVK7Nv375879Ns9qgsWWSuZTZQT+AtdYrcLOx2w9UbiRQAk8mQr89orw9Fb731FgaDgQceeMC5zGq1EhQUlKttcHBwrlNy18toNBAaeumH9YlnsFj8r95IRIrM+fMmTp40XvIDy2AwYDQWfWiy2x25nip/LRITpzN79kxKlizJ559/lesMx9NPP05S0jbat+/EsGEj8lXjxx/PZ8KEd/jxx80A/PzzJv7v/3oxZ84HVK9eI19932jsdgNGo5Hg4OIUK1Ysz/14dShasmQJCxcuZNy4cdxyyy1Fsk+73YHVeq5I9uVpTCajVwQOqzUDm03PPhPxFJmZF7Db7dhsDpfnEhqNBkJC/N0yumuz2UlNPYfdfn3ByG53YDabSU1NZdOmTdx+e33numPHjrJjx3b8/YvjcDjy/QzGi7Vd7KdKlduYPn0O5ctX1PMd/8Fmc2C320lLO0dGhi3Xeovl2n7OvDYUrV27lmHDhvHss89yzz33uKyzWCwcO3Ys1zZpaWkEBwfne9/6YfRsNptd3yMRD2KzXTp4GI0GTCYjUz/awOETaUVWT7lSwfzfA00xGg3XHYoAfHx8qF+/IatWrXQJRatWrSQysjJGo6kgy3UKCAikVq3oQun7RvHP4H29vDIUbd26lQEDBnD33XczYMCAXOsrV67MDz/8gMPhcLmuKDk5mdtuu60oSxURkas4fCKN/YdT3F3GdWndui3vvPMGzz//EmZzzkfpN9+spE2bu1i9+huXtvv3JzN9+mS2bPkZm81G3br1GDjwBcqVK+9sc/bsGd59903WrfsWPz9f2rfvREhImEs/mzdvon//PsyaNZdq1Wpw9OgRunXrzOuvj6NFi9bOdhMnvsP69d+yePFSAJYvX8qYMSOYNWsuM2ZMZfv2rZQqVZrnn3+JevUaMGvWdJYu/QyADh0606vXs1e98elG5XVH/fvvv9O7d28aNWrEiBGXPl8bHx9PWloaP/zwg3NZcnIyO3fuJD4+vqhKFRGRG1TTpvFkZWXy3//+CEBy8j727t1Dq1Z3urQ7fPgQffo8gdVqZciQ4bz22ihSU1MYMOAZMjMzne3Gjh3JunXf0qdPX155ZTj79yezaNFHBVrzqFGv0aRJM8aMeZsSJUryyisvMnHi25w4cZxXXx1B167d+OCD91i16usC3a838aiRooyMDNauXQvA4cOHOXPmDCtWrACgYcOGOBwOnnzySfz8/Hj00UddLpoODAykSpUqANStW5e4uDiGDBnCSy+9hJ+fH+PHj6dq1arceeeduXcsIiJyHYoVK0ZcXHNWr15JkyZxrFq1klq1alO2bDmXdnPmJGKxWBg/fip+fn4A1KpVh+7du7Bs2ed07dqN5OR9rF27hpdeepWOHbsA0LBhY3r06FqgNd977/3cc899AJQsWZKePXuwa9evzJgxB4DY2MZ899061qxZxZ133lWg+/YWHhWKTp06let02MXXc+fOBXBeK/TYY4+5tGvYsCHz5s1zvp4wYQJjx45l2LBhZGdnExcXx6uvvuoc5hQREcmP1q3bMmLEq1y4cJ7Vq7/mvvvuz9Xmp59+pFWrOzGZTM4nKgQFBXHbbVXZtWsnALt27cThcBAf38K5nclkIj6+OQsWfFhg9TZoEOv8ukKFigDUq9fApU2FChEcPPhHge3T23hUQihfvjy7d+++Ypurrb8oKCiIMWPGMGbMmIIoTURExEVsbGPMZjOzZs3g6NEjtGzZJleb1NRUFi78iIULc58KM5t9ADh58iRmsxmLxeKyPjQ0LNc2+REY+NdUNT4+PrmWXVyemXmhQPfrTTwqFImIiHgLs9lM8+YtWbBgPvXqNSAsLDxXG4slmMaNm9K1a7dc64oXLw5AiRIlyM7Oxmq1ugSjlJTTV9y/r68vAFlZrs/0TE+3XvexSA6FIhERkTzq1KkLqamn6dTpnkuur1+/IcnJe7n11qqYTJe+Vb9atZyJGNetW+O8pshms7Fu3dor7js0NAyz2cyBA8nOZVlZWWzdujkvhyIoFImIiORZjRq1GDv2ncuuf/LJ3jz1VE+ef74fnTvfQ1hYGKdPn2LLls3UqRNDmzZ3ERlZmfj4Fkya9C6ZmZmUKVOGTz9dTHZ21hX3bTQaad68BUuWLKR8+QoEB4ewZMnCXNPRyLVTKBIREbcqVyr/k+p66v7Kl69AYuL7JCYm8O6748jIyCA8vAR16tQlKupWZ7uXXx7G+PFvkpAwCV9fX+66qyMxMfWYNm3iFfsfOPBF3nxzNBMmvEXx4gE88MAjRERUZP36bwv1uG5UBkdeHv5yE7PZ7Jw+fdbdZbiF2WwkNDSAne+PJOO4592d4F86ghqPDiMl5axmtBbxIFlZmZw6dZTw8DL4+Pg6l+c85qO4Vz3mQzzT5X7GLgoLC7ixH/MhIiLezW53kJp6zm0PhFUgkn9SKBIREbdROBFP4nWP+RAREREpDApFIiIiIigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiLiR0WjAbDYW+Z+8zqI9e/YM4uLqc/fd7bDbcz9O6JlnniAurj6jRw/P5zuTY+HCD4mLq+98vXnzJuLi6rNr184C6V9caUZrERFxC6PRQGioP0ajqcj3bbfbSEnJyNNs2mazmbS0VLZu3cztt/8VWI4dO8qOHUn4+xcvyFJdVK1ajenT51CxYmSh7eNmplAkIiJuYTQaMBpNJC9LJOPU0SLbr394GSI7Po3RaMhTKPLx8aF+/YasWrXSJRStWrWSyMjKhRryAgICqVUrutD6zyuHw0FWVha+vrkfxnotMjMzMZvNGI3uPYGlUCQiIm6VceooGcf/cHcZ16V167a8884bPP/8S5jNOR+l33yzkjZt7mL16m9ytd+/P5np0yezZcvP2Gw26tatx8CBL1CuXHlnm7Nnz/Duu2+ybt23+Pn50r59J0JCwlz62bx5E/3792HWrLlUq1aDo0eP0K1bZ15/fRwtWrR2tps48R3Wr/+WxYuXArB8+VLGjBnBrFlzmTFjKtu3b6VUqdI8//xL1KvXgFmzprN06WcAdOjQmV69nr1iQBk9eji7du3k2Wf7M336VA4cSOa110bRqFFTEhIm8dNPGzlx4jihoWHExjbmmWf6ExgY6Nz+vvs60aRJHKVL38InnyzixInjLF36DSEhISxfvpQFC+Zz8OAfWCzBtGvXkaee6oPJVPgjigpFIiIi16lp03jGjXud//73R5o0iSM5eR979+5h7Ni3c4Wiw4cP0afPE1SuHMWQIcMxGg3MnftvBgx4hg8/XOIcXRk7diQbN/5Inz59KVu2LJ9+upg9e1YWaN2jRr1Gly730qPHw3zwwXu88sqLtGvXgbNnz/LqqyPYuXMHs2fPoHLlKtx5511X7OvkyZNMmPA2jz76JKVL30Lp0rdw/vx57HY7vXo9S0hIKCdOHGfu3H/z8sv/YvLkGS7br137H8qXj2DAgEEYjUb8/Yvx8ccfkJAwme7dH6Rv34Hs37+fmTOnYbfbeeaZfgX6XlyKQpGIiMh1KlasGHFxzVm9eiVNmsSxatVKatWqTdmy5XK1nTMnEYvFwvjxU/Hz8wOgVq06dO/ehWXLPqdr124kJ+9j7do1vPTSq3Ts2AWAhg0b06NH1wKt+9577+eee+4DoGTJkvTs2YNdu35lxow5AMTGNua779axZs2qq4ai9HQrb789iZo1a7ksHzToZefX2dnZlClTlmeffYo//jhARERFl3Vvvz0Jf39/AM6dO8vs2TN58MGe9O79fwA0aNAIHx8zkyeP58EHHyE4OCTf78GV6O4zERGRPGjdui3r16/jwoXzrF79Na1b33nJdj/99CNxcfGYTCays7PJzs4mKCiI226r6ryLbNeunTgcDuLjWzi3M5lMxMc3L9CaGzSIdX5doUJOQKlXr4FLmwoVIjhx4vhV+woODs4ViABWrPiSxx9/kDZtmnHHHY149tmnADh40PUUad269ZyBCCApaTsZGedo0aKV833Kzs6mfv1YLly4wL59e6/9QPNII0UeJufCw7zdKlrYTCZlaBGRi2JjG2M2m5k1awZHjx6hZcs2l2yXmprKwoUfsXDhR7nWmc0+QM6pKLPZjMVicVkfGhqWa5v8CAwMcn7t4+OTa9nF5ZmZF67aV2hoeK5la9euYdSo1+jc+R569XoWiyWEU6dOMmTIoFx9/nP7tLRUAJ544uFL7u9aglp+KRR5EKPRQEhIcYUPEREvYDabad68JQsWzKdevQaEheUOCQAWSzCNGzela9duudYVL55z+36JEiXIzs7GarW6BKOUlNNXrOHi9UhZWdkuy9PTrdd1LHlhuMT/39esWcWtt97Giy++4ly2ZcvP17R9UFDOcY8e/RalS5fO1b5MmbJ5L/YaKRR5EKPRgMlkZOpHGzh8Is3d5eRSp2pZ7r8rxt1liIh4jE6dupCaeppOne65bJv69RuSnLyXW2+tetk7qKpVqwHAunVrnNcU2Ww21q1be8X9h4aGYTabOXAg2bksKyuLrVs3X++hFIgLFy44R78u+vrrFde0ba1atSlWrBh//nmc5s1bXH2DQqBQ5IEOn0hj/+EUd5eRS9mSlqs3EhG5idSoUYuxY9+5Ypsnn+zNU0/15Pnn+9G58z2EhYVx+vQptmzZTJ06MbRpcxeRkZWJj2/BpEnvkpmZSZkyZfj008VkZ2ddsW+j0Ujz5i1YsmQh5ctXIDg4hCVLFuJwODBcaiinkDVoEMu7777Be+/NombNaH78cQM///zfa9o2KCiIJ5/sw7Rpkzlx4gR169bDZDJx5Mgh1q9fx+jRb1KsWLFCrV+hSERE3Mo/vMwNvb/y5SuQmPg+iYkJvPvuODIyMggPL0GdOnWJirrV2e7ll4cxfvybJCRMwtfXl7vu6khMTD2mTZt4xf4HDnyRN98czYQJb1G8eAAPPPAIEREVWb/+20I9rkvp0qUrR44cZvHiBXz44TwaNmzEa6+Npnfvx65p+wceeJiSJUuyYMF8lixZgNlsply58jRp0sw5H1RhMjgcjuufzvMmZrPZOX36bKH0bTYbCQ0NYMjE5R45UtQkpiJ9H4xj5/sjPXKiNf/SEdR4dBgpKWfJzs79TCIRcY+srExOnTpKeHgZfHz+mvHYWx/zIZ7ncj9jF4WFBVzT9boaKRIREbew2x2kpGS45Y5bu92hQCS5KBSJiIjbKJyIJ9G93yIiIiIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKBQJCIibmQ0GjCbjUX+J6+zaM+ePYO4uPrcfXc77PbcjxN65pkniIurz+jRw/P5zuRYuPBD4uLqO19v3ryJuLj67Nq1s0D6z4tlyz4nLq4+Bw+6Pu5p8eKPiYurz+zZM1yWW61pNGvWgPnz37/mfdx3XyfeffcN5+vRo4fzyCPd81f4NdCM1iIi4hZGo4GQUH9Mbnj2mc1uIzWPzz4zm82kpaWydetmbr/9r8By7NhRduxIwt+/eEGW6qJq1WpMnz6HihUjC20fV1O7dh0AduzYToUKEc7lSUnbKFasGElJ21zaJyVtx+FwULt2TFGWmScKRSIi4hZGowGT0cSMtXM5kna8yPZbNrg0vZv3xGg05CkU+fj4UL9+Q1atWukSilatWklkZOVCfcBtQEAgtWpFF1r/1yIiohIhIaFs376Ndu06OpcnJW2nXbtOrFjxJTabDZPJ9L/l2/D19aNatRruKvmaKRSJiIhbHUk7zoFTh9xdxnVp3bot77zzBs8//xJmc85H6TffrKRNm7tYvfqbXO33709m+vTJbNnyMzabjbp16zFw4AuUK1fe2ebs2TO8++6brFv3LX5+vrRv34mQkDCXfjZv3kT//n2YNWsu1arV4OjRI3Tr1pnXXx9Hixatne0mTnyH9eu/ZfHipQAsX76UMWNGMGvWXGbMmMr27VspVao0zz//EvXqNWDWrOksXfoZAB06dKZXr2cxGi9/hU10dB2XEaFjx45x4sRxunXrwRdffMLevXu47bZqQE4oqlatOj4+PgCcOHGc6dOnsHHj92RknKd69Rr06/c81apVv/ZvQCHxqGuKDhw4wLBhw+jSpQs1atSgY8eOl2y3aNEi2rZtS3R0NJ07d2bNmjW52qSnpzNkyBAaNmxI3bp16d+/PydOnCjsQxARkZtA06bxZGVl8t///ghAcvI+9u7dQ6tWd+Zqe/jwIfr0eQKr1cqQIcN57bVRpKamMGDAM2RmZjrbjR07knXrvqVPn7688spw9u9PZtGijwq07lGjXqNJk2aMGfM2JUqU5JVXXmTixLc5ceI4r746gq5du/HBB++xatXXV+wnOroOBw4kY7VaAUhKyglZEREVqVLlNmdgys7O5tdfdzpPnVmtVp599in27NnNwIEvMHr0GxQr5s+AAX1ISTldoMeaFx4Vivbs2cPatWupWLEiUVFRl2zz5ZdfMnToUNq1a0diYiIxMTH07duXrVu3urQbOHAgGzZsYPjw4bz99tskJyfz9NNPk52dXQRHIiIiN7JixYoRF9ec1atXAjmnzmrVqk3ZsuVytZ0zJxGLxcL48VNp3rwFzZrdwZtvTiQtLY1lyz4HckLV2rVrGDDgX9x7b3caN45j7Nh3MJt9CrTue++9n27dehAb25jnnnuBc+fOsmvXr7z66ghiYxvz+ONPU7VqddasWXXFfmrXjsHhcPDLL9uBnOuLoqNrAxAdXZukpJzlu3fvIjPzgjMULVr0EWfOpDNp0nTatLnrf8f5NoGBQXz00bwCPda88KhQ1LJlS9auXcukSZOoWbPmJdtMmjSJDh06MHDgQBo1asTIkSOJjo5m6tSpzjZbtmzhu+++Y/To0bRv355WrVoxceJEdu/ezddfXzn9ioiIXIvWrduyfv06Llw4z+rVX9O6de5RIoCffvqRuLh4TCYT2dnZZGdnExQUxG23VXXeRbZr104cDgfx8S2c25lMJuLjmxdozQ0axDq/rlChIgD16jVwaVOhQgQnTlz5Gq9q1arj5+fH9u05I0JJSduoVSvnAuyaNaOdI0VJSVsxGAzUqpUTmP773x+pW7c+QUEW53thNBqJibmdX3913x11F3nUNUVXOn8JcPDgQfbv388LL7zgsrx9+/a8+eabZGZm4uvry7p167BYLDRt2tTZpnLlylSvXp1169bRvn37QqlfRERuHrGxjTGbzcyaNYOjR4/QsmWbS7ZLTU1l4cKPWLgw96mwiyNBJ0+exGw2Y7FYXNaHhobl2iY/AgODnF9fvMbn78suLs/MvHDFfsxmM9Wr1yQpaRvnzp1j797f/zZSVIfjx3OuMUpK2kalSpHO40pLS+WXX5K4445Gufr8+/VV7uJRoehq9u3bB0BkpOutiFFRUWRlZXHw4EGioqLYt28fkZGRGAyu81BUrlzZ2Ud+mM2FM8BmMnnUwJ3X0vso4lns9rzNCeTpzGYzzZu3ZMGC+dSr14CwsPBLtrNYgmncuCldu3bLta548Zzb90uUKEF2djZWq9UlGF3tOhtfX18AsrJcLw1JT7de17HkRXR0HRYt+ojt27fi4+NDlSq3AXDLLWUIDy9BUtI2duzYTlzcX6NdQUEWYmOb8PTTfXL15+Pjm++aTCZDvj6jvSoUpaWlAeRK0n8l0Jz1VquVoCDX5AsQHBzMjh078lWD0WggNDQgX31I4bJY/N1dgoj8zfnzJk6eNOb6wHL3f2Dysv+Lkz5ePI67776HtLQUunS5x7nMYACD4a9jbdAglv3791G9enXnber/VKtWLQA2bPiWTp3uBsBms7F+/VqX/V2s2WTKmYSyZMkSmM1mDh7c72yTlZXF1q2bXbb7q+7coeGf3xeDweBS/+XUrXs78+bN4dNPF1K9ek2KFfsr1NSuXYevv17OqVOniImJcfbVsGEsK1cuJyoqCn//K/9bfXFiz2upyW43YDQaCQ4uTrFixa7Y75V4VSjyBHa7A6v1XKH0bTIZ9YFeAKzWDGy23DPNioh7ZGZewG63Y7M5yM7O/btZNrh0kdZzcX82m/2S9VzJxXmNLm5XtWoNxox522WZwwEOx1/H+sQTvXjqqZ707/9/dO58D2FhYZw+fYotWzZTp04MbdrcRYUKlYiPb8H48e+QkXGBMmXK8Omni8nKynLp++K/bX+vvXnzFixatICyZcsTHBzCkiULcTgcGAwGZ5u/6s79Pfjn98XhcLjUfznVq9fCaDTy/fcbePjhx1za16gRzbRpEwGoWbOOc1337g+ycuVX9OnzFN269aB06VtITU1h585fKFGiBPff/5DLe/3Xe3rlmmw2B3a7nbS0c2Rk2HKtt1j8rykEe1UoCg4OBnJuty9ZsqRz+cVbAi+ut1gsHDt2LNf2aWlpzjb5cb2/RFK08vIPnYgUHpvt0hMk2u0ObHYbvZv3LOKKcma0zsvEjXlRvnwFEhPfJzExgXffHUdGRgbh4SWoU6cuUVG3Otu9/PIwxo9/k4SESfj6+nLXXR2JiannDBeXM3Dgi7z55mgmTHiL4sUDeOCBR4iIqMj69d8W6nEFBQURGVmZvXt/d15IfVF0dG0cDgclSpR0uSMvODiEGTPmkJiYQELCZKzWNEJDw6hRoxbx8Xfku6bLBe9rZXA4HEXzU3GdBg8ezI4dO1i2bJlz2cGDB2ndujVTp06ldeu/JqmaN28eb7zxBps3b8bX15eJEycyf/58Nm7c6HJdUdeuXbntttsYN25cnuuy2eycPn02z9tfidlsJDQ0gCETl7P/cEqh7CM/msRUpO+Dcex8fyQZx/+4+gZFzL90BDUeHUZKylmFIhEPkpWVyalTRwkPL5PruhGj0ZDn55Dlh93uKLJQJIXvSj9jAGFhAdc0UuRVV6RWqFCBSpUqsWLFCpfly5cvp3Hjxs4LzuLj40lLS+OHH35wtklOTmbnzp3Ex8cXac0iInJ5F0+RFPUfBSK5FI86fZaRkcHatTkXlR0+fJgzZ844A1DDhg0JCwujX79+DBo0iIiICGJjY1m+fDnbt2/ngw8+cPZTt25d4uLiGDJkCC+99BJ+fn6MHz+eqlWrcuedl55HQkRERG5uHhWKTp06xYABA1yWXXw9d+5cYmNj6dixIxkZGSQmJjJz5kwiIyOZMmUKdevWddluwoQJjB07lmHDhpGdnU1cXByvvvqq8xk1IiIiIn/nUQmhfPny7N69+6rtunXrRrduued7+LugoCDGjBnDmDFjCqo8ERERuYF51TVFIiIiIoVFoUhEREQEhSIRERERQKFIREREBFAoEhEREQE87O4zERG5uXjbjNazZ89gzpxE52uLJZiKFSvRs+fjNG4cV5AlihsoFImIiFsYjQZCQ/wxXubJ8YXJbrORkpqRp2Dk5+fHxInTATh16k/mzp3DSy89z9SpiURH1ynoUqUIKRSJiIhbGI0GjCYTWxNmcObI0SLbb2DZMsQ80xuj0ZCnUGQ0GqlVK9r5ukaNWnTt2oGvvlqWr1B04cJ5/PyK5Xl7yT+FIhERcaszR45iPXDA3WXkWcmSpQgJCeX48eMAnDx5kpkzp7Jly2ZOnTpJqVKlaNGiNY8//rTzGZ0AcXH16d27L+npVlas+JKMjAy++WYdDoeDjz76gC+++JTjx49SokQp7ruvO/ff/5C7DvGmoVAkIiKSD+fOncNqTaNMmbIApKWlYrEE06/fcwQFBXHw4B/8+98zOXXqJEOGvOay7eLFH1GjRjSDBw/FZssGYOLEt1m69DN69nyCGjVqsWPHdhISJuPn58fdd99X5Md3M1EoEhERuU7Z2TkB5uTJkyQkTKR48QC6d+8BQFRUFfr2HehsGx1dh2LF/Bk9+jWef/4lihX76xRZUFAwY8a8hcGQc7H54cOHWLJkIYMGvUyXLl0BaNAglvPnzzNnTiKdO3fFaNSN44VFoUhEROQ6ZGRkcMcdjZyvTSYTY8e+Q0REJQAcDgeLFn3EF198ypEjR8jMvOBse+TIISpXruJ83ahRE2cgAvjpp40A3HFHS2fwAqhfvyHz57/PiRPHueWWMoV1aDc9hSIREZHr4Ofnx9Spidjtdg4dOsj06VMYNeo15s5dQIkSJVi48EOmTp3Igw/25Pbb6xMUFMSvv+7k3XffIDMz06WvsLAwl9dpaak4HA46dGh9yX0fP65QVJgUikRERK6D0WikWrUaQM6dZxERFenV6zHeey+RQYNeZs2a1TRtGk+fPn2d2+zfn3yZ3lznaLJYgjEYDEybNgsfH59crSMiKhbYcUhuCkUiIiL5UK1aDVq3bsvy5Ut5/PGnuXDhfK5A8/XXX11TX/XqNQAgLS2NuLj4Aq9VrkyhSEREJJ8ee+xJVq/+moULP6JBg1gWLfqYJUsWUKFCRVauXM6hQ4euqZ+IiIp07dqNUaOG8cADj1CjRi2ys7M5ePAPtmzZxNix7xTykdzcFIpERMStAssW7TUyhbG/iIhKtGp1J599tpglS74kNTWVWbNmAHDHHa0YOHAQL7303DX1NXDgC0REVOTzzz/hvfdm4e9fnIiIirRo0arA6xZXBofDcf3Ted7EbDY7p0+fLZS+zWYjoaEBDJm4nP2HUwplH/nRJKYifR+MY+f7I8k4/oe7y8nFv3QENR4dRkrKWbKz7e4uR0T+Jysrk1OnjhIeXgYfn78mL/TWx3yI57ncz9hFYWEBmExXn8pAI0UiIuIWdruDlNQMr3ogrNzYFIpERMRtFE7Ek2haTBEREREUikREREQAhSIRERERQKFIREREBFAoEhEREQEUikREREQAhSIRERERQKFIREREBFAoEhERNzIaDZjNxiL/k5dZtJct+5y4uPocPOj6mKPFiz8mLq4+s2fPcFlutabRrFkD5s9//5r6v+++Trz77hvO16NHD+eRR7pfd52Sd5rRWkRE3MJoNBASUvyanklV0Gw2O6mp565rNu3atesAsGPHdipUiHAuT0raRrFixUhK2ubSPilpOw6Hg9q1YwqkZil8CkUiIuIWRqMBk8nI5ws3cvLP9CLbb4mSQXTpHovRaLiuUBQRUYmQkFC2b99Gu3YdncuTkrbTrl0nVqz4EpvNhul/D7hNStqGr68f1arVKPBjkMKhUCQiIm518s90jh9JdXcZ1yQ6uo7LiNCxY8c4ceI43br14IsvPmHv3j3cdls1ICcUVatWHR8fH06cOM706VPYuPF7MjLOU716Dfr1e55q1aq761DkEnRNkYiIyDWKjq7DgQPJWK1WAJKStlKqVGkiIipSpcptzsCUnZ3Nr7/upHbtGKxWK88++xR79uxm4MAXGD36DYoV82fAgD6kpJx25+HIPygUiYiIXKPatWNwOBz88st2IOf6oujo2gBER9cmKSln+e7du8jMvEDt2jEsWvQRZ86kM2nSdNq0uYvGjeMYO/ZtAgOD+OijeW47FslNoUhEROQaVatWHT8/P7ZvzxkRSkraRq1aORdg16wZ7RwpSkraisFgoFat2vz3vz9St259goIsZGdnk52djdFoJCbmdn79dafbjkVy0zVFIiIi18hsNlO9ek2SkrZx7tw59u79/W8jRXU4fjznGqOkpG1UqhSJxWIhLS2VX35J4o47GuXqr1y58kV9CHIFCkUiIiLXITq6DosWfcT27Vvx8fGhSpXbALjlljKEh5cgKWkbO3ZsJy6uOQBBQRZiY5vw9NN9cvXl4+NbpLXLlSkUiYiIXIfatWOYN28On3yykGrVamA2//VRGh1dm5Url3Pq1Cmio3NOq9Wv35Cvv/6KihUj8ff3d1fZcg10TZGIiMh1qFWrNkajkR9+2OAMPhfVrFmbH37YAOCctLFHj4cwGAz07duLFSu+ZMuWn1mzZhVTp05kwYL5RV2+XIFGikRExK1KlAzyqv0FBQURGVmZvXt/p1at2i7roqNr43A4KFGiJGXLlgMgODiEGTPmkJiYQELCZKzWNEJDw6hRoxbx8XfkqxYpWApFIiLiFna7A5vNTpfusUW+b5vNfl2zWf/T++9/fMnltWrV5rvvNuVaHh5egsGDh16xz8WLl7q8fuWV4XmuT/JGoUhERNzCbneQmnouTw9nLYh95ycUyY3JK0PR6tWrmT59Or///jsBAQHUq1ePQYMGUaFCBZd2ixYtYtasWRw5coTIyEiee+45WrRo4aaqRUTknxROxJN43YXWGzdupG/fvlSpUoWpU6cyZMgQdu3axRNPPMH58+ed7b788kuGDh1Ku3btSExMJCYmhr59+7J161b3FS8iIiIey+tGir788kvKli3LmDFjMBhyhlzDwsJ49NFH2bFjB/Xr1wdg0qRJdOjQgYEDBwLQqFEjfvvtN6ZOnUpiYqK7yhcREREP5XUjRdnZ2QQEBDgDEeTcCQDgcOQMwR48eJD9+/fTrl07l23bt2/PDz/8QGZmZtEVLCIiIl7B60aKunbtyueff878+fPp3LkzqampvPvuu9SoUYPbb78dgH379gEQGRnpsm1UVBRZWVkcPHiQqKioPNdgNhdOljSZvC6jeiS9jyKexW7P+Z28+B9XkYJ28WfLZDLm6zPa60JR/fr1mTJlCv/6178YOXIkANWrV2fWrFmYTCYA0tLSALBYLC7bXnx9cX1eGI0GQkMD8ry9FD6LRTPGingSm60Yp04dxWbLxGzW76cUvIyMTEwmIyVKWJxZIC+8LhRt3ryZF198ke7du3PHHXeQmprKtGnT6NWrFx9++CHFihUr1P3b7Q6s1nOF0rfJZNQHegGwWjOw2ezuLkNE/qZYsQDS0lKw2Rz4+vq5XAIhklcOh4PMzAucOZNKQEAgVuv5S7azWPyv6SyC14WiUaNG0ahRIwYPHuxcFhMTwx133MHnn3/O/fffT3BwMADp6emULFnS2c5qtQI41+dVdrY+cD2ZzWbX90jEwwQGhmK3OzhzJsXdpcgNyN8/kMDA0Hz/2+91oWjv3r20atXKZdktt9xCaGgof/zxBwCVK1cGcq4tuvj1xdc+Pj655jMSEZHCZTAYCA4OJygoFJst293lyA3EZDJjNBbMtaReF4rKli3Lzp07XZYdPnyYlJQUypXLec5MhQoVqFSpEitWrKB169bOdsuXL6dx48b4+voWac0iIpLDaDRiNOrfYPFMXheKevTowZgxYxg1ahQtW7YkNTWVhIQEwsPDXW7B79evH4MGDSIiIoLY2FiWL1/O9u3b+eCDD9xYvYiIiHgqrwtFPXv2xNfXl48++oglS5YQEBBATEwMEyZMIDQ01NmuY8eOZGRkkJiYyMyZM4mMjGTKlCnUrVvXjdWLiIiIp/K6UGQwGHjggQd44IEHrtq2W7dudOvWrQiqEhEREW+nWe5EREREUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERAfIRij777DMOHTp02fWHDh3is88+y2v3IiIiIkUqz6Ho5ZdfZsuWLZddv337dl5++eW8di8iIiJSpPIcihwOxxXXnzt3DpPJlNfuRURERIrUdc1ovWvXLnbt2uV8vWnTJmw2W652VquVjz/+mMjIyPxXKCIiIlIErisUrVq1iilTpgA5j9tYsGABCxYsuGRbi8XCG2+8kf8KRURERIrAdYWi7t27c8cdd+BwOOjWrRv9+/cnPj7epY3BYMDf35+IiAjMZq97tJqIiIjcpK4rtZQqVYpSpUoBMHfuXKKioggPDy+UwkRERESKUp6Hcho2bFiQdYiIiIi4Vb7Ob61fv57Fixdz8OBBrFZrrjvSDAYDq1atyleBIiIiIkUhz6Fo1qxZvPPOO4SHh1O7dm2qVq1akHWJiIiIFKk8h6K5c+fSqFEjZs6ciY+PT0HWJCIiIlLk8jx5o9VqpW3btgpEIiIickPIcyiKjo4mOTm5IGsRERERcZs8h6Lhw4fzzTffsHTp0oKsR0RERMQt8nxN0cCBA8nOzubFF19k+PDh3HLLLRiNrhnLYDDwxRdf5LtIERERkcKW51AUEhJCSEgIFStWLMh6RERERNwiz6Fo3rx5BVmHiIiIiFvl+ZoiERERkRtJnkeKfvrpp2tq16BBg7zuQkRERKTI5DkUPfLIIxgMhqu2+/XXX/O6CxEREZEik68Zrf/JZrNx+PBhFi5ciN1u51//+le+ihMREREpKnkORQ0bNrzsuq5du/Lggw/y3//+l8aNG+d1FyIiIiJFplAutDYajXTo0IFFixYVRvciIiIiBa7Q7j5LS0sjPT29sLoXERERKVB5Pn125MiRSy63Wq1s2rSJ2bNnU79+/TwXJiIiIlKU8hyKWrZsedm7zxwOBzExMYwYMSLPhYmIiIgUpTyHojFjxuQKRQaDAYvFQkREBFWqVMl3cSIiIiJFJc+hqGvXrgVZh4iIiIhb5TkU/d3vv//O4cOHAShXrpxGiURERMTr5CsUrVq1inHjxjkD0UXly5dn8ODBtGrVKl/FiYiIiBSVPIeitWvX0r9/f8qWLctzzz1HVFQUAHv37mXhwoX069eP6dOnEx8fX2DFioiIiBSWPIeiadOmUbVqVebPn0/x4sWdy1u1asXDDz/Mgw8+yNSpUxWKRERExCvkefLG3bt3c/fdd7sEoouKFy/OPffcw+7du/NVnIiIiEhRyXMo8vPzIy0t7bLr09LS8PPzy2v3IiIiIkUqz6EoNjaWuXPnsmXLllzrtm3bxrx58/QwWBEREfEaeb6m6IUXXqBHjx48+OCD1K5dm8jISACSk5PZvn074eHhDBo0qMAKFRERESlMeR4pqlChAl988QWPPPIIaWlpLF++nOXLl5OWlkbPnj35/PPPKV++fEHW6uLTTz/l7rvvJjo6mtjYWJ566inOnz/vXP+f//yHzp07Ex0dTdu2bVmyZEmh1SIiIiLeL88jRdnZ2fj5+TFkyBCGDBmSa/2ZM2fIzs7GbC6Q+SFdJCQkkJiYSJ8+fYiJiSElJYUffvgBm80GwKZNm+jbty/33XcfQ4YM4ccff+SVV14hICCAu+66q8DrEREREe+X58QyatQoNm3axLJlyy65/oEHHiA2NpZXX301z8Vdyr59+5gyZQrTpk2jefPmzuVt27Z1fp2QkEDt2rUZOXIkAI0aNeLgwYNMmjRJoUhEREQuKc+nz9avX+8SRP6pbdu2rFu3Lq/dX9Ynn3xC+fLlXQLR32VmZrJx48Zc4ad9+/bs3buXQ4cOFXhNIiIi4v3yPFJ04sQJSpcufdn1pUqV4vjx43nt/rK2bdvGbbfdxrRp05g3bx7p6enUqlWLl19+mTp16vDHH3+QlZVF5cqVXba7OOP2vn378n2tk9mc5yx5RSZT4fR7s9H7KCIieZHnUBQSEkJycvJl1+/du5fAwMC8dn9Zf/75Jzt27OC3337jtddew9/fn+nTp/PEE0/w9ddfO+dOslgsLttdfH2luZWuhdFoIDQ0IF99SOGyWPzdXYKIiHihPIeiZs2a8fHHH9OpUydq1Kjhsu6XX35h4cKFhXL9jsPh4Ny5c0ycOJFq1aoBUKdOHVq2bMkHH3xAXFxcge/z7+x2B1bruULp22Qy6gO9AFitGdhsdneXISIiHsJi8b+mswh5DkUDBgxg/fr1dOvWjZYtW1KlShUA9uzZw5o1awgLC2PAgAF57f6yLBYLISEhzkAEOaNWNWrU4Pfff6dDhw4ApKenu2xntVoBCA4OzncN2dn6wPVkNptd3yMREblueQ5FpUuXZsmSJbzzzjusXr2ab775BoDAwEA6derEc889d8VrjvKqSpUq/PHHH5dcd+HCBSIiIvDx8WHfvn00a9bMuW7fvn0Aua41EhEREYF8hCLIuZj6jTfewOFwcPr0aQDCwsIwGAwFUtyltGjRgk8++YRff/2V6tWrA5CSksIvv/zCY489hq+vL7GxsaxcuZJHH33Uud3y5cuJiooq1AklRURExHsVyMyKBoOB8PDwgujqqlq3bk10dDT9+/fnueeew8/Pj5kzZ+Lr68uDDz4IwDPPPEPPnj0ZPnw47dq1Y+PGjSxbtozx48cXSY3iXp5695nd7sBud7i7DBERuYyCn266kBmNRmbOnMnYsWMZNmwYWVlZ1K9fn/nz51OyZEkA6tevz+TJk5kwYQKLFy+mbNmyjBo1inbt2rm5eilM5gALdrvdYy9Wt9ltpKZkKBiJiHgorwtFkHOK7q233rpim1atWtGqVasiqkg8gdmvOEajkRlr53IkreDnyMqPssGl6d28J0ajQaFIRMRDeWUoErmSI2nHOXBKM5eLiMj18cyLL0RERESKmEKRiIiICApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiIC3ACh6OzZs8THx1O1alWSkpJc1i1atIi2bdsSHR1N586dWbNmjZuqFBEREU/n9aFo2rRp2Gy2XMu//PJLhg4dSrt27UhMTCQmJoa+ffuydevWoi9SREREPJ5Xh6K9e/fy4Ycf0q9fv1zrJk2aRIcOHRg4cCCNGjVi5MiRREdHM3XqVDdUKiIiIp7Oq0PRqFGj6NGjB5GRkS7LDx48yP79+2nXrp3L8vbt2/PDDz+QmZlZlGWKiIiIFzC7u4C8WrFiBb/99huTJ0/ml19+cVm3b98+gFxhKSoqiqysLA4ePEhUVFSe9202F06WNJm8OqPKNdD3WETEc3llKMrIyGDcuHE899xzBAYG5lqflpYGgMVicVl+8fXF9XlhNBoIDQ3I8/Zyc7NY/N1dgoiIXIZXhqKEhATCw8O59957i3zfdrsDq/VcofRtMhn1oXmDs1ozsNns7i5DROSmYrH4X9NIvdeFosOHD/Pvf/+bqVOnkp6eDsC5c+ecf589e5bg4GAA0tPTKVmypHNbq9UK4FyfV9nZ+lCTvLHZ7Pr5ERHxUF4Xig4dOkRWVha9evXKta5nz57UqVOHd955B8i5tqhy5crO9fv27cPHx4cKFSoUWb0iIiLiHbwuFFWvXp25c+e6LPv1118ZO3YsI0aMIDo6mgoVKlCpUiVWrFhB69atne2WL19O48aN8fX1LeqyRURExMN5XSiyWCzExsZecl3NmjWpWbMmAP369WPQoEFEREQQGxvL8uXL2b59Ox988EFRlisi4jWMRgNGo8HdZVyW3e7Abne4uwy5gXldKLpWHTt2JCMjg8TERGbOnElkZCRTpkyhbt267i5NRMTj5NxZ64/RaHJ3KZdlt9tISclQMJJCc0OEotjYWHbv3p1rebdu3ejWrZsbKhIR8S45o0QmkpclknHqqLvLycU/vAyRHZ/GaDQoFEmhuSFCkYiIFIyMU0fJOP6Hu8sQcQtNrysiIiKCQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIAGZ3FyAinsFoNGA0GtxdxmXZ7Q7sdoe7yxCRG5hCkYhgNBoICSmOyeS5g8c2m53U1HMKRiJSaBSKRASj0YDJZOTzhRs5+We6u8vJpUTJILp0j8VoNCgUiUihUSgSEaeTf6Zz/Eiqu8u4YXnyKUpPHiUUKSoKRSIiRcAbTlGK3OwUikREisDFU5RTP9rA4RNp7i4nlzpVy3L/XTHuLkPErRSKRESK0OETaew/nOLuMnIpW9Li7hJE3M7rxnG/+uornnnmGeLj44mJiaFLly4sXrwYh8P14stFixbRtm1boqOj6dy5M2vWrHFTxSIiIuINvC4Uvffee/j7+zN48GASEhKIj49n6NChTJ061dnmyy+/ZOjQobRr147ExERiYmLo27cvW7dudV/hIiIi4tG87vRZQkICYWFhzteNGzcmNTWVOXPm8Oyzz2I0Gpk0aRIdOnRg4MCBADRq1IjffvuNqVOnkpiY6KbKRURExJN53UjR3wPRRdWrV+fMmTOcO3eOgwcPsn//ftq1a+fSpn379vzwww9kZmYWVakiIiLiRbxupOhSfv75Z0qXLk1gYCA///wzAJGRkS5toqKiyMrK4uDBg0RFReVrf2Zz4WRJ3ap74/PxMXnk99lT5875J098766VN9fuSfQ+SmHy+lC0adMmli9fzksvvQRAWlrOra4Wi+udFBdfX1yfV0ajgdDQgHz1ITefYP8gHHY7gYHF3F2KV7NY/N1dgriZfgakMHl1KDp27BjPPfccsbGx9OzZs0j2abc7sFrPFUrfJpNRv/A3qOK+/hiMRrYmzODMkaPuLieXkrWjqdrtXneXcVVWawY2m93dZeSJfr8Lhjf/DIj7WCz+1zTK6LWhyGq18vTTTxMSEsLkyZMxGnMONjg4GID09HRKlizp0v7v6/MjO1u/kJI3Z44cxXrggLvLyCWgTBl3l3BNbDa7fv9ucvoZkMLklSdnz58/T+/evUlPT2fWrFkEBQU511WuXBmAffv2uWyzb98+fHx8qFChQpHWKiIiIt7B60JRdnY2AwcOZN++fcyaNYvSpUu7rK9QoQKVKlVixYoVLsuXL19O48aN8fX1LcpyRURExEt43emzESNGsGbNGgYPHsyZM2dcJmSsUaMGvr6+9OvXj0GDBhEREUFsbCzLly9n+/btfPDBB+4rXERERDya14WiDRs2ADBu3Lhc61avXk358uXp2LEjGRkZJCYmMnPmTCIjI5kyZQp169Yt6nJFRETES3hdKPrPf/5zTe26detGt27dCrkaERERuVF4XSgSEZGbl6dO3mi3O7DbHVdvKB5NoUhERDyeOcCC3W732LmebHYbqSkZCkZeTqFIREQ8ntmvOEajkRlr53Ik7bi7y3FRNrg0vZv3xGg0KBR5OYUiERHxGkfSjnPg1CF3lyE3KM88OSsiIiJSxBSKRERERFAoEhEREQEUikREREQAhSIRERERQKFIREREBFAoEhEREQEUikREREQAhSIRERERQDNai4iI3PCMRgNGo8HdZVyWpzxQV6FIRETkBmY0GggJKY7J5Lknh2w2O6mp59wejBSKREREbmBGowGTycjnCzdy8s90d5eTS4mSQXTpHusRD9RVKBIREbkJnPwzneNHUt1dhkfz3LE0ERERkSKkUCQiIiKCQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiABgdncBIiIiNwKTyTPHGTy1Lk+kUCQiIpIPwf5BOOx2LBZ/d5ci+aRQJCIikg/Fff0xGI1sTZjBmSNH3V1OLiVrR1O1273uLsMrKBSJiIgUgDNHjmI9cMDdZeQSUKaMu0vwGjf0ica9e/fy+OOPExMTQ9OmTXnzzTfJzMx0d1kiIiLigW7YkaK0tDQeffRRKlWqxOTJkzl+/Djjxo3j/PnzDBs2zN3liYiIiIe5YUPRxx9/zNmzZ5kyZQohISEA2Gw2RowYQe/evSldurR7CxQRERGPcsOePlu3bh2NGzd2BiKAdu3aYbfb2bBhg/sKExEREY9kcDgcDncXURgaN27Mvffey6BBg1yWN2vWjC5duuRafq0cDgd2e+G8ZQYDGI1G0s6cx2azF8o+8sPXx0RgcT+yzlpx2G3uLicXo9kXs38A1ox0sj2sPj+zDwF+AVywWnFke1ZtAEZfX3wDAzjroT97JpORgMBi2O12vPVfLP1+549+v/NOv99gNBowGAxXbXfDnj6zWq1YLJZcy4ODg0lLS8tzvwaDAZPp6m9sfgQHFivU/vPLJyD3++pJLP5B7i7hsvwu8TPpSQI8/GfPaPT+wW39fuePfr/zTr/f11CDuwsQERER8QQ3bCiyWCykp6fnWp6WlkZwcLAbKhIRERFPdsOGosqVK7Nv3z6XZenp6fz5559UrlzZTVWJiIiIp7phQ1F8fDzff/89VqvVuWzFihUYjUaaNm3qxspERETEE92wd5+lpaXRoUMHIiMj6d27t3Pyxk6dOmnyRhEREcnlhg1FkPOYj9dff50tW7YQEBBAly5deO655/D19XV3aSIiIuJhbuhQJCIiInKtbthrikRERESuh0KRiIiICApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFcpN55JFHaNeuHZmZmbnW9e/fn+bNm3P27Fk3VCYiBWny5MlUrVqVhx56KNe60aNH07JlSzdUJZ5OoUhuKiNGjODQoUPMmjXLZfm6detYuXIlQ4cOJSAgwE3ViUhB27RpExs3bnR3GeIlFIrkplK5cmV69+7N9OnTOXjwIAAXLlzg9ddfp1WrVrRu3drNFYpIQSlevDi1a9dm2rRp7i5FvIRCkdx0evXqRdmyZRkxYgQA06dP5+TJkwwbNoxjx44xaNAgYmNjqV27Ng899BA7duxw2X716tV07dqVunXrUr9+fbp27cratWvdcSgichXPPvssP/74I5s3b75sm8OHD9O/f3/q1atHTEwMTz75JLt37y7CKsVTKBTJTcfX15eRI0eyfv16pk2bxqxZsxgwYAD+/v48+OCD7Nq1i6FDhzJ58mT8/f159NFHOXXqFAB//PEHAwYM4NZbb2XKlCmMHz+edu3akZaW5uajEpFLadGiBTVq1GDq1KmXXH/mzBkeeeQRdu7cyYgRI3jrrbdISUnh4Ycf5ujRo0Vcrbib2d0FiLhDw4YN6dq1KxMnTqRmzZo88sgjTJ06FavVyqJFiwgPDwegcePGtG3bltmzZ/Piiy+yc+dOsrKyGDp0KIGBgQA0a9bMnYciIlfxzDPP0K9fP7Zv307t2rVd1n3yySccOXKEL7/8kqioKAAaNGhAixYteP/99xk8eLA7ShY30UiR3LR69eoFwOOPP47JZGLDhg3ExsYSHBxMdnY22dnZGI1GGjRoQFJSEgBVq1bFZDIxaNAg/vOf/5Cenu7OQxCRa9CmTRtuu+22S44Wbdq0iVtvvdUZiABCQkJo0qQJP//8c1GWKR5AI0Vy0/Lx8XH5OyUlha1bt1KzZs1cbSMiIgCIjIxk+vTpzJgxg759+2I0GomLi2PYsGGULVu26IoXkWtmMBjo06cPzz//PL/88ovLOqvVSokSJXJtEx4ezp49e4qqRPEQCkUi/xMcHEyzZs0YMGBArnW+vr7Or+Pj44mPj+fMmTOsW7eOsWPH8vLLL/P+++8XZbkich3atWvH5MmTmTZtmst/YIKDg0lOTs7V/tSpUwQHBxdlieIBdPpM5H+aNGnC3r17iYqKIjo62uVP1apVc7UPDAykffv2dOjQgb1797qhYhG5VkajkT59+rB69WqXO8vq1avHb7/9xr59+5zL0tLS+P7776lXr547ShU30kiRyP889thjLF26lIcffpiePXtStmxZTp8+zbZt2yhdujSPPfYYH3/8MVu3bqVZs2aULFmSQ4cO8cUXX9C0aVN3ly8iV9GpUyemTp3Kxo0bKVeuHABdu3blvffeo3fv3gwcOBA/Pz8SEhIwm808+uijbq5YippCkcj/hIaGsmDBAiZMmMDbb79Namoq4eHh1KlThzZt2gA5F1qvWbOGsWPHkpqaSsmSJenQocMlT7mJiGcxmUz06tWLV1991bksMDCQefPmMW7cOIYOHYrdbuf222/ngw8+oEyZMm6sVtzB4HA4HO4uQkRERMTddE2RiIiICApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiN6DJkydf8tEsl1K1alUmT56cp/1UrVqVkSNH5mlbEfE8CkUiIiIi6DEfInKT2759OyaTyd1liIgH0EiRiNx07HY7Fy5cAMDPzw+zWf8/FBGFIhHxcps2beLee+8lOjqa1q1b8/HHH+dqc/Hany+++IIOHToQHR3N+vXrnev+fk3RxeuRDhw4wODBg6lfvz716tXj5ZdfJiMj46r1TJs2jWrVqjFv3ryCO0gRKRL675GIeK3du3fz5JNPEhYWRr9+/cjOzmby5MmEh4fnavvjjz/y1Vdf8dBDDxEaGkq5cuWu2PfAgQMpX748zz//PDt37mTRokWEhYXxwgsvXHab8ePHM2PGDEaOHEn37t3zfXwiUrQUikTEa02aNAmHw8H8+fMpW7YsAG3btqVTp0652iYnJ7N06VKqVKlyTX1Xr16dMWPGOF+npqayePHiy4aiN954g/fee4+xY8dyzz335OFoRMTddPpMRLySzWbju+++o3Xr1s5ABBAVFUVcXFyu9g0aNLjmQATQo0cPl9f169cnNTWVM2fOuCx3OByMHDmSuXPn8tZbbykQiXgxjRSJiFc6ffo058+fp2LFirnWRUZGsnbtWpdl5cuXv67+/x60ACwWCwBpaWkEBgY6l3/22WecO3eO4cOH07Fjx+vah4h4Fo0UichNoVixYtfV3mi89D+PDofD5fXtt99OiRIlmD9/PqmpqXktT0Q8gEKRiHilsLAwihUrxoEDB3KtS05OLrI6KlasyOzZszlx4gRPPfVUrtNrIuI9FIpExCuZTCbi4uJYtWoVR44ccS7fu3cv3333XZHWUq1aNWbOnMnevXt55plnOH/+fJHuX0QKhkKRiHitfv36AfDQQw8xc+ZMEhIS6Nmz53VdUF1QYmJimDZtGlu3bqV///5kZWUVeQ0ikj8KRSLitapVq8bs2bMJDQ1l0qRJLFmyhH79+tGmTRu31NO4cWMmTJjAhg0bePHFF7Hb7W6pQ0TyxuD451WDIiIiIjchjRSJiIiIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIAP8P/qJmvepaWQcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.countplot(x='drink', hue='cooked', data=steak)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "a72f700e-4d9b-46d9-a216-69b754fd409f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of people who drink and order their steak rare: 20\n" + ] + } + ], + "source": [ + "df = steak.dropna(subset=['drink', 'cooked'])\n", + "drink_rare = df[(df['drink'].str.lower() == 'yes') & (df['cooked'].str.lower() == 'rare')]\n", + "count_drink_rare = len(drink_rare)\n", + "print(f\"Number of people who drink and order their steak rare: {count_drink_rare}\")" ] }, { @@ -172,7 +588,7 @@ "id": "collectible-puppy", "metadata": {}, "source": [ - "## Second Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n" + "## Second Research Question: *Do people (males and females) who gamble also order their steak rare?*\n" ] }, { @@ -193,7 +609,16 @@ " - *How will you reorganize/store the data?* \n", " - *What data science tools/functions will you use and why?* \n", "\n", - "✏️ *Write your answer below:*\n" + "✏️ *Write your answer below:*\n", + "\n", + "**I will use the columns Gamble/Cooked to answer this question.\n", + "I will...\n", + "\n", + "-get the value of people who gamble\n", + "-get the value of people who order steak rare\n", + "-get the value of people who do both gamble and order their steak rare\n", + "\n", + "I will use pandas to handle my data (as data frames), seaborne to create visualizations\n" ] }, { @@ -201,64 +626,501 @@ "id": "juvenile-creation", "metadata": {}, "source": [ - "### Results " + "# Results " + ] + }, + { + "cell_type": "markdown", + "id": "8d239cc7-d973-452d-a462-7317ab8fe5f2", + "metadata": {}, + "source": [ + "### Number of people who gamble\n" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 39, "id": "pursuant-surrey", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "gamble\n", + "Yes 216\n", + "No 213\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "#######################################################################\n", - "### 💻 YOUR WORK GOES HERE TO ANSWER THE SECOND RESEARCH QUESTION 💻 \n", - "###\n", - "### Your data analysis may include a statistic and/or a data visualization\n", - "#######################################################################" + "steak.gamble.value_counts()" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 40, "id": "located-night", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJ+1JREFUeJzt3Xt4VPWdgPF3ZhIQgYmCiDeQhAqickmtIBBSxQslIBb2wfUGahWhLjeVCiKwsq7gbt0FBdQa8Fbtomh9ahdEqiBBjIDWSxUr1ERMcVEETQKikMzsHzRTpgGFkGRm4vt5Hp9kzvxy+A7jIS9nzoRANBqNIkmS9D0XTPQAkiRJycAokiRJwiiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCIC3RA6SaaDRKJOIPAVd1wWDA/zekBPIY1IEEgwECgcB3rjOKDlEkEmX79p2JHkNJJi0tyNFHN6Ws7CsqKiKJHkf63vEY1Ldp0aIpodB3R5Evn0mSJGEUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAZCW6AG0VzAYIBgMJHoM1VAoFIz7qNQUiUSJRKKJHkNSghhFSSAYDHDU0UcSCvoNNdWFw00SPYIOQ2UkwpdffGUYSd9TRlESCAYDhIJBfrP0fT7b/lWix1ENBAIBQqEglZURolG/oaaiY1scyeU/6UQwGDCKpO8poyiJfLb9KzZv3ZHoMVQDgUCAtLQQFRWVRpEkpShfr5EkScIzRZIUx4vlU5NvdmgYEv1mB6NIkoDmR6YTiUS9WD7F+fyltkS/2cEokiTgiMZpBIMB/ueFP/Pptp2JHkeHyDc7pL5keLODUSRJ+/AND6nJNzuoNvjiqyRJEkaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUkWRc8//zw///nPyc3NpVu3blx88cU8/fTT1f7F40WLFtGvXz86d+7MoEGDWLFiRbV9lZeXM3nyZLp37052djZjx47ls88+q6+HIkmSUkxSRdEjjzxCkyZNmDRpEvfffz+5ublMnTqVefPmxdYsXryYqVOn0r9/f/Lz8+nWrRujR4/mrbfeitvX+PHjWb16Nbfffjt33303xcXFjBgxgoqKinp+VJIkKRWkJXqAfd1///20aNEidrtnz558+eWXPPzww9xwww0Eg0HuvfdeBgwYwPjx4wE4++yz2bBhA/PmzSM/Px+AN998k1deeYUFCxaQk5MDQGZmJnl5eSxbtoy8vLx6f2ySJCm5JdWZon2DqEqnTp3YsWMHX331FSUlJXz00Uf0798/bk1eXh6FhYXs3r0bgIKCAsLhML17946tycrKolOnThQUFNTtg5AkSSkpqc4U7c8bb7xB69atadasGW+88Qaw96zPvtq3b8+ePXsoKSmhffv2FBUVkZmZSSAQiFuXlZVFUVHRYc+Ulla7LRkK7d1fIBCoNrNSRODvHwP4HKai2LEXwOMwFXkMpryq467qe2IiJHUUvf766yxZsoSJEycCUFpaCkA4HI5bV3W76v6ysjKaN29ebX8ZGRm8++67hzVTMBjg6KObHtY+DiQUCpKWFqqTfat+pIV8/lJVKBiMffQ4TF0eg6mrKobC4SYJmyFpo2jLli3ceOON9OjRg+HDhyd6nJhIJEpZ2Ve1us9QKEg43ITKyggVFZW1um/Vk8DeP4wrKish+t3LlXwqI5HYR4/DFOQxmPIqK/ceg2Vlu2Kf15ZwuMlBnYFKyigqKytjxIgRHHXUUcyZM4fg3/4Gl5GRAex9u32rVq3i1u97fzgcZsuWLdX2W1paGltzOCoqavfJqhKNRqv9+AGlhtjp+ig+hykq9rz5HKYkj8HUV/W87T1BUDffZ79LUl1oDfD1118zcuRIysvLmT9/ftzLYFlZWQDVrgsqKioiPT2dNm3axNYVFxdXOzCKi4tj+5AkSdpXUkVRRUUF48ePp6ioiPnz59O6deu4+9u0aUO7du1YunRp3PYlS5bQs2dPGjVqBEBubi6lpaUUFhbG1hQXF7N+/Xpyc3Pr/oFIkqSUk1Qvn02fPp0VK1YwadIkduzYEfcDGU877TQaNWrEmDFjmDBhAm3btqVHjx4sWbKEd955h8cffzy2Njs7m5ycHCZPnszEiRNp3Lgxs2bNomPHjlx44YUJeGSSJCnZJVUUrV69GoC77rqr2n0vvfQSJ510EgMHDmTXrl3k5+fz4IMPkpmZydy5c8nOzo5bP3v2bGbOnMm0adOoqKggJyeHKVOmkJaWVA9ZkiQliaQqhOXLlx/UuqFDhzJ06NBvXdO8eXNmzJjBjBkzamM0SZLUwCXVNUWSJEmJYhRJkiRhFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRIAaYkeYF+bNm1iwYIFvP3222zcuJGsrCz+93//N27NsGHDWLt2bbWvXbJkCe3bt4/dLi8vZ+bMmbz44ovs2bOHPn36MGXKFI499tg6fxySJCn1JFUUbdy4kZUrV9K1a1cikQjRaHS/6374wx8yceLEuG0nnXRS3O3x48fzl7/8hdtvv53GjRsze/ZsRowYwTPPPENaWlI9bEmSlASSqg769u3L+eefD8CkSZN4991397suHA7TrVu3A+7nzTff5JVXXmHBggXk5OQAkJmZSV5eHsuWLSMvL6/WZ5ckSaktqa4pCgZrZ5yCggLC4TC9e/eObcvKyqJTp04UFBTUyq8hSZIalqSKooO1du1aunXrRufOnbnyyitZt25d3P1FRUVkZmYSCATitmdlZVFUVFSfo0qSpBSRVC+fHYyzzjqLiy++mHbt2vHZZ5+xYMECrrnmGn7961+TnZ0NQFlZGc2bN6/2tRkZGQd8Se5QpKXVbkuGQnv3FwgEqoWcUkTg7x8D+BymotixF8DjMBV5DKa8quOu6ntiIqRcFI0dOzbu9jnnnMPAgQO57777yM/Pr/NfPxgMcPTRTetk36FQkLS0UJ3sW/UjLeTzl6pCf3v5PhT0OExlHoOpqyqGwuEmCZsh5aLoHx155JH8+Mc/5oUXXohtC4fDbNmypdra0tJSMjIyDuvXi0SilJV9dVj7+EehUJBwuAmVlREqKiprdd+qJ4G9fxhXVFbC/t80qSRXGYnEPnocpiCPwZRXWbn3GCwr2xX7vLaEw00O6gxUykfR/mRlZVFYWEg0Go07DV5cXEyHDh0Oe/8VFbX7ZFWJRqMH/DEESm6x0/VRfA5TVOx58zlMSR6Dqa/qedt7gqBuvs9+l5S80HpfX331FS+//DKdO3eObcvNzaW0tJTCwsLYtuLiYtavX09ubm4ixpQkSUkuqc4U7dq1i5UrVwKwefNmduzYwdKlSwHo3r07RUVFzJ8/nwsuuIATTzyRzz77jIcffpitW7dyzz33xPaTnZ1NTk4OkydPZuLEiTRu3JhZs2bRsWNHLrzwwoQ8NkmSlNySKoq2bdvGuHHj4rZV3X7sscc47rjj2LNnD7NmzeLLL7+kSZMmZGdnM336dLp06RL3dbNnz2bmzJlMmzaNiooKcnJymDJlij/NWpIk7VdSFcJJJ53EBx988K1rFixYcFD7at68OTNmzGDGjBm1MZokSWrgUv6aIkmSpNpgFEmSJGEUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRJwGFE0fPhwCgsLD3j/a6+9xvDhw2u6e0mSpHpV4yhau3Ytn3/++QHv3759O+vWravp7iVJkurVYb18FggEDnjfpk2baNq06eHsXpIkqd6kHcriZ599lmeffTZ2+/777+epp56qtq68vJwPPviA3Nzcw59QkiSpHhxSFO3atYsvvvgidnvnzp0Eg9VPNh155JFceuml/Mu//MvhTyhJklQPDimKLr/8ci6//HIA+vbty2233cZ5551XJ4NJkiTVp0OKon0tX768NueQJElKqBpHUZUdO3bwySefUFZWRjQarXb/WWeddbi/hCRJUp2rcRRt376df//3f2fZsmVUVlZWuz8ajRIIBHj//fcPa0BJkqT6UOMomjZtGitWrGDYsGH86Ec/IhwO1+ZckiRJ9arGUbR69WquuuoqbrnlltqcR5IkKSFq/MMbjzjiCE488cTanEWSJClhahxFgwYN4sUXX6zNWSRJkhKmxi+f9evXj3Xr1nHttdfyz//8zxx33HGEQqFq604//fTDGlCSJKk+1DiKqn6II8Crr75a7X7ffSZJklJJjaNo5syZtTmHJElSQtU4igYPHlybc0iSJCVUjS+0liRJakhqfKbo1ltv/c41gUCAGTNm1PSXkCRJqjc1jqI1a9ZU2xaJRNi6dSuVlZW0aNGCJk2aHNZwkiRJ9aXGUbR8+fL9bt+zZw9PPvkkjz76KA899FCNB5MkSapPtX5NUXp6OldeeSW9e/fmjjvuqO3dS5Ik1Yk6u9D61FNPZd26dXW1e0mSpFpVZ1H06quvek2RJElKGTW+pmju3Ln73V5eXs66detYv349119/fY0HkyRJqk+1HkUZGRm0adOG6dOnc8kll9R4MEmSpPpU4yj685//XJtzSJIkJZQ/0VqSJInDOFNUZe3atbz88st88sknAJxwwgmcc845dO/e/bCHkyRJqi81jqLdu3dz88038+KLLxKNRgmHwwCUlZXx8MMPc8EFF/Bf//VfpKen19qwkiRJdaXGL5/NmzePP/zhD1xzzTW88sorrF27lrVr17J69Wp+9rOfsWzZMubNm1ebs0qSJNWZGkfR73//ewYPHswtt9zCMcccE9vesmVLfvGLX/DTn/6U5557rlaGlCRJqms1jqKtW7fSpUuXA97fpUsXtm7dWtPdS5Ik1asaR9Fxxx3H2rVrD3j/unXrOO6442q6e0mSpHpV4yj66U9/yvPPP8+0adMoKiqisrKSSCRCUVER//qv/8rSpUsZPHhwbc4qSZJUZ2r87rNRo0ZRUlLCU089xaJFiwgG9/ZVJBIhGo0yePBgRo0aVWuDSpIk1aUaR1EoFOKuu+7i6quvpqCggM2bNwNw4oknkpuby6mnnlprQ0qSJNW1Q4qib775hjvvvJNTTjmFYcOGAXDqqadWC6DHHnuMhQsXctttt/lziiRJUko4pGuKnnzySZ599lnOOeecb113zjnn8Mwzz7Bo0aLDmU2SJKneHFIUPf/881x44YW0adPmW9e1bduWn/zkJyxevPiQhtm0aRPTpk3j4osv5rTTTmPgwIH7Xbdo0SL69etH586dGTRoECtWrKi2pry8nMmTJ9O9e3eys7MZO3Ysn3322SHNI0mSvj8OKYo2bNjAmWeeeVBrs7Oz+eCDDw5pmI0bN7Jy5UpOPvlk2rdvv981ixcvZurUqfTv35/8/Hy6devG6NGjeeutt+LWjR8/ntWrV3P77bdz9913U1xczIgRI6ioqDikmSRJ0vfDIV1TtGfPnoO+Rig9PZ3du3cf0jB9+/bl/PPPB2DSpEm8++671dbce++9DBgwgPHjxwNw9tlns2HDBubNm0d+fj4Ab775Jq+88goLFiwgJycHgMzMTPLy8li2bBl5eXmHNJckSWr4DulM0bHHHsvGjRsPau3GjRs59thjD22Y4LePU1JSwkcffUT//v3jtufl5VFYWBiLsIKCAsLhML17946tycrKolOnThQUFBzSTJIk6fvhkM4U9erVi9/97neMHDmSli1bHnDdtm3b+N3vfke/fv0Oe8B9FRUVAXvP+uyrffv27Nmzh5KSEtq3b09RURGZmZkEAoG4dVlZWbF9HI60tBr/zMv9CoX27i8QCFSbWSki8PePAXwOU1Hs2AvgcZiKPAZTXtVxV/U9MREOKYpGjBjBc889x1VXXcWdd95J165dq615++23mTJlCt988w3XXXddrQ0KUFpaCkA4HI7bXnW76v6ysjKaN29e7eszMjL2+5LcoQgGAxx9dNPD2seBhEJB0tJCdbJv1Y+0kM9fqgr97Ux1KOhxmMo8BlNXVQyFw00SNsMhRVGbNm2YPXs2N910E5deeilt2rShQ4cONG3alJ07d7Jx40Y+/vhjjjjiCP77v/+btm3b1tXcCROJRCkr+6pW9xkKBQmHm1BZGaGiorJW9616Etj7h3FFZSVEEz2MaqIyEol99DhMQR6DKa+ycu8xWFa2K/Z5bQmHmxzUGahD/onW55xzDs899xz5+fm8/PLLvPjii7H7jj32WIYOHcqIESO+8237NZGRkQHsfbt9q1atYtvLysri7g+Hw2zZsqXa15eWlsbWHI6Kitp9sqpEo1GiUY/mVBQ7XR/F5zBFxZ43n8OU5DGY+qqet70nCOrm++x3qdE/83HSSScxffp0AHbs2MHOnTtp2rQpzZo1q9Xh/lFWVhaw99qiqs+rbqenp8dCLCsri8LCQqLRaNy1AcXFxXTo0KFOZ5QkSanpsK9matasGa1bt67zIIK9L9+1a9eOpUuXxm1fsmQJPXv2pFGjRgDk5uZSWlpKYWFhbE1xcTHr168nNze3zueUJEmpp8b/IGxd2LVrFytXrgRg8+bN7NixIxZA3bt3p0WLFowZM4YJEybQtm1bevTowZIlS3jnnXd4/PHHY/vJzs4mJyeHyZMnM3HiRBo3bsysWbPo2LEjF154YUIemyRJSm5JFUXbtm1j3Lhxcduqbj/22GP06NGDgQMHsmvXLvLz83nwwQfJzMxk7ty5ZGdnx33d7NmzmTlzJtOmTaOiooKcnBymTJlCWlpSPWRJkpQkkqoQTjrppIP6p0GGDh3K0KFDv3VN8+bNmTFjBjNmzKit8SRJUgOWuJ+QJEmSlESMIkmSJIwiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSJEkCjCJJkiTAKJIkSQKMIkmSJMAokiRJAlIwin7729/SsWPHav/dfffdcesWLVpEv3796Ny5M4MGDWLFihUJmliSJKWCtEQPUFPz58+nefPmsdutW7eOfb548WKmTp3KqFGjOPvss1myZAmjR4/miSeeoFu3bgmYVpIkJbuUjaLTTz+dFi1a7Pe+e++9lwEDBjB+/HgAzj77bDZs2MC8efPIz8+vxyklSVKqSLmXz75LSUkJH330Ef3794/bnpeXR2FhIbt3707QZJIkKZmlbBQNHDiQTp06cd555/GrX/2KyspKAIqKigDIzMyMW9++fXv27NlDSUlJvc8qSZKSX8q9fNaqVSvGjBlD165dCQQCLF++nNmzZ/Ppp58ybdo0SktLAQiHw3FfV3W76v7DkZZWuy0ZCu3dXyAQIBAI1Oq+VU8Cf/8YwOcwFcWOvQAeh6nIYzDlVR13Vd8TEyHloqhPnz706dMndjsnJ4fGjRvz6KOPMmrUqDr/9YPBAEcf3bRO9h0KBUlLC9XJvlU/0kI+f6kqFAzGPnocpi6PwdRVFUPhcJOEzZByUbQ//fv356GHHuL9998nIyMDgPLyclq1ahVbU1ZWBhC7v6YikShlZV8d1j7+USgUJBxuQmVlhIqKylrdt+pJYO8fxhWVlRBN9DCqicpIJPbR4zAFeQymvMrKvcdgWdmu2Oe1JRxuclBnoBpEFO0rKysL2HttUdXnVbfT09Np06bNYf8aFRW1+2RViUajRKMezakodro+is9hioo9bz6HKcljMPVVPW97TxDUzffZ75KyF1rva8mSJYRCIU477TTatGlDu3btWLp0abU1PXv2pFGjRgmaUpIkJbOUO1N07bXX0qNHDzp27AjASy+9xFNPPcXw4cNjL5eNGTOGCRMm0LZtW3r06MGSJUt45513ePzxxxM5uiRJSmIpF0WZmZk888wzbNmyhUgkQrt27Zg8eTLDhg2LrRk4cCC7du0iPz+fBx98kMzMTObOnUt2dnYCJ5ckScks5aJoypQpB7Vu6NChDB06tI6nkSRJDUWDuKZIkiTpcBlFkiRJGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJEmAUSRJkgQYRZIkSYBRJEmSBBhFkiRJgFEkSZIEGEWSJElAA4+iDz/8kGuuuYZu3brRu3dv/vM//5Pdu3cneixJkpSE0hI9QF0pLS3lqquuol27dsyZM4dPP/2Uu+66i6+//ppp06YlejxJkpRkGmwULVy4kJ07dzJ37lyOOuooACorK5k+fTojR46kdevWiR1QkiQllQb78llBQQE9e/aMBRFA//79iUQirF69OnGDSZKkpNRgzxQVFRXxT//0T3HbwuEwrVq1oqioqMb7DQYDtGjR9HDHixMI7P143U87UxmJ1uq+JR2c9LS9f0e89uIzPA6lBAgF934zzMhoQrSWD8Hg3/b9XRpsFJWVlREOh6ttz8jIoLS0tMb7DQQChEIH95t7qJod2ahO9ivp4HkcSokVDCbuRawG+/KZJEnSoWiwURQOhykvL6+2vbS0lIyMjARMJEmSklmDjaKsrKxq1w6Vl5ezdetWsrKyEjSVJElKVg02inJzc3n11VcpKyuLbVu6dCnBYJDevXsncDJJkpSMAtFobV/jnRxKS0sZMGAAmZmZjBw5MvbDGy+66CJ/eKMkSaqmwUYR7P1nPu644w7efPNNmjZtysUXX8yNN95Io0a+u0SSJMVr0FEkSZJ0sBrsNUWSJEmHwiiSJEnCKJIkSQKMIkmSJMAokiRJAowiSZIkwCiSDmjYsGH079+f3bt3V7tv7Nix/PjHP2bnzp0JmEz6/pkzZw4dO3bkiiuuqHbfnXfeSd++fRMwlRoao0g6gOnTp/PXv/6V+fPnx20vKCjghRdeYOrUqTRt2jRB00nfT6+//jpr1qxJ9BhqoIwi6QCysrIYOXIkDzzwACUlJQB888033HHHHZx33nmcf/75CZ5Q+n458sgj6dKlC/fdd1+iR1EDZRRJ3+L666/nhBNOYPr06QA88MADfP7550ybNo0tW7YwYcIEevToQZcuXbjiiit49913477+pZdeYsiQIWRnZ/OjH/2IIUOGsHLlykQ8FKlBuOGGG3jttdf44x//eMA1mzdvZuzYsZx55pl069aNa6+9lg8++KAep1SqMoqkb9GoUSP+7d/+jVWrVnHfffcxf/58xo0bR5MmTbj88sv585//zNSpU5kzZw5NmjThqquuYtu2bQB8/PHHjBs3jlNOOYW5c+cya9Ys+vfvT2lpaYIflZS6zj33XE477TTmzZu33/t37NjBsGHDWL9+PdOnT+eXv/wlX3zxBVdeeSX/93//V8/TKtWkJXoAKdl1796dIUOGcM8993D66aczbNgw5s2bR1lZGYsWLaJly5YA9OzZk379+rFgwQJuueUW1q9fz549e5g6dSrNmjUDoE+fPol8KFKD8POf/5wxY8bwzjvv0KVLl7j7fvvb3/LJJ5+wePFi2rdvD8BZZ53Fueeey6OPPsqkSZMSMbJShGeKpINw/fXXA3DNNdcQCoVYvXo1PXr0ICMjg4qKCioqKggGg5x11ln86U9/AqBjx46EQiEmTJjA8uXLKS8vT+RDkBqMCy64gA4dOuz3bNHrr7/OKaecEgsigKOOOopevXrxxhtv1OeYSkGeKZIOQnp6etzHL774grfeeovTTz+92tq2bdsCkJmZyQMPPMCvfvUrRo8eTTAYJCcnh2nTpnHCCSfU3/BSAxMIBBg1ahQ33XQT7733Xtx9ZWVlHHPMMdW+pmXLlmzcuLG+RlSKMoqkGsjIyKBPnz6MGzeu2n2NGjWKfZ6bm0tubi47duygoKCAmTNncuutt/Loo4/W57hSg9O/f3/mzJnDfffdF/eXjIyMDIqLi6ut37ZtGxkZGfU5olKQL59JNdCrVy8+/PBD2rdvT+fOneP+69ixY7X1zZo1Iy8vjwEDBvDhhx8mYGKpYQkGg4waNYqXXnop7p1lZ555Jhs2bKCoqCi2rbS0lFdffZUzzzwzEaMqhXimSKqBq6++mt///vdceeWVDB8+nBNOOIHt27fz9ttv07p1a66++moWLlzIW2+9RZ8+fWjVqhV//etfee655+jdu3eix5cahIsuuoh58+axZs0aTjzxRACGDBnCI488wsiRIxk/fjyNGzfm/vvvJy0tjauuuirBEyvZGUVSDRx99NE8+eSTzJ49m7vvvpsvv/ySli1b0rVrVy644AJg74XWK1asYObMmXz55Ze0atWKAQMG7PclN0mHLhQKcf311zNlypTYtmbNmvHrX/+au+66i6lTpxKJRPjhD3/I448/zvHHH5/AaZUKAtFoNJroISRJkhLNa4okSZIwiiRJkgCjSJIkCTCKJEmSAKNIkiQJMIokSZIAo0iSJAkwiiTpO02aNIns7OyDWtuxY0fmzJlTxxNJqgtGkSRJEkaRJEkSYBRJkiQBRpGkJLVmzRqGDBlC586dOf/881m4cCFz5syhY8eOsTXPPPMMw4cPp2fPnpxxxhnk5eXxm9/8ptq++vbty8iRI2P77NKlCxdddBFr1qwBYNmyZVx00UV07tyZIUOGsH79+v3OVFJSwrXXXku3bt3Iyclh7ty5HMw/H/npp59y66230qtXL8444wwGDBjA008/XcPfGUl1JS3RA0jSP1q/fj3XXXcdrVq1YsyYMUQiEebNm0eLFi3i1v3P//wPp5xyCn379iUtLY0VK1Ywffp0otEoV1xxRdzaTZs2cfPNN3PppZcyaNAgHnroIUaNGsX06dOZNWsWl112GQAPPvgg48ePZ+nSpQSDf/97Y2VlJddddx1du3blF7/4BatWrWLOnDlUVlYybty4Az6Wzz//nEsuuYRAIMAVV1xBixYtKCgo4LbbbmPHjh1cffXVtfcbJ+nwRCUpyYwcOTLatWvX6JYtW2LbPvroo+hpp50W7dChQ2zbrl27qn3tz372s+h5550Xt+3cc8+NdujQIfrHP/4xtm3VqlXRDh06RLt06RLdvHlzbPvChQujHTp0iL722muxbRMnTox26NAhescdd8S2RSKR6PXXXx89/fTTo9u2bYtt79ChQ/Tee++N3Z48eXK0d+/e0e3bt8fNdOONN0bPPPPM/T4GSYnhy2eSkkplZSWFhYWcd955tG7dOrb95JNPpk+fPnFrjzjiiNjn5eXlbN++ne7du1NSUkJ5eXnc2h/84Adxb6vv2rUrAGeffTYnnHBCte0lJSXVZtv37FPVmZ89e/ZQWFi438cSjUZZtmwZffv2JRqNsn379th/OTk5lJeX8957733n74mk+uHLZ5KSyrZt2/j66685+eSTq933j9veeOMN5syZw1tvvcWuXbvi7isvL6d58+ax28cff3zc/VX3HXfccXHbmzVrBkBZWVnc9mAwSJs2beK2ZWZmArB58+b9Ppbt27dTVlbGk08+yZNPPnnANZKSg1EkKSV9/PHHXH311WRlZTFp0iSOP/540tPTWblyJY888giRSCRufSgU2u9+DrQ9ehAXUH+XqhkGDRrE4MGD97tm3wvHJSWWUSQpqbRs2ZLGjRuzadOmavftu2358uXs3r2b+++/P+7lr6p3lNW2SCRCSUlJ7OwQQHFxMQAnnnjifr+mRYsWNG3alEgkQq9evepkLkm1x2uKJCWVUChEr169eOmll/j0009j2zdt2sSqVavi1kH8GZ3y8nKeeeaZOpvtiSeeiH0ejUZ54oknSE9Pp2fPnvtdHwqF6NevHy+88AIbNmyodr8vnUnJxTNFkpLO6NGjeeWVV7jsssu47LLLiEQiPP7445xyyim8//77APTu3Zv09HRGjRrFpZdeys6dO1m0aBEtW7Zk69attT5T48aNWbVqFRMnTqRLly6sWrWKl19+mVGjRlX7UQH7uvnmm1mzZg2XXHIJQ4cO5Qc/+AGlpaW89957FBYWsnbt2lqfVVLNeKZIUtI544wzyM/PJyMjg3vuuYenn36asWPH0rNnTxo3bgxAVlYW9957L4FAgP/4j/9g4cKFXHLJJQwfPrxOZgqFQsyfP5/PP/+cX/7yl/zpT39i9OjR3/ozigCOOeYYFi1axJAhQ/jDH/7AHXfcwWOPPUZpaSkTJkyok1kl1UwgWhtXE0pSPbjhhhv4y1/+wrJlyxI9iqQGyDNFkpLS119/HXf7o48+oqCggO7duydoIkkNndcUSUpK559/PoMHD6ZNmzZs3ryZhQsXkp6eznXXXZfo0SQ1UEaRpKTUp08fFi9ezNatW2nUqBHdunXjpptuol27dokeTVID5TVFkiRJeE2RJEkSYBRJkiQBRpEkSRJgFEmSJAFGkSRJEmAUSZIkAUaRJEkSYBRJkiQBRpEkSRIA/w/vXwfUCiPxpwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON " + "sns.histplot(data=steak, x=\"gamble\")" ] }, { "cell_type": "markdown", - "id": "infectious-symbol", + "id": "e213a7eb-6a17-4db7-bda6-200200421688", "metadata": {}, "source": [ - "# Discussion" + "### Number of people who like their steak rare\n" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "c520afe4-e348-4573-a6f3-9968cc8b594b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "cooked\n", + "Medium rare 166\n", + "Medium 132\n", + "Medium Well 75\n", + "Well 36\n", + "Rare 23\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steak.cooked.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "b7fd5c7a-a8cb-4253-912b-d062f88caf25", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP9NJREFUeJzt3Xl4VPW9x/H3zCRskYmgiFfWBAuyE6uETapIQRAXqiyiqHW3FwVuvUIpULGIe7UKaonWDa1oW1wp4goVuUorbrVVNKCARSlLQghbZub+QTN1DGoI2Q68X8/DM5lzfufMd76czHxyzpkzoUQikUCSJOkAF67pAiRJkmoDQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAmAtJouIGgSiQTxuBcBBwiHQ/aimtjr6mGfq4d9rh72+T/C4RChUOg7xxmK9lI8nmDjxq01XUaNS0sL06hRBoWFxZSUxGu6nP2ava4e9rl62OfqYZ9TNW6cQSTy3aHIw2eSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJgLSaLkCqTuFwiHA4VNNl7JVIJJxyGxTxeIJ4PFHTZUhSuRmKdMAIh0Mc3KgBkXCwwkWpaLR+TZewV2LxOJs3FRuMJAWGoUgHjHA4RCQc5tEFf+fLjcU1XU65hUIhIpEwsVicRCIYAeOwxg0YdVJ7wuGQoUhSYBiKdMD5cmMxa9cX1XQZ5RYKhUhLi1BSEgtMKJKkIArmcQRJkqRKZiiSJEnCUCRJkgQYiiRJkoBaFoo+/fRTpk6dymmnnUaHDh0YMmTIHscVFhYyffp0+vTpQ+fOnenfvz+//e1vU8bs3LmTG2+8kd69e9OtWzd+/OMfk5+fXx1PQ5IkBVCt+vTZihUrWLRoEV27diUe3/PHj4uLixk9ejSRSIRJkyZxyCGHsGrVKoqKUj9NNH36dObPn8/EiRNp2rQp99xzD+effz7PPfccDRs2rK6nJEmSAqJWhaJ+/frRv39/ACZOnMj7779fZszs2bPZunUrTz/9NA0aNAAgNzc3Zcy6dev4/e9/zy9+8QvOPPNMADp37swJJ5zAY489xsUXX1zFz0SSJAVNrTp8Fi7HlYZ///vfc8YZZyQD0Z689tprxONxTjrppOS0gw8+mN69e7N48eJKqVWSJO1falUo+i5r1qxh/fr1NGrUiMsuu4xOnTrRvXt3Jk+ezNatW5Pj8vPzOeSQQ8jMzExZvk2bNp5XJEmS9qhWHT77Lv/6178AuPHGGxkwYAB5eXmsWrWKW2+9leLiYn71q18Bu0/E3tN5Q9FolIKCgn2uIy0tUFmySgTxS0pLaw2FQoRCAfpS2NB/bkMEo+7S/gZx+whSzUFkn6uHfa6YQIWieDwOQFZWFjfeeCMAPXv2JC0tjcmTJzN+/HhatGhRpTWEwyEaNcqo0scIkqB9SSnsfpFIS4vUdBl7LS0SnJpLX4iDuH0EseYgss/Vwz7vnUCFotLDYV8/sbpHjx7A7k+vtWjRgmg0WubTaLB7D9LXD6ntrXg8QWFhcL5MtKpEImGi0foUFm4jFovXdDnlUlpzLBanpCRW0+WUX2h3ICqJxSAgX31Wuk0EcfsIUs1BZJ+rh31OFY3WL9des0CFohYtWlCnTp1vnL9jxw4AsrOz+de//kVBQUFKCMrPzyc7O3uf6ygpcQMrtTtgBKsfiUQiUF+smjxkliAwdZfWGcTtI4g1B5F9rh72ee8E6mBjnTp16N27N0uXLk2Z/vrrrwPQsWNHAPr06UM4HGbhwoXJMQUFBbz22mv07du3+gqWJEmBUav2FG3bto1FixYBsHbtWoqKiliwYAEA3bt3p3HjxowZM4aRI0fy05/+lKFDh/Lpp59y6623csopp9CyZUsADj/8cM4880xuuukmwuEwTZs25Te/+Q0NGzZk5MiRNfb8JElS7VWrQtGGDRsYO3ZsyrTS+w899BC5ubl06tSJvLw8brnlFi6//HIyMzMZMWIE48ePT1lu8uTJZGRkcOutt7J161aOPvpo7r//fq9mLUmS9iiUCMpJCrVELBZn48at3z1wP5eWFqZRoww2bdoamOPVpTXf/uhfWbu+7In4tVUoFCItLUJJSSww5xQ1a3IQ40Z9P5DbR5BqDiL7XD3sc6rGjTPKdaJ1oM4pkiRJqiqGIkmSJAxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiSgloWiTz/9lKlTp3LaaafRoUMHhgwZ8q3jX3zxRdq1a7fHcVu2bGHSpEl0796dnJwcrrzySr788suqKl2SJAVcrQpFK1asYNGiRbRq1Yo2bdp869jt27czY8YMDj300D3OHzduHEuWLOGaa67hlltuYeXKlVx88cWUlJRURemSJCng0mq6gK/q168f/fv3B2DixIm8//773zj2N7/5DUcccQTNmzcvM2758uW89tpr3HffffTp0weArKwsBg8ezMKFCxk8eHDVPQlJkhRItWpPUThcvnI+++wz7r//fiZPnrzH+YsXLyYajdK7d+/ktOzsbNq3b8/ixYsrpVZJkrR/qVV7isrruuuu47TTTuOoo47a4/z8/HyysrIIhUIp07Ozs8nPz9/nx09Lq1VZskZEIuGU2yAorTUUCpXZNmq10H9uQwSj7tL+BnH7CFLNQWSfq4d9rpjAhaKXX36Z5cuXs2DBgm8cU1hYSMOGDctMz8zM/NZDcuURDodo1Chjn9axP4lG69d0CXstEgmTlhap6TL2WlokODWXvhAHcfsIYs1BZJ+rh33eO4EKRTt27GDGjBlcccUVNG7cuEZqiMcTFBYW18hj1yaRSJhotD6FhduIxeI1XU65lNYci8UpKYnVdDnlF9odiEpiMUjUdDHlU7pNBHH7CFLNQWSfq4d9ThWN1i/XXrNAhaIHH3yQcDjMySefTGFhIQC7du0iHo9TWFhIvXr1qFOnDtFolHXr1pVZvqCggMzMzH2uo6TEDazU7oARrH4kEgkSiYCkC75yyCxBYOourTOI20cQaw4i+1w97PPeCVQoys/P59NPP6Vnz55l5h177LFcc801nHXWWWRnZ7N06VISiUTKuSMrV66kbdu21VmyJEkKiECFoosvvpihQ4emTJs9ezYrV67k+uuvp3Xr1gD07duXu+66i6VLl9KrVy9gdyD64IMPuOiii6q7bEmSFAC1KhRt27aNRYsWAbB27VqKioqSJ1R3796dNm3alLmo47x58/jiiy/Izc1NTsvJyaFPnz5MmjSJCRMmULduXW677TbatWvHgAEDqu8JSZKkwKhVoWjDhg2MHTs2ZVrp/Yceeigl+HyX22+/neuvv56pU6dSUlJCnz59mDx5MmlpteopS5KkWiKUCMqZm7VELBZn48atNV1GjUtLC9OoUQabNm0NzEl8pTXf/uhfWbu+qKbLKbdQKERaWoSSklhgTrRu1uQgxo36fiC3jyDVHET2uXrY51SNG2eU69NnXtVJkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIE1LIrWh/IwuEQ4XDouwfWEqUXwSrPxbBqiyDVKkmqfoaiWiAcDnFwowZEwsF7045G69d0CZIkVQpDUS0QDoeIhMM8uuDvfLmxuKbLKZdQKEQkEiYWiwfmqyfatW7MoF5ZhELB2SMnSao+hqJa5MuNxYH5Tq4gfh9Xk0bu1ZIkfbPgHa+RJEmqAoYiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSAGk1XcBXffrpp9x333288847rFixguzsbJ599tnk/KKiIu6//34WLVrEqlWrqFOnDl26dGH8+PG0a9cuZV1btmzh+uuv58UXX2TXrl0cd9xxTJ48mcMOO6y6n5YkSQqAWrWnaMWKFSxatIhWrVrRpk2bMvM///xz5s6dS+/evbn99tv55S9/yZYtWxgxYgSffPJJythx48axZMkSrrnmGm655RZWrlzJxRdfTElJSXU9HUmSFCC1ak9Rv3796N+/PwATJ07k/fffT5nfvHlzXnjhBerXr5+c1qNHD/r168ejjz7KlClTAFi+fDmvvfYa9913H3369AEgKyuLwYMHs3DhQgYPHlxNz0iSJAVFrdpTFA5/ezkNGjRICUQAGRkZtGzZki+//DI5bfHixUSjUXr37p2clp2dTfv27Vm8eHHlFi1JkvYLtSoUVURhYWHy/KNS+fn5ZGVlEQqFUsZmZ2eTn59f3SVKkqQAqFWHzyri5ptvJhQKcdZZZyWnFRYW0rBhwzJjMzMzyxySq4i0tMrNkpHI7vWFQqEyQa7WCv3nNkQwak72NkRw+gyB7nXpth0EpbUGqeYgss/Vwz5XTKBD0R/+8Acef/xxbrjhBg4//PBqecxwOESjRhlVsu5IJExaWqRK1l1V0iLBqTfy78OzkXDw+gwB6/W/X4ij0frfMbL2CWLNQWSfq4d93juBDUWLFi1i6tSp/OQnP2Ho0KEp86LRKOvWrSuzTEFBAZmZmfv0uPF4gsLC4n1ax9dFImGi0frEYnFKSmKVuu4qE9r9Jl0Si0Gipospn1g8nrwNTJ8hmL2O7e51YeG25M+1XenvYZBqDiL7XD3sc6potH659poFMhS9/fbbjB07ltNPP52xY8eWmZ+dnc3SpUtJJBIph0lWrlxJ27Zt9/nxS0qqZgNLJBIkEsF410sexkkQmJqTdQaoZgh2r3cH/WC9IAex5iCyz9XDPu+dwB1s/Pjjj7n00kvp0aMH06ZN2+OYvn37UlBQwNKlS5PTVq5cyQcffEDfvn2rq1RJkhQgtWpP0bZt21i0aBEAa9eupaioiAULFgDQvXt3EokEF154IXXr1uW8885LOWn6oIMO4sgjjwQgJyeHPn36MGnSJCZMmEDdunW57bbbaNeuHQMGDKj+JyZJkmq9WhWKNmzYUOZwWOn9hx56CCB5rtD555+fMq579+48/PDDyfu33347119/PVOnTqWkpIQ+ffowefJk0tJq1VOWJEm1RK1KCM2bN+fDDz/81jHfNb9Uw4YNmTFjBjNmzKiM0iRJ0n4ucOcUSZIkVQVDkSRJEoYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJQy0LRp59+ytSpUznttNPo0KEDQ4YM2eO4J554goEDB9K5c2dOPfVUXnnllTJjtmzZwqRJk+jevTs5OTlceeWVfPnll1X9FCRJUkDVqlC0YsUKFi1aRKtWrWjTps0exzz33HNMmTKFQYMGkZeXR7du3RgzZgxvv/12yrhx48axZMkSrrnmGm655RZWrlzJxRdfTElJSTU8E0mSFDRpNV3AV/Xr14/+/fsDMHHiRN5///0yY+644w5OPvlkxo0bB0CPHj346KOPmDVrFnl5eQAsX76c1157jfvuu48+ffoAkJWVxeDBg1m4cCGDBw+unickSZICo1btKQqHv72c1atXs2rVKgYNGpQyffDgwSxdupSdO3cCsHjxYqLRKL17906Oyc7Opn379ixevLjyC5ckSYFXq/YUfZf8/Hxg916fr2rTpg27du1i9erVtGnThvz8fLKysgiFQinjsrOzk+vYF2lplZslI5Hd6wuFQmVqrrVC/7kNEYyak70NEZw+Q6B7XbptB0FprUGqOYjsc/WwzxUTqFBUUFAAQDQaTZleer90fmFhIQ0bNiyzfGZm5h4Pye2NcDhEo0YZ+7SObxKJhElLi1TJuqtKWiQ49Ub+vScyEg5enyFgvf73C3E0Wr+GK9l7Qaw5iOxz9bDPeydQoag2iMcTFBYWV+o6I5Ew0Wh9YrE4JSWxSl13lQntfpMuicUgUdPFlE8sHk/eBqbPEMxex3b3urBwW/Ln2q709zBINQeRfa4e9jlVNFq/XHvNAhWKMjMzgd0ft2/SpElyemFhYcr8aDTKunXryixfUFCQHLMvSkqqZgNLJBIkEsF410sexkkQmJqTdQaoZgh2r3cH/WC9IAex5iCyz9XDPu+dQB1szM7OBihzXlB+fj7p6em0aNEiOW7lypVl3kBWrlyZXIckSdJXBSoUtWjRgtatW7NgwYKU6fPnz6dnz57UqVMHgL59+1JQUMDSpUuTY1auXMkHH3xA3759q7VmSZIUDBU+fHbuuedy+eWX07Nnzz3O/7//+z/uuusuHnrooXKvc9u2bSxatAiAtWvXUlRUlAxA3bt3p3HjxlxxxRVcddVVtGzZktzcXObPn8+7777LnDlzkuvJycmhT58+TJo0iQkTJlC3bl1uu+022rVrx4ABAyr6lCVJ0n6swqHozTffZNiwYd84f+PGjSxbtmyv1rlhwwbGjh2bMq30/kMPPURubi5Dhgxh27Zt5OXlMXv2bLKyspg5cyY5OTkpy91+++1cf/31TJ06lZKSEvr06cPkyZNJSwvUaVSSJKma7FNC+LZrvXz66adkZOzdR9ebN2/Ohx9++J3jhg0b9q2BDKBhw4bMmDGDGTNm7FUNkiTpwLRXoWjevHnMmzcvef/uu+/m8ccfLzNuy5YtfPjhh56/I0mSAmOvQtG2bdvYtGlT8v7WrVv3+NUcDRo0YOTIkfz3f//3vlcoSZJUDfYqFI0aNYpRo0YBu7+89ec//zknnnhilRQmSZJUnSp8TtHLL79cmXVIkiTVqH3+KFZRURGff/45hYWFe7za7rHHHruvDyFJklTlKhyKNm7cyPTp01m4cCGxWNnvkUokEoRCIf7+97/vU4GSJEnVocKhaOrUqbzyyiuMHj2aY445psw310uSJAVJhUPRkiVLOO+887j66qsrsx5JkqQaUeHvPqtXrx7NmjWrzFokSZJqTIVD0amnnsqLL75YmbVIkiTVmAofPhs4cCDLli3jwgsvZMSIERx++OFEIpEy4zp27LhPBUqSJFWHCoei0os4Arz++utl5vvpM0mSFCQVDkXXX399ZdYhSZJUoyocioYOHVqZdUiSJNWoCp9oLUmStD+p8J6in/3sZ985JhQKMWPGjIo+hCRJUrWpcCh64403ykyLx+OsX7+eWCxG48aNqV+//j4VJ0mSVF0qHIpefvnlPU7ftWsXc+fO5cEHH+S3v/1thQuTJEmqTpV+TlF6ejrnnHMOvXv35pe//GVlr16SJKlKVNmJ1kcddRTLli2rqtVLkiRVqioLRa+//rrnFEmSpMCo8DlFM2fO3OP0LVu2sGzZMj744AMuueSSChcmSZJUnSo9FGVmZtKiRQumTZvG8OHDK1yYJElSdapwKPrHP/5RmXVIkiTVKK9oLUmSxD7sKSr15ptv8uqrr/L5558DcMQRR3D88cfTvXv3fS5OkiSpulQ4FO3cuZOf/vSnvPjiiyQSCaLRKACFhYXcf//9/PCHP+TWW28lPT290oqVJEmqKhU+fDZr1ixeeOEFfvzjH/Paa6/x5ptv8uabb7JkyRIuuOACFi5cyKxZsyqzVkmSpCpT4VD0zDPPMHToUK6++moOPfTQ5PRDDjmE//3f/+X000/n6aefrpQiJUmSqlqFQ9H69evp0qXLN87v0qUL69evr+jqv9VLL73EsGHDyMnJoU+fPowdO5bVq1eXGffEE08wcOBAOnfuzKmnnsorr7xSJfVIkqTgq3AoOvzww3nzzTe/cf6yZcs4/PDDK7r6b/TGG28wZswYjjzySGbNmsWkSZP4xz/+wQUXXMD27duT45577jmmTJnCoEGDyMvLo1u3bowZM4a333670muSJEnBV+ETrU8//XTuvPNOGjZsyPnnn0+rVq0IhUKsWrWKBx98kAULFnDFFVdUZq3A7rBzxBFHMGPGDEKhEACNGzfmvPPO4/333+eYY44B4I477uDkk09m3LhxAPTo0YOPPvqIWbNmkZeXV+l1SZKkYKtwKLrssstYvXo1jz/+OE888QTh8O6dTvF4nEQiwdChQ7nssssqrdBSJSUlZGRkJAMRQMOGDQFIJBIArF69mlWrVvG///u/KcsOHjyYm266iZ07d1KnTp1Kr02SJAVXhUNRJBLhhhtu4Pzzz2fx4sWsXbsWgGbNmtG3b1+OOuqoSivyq370ox/x1FNP8cgjj3DqqaeyefNmfvWrX9GhQweOPvpoAPLz8wHIyspKWbZNmzbs2rWL1atX06ZNmyqpT5IkBdNehaIdO3Zw3XXX8b3vfY/Ro0cDcNRRR5UJQA899BCPPfYYP//5zyv9OkXHHHMMM2fO5Kc//SnXXnstAO3bt+fee+8lEokAUFBQAJC8dlKp0vul8ysqLa1yLwQeiexeXygUStkDVquF/nMbIhg1J3sbIjh9hkD3unTbDoLSWoNUcxDZ5+phnytmr0LR3LlzmTdvHvPnz//Wcccffzw333wzbdu2ZdSoUftU4Ne99dZbXH311QwfPpzjjz+ezZs3c9ddd3HJJZfw6KOPUq9evUp9vK8Lh0M0apRRJeuORMKkpUWqZN1VJS0SnHoj/z7EGwkHr88QsF7/+4U4Gq1fw5XsvSDWHET2uXrY572zV6HoT3/6EwMGDKBFixbfOq5ly5acdNJJPPfcc5UeiqZPn06PHj2YOHFiclq3bt04/vjjeeqppxgxYgSZmZkAbNmyhSZNmiTHFRYWAiTnV0Q8nqCwsLjCy+9JJBImGq1PLBanpCRWqeuuMqHdb9IlsRgkarqY8onF48nbwPQZgtnr2O5eFxZuS/5c25X+Hgap5iCyz9XDPqeKRuuXa6/ZXoWijz76iFNOOaVcY3NycqrkukCffPIJJ554Ysq0ww8/nEaNGvHZZ58BkJ2dDew+t6j059L76enp3xnqvktJSdVsYIlEInmyeG2XPIyTIDA1J+sMUM0Q7F7vDvrBekEOYs1BZJ+rh33eO3t1sHHXrl3lPkcoPT2dnTt3Vqiob3PEEUfwwQcfpExbu3YtmzZtolmzZgC0aNGC1q1bs2DBgpRx8+fPp2fPnn7yTJIklbFXe4oOO+wwVqxYUa6xK1as4LDDDqtQUd9m5MiRzJgxg+nTp9OvXz82b97M3XffzSGHHMKgQYOS46644gquuuoqWrZsSW5uLvPnz+fdd99lzpw5lV6TJEkKvr0KRb169eKpp57i0ksv5ZBDDvnGcRs2bOCpp55i4MCB+1zg15177rnUqVOH3/3ud/zhD38gIyODbt26cfvtt9OoUaPkuCFDhrBt2zby8vKYPXs2WVlZzJw5k5ycnEqvSZIkBd9ehaKLL76Yp59+mvPOO4/rrruOrl27lhnzzjvvMHnyZHbs2MFFF11UaYWWCoVCnHXWWZx11lnfOXbYsGEMGzas0muQJEn7n70KRS1atOD222/nf/7nfxg5ciQtWrSgbdu2ZGRksHXrVlasWMFnn31GvXr1+NWvfkXLli2rqm5JkqRKtddXtD7++ON5+umnycvL49VXX+XFF19MzjvssMMYNmwYF1988T5/wkuSJKk6VehrPpo3b860adMAKCoqYuvWrWRkZHDQQQdVanGSgi1IV9MN6hWA4/EE8XgwLtUg1XYV/u6zUgcddJBhSFKKhg3SiccTgbyabtBqjsXjbN5UbDCSKsE+hyJJ+rp6ddMIh0P87vl/8MWGrTVdTrmEQiEikTCxWDwwF8k8rHEDRp3UnnA4ZCiSKoGhSFKV+XJjMWvXF9V0GeUSCoVIS4tQUhILTCiSVLmCdfBckiSpihiKJEmSMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEhDgUDRv3jxOP/10OnfuTG5uLhdddBHbt29Pzn/55Zc59dRT6dy5MwMHDuQPf/hDDVYrSZJqu7SaLqAi7r77bvLy8rjsssvo1q0bmzZtYunSpcRiMQD+8pe/MGbMGM4880wmTZrE//3f//Hzn/+cjIwMTjrppBquXpIk1UaBC0X5+fnMnDmTu+66ix/84AfJ6QMHDkz+fPfdd9OlSxeuvfZaAHr06MHq1au54447DEWSJGmPAnf47I9//CPNmzdPCURftXPnTt54440y4Wfw4MF88sknrFmzpjrKlCRJARO4UPTOO+/Qtm1b7rrrLnr27EmnTp0YOXIk77zzDgCfffYZu3btIjs7O2W5Nm3aALv3NEmSJH1d4A6frV+/nvfff5+PPvqIX/ziF9SvX5977rmHCy64gIULF1JQUABANBpNWa70fun8fZGWVrlZMhLZvb5QKEQoFKrUdVeZ0H9uQwSj5mRvQwSnz2Cvq0uA+1z6GhIEpbUGqeYgss8VE7hQlEgkKC4u5te//jVHHXUUAF27dqVfv37MmTOHPn36VOnjh8MhGjXKqJJ1RyJh0tIiVbLuqpIWCU69kXA4eRu0PoO9ri6B6vO/3/Ci0fo1XMneC2LNQWSf907gQlE0GuXggw9OBiKAgw8+mA4dOvDxxx9z8sknA7Bly5aU5QoLCwHIzMzcp8ePxxMUFhbv0zq+LhIJE43WJxaLU1ISq9R1V5nQ7jePklgMEjVdTPnE4vHkbWD6DPa6ugSxz7HdfS4s3Jb8ubYrfb0LUs1BZJ9TRaP1y7XXLHCh6Mgjj+Szzz7b47wdO3bQsmVL0tPTyc/P57jjjkvOKz2X6OvnGlVESUnVbGCJRIJEIhivxsnDCwkCU3OyzgDVDPa6ugS5z7v/oArWG18Qaw4i+7x3Anew8YQTTmDz5s38/e9/T07btGkTf/vb3+jYsSN16tQhNzeX559/PmW5+fPn06ZNG5o3b17dJUuSpAAI3J6i/v3707lzZ6688krGjx9P3bp1mT17NnXq1GHUqFEAXH755Zx77rlcc801DBo0iDfeeINnn32W2267rYarlyRJtVXg9hSFw2Fmz55Nt27dmDp1Kv/zP//DQQcdxCOPPEKTJk0AOOaYY7jzzjv561//yoUXXsizzz7L9OnTGTRoUA1XL0mSaqvA7SkCaNy4MTfffPO3jjnxxBM58cQTq6kiSZIUdIHbUyRJklQVDEWSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJwH4QirZu3Urfvn1p164d7733Xsq8J554goEDB9K5c2dOPfVUXnnllRqqUpIk1XaBD0V33XUXsViszPTnnnuOKVOmMGjQIPLy8ujWrRtjxozh7bffrv4iJUlSrRfoUPTJJ5/w6KOPcsUVV5SZd8cdd3DyySczbtw4evTowbXXXkvnzp2ZNWtWDVQqSZJqu0CHounTpzNy5EiysrJSpq9evZpVq1YxaNCglOmDBw9m6dKl7Ny5szrLlCRJAZBW0wVU1IIFC/joo4+48847+dvf/pYyLz8/H6BMWGrTpg27du1i9erVtGnTpsKPnZZWuVkyEtm9vlAoRCgUqtR1V5nQf25DBKPmZG9DBKfPYK+rS4D7XPoaEgSltQap5iCyzxUTyFC0bds2brjhBsaPH89BBx1UZn5BQQEA0Wg0ZXrp/dL5FREOh2jUKKPCy3+bSCRMWlqkStZdVdIiwak3Eg4nb4PWZ7DX1SVQff73G140Wr+GK9l7Qaw5iOzz3glkKLr77rs55JBDOOOMM6r9sePxBIWFxZW6zkgkTDRan1gsTklJ2ZPGa6XQ7jePklgMEjVdTPnE4vHkbWD6DPa6ugSxz7HdfS4s3Jb8ubYrfb0LUs1BZJ9TRaP1y7XXLHChaO3atfz2t79l1qxZbNmyBYDi4uLk7datW8nMzARgy5YtNGnSJLlsYWEhQHJ+RZWUVM0GlkgkSCSC8WqcPLyQIDA1J+sMUM1gr6tLkPu8+w+qYL3xBbHmILLPeydwoWjNmjXs2rWLSy65pMy8c889l65du3LrrbcCu88tys7OTs7Pz88nPT2dFi1aVFu9kiQpGAIXitq3b89DDz2UMu3vf/87119/PdOmTaNz5860aNGC1q1bs2DBAvr3758cN3/+fHr27EmdOnWqu2xJklTLBS4URaNRcnNz9zivY8eOdOzYEYArrriCq666ipYtW5Kbm8v8+fN59913mTNnTnWWK0mSAiJwoai8hgwZwrZt28jLy2P27NlkZWUxc+ZMcnJyaro0SZJUC+0XoSg3N5cPP/ywzPRhw4YxbNiwGqhIkiQFzX4RiiRJqkrhcIhwOBgX9YTgXrwxHk8Qj9fcpz8NRZIkfYtwOMTBjRokL0oaJEG7eGMsHmfzpuIaC0aGIkmSvkU4HCISDvPogr/z5cbKvXhvVQmFQkQiYWKxeGCuu3VY4waMOqk94XDIUCRJUm325cZi1q4vqukyyiUUCpGWFqGkJBaYUFQbBG9foCRJUhUwFEmSJGEokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiQA0mq6AEnSvolEgvP3bWmtQaxZ+z9DkSQFVMMG6cTjCaLR+jVdyl4LYs3a/wUuFP3pT3/i6aef5m9/+xuFhYW0atWK0aNHc8YZZxAKhZLjnnjiCe69914+//xzsrKyGD9+PCeccEINVi5Jlate3TTC4RC/e/4ffLFha02XUy6hUIhIJEwsFieRSNR0OeXSrnVjBvXKSnmP0f4pcKHogQceoFmzZkycOJFGjRrx+uuvM2XKFNatW8eYMWMAeO6555gyZQqXXXYZPXr0YP78+YwZM4ZHHnmEbt261ewTkKRK9uXGYtauL6rpMsolFAqRlhahpCQWmFDUpJF7tQ4UgQtFd999N40bN07e79mzJ5s3b+b+++/nJz/5CeFwmDvuuIOTTz6ZcePGAdCjRw8++ugjZs2aRV5eXg1VLkmSarPAnT321UBUqn379hQVFVFcXMzq1atZtWoVgwYNShkzePBgli5dys6dO6urVEmSFCCBC0V78te//pWmTZty0EEHkZ+fD0BWVlbKmDZt2rBr1y5Wr15dEyVKkqRaLnCHz77uL3/5C/Pnz2fChAkAFBQUABCNRlPGld4vnb8v0tIqN0uWftwzFAoF50S+0H9uQwSj5mRvQwSnz2Cvq4t9rh72uXoEuM81eQmEQIeidevWMX78eHJzczn33HOr5THD4RCNGmVUybojkTBpaZEqWXdVSYsEp95IOJy8DVqfwV5XF/tcPexz9QhUn/8dhmrycg2BDUWFhYVcfPHFHHzwwdx5552E/73RZmZmArBlyxaaNGmSMv6r8ysqHk9QWFi8T+v4ukgkTDRan1gsTklJrFLXXWVCu3/ZSmIxCMYHSIjF48nbwPQZ7HV1sc/Vwz5XjyD2Oba7z4WF25I/V5ZotH659kAFMhRt376dSy+9lC1btjB37lwaNmyYnJednQ1Afn5+8ufS++np6bRo0WKfH7+kpHL/s0olEonAfEQ1uTs2QWBqTtYZoJrBXlcX+1w97HP1CHKfd+8gqJr32e8SuBOtS0pKGDduHPn5+dx77700bdo0ZX6LFi1o3bo1CxYsSJk+f/58evbsSZ06daqzXEmSFBCB21M0bdo0XnnlFSZOnEhRURFvv/12cl6HDh2oU6cOV1xxBVdddRUtW7YkNzeX+fPn8+677zJnzpyaK1ySJNVqgQtFS5YsAeCGG24oM++ll16iefPmDBkyhG3btpGXl8fs2bPJyspi5syZ5OTkVHe5kiQpIAIXil5++eVyjRs2bBjDhg2r4mokSdL+InDnFEmSJFUFQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSsJ+Hok8++YQf//jHdOvWjd69e3PTTTexc+fOmi5LkiTVQmk1XUBVKSgo4LzzzqN169bceeedfPHFF9xwww1s376dqVOn1nR5kiSpltlvQ9Fjjz3G1q1bmTlzJgcffDAAsViMadOmcemll9K0adOaLVCSJNUq++3hs8WLF9OzZ89kIAIYNGgQ8XicJUuW1FxhkiSpVtpv9xTl5+dzxhlnpEyLRqM0adKE/Pz8Cq83HA7RuHHGvpaXIhTafXvR6Z2JxROVum79R3ra7r8BLjytk32uYva6etjn6mGfq0ckvPvNMDOzPolKbnP43+v+LvttKCosLCQajZaZnpmZSUFBQYXXGwqFiETK19y9dVCDOlWyXqWyz9XHXlcP+1w97HP1CIdr7iDWfnv4TJIkaW/st6EoGo2yZcuWMtMLCgrIzMysgYokSVJttt+Gouzs7DLnDm3ZsoX169eTnZ1dQ1VJkqTaar8NRX379uX111+nsLAwOW3BggWEw2F69+5dg5VJkqTaKJRIVPY53rVDQUEBJ598MllZWVx66aXJizeecsopXrxRkiSVsd+GItj9NR+//OUvWb58ORkZGZx22mmMHz+eOnX8BIEkSUq1X4ciSZKk8tpvzymSJEnaG4YiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQtN+48847adeuHccddxzxeLzM/JEjR9KuXTsmTpy4z4/1wAMP0K5du+T9N954g3bt2vHee+/t87qrSnX2B4LZo8pgn+H3v/897dq1Y9WqVSnTH374Ydq1a8cdd9yRMn3z5s0cddRR5OXllfsx+vXrx7XXXpu8P3HiRIYMGbJPde+N0v/n0n+5ubmcddZZLFq0qNpqOBBU9bZU09tRbWQo2o+kp6ezadMmli1bljJ97dq1vP322zRo0KBKHrdjx47MnTuXNm3aVMn6K0tN9QeC06PKcKD3+eijjwZg+fLlKdPfeust6tevX2b68uXLSSQSfP/736+2GitDvXr1mDt3LnPnzuWXv/wlO3bs4LLLLuOtt96q6dL2GwfKtlSbGIr2I+np6fTt25fnnnsuZfpzzz3H9773PVq2bFklj3vQQQfRrVu3Kn2zqww11R+ovT1KJBLs3Lmzwsvv3LmzzB6hA73P2dnZNG7cuEw4eOuttxg6dChvv/02sVgsZXrdunXp1KlTdZe6T8LhMN26daNbt24MGDCAu+++m0QiwZNPPrlP692+fXvlFLgfOFC2pdrEULSfGTJkCM8//zy7du1KTnv22Wf3uEv0k08+4fLLL+f73/8+3bp145JLLuGzzz5LGVNUVMTVV19NTk4OPXr04Kabbkr5JYSyhyzWrFlDu3btWLBgQcq46667jn79+iXv//GPf0wud8EFF9C1a1cGDhzI66+/Tjwe57bbbqNXr1706tWLW2+9dY+HY6qyP7D/9ah09/iiRYs49dRT6dy5My+//DLFxcVce+21DBw4kK5du9KvXz+mTp3Kli1bUpYv3d2el5fHCSecQJcuXdi8eXOy1kcffZTi4mKWLVvGk08+mfIGdyD1+eijj055I/v8889Zt24d5557Ljt37uTDDz9Mznvrrbfo1KlT8uuH1q1bx1VXXUVubi5dunTh7LPP5v333//Wx6sNmjZtSuPGjfn8888B+PLLL/nZz37GiSeeSJcuXRgwYAC/+tWvyoTwdu3aMXv2bG6++WZ69+5Nz549gd2B/b777mPgwIF06tSJE088kQceeKC6n1aNq+i2FNTtqKYZivYzJ5xwAjt37mTJkiUAfPzxx3z44YcMHjw4Zdzq1asZOXIkBQUF3HDDDdxyyy1s3LiR888/P+VFa9KkSbzwwgtcddVV3HjjjXzyySc8+OCDlVrzhAkTOP7445k5cyaHHXYYY8aM4brrrmPdunXceOONjBo1itmzZ5fZ81AR5e0P7L89+vLLL5k+fTrnn38+eXl5tG/fnu3btxOLxRg/fjx5eXmMHTuWZcuW8ZOf/KTM8gsXLuTVV1/l5z//OXfddRcNGjTg/vvvZ/LkybRs2ZK6dety2WWXsWPHDq6++mrgwOvz0UcfzSeffEJBQQGw+83qv/7rv8jKyqJdu3bJN7ldu3bx3nvvJQ93FBQUMGrUKP7xj38wZcoU7rzzTurXr895553Hhg0bKvW5VratW7dSUFBA8+bNAdi0aRMHH3wwP/vZz7j33nu56KKLmDdvHr/4xS/KLPvQQw+xatUqrrvuOm6++WZgd3C94447OP3005k9ezZDhw7llltu4Xe/+121Pq+aVpFtKcjbUU1Lq+kCVLnq169Pv379eO655zj++ON59tlnycnJoUWLFinjZs6cSWZmJvfffz9169YFdv/ynXjiiTzxxBOcffbZfPzxxyxcuJDp06dz5plnAtCnTx8GDBhQqTWfc845jBo1Ctj91+Ypp5zC+++/z9y5cwE47rjjePnll1mwYAGnnHLKPj1WefsD+2+PCgoKyMvLo2vXrinTp02blvy5pKSE5s2bM2rUKFauXElWVlZy3q5du8jLy0seoioqKuKOO+7goosuIj09nY8++ogLL7yQP/3pT7zwwgts2rTpgOvz97//fRKJBG+//TY/+MEPWL58OTk5Ocnntnz5cs455xw++OADduzYkQxFDz74IIWFhTzxxBMccsghAPTs2ZOBAwdy3333JUNmbVFSUgLsDto333wzGRkZnHvuucDuPUATJkxIjj366KOpX78+EydOZOrUqdSvXz85LzMzk5kzZxIKhQD47LPPmDNnDtOmTWPEiBEA9OrVi+3btzNr1ixGjBhBOHxg/E1fkW0paNtRbXJgbFUHmCFDhvDSSy+xfft25s+fz8knn1xmzJIlS+jXrx+RSISSkhJKSkqIRqN06NAhuYv1vffeI5FI8MMf/jC5XCQSoX///pVab+/evZM/t27dGoAePXqkjMnKyuKf//xnpTxeefoD+2+PDj744DKBCODJJ5/k9NNPJycnh44dOybDwdc/+ZKbm5tyzs7y5cspLi7mpJNOIh6Pk0gkKCkpYdiwYcTjcf72t78dcH3u2LEj9erVS/4V/9ZbbyXfyLp165YyPRQKJectWbKE3NxcMjMzk70Ih8Mce+yxte6Ti8XFxXTs2JGOHTtywgkn8Pzzz3PTTTeRnZ0N7D789cADDzB48GC6dOlCx44dueqqqygpKWH16tUp6+rbt28yEAG8/vrrAAwYMCDZh5KSEnr16sX69esr7bUgCCqyLQVpO6pt3FO0H+rTpw/p6en8+te/Zs2aNQwaNKjMmE2bNvHggw/u8fBDeno6AOvXryc9PZ3MzMyU+aV/eVSWhg0bJn8uPa8iGo2WqWlfTgj+qvL0B/bfHh166KFlpr3wwgtMmDCBESNGMH78eA4++GDWr1/Pf//3f7Njx46UsV9/bps2bQJg6NChyWkdO3ZM/vzggw8ecH1OT0+nc+fOvPXWW2zdupUPP/ww+UaWk5OTPC/krbfe4sgjj0w+r02bNvH222+n9K9UVZ6gXhH16tVjzpw5JBIJVq1axa233sqECRN45plnOOyww3jwwQe58cYbueiii8jNzSUajfLee+9x7bXXlmubSiQSZQJpqX/+8580a9asyp5bbVKRbSlI21FtYyjaD6WnpzNgwAAeeOABevbsucc3wczMTH7wgx8k9wZ8VUZGBgBNmjRh165dFBQUpLwZfdcx6dJDIF89mRmgsLBwr59LVShPf2D/7dFX/yIvtWDBAtq3b59yzZI333yzXMuXPu+ZM2eyaNEinnnmGebMmQPAPffcw8svv3xA9rn0MMZf//pX6tSpQ/v27QFo1qwZTZo04a233mL58uUpJ3xnZmZy3HHHMXbs2DLrKw1ptUU4HKZz584AdOnShaysLIYPH86sWbOYNm0aCxYsoF+/fvz0pz9NLvPJJ5/scV172qZCoRCPPvpoMhh/1VcP5x4I9nZbCtJ2VNsYivZTw4YNY8OGDQwfPnyP83v27MmKFSvo0KEDkUhkj2NKX/BeeOGF5HkcsViMF1988Vsf+5BDDiE9PT3lBXDnzp1lrltTk76rP3Bg9Wj79u1l3nyeeeaZci2bk5ND/fr1WbduHU2bNk15s7z00ktJJBIHZJ+PPvpo7rnnHh555BE6d+5MWlpayrynnnqK9evXJ69FA7vPm3n66adp06ZNrbt8w3fp3LkzJ598Mn/84x8ZM2bMPm1TpZ9A27x5c0poPFDt7bYU5O2ophmK9lNdunThrrvu+sb5V155JWeeeSYXXnghw4cP59BDD+Vf//oXb775JscccwxDhgzhyCOP5Ic//CEzZsxgx44dNG/enEcffbTMX91fFw6H+eEPf8gjjzxCq1ataNSoUXI3+572UtSE7+oPHFg96tWrF9deey2zZs0iJyeHRYsWsXTp0nItG41GufLKK7n55pvp0KEDsViM1157jdWrV/PSSy8lP/nyTfbXPufk5BAOh1m0aBGXXHJJyrxu3bpx0003AaRcaO/888/nmWee4ZxzzuHcc8/liCOOYOPGjbzzzjs0bdqU888/v0pr3lc/+clPmD9/Pg8++CC9evXioYceYs6cObRu3Zqnn36aTz/9tFzrycrK4uyzz+bqq6/mwgsvpGvXruzatYtVq1bxxhtvfOfv7v5mb7eloG9HNclQdIBq1aoVTzzxBLfffjvTpk2juLiYJk2acOyxx6Z8bcKMGTO49tprueWWW6hTpw5Dhw6le/fuyV/CbzJlyhSmTJnC9OnTycjI4MILLyQrK4uXXnqpqp9apTmQejRy5EjWrFnDnDlzuO++++jTpw+33nrrt+7h+aoLLriApk2bcsMNN7Bjxw7Gjh1Ly5YtOf744/d4+OOr9tc+R6NRjjzySD766KPkOSClcnJySCQSHHbYYSmfyGvUqBFz587l9ttv55ZbbmHz5s0ccsghdO3aNeUk89oqOzubwYMH87vf/Y5XX32VTZs2Jb+KYuDAgUyePJnLLrusXOuaPHkyWVlZzJ07l1mzZpGRkUFWVhYnnXRSVT6FWmlvt6Wgb0c1KZRIJBI1XYQkSVJN8yP5kiRJGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSUpas2YN7dq147777qvSxxk9ejSjR4+u0seQtPcMRZIkSRiKJEmSAEORJEkSYCiSVMt98cUXTJo0iT59+tCpUyf69evHL37xC3bu3AnA6tWrufLKK+nevTtdu3Zl+PDhvPrqq2XWs2HDBiZNmkSvXr3o3Lkzp556KvPmzfvOx08kEkyZMoVOnTqxcOHC5PSnnnqKH/3oR3Tp0oXu3bszfvx4/vnPf5ZZfu7cufTv358uXbpw5pln8pe//KXizZBUpdJqugBJ+iZffPEFZ555Jlu2bGH48OFkZ2fzxRdf8Pzzz7N9+3YKCwsZOXIk27ZtY/To0TRq1Ih58+Zx+eWXc8cddyS/EXz79u2MHj2azz77jLPPPpvmzZuzYMECJk6cSGFhIeedd94eHz8WizFp0iTmz5/PzJkzOf744wG4++67+fWvf82gQYM488wz2bhxI3PmzOHss8/mySefJBqNAvDEE08wdepUcnJyOO+881i9ejWXX345mZmZ/Nd//Ve19FDSXkhIUi119dVXJ4466qjEu+++W2ZePB5PXHfddYm2bdsmli1blpxeVFSU6NevX+KEE05IxGKxRCKRSDzwwAOJtm3bJp566qnkuJ07dyZGjBiR6NatW2LLli2JRCKRWL16daJt27aJe++9N7Fr167EuHHjEl26dEn8+c9/Ti63Zs2aRPv27RN33313Sj0ffvhhokOHDsnpO3fuTPTs2TNx2mmnJXbs2JEcN3fu3ETbtm0T55xzTiV0SFJl8vCZpFopHo/z4osvcsIJJ9C5c+cy80OhEIsWLaJLly4cc8wxyekZGRmMGDGCtWvX8vHHHwOwePFimjRpwpAhQ5Lj0tPTGT16NMXFxSxbtixl3bt27WLs2LG8+uqrzJ49mz59+iTnvfDCC8TjcQYNGsTGjRuT/w499FBatWrFG2+8AcD777/Phg0bGDlyJHXq1EkuP3ToUBo2bFg5TZJUqTx8JqlW2rhxI0VFRXzve9/7xjGff/45Xbt2LTM9Ozs7Ob9t27asXbuWVq1aEQ6n/h3Ypk2b5Liv+s1vfkNxcTF5eXnk5uamzFu1ahWJRIIBAwbssaa0tLSUdbZq1Splfnp6Oi1atPjG5ySp5hiKJOlrjjvuOP785z9z7733kpubS926dZPz4vE4oVCIvLw8IpFImWUbNGhQnaVKqkSGIkm1UuPGjTnooINYsWLFN4454ogjWLlyZZnp+fn5yfkAzZo148MPPyQej6fsLfr6uFJdu3Zl5MiRXHrppYwdO5aZM2cm9wC1bNmSRCJB8+bNycrK+tbaAD799FN69uyZnL5r1y7WrFnDUUcd9a3PX1L185wiSbVSOBymf//+vPLKK7z33ntl5icSCX7wgx/w7rvvsnz58uT04uJiHn/8cZo1a8aRRx4JQN++fVm/fj3z589PjispKeHhhx+mQYMGHHvssWXW36tXL2677Tb+/Oc/c/XVVxOPxwEYMGAAkUiEmTNnkkgkytS0adMmADp16kTjxo157LHHkpcPAJg3bx6FhYX70BlJVSWU+PpvtSTVEl988QVnnHEGRUVFDB8+nDZt2rB+/XoWLFjAo48+ys6dOznttNPYsWMHo0ePJjMzkyeffJJ//OMf3HnnnSkfyf/Rj37EZ599xujRo2nWrBnPP/88b775JpMmTUp+JH/NmjWceOKJXH311Vx44YXA7usRTZgwgeHDh3PttdcCMHv2bG699VZycnLo378/GRkZrFmzhhdffJHhw4cnl507dy5Tp07l6KOPZvDgwaxZs4Y//vGPyY/kP/zwwzXQVUnfxMNnkmqtpk2b8vjjj/PrX/+aZ555hqKiIpo2bUrfvn2pV68e0WiUxx57jJtvvpk5c+awY8cO2rVrxz333JO8phBAvXr1ePjhh7nllluYN28eRUVFZGVlcf311/OjH/3oW2s47bTT2Lp1K9OmTSMjI4MJEyZwySWX0Lp1ax544AFmzZoFwOGHH07v3r3p169fctkRI0YQi8W47777uOmmm2jbtm3yGkeSah/3FEmSJOE5RZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEwP8D2gBGn3vH2JkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=steak, x=\"cooked\")" ] }, { "cell_type": "markdown", - "id": "furnished-camping", + "id": "996d3496-8057-4c0f-b083-ead62e394fde", + "metadata": {}, + "source": [ + "### Number of people who like their steak rare, and who gamble" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "f75ee0b2-8ed2-40d2-9a6e-dd839663f364", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gamble cooked \n", + "No Medium 59\n", + " Medium Well 40\n", + " Medium rare 85\n", + " Rare 11\n", + " Well 18\n", + "Yes Medium 73\n", + " Medium Well 32\n", + " Medium rare 81\n", + " Rare 12\n", + " Well 18\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "counts = df.groupby([\"gamble\", 'cooked']).size()\n", + "print(counts)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "8082a773-1acd-4da5-beef-e78b82e4bca7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAG5CAYAAACKmu5sAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVCtJREFUeJzt3XlcFPX/B/DXzu5ys1wiiYICXiGXiQKKmopfxTM1TCvt0BT74ZmlWVbmmeWJiApmmvdR31LJM1Prq5Z5gFeaoKIoJsouKgp7/P4gNrdFxWVhl/H1fDx4yH7mMzPvWXbg5cxnZiQ6nU4HIiIiIhETLF0AERERUWVj4CEiIiLRY+AhIiIi0WPgISIiItFj4CEiIiLRY+AhIiIi0WPgISIiItFj4CEiIiLRY+AhIiIi0ZNZugBrodPpoNXyptNERETVhSBIIJFIytWXgedvWq0ON2/esXQZREREVE7u7o6QSssXeHhKi4iIiESPgYeIiIhEj4GHiIiIRI+Bh4iIiESPg5aJiKjCtFotNBq1pcsgEZFKZRAE8x2XYeAhIiKT6XQ6qFQ3UVh429KlkAjZ2ztBoXAv96Xnj8LAQ0REJisNO05ObrCxsTXLHyYinU6HoqL7uH37FgDAxcWjwstk4CEiIpNotRp92HFyUli6HBIZGxtbAMDt27fg7OxW4dNbHLRMREQm0Wg0AP75w0RkbqWfLXOMD2PgISKiCuFpLKos5vxsMfAQERGR6DHwEBERkegx8BAREVWhq1dzEB0djtWrv67U9SQkDEFCwpBKXUd1wsBDREREosfL0omIngKCIIEgmHdwsVbLwcpUfTDwEBGJnCBI4OZmD0GQmnW59+5JceOGAKlUApnM9BMGOh2g0WjNWBmRMQYeIiKRKzm6I0XWlhQU5l0123K1No5Q+0fhvkwKjdS0MCVI5bB1rWG2mkz111/XkZq6CAcP/g8qlRI1angiIiIKI0eOhVwux5Url5GcnIjff/8NRUX3ERDQAK+/PhgtW0YbLOfWrZtYtGgB/ve/n3Hnzm34+NRFv36vIDa22yPXr9PpMHPmNPzww2ZMmjQNbdu2BwBs356GdetW48KFLNja2qJFiwi8/fZIeHk9YzD/d999g1WrluPGjRsICAhAQsJo875BIsDAQ0T0lCjMu4rC3EvmW6CDK4R6GmjVxdBqNeZbbhW7ceMvvPXWa7h9uwA9evSCr2893LjxF376aTfu3buHggIVhg0bhHv37uHFF1+Ci4sLfvhhK8aPH4PJkz9D27btAAD379/D8OFDcflyNvr06YtatbyxZ89uTJ36CQoKCtC3b/8y16/RaDB9+qf48cedmDbtC32IWr58KVJTF6F9+xh07/4C8vNvYdOmdUhIGIIvv1wFZ2dnAMCWLf/F559PQ3BwCPr27Y+cnCsYN24MFAoFatb0qpo3sRpg4CEioqfaokULcPNmHpYs+QqNGwfq2wcPjodOp0Ni4mzcvJmHpKRUhIaGAQC6d++F117rjwUL5qB167YQBAHfffctLlzIwkcfTcZ//hMLAHjhhReRkDAEKSnJ6NatBxwcHA3WrVarMXnyRPz88z7MmDEbLVpEAgCuXbuKL79cgrfeGoaBA9/U92/bth3eeOMVfPvtBgwc+CbUajUWL16IBg0aYv78xZDL5QCAevX8MXPmVAaeB/AqLSIiempptVrs3/8TWrVqbRB2SkkkEhw48AuefbaJPuwAgIODA3r06IWrV3Nw4UImAODgwV/g4eGBmJhO+n4ymQwvvvgSCgvv4ujRIwbLVquLMXHiePzvfz/j88/n6cMOAOzd+yO0Wi3at++I/Px8/Ze7ew34+PjiyJHDAIAzZ07h1q2b6Nmzjz7sAECXLt3h5ORkhndIPHiEh4iInlr5+bdw584d+PkFPLRPbu41BAYGGbXXq1cPAHDt2jX4+9fHtWtXUaeOr9FDLuvW9fu7n+H4qa+//gqFhXfxxRfz8dxz4QbTsrOzodPp0K9frzJrkkplBsv08fE1mC6TyeDtXfuh2/Q0YuAhIiKygIiISBw6dACrV69A06bNYGv7z0NYdTotJBIJvvhifplPCbe3d6jKUkWBgYeIiJ5arq5ucHR0RFbW+Yf28fJ6BpcuXTRqv3jxAgDgmWee+fvfWjh//hy0Wq1BSLl06YJ++oMCA4PRs2cfjBs3GhMnjse0aZ9DJiv5s1y7dh3odDrUquUNX9+6D62tdJnZ2ZfQrFlzfbtarUZOTg7q12/wiK1/unAMDxERPbUEQUDr1s/jl1/248yZU0bTdTodoqJa4fTpkzhxIl3fXlhYiO+//xa1anmjXj1/AEBkZCvk5eVh9+4d+n5qtRobN66Dvb0DmjZ9zmj5zZtH4JNPpuHQof9h8uSPoNWW3I+obdv2kEqlWLYsBTqdzqgmpTIfANC4cSBcXd3w3XebUFxcrO+TlrYZt28XmP7GiBCP8BAR0VNt6ND/w2+/HURCwhD06NELdev6IS/vBvbs2YWFC5fi1Vdfx65dOzB27Ai8+GI/KBQK/PDDFly9moMpU2bqj+b07NkL33//DaZNm4Q//jiDWrVqYc+e3cjIOI4RI94xukKrVJs2z2PChI8xZcrHcHR0xHvvfYDatetg8OBhWLx4Aa5dy0Hr1s/DwcEBOTk52LfvJ/To0QsvvzwAMpkMb701DJ9/Pg0jRsSjQ4eOuHo1B1u3buYYnn9h4CEioqeap2dNLF68HKmpydixYxvu3r2DGjU8ERnZEnZ2dnB2dkZy8lIkJydi48Z1KCoqQkBAfXz22RyDGw/a2tohMXExkpMTsW3bFty5cwe+vnUxYcLH6NKl+yNr6NSpC+7evYtZs2bA0dEJ//d/IzFgwOvw9fXFunWrsWxZCgCgZk0vtGgRgejoNvp5e/bsDa1Wi9Wrv8bChfPh718fn302GykpyZXzhlVTEt2/j5U9pTQaLW7evGPpMoiIzE4mE+Dm5ohTyz81/40Hm/WEm8INsjIG1paHILeBvUctqNV8tAQZKy4uQl7eVXh41IJcbmM03d3dEVJp+T57HMNDREREosfAQ0RERKLHwENERESiZ3WBZ/fu3YiLi0PTpk0RHR2NkSNHIjs726jfhg0b0KlTJwQHB6NHjx7Ys2ePBaolIiKi6sCqAs+hQ4eQkJCA+vXrIykpCRMmTMCZM2fw5ptv4t69e/p+W7duxcSJExEbG4uUlBSEhYUhISEBx44ds1zxIiAIEshkglV+CYLE0m8PERFVY1Z1WfrWrVvh7e2NadOmQSIp+QPn7u6O1157DSdOnEB4eMmzRubPn4+uXbti1KhRAIDIyEicPXsWSUlJSElJsVT51ZogSODmZg9BkFq6lDJptRrculUIrZYXFRIR0ZOzqsCjVqvh6OioDzsA4OzsDAD6O01mZ2fjwoULePfddw3m7dKlC2bOnImioiLY2BhfukaPJggSCIIUWVtSUJh39fEzVCF7j1rw6/YWBEHCwENERCaxqsDTu3dvfPfdd1i1ahV69OiB/Px8zJ49G4GBgXjuuZJbcmdmZgIA/Pz8DOYNCAhAcXExsrOzERDw8Kfe0qMV5l017306iIiIrIBVBZ7w8HAsWLAA77zzDj799FMAwLPPPovU1FRIpSWnWpRKJQBAoVAYzFv6unS6KWQyqxrSVKXKe+MmS6oONRJZo+qw70gkAG+DSw8jlUoq/DfaqgLPkSNH8N5776Fv3754/vnnkZ+fj4ULF2LIkCFYvXo17OzsKm3dJWNYyn7OCVkHhcLe0iUQUSWpDqGMqp5WK4EgCHBxcahwBrCqwDNlyhRERkZi/Pjx+rawsDA8//zz+O677/DSSy/BxcUFAFBQUABPT099P5VKBQD66U9Kq9VBpbpbgeqrN6lUsPpAoVIVQqPh7eeJnpQl9m+pTAZB9vg/MYJMDqlUMOu+rdXqTBrvt3TpYixbloIaNTzxzTdb9Q8FLTVs2JvIyEhHbGw3fPDBJxWqcf361Zg/fzZ+/vkwAODIkcMYMSIeqakr0LhxYIWWLSYajQ5arRZK5V0UFmqMpisU9uUOy1YVeM6fP48OHToYtD3zzDNwc3PDpUsl40r8/f0BlIzlKf2+9LVcLoePj4/J6+ezXKybRqPlz4ioGpDKZKjpH6AfilDVNBot8vPvmhR6ZDIZlMp8HDt2BM89F65vv3btKk6cyIC9vYM5S9Vr1KgxFi1ahrp1/R7f+Smk0egq/PvfqgKPt7c3Tp06ZdB25coV3Lp1C7Vrlzzm3sfHB/Xq1cO2bdsQExOj75eWloaoqCheoUVEZGGCTAapVIqkNb/gynXTx1WaonZNF/xf/1YmX9Upl8sRHt4Cu3ZtNwg8u3Zth5+ff6XdusPR0QlBQcGVsmwqYVWBp1+/fpg2bRqmTJmC9u3bIz8/H8nJyfDw8EBsbKy+3/DhwzF27Fj4+voiIiICaWlpSE9Px8qVKy1YPRERPejKdSUuXLll6TKeWExMJ8ya9RnGjBkH2d+n5Xbu3I6OHTtj9+6dBn0vXMjCokWJOHr0d2g0GjRt2gyjRr2L2rXr6PvcuXMbs2fPxL59P8HW1gZdunSHq6u7wXL+fUrr6tUcxMX1wOTJM9Cu3T//uZ83bxb27/8JGzduBgCkpW3GtGmTkJq6AosXJyE9/Rhq1vTCmDHj0KxZc6SmLsLmzf8FAHTt2gNDhrxtdKruaWFVgWfgwIGwsbHBmjVrsGnTJjg6OiIsLAxz586Fm5ubvl+3bt1QWFiIlJQULFmyBH5+fliwYAGaNm1qweqJiEgMWrVqgxkzJuPXXw+iZctoZGVl4vz5c5g+/QuDwHPlymXEx78Jf/8ATJjwCQRBghUrvsTIkcOwevUm/RmH6dM/xaFDBxEfnwBvb298++1GnDu33aw1T5nyMXr27IN+/V7FypVf4YMP3kNsbFfcuXMHH344CadOncDSpYvh718f//lPZ7Ouu7qwqsAjkUjQv39/9O/f/7F94+LiEBcXVwVVERHR08TOzg7R0W2xe/d2tGwZjV27tiMoKATe3rUN+i1blgKFQoE5c5Jga2sLAAgKCkXfvj2xZct36N07DllZmdi7dw/GjfsQ3br1BAC0aBGFfv16m7XmPn1eQq9eLwIAPD09MXBgP5w5cxqLFy8DAEREROHnn/dhz55dT23geTqPaxERET1CTEwn7N+/D/fv38Pu3TsQE/Mfoz6//XYQ0dFtIJVKoVaroVar4ezsjIYNG+HMmZLxqGfOnIJOp0ObNu3080mlUrRp09as9TZvHqH/3senLgCgWbPmBn18fHxx/XquWddbnVjVER4iIiJrEBERBZlMhtTUxbh6NQft23c06pOfn4/169dg/fo1RtNkMjkA4MaNG5DJZEY3y3VzczeapyKcnJz138vlcqO20vaiovtmXW91wsBDRET0LzKZDG3btse6davQrFlzuLt7GPVRKFwQFdUKvXsbD69wcCi5fL1GjRpQq9VQqVQGoefWrZuPXH/p+J/iYrVBe0GB6om3hUow8BAREZWhe/eeyM+/ie7de5U5PTy8BbKyzqNBg0YPvedQ6U0E9+3box/Do9FosG/f3keu283NHTKZDBcvZunbiouLcezYEVM2hcDAQ0REVKbAwCBMnz7rodMHDRqKwYMHYsyY4ejRoxfc3d1x82Yejh49gtDQMHTs2Bl+fv5o06Yd5s+fjaKiItSqVQvffrsRanXxI9ctCALatm2HTZvWo04dH7i4uGLTpvXQ6XSQSCTm3tSnAgMPERFVito1TXvUT3VZZ506PkhJWY6UlGTMnj0DhYWF8PCogdDQpggIaKDv9/77H2HOnJlITp4PGxsbdO7cDWFhzbBw4bxHLn/UqPcwc+ZUzJ37ORwcHNG//wD4+tbF/v0/Vep2iZVEp+PzaYGSW5HfvHnH0mVYjEwmwM3NEaeWf4rC3EuWLseAvZcvAl/7CLdu3eGjJYhMUGn7t4MrhGY94aZwg+yBm9lV50dLkHUpLi5CXt5VeHjUglxu/CQFd3fH6vksLSIiqv40ajWuZ54v98NDbV1qWMXDQ0ncGHiIiMjsNGo1NGr1Y/sJci1kfDAwVQHeeJCIiIhEj4GHiIiIRI+Bh4iIiESPgYeIiIhEj4GHiIiIRI+Bh4iIiESPgYeIiIhEj4GHiIiIRI+Bh4iIzE4qk0FuZ/f4L1tbSKUCZDLzfQnCkz9cc+nSxYiODscLL8RCqzW+CeKwYW8iOjocU6d+YoZ3B1i/fjWio8P1r48cOYzo6HCcOXPKLMsnY7zTMhERmZVUJoOXvz8EqWX+xGi1Gty6VfjEj5eQyWRQKvNx7NgRPPfcP2Hk2rWrOHEiA/b2DuYuVa9Ro8ZYtGgZ6tb1q7R1PO0YeIiIyKwEmQyCVIasLSkozLtapeu296gFv25vQRAkTxx45HI5wsNbYNeu7QaBZ9eu7fDz84cgVN7DUB0dnRAUFFxpyzeVTqdDcXExbGyMH9xZHkVFRZDJZBAEy59QYuAhIqJKUZh31bxPZ68CMTGdMGvWZxgzZhxkfz/8dOfO7ejYsTN2795p1P/ChSwsWpSIo0d/h0ajQdOmzTBq1LuoXbuOvs+dO7cxe/ZM7Nv3E2xtbdClS3e4urobLOfIkcMYMSIeqakr0LhxIK5ezUFcXA9MnjwD7drF6PvNmzcL+/f/hI0bNwMA0tI2Y9q0SUhNXYHFi5OQnn4MNWt6YcyYcWjWrDlSUxdh8+b/AgC6du2BIUPefmT4mDr1E5w5cwpvvz0CixYl4eLFLHz88RRERrZCcvJ8/PbbIVy/ngs3N3dERERh2LARcHJy0s//4ovd0bJlNLy8nsE332zA9eu52Lx5J1xdXZGWthnr1q1CdvYlKBQuiI3thsGD4yGVVl6QfBADTxUSBIlJ55arglRq+fRNRGRprVq1wYwZk/HrrwfRsmU0srIycf78OUyf/oVR4Lly5TLi49+Ev38AJkz4BIIgwYoVX2LkyGFYvXqT/qjI9Omf4tChg4iPT4C3tze+/XYjzp3bbta6p0z5GD179kG/fq9i5cqv8MEH7yE2tivu3LmDDz+chFOnTmDp0sXw96+P//yn8yOXdePGDcyd+wVee20QvLyegZfXM7h37x60Wi2GDHkbrq5uuH49FytWfIn3338HiYmLDebfu/dH1Knji5Ejx0IQBNjb22Ht2pVITk5E374vIyFhFC5cuIAlSxZCq9Vi2LDhZn0vHoaBp4oIggSurg4MFkREVszOzg7R0W2xe/d2tGwZjV27tiMoKATe3rWN+i5blgKFQoE5c5Jga2sLAAgKCkXfvj2xZct36N07DllZmdi7dw/GjfsQ3br1BAC0aBGFfv16m7XuPn1eQq9eLwIAPD09MXBgP5w5cxqLFy8DAEREROHnn/dhz55djw08BQUqfPHFfDRpEmTQPnbs+/rv1Wo1atXyxttvD8alSxfh61vXYNoXX8yHvb09AODu3TtYunQJXn55IIYO/T8AQPPmkZDLZUhMnIOXXx4AFxfXCr8Hj8PAU0UEQQKpVEDSml9w5brS0uUYCW3kjZc6h1m6DCIii4uJ6YRJkz7E/fv3sHv3Drz44ktl9vvtt4Po0OE/kEqlUKvVAABnZ2c0bNhIf7XVmTOnoNPp0KZNO/18UqkUbdq0xbp1q81Wc/PmEfrvfXxKwkezZs0N+vj4+CI7+/GnGF1cXIzCDgBs27YV69atwuXL2SgsLNS3Z2dfMgg8TZs204cdAMjISEdh4V20a9dB/z4BQHh4BO7fv4/MzPNo2rRZObayYhh4qtiV60pcuHLL0mUY8fZUWLoEIiKrEBERBZlMhtTUxbh6NQft23css19+fj7Wr1+D9evXGE2TyeQASk4PyWQyKBSGv2Pd3NyN5qkIJydn/fdyudyorbS9qOj+Y5fl5uZh1LZ37x5MmfIxevTohSFD3oZC4Yq8vBuYMGGs0TL/Pb9SmQ8AePPNV8tc3/XruY+tyRwYeIiIiB4gk8nQtm17rFu3Cs2aNYe7u3EAAACFwgVRUa3Qu3ec0TQHh5JL2GvUqAG1Wg2VSmUQem7duvnIGkrH/xQXqw3aCwpUT7QtppCUMdR0z55daNCgId577wN929Gjv5drfmfnku2eOvVzeHl5GfWvVcvb9GKfAAMPERHRv3Tv3hP5+TfRvXuvh/YJD2+BrKzzaNCg0UOvNGrcOBAAsG/fHv0YHo1Gg3379j5y/W5u7pDJZLh4MUvfVlxcjGPHjjzpppjF/fv39UetSu3Ysa1c8wYFhcDOzg5//ZWLtm3bPX6GSsLAQ0RE9C+BgUGYPn3WI/sMGjQUgwcPxJgxw9GjRy+4u7vj5s08HD16BKGhYejYsTP8/PzRpk07zJ8/G0VFRahVqxa+/XYj1OriRy5bEAS0bdsOmzatR506PnBxccWmTeuh0+kgKesQTCVr3jwCs2d/hq++SkWTJsE4ePAX/P77r+Wa19nZGYMGxWPhwkRcv34dTZs2g1QqRU7OZezfvw9Tp86EnZ1dJW8BAw8REVUSe49aol5nnTo+SElZjpSUZMyePQOFhYXw8KiB0NCmCAhooO/3/vsfYc6cmUhOng8bGxt07twNYWHNsHDhvEcuf9So9zBz5lTMnfs5HBwc0b//APj61sX+/T9V6naVpWfP3sjJuYKNG9dh9eqv0aJFJD7+eCqGDn29XPP37/8qPD09sW7dKmzatA4ymQy1a9dBy5at9fc7qmwSnU73ZLeirEQDBgzAr7+WnRhnz56Nrl27AgA2bNiA1NRU5OTkwM/PD6NHj0a7dhU7TKbRaHHz5p0KLeNRZDIBbm6OmDAvzSoHLbcMq4uEl6NxavmnVnejMHsvXwS+9hFu3boDtdr4GTdE9Gilv3/Mvn87uEJo1hNuCjfIHriZXXV9tARZn+LiIuTlXYWHRy3I5cZ3e3Z3dyz37V6s6gjPxx9/jNu3bxu0LV++HDt27EBUVBQAYOvWrZg4cSLi4+MRGRmJtLQ0JCQkYNWqVQgLC7NA1URE9CCNWo3czEwI5fifuyCTw9alBjQa8/1nRqvVMeyQEasKPPXr1zdqe+edd9CqVSu4u5dcwjd//nx07doVo0aNAgBERkbi7NmzSEpKQkpKSlWWS0RED6FRq6FRqx/bT5BrIdNoefSWKp1V3/b3yJEjuHz5Mrp37w4AyM7OxoULFxAbG2vQr0uXLjhw4ACKioosUSYRERFZOas6wvNvW7ZsgYODAzp06AAAyMzMBAD4+fkZ9AsICEBxcTGys7MREBBg8vpkssrLf3ykRMXxPSQyTXXYdyQSwHpGlJK1kUolFf4bbbWBR61W44cffkD79u31N3BSKkseyfDvO1aWvi6dbgpBkMDNzdHk+anyKRT2j+9ERNVSdQhlVPW0WgkEQYCLi0OFL1232sDzyy+/4ObNm+jWrVuVrE+r1UGlultpy5dKBf7BriCVqtCsAxuJnhbV4fePRqPlER4yotHooNVqoVTeRWGhxmi6QmFfPa/SetCWLVvg6uqK6OhofZuLiwsAoKCgAJ6envp2lUplMN1UHDRn3TQc2EgkWgw79Cgaja7Cv/+t8hjivXv3sGvXLnTu3Fn/EDQA8Pf3B/DPWJ5SmZmZkMvl8PHxqdI6iYiIqHqwysDz448/4u7du/qrs0r5+PigXr162LbN8PkdaWlpiIqK0j9sjYiIiOhBVnlKa/PmzfD29kazZs2Mpg0fPhxjx46Fr68vIiIikJaWhvT0dKxcudIClRIREVF1YHVHeJRKJfbv348uXbqU+YC0bt26YfLkydiyZQsGDRqEI0eOYMGCBWjatKkFqiUiorJIZTLI7ewe/2VrC6lUgExmvi9BePKHay5duhjR0eF44YVYaLXGY0WGDXsT0dHhmDr1EzO8O8D69asRHR2uf33kyGFER4fjzJlTZlm+KbZs+Q7R0eHIzjZ8/MjGjWsRHR2OpUsXG7SrVEq0bt0cq1YtL/c6XnyxO2bP/kz/eurUTzBgQN+KFV5OVneEx8XFBSdOnHhkn7i4OMTFxVVRRURE9CSkMhlq+gdAKpVaZP0arQb5JjxLSyaTQanMx7FjR/Dcc/+EkWvXruLEiQzY2zuYu1S9Ro0aY9GiZahb1+/xnStJSEgoAODEiXT4+Pjq2zMyjsPOzg4ZGccN+mdkpEOn0yEkJKwqyzSZ1QUeIiKq3gSZDFKpFIv3rkCOMrdK1+3t4oWhbQdCECRPHHjkcjnCw1tg167tBoFn167t8PPzhyBUXoBzdHRCUFBwpS2/PHx968HV1Q3p6ccRG/vPLWEyMtIRG9sd27ZthUaj0QfZjIzjsLGxRePGgZYq+Ykw8BARUaXIUebiYt5lS5fxRGJiOmHWrM8wZsw4yP5++OnOndvRsWNn7N6906j/hQtZWLQoEUeP/g6NRoOmTZth1Kh3Ubt2HX2fO3duY/bsmdi37yfY2tqgS5fucHV1N1jOkSOHMWJEPFJTV6Bx40BcvZqDuLgemDx5Btq1i9H3mzdvFvbv/wkbN24GAKSlbca0aZOQmroCixcnIT39GGrW9MKYMePQrFlzpKYuwubN/wUAdO3aA0OGvA1BePholuDgUIMjOdeuXcP167mIi+uH77//BufPn0PDho0BlASexo2f1V9Nff16LhYtWoBDh/6HwsJ7ePbZQAwfPgaNGz9b/h9AJbK6MTxERESW0qpVGxQXF+HXXw8CALKyMnH+/Dl06PAfo75XrlxGfPybUKlUmDDhE3z88RTk59/CyJHDDJ7tOH36p9i37yfExyfggw8+wYULWdiwYY1Z654y5WO0bNka06Z9gRo1PPHBB+9h3rwvcP16Lj78cBJ6947DypVfYdeuHY9cTnBwKC5ezNLf3y4joyRA+frWRf36DfVhSK1W4/TpU/rTWSqVCm+/PRjnzv2BUaPexdSpn8HOzh4jR8bj1q2bZt1WUzHwEBER/c3Ozg7R0W2xe/d2ACWns4KCQuDtXduo77JlKVAoFJgzJwlt27ZD69bPY+bMeVAqldiy5TsAJYFp7949GDnyHfTp0xdRUdGYPn0WZDK50fIqok+flxAX1w8REVEYPfpd3L17B2fOnMaHH05CREQU3njjLTRq9Cz27Nn1yOWEhIRBp9Ph5Ml0ACXjeYKDQwAAwcEhyMgoaf/jjzMoKrqvDzwbNqzB7dsFmD9/ETp27Pz3dn4BJydnrFnztVm31VQMPERERA+IiemE/fv34f79e9i9ewdiYoyP7gDAb78dRHR0G0ilUqjVaqjVajg7O6Nhw0b6q63OnDkFnU6HNm3a6eeTSqVo06atWWtu3jxC/72PT10AQLNmzQ36+Pj44vr1R4+patz4Wdja2iI9veRITkbGcQQFlQxmbtIkWH+EJyPjGCQSCYKCSsLQr78eRNOm4XB2VujfC0EQEBb2HE6fttyVZw/iGB4iIqIHREREQSaTITV1Ma5ezUH79h3L7Jefn4/169dg/Xrj01OlR3Bu3LgBmUxm9NBrNzd3o3kqwsnJWf996ZiaB9tK24uK7j9yOTKZDM8+2wQZGcdx9+5dnD//5wNHeEKRm1sypicj4zjq1fN74OHd+Th5MgPPPx9ptMwHxzNZEgMPERHRA2QyGdq2bY9161ahWbPmcHf3KLOfQuGCqKhW6N3b+DYpDg4ll7DXqFEDarUaKpXKIPQ8blxL6ZMDiovVBu0FBaon2hZTBAeHYsOGNUhPPwa5XI769RsCAJ55phY8PGogI+M4TpxIR3T0P0epnJ0ViIhoibfeijdanlxuHU9BYOAhIiL6l+7deyI//ya6d+/10D7h4S2QlXUeDRo0eug9h0ov2d63bw+6desJANBoNNi3b+8j1+/m5g6ZTIaLF7P0bcXFxTh27MiTbsoTCwkJw9dfL8M336xH48aB+qvVgJJxPNu3pyEvLw/BwaH69vDwFtix4wfUresHe3v7Sq/RFAw8RERUKbxdvKrtOgMDgzB9+qxH9hk0aCgGDx6IMWOGo0ePXnB3d8fNm3k4evQIQkPD0LFjZ/j5+aNNm3aYP382ioqKUKtWLXz77Uao1cWPXLYgCGjbth02bVqPOnV84OLiik2b1kOn05X5FAJzCgoKgSAIOHDgF7z66usG05o0CcHChfMAwOCGg/36vYKdO7chIWEI4uL6wcvrGeTn38KpUydRo0YNvPTSK5Vac3kw8BARkVlp1WpoNBoMbTvQIuvXaDVPfNNBU9Sp44OUlOVISUnG7NkzUFhYCA+PGggNbYqAgAb6fu+//xHmzJmJ5OT5sLGxQefO3RAW1kwfHB5m1Kj3MHPmVMyd+zkcHBzRv/8A+PrWxf79P1Xqdjk7O8PPzx/nz/+pH5RcKjg4BDqdDjVqeBpcuebi4orFi5chJSUZycmJUKmUcHNzR2BgENq0eb5S6y0viU6nq/xPRTWg0Whx8+adSlu+TCbAzc0RE+al4cKVW5W2HlO1DKuLhJejcWr5pyjMvfT4GaqQvZcvAl/7CLdu3YFabfyMGyJ6tNLfP2bfvx1cITTrCTeFG2T/upmdVCaDIHv8/6kFmRy2LjWg0Zhv39ZqdVUSeKjyFRcXIS/vKjw8apU5Fsjd3RFSafkuOOcRHiIiMjuNWg2NWv3YfoJcC5lGy//MUKXjfXiIiIhI9Bh4iIiISPQYeIiIiEj0GHiIiIhI9Bh4iIiISPQYeIiIiEj0GHiIiIhI9Bh4iIiISPR440EiIjK7J7nTcnnvlFtept5peenSxVi2LEX/WqFwQd269TBw4BuIioo2Z4lkAQw8RERkVlKZDF5+/uUKPJVBq9HgVn6hSaHH1tYW8+YtAgDk5f2FFSuWYdy4MUhKSjF4OjhVPww8RERkVsLfR3eOJS/G7ZyrVbpuJ+9aCBs2FIIgMSnwCIKAoKBg/evAwCD07t0VP/ywpUKB5/79e7C1tTN5fqo4Bh4iIqoUt3OuQnXxoqXLqBBPz5pwdXVDbm4uAODGjRtYsiQJR48eQV7eDdSsWRPt2sXgjTfego3NPw+3jI4Ox9ChCSgoUGHbtq0oLCzEzp37oNPpsGbNSnz//bfIzb2KGjVq4sUX++Kll16x1CY+NRh4iIiIHuLu3btQqZSoVcsbAKBU5kOhcMHw4aPh7OyM7OxL+PLLJcjLu4EJEz42mHfjxjUIDAzG+PETodGUPEh13rwvsHnzfzFw4JsIDAzCiRPpSE5OhK2tLV544cUq376nCQMPERHRA9R/P+X9xo0bSE6eBwcHR/Tt2w8AEBBQHwkJo/R9g4NDYWdnj6lTP8aYMeNgZ/fPaStnZxdMm/Y5JBIJAODKlcvYtGk9xo59Hz179gYANG8egXv37mHZshT06NEbgsCLpysLAw8REdHfCgsL8fzzkfrXUqkU06fPgq9vPQCATqfDhg1r8P333yInJwdFRff1fXNyLsPfv77+dWRkS33YAYDffjsEAHj++fb6UAUA4eEtsGrVcly/notnnqlVWZv21GPgISIi+putrS2SklKg1Wpx+XI2Fi1agClTPsaKFetQo0YNrF+/GklJ8/DyywPx3HPhcHZ2xunTpzB79mcoKioyWJa7u7vBa6UyHzqdDl27xpS57txcBp7KZJWB59tvv8Xy5ctx/vx5ODg4IDg4GAsWLNAfKvzxxx8xd+5cZGVlwdvbG0OGDEGfPn0sXDUREVV3giCgceNAACVXaPn61sWQIa/jq69SMHbs+9izZzdatWqD+PgE/TwXLmQ9ZGkSg1cKhQskEgkWLkyFXC436u3rW9ds20HGrC7wJCcnIyUlBfHx8QgLC8OtW7dw4MABaDQaAMDhw4eRkJCAF198ERMmTMDBgwfxwQcfwNHREZ07d7Zw9UREJCaNGwciJqYT0tI244033sL9+/eMwsqOHT+Ua1nNmjUHACiVSkRHtzF7rfRoVhV4MjMzsWDBAixcuBBt27bVt3fq1En/fXJyMkJCQvDpp58CACIjI5GdnY358+cz8BARkdm9/vog7N69A+vXr0Hz5hHYsGEtNm1aBx+futi+PQ2XL18u13J8feuid+84TJnyEfr3H4DAwCCo1WpkZ1/C0aOHMX36rErekqebVQWeb775BnXq1DEIOw8qKirCoUOHMHbsWIP2Ll26YMuWLbh8+TLq1KlTFaUSEdFjOHlX/XiUylinr289dOjwH/z3vxuxadNW5OfnIzV1MQDg+ec7YNSosRg3bnS5ljVq1Lvw9a2L7777Bl99lQp7ewf4+tZFu3YdzF43GbKqwHP8+HE0bNgQCxcuxNdff42CggIEBQXh/fffR2hoKC5duoTi4mL4+/sbzBcQEACg5AgRAw8RkWVp1Wpo1WqEDRtqmfVrNCbdZXnQoKEYNKjsmj/6aLL++3/fbwcAfv758CNfl5JIJOjT5yX06fPSE9dHFWNVgeevv/7CiRMncPbsWXz88cewt7fHokWL8Oabb2LHjh1QKpUAAIVCYTBf6evS6aaSySrv/gfmfjje04jvIZFpqnrf0ajVyM3KLPfDQ21dakCj0Zpt/aY+PJSsl1QqqfDfaKsKPDqdDnfv3sW8efPQuHFjAEBoaCjat2+PlStXIjq68p5WKwgSuLk5VtryqeIUCntLl0BE5aRRq6F54F4zDyPItZCZMewAJb/PBUHy+I5k9bRaCQRBgIuLg8FNHU1hVYFHoVDA1dVVH3YAwNXVFYGBgfjzzz/RtWtXAEBBQYHBfCqVCgDg4uJi8rq1Wh1Uqrsmz/84UqnAP9gVpFIVmvV/gURPi+rw+0ej0ULHgzL0LxqNDlqtFkrlXRQWaoymKxT25T6CaVWBp379+rh06VKZ0+7fvw9fX1/I5XJkZmaidevW+mmZmZkAYDS250mp1fxjas00Gi1/RkQixbBDj6LR6Cr8+9+qBkW0a9cO+fn5OH36tL7t1q1bOHnyJJo0aQIbGxtERERg+/btBvOlpaUhICCAA5aJyGIEoWSMgTV+cfwbkZUd4YmJiUFwcDBGjBiB0aNHw9bWFkuWLIGNjQ1efvllAMCwYcMwcOBAfPLJJ4iNjcWhQ4ewZcsWzJkzx8LVE9HTShAkcHV1YLAgsmJWFXgEQcCSJUswffp0fPTRRyguLkZ4eDhWrVoFT09PAEB4eDgSExMxd+5cbNy4Ed7e3pgyZQpiY2MtXD0RPa0EQQKpVEDSml9w5XrFrhatDKGNvPFS5zBLl0FkUVYVeICSh619/vnnj+zToUMHdOjAmzQRkXW5cl2JC1duWboMI96eisd3IhI5Hn8lIiIi0WPgISIiItFj4CEiIrOTymSQ29k9/svWFlKpea9KM+Wmg1u2fIfo6HBkZxveGmXjxrWIjg7H0qWLDdpVKiVat26OVauWl2v5L77YHbNnf6Z/PXXqJxgwoO8T10mms7oxPEREVL1JZTLU9A+AVCq1yPo1Gi3y8+8+0eMlQkJCAQAnTqTDx8dX356RcRx2dnbIyDhu0D8jIx06nQ4hIWFmqZkqHwMPERGZlSCTQSqV4rv1h3Djr4LHz2BGNTyd0bNvBARB8kSBx9e3Hlxd3ZCefhyxsd307RkZ6YiN7Y5t27ZCo9HoQ1xGxnHY2NiiceNAs28DVQ4GHiIiqhQ3/ipAbk6+pcsot+DgUIMjOdeuXcP167mIi+uH77//BufPn0PDhiWPPsrIOI7GjZ+FXC7H9eu5WLRoAQ4d+h8KC+/h2WcDMXz4GDRu/KylNoXKwDE8REREKAk8Fy9m6Z/PmJFxDDVresHXty7q12+oD0NqtRqnT59CSEgYVCoV3n57MM6d+wOjRr2LqVM/g52dPUaOjMetWzctuTn0Lww8REREAEJCwqDT6XDyZDqAkvE8wcEhAIDg4BBkZJS0//HHGRQV3UdISBg2bFiD27cLMH/+InTs2BlRUdGYPv0LODk5Y82ary22LWSMgYeIiAhA48bPwtbWFunpJUdyMjKOIyioZDBzkybB+iM8GRnHIJFIEBQUgl9/PYimTcPh7KyAWq2GWq2GIAgIC3sOp0+fsti2kDGO4SEiIgIgk8nw7LNNkJFxHHfv3sX5838+cIQnFLm5JWN6MjKOo149PygUCiiV+Th5MgPPPx9ptLzatflAa2vCwENERPS34OBQbNiwBunpxyCXy1G/fkMAwDPP1IKHRw1kZBzHiRPpiI5uCwBwdlYgIqIl3nor3mhZcrlNldZOj8bAQ0RE9LeQkDB8/fUyfPPNejRuHAiZ7J8/k8HBIdi+PQ15eXkIDi451RUe3gI7dvyAunX9YG9vb6myqRw4hoeIiOhvQUEhEAQBBw78og81pZo0CcGBA78AgP6Gg/36vQKJRIKEhCHYtm0rjh79HXv27EJS0jysW7eqqsunR+ARHiIiqhQ1PJ2r3TqdnZ3h5+eP8+f/RFBQiMG04OAQ6HQ61KjhCW/v2gAAFxdXLF68DCkpyUhOToRKpYSbmzsCA4PQps3zFaqFzIuBh4iIzEqrVkOj0aBn3wiLrF+j0T7RXZb/bfnytWW2BwWF4OefDxu1e3jUwPjxEx+5zI0bNxu8/uCDT0yuj0zDwENERGalUatxPfM8BNnj/8QIMjlsXWpAo9Gabf1ara5CgYfEiYGHiIjMTqNWQ6NWP7afINdCptFCrTZf4CEqCwctExERkegx8BAREZHoMfAQERGR6DHwEBGRaXQ6QKcDhwdTZdHpzPfpYuAhIiLTFN2FTquBWssBx1Q5ioruAwCk0opfY8WrtIiIyDSaYuhyzuC2LARwdIZMECB5wkUIGg2Kiu5Do+FxIvqHTqdDUdF93L59C/b2ThCEih+fYeAhIiLTXfgdWgAF3o0hEaSA5Mkij0SQQq7WQMujRFQGe3snKBTuZlkWAw8REVXMhd+hy06HzsbhiQOPrUctBPT6PyiVd3mUhwxIpTKzHNkpxcBDREQVpykGCpVPPJvgrICdnR0KCzW8+SBVKg5aJiIiItFj4CEiIiLRY+AhIiIi0bOqwPPNN9+gUaNGRl9ffPGFQb8NGzagU6dOCA4ORo8ePbBnzx4LVUxERETVgVUOWk5NTYWzs7P+tZeXl/77rVu3YuLEiYiPj0dkZCTS0tKQkJCAVatWISwszALVEhERkbWzysDTpEkTuLuXfd39/Pnz0bVrV4waNQoAEBkZibNnzyIpKQkpKSlVWCURERFVF1Z1SutxsrOzceHCBcTGxhq0d+nSBQcOHEBRUZGFKiMiIiJrZpVHeLp164Zbt27B29sbffv2xeDBgyGVSpGZmQkA8PPzM+gfEBCA4uJiZGdnIyAgwOT1ymSVl/+k0mqVLa0S30OyVvxsVhzfQ6psVhV4PD09MXz4cISGhkIikeDHH3/E3LlzkZubi48++ghKZclNrRQKhcF8pa9Lp5tCECRwc3M0vXiqdAqFvaVLIKJKwv2bKpvJgee///0vwsPDUadOnTKnX758GYcPH8YLL7xQ7mW2bt0arVu31r+Ojo6Gra0tli9fjvj4eFNLLRetVgeV6m6lLV8qFbhDV5BKVQiNhndiJevD/bviuH+TKRQK+3IfHTQ58Lz//vuYOXPmQwNPeno63n///ScKPGWJjY3Fl19+idOnT8PFxQUAUFBQAE9PT30flUoFAPrppuJtza2bRqPlz4hIpLh/U2Uz+aSpTvfoh7zdvXsXUqnU1MWXyd/fHwD0Y3lKZWZmQi6Xw8fHx6zrIyIiInF4oiM8Z86cwZkzZ/SvDx8+DI1GY9RPpVJh7dq1RoOLTZGWlgapVIrAwEB4enqiXr162LZtG2JiYgz6REVFwcbGpsLrIyIiIvF5osCza9cuLFiwAAAgkUiwbt06rFu3rsy+CoUCn3322RMVM2jQIERERKBRo0YAgN27d2P9+vUYOHCg/hTW8OHDMXbsWPj6+iIiIgJpaWlIT0/HypUrn2hdRERE9PR4osDTt29fPP/889DpdIiLi8OIESPQpk0bgz4SiQT29vbw9fWFTPZkQ4T8/PywadMmXLt2DVqtFvXq1cOECRMwYMAAfZ9u3bqhsLAQKSkpWLJkCfz8/LBgwQI0bdr0idZFRERET48nSiQ1a9ZEzZo1AQArVqxAQEAAPDw8zFbMhx9+WK5+cXFxiIuLM9t6iYiISNxMvkqrRYsW5qyDiIiIqNJU6MaD+/fvx8aNG5GdnQ2VSmV05ZZEIsGuXbsqVCARERFRRZkceFJTUzFr1ix4eHggJCREP9CYiIiIyNqYHHhWrFiByMhILFmyBHK53Jw1EREREZmVyTceVKlU6NSpE8MOERERWT2TA09wcDCysrLMWQsRERFRpTA58HzyySfYuXMnNm/ebM56iIiIiMzO5DE8o0aNglqtxnvvvYdPPvkEzzzzDATBMD9JJBJ8//33FS6SiIiIqCJMDjyurq5wdXVF3bp1zVkPERERkdmZHHi+/vprc9ZBREREVGlMHsNDREREVF2YfITnt99+K1e/5s2bm7oKIiIiIrMwOfAMGDAAEonksf1Onz5t6iqIiIiIzKJCd1r+N41GgytXrmD9+vXQarV45513KlQcERERkTlUytPSe/fujZdffhm//voroqKiTF0FERERkVlUyqBlQRDQtWtXbNiwoTIWT0RERPREKu0qLaVSiYKCgspaPBEREVG5mXxKKycnp8x2lUqFw4cPY+nSpQgPDze5MCIiIiJzMTnwtG/f/qFXael0OoSFhWHSpEkmF0ZERERkLiYHnmnTphkFHolEAoVCAV9fX9SvX7/CxRERERGZg8mBp3fv3uasg4iIiKjSmBx4HvTnn3/iypUrAIDatWvz6A4RERFZlQoFnl27dmHGjBn6sFOqTp06GD9+PDp06FCh4oiIiIjMweTAs3fvXowYMQLe3t4YPXo0AgICAADnz5/H+vXrMXz4cCxatAht2rQxW7FEREREpjA58CxcuBCNGjXCqlWr4ODgoG/v0KEDXn31Vbz88stISkpi4CEiIiKLM/nGg3/88QdeeOEFg7BTysHBAb169cIff/xRoeKIiIiIzMHkwGNrawulUvnQ6UqlEra2tqYunoiIiMhsTA48ERERWLFiBY4ePWo07fjx4/j666/54FAiIiKyCiaP4Xn33XfRr18/vPzyywgJCYGfnx8AICsrC+np6fDw8MDYsWNNLuzOnTuIjY1Fbm4uNm7ciODgYP20DRs2IDU1FTk5OfDz88Po0aPRrl07k9dFRERE4mbyER4fHx98//33GDBgAJRKJdLS0pCWlgalUomBAwfiu+++Q506dUwubOHChdBoNEbtW7duxcSJExEbG4uUlBSEhYUhISEBx44dM3ldREREJG4mH+FRq9WwtbXFhAkTMGHCBKPpt2/fhlqthkz25Ks4f/48Vq9ejXHjxuHjjz82mDZ//nx07doVo0aNAgBERkbi7NmzSEpKQkpKiknbQkREROJm8hGeKVOmoF+/fg+d3r9/f8yYMaNCyy49TVYqOzsbFy5cQGxsrEF7ly5dcODAARQVFZm0PiIiIhI3kwPP/v370alTp4dO79SpE/bt2/fEy922bRvOnj2L//u//zOalpmZCQBGQSggIADFxcXIzs5+4vURERGR+Jl8Suv69evw8vJ66PSaNWsiNzf3iZZZWFiIGTNmYPTo0XBycjKaXnoZvEKhMGgvff2oy+TLQyYzOf89llRaect+WvA9JGvFz2bFyeVSq30ftVoddDqdpcugCjI58Li6uiIrK+uh08+fP19maHmU5ORkeHh4oE+fPqaWZTJBkMDNzbHK10vlp1DYW7oEIjIzmaMCWq0WTk52li7lobRaLQTBOsMYlZ/Jgad169ZYu3YtunfvjsDAQINpJ0+exPr169G5c+dyL+/KlSv48ssvkZSUhIKCAgDA3bt39f/euXMHLi4uAICCggJ4enrq51WpVACgn24KrVYHlequyfM/jlQq8A92BalUhdBotJYug8gI92/TyWwdIAgCFu9dgRzlk50VqAreLl4Y2nYgf/9YKYXCvtxHBk0OPCNHjsT+/fsRFxeH9u3bo379+gCAc+fOYc+ePXB3d8fIkSPLvbzLly+juLgYQ4YMMZo2cOBAhIaGYtasWQBKxvL4+/vrp2dmZkIul8PHx8fUzQEAqNX8MFszjUbLnxGRSOUoc3Ex77Kly3go/v6p/kwOPF5eXti0aRNmzZqF3bt3Y+fOnQAAJycndO/eHaNHj37kGJ9/e/bZZ7FixQqDttOnT2P69OmYNGkSgoOD4ePjg3r16mHbtm2IiYnR90tLS0NUVBRsbGxM3RwiIiISMZMDD1AyMPmzzz6DTqfDzZs3AQDu7u6QSCRPvCyFQoGIiIgypzVp0gRNmjQBAAwfPhxjx46Fr68vIiIikJaWhvT0dKxcudL0DSEiIiJRq1DgKSWRSODh4WGORT1Wt27dUFhYiJSUFCxZsgR+fn5YsGABmjZtWiXrJyIiourHLIGnskREROCPP/4wao+Li0NcXJwFKiIiIqLqiNfZERERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkejJLF0AUXlJpdabz7VaHbRanaXLICKih2DgIasnc1RAq9VCobC3dCkPpdFqkH+rkKGHiMhKMfCQ1ZPZOkAQBCzeuwI5ylxLl2PE28ULQ9sOhCBIGHiIiKyUVQWevXv3IiUlBX/++Sdu374NLy8vxMTEICEhAc7Ozvp+P/74I+bOnYusrCx4e3tjyJAh6NOnjwUrp6qQo8zFxbzLli6DiIiqIasKPPn5+QgJCcGAAQPg6uqKc+fOITExEefOncOXX34JADh8+DASEhLw4osvYsKECTh48CA++OADODo6onPnzhbeAiIiIrJGVhV4evbsafA6IiICNjY2mDhxInJzc+Hl5YXk5GSEhITg008/BQBERkYiOzsb8+fPZ+AhIiKiMlnvZS9/c3V1BQAUFxejqKgIhw4dMgo2Xbp0wfnz53H5Mk93EBERkTGrDDwajQb379/HyZMnkZSUhPbt26NOnTq4dOkSiouL4e/vb9A/ICAAAJCZmWmJcomIiMjKWdUprVLt2rVDbm7J1TitW7fGrFmzAABKpRIAoFAoDPqXvi6dbiqZrPLynzXfQ4bMgz/jpxd/9uLHn3H1Z5WBZ8mSJSgsLMSff/6J5ORkxMfHY9myZZW6TkGQwM3NsVLXQeJmzfcJIqKK4f5d/Vll4GncuDEAoGnTpggODkbPnj2xc+dO1K9fHwBQUFBg0F+lUgEAXFxcTF6nVquDSnXX5PkfRyoVuMOInEpVCI1Ga+kyyAK4f4sf92/rpFDYl/vom1UGngc1atQIcrkcly5dQvv27SGXy5GZmYnWrVvr+5SO3fn32J4npVbzw0ym02i0/AwRiRT37+rP6k9KHj9+HMXFxahTpw5sbGwQERGB7du3G/RJS0tDQEAA6tSpY6EqiYiIyJpZ1RGehIQEBAUFoVGjRrCzs8OZM2ewdOlSNGrUCDExMQCAYcOGYeDAgfjkk08QGxuLQ4cOYcuWLZgzZ46FqyciIiJrZVWBJyQkBGlpaViyZAl0Oh1q166NuLg4DBo0CDY2NgCA8PBwJCYmYu7cudi4cSO8vb0xZcoUxMbGWrh6IiIislZWFXiGDBmCIUOGPLZfhw4d0KFDhyqoiIiIiMTA6sfwEBEREVUUAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJHgMPERERiR4DDxEREYkeAw8RERGJnlUFnh9++AHDhg1DmzZtEBYWhp49e2Ljxo3Q6XQG/TZs2IBOnTohODgYPXr0wJ49eyxUMREREVUHVhV4vvrqK9jb22P8+PFITk5GmzZtMHHiRCQlJen7bN26FRMnTkRsbCxSUlIQFhaGhIQEHDt2zHKFExERkVWTWbqAByUnJ8Pd3V3/OioqCvn5+Vi2bBnefvttCIKA+fPno2vXrhg1ahQAIDIyEmfPnkVSUhJSUlIsVDkRERFZM6s6wvNg2Cn17LPP4vbt27h79y6ys7Nx4cIFxMbGGvTp0qULDhw4gKKioqoqlYiIiKoRqzrCU5bff/8dXl5ecHJywu+//w4A8PPzM+gTEBCA4uJiZGdnIyAgwOR1yWSVl/+kUqvKllQJ+DN+evFnL378GVd/Vh14Dh8+jLS0NIwbNw4AoFQqAQAKhcKgX+nr0ummEAQJ3NwcTZ6fSKGwt3QJRFRJuH9Xf1YbeK5du4bRo0cjIiICAwcOrPT1abU6qFR3K235UqnAHUbkVKpCaDRaS5dBFsD9W/y4f1snhcK+3EffrDLwqFQqvPXWW3B1dUViYiIEoWRjXFxcAAAFBQXw9PQ06P/gdFOp1fwwk+k0Gi0/Q0Qixf27+rO6k5L37t3D0KFDUVBQgNTUVDg7O+un+fv7AwAyMzMN5snMzIRcLoePj0+V1kpERETVg1UFHrVajVGjRiEzMxOpqanw8vIymO7j44N69eph27ZtBu1paWmIioqCjY1NVZZLRERE1YRVndKaNGkS9uzZg/Hjx+P27dsGNxMMDAyEjY0Nhg8fjrFjx8LX1xcRERFIS0tDeno6Vq5cabnCiYiIyKpZVeD55ZdfAAAzZswwmrZ7927UqVMH3bp1Q2FhIVJSUrBkyRL4+flhwYIFaNq0aVWXS0RERNWEVQWeH3/8sVz94uLiEBcXV8nVEBERkVhYVeAhosohCBIIgsTSZZRJq9VBq9U9viMRlYn7d/kw8BCJnCBI4OrqYLV3itVotMjPv2s1vxSJqhPu3+XHwEMkcoIggVQq4Lv1h3DjrwJLl2OghqczevaNgCBIrOIXIlF1w/27/Bh4iJ4SN/4qQG5OvqXLIKJKwP378azzGBgRERGRGTHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoMfAQERGR6DHwEBERkegx8BAREZHoySxdAJFYSKXW+f8Ha62LiKgqMfAQVZCLvTN0Wi0UCntLl0JERA/BwENUQQ429pAIAo4lL8btnKuWLseIZ0gwGsX1sXQZREQWZVWB5+LFi1i6dCmOHz+Oc+fOwd/fH1u2bDHqt2HDBqSmpiInJwd+fn4YPXo02rVrZ4GKif5xO+cqVBcvWroMI461alm6BCIii7OqwHPu3Dns3bsXoaGh0Gq10Ol0Rn22bt2KiRMnIj4+HpGRkUhLS0NCQgJWrVqFsLCwqi+aiIhEz1rHwllrXdbIqgJP+/btERMTAwAYP348Tpw4YdRn/vz56Nq1K0aNGgUAiIyMxNmzZ5GUlISUlJSqLJeIiESOY/TEw6oCjyA8OqlmZ2fjwoULePfddw3au3TpgpkzZ6KoqAg2NjaVWSIRET1FOEZPPKwq8DxOZmYmAMDPz8+gPSAgAMXFxcjOzkZAQIAlSiMiIhHjGL3qr1oFHqVSCQBQKBQG7aWvS6ebSiarvHOhPM9K9HDVff+o7vUTVSZr2T+qVeCpTIIggZubo6XLIHoqcXwEkXhZy/5drQKPi4sLAKCgoACenp76dpVKZTDdFFqtDirV3YoV+AhSqWA1P3Qia6NSFUKj0Vq6DJNx/yZ6uMrcvxUK+3IfQapWgcff3x9AyVie0u9LX8vlcvj4+FRo+Wp19f2FS1SdaTRa7n9EImUt+7d1nFgrJx8fH9SrVw/btm0zaE9LS0NUVBSv0CIiIqIyWdURnsLCQuzduxcAcOXKFdy+fVsfblq0aAF3d3cMHz4cY8eOha+vLyIiIpCWlob09HSsXLnSkqUTERGRFbOqwJOXl4eRI0catJW+XrFiBSIiItCtWzcUFhYiJSUFS5YsgZ+fHxYsWICmTZtaomQiIiKqBqwq8NSpUwd//PHHY/vFxcUhLi6uCioiIiIiMahWY3iIiIiITMHAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKLHwENERESix8BDREREosfAQ0RERKJXLQPP+fPn8cYbbyAsLAytWrXCzJkzUVRUZOmyiIiIyErJLF3Ak1IqlXjttddQr149JCYmIjc3FzNmzMC9e/fw0UcfWbo8IiIiskLVLvCsXbsWd+7cwYIFC+Dq6goA0Gg0mDRpEoYOHQovLy/LFkhERERWp9qd0tq3bx+ioqL0YQcAYmNjodVq8csvv1iuMCIiIrJaEp1Op7N0EU8iKioKffr0wdixYw3aW7dujZ49exq1l5dOp4NWW3lvhUQCCIIA5e170Gi0lbYeU9nIpXBysEXxHRV0Wo2lyzEgyGwgs3eEqrAAaiurDQBsZXI42jrivkoFndr66hNsbGDj5Ig7VvjZk0oFODrZQavVonr9JjLE/dt03L8r5mnfvwVBAolEUq6+1e6UlkqlgkKhMGp3cXGBUqk0ebkSiQRSafnetIpwcbKr9HVUhNzR+L21Fgp7Z0uX8Ei2ZXwurYmjFX/2BKHaHWwuE/dv03H/rhju349nHVUQERERVaJqF3gUCgUKCgqM2pVKJVxcXCxQEREREVm7ahd4/P39kZmZadBWUFCAv/76C/7+/haqioiIiKxZtQs8bdq0wf/+9z+oVCp927Zt2yAIAlq1amXByoiIiMhaVburtJRKJbp27Qo/Pz8MHTpUf+PB7t2788aDREREVKZqF3iAkkdLTJ48GUePHoWjoyN69uyJ0aNHw8bGxtKlERERkRWqloGHiIiI6ElUuzE8RERERE+KgYeIiIhEj4GHiIiIRI+Bh4iIiESPgYeIiIhEj4GHiIiIRI+Bh0RjwIABiI2NRVFRkdG0ESNGoG3btrhz544FKiMic0lMTESjRo3wyiuvGE2bOnUq2rdvb4GqqDpg4CHRmDRpEi5fvozU1FSD9n379mH79u2YOHEiHB0dLVQdEZnT4cOHcejQIUuXQdUIAw+Jhr+/P4YOHYpFixYhOzsbAHD//n1MnjwZHTp0QExMjIUrJCJzcHBwQEhICBYuXGjpUqgaYeAhURkyZAi8vb0xadIkAMCiRYtw48YNfPTRR7h27RrGjh2LiIgIhISE4JVXXsGJEycM5t+9ezd69+6Npk2bIjw8HL1798bevXstsSlE9Ahvv/02Dh48iCNHjjy0z5UrVzBixAg0a9YMYWFhGDRoEP74448qrJKsCQMPiYqNjQ0+/fRT7N+/HwsXLkRqaipGjhwJe3t7vPzyyzhz5gwmTpyIxMRE2Nvb47XXXkNeXh4A4NKlSxg5ciQaNGiABQsWYM6cOYiNjYVSqbTwVhHRv7Vr1w6BgYFISkoqc/rt27cxYMAAnDp1CpMmTcLnn3+OW7du4dVXX8XVq1eruFqyBjJLF0Bkbi1atEDv3r0xb948NGnSBAMGDEBSUhJUKhU2bNgADw8PAEBUVBQ6deqEpUuX4r333sOpU6dQXFyMiRMnwsnJCQDQunVrS24KET3CsGHDMHz4cKSnpyMkJMRg2jfffIOcnBxs3boVAQEBAIDmzZujXbt2WL58OcaPH2+JksmCeISHRGnIkCEAgDfeeANSqRS//PILIiIi4OLiArVaDbVaDUEQ0Lx5c2RkZAAAGjVqBKlUirFjx+LHH39EQUGBJTeBiB6jY8eOaNiwYZlHeQ4fPowGDRroww4AuLq6omXLlvj999+rskyyEjzCQ6Ikl8sN/r116xaOHTuGJk2aGPX19fUFAPj5+WHRokVYvHgxEhISIAgCoqOj8dFHH8Hb27vqiieicpFIJIiPj8eYMWNw8uRJg2kqlQo1atQwmsfDwwPnzp2rqhLJijDw0FPBxcUFrVu3xsiRI42m2djY6L9v06YN2rRpg9u3b2Pfvn2YPn063n//fSxfvrwqyyWicoqNjUViYiIWLlxo8B8TFxcXZGVlGfXPy8uDi4tLVZZIVoKntOip0LJlS5w/fx4BAQEIDg42+GrUqJFRfycnJ3Tp0gVdu3bF+fPnLVAxEZWHIAiIj4/H7t27Da7AatasGc6ePYvMzEx9m1KpxP/+9z80a9bMEqWShfEIDz0VXn/9dWzevBmvvvoqBg4cCG9vb9y8eRPHjx+Hl5cXXn/9daxduxbHjh1D69at4enpicuXL+P7779Hq1atLF0+ET1C9+7dkZSUhEOHDqF27doAgN69e+Orr77C0KFDMWrUKNja2iI5ORkymQyvvfaahSsmS2DgoaeCm5sb1q1bh7lz5+KLL75Afn4+PDw8EBoaio4dOwIoGbS8Z88eTJ8+Hfn5+fD09ETXrl3LPA1GRNZDKpViyJAh+PDDD/VtTk5O+PrrrzFjxgxMnDgRWq0Wzz33HFauXIlatWpZsFqyFIlOp9NZuggiIiKiysQxPERERCR6DDxEREQkegw8REREJHoMPERERCR6DDxEREQkegw8REREJHoMPERERCR6DDxE9FQbP348mjZtWq6+jRo1QmJiYiVXRESVgYGHiIiIRI+Bh4iIiESPgYeIiIhEj4GHiKrcoUOH0Lt3bwQHByMmJgZr165FYmIiGjVqpO+zadMmDBw4EFFRUQgKCkKXLl2wevVqo2W1b98eQ4cO1S8zJCQE3bt3x6FDhwAAO3bsQPfu3REcHIzevXvj1KlTZdaUnZ2NQYMGISwsDNHR0ViwYAHK86jB3NxcvP/++2jZsiWCgoLQtWtXbNy40cR3hogqC5+WTkRV6tSpUxg8eDA8PT0xfPhwaLVaJCUlwd3d3aDfmjVr0KBBA7Rv3x4ymQx79uzBpEmToNPp8Morrxj0vXjxIt555x3069cPPXr0wJdffon4+HhMmjQJc+bMQf/+/QEAS5YswahRo7Bt2zYIwj//39NoNBg8eDBCQ0Px7rvvYv/+/UhMTIRGo8HIkSMfui03btxA3759IZFI8Morr8Dd3R379u3DBx98gNu3b+P111833xtHRBWjIyKqQkOHDtWFhobqrl27pm+7cOGCLjAwUNewYUN9W2FhodG8b775pq5Dhw4Gbe3atdM1bNhQd+TIEX3b/v37dQ0bNtSFhITorly5om9fu3atrmHDhrqDBw/q28aNG6dr2LChbvLkyfo2rVarGzJkiK5Jkya6vLw8fXvDhg118+fP17+eMGGCrlWrVrqbN28a1DR69Ghds2bNytwGIrIMntIioiqj0Whw4MABdOjQAV5eXvr2unXronXr1gZ97ezs9N8XFBTg5s2baNGiBbKzs1FQUGDQt379+gaXloeGhgIAIiMj4e3tbdSenZ1tVNuDR41Kj9gUFxfjwIEDZW6LTqfDjh070L59e+h0Oty8eVP/FR0djYKCApw8efKx7wkRVQ2e0iKiKpOXl4d79+6hbt26RtP+3fb7778jMTERx44dQ2FhocG0goICODs761/XqlXLYHrptGeeecag3cnJCQCgUqkM2gVBgI+Pj0Gbn58fAODKlStlbsvNmzehUqmwbt06rFu37qF9iMg6MPAQkdW5dOkSXn/9dfj7+2P8+PGoVasW5HI59u7di6+++gpardagv1QqLXM5D2vXlWMw8uOU1tCjRw/06tWrzD4PDsImIsti4CGiKuPh4QFbW1tcvHjRaNqDbT/++COKioqQnJxscEqq9Morc9NqtcjOztYf1QGArKwsAEDt2rXLnMfd3R2Ojo7QarVo2bJlpdRFRObDMTxEVGWkUilatmyJ3bt3Izc3V99+8eJF7N+/36AfYHgkpqCgAJs2baq02latWqX/XqfTYdWqVZDL5YiKiiqzv1QqRadOnbB9+3acPXvWaDpPZxFZFx7hIaIqlZCQgJ9//hn9+/dH//79odVqsXLlSjRo0ACnT58GALRq1QpyuRzx8fHo168f7ty5gw0bNsDDwwN//fWX2WuytbXF/v37MW7cOISEhGD//v346aefEB8fb3S5/IPeeecdHDp0CH379kVcXBzq168PpVKJkydP4sCBA/j111/NXisRmYZHeIioSgUFBSElJQUuLi6YN28eNm7ciBEjRiAqKgq2trYAAH9/f8yfPx8SiQSfffYZ1q5di759+2LgwIGVUpNUKkVqaipu3LiBzz//HBkZGUhISHjkPXgAoEaNGtiwYQN69+6NnTt3YvLkyVixYgWUSiXGjh1bKbUSkWkkOnOM3iMiqqC3334bf/75J3bs2GHpUohIhHiEh4iq3L179wxeX7hwAfv27UOLFi0sVBERiR3H8BBRlYuJiUGvXr3g4+ODK1euYO3atZDL5Rg8eLClSyMikWLgIaIq17p1a2zduhV//fUXbGxsEBYWhjFjxqBevXqWLo2IRIpjeIiIiEj0OIaHiIiIRI+Bh4iIiESPgYeIiIhEj4GHiIiIRI+Bh4iIiESPgYeIiIhEj4GHiIiIRI+Bh4iIiESPgYeIiIhE7/8BMCVM3tIc254AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.countplot(x='gamble', hue='cooked', data=df)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "506a2001-d2dc-4e66-b330-699d5194db2d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of people who gamble and order their steak rare: 12\n" + ] + } + ], + "source": [ + "df = df.dropna(subset=['gamble', 'cooked'])\n", + "gamble_rare = df[(df['gamble'].str.lower() == 'yes') & (df['cooked'].str.lower() == 'rare')]\n", + "count_gamble_rare = len(gamble_rare)\n", + "print(f\"Number of people who gamble and order their steak rare: {count_gamble_rare}\")" + ] + }, + { + "cell_type": "markdown", + "id": "87df3b25-3df9-42a8-884f-2a9c1a362bf4", + "metadata": {}, + "source": [ + "## Third Research Question: *Do people (males and females) who smoke also order their steak rare?*\n" + ] + }, + { + "cell_type": "markdown", + "id": "f20e80e3-f582-4422-ba20-5ff133730a79", + "metadata": {}, + "source": [ + "### Methods\n", + "*Explain how you will approach this research question below. Consider the following:* \n", + " - *Which aspects of the dataset will you use?* \n", + " - *How will you reorganize/store the data?* \n", + " - *What data science tools/functions will you use and why?* \n", + "\n", + "✏️ *Write your answer below:*\n", + "\n", + "**I will use the columns Smoke/Cooked to answer this question.\n", + "I will...\n", + "\n", + "-get the value of people who smoke\n", + "-get the value of people who order steak rare\n", + "-get the value of people who do both smoke and order their steak rare\n", + "\n", + "I will use pandas to handle my data (as data frames), seaborne to create visualizations\n" + ] + }, + { + "cell_type": "markdown", + "id": "e3a6ce78-a232-440d-be07-d5263b922bd7", + "metadata": {}, + "source": [ + "# Results " + ] + }, + { + "cell_type": "markdown", + "id": "fdf13331-0905-49a9-9da6-97124c967248", + "metadata": {}, + "source": [ + "### Number of people who smoke\n" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "22f25f57-c47a-4b73-9fc6-12a5dcd85d2f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "smoke\n", + "No 356\n", + "Yes 72\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steak.smoke.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "2377f2bc-3aa3-4d92-a128-c4cc9eaf7d35", "metadata": { - "code_folding": [] + "scrolled": true }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAM7VJREFUeJzt3Xt4VOW9t/F7ZsIxMAEsYOUgSSoBFSSiAhKiIB4IVKrVbjeCSi1KFRWtFmoBpbXFbXWDIqIGSrWeldraGhHPlENF2R6q1IoGFbEgcsgkgJLMzPsHb6amwQoJyczQ+3NdXJNZ61nP/CZPZs2XtZ41E4jH43EkSZL+wwWTXYAkSVIqMBRJkiRhKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAyEh2AekmHo8Ti/kh4KotGAz4tyElka9BfZVgMEAgEPjadoaifRSLxdmyZXuyy1CKycgI0rZtJpHIDqqqYskuR/qP42tQ/067dpmEQl8fijx9JkmShKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgDISHYBkpQqgsEAwWAg2WWoDkKhYI1bpadYLE4sFk/a4xuKJIndgahN25aEgr6pprNwuEWyS1A9RGMxtm3dkbRglFKh6KWXXqK4uJj33nuPiooKOnbsyNChQ5kwYQKtW7cGYPLkyTz++OO1ti0uLqawsDBxf9euXcycOZMnnniC7du3k5+fz9SpU8nJyWm05yMpfQSDAULBIA8s+hufbtmR7HK0jwKBAKFQkGg0RjyevCMNqrsO7Voy6rSeBIMBQxHAtm3b6N27N2PGjKFNmzasWbOG2bNns2bNGn79618n2nXp0oWbb765xra5ubk17t9www2UlJQwefJkOnbsyJ133skFF1zAk08+mQhYkvSvPt2yg/WbKpJdhvZRIBAgIyNEVVXUUKQ6S6lQNHLkyBr3+/XrR9OmTZk6dSobN26kY8eOADRv3pw+ffp8ZT8bNmzgscce47rrruOss84CoFevXgwePJiHHnqIcePGNdhzkCRJ6SnlT563adMGgMrKyr3eZunSpcRiMU477bQa/QwcOJAlS5bs7xIlSdIBIKWOFFWLRqNUVVXx3nvvMWfOHIYMGULnzp0T6z/88EP69u3LF198Qffu3bnkkksYOnRoYn1paSkHHXQQWVlZNfrNzc3lscceq3d9GRkpnyXVyLzyJf1Vj10gECAQ8Aq0tBP4520Axy8dVb/ukrkfTclQNHjwYDZu3AjAoEGDuOWWWxLrevbsSa9evfjWt75FeXk5Dz74IJdeeim33npr4shQJBLZ47yhcDhMWVlZvWoLBgO0bZtZrz504PLKl/QXCgXJyAgluwzVUUbIsUtX1WEomfvRlAxFd999Nzt37uS9995j7ty5jB8/ngULFhAKhTj//PNrtB0yZAjnnHMOt912W43TZQ0lFosTiXhlimoKhYKEwy2IRHYSjcaSXY7qoHoMo9EYVVXRZJejfRXYHYiqolFwnnVaqt53NsR+NBxusVdHoFIyFPXo0QOA/Px8evXqxciRI3nmmWf2GHqCwSCnnHIKv/rVr/j8889p3rw54XCYioraV49EIpFap9TqoqrKNz3t2e43VP8+0lk8HvfqpTSUOGUWx/FLU9Xjlsz9aMpPgMjLy6NJkyZ89NFHe71NTk4On332Wa1TZaWlpX5OkSRJ2qOUD0VvvPEGlZWVNSZaf1ksFmPRokUcdthhNG/eHICCggKCwSCLFy9OtCsrK2Pp0qU1PuBRkiSpWkqdPpswYQJHHnkkeXl5NG/enHfeeYf58+eTl5fH0KFDWb9+PZMnT2b48OEceuihlJWV8eCDD/LWW28xe/bsRD8HH3wwZ511FjfddBPBYJCOHTty11130bp1a84555wkPkNJkpSqUioU9e7dm5KSEu6++27i8TidOnXi7LPP5sILL6Rp06ZkZmbSqlUr5s6dy+bNm2nSpAlHHnkkxcXFDBo0qEZfU6ZMITMzk1tuuYXt27dz9NFHs2DBAj/NWpIk7VEg7oy0fRKNxtiyZXuyy1CKycgI0rZtJlu3bneidZqqHsNZD6zyaz7SkF/zkf46tW/FxFF9G2Q/2q5d5l5dfZbyc4okSZIag6FIkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQJSLBS99NJLjB49mv79+3PkkUdy0kknMWPGDMrLy2u0e/755zn99NPp1asXp556KgsXLqzV165du/if//kfBg4cSJ8+fRg7diylpaWN9VQkSVKaSalQtG3bNnr37s306dOZP38+Y8eO5fe//z1XXHFFos2rr77KhAkT6NOnD8XFxQwbNoyf/vSnLFq0qEZfN9xwA48++ihXXnkls2fPZteuXVxwwQW1ApYkSRJARrIL+LKRI0fWuN+vXz+aNm3K1KlT2bhxIx07dmTu3Ln07t2bn/3sZwD079+fdevWcdttt3HaaacBsGHDBh577DGuu+46zjrrLAB69erF4MGDeeihhxg3blzjPjFJkpTyUupI0Z60adMGgMrKSnbt2sXLL7+cCD/VioqKeP/99/n4448BWLp0KbFYrEa7Nm3aMHDgQJYsWdJotUuSpPSRkqEoGo3yxRdf8PbbbzNnzhyGDBlC586d+eijj6isrCQnJ6dG+9zcXIDEnKHS0lIOOuggsrKyarVzXpEkSdqTlDp9Vm3w4MFs3LgRgEGDBnHLLbcAUFZWBkA4HK7Rvvp+9fpIJELr1q1r9RsOhxNt6iMjIyWzpJIoFArWuFX6qR67QCBAIBBIcjXaZ4F/3gZw/NJR9esumfvRlAxFd999Nzt37uS9995j7ty5jB8/ngULFiS7LACCwQBt22YmuwylqHC4RbJLUD2FQkEyMkLJLkN1lBFy7NJVdRhK5n40JUNRjx49AMjPz6dXr16MHDmSZ555hm9961sAta4gi0QiAInTZeFwmIqKilr9RiKRWqfU9lUsFicS2VGvPnTgCYWChMMtiER2Eo3Gkl2O6qB6DKPRGFVV0WSXo30V2B2IqqJRiCe7GNVF9b6zIfaj4XCLvToClZKh6Mvy8vJo0qQJH330EUOGDKFJkyaUlpYyaNCgRJvqeULVc41ycnL47LPPKCsrqxGCSktLa81HqouqKt/0tGe731D9+0hn8XiceNx31XSTOGUWx/FLU9Xjlsz9aMpPgHjjjTeorKykc+fONG3alH79+vH000/XaFNSUkJubi6dO3cGoKCggGAwyOLFixNtysrKWLp0KYWFhY1avyRJSg8pdaRowoQJHHnkkeTl5dG8eXPeeecd5s+fT15eHkOHDgXghz/8Ieeddx7XX389w4YN4+WXX+ZPf/oTM2fOTPRz8MEHc9ZZZ3HTTTcRDAbp2LEjd911F61bt+acc85J1tOTJEkpLKVCUe/evSkpKeHuu+8mHo/TqVMnzj77bC688EKaNm0KwDHHHMPs2bOZNWsWjz32GIcccgg33HADw4YNq9HXlClTyMzM5JZbbmH79u0cffTRLFiwYI9XpUmSJAXinnzdJ9FojC1btie7DKWYjIwgbdtmsnXrducUpanqMZz1wCrWb6p9oYZSWyAQICMjRFVV1DlFaapT+1ZMHNW3Qfaj7dpl7tVE65SfUyRJktQYDEWSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEgAZyS7gy5566imeeOIJ3n77bSKRCIceeihjxozhu9/9LoFAAIAxY8awcuXKWtuWlJSQm5ubuF9eXs6MGTN49tlnqaysZNCgQUyZMoUOHTo02vORJEnpI6VC0W9+8xs6derE5MmTadu2LcuXL2fq1Kls2LCBCRMmJNodffTRTJo0qca2nTt3rnF/4sSJvPfee1x//fU0a9aMWbNmMW7cOBYuXEhGRko9bUmSlAJSKh3MnTuXdu3aJe4PGDCAbdu2sWDBAi655BKCwd1n+8LhMH369PnKfl577TWWLl3K/PnzKSgoACA7O5uioiIWL15MUVFRgz4PSZKUflJqTtGXA1G1nj17UlFRwY4dO/a6nyVLlhAOhxk4cGBiWU5ODj179mTJkiX7pVZJknRgSalQtCerVq2iY8eOtGrVKrFs5cqV9OnTh169ejF69GheeeWVGtuUlpaSnZ2dmIdULScnh9LS0kapW5IkpZeUOn32r1599VVKSkpqzB869thjGTlyJN26dePTTz9l/vz5jB07lt/+9rfk5+cDEIlEaN26da3+srKyeOutt+pdV0ZGymdJNbJQKFjjVumneuwCgUCt/1ApDQT+eRvA8UtH1a+7ZO5HUzYUbdiwgSuvvJJ+/fpx3nnnJZZffvnlNdqdeOKJjBgxgjvuuIPi4uIGrysYDNC2bWaDP47SUzjcItklqJ5CoSAZGaFkl6E6ygg5dumqOgwlcz+akqEoEokwbtw42rRpw+zZsxMTrPekZcuWnHDCCTz99NOJZeFwmA0bNtRqW1ZWRlZWVr1qi8XiRCJ7P79J/xlCoSDhcAsikZ1Eo7Fkl6M6qB7DaDRGVVU02eVoXwV2B6KqaBTiyS5GdVG972yI/Wg43GKvjkClXCj6/PPPufjiiykvL+fhhx/e42mwr5OTk8OKFSuIx+M1DoOvXbuW7t2717vGqirf9LRnu99Q/ftIZ/F4nHjcd9V0kzhlFsfxS1PV45bM/WhKTYCoqqpi4sSJlJaWMm/ePDp27Pi12+zYsYMXX3yRXr16JZYVFhZSVlbGihUrEsvWrl3L6tWrKSwsbJDaJUlSekupI0XTp0/nhRdeYPLkyVRUVPD6668n1h1++OG8+eabzJs3j5NPPplOnTrx6aefsmDBAjZt2sStt96aaJufn09BQQHXXnstkyZNolmzZsycOZO8vDxOOeWUJDwzSZKU6lIqFC1btgyAG2+8sda65557jvbt21NZWcnMmTPZtm0bLVq0ID8/n+nTp9O7d+8a7WfNmsWMGTOYNm0aVVVVFBQUMGXKFD/NWpIk7VEg7snXfRKNxtiyZXuyy1CKycgI0rZtJlu3bndOUZqqHsNZD6xi/aaKZJejfRQIBMjICFFVFXVOUZrq1L4VE0f1bZD9aLt2mXs10Tql5hRJkiQli6FIkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIE1CMUnXfeeaxYseIr1//lL3/hvPPOq2v3kiRJjarOoWjlypV89tlnX7l+y5YtvPLKK3XtXpIkqVHV6/RZIBD4ynUffvghmZmZ9elekiSp0WTsS+PHH3+cxx9/PHF/7ty5PPLII7XalZeX8/e//53CwsL6VyhJktQI9ikU7dy5k61btybub9++nWCw9sGmli1bcs4553DppZfuUzFPPfUUTzzxBG+//TaRSIRDDz2UMWPG8N3vfrfGUalHH32UefPm8cknn5Cdnc2VV17J4MGDa/RVXl7OjBkzePbZZ6msrGTQoEFMmTKFDh067FNNkiTpP0MgHo/H67LhkCFD+OlPf8pJJ52034r5r//6Lzp16sTQoUNp27Yty5cvZ968eVx66aVMmDABgCeffJIf/ehHjB8/nv79+1NSUsLChQu5//776dOnT6KvCy+8kPfee49JkybRrFkzZs2aRTAYZOHChWRk7FMWrCEajbFly/b6PlUdYDIygrRtm8nWrdupqooluxzVQfUYznpgFes3VSS7HO2jQCBARkaIqqoodXxbU5J1at+KiaP6Nsh+tF27TEKhr58xVOd08Pzzz9d10680d+5c2rVrl7g/YMAAtm3bxoIFC7jkkksIBoPcdtttDB8+nIkTJwLQv39/3n33XebMmUNxcTEAr732GkuXLmX+/PkUFBQAkJ2dTVFREYsXL6aoqGi/1y5JktJb3Q+Z/H8VFRV88sknRCKRPabzY489dq/7+nIgqtazZ08eeeQRduzYwdatW/nggw+45pprarQpKiripptuYteuXTRt2pQlS5YQDocZOHBgok1OTg49e/ZkyZIlhiJJklRLnUPRli1buOGGG1i8eDHRaLTW+ng8TiAQ4G9/+1u9Cly1ahUdO3akVatWrFq1Cth91OfLcnNzqaysZN26deTm5lJaWkp2dnatq+NycnIoLS2tVz2w+zC79GXVh2X35vCsUlP12AUCgX97Za1SVOCftwEcv3RU/bpL5n60zqFo2rRpvPDCC4wZM4ZjjjmGcDi8P+sC4NVXX6WkpIRJkyYBUFZWBlDrsarvV6+PRCK0bt26Vn9ZWVm89dZb9aopGAzQtq0fNaA9C4dbJLsE1VMoFCQjI5TsMlRHGSHHLl1Vh6Fk7kfrHIqWLVvG+eefz49//OP9WU/Chg0buPLKK+nXr19KfTJ2LBYnEtmR7DKUYkKhIOFwCyKRnUSjTrROR9VjGI3GqKqqffRbKS6wOxBVRaPgPOu0VL3vbIj9aDjcomEnWjdv3pxOnTrVdfN/KxKJMG7cONq0acPs2bMTl/1nZWUBuy+3b9++fY32X14fDofZsGFDrX7LysoSberDq4v0VXa/ofr3kc7i8bhXL6WhxCmzOI5fmqoet2TuR+t84u7000/n2Wef3Z+1APD5559z8cUXU15ezrx582qcBsvJyQGoNS+otLSUJk2a0KVLl0S7tWvX1nphrF27NtGHJEnSl9U5FJ166qmUlZVx4YUXsnjxYt58803efvvtWv/2RVVVFRMnTqS0tJR58+bRsWPHGuu7dOlCt27dWLRoUY3lJSUlDBgwgKZNmwJQWFhIWVlZjS+sXbt2LatXr/ZTtiVJ0h7V+fTZqFGjEj8vX7681vq6XH02ffp0XnjhBSZPnkxFRQWvv/56Yt3hhx9O06ZNueyyy7j66qvp2rUr/fr1o6SkhDfffJP77rsv0TY/P5+CggKuvfbaxIc3zpw5k7y8PE455ZS6PWFJknRAq3MomjFjxv6sA9g9eRvgxhtvrLXuueeeo3PnzowYMYKdO3dSXFzM3XffTXZ2Nrfffjv5+fk12s+aNYsZM2Ywbdo0qqqqKCgoYMqUKfX6NGtJknTgqvPXfPyn8ms+tCd+zUf682s+0ptf85H+UuFrPvykOUmSJOpx+uwnP/nJ17YJBAL88pe/rOtDSJIkNZo6h6KXX3651rJYLMamTZuIRqO0a9eOFi38dF9JkpQe6hyKnn/++T0ur6ys5OGHH+aee+7h17/+dZ0LkyRJakz7fU5RkyZNGD16NAMHDuTnP//5/u5ekiSpQTTYROsePXrwyiuvNFT3kiRJ+1WDhaLly5c7p0iSJKWNOs8puv322/e4vLy8nFdeeYXVq1dz0UUX1bkwSZKkxrTfQ1FWVhZdunRh+vTpfO9736tzYZIkSY2pzqHonXfe2Z91SJIkJZWfaC1JkkQ9jhRVW7lyJS+++CKffPIJAIcccggnnngixx13XL2LkyRJaix1DkW7du3iRz/6Ec8++yzxeJxwOAxAJBJhwYIFnHzyydxyyy00adJkvxUrSZLUUOp8+mzOnDk888wzjB07lqVLl7Jy5UpWrlzJsmXL+P73v8/ixYuZM2fO/qxVkiSpwdQ5FP3xj3/kjDPO4Mc//jHf+MY3EssPOuggrrnmGr7zne/wxBNP7JciJUmSGlqdQ9GmTZvo3bv3V67v3bs3mzZtqmv3kiRJjarOoejggw9m5cqVX7n+lVde4eCDD65r95IkSY2qzqHoO9/5Dk899RTTpk2jtLSUaDRKLBajtLSU6667jkWLFnHGGWfsz1olSZIaTJ2vPhs/fjzr1q3jkUce4dFHHyUY3J2vYrEY8XicM844g/Hjx++3QiVJkhpSnUNRKBTixhtv5IILLmDJkiWsX78egE6dOlFYWEiPHj32W5GSJEkNbZ9C0RdffMEvfvELDjvsMMaMGQNAjx49agWge++9l4ceeoif/vSnfk6RJElKC/s0p+jhhx/m8ccf58QTT/y37U488UQWLlzIo48+Wp/aJEmSGs0+haKnnnqKU045hS5duvzbdl27duW0007jySefrFdxkiRJjWWfQtG7775L375996ptfn4+f//73+tUlCRJUmPbp1BUWVm513OEmjRpwq5du+pUlCRJUmPbp1DUoUMH1qxZs1dt16xZQ4cOHepUlCRJUmPbp1B0/PHH84c//IHNmzf/23abN2/mD3/4A8cff3y9ipMkSWos+xSKxo0bxxdffMH555/PG2+8scc2b7zxBhdccAFffPEFP/jBD/ZLkZIkSQ1tnz6nqEuXLsyaNYurrrqKc845hy5dutC9e3cyMzPZvn07a9as4aOPPqJ58+b87//+L127dm2ouiVJkvarff5E6xNPPJEnnniC4uJiXnzxRZ599tnEug4dOnD22Wczbty4r71sX5IkKZXU6Ws+OnfuzPTp0wGoqKhg+/btZGZm0qpVq/1anCRJUmOp83efVWvVqpVhSJIkpb19mmgtSZJ0oDIUSZIkYSiSJEkCDEWSJEnAfphovT99+OGHzJ8/nzfeeIM1a9aQk5PDn/70pxptxowZw8qVK2ttW1JSQm5ubuJ+eXk5M2bM4Nlnn6WyspJBgwYxZcoUv3pEkiTtUUqFojVr1vDSSy9x1FFHEYvFiMfje2x39NFHM2nSpBrLOnfuXOP+xIkTee+997j++utp1qwZs2bNYty4cSxcuJCMjJR62pIkKQWkVDoYMmQIQ4cOBWDy5Mm89dZbe2wXDofp06fPV/bz2muvsXTpUubPn09BQQEA2dnZFBUVsXjxYoqKivZ77ZIkKb2l1JyiYHD/lLNkyRLC4TADBw5MLMvJyaFnz54sWbJkvzyGJEk6sKRUKNpbK1eupE+fPvTq1YvRo0fzyiuv1FhfWlpKdnY2gUCgxvKcnBxKS0sbs1RJkpQmUur02d449thjGTlyJN26dePTTz9l/vz5jB07lt/+9rfk5+cDEIlEaN26da1ts7KyvvKU3L7IyEjLLKkGFAoFa9wq/VSPXSAQqPUfKqWBwD9vAzh+6aj6dZfM/WjahaLLL7+8xv0TTzyRESNGcMcdd1BcXNzgjx8MBmjbNrPBH0fpKRxukewSVE+hUJCMjFCyy1AdZYQcu3RVHYaSuR9Nu1D0r1q2bMkJJ5zA008/nVgWDofZsGFDrbZlZWVkZWXV6/FisTiRyI569aEDTygUJBxuQSSyk2g0luxyVAfVYxiNxqiqiia7HO2rwO5AVBWNwp4vXFaKq953NsR+NBxusVdHoNI+FO1JTk4OK1asIB6P1zgMvnbtWrp3717v/quqfNPTnu1+Q/XvI53F4/Gv/DgQpa7EKbM4jl+aqh63ZO5H034CxI4dO3jxxRfp1atXYllhYSFlZWWsWLEisWzt2rWsXr2awsLCZJQpSZJSXEodKdq5cycvvfQSAOvXr6eiooJFixYBcNxxx1FaWsq8efM4+eST6dSpE59++ikLFixg06ZN3HrrrYl+8vPzKSgo4Nprr2XSpEk0a9aMmTNnkpeXxymnnJKU5yZJklJbSoWizZs3c8UVV9RYVn3/3nvv5eCDD6ayspKZM2eybds2WrRoQX5+PtOnT6d37941tps1axYzZsxg2rRpVFVVUVBQwJQpU/w0a0mStEeBuCdf90k0GmPLlu3JLkMpJiMjSNu2mWzdut05RWmqegxnPbCK9Zsqkl2O9lEgECAjI0RVVdQ5RWmqU/tWTBzVt0H2o+3aZe7VROu0n1MkSZK0PxiKJEmSMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgSkWCj68MMPmTZtGiNHjuTwww9nxIgRe2z36KOPcuqpp9KrVy9OP/10XnjhhVptysvLufbaaznuuOPIz8/n8ssv59NPP23opyBJktJUSoWiNWvW8NJLL3HooYeSm5u7xzZPPvkkU6dOZdiwYRQXF9OnTx8mTJjA66+/XqPdxIkTWbZsGddffz0333wza9euZdy4cVRVVTXCM5EkSekmI9kFfNmQIUMYOnQoAJMnT+att96q1ea2225j+PDhTJw4EYD+/fvz7rvvMmfOHIqLiwF47bXXWLp0KfPnz6egoACA7OxsioqKWLx4MUVFRY3zhCRJUtpIqSNFweC/L2fdunV88MEHDBs2rMbyoqIiVqxYwa5duwBYsmQJ4XCYgQMHJtrk5OTQs2dPlixZsv8LlyRJaS+ljhR9ndLSUmD3UZ8vy83NpbKyknXr1pGbm0tpaSnZ2dkEAoEa7XJychJ91EdGRkplSaWAUChY41bpp3rsAoFArX2H0kDgn7cBHL90VP26S+Z+NK1CUVlZGQDhcLjG8ur71esjkQitW7eutX1WVtYeT8nti2AwQNu2mfXqQweucLhFsktQPYVCQTIyQskuQ3WUEXLs0lV1GErmfjStQlEqiMXiRCI7kl2GUkwoFCQcbkEkspNoNJbsclQH1WMYjcaoqoomuxztq8DuQFQVjUI82cWoLqr3nQ2xHw2HW+zVEai0CkVZWVnA7svt27dvn1geiURqrA+Hw2zYsKHW9mVlZYk29VFV5Zue9mz3G6p/H+ksHo8Tj/uumm4Sp8ziOH5pqnrckrkfTasJEDk5OQC15gWVlpbSpEkTunTpkmi3du3aWi+MtWvXJvqQJEn6srQKRV26dKFbt24sWrSoxvKSkhIGDBhA06ZNASgsLKSsrIwVK1Yk2qxdu5bVq1dTWFjYqDVLkqT0kFKnz3bu3MlLL70EwPr166moqEgEoOOOO4527dpx2WWXcfXVV9O1a1f69etHSUkJb775Jvfdd1+in/z8fAoKCrj22muZNGkSzZo1Y+bMmeTl5XHKKack5blJkqTUFoin0MnXjz/+mJNOOmmP6+6991769esH7P6aj+LiYj755BOys7O56qqrGDx4cI325eXlzJgxg2eeeYaqqioKCgqYMmUKHTt2rFeN0WiMLVu216sPHXgyMoK0bZvJ1q3bnVOUpqrHcNYDq1i/qSLZ5WgfBQIBMjJCVFVFnVOUpjq1b8XEUX0bZD/arl3mXk20TqlQlA4MRdoTQ1H6MxSlN0NR+kuFUJRWc4okSZIaiqFIkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRIAGckuQLsFgwGCwUCyy1AdhULBGrdKP46dJENRCggGA7Rp25JQ0J1yuguHWyS7BElSHRmKUkAwGCAUDPLAor/x6ZYdyS5HdRAIBAiFgkSjMeLxeLLLUR3kdWvHsOOzCQQ8Yiv9pzIUpZBPt+xg/aaKZJehOggEAmRkhKiqihqK0lT7th7lk/7Teb5GkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCUjDUPS73/2OvLy8Wv9uvvnmGu0effRRTj31VHr16sXpp5/OCy+8kKSKJUlSOshIdgF1NW/ePFq3bp2437Fjx8TPTz75JFOnTmX8+PH079+fkpISJkyYwP3330+fPn2SUK0kSUp1aRuKjjjiCNq1a7fHdbfddhvDhw9n4sSJAPTv3593332XOXPmUFxc3IhVSpKkdJF2p8++zrp16/jggw8YNmxYjeVFRUWsWLGCXbt2JakySZKUytI2FI0YMYKePXty0kkncddddxGNRgEoLS0FIDs7u0b73NxcKisrWbduXaPXKkmSUl/anT5r3749l112GUcddRSBQIDnn3+eWbNmsXHjRqZNm0ZZWRkA4XC4xnbV96vX10dGxv7NkqHQ7v4CgQCBQGC/9q1GEvjnbQDHMB0lXnsBfB2mI1+Daa/6dVf9npgMaReKBg0axKBBgxL3CwoKaNasGffccw/jx49v8McPBgO0bZvZIH2HQkEyMkIN0rcaR0bI8UtXoWAwcevrMH35Gkxf1WEoHG6RtBrSLhTtybBhw/j1r3/N3/72N7KysgAoLy+nffv2iTaRSAQgsb6uYrE4kciOevXxr0KhIOFwC6LRGFVV0f3atxpJYPfOuCoahXiyi1FdRGOxxK2vwzTkazDtRaO7X4ORyM7Ez/tLONxir45AHRCh6MtycnKA3XOLqn+uvt+kSRO6dOlS78eoqtq/g1UtHo8Tj/tqTkeJw/VxHMM0lRg3xzAt+RpMf9XjtvsAQcO8z36dtJ1o/WUlJSWEQiEOP/xwunTpQrdu3Vi0aFGtNgMGDKBp06ZJqlKSJKWytDtSdOGFF9KvXz/y8vIAeO6553jkkUc477zzEqfLLrvsMq6++mq6du1Kv379KCkp4c033+S+++5LZumSJCmFpV0oys7OZuHChWzYsIFYLEa3bt249tprGTNmTKLNiBEj2LlzJ8XFxdx9991kZ2dz++23k5+fn8TKJUlSKku7UDRlypS9anf22Wdz9tlnN3A1kiTpQHFAzCmSJEmqL0ORJEkShiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkoADPBS9//77jB07lj59+jBw4EBuuukmdu3aleyyJElSCspIdgENpaysjPPPP59u3boxe/ZsNm7cyI033sjnn3/OtGnTkl2eJElKMQdsKHrooYfYvn07t99+O23atAEgGo0yffp0Lr74Yjp27JjcAiVJUko5YE+fLVmyhAEDBiQCEcCwYcOIxWIsW7YseYVJkqSUdMAeKSotLeW73/1ujWXhcJj27dtTWlpa536DwQDt2mXWt7waAoHdtz/4Ti+isfh+7VvS3mmSsfv/iBeOPNLXoZQEoeDuN8OsrBbE9/NLMPj/+/46B2woikQihMPhWsuzsrIoKyurc7+BQIBQaO9+ufuqVcumDdKvpL3n61BKrmAweSexDtjTZ5IkSfvigA1F4XCY8vLyWsvLysrIyspKQkWSJCmVHbChKCcnp9bcofLycjZt2kROTk6SqpIkSanqgA1FhYWFLF++nEgkkli2aNEigsEgAwcOTGJlkiQpFQXi8f09xzs1lJWVMXz4cLKzs7n44osTH9747W9/2w9vlCRJtRywoQh2f83Hz3/+c1577TUyMzMZOXIkV155JU2benWJJEmq6YAORZIkSXvrgJ1TJEmStC8MRZIkSRiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUj6t8aMGcOwYcPYtWtXrXWXX345J5xwAtu3b09CZdJ/ntmzZ5OXl8e5555ba90vfvELhgwZkoSqdCAxFEn/xvTp0/n444+ZN29ejeVLlizh6aefZurUqWRmZiapOuk/06uvvsrLL7+c7DJ0ADIUSf9GTk4OF198MXfeeSfr1q0D4IsvvuDnP/85J510EkOHDk1yhdJ/lpYtW9K7d2/uuOOOZJeiA5ChSPoaF110EYcccgjTp08H4M477+Szzz5j2rRpbNiwgauvvpp+/frRu3dvzj33XN56660a2z/33HOceeaZ5Ofnc8wxx3DmmWfy0ksvJeOpSAeESy65hL/85S/83//931e2Wb9+PZdffjl9+/alT58+XHjhhfz9739vxCqVjgxF0tdo2rQpP/vZz/jzn//MHXfcwbx587jiiito0aIFo0aN4p133mHq1KnMnj2bFi1acP7557N582YAPvroI6644goOO+wwbr/9dmbOnMmwYcMoKytL8rOS0tfgwYM5/PDDmTNnzh7XV1RUMGbMGFavXs306dP51a9+xdatWxk9ejT/+Mc/GrlapZOMZBcgpYPjjjuOM888k1tvvZUjjjiCMWPGMGfOHCKRCI8++igHHXQQAAMGDODUU09l/vz5/PjHP2b16tVUVlYydepUWrVqBcCgQYOS+VSkA8IPf/hDLrvsMt5880169+5dY93vfvc7PvnkE5588klyc3MBOPbYYxk8eDD33HMPkydPTkbJSgMeKZL20kUXXQTA2LFjCYVCLFu2jH79+pGVlUVVVRVVVVUEg0GOPfZY/vrXvwKQl5dHKBTi6quv5vnnn6e8vDyZT0E6YJx88sl07959j0eLXn31VQ477LBEIAJo06YNxx9/PKtWrWrMMpVmPFIk7aUmTZrUuN26dSuvv/46RxxxRK22Xbt2BSA7O5s777yTu+66iwkTJhAMBikoKGDatGkccsghjVe8dIAJBAKMHz+eq666irfffrvGukgkwje+8Y1a2xx00EGsWbOmsUpUGjIUSXWUlZXFoEGDuOKKK2qta9q0aeLnwsJCCgsLqaioYMmSJcyYMYOf/OQn3HPPPY1ZrnTAGTZsGLNnz+aOO+6o8Z+MrKws1q5dW6v95s2bycrKaswSlWY8fSbV0fHHH8/7779Pbm4uvXr1qvEvLy+vVvtWrVpRVFTE8OHDef/995NQsXRgCQaDjB8/nueee67GlWV9+/bl3XffpbS0NLGsrKyM5cuX07dv32SUqjThkSKpji644AL++Mc/Mnr0aM477zwOOeQQtmzZwhtvvEHHjh254IILeOihh3j99dcZNGgQ7du35+OPP+aJJ55g4MCByS5fOiB8+9vfZs6cObz88st06tQJgDPPPJPf/OY3XHzxxUycOJFmzZoxd+5cMjIyOP/885NcsVKZoUiqo7Zt2/Lwww8za9Ysbr75ZrZt28ZBBx3EUUcdxcknnwzsnmj9wgsvMGPGDLZt20b79u0ZPnz4Hk+5Sdp3oVCIiy66iClTpiSWtWrVit/+9rfceOONTJ06lVgsxtFHH819993HN7/5zSRWq1QXiMfj8WQXIUmSlGzOKZIkScJQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEnSXvvd735HXl4ef/3rX5NdiqQGYCiSJEnCUCRJkgQYiiRJkgBDkaQ0UFFRwS9+8QuGDBnCkUceyYABAxg7dixvv/02AGPGjGHEiBG88847jB49OvGlvIsWLQJg5cqVnH322fTu3ZtTTz2V5cuX13qM1atX84Mf/ICjjz6a/Px8zj//fF5//fWvra2srIyzzjqLwsJCSktLAdi1axe33XYbJ598MkceeSQnnHACN910E7t27dp/vxRJ+11GsguQpK9z3XXX8fTTTzN69Ghyc3PZtm0bq1at4v333+eII44AdoeT8ePHU1RUxGmnncaDDz7IVVddRSwW45e//CXnnHMOI0aMYP78+Vx++eW8+OKLtGrVCoA1a9Zw7rnnkpmZyQ9+8AMyMjJ4+OGHGTNmDPfddx9HHXXUHuvasmUL3//+9ykrK+O+++6ja9euxGIxfvjDH7Jq1Sq+973vkZuby7vvvss999zDBx98wB133NFovzdJ+yguSSmub9++8enTp3/l+tGjR8e7d+8e/+Mf/5hY9v7778e7d+8e79GjR/z1119PLP/zn/8c7969e3zhwoWJZZdcckn8iCOOiH/00UeJZRs3bozn5+fHzz333MSyhQsXxrt37x5/8803459++ml8+PDh8ZNOOin+8ccfJ9r8/ve/j/fo0SP+yiuv1KjxwQcfjHfv3j2+atWquv0SJDU4T59JSnnhcJg33niDjRs3fmWbli1bMnz48MT9nJwcwuEwubm5NY70VP+8bt06AKLRKMuWLWPo0KF06dIl0a5Dhw6MGDGCVatWUVFRUeOxNm7cyOjRo6msrOT++++nU6dOiXWLFi0iNzeXnJwctmzZkvjXv39/AF5++eV6/CYkNSRPn0lKeVdffTWTJ0/mxBNP5IgjjuCEE07gO9/5To0Qc/DBBxMIBGps17p1aw4++OBaywAikQiw+xTYzp07yc7OrvW4ubm5xGIx/vGPf3DYYYclll9zzTVkZGRQUlJC+/bta2zz4Ycf8v777zNgwIA9PpfNmzfvwzOX1JgMRZJSXlFREccccwzPPPMMy5YtY/78+RQXFzN79mxOOOEEAEKh0B63/arl8Xi8zvWccsop/P73v+fee+/lRz/6UY11sViM7t2785Of/GSP2/5rSJOUOgxFktJChw4dOPfcczn33HPZvHkzZ5xxBnfeeWciFNVVu3btaNGiBWvXrq21rrS0lGAwyDe/+c0ay0ePHk3Xrl257bbbaN26NRdddFFiXdeuXXnnnXcYMGBArSNXklKbc4okpbRoNEp5eXmNZQcddBAdOnTYL5e4h0IhBg4cyHPPPcfHH3+cWP7ZZ5/xpz/9ib59+yauUvuySy+9lO9///vccsstPPDAA4nlw4YNY+PGjTzyyCO1tvn888/ZsWNHvWuW1DA8UiQppW3fvp0TTjiBU089lR49etCyZUuWL1/OX//6VyZPnrxfHmPixIksX76cUaNGMWrUKEKhEA8//DC7du3immuu+crtJk2aREVFBT/72c/IzMxk5MiRjBw5kqeeeorrrruOl19+maOPPppoNEppaSmLFi1i3rx59OrVa7/ULWn/MhRJSmnNmzfnv//7v1m2bBmLFy8mHo/TtWtXrrvuOkaNGrVfHuOwww7j/vvv55ZbbuGuu+4iHo/Tu3dvfvWrX33lZxRVmz59Ojt27ODaa68lMzOToUOHMmfOHH7zm9/whz/8gWeeeYYWLVrQuXNnxowZs8cJ3ZJSQyBen9mGkiRJBwjnFEmSJGEokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQB8P8AS9N/1b4usg8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "## Considerations" + "sns.histplot(data=steak, x=\"smoke\")" ] }, { "cell_type": "markdown", - "id": "bearing-stadium", + "id": "baefe767-40fb-4afe-ae12-2374ce33ece4", "metadata": {}, "source": [ - "*It's important to recognize the limitations of our research.\n", - "Consider the following:*\n", - "\n", - "- *Do the results give an accurate depiction of your research question? Why or why not?*\n", - "- *What were limitations of your datset?*\n", - "- *Are there any known biases in the data?*\n", - "\n", - "✏️ *Write your answer below:*" + "### Number of people who like their steak rare\n" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "2e62dead-0ed2-422b-abdb-c0d359732689", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "cooked\n", + "Medium rare 166\n", + "Medium 132\n", + "Medium Well 75\n", + "Well 36\n", + "Rare 23\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "steak.cooked.value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "09aec01a-465f-49e7-8b2f-f6e3c74720da", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAP9NJREFUeJzt3Xl4VPW9x/H3zCRskYmgiFfWBAuyE6uETapIQRAXqiyiqHW3FwVuvUIpULGIe7UKaonWDa1oW1wp4goVuUorbrVVNKCARSlLQghbZub+QTN1DGoI2Q68X8/DM5lzfufMd76czHxyzpkzoUQikUCSJOkAF67pAiRJkmoDQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAmAtJouIGgSiQTxuBcBBwiHQ/aimtjr6mGfq4d9rh72+T/C4RChUOg7xxmK9lI8nmDjxq01XUaNS0sL06hRBoWFxZSUxGu6nP2ava4e9rl62OfqYZ9TNW6cQSTy3aHIw2eSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJgLSaLkCqTuFwiHA4VNNl7JVIJJxyGxTxeIJ4PFHTZUhSuRmKdMAIh0Mc3KgBkXCwwkWpaLR+TZewV2LxOJs3FRuMJAWGoUgHjHA4RCQc5tEFf+fLjcU1XU65hUIhIpEwsVicRCIYAeOwxg0YdVJ7wuGQoUhSYBiKdMD5cmMxa9cX1XQZ5RYKhUhLi1BSEgtMKJKkIArmcQRJkqRKZiiSJEnCUCRJkgQYiiRJkoBaFoo+/fRTpk6dymmnnUaHDh0YMmTIHscVFhYyffp0+vTpQ+fOnenfvz+//e1vU8bs3LmTG2+8kd69e9OtWzd+/OMfk5+fXx1PQ5IkBVCt+vTZihUrWLRoEV27diUe3/PHj4uLixk9ejSRSIRJkyZxyCGHsGrVKoqKUj9NNH36dObPn8/EiRNp2rQp99xzD+effz7PPfccDRs2rK6nJEmSAqJWhaJ+/frRv39/ACZOnMj7779fZszs2bPZunUrTz/9NA0aNAAgNzc3Zcy6dev4/e9/zy9+8QvOPPNMADp37swJJ5zAY489xsUXX1zFz0SSJAVNrTp8Fi7HlYZ///vfc8YZZyQD0Z689tprxONxTjrppOS0gw8+mN69e7N48eJKqVWSJO1falUo+i5r1qxh/fr1NGrUiMsuu4xOnTrRvXt3Jk+ezNatW5Pj8vPzOeSQQ8jMzExZvk2bNp5XJEmS9qhWHT77Lv/6178AuPHGGxkwYAB5eXmsWrWKW2+9leLiYn71q18Bu0/E3tN5Q9FolIKCgn2uIy0tUFmySgTxS0pLaw2FQoRCAfpS2NB/bkMEo+7S/gZx+whSzUFkn6uHfa6YQIWieDwOQFZWFjfeeCMAPXv2JC0tjcmTJzN+/HhatGhRpTWEwyEaNcqo0scIkqB9SSnsfpFIS4vUdBl7LS0SnJpLX4iDuH0EseYgss/Vwz7vnUCFotLDYV8/sbpHjx7A7k+vtWjRgmg0WubTaLB7D9LXD6ntrXg8QWFhcL5MtKpEImGi0foUFm4jFovXdDnlUlpzLBanpCRW0+WUX2h3ICqJxSAgX31Wuk0EcfsIUs1BZJ+rh31OFY3WL9des0CFohYtWlCnTp1vnL9jxw4AsrOz+de//kVBQUFKCMrPzyc7O3uf6ygpcQMrtTtgBKsfiUQiUF+smjxkliAwdZfWGcTtI4g1B5F9rh72ee8E6mBjnTp16N27N0uXLk2Z/vrrrwPQsWNHAPr06UM4HGbhwoXJMQUFBbz22mv07du3+gqWJEmBUav2FG3bto1FixYBsHbtWoqKiliwYAEA3bt3p3HjxowZM4aRI0fy05/+lKFDh/Lpp59y6623csopp9CyZUsADj/8cM4880xuuukmwuEwTZs25Te/+Q0NGzZk5MiRNfb8JElS7VWrQtGGDRsYO3ZsyrTS+w899BC5ubl06tSJvLw8brnlFi6//HIyMzMZMWIE48ePT1lu8uTJZGRkcOutt7J161aOPvpo7r//fq9mLUmS9iiUCMpJCrVELBZn48at3z1wP5eWFqZRoww2bdoamOPVpTXf/uhfWbu+7In4tVUoFCItLUJJSSww5xQ1a3IQ40Z9P5DbR5BqDiL7XD3sc6rGjTPKdaJ1oM4pkiRJqiqGIkmSJAxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiSgloWiTz/9lKlTp3LaaafRoUMHhgwZ8q3jX3zxRdq1a7fHcVu2bGHSpEl0796dnJwcrrzySr788suqKl2SJAVcrQpFK1asYNGiRbRq1Yo2bdp869jt27czY8YMDj300D3OHzduHEuWLOGaa67hlltuYeXKlVx88cWUlJRURemSJCng0mq6gK/q168f/fv3B2DixIm8//773zj2N7/5DUcccQTNmzcvM2758uW89tpr3HffffTp0weArKwsBg8ezMKFCxk8eHDVPQlJkhRItWpPUThcvnI+++wz7r//fiZPnrzH+YsXLyYajdK7d+/ktOzsbNq3b8/ixYsrpVZJkrR/qVV7isrruuuu47TTTuOoo47a4/z8/HyysrIIhUIp07Ozs8nPz9/nx09Lq1VZskZEIuGU2yAorTUUCpXZNmq10H9uQwSj7tL+BnH7CFLNQWSfq4d9rpjAhaKXX36Z5cuXs2DBgm8cU1hYSMOGDctMz8zM/NZDcuURDodo1Chjn9axP4lG69d0CXstEgmTlhap6TL2WlokODWXvhAHcfsIYs1BZJ+rh33eO4EKRTt27GDGjBlcccUVNG7cuEZqiMcTFBYW18hj1yaRSJhotD6FhduIxeI1XU65lNYci8UpKYnVdDnlF9odiEpiMUjUdDHlU7pNBHH7CFLNQWSfq4d9ThWN1i/XXrNAhaIHH3yQcDjMySefTGFhIQC7du0iHo9TWFhIvXr1qFOnDtFolHXr1pVZvqCggMzMzH2uo6TEDazU7oARrH4kEgkSiYCkC75yyCxBYOourTOI20cQaw4i+1w97PPeCVQoys/P59NPP6Vnz55l5h177LFcc801nHXWWWRnZ7N06VISiUTKuSMrV66kbdu21VmyJEkKiECFoosvvpihQ4emTJs9ezYrV67k+uuvp3Xr1gD07duXu+66i6VLl9KrVy9gdyD64IMPuOiii6q7bEmSFAC1KhRt27aNRYsWAbB27VqKioqSJ1R3796dNm3alLmo47x58/jiiy/Izc1NTsvJyaFPnz5MmjSJCRMmULduXW677TbatWvHgAEDqu8JSZKkwKhVoWjDhg2MHTs2ZVrp/Yceeigl+HyX22+/neuvv56pU6dSUlJCnz59mDx5MmlpteopS5KkWiKUCMqZm7VELBZn48atNV1GjUtLC9OoUQabNm0NzEl8pTXf/uhfWbu+qKbLKbdQKERaWoSSklhgTrRu1uQgxo36fiC3jyDVHET2uXrY51SNG2eU69NnXtVJkiQJQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIE1LIrWh/IwuEQ4XDouwfWEqUXwSrPxbBqiyDVKkmqfoaiWiAcDnFwowZEwsF7045G69d0CZIkVQpDUS0QDoeIhMM8uuDvfLmxuKbLKZdQKEQkEiYWiwfmqyfatW7MoF5ZhELB2SMnSao+hqJa5MuNxYH5Tq4gfh9Xk0bu1ZIkfbPgHa+RJEmqAoYiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSAGk1XcBXffrpp9x333288847rFixguzsbJ599tnk/KKiIu6//34WLVrEqlWrqFOnDl26dGH8+PG0a9cuZV1btmzh+uuv58UXX2TXrl0cd9xxTJ48mcMOO6y6n5YkSQqAWrWnaMWKFSxatIhWrVrRpk2bMvM///xz5s6dS+/evbn99tv55S9/yZYtWxgxYgSffPJJythx48axZMkSrrnmGm655RZWrlzJxRdfTElJSXU9HUmSFCC1ak9Rv3796N+/PwATJ07k/fffT5nfvHlzXnjhBerXr5+c1qNHD/r168ejjz7KlClTAFi+fDmvvfYa9913H3369AEgKyuLwYMHs3DhQgYPHlxNz0iSJAVFrdpTFA5/ezkNGjRICUQAGRkZtGzZki+//DI5bfHixUSjUXr37p2clp2dTfv27Vm8eHHlFi1JkvYLtSoUVURhYWHy/KNS+fn5ZGVlEQqFUsZmZ2eTn59f3SVKkqQAqFWHzyri5ptvJhQKcdZZZyWnFRYW0rBhwzJjMzMzyxySq4i0tMrNkpHI7vWFQqEyQa7WCv3nNkQwak72NkRw+gyB7nXpth0EpbUGqeYgss/Vwz5XTKBD0R/+8Acef/xxbrjhBg4//PBqecxwOESjRhlVsu5IJExaWqRK1l1V0iLBqTfy78OzkXDw+gwB6/W/X4ij0frfMbL2CWLNQWSfq4d93juBDUWLFi1i6tSp/OQnP2Ho0KEp86LRKOvWrSuzTEFBAZmZmfv0uPF4gsLC4n1ax9dFImGi0frEYnFKSmKVuu4qE9r9Jl0Si0Gipospn1g8nrwNTJ8hmL2O7e51YeG25M+1XenvYZBqDiL7XD3sc6potH659poFMhS9/fbbjB07ltNPP52xY8eWmZ+dnc3SpUtJJBIph0lWrlxJ27Zt9/nxS0qqZgNLJBIkEsF410sexkkQmJqTdQaoZgh2r3cH/WC9IAex5iCyz9XDPu+dwB1s/Pjjj7n00kvp0aMH06ZN2+OYvn37UlBQwNKlS5PTVq5cyQcffEDfvn2rq1RJkhQgtWpP0bZt21i0aBEAa9eupaioiAULFgDQvXt3EokEF154IXXr1uW8885LOWn6oIMO4sgjjwQgJyeHPn36MGnSJCZMmEDdunW57bbbaNeuHQMGDKj+JyZJkmq9WhWKNmzYUOZwWOn9hx56CCB5rtD555+fMq579+48/PDDyfu33347119/PVOnTqWkpIQ+ffowefJk0tJq1VOWJEm1RK1KCM2bN+fDDz/81jHfNb9Uw4YNmTFjBjNmzKiM0iRJ0n4ucOcUSZIkVQVDkSRJEoYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJQy0LRp59+ytSpUznttNPo0KEDQ4YM2eO4J554goEDB9K5c2dOPfVUXnnllTJjtmzZwqRJk+jevTs5OTlceeWVfPnll1X9FCRJUkDVqlC0YsUKFi1aRKtWrWjTps0exzz33HNMmTKFQYMGkZeXR7du3RgzZgxvv/12yrhx48axZMkSrrnmGm655RZWrlzJxRdfTElJSTU8E0mSFDRpNV3AV/Xr14/+/fsDMHHiRN5///0yY+644w5OPvlkxo0bB0CPHj346KOPmDVrFnl5eQAsX76c1157jfvuu48+ffoAkJWVxeDBg1m4cCGDBw+unickSZICo1btKQqHv72c1atXs2rVKgYNGpQyffDgwSxdupSdO3cCsHjxYqLRKL17906Oyc7Opn379ixevLjyC5ckSYFXq/YUfZf8/Hxg916fr2rTpg27du1i9erVtGnThvz8fLKysgiFQinjsrOzk+vYF2lplZslI5Hd6wuFQmVqrrVC/7kNEYyak70NEZw+Q6B7XbptB0FprUGqOYjsc/WwzxUTqFBUUFAAQDQaTZleer90fmFhIQ0bNiyzfGZm5h4Pye2NcDhEo0YZ+7SObxKJhElLi1TJuqtKWiQ49Ub+vScyEg5enyFgvf73C3E0Wr+GK9l7Qaw5iOxz9bDPeydQoag2iMcTFBYWV+o6I5Ew0Wh9YrE4JSWxSl13lQntfpMuicUgUdPFlE8sHk/eBqbPEMxex3b3urBwW/Ln2q709zBINQeRfa4e9jlVNFq/XHvNAhWKMjMzgd0ft2/SpElyemFhYcr8aDTKunXryixfUFCQHLMvSkqqZgNLJBIkEsF410sexkkQmJqTdQaoZgh2r3cH/WC9IAex5iCyz9XDPu+dQB1szM7OBihzXlB+fj7p6em0aNEiOW7lypVl3kBWrlyZXIckSdJXBSoUtWjRgtatW7NgwYKU6fPnz6dnz57UqVMHgL59+1JQUMDSpUuTY1auXMkHH3xA3759q7VmSZIUDBU+fHbuuedy+eWX07Nnzz3O/7//+z/uuusuHnrooXKvc9u2bSxatAiAtWvXUlRUlAxA3bt3p3HjxlxxxRVcddVVtGzZktzcXObPn8+7777LnDlzkuvJycmhT58+TJo0iQkTJlC3bl1uu+022rVrx4ABAyr6lCVJ0n6swqHozTffZNiwYd84f+PGjSxbtmyv1rlhwwbGjh2bMq30/kMPPURubi5Dhgxh27Zt5OXlMXv2bLKyspg5cyY5OTkpy91+++1cf/31TJ06lZKSEvr06cPkyZNJSwvUaVSSJKma7FNC+LZrvXz66adkZOzdR9ebN2/Ohx9++J3jhg0b9q2BDKBhw4bMmDGDGTNm7FUNkiTpwLRXoWjevHnMmzcvef/uu+/m8ccfLzNuy5YtfPjhh56/I0mSAmOvQtG2bdvYtGlT8v7WrVv3+NUcDRo0YOTIkfz3f//3vlcoSZJUDfYqFI0aNYpRo0YBu7+89ec//zknnnhilRQmSZJUnSp8TtHLL79cmXVIkiTVqH3+KFZRURGff/45hYWFe7za7rHHHruvDyFJklTlKhyKNm7cyPTp01m4cCGxWNnvkUokEoRCIf7+97/vU4GSJEnVocKhaOrUqbzyyiuMHj2aY445psw310uSJAVJhUPRkiVLOO+887j66qsrsx5JkqQaUeHvPqtXrx7NmjWrzFokSZJqTIVD0amnnsqLL75YmbVIkiTVmAofPhs4cCDLli3jwgsvZMSIERx++OFEIpEy4zp27LhPBUqSJFWHCoei0os4Arz++utl5vvpM0mSFCQVDkXXX399ZdYhSZJUoyocioYOHVqZdUiSJNWoCp9oLUmStD+p8J6in/3sZ985JhQKMWPGjIo+hCRJUrWpcCh64403ykyLx+OsX7+eWCxG48aNqV+//j4VJ0mSVF0qHIpefvnlPU7ftWsXc+fO5cEHH+S3v/1thQuTJEmqTpV+TlF6ejrnnHMOvXv35pe//GVlr16SJKlKVNmJ1kcddRTLli2rqtVLkiRVqioLRa+//rrnFEmSpMCo8DlFM2fO3OP0LVu2sGzZMj744AMuueSSChcmSZJUnSo9FGVmZtKiRQumTZvG8OHDK1yYJElSdapwKPrHP/5RmXVIkiTVKK9oLUmSxD7sKSr15ptv8uqrr/L5558DcMQRR3D88cfTvXv3fS5OkiSpulQ4FO3cuZOf/vSnvPjiiyQSCaLRKACFhYXcf//9/PCHP+TWW28lPT290oqVJEmqKhU+fDZr1ixeeOEFfvzjH/Paa6/x5ptv8uabb7JkyRIuuOACFi5cyKxZsyqzVkmSpCpT4VD0zDPPMHToUK6++moOPfTQ5PRDDjmE//3f/+X000/n6aefrpQiJUmSqlqFQ9H69evp0qXLN87v0qUL69evr+jqv9VLL73EsGHDyMnJoU+fPowdO5bVq1eXGffEE08wcOBAOnfuzKmnnsorr7xSJfVIkqTgq3AoOvzww3nzzTe/cf6yZcs4/PDDK7r6b/TGG28wZswYjjzySGbNmsWkSZP4xz/+wQUXXMD27duT45577jmmTJnCoEGDyMvLo1u3bowZM4a333670muSJEnBV+ETrU8//XTuvPNOGjZsyPnnn0+rVq0IhUKsWrWKBx98kAULFnDFFVdUZq3A7rBzxBFHMGPGDEKhEACNGzfmvPPO4/333+eYY44B4I477uDkk09m3LhxAPTo0YOPPvqIWbNmkZeXV+l1SZKkYKtwKLrssstYvXo1jz/+OE888QTh8O6dTvF4nEQiwdChQ7nssssqrdBSJSUlZGRkJAMRQMOGDQFIJBIArF69mlWrVvG///u/KcsOHjyYm266iZ07d1KnTp1Kr02SJAVXhUNRJBLhhhtu4Pzzz2fx4sWsXbsWgGbNmtG3b1+OOuqoSivyq370ox/x1FNP8cgjj3DqqaeyefNmfvWrX9GhQweOPvpoAPLz8wHIyspKWbZNmzbs2rWL1atX06ZNmyqpT5IkBdNehaIdO3Zw3XXX8b3vfY/Ro0cDcNRRR5UJQA899BCPPfYYP//5zyv9OkXHHHMMM2fO5Kc//SnXXnstAO3bt+fee+8lEokAUFBQAJC8dlKp0vul8ysqLa1yLwQeiexeXygUStkDVquF/nMbIhg1J3sbIjh9hkD3unTbDoLSWoNUcxDZ5+phnytmr0LR3LlzmTdvHvPnz//Wcccffzw333wzbdu2ZdSoUftU4Ne99dZbXH311QwfPpzjjz+ezZs3c9ddd3HJJZfw6KOPUq9evUp9vK8Lh0M0apRRJeuORMKkpUWqZN1VJS0SnHoj/z7EGwkHr88QsF7/+4U4Gq1fw5XsvSDWHET2uXrY572zV6HoT3/6EwMGDKBFixbfOq5ly5acdNJJPPfcc5UeiqZPn06PHj2YOHFiclq3bt04/vjjeeqppxgxYgSZmZkAbNmyhSZNmiTHFRYWAiTnV0Q8nqCwsLjCy+9JJBImGq1PLBanpCRWqeuuMqHdb9IlsRgkarqY8onF48nbwPQZgtnr2O5eFxZuS/5c25X+Hgap5iCyz9XDPqeKRuuXa6/ZXoWijz76iFNOOaVcY3NycqrkukCffPIJJ554Ysq0ww8/nEaNGvHZZ58BkJ2dDew+t6j059L76enp3xnqvktJSdVsYIlEInmyeG2XPIyTIDA1J+sMUM0Q7F7vDvrBekEOYs1BZJ+rh33eO3t1sHHXrl3lPkcoPT2dnTt3Vqiob3PEEUfwwQcfpExbu3YtmzZtolmzZgC0aNGC1q1bs2DBgpRx8+fPp2fPnn7yTJIklbFXe4oOO+wwVqxYUa6xK1as4LDDDqtQUd9m5MiRzJgxg+nTp9OvXz82b97M3XffzSGHHMKgQYOS46644gquuuoqWrZsSW5uLvPnz+fdd99lzpw5lV6TJEkKvr0KRb169eKpp57i0ksv5ZBDDvnGcRs2bOCpp55i4MCB+1zg15177rnUqVOH3/3ud/zhD38gIyODbt26cfvtt9OoUaPkuCFDhrBt2zby8vKYPXs2WVlZzJw5k5ycnEqvSZIkBd9ehaKLL76Yp59+mvPOO4/rrruOrl27lhnzzjvvMHnyZHbs2MFFF11UaYWWCoVCnHXWWZx11lnfOXbYsGEMGzas0muQJEn7n70KRS1atOD222/nf/7nfxg5ciQtWrSgbdu2ZGRksHXrVlasWMFnn31GvXr1+NWvfkXLli2rqm5JkqRKtddXtD7++ON5+umnycvL49VXX+XFF19MzjvssMMYNmwYF1988T5/wkuSJKk6VehrPpo3b860adMAKCoqYuvWrWRkZHDQQQdVanGSgi1IV9MN6hWA4/EE8XgwLtUg1XYV/u6zUgcddJBhSFKKhg3SiccTgbyabtBqjsXjbN5UbDCSKsE+hyJJ+rp6ddMIh0P87vl/8MWGrTVdTrmEQiEikTCxWDwwF8k8rHEDRp3UnnA4ZCiSKoGhSFKV+XJjMWvXF9V0GeUSCoVIS4tQUhILTCiSVLmCdfBckiSpihiKJEmSMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEhDgUDRv3jxOP/10OnfuTG5uLhdddBHbt29Pzn/55Zc59dRT6dy5MwMHDuQPf/hDDVYrSZJqu7SaLqAi7r77bvLy8rjsssvo1q0bmzZtYunSpcRiMQD+8pe/MGbMGM4880wmTZrE//3f//Hzn/+cjIwMTjrppBquXpIk1UaBC0X5+fnMnDmTu+66ix/84AfJ6QMHDkz+fPfdd9OlSxeuvfZaAHr06MHq1au54447DEWSJGmPAnf47I9//CPNmzdPCURftXPnTt54440y4Wfw4MF88sknrFmzpjrKlCRJARO4UPTOO+/Qtm1b7rrrLnr27EmnTp0YOXIk77zzDgCfffYZu3btIjs7O2W5Nm3aALv3NEmSJH1d4A6frV+/nvfff5+PPvqIX/ziF9SvX5977rmHCy64gIULF1JQUABANBpNWa70fun8fZGWVrlZMhLZvb5QKEQoFKrUdVeZ0H9uQwSj5mRvQwSnz2Cvq0uA+1z6GhIEpbUGqeYgss8VE7hQlEgkKC4u5te//jVHHXUUAF27dqVfv37MmTOHPn36VOnjh8MhGjXKqJJ1RyJh0tIiVbLuqpIWCU69kXA4eRu0PoO9ri6B6vO/3/Ci0fo1XMneC2LNQWSf907gQlE0GuXggw9OBiKAgw8+mA4dOvDxxx9z8sknA7Bly5aU5QoLCwHIzMzcp8ePxxMUFhbv0zq+LhIJE43WJxaLU1ISq9R1V5nQ7jePklgMEjVdTPnE4vHkbWD6DPa6ugSxz7HdfS4s3Jb8ubYrfb0LUs1BZJ9TRaP1y7XXLHCh6Mgjj+Szzz7b47wdO3bQsmVL0tPTyc/P57jjjkvOKz2X6OvnGlVESUnVbGCJRIJEIhivxsnDCwkCU3OyzgDVDPa6ugS5z7v/oArWG18Qaw4i+7x3Anew8YQTTmDz5s38/e9/T07btGkTf/vb3+jYsSN16tQhNzeX559/PmW5+fPn06ZNG5o3b17dJUuSpAAI3J6i/v3707lzZ6688krGjx9P3bp1mT17NnXq1GHUqFEAXH755Zx77rlcc801DBo0iDfeeINnn32W2267rYarlyRJtVXg9hSFw2Fmz55Nt27dmDp1Kv/zP//DQQcdxCOPPEKTJk0AOOaYY7jzzjv561//yoUXXsizzz7L9OnTGTRoUA1XL0mSaqvA7SkCaNy4MTfffPO3jjnxxBM58cQTq6kiSZIUdIHbUyRJklQVDEWSJEkYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJwH4QirZu3Urfvn1p164d7733Xsq8J554goEDB9K5c2dOPfVUXnnllRqqUpIk1XaBD0V33XUXsViszPTnnnuOKVOmMGjQIPLy8ujWrRtjxozh7bffrv4iJUlSrRfoUPTJJ5/w6KOPcsUVV5SZd8cdd3DyySczbtw4evTowbXXXkvnzp2ZNWtWDVQqSZJqu0CHounTpzNy5EiysrJSpq9evZpVq1YxaNCglOmDBw9m6dKl7Ny5szrLlCRJAZBW0wVU1IIFC/joo4+48847+dvf/pYyLz8/H6BMWGrTpg27du1i9erVtGnTpsKPnZZWuVkyEtm9vlAoRCgUqtR1V5nQf25DBKPmZG9DBKfPYK+rS4D7XPoaEgSltQap5iCyzxUTyFC0bds2brjhBsaPH89BBx1UZn5BQQEA0Wg0ZXrp/dL5FREOh2jUKKPCy3+bSCRMWlqkStZdVdIiwak3Eg4nb4PWZ7DX1SVQff73G140Wr+GK9l7Qaw5iOzz3glkKLr77rs55JBDOOOMM6r9sePxBIWFxZW6zkgkTDRan1gsTklJ2ZPGa6XQ7jePklgMEjVdTPnE4vHkbWD6DPa6ugSxz7HdfS4s3Jb8ubYrfb0LUs1BZJ9TRaP1y7XXLHChaO3atfz2t79l1qxZbNmyBYDi4uLk7datW8nMzARgy5YtNGnSJLlsYWEhQHJ+RZWUVM0GlkgkSCSC8WqcPLyQIDA1J+sMUM1gr6tLkPu8+w+qYL3xBbHmILLPeydwoWjNmjXs2rWLSy65pMy8c889l65du3LrrbcCu88tys7OTs7Pz88nPT2dFi1aVFu9kiQpGAIXitq3b89DDz2UMu3vf/87119/PdOmTaNz5860aNGC1q1bs2DBAvr3758cN3/+fHr27EmdOnWqu2xJklTLBS4URaNRcnNz9zivY8eOdOzYEYArrriCq666ipYtW5Kbm8v8+fN59913mTNnTnWWK0mSAiJwoai8hgwZwrZt28jLy2P27NlkZWUxc+ZMcnJyaro0SZJUC+0XoSg3N5cPP/ywzPRhw4YxbNiwGqhIkiQFzX4RiiRJqkrhcIhwOBgX9YTgXrwxHk8Qj9fcpz8NRZIkfYtwOMTBjRokL0oaJEG7eGMsHmfzpuIaC0aGIkmSvkU4HCISDvPogr/z5cbKvXhvVQmFQkQiYWKxeGCuu3VY4waMOqk94XDIUCRJUm325cZi1q4vqukyyiUUCpGWFqGkJBaYUFQbBG9foCRJUhUwFEmSJGEokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiTAUCRJkgQYiiRJkgBDkSRJEmAokiRJAgxFkiRJgKFIkiQJMBRJkiQBhiJJkiQA0mq6AEnSvolEgvP3bWmtQaxZ+z9DkSQFVMMG6cTjCaLR+jVdyl4LYs3a/wUuFP3pT3/i6aef5m9/+xuFhYW0atWK0aNHc8YZZxAKhZLjnnjiCe69914+//xzsrKyGD9+PCeccEINVi5Jlate3TTC4RC/e/4ffLFha02XUy6hUIhIJEwsFieRSNR0OeXSrnVjBvXKSnmP0f4pcKHogQceoFmzZkycOJFGjRrx+uuvM2XKFNatW8eYMWMAeO6555gyZQqXXXYZPXr0YP78+YwZM4ZHHnmEbt261ewTkKRK9uXGYtauL6rpMsolFAqRlhahpCQWmFDUpJF7tQ4UgQtFd999N40bN07e79mzJ5s3b+b+++/nJz/5CeFwmDvuuIOTTz6ZcePGAdCjRw8++ugjZs2aRV5eXg1VLkmSarPAnT321UBUqn379hQVFVFcXMzq1atZtWoVgwYNShkzePBgli5dys6dO6urVEmSFCCBC0V78te//pWmTZty0EEHkZ+fD0BWVlbKmDZt2rBr1y5Wr15dEyVKkqRaLnCHz77uL3/5C/Pnz2fChAkAFBQUABCNRlPGld4vnb8v0tIqN0uWftwzFAoF50S+0H9uQwSj5mRvQwSnz2Cvq4t9rh72uXoEuM81eQmEQIeidevWMX78eHJzczn33HOr5THD4RCNGmVUybojkTBpaZEqWXdVSYsEp95IOJy8DVqfwV5XF/tcPexz9QhUn/8dhmrycg2BDUWFhYVcfPHFHHzwwdx5552E/73RZmZmArBlyxaaNGmSMv6r8ysqHk9QWFi8T+v4ukgkTDRan1gsTklJrFLXXWVCu3/ZSmIxCMYHSIjF48nbwPQZ7HV1sc/Vwz5XjyD2Oba7z4WF25I/V5ZotH659kAFMhRt376dSy+9lC1btjB37lwaNmyYnJednQ1Afn5+8ufS++np6bRo0WKfH7+kpHL/s0olEonAfEQ1uTs2QWBqTtYZoJrBXlcX+1w97HP1CHKfd+8gqJr32e8SuBOtS0pKGDduHPn5+dx77700bdo0ZX6LFi1o3bo1CxYsSJk+f/58evbsSZ06daqzXEmSFBCB21M0bdo0XnnlFSZOnEhRURFvv/12cl6HDh2oU6cOV1xxBVdddRUtW7YkNzeX+fPn8+677zJnzpyaK1ySJNVqgQtFS5YsAeCGG24oM++ll16iefPmDBkyhG3btpGXl8fs2bPJyspi5syZ5OTkVHe5kiQpIAIXil5++eVyjRs2bBjDhg2r4mokSdL+InDnFEmSJFUFQ5EkSRKGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSYCiSJEkCDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQJEmSBBiKJEmSAEORJEkSsJ+Hok8++YQf//jHdOvWjd69e3PTTTexc+fOmi5LkiTVQmk1XUBVKSgo4LzzzqN169bceeedfPHFF9xwww1s376dqVOn1nR5kiSpltlvQ9Fjjz3G1q1bmTlzJgcffDAAsViMadOmcemll9K0adOaLVCSJNUq++3hs8WLF9OzZ89kIAIYNGgQ8XicJUuW1FxhkiSpVtpv9xTl5+dzxhlnpEyLRqM0adKE/Pz8Cq83HA7RuHHGvpaXIhTafXvR6Z2JxROVum79R3ra7r8BLjytk32uYva6etjn6mGfq0ckvPvNMDOzPolKbnP43+v+LvttKCosLCQajZaZnpmZSUFBQYXXGwqFiETK19y9dVCDOlWyXqWyz9XHXlcP+1w97HP1CIdr7iDWfnv4TJIkaW/st6EoGo2yZcuWMtMLCgrIzMysgYokSVJttt+Gouzs7DLnDm3ZsoX169eTnZ1dQ1VJkqTaar8NRX379uX111+nsLAwOW3BggWEw2F69+5dg5VJkqTaKJRIVPY53rVDQUEBJ598MllZWVx66aXJizeecsopXrxRkiSVsd+GItj9NR+//OUvWb58ORkZGZx22mmMHz+eOnX8BIEkSUq1X4ciSZKk8tpvzymSJEnaG4YiSZIkDEWSJEmAoUiSJAkwFEmSJAGGIkmSJMBQtN+48847adeuHccddxzxeLzM/JEjR9KuXTsmTpy4z4/1wAMP0K5du+T9N954g3bt2vHee+/t87qrSnX2B4LZo8pgn+H3v/897dq1Y9WqVSnTH374Ydq1a8cdd9yRMn3z5s0cddRR5OXllfsx+vXrx7XXXpu8P3HiRIYMGbJPde+N0v/n0n+5ubmcddZZLFq0qNpqOBBU9bZU09tRbWQo2o+kp6ezadMmli1bljJ97dq1vP322zRo0KBKHrdjx47MnTuXNm3aVMn6K0tN9QeC06PKcKD3+eijjwZg+fLlKdPfeust6tevX2b68uXLSSQSfP/736+2GitDvXr1mDt3LnPnzuWXv/wlO3bs4LLLLuOtt96q6dL2GwfKtlSbGIr2I+np6fTt25fnnnsuZfpzzz3H9773PVq2bFklj3vQQQfRrVu3Kn2zqww11R+ovT1KJBLs3Lmzwsvv3LmzzB6hA73P2dnZNG7cuEw4eOuttxg6dChvv/02sVgsZXrdunXp1KlTdZe6T8LhMN26daNbt24MGDCAu+++m0QiwZNPPrlP692+fXvlFLgfOFC2pdrEULSfGTJkCM8//zy7du1KTnv22Wf3uEv0k08+4fLLL+f73/8+3bp145JLLuGzzz5LGVNUVMTVV19NTk4OPXr04Kabbkr5JYSyhyzWrFlDu3btWLBgQcq46667jn79+iXv//GPf0wud8EFF9C1a1cGDhzI66+/Tjwe57bbbqNXr1706tWLW2+9dY+HY6qyP7D/9ah09/iiRYs49dRT6dy5My+//DLFxcVce+21DBw4kK5du9KvXz+mTp3Kli1bUpYv3d2el5fHCSecQJcuXdi8eXOy1kcffZTi4mKWLVvGk08+mfIGdyD1+eijj055I/v8889Zt24d5557Ljt37uTDDz9Mznvrrbfo1KlT8uuH1q1bx1VXXUVubi5dunTh7LPP5v333//Wx6sNmjZtSuPGjfn8888B+PLLL/nZz37GiSeeSJcuXRgwYAC/+tWvyoTwdu3aMXv2bG6++WZ69+5Nz549gd2B/b777mPgwIF06tSJE088kQceeKC6n1aNq+i2FNTtqKYZivYzJ5xwAjt37mTJkiUAfPzxx3z44YcMHjw4Zdzq1asZOXIkBQUF3HDDDdxyyy1s3LiR888/P+VFa9KkSbzwwgtcddVV3HjjjXzyySc8+OCDlVrzhAkTOP7445k5cyaHHXYYY8aM4brrrmPdunXceOONjBo1itmzZ5fZ81AR5e0P7L89+vLLL5k+fTrnn38+eXl5tG/fnu3btxOLxRg/fjx5eXmMHTuWZcuW8ZOf/KTM8gsXLuTVV1/l5z//OXfddRcNGjTg/vvvZ/LkybRs2ZK6dety2WWXsWPHDq6++mrgwOvz0UcfzSeffEJBQQGw+83qv/7rv8jKyqJdu3bJN7ldu3bx3nvvJQ93FBQUMGrUKP7xj38wZcoU7rzzTurXr895553Hhg0bKvW5VratW7dSUFBA8+bNAdi0aRMHH3wwP/vZz7j33nu56KKLmDdvHr/4xS/KLPvQQw+xatUqrrvuOm6++WZgd3C94447OP3005k9ezZDhw7llltu4Xe/+121Pq+aVpFtKcjbUU1Lq+kCVLnq169Pv379eO655zj++ON59tlnycnJoUWLFinjZs6cSWZmJvfffz9169YFdv/ynXjiiTzxxBOcffbZfPzxxyxcuJDp06dz5plnAtCnTx8GDBhQqTWfc845jBo1Ctj91+Ypp5zC+++/z9y5cwE47rjjePnll1mwYAGnnHLKPj1WefsD+2+PCgoKyMvLo2vXrinTp02blvy5pKSE5s2bM2rUKFauXElWVlZy3q5du8jLy0seoioqKuKOO+7goosuIj09nY8++ogLL7yQP/3pT7zwwgts2rTpgOvz97//fRKJBG+//TY/+MEPWL58OTk5Ocnntnz5cs455xw++OADduzYkQxFDz74IIWFhTzxxBMccsghAPTs2ZOBAwdy3333JUNmbVFSUgLsDto333wzGRkZnHvuucDuPUATJkxIjj366KOpX78+EydOZOrUqdSvXz85LzMzk5kzZxIKhQD47LPPmDNnDtOmTWPEiBEA9OrVi+3btzNr1ixGjBhBOHxg/E1fkW0paNtRbXJgbFUHmCFDhvDSSy+xfft25s+fz8knn1xmzJIlS+jXrx+RSISSkhJKSkqIRqN06NAhuYv1vffeI5FI8MMf/jC5XCQSoX///pVab+/evZM/t27dGoAePXqkjMnKyuKf//xnpTxeefoD+2+PDj744DKBCODJJ5/k9NNPJycnh44dOybDwdc/+ZKbm5tyzs7y5cspLi7mpJNOIh6Pk0gkKCkpYdiwYcTjcf72t78dcH3u2LEj9erVS/4V/9ZbbyXfyLp165YyPRQKJectWbKE3NxcMjMzk70Ih8Mce+yxte6Ti8XFxXTs2JGOHTtywgkn8Pzzz3PTTTeRnZ0N7D789cADDzB48GC6dOlCx44dueqqqygpKWH16tUp6+rbt28yEAG8/vrrAAwYMCDZh5KSEnr16sX69esr7bUgCCqyLQVpO6pt3FO0H+rTpw/p6en8+te/Zs2aNQwaNKjMmE2bNvHggw/u8fBDeno6AOvXryc9PZ3MzMyU+aV/eVSWhg0bJn8uPa8iGo2WqWlfTgj+qvL0B/bfHh166KFlpr3wwgtMmDCBESNGMH78eA4++GDWr1/Pf//3f7Njx46UsV9/bps2bQJg6NChyWkdO3ZM/vzggw8ecH1OT0+nc+fOvPXWW2zdupUPP/ww+UaWk5OTPC/krbfe4sgjj0w+r02bNvH222+n9K9UVZ6gXhH16tVjzpw5JBIJVq1axa233sqECRN45plnOOyww3jwwQe58cYbueiii8jNzSUajfLee+9x7bXXlmubSiQSZQJpqX/+8580a9asyp5bbVKRbSlI21FtYyjaD6WnpzNgwAAeeOABevbsucc3wczMTH7wgx8k9wZ8VUZGBgBNmjRh165dFBQUpLwZfdcx6dJDIF89mRmgsLBwr59LVShPf2D/7dFX/yIvtWDBAtq3b59yzZI333yzXMuXPu+ZM2eyaNEinnnmGebMmQPAPffcw8svv3xA9rn0MMZf//pX6tSpQ/v27QFo1qwZTZo04a233mL58uUpJ3xnZmZy3HHHMXbs2DLrKw1ptUU4HKZz584AdOnShaysLIYPH86sWbOYNm0aCxYsoF+/fvz0pz9NLvPJJ5/scV172qZCoRCPPvpoMhh/1VcP5x4I9nZbCtJ2VNsYivZTw4YNY8OGDQwfPnyP83v27MmKFSvo0KEDkUhkj2NKX/BeeOGF5HkcsViMF1988Vsf+5BDDiE9PT3lBXDnzp1lrltTk76rP3Bg9Wj79u1l3nyeeeaZci2bk5ND/fr1WbduHU2bNk15s7z00ktJJBIHZJ+PPvpo7rnnHh555BE6d+5MWlpayrynnnqK9evXJ69FA7vPm3n66adp06ZNrbt8w3fp3LkzJ598Mn/84x8ZM2bMPm1TpZ9A27x5c0poPFDt7bYU5O2ophmK9lNdunThrrvu+sb5V155JWeeeSYXXnghw4cP59BDD+Vf//oXb775JscccwxDhgzhyCOP5Ic//CEzZsxgx44dNG/enEcffbTMX91fFw6H+eEPf8gjjzxCq1ataNSoUXI3+572UtSE7+oPHFg96tWrF9deey2zZs0iJyeHRYsWsXTp0nItG41GufLKK7n55pvp0KEDsViM1157jdWrV/PSSy8lP/nyTfbXPufk5BAOh1m0aBGXXHJJyrxu3bpx0003AaRcaO/888/nmWee4ZxzzuHcc8/liCOOYOPGjbzzzjs0bdqU888/v0pr3lc/+clPmD9/Pg8++CC9evXioYceYs6cObRu3Zqnn36aTz/9tFzrycrK4uyzz+bqq6/mwgsvpGvXruzatYtVq1bxxhtvfOfv7v5mb7eloG9HNclQdIBq1aoVTzzxBLfffjvTpk2juLiYJk2acOyxx6Z8bcKMGTO49tprueWWW6hTpw5Dhw6le/fuyV/CbzJlyhSmTJnC9OnTycjI4MILLyQrK4uXXnqpqp9apTmQejRy5EjWrFnDnDlzuO++++jTpw+33nrrt+7h+aoLLriApk2bcsMNN7Bjxw7Gjh1Ly5YtOf744/d4+OOr9tc+R6NRjjzySD766KPkOSClcnJySCQSHHbYYSmfyGvUqBFz587l9ttv55ZbbmHz5s0ccsghdO3aNeUk89oqOzubwYMH87vf/Y5XX32VTZs2Jb+KYuDAgUyePJnLLrusXOuaPHkyWVlZzJ07l1mzZpGRkUFWVhYnnXRSVT6FWmlvt6Wgb0c1KZRIJBI1XYQkSVJN8yP5kiRJGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSUpas2YN7dq147777qvSxxk9ejSjR4+u0seQtPcMRZIkSRiKJEmSAEORJEkSYCiSVMt98cUXTJo0iT59+tCpUyf69evHL37xC3bu3AnA6tWrufLKK+nevTtdu3Zl+PDhvPrqq2XWs2HDBiZNmkSvXr3o3Lkzp556KvPmzfvOx08kEkyZMoVOnTqxcOHC5PSnnnqKH/3oR3Tp0oXu3bszfvx4/vnPf5ZZfu7cufTv358uXbpw5pln8pe//KXizZBUpdJqugBJ+iZffPEFZ555Jlu2bGH48OFkZ2fzxRdf8Pzzz7N9+3YKCwsZOXIk27ZtY/To0TRq1Ih58+Zx+eWXc8cddyS/EXz79u2MHj2azz77jLPPPpvmzZuzYMECJk6cSGFhIeedd94eHz8WizFp0iTmz5/PzJkzOf744wG4++67+fWvf82gQYM488wz2bhxI3PmzOHss8/mySefJBqNAvDEE08wdepUcnJyOO+881i9ejWXX345mZmZ/Nd//Ve19FDSXkhIUi119dVXJ4466qjEu+++W2ZePB5PXHfddYm2bdsmli1blpxeVFSU6NevX+KEE05IxGKxRCKRSDzwwAOJtm3bJp566qnkuJ07dyZGjBiR6NatW2LLli2JRCKRWL16daJt27aJe++9N7Fr167EuHHjEl26dEn8+c9/Ti63Zs2aRPv27RN33313Sj0ffvhhokOHDsnpO3fuTPTs2TNx2mmnJXbs2JEcN3fu3ETbtm0T55xzTiV0SFJl8vCZpFopHo/z4osvcsIJJ9C5c+cy80OhEIsWLaJLly4cc8wxyekZGRmMGDGCtWvX8vHHHwOwePFimjRpwpAhQ5Lj0tPTGT16NMXFxSxbtixl3bt27WLs2LG8+uqrzJ49mz59+iTnvfDCC8TjcQYNGsTGjRuT/w499FBatWrFG2+8AcD777/Phg0bGDlyJHXq1EkuP3ToUBo2bFg5TZJUqTx8JqlW2rhxI0VFRXzve9/7xjGff/45Xbt2LTM9Ozs7Ob9t27asXbuWVq1aEQ6n/h3Ypk2b5Liv+s1vfkNxcTF5eXnk5uamzFu1ahWJRIIBAwbssaa0tLSUdbZq1Splfnp6Oi1atPjG5ySp5hiKJOlrjjvuOP785z9z7733kpubS926dZPz4vE4oVCIvLw8IpFImWUbNGhQnaVKqkSGIkm1UuPGjTnooINYsWLFN4454ogjWLlyZZnp+fn5yfkAzZo148MPPyQej6fsLfr6uFJdu3Zl5MiRXHrppYwdO5aZM2cm9wC1bNmSRCJB8+bNycrK+tbaAD799FN69uyZnL5r1y7WrFnDUUcd9a3PX1L185wiSbVSOBymf//+vPLKK7z33ntl5icSCX7wgx/w7rvvsnz58uT04uJiHn/8cZo1a8aRRx4JQN++fVm/fj3z589PjispKeHhhx+mQYMGHHvssWXW36tXL2677Tb+/Oc/c/XVVxOPxwEYMGAAkUiEmTNnkkgkytS0adMmADp16kTjxo157LHHkpcPAJg3bx6FhYX70BlJVSWU+PpvtSTVEl988QVnnHEGRUVFDB8+nDZt2rB+/XoWLFjAo48+ys6dOznttNPYsWMHo0ePJjMzkyeffJJ//OMf3HnnnSkfyf/Rj37EZ599xujRo2nWrBnPP/88b775JpMmTUp+JH/NmjWceOKJXH311Vx44YXA7usRTZgwgeHDh3PttdcCMHv2bG699VZycnLo378/GRkZrFmzhhdffJHhw4cnl507dy5Tp07l6KOPZvDgwaxZs4Y//vGPyY/kP/zwwzXQVUnfxMNnkmqtpk2b8vjjj/PrX/+aZ555hqKiIpo2bUrfvn2pV68e0WiUxx57jJtvvpk5c+awY8cO2rVrxz333JO8phBAvXr1ePjhh7nllluYN28eRUVFZGVlcf311/OjH/3oW2s47bTT2Lp1K9OmTSMjI4MJEyZwySWX0Lp1ax544AFmzZoFwOGHH07v3r3p169fctkRI0YQi8W47777uOmmm2jbtm3yGkeSah/3FEmSJOE5RZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEGIokSZIAQ5EkSRJgKJIkSQIMRZIkSYChSJIkCTAUSZIkAYYiSZIkwFAkSZIEwP8D2gBGn3vH2JkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=steak, x=\"cooked\")" + ] + }, + { + "cell_type": "markdown", + "id": "ee1b058c-71de-4141-b9e6-c1e66ebb6033", + "metadata": {}, + "source": [ + "### Number of people who like their steak rare, and who smoke" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "6abbe66a-565d-47a1-a6b0-b676c0362261", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "smoke cooked \n", + "No Medium 111\n", + " Medium Well 61\n", + " Medium rare 136\n", + " Rare 16\n", + " Well 30\n", + "Yes Medium 20\n", + " Medium Well 11\n", + " Medium rare 30\n", + " Rare 6\n", + " Well 5\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "counts = df.groupby([\"smoke\", 'cooked']).size()\n", + "print(counts)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "4751cff3-a23a-449d-b8f3-c52072d02768", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAG5CAYAAACAxkA+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUjtJREFUeJzt3XlcVPX+x/HXDAOIwCDgvqBAuYOaCy6IaZq5l2Wpqe0uXbe8lmZpWm5Ztrgb+jNtVbPVTE0zNTMrV8wsr+C+JQqDisIsvz+8zr1zxxWBmbH38/HwIfM933PO54wDvD3ne87X4HA4HIiIiIj8zRk9XYCIiIiIN1AoEhEREUGhSERERARQKBIREREBFIpEREREAIUiEREREUChSERERARQKBIREREBFIpEREREADB5ugBf43A4sNv1EHARERFfYTQaMBgM1+znVaFo//79zJ07l+3bt7Nnzx5iYmJYunTpFfuvWrWKf/zjH9x+++1u/bKyspgwYQKrVq0iNzeXpk2b8uKLL1KyZMmbqtFud3Dq1Nmb2oaIiIgUnoiIYPz8rh2KvOry2Z49e1i7di0VK1YkNjb2qn3Pnz/P+PHjKV68+GWXDx48mA0bNjB69Ghef/110tLSeOqpp7BarQVRuoiIiPg4rzpT1KJFC1q2bAnA8OHD2blz5xX7zp49m7Jly1K+fHm3flu3buWHH35g7ty5JCYmAhAdHU3btm1ZuXIlbdu2LbiDEBEREZ/kVWeKjMbrK+fAgQPMmzePF1988bLL161bh9lspkmTJs62mJgYqlWrxrp16/KlVhEREbm1eFUoul7jxo2jU6dOVK1a9bLLU1NTiY6OdhtUFRMTQ2pqamGUKCIiIj7Gqy6fXY/vvvuOrVu3snz58iv2sVgshIaGurWHhYVd9ZLc9TKZrp4l7XYbVqsN0F1qkh8M+Pn5YTQar+vuCRERyRufCkUXLlxg/PjxDBgwgIiICI/UYDQaCA8Pvuwyh8PB0aNHycjIwKE8JPnMZDJRqlRJwsLCFI5ERAqAT4Wi+fPnYzQaadeuHRaLBYDc3FzsdjsWi4UiRYoQEBCA2Wzm2LFjbutnZmYSFhZ2UzXY7Q4slnOXXXb69EnOnj1DSEgxAgIC9YtL8sXFZ2PZOH/+HAcPHuLUqUzCwy9/16WIiLgzm4Pw87v2iCGfCkWpqans37+fRo0auS2rX78+o0ePplu3bsTExLBx40YcDodLMElLS6Ny5co3XYfVandrs9ttnD2bRUhIOCEh5pveh8j/KlKkKGfO+HPmTCbBwWEYjX6eLklE5JbiU6Hoqaee4r777nNpe+edd0hLS2PChAlUqlQJgKSkJGbMmMHGjRtp3LgxcDEQ7dq1iyeffLJAarPZbAAEBAQWyPZFAAICigAZ2Gw2hSIRkXzmVaEoOzubtWvXAnD48GHOnDnjHFDdoEEDYmNj3R7q+Nlnn3H8+HESEhKcbXXq1CExMZERI0YwbNgwAgMDefPNN6lSpQp33313gR6DLplJQdLnS0Sk4HhVKEpPT2fQoEEubZdeL1iwwCX4XMtbb73FhAkTGDVqFFarlcTERF588UVMJq86ZBEREfESBodD90ndCJvNftm5z3Jzc0hPP0pkZBn8/QM8UJn8HehzJiJy4y7OfXbtgdY++fBGuXUcPXqExMR6fPjhewW6n/79e9O/f+8C3YeIiPg2hSIRERERvGxMkYiIeI7RaMBo9N7B/Ha7A7tdIz6k4CgUiYjIv5/WH+TVj3qw222cPp2tYCQFRqFI3Pz11wnmzJnFTz/9iMWSSfHiJUhIaMSgQUPx9/fn8OFDzJw5lc2bfyEn5wKxsbfz6KNP0rhxost2Tp8+xaxZ0/jxxx84e/YMFSpUpGvXh2nTpv1V9+9wOJg0aTzffPMVY8aMp1mzFgCsWLGMhQs/ZN++NAIDA2nQIIGnnx5EqVKlXdb/4otP+eCD+Zw8eZLY2Fj6938mf98gkVvQxbNEfqQtTSY7/ainy3ETFFmG6PZPYTQaFIqkwCgUiYuTJ//iqace4cyZLDp2vI+oqEqcPPkX33+/mvPnz5OVZaFfvyc4f/48DzzwEGFhYXzzzdcMHz6EV155lWbNmgNw4cJ5Bgzow6FDB7n//gcpU6Ysa9asZty40WRlZfHgg90uu3+bzcaECS/z3XffMn78686gNX/+XObMmUWLFi3p0OFeMjJOs2TJQvr3783//d8HzgmAly79nNdeG09cXDwPPtiNI0cOM2zYEMxmMyVLliqcN1HEh2WnHyX7+AFPlyHiEQpF4mLWrGmcOpXOO++8S9Wq1Z3tTz7ZF4fDwdSpb3DqVDrTp8+hVq3aAHTocB+PPNKNadPepGnTZhiNRr744jP27Utj1KhXuPvuNgDce+8D9O/fm+TkmbRv35GiRV0n1rVarbzyykh++GEdEye+QYMGDQE4duwo//d/7/DUU/3o1etxZ/9mzZrz2GMP89lni+nV63GsViuzZ8/g9tsrM2XKbPz9/QGoVCmGSZPGKRSJiMhV6e4zcbLb7axf/z1NmjR1CUSXGAwGNm7cQLVqNZyBCKBo0aJ07HgfR48eYd++VAB++mkDkZGRtGzZ2tnPZDLxwAMPkZ19jq1bt7hs22rNZeTI4fz44w+89trbzkAEsHbtd9jtdlq0aEVGRobzT0REcSpUiGLLll8B2L17F6dPn6JTp/udgQigbdsOhISE5MM7JCIitzKdKRKnjIzTnD17lujo2Cv2OX78GNWr13RrvzTv3LFjx4iJuY1jx45SvnwURqNr7q5YMfrf/VzHLLz33rtkZ5/j9dencMcd9VyWHTx4EIfDQdeurvPeXeLnZ3LZZoUKUS7LTSYTZcuWu+IxiYiIgEKReImEhIZs2rSRDz9cQJ06dQkM/M/Eug6HHYPBwOuvT3ELWQBBQUULs1QREblFKRSJU7Fi4QQHB5OWtveKfUqVKs2BA/vd2vfv3wdA6dKl//13Gfbu3YPdbncJMgcO7HMu/2/Vq8fRqdP9DBv2DCNHDmf8+Nec89SVK1ceh8NBmTJliYqqeMXaLm3z4MED1K1b39lutVo5cuQIt912+1WOXkRE/u40pkicjEYjTZveyYYN69m9e5fbcofDQaNGTfj999/YuXOHsz07O5svv/yMMmXKUqlSDAANGzYhPT2d1atXOvtZrVY++WQhQUFFqVPnDrft16+fwOjR49m06UdeeWUUdrsdgGbNWuDn58e8ecn871R9DoeDzMwMAKpWrU6xYuF88cUScnNznX2WLfuKM2ey8v7GiIjI34LOFImLPn3+wS+//ET//r3p2PE+KlaMJj39JGvWrGLGjLn06PEoq1atZOjQgTzwQFfMZjPffLOUo0ePMHbsJOdZoU6d7uPLLz9l/Pgx/PHHbsqUKcOaNatJSdnOwIH/dLvz7JKkpDsZMeIlxo59ieDgYJ577gXKlSvPk0/2Y/bsaRw7doSmTe+kaNGiHDlyhHXrvqdjx/vo3r0nJpOJp57qx2uvjWfgwL7cdVcrjh49wtdff6UxRSIick0KReKiRImSzJ49nzlzZrJy5XLOnTtL8eIlaNiwMUWKFCE0NJSZM+cyc+ZUPvlkITk5OcTG3sarr77p8vDGwMAiTJ06m5kzp7J8+VLOnj1LVFRFRox4ibZtO1y1htat23Lu3DkmT55IcHAI//jHIHr2fJSoqCgWLvyQefOSAShZshQNGiSQmJjkXLdTp87Y7XY+/PA9ZsyYQkzMbbz66hskJ88smDdMRERuGQbH/16PkKuy2eycOnXWrT03N4f09KNERpbB3z/AA5XJ34E+Z1JQTCYj4eHB7Jr/slc+vDGoVBTVHxnF6dNnsVrtni5HfExERDB+ftceMaQxRSIiIiIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkWFwmg0YDIZPfLHaDTkqea5c2eTmFiPe+9t45yt/r/16/c4iYn1GDdu9E2+O7Bo0YckJtZzvt6y5VcSE+uxe/eum962iIjI9dKEsAXMaDRQrFjR65pzpSDYbHYyMs5ht9/4FHcmk4nMzAy2bdvCHXf8J7QcO3aUnTtTCAoqmp+lOlWpUpVZs+ZRsWJ0gWxfRETkchSKCpjRaMDPz8j0jzZw+ERmoe67XMkw/tGtCUajIU+hyN/fn3r1GrBq1QqXULRq1Qqio2MwGv3ys1yn4OAQataMK5Bti4iIXIlCUSE5fCKTfYdPe7qMG9ayZWsmT36VIUOGYTJd/Lh8++0KWrW6h9Wrv3Xpu29fGrNmTWXr1s3YbDbq1KnL4MHPUq5ceWefs2fP8MYbk1i37nsCAwNo27YDxYpFuGxny5ZfGTiwL3PmLKBq1eocPXqELl068sorE2nevKWz39tvT2b9+u/55JOvAFi27CvGjx/DnDkLmD17Ojt2bKNkyVIMGTKMunXrM2fOLL766nMA2rXrSO/eT2M06gqyiIhcpN8IclVNmiSRm5vDzz//BEBaWip79+7hrrvudul3+PAh+vZ9HIvFwogRo3nppbFkZJxm0KB+5OTkOPtNmPAy69Z9T9++/XnhhdHs25fG4sUf5WvNY8e+ROPGTRk//nWKFy/BCy88x9tvv86JE8d58cUxdO7chffff5dVq1bm635FRMS36UyRXFWRIkVITGzG6tUraNw4kVWrVlCzZjxly5Zz6TdvXjJms5k335xOYGAgADVr1uLBBzuxdOkXdO7chbS0VNauXcOwYS/Svn0nABo0aETXrp3zteb773+I++57AIASJUrQq1dXdu/+ndmz5wGQkNCIH35Yx5o1q7j77nvydd8iIuK7dKZIrqlly9asX7+OCxfOs3r1Slq2vNutzy+//ERiYhJ+fn5YrVasViuhoaFUrlzFeRfZ7t27cDgcJCU1d67n5+dHUlKzfK23fv0E59cVKlQEoG7d+i59KlSI4sSJ4/m6XxER8W06UyTXlJDQCJPJxJw5szl69AgtWrRy65ORkcGiRR+xaJH7pTCTyR+AkydPYjKZMJvNLsvDwyPc1rkZISGhzq/9/f3d2i615+RcyNf9ioiIb1MokmsymUw0a9aChQs/oG7d+kRERLr1MZvDaNSoCZ07d3FbVrToxVv3ixcvjtVqxWKxuASj06dPXXX/AQEBAOTmWl3as7IsN3wsIiIiV6JQJNelQ4dOZGScokOH+y67vF69BqSl7eX226vg53f5W/WrVq0OwLp1a5xjimw2G+vWrb3qvsPDIzCZTOzfn+Zsy83NZdu2LXk5FBERkctSKJLrUr16TSZMmHzF5U880Ycnn+zFkCED6NjxPiIiIjh1Kp2tW7dQq1ZtWrW6h+joGJKSmjNlyhvk5ORQpkwZPvvsE6zW3Kvu22g00qxZc5YsWUT58hUICyvGkiWLcDgcGAx5e2K3iIjI/1IoKiTlSobd0vssX74CycnzSU6eyRtvTCQ7O5vIyOLUqlWH2Njbnf2ef34Ub745iZkzpxAQEMA997Sndu26zJjx9lW3P3jwc0yaNI633nqNokWD6datJ1FRFVm//vsCPS4REfn7MDgcjht/1PHfmM1m59Sps27tubk5pKcfJTKyDP7+Ac52X57mQ7zPlT5nIjfLZDISHh7Mrvkvk338gKfLcRNUKorqj4zi9OmzWK3u8zGKXE1ERPB1/R7WmaICZrc7yMg4l+eJWfNj/wpEIiIi1+ZVoWj//v3MnTuX7du3s2fPHmJiYli6dKlz+ZkzZ5g3bx5r165l3759BAQEEB8fzzPPPEOVKlVctpWVlcWECRNYtWoVubm5NG3alBdffJGSJUsW9mEpmIiIiPgAr3p44549e1i7di0VK1YkNjbWbfmRI0dYuHAhTZo04a233uKVV14hKyuLhx56iL1797r0HTx4MBs2bGD06NG8/vrrpKWl8dRTT2G1Wt22KyIiIuJVZ4patGhBy5YXJ/wcPnw4O3fudFlevnx5vv32W4KCgpxtDRs2pEWLFnz44YeMHDkSgK1bt/LDDz8wd+5cEhMTAYiOjqZt27asXLmStm3bFtIRiYiIiK/wqjNF15qxvGjRoi6BCCA4OJioqChOnDjhbFu3bh1ms5kmTZo422JiYqhWrRrr1q3L36JFRETkluBVoSgvLBaLc/zRJampqURHR7s9wyYmJobU1NTCLlFERER8gFddPsuL1157DYPBQLdu3ZxtFouF0NBQt75hYWFul+TywmRyz5J2ux4iKIXHz89w2c+hSF556rEhN8pX6hTf5NOhaMmSJSxatIiJEydSunTpQtmn0WggPDzYrf38eT9OnjTql5UUKLvdgNFoJCysKEWKFPF0OSKFzmwOunYnkTzy2VC0du1aRo0axdNPP81997nOx2U2mzl27JjbOpmZmYSF3dxTnu12BxbLObf2nJwL2O12bDaHHiwmBcZmc2C328nMPEd2ts3T5cgtxM/P6BOBw2LJxmbTz1i5MWZz0K378MZt27YxaNAg7r33XgYNGuS2PCYmho0bN7rNjZWWlkblypVvev+XCz02m55DJIVH4Vv+rmw2uz77UmB87jrPv/71L/r06UPDhg0ZM2bMZfskJSWRmZnJxo0bnW1paWns2rWLpKSkwirVyWi8eEnNE3/y8iTtuXNnk5hYj3vvbYPd7v7Dp1+/x0lMrMe4caPz4d2BRYs+JDGxnvP1li2/kphYj927d+XL9kVERK6HV50pys7OZu3atQAcPnyYM2fOsHz5cgAaNGiAw+HgiSeeIDAwkEceecRl0HRISAi33XYbAHXq1CExMZERI0YwbNgwAgMDefPNN6lSpQp33313oR7TxTFIQRiNfoW630vsdhunT2ff8BO1TSYTmZkZbNu2hTvu+E9gOXbsKDt3phAUVDS/S3WqUqUqs2bNo2LF6ALbh4iIyP/yqlCUnp7udjns0usFCxYAOMcKPfrooy79GjRowHvvved8/dZbbzFhwgRGjRqF1WolMTGRF198EZOpcA/ZaDRgNPqRtjSZ7PSjhbrvoMgyRLd/CqPRcMOhyN/fn3r1GrBq1QqXULRq1Qqio2MKNOQFB4dQs2ZcgW0/rxwOB7m5uQQE5G0i1pycHEwm0zWfxyUiIp7hVaGofPny/PHHH1ftc63ll4SGhjJ+/HjGjx+fH6XdtOz0o1458/TVtGzZmsmTX2XIkGHOMPnttyto1eoeVq/+1q3/vn1pzJo1la1bN2Oz2ahTpy6DBz9LuXLlnX3Onj3DG29MYt267wkMDKBt2w4UKxbhsp0tW35l4MC+zJmzgKpVq3P06BG6dOnIK69MpHnzls5+b789mfXrv+eTT74CYNmyrxg/fgxz5ixg9uzp7NixjZIlSzFkyDDq1q3PnDmz+OqrzwFo164jvXs/fdWAMm7caHbv3sXTTw9k1qzp7N+fxksvjaVhwybMnDmFX37ZxIkTxwkPjyAhoRH9+g0kJCTEuf4DD3SgceNESpUqzaefLubEieN89dW3FCtWjGXLvmLhwg84ePAAZnMYbdq058kn++Ln55kziiIi4mWhSLxLkyZJTJz4Cj///BONGyeSlpbK3r17mDDhdbdQdPjwIfr2fZyYmFhGjBiN0WhgwYL/Y9Cgfnz44RLn2ZUJE15m06af6Nu3P2XLluWzzz5hz54V+Vr32LEv0anT/XTt2oP333+XF154jjZt2nH27FlefHEMu3btZO7c2cTE3Mbdd99z1W2dPHmSt956nUceeYJSpUpTqlRpzp8/j91up3fvpylWLJwTJ46zYMH/8fzz/2Tq1Nku669d+x3ly0cxaNBQjEYjQUFF+Pjj95k5cyoPPtid/v0Hs2/fPt55ZwZ2u51+/Qbk63shIiLXT6FIrqhIkSIkJjZj9eoVNG6cyKpVK6hZM56yZcu59Z03Lxmz2cybb04nMDAQgJo1a/Hgg51YuvQLOnfuQlpaKmvXrmHYsBdp374TAA0aNKJr1875Wvf99z/Effc9AECJEiXo1asru3f/zuzZ8wBISGjEDz+sY82aVdcMRVlZFl5/fQo1atR0aR869Hnn11arlTJlyvL0009y4MB+oqIquix7/fUpzulpzp07y9y579C9ey/69PkHAPXrN8Tf38TUqW/SvXtPwsKK3fR7ICIiN06DG+SqWrZszfr167hw4TyrV6+kZcvLD1T/5ZefSExMws/PD6vVitVqJTQ0lMqVqzjvItu9excOh4OkpObO9fz8/EhKapavNdevn+D8ukKFiwGlbt36Ln0qVIjixInj19xWWFiYWyACWL78ax57rDutWjXlzjsb8vTTTwJw8KDrJdI6deq6zNeXkrKD7OxzNG9+l/N9slqt1KuXwIULF0hN3Xv9ByoiIvlKZ4rkqhISGmEymZgzZzZHjx6hRYtWl+2XkZHBokUfsWjRR27LTCZ/4OKlKJPJhNlsdlkeHh7hts7NCAn5zxQv/v7+bm2X2nNyLlxzW+HhkW5ta9euYezYl+jY8T56934as7kY6eknGTFiqNs2/3f9zMwMAB5/vMdl93c9QU1ERAqGQpFclclkolmzFixc+AF169YnIsI9JACYzWE0atSEzp27uC0rWvTi7fvFixfHarVisVhcgtHp06euWsOl8Ui5uVaX9qwsyw0dS14YLvOYpzVrVnH77ZV57rkXnG1bt26+rvVDQy8e97hxr1GqVCm3/mXKlM17sSIiclMUiuSaOnToREbGKTp0uO+KferVa0Ba2l5uv73KFe+gqlq1OgDr1q1xjimy2WysW7f2qvsPD4/AZDKxf3+asy03N5dt27bc6KHkiwsXLjjPfl2ycuXy61q3Zs14ihQpwl9/HadZs+bXXkFERAqNQpFcU/XqNZkwYfJV+zzxRB+efLIXQ4YMoGPH+4iIiODUqXS2bt1CrVq1adXqHqKjY0hKas6UKW+Qk5NDmTJl+OyzT7Bac6+6baPRSLNmzVmyZBHly1cgLKwYS5YscpvGpbDUr5/AG2+8yrvvzqFGjTh++mkDmzf/fF3rhoaG8sQTfZkxYyonTpygTp26+Pn5ceTIIdavX8e4cZM00auIiIcoFBWSoMgyt/Q+y5evQHLyfJKTZ/LGGxPJzs4mMrI4tWrVITb2dme/558fxZtvTmLmzCkEBARwzz3tqV27LjNmvH3V7Q8e/ByTJo3jrbdeo2jRYLp160lUVEXWr/++QI/rcjp16syRI4f55JOFfPjhezRo0JCXXhpHnz6PXtf63br1oESJEixc+AFLlizEZDJRrlx5GjduWugPFxURkf8wOBwOzWR6A2w2O6dOnXVrz83NIT39KJGRZfD3/88Tj311mg/xTlf6nIncLJPJSHh4MLvmv+yVD5oNKhVF9UdGcfr0WU0IKzcsIiIYP79r33Cv/5YWMLvdwenT2XmamDW/9q9AJCIicm0KRYVAwURERMT76eGNIiIiIigUiYiIiAAKRSIiIiKAQpGIiIgIoIHWIiKFxmg0eOxO1Gu5ntuVRW51CkUiIoXAaDRQrFhRhQ8RL6ZQJCJSCIxGA35+RqZ/tIHDJzI9XY6bWlXK8tA9tT1dhohHKRSJiBSiwycy2Xf4tKfLcFO2hNnTJYh4nM7jFgKj0YDJZPTIn7yMX5g7dzaJifW499422O3uj9Pv1+9xEhPrMW7c6Hx4d2DRog9JTKznfL1ly68kJtZj9+5d+bL9vFi69AsSE+tx8KDrdAeffPIxiYn1mDt3tku7xZJJ06b1+eCD+de9jwce6MAbb7zqfD1u3Gh69nzw5goXEZE805miAmY0GigWHoSfh+Y+s9ltZORh7jOTyURmZgbbtm3hjjv+E1iOHTvKzp0pBAUVze9SnapUqcqsWfOoWDG6wPZxLfHxtQDYuXMHFSpEOdtTUrZTpEgRUlK2u/RPSdmBw+EgPr52YZYpIiL5SKGogBmNBvyMfsxeu4AjmccLdd9lw0rRp1kvjEbDDYcif39/6tVrwKpVK1xC0apVK4iOjinQCW6Dg0OoWTOuwLZ/PaKiKlGsWDg7dmynTZv2zvaUlB20adOB5cu/xmaz4efn9+/27QQEBFK1anVPlSwiIjdJoaiQHMk8zv70Q54u44a0bNmayZNfZciQYZhMFz8q3367glat7mH16m/d+u/bl8asWVPZunUzNpuNOnXqMnjws5QrV97Z5+zZM7zxxiTWrfuewMAA2rbtQLFiES7b2bLlVwYO7MucOQuoWrU6R48eoUuXjrzyykSaN2/p7Pf225NZv/57PvnkKwCWLfuK8ePHMGfOAmbPns6OHdsoWbIUQ4YMo27d+syZM4uvvvocgHbtOtK799MYjVe+ghwXV8vljNCxY8c4ceI4Xbp05csvP2Xv3j1UrlwVuBiKqlathr+/PwAnThxn1qxpbNr0I9nZ56lWrToDBgyhatVq1/8PICIihUpjiuSKmjRJIjc3h59//gmAtLRU9u7dw1133e3W9/DhQ/Tt+zgWi4URI0bz0ktjycg4zaBB/cjJyXH2mzDhZdat+56+ffvzwguj2bcvjcWLP8rXuseOfYnGjZsyfvzrFC9eghdeeI63336dEyeO8+KLY+jcuQvvv/8uq1atvOp24uJqsX9/GhaLBYCUlIshKyqqIrfdVtkZmKxWK7//vst56cxisfD000+yZ88fDB78LOPGvUqRIkEMGtSX06dP5euxiohI/lEokisqUqQIiYnNWL16BXDx0lnNmvGULVvOre+8ecmYzWbefHM6zZo1p2nTO5k06W0yMzNZuvQL4GKoWrt2DYMG/ZP773+QRo0SmTBhMiaTf77Wff/9D9GlS1cSEhrxzDPPcu7cWXbv/p0XXxxDQkIjHnvsKapUqcaaNauuup34+No4HA5++20HcHF8UVxcPABxcfGkpFxs/+OP3eTkXHCGosWLP+LMmSymTJlFq1b3/Ps4XyckJJSPPnovX49VRETyj0KRXFXLlq1Zv34dFy6cZ/XqlbRs6X6WCOCXX34iMTEJPz8/rFYrVquV0NBQKleu4ryLbPfuXTgcDpKSmjvX8/PzIympWb7WXL9+gvPrChUqAlC3bn2XPhUqRHHixNXHeFWtWo3AwEB27Lh4RiglZTs1a14cgF2jRpzzTFFKyjYMBgM1a14MTD///BN16tQjNNTsfC+MRiO1a9/B77977o46ERG5Oo0pkqtKSGiEyWRizpzZHD16hBYtWl22X0ZGBosWfcSiRe6Xwi6dCTp58iQmkwmz2fV5KOHhEW7r3IyQkFDn15fG+Px326X2nJwLV92OyWSiWrUapKRs59y5c+zd+6//OlNUi+PHL44xSknZTqVK0c7jyszM4LffUrjzzoZu2/zv8VUiIuJdFIrkqkwmE82atWDhwg+oW7c+ERGRl+1nNofRqFETOnfu4rasaNGLt+8XL14cq9WKxWJxCUbXGmcTEBAAQG6u1aU9K8tyQ8eSF3FxtVi8+CN27NiGv78/t91WGYDSpcsQGVmclJTt7Ny5g8TE/5ztCg01k5DQmKee6uu2PX//gAKvWURE8kahSK6pQ4dOZGScokOH+67Yp169BqSl7eX226s4b1P/X5duV1+3bg3t23cCwGazsW7d2qvuPzw8ApPJxP79ac623Nxctm3bcqOHcsPi42vz3nvz+PTTRVStWt15Fx5cHFe0YsUy0tPTiYur5WyvV68BK1d+Q8WK0QQFBRV4jSIikj8UigpJ2bBSPrvP6tVrMmHC5Kv2eeKJPjz5ZC+GDBlAx473ERERwalT6WzduoVatWrTqtU9REfHkJTUnClT3iAnJ4cyZcrw2WefYLXmXnXbRqORZs2as2TJIsqXr0BYWDGWLFmEw+HAYCjYGcdr1ozHaDSyceMGevR41GVZjRrxzJjxNoDLQxu7dn2Yb79dTv/+venSpSulSpUmI+M0u3b9RvHixXnooYcLtGYREckbhaICZrc7sNlt9GnWyyP7t9ltN/zgxrwoX74CycnzSU6eyRtvTCQ7O5vIyOLUqlWH2Njbnf2ef34Ub745iZkzpxAQEMA997Sndu26znBxJYMHP8ekSeN4663XKFo0mG7dehIVVZH1678v0OMKDQ0lOjqGvXv/5RxIfUlcXDwOh4PixUu43JEXFlaM2bPnkZw8k5kzp2KxZBIeHkH16jVJSrqzQOsVEZG8MzgcjoL/jXkLsdnsnDp11q09NzeH9PSjREaWcRs3YjQa8jQHWX6w2x2FEoqkcFztcybezWQyEh4ezIi3l3nlhLCNa1ekf/dEds1/mezjB669QiELKhVF9UdGcfr0WaxW9zkZRa4mIiIYP79r33CvM0WFQMFERETE++k5RSIiIiIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgAXhaK9u/fz6hRo+jUqRPVq1enffv2l+23ePFiWrduTVxcHB07dmTNmjVufbKyshgxYgQNGjSgTp06DBw4kBMnThT0IYiIiIiP8qpQtGfPHtauXUvFihWJjY29bJ+vv/6akSNH0qZNG5KTk6lduzb9+/dn27ZtLv0GDx7Mhg0bGD16NK+//jppaWk89dRTWK3Wy25XRERE/t686uGNLVq0oGXLlgAMHz6cnTt3uvWZMmUK7dq1Y/DgwQA0bNiQP//8k+nTp5OcnAzA1q1b+eGHH5g7dy6JiYkAREdH07ZtW1auXEnbtm0L54D+zRefaD137mzmzUt2vjabw6hYsRK9ej1Go0aJ+VmiiIiIV/CqUGQ0Xv3E1cGDB9m3bx/PPvusS3vbtm2ZNGkSOTk5BAQEsG7dOsxmM02aNHH2iYmJoVq1aqxbt65QQ5HRaCC8WBDGK8wcX9DsNhunM7LzFIwCAwN5++1ZAKSn/8WCBfMYNmwI06cnu8wKLyIicivwqlB0LampqcDFsz7/LTY2ltzcXA4ePEhsbCypqalER0e7zaAeExPj3MbNMJncw5vdfvkzQUajAaOfH9tmzubMkaM3ve8bEVK2DLX79cFoNOQpFBmNRmrWjHO+rl69Jp07t+Obb5beVCi6cOE8gYFF8ry+gJ+f4bKfQ/Fe1zPvklyb3kcpSD4VijIzMwEwm80u7ZdeX1pusVgIDQ11Wz8sLOyyl+RuhNFoIDw82K39/Hk/Tp40uv2yuvQNfObIUSz799/UvvMqLz9ELl3u++9jKVOmNMWKhXPixHFMJiMnT/7FrFnT2bJlM+npJylRoiR33dWSJ57oQ0DAfyYrbdjwDp5+egAWi4Vly5Zy/nw23333Aw6Hgw8/fI/PP/+UY8eOUqJESbp0eYhu3Xrc/EHfoux2A0ajkbCwohQpomApfz9mc5CnS5BbmE+FIm9gtzuwWM65tefkXMBut2OzObxuBmebzX7DNV06s/Tf6507dw6LJZPSpctitdpJTz9NSIiZ/v2fITQ0lIMHD/B///cOf/11khEjXnLZ3sKFH1K9ehzDh4/EZrNitdp5663X+Oqrz+nV63GqV6/Jzp07mD59Cv7+Adx77wM3f+C3IJvNgd1uJzPzHNnZNk+XIzfAz8+oX+j5wGLJxmbzrp+x4v3M5qDrOkHgU6EoLCwMuHi7fYkSJZztFovFZbnZbObYsWNu62dmZjr73IzLBQyb7cYvT/mCS3frnTx5kpkz36Zo0WAefLArALGxt9G//2Bn37i4WhQpEsS4cS8xZMgwlzMZoaFhjB//mvOS5uHDh1iyZBFDhz5Pp06dAahfP4Hz588zb14yHTt2vuYYs78zbwzfIoUhL//JE7lePhWKYmJigItjiy59fem1v78/FSpUcPbbuHEjDofDZVxRWloalStXLtyifVh2djZ33tnQ+drPz48JEyYTFVUJAIfDweLFH/Hll59x5MgRcnIuOPseOXKImJjbnK8bNmzs8m/xyy+bALjzzhYuj0moV68BH3wwnxMnjlO6dJmCOjQRERE3PhWKKlSoQKVKlVi+fLnz1n2AZcuW0ahRI+c4lqSkJGbMmMHGjRtp3LgxcDEQ7dq1iyeffNIjtfuiwMBApk9Pxm63c+jQQWbNmsbYsS+xYMFCihcvzqJFHzJ9+tt0796LO+6oR2hoKL//vos33niVnJwcl21FRES4vM7MzMDhcNCuXUsu5/hxhSIRESlcXhWKsrOzWbt2LQCHDx/mzJkzLF++HIAGDRoQERHBgAEDGDp0KFFRUSQkJLBs2TJ27NjB+++/79xOnTp1SExMZMSIEQwbNozAwEDefPNNqlSpwt133+2RY/NFRqORqlWrAxfvPIuKqkjv3o/y7rvJDB36PGvWrKZJkyT69u3vXGffvrQrbM317jyzOQyDwcCMGXPw9/d36x0VVTHfjkNEROR6eFUoSk9PZ9CgQS5tl14vWLCAhIQE2rdvT3Z2NsnJybzzzjtER0czbdo06tSp47LeW2+9xYQJExg1ahRWq5XExERefPFFTCavOmSfUrVqdVq2bM2yZV/x2GNPceHCebdAs3LlN9e1rbp16wMXx3klJible60iIiI3yqsSQvny5fnjjz+u2a9Lly506dLlqn1CQ0MZP34848ePz6/yBHj00SdYvXolixZ9RP36CSxe/DFLliykQoWKrFixjEOHDl3XdqKiKtK5cxfGjh1Ft249qV69JlarlYMHD7B1669MmDC5gI9ERETElVeFoltZSNnCHx9TEPuMiqrEXXfdzeeff8KSJV+TkZHBnDmzAbjzzrsYPHgow4Y9c13bGjz4WaKiKvLFF5/y7rtzCAoqSlRURZo3vyvf6xYREbkWg8PhuDXvJS8gNpudU6fOurXn5uaQnn6UyMgy+Pv/58GFvjzNh3ifK33OxPuZTEbCw4MZ8fYy9h0+7ely3DSuXZH+3RPZNf9lso8f8HQ5boJKRVH9kVGcPn1Wt+TLDYuICL71nlPki+x2B6czsn1uQlgREZG/G4WiQqBgIiIi4v30yGARERERFIpEREREAIUiEREREUChSERERARQKBIREREBFIpEREREAIUiEREREUChSERERARQKCoURqMBk8nokT95eZL20qVfkJhYj4MHXR/1/8knH5OYWI+5c2e7tFssmTRtWp8PPph/Xdt/4IEOvPHGq87X48aNpmfPB2+4ThERkfykJ1oXMKPRQLFiRa9rzpWCYLPZycg4d0NP1I6PrwXAzp07qFAhytmekrKdIkWKkJKy3aV/SsoOHA4H8fG186VmERERT1AoKmBGowE/PyNfLNrEyb+yCnXfxUuE0unBBIxGww2FoqioShQrFs6OHdtp06a9sz0lZQdt2nRg+fKvsdls+P17ktuUlO0EBARStWr1fD8GERGRwqJQVEhO/pXF8SMZni7jusXF1XI5I3Ts2DFOnDhOly5d+fLLT9m7dw+VK1cFLoaiqlWr4e/vz4kTx5k1axqbNv1IdvZ5qlWrzoABQ6hatZqnDkVEROS6aEyRXFZcXC3270/DYrEAkJKyjZIlSxEVVZHbbqvsDExWq5Xff99FfHxtLBYLTz/9JHv2/MHgwc8ybtyrFCkSxKBBfTl9+pQnD0dEROSaFIrksuLja+NwOPjttx3AxfFFcXHxAMTFxZOScrH9jz92k5Nzgfj42ixe/BFnzmQxZcosWrW6h0aNEpkw4XVCQkL56KP3PHYsIiIi10OhSC6ratVqBAYGsmPHxTNCKSnbqVnz4gDsGjXinGeKUlK2YTAYqFkznp9//ok6deoRGmrGarVitVoxGo3Urn0Hv/++y2PHIiIicj00pkguy2QyUa1aDVJStnPu3Dn27v3Xf50pqsXx4xfHGKWkbKdSpWjMZjOZmRn89lsKd97Z0G175cqVL+xDEBERuSEKRXJFcXG1WLz4I3bs2Ia/vz+33VYZgNKlyxAZWZyUlO3s3LmDxMRmAISGmklIaMxTT/V125a/f0Ch1i4iInKjFIrkiuLja/Pee/P49NNFVK1aHZPpPx+XuLh4VqxYRnp6OnFxFy+r1avXgJUrv6FixWiCgoI8VbaIiEieaEyRXFHNmvEYjUY2btzgDD6X1KgRz8aNGwCcD23s2vVhDAYD/fv3Zvnyr9m6dTNr1qxi+vS3Wbjwg8IuX0RE5IboTFEhKV4i1Of2GRoaSnR0DHv3/ouaNeNdlsXFxeNwOChevARly5YDICysGLNnzyM5eSYzZ07FYskkPDyC6tVrkpR0503VIiIiUtAUigqY3e7AZrPT6cEEj+zfZrPf0NOs/9f8+R9ftr1mzXh++OFXt/bIyOIMHz7yqtv85JOvXF6/8MLoPNcnIiKSXxSKCpjd7iAj41yeJmbNr/3fTCgSERH5u1AoKgQKJiIiIt5PA61FREREUCgSERERARSKRERERACFonzncGjskBQcfb5ERAqOQlE+8fPzAyAn54KHK5FbWU7OecDg/LyJiEj+0d1n+cRo9CMoKIQzZ04DEBAQiMHgmdvw5dbicDiw222cP3+O8+fPEhQUgtGoUCQikt8UivKR2RwB4AxGIvnJaPTDbI4kKCjY06WIiNySFIrykcFgICwsktDQcGw2q6fLkVuI0eiH0WjU2UcRkQKkUFQAjEYjRmOAp8sQERGRG6CB1iIiIiIoFImIiIgACkUiIiIigI+GotWrV9OlSxfq1KlDYmIigwYN4uDBg279Fi9eTOvWrYmLi6Njx46sWbPGA9WKiIiIL/C5ULRp0yb69+/PbbfdxvTp0xkxYgS7d+/m8ccf5/z5885+X3/9NSNHjqRNmzYkJydTu3Zt+vfvz7Zt2zxXvIiIiHgtn7v77Ouvv6Zs2bKMHz/eeXtyREQEjzzyCDt37qRevXoATJkyhXbt2jF48GAAGjZsyJ9//sn06dNJTk72VPkiIiLipXzuTJHVaiU4ONjleS2hoaHAf+aFOnjwIPv27aNNmzYu67Zt25aNGzeSk5NTeAWLiIiIT/C5M0WdO3fmiy++4IMPPqBjx45kZGTwxhtvUL16de644w4AUlNTAYiOjnZZNzY2ltzcXA4ePEhsbGyeazCZfC5LioiH+fnp50Z+0PsoBcnnQlG9evWYNm0a//znP3n55ZcBqFatGnPmzHFOkpmZmQmA2Wx2WffS60vL88JoNBAermkWREQ8wWwO8nQJcgvLcyj6/PPPqVevHuXLl7/s8kOHDvHrr79y77335nUXl7Vlyxaee+45HnzwQe68804yMjKYMWMGvXv35sMPP6RIkSL5ur//Zbc7sFjOFeg+ROTW4+dn1C/0fGCxZGOz2T1dhvgYsznous4y5jkUPf/880yaNOmKoWjHjh08//zz+R6Kxo4dS8OGDRk+fLizrXbt2tx555188cUXPPTQQ4SFhQGQlZVFiRIlnP0sFguAc3leWa36hhQR8QSbza6fwVJg8nxx9tKg5is5d+6c83JWftq7dy9Vq1Z1aStdujTh4eEcOHAAgJiYGOA/Y4suSU1Nxd/fnwoVKuR7XSIiIuLbbuhM0e7du9m9e7fz9a+//orNZnPrZ7FY+Pjjj90GOueHsmXLsmvXLpe2w4cPc/r0acqVKwdAhQoVqFSpEsuXL6dly5bOfsuWLaNRo0YEBGiyVhEREXF1Q6Fo1apVTJs2DQCDwcDChQtZuHDhZfuazWZeffXVm6/wf3Tt2pXx48czduxYWrRoQUZGBjNnziQyMtLlFvwBAwYwdOhQoqKiSEhIYNmyZezYsYP3338/32sSERER33dDoejS4GaHw0GXLl0YOHAgSUlJLn0MBgNBQUFERUVhMuX/zW29evUiICCAjz76iCVLlhAcHEzt2rV56623CA8Pd/Zr37492dnZJCcn88477xAdHc20adOoU6dOvtckIiIivu+GUkvJkiUpWbIkAAsWLCA2NpbIyMgCKexKDAYD3bp1o1u3btfs26VLF7p06VIIVYmIiIivy/OpnAYNGuRnHSIiIiIedVPXt9avX88nn3zCwYMHsVgsbnekGQwGVq1adVMFioiIiBSGPIeiOXPmMHnyZCIjI4mPj6dKlSr5WZeIiIhIocpzKFqwYAENGzbknXfewd/fPz9rEhERESl0eX54o8VioXXr1gpEIiIickvIcyiKi4sjLS0tP2sRERER8Zg8h6LRo0fz7bff8tVXX+VnPSIiIiIekecxRYMHD8ZqtfLcc88xevRoSpcujdHomrEMBgNffvnlTRcpIiIiUtDyHIqKFStGsWLFqFixYn7WIyIiIuIReQ5F7733Xn7WISIiIuJReR5TJCIiInIryfOZol9++eW6+tWvXz+vuxAREREpNHkORT179sRgMFyz3++//57XXYiIiIgUmpt6ovX/stlsHD58mEWLFmG32/nnP/95U8WJiIiIFJY8h6IGDRpccVnnzp3p3r07P//8M40aNcrrLkREREQKTYEMtDYajbRr147FixcXxOZFRERE8l2B3X2WmZlJVlZWQW1eREREJF/l+fLZkSNHLttusVj49ddfmTt3LvXq1ctzYSIiIiKFKc+hqEWLFle8+8zhcFC7dm3GjBmT58JEREREClOeQ9H48ePdQpHBYMBsNhMVFcVtt91208WJiIiIFJY8h6LOnTvnZx0iIiIiHpXnUPTf/vWvf3H48GEAypUrp7NEIiIi4nNuKhStWrWKiRMnOgPRJeXLl2f48OHcddddN1WciIiISGHJcyhau3YtAwcOpGzZsjzzzDPExsYCsHfvXhYtWsSAAQOYNWsWSUlJ+VasiIiISEHJcyiaMWMGVapU4YMPPqBo0aLO9rvuuosePXrQvXt3pk+frlAkIiIiPiHPD2/8448/uPfee10C0SVFixblvvvu448//rip4kREREQKS55DUWBgIJmZmVdcnpmZSWBgYF43LyIiIlKo8hyKEhISWLBgAVu3bnVbtn37dt577z1NBisiIiI+I89jip599lm6du1K9+7diY+PJzo6GoC0tDR27NhBZGQkQ4cOzbdCRURERApSns8UVahQgS+//JKePXuSmZnJsmXLWLZsGZmZmfTq1YsvvviC8uXL52etIiIiIgUmz2eKrFYrgYGBjBgxghEjRrgtP3PmDFarFZMpX54PKSIiIlKg8nymaOzYsXTt2vWKy7t168bEiRPzunkRERGRQpXnULR+/Xpat259xeWtW7dm3bp1ed28iIiISKHKcyg6ceIEpUqVuuLykiVLcvz48bxuXkRERKRQ5TkUFStWjLS0tCsu37t3LyEhIXndvIiIiEihynMoatq0KR9//DG7du1yW/bbb7+xaNEiTfEhIiIiPiPPt4YNGjSI9evX06VLF1q0aMFtt90GwJ49e1izZg0REREMGjQo3woVERERKUh5DkWlSpViyZIlTJ48mdWrV/Ptt98CEBISQocOHXjmmWeuOuZIRERExJvc1EOESpYsyauvvorD4eDUqVMAREREYDAY8qW4q/nss8+YP38+e/fupWjRosTFxTFt2jSKFCkCwHfffcdbb71FWloaZcuWpXfv3tx///0FXpeIiIj4pnx5sqLBYCAyMjI/NnVdZs6cSXJyMn379qV27dqcPn2ajRs3YrPZAPj111/p378/DzzwACNGjOCnn37ihRdeIDg4mHvuuafQ6hQRERHf4XOPm05NTWXatGnMmDGDZs2aOdv/+5lJM2fOJD4+npdffhmAhg0bcvDgQaZMmaJQJCLiw/z88nx/UIGy2x3Y7Q5PlyE3yedC0aeffkr58uVdAtF/y8nJYdOmTW6T0bZt25alS5dy6NAhzckmIuJjTMFm7HY7ZnOQp0u5LJvdRsbpbAUjH+dzoWj79u1UrlyZGTNm8N5775GVlUXNmjV5/vnnqVWrFgcOHCA3N5eYmBiX9WJjY4GLZ5oUikREfIspsChGo5HZaxdwJNO7HgxcNqwUfZr1wmg0KBT5OJ8LRX/99Rc7d+7kzz//5KWXXiIoKIhZs2bx+OOPs3LlSjIzMwEwm80u6116fWn5zTCZvPP0rYh4L2+97ONrjmQeZ3/6IU+XcVn6N/Z9PheKHA4H586d4+2336Zq1aoA1KpVixYtWvD++++TmJhYoPs3Gg2EhwcX6D5ERMT3eOulPbl+PheKzGYzxYoVcwYiuDjlSPXq1fnXv/5Fu3btAMjKynJZz2KxABAWFnZT+7fbHVgs525qGyLy9+PnZ9QvzVucxZKNzWb3dBlyGWZz0HWdyfO5UHTbbbdx4MCByy67cOECUVFR+Pv7k5qaStOmTZ3LUlNTAdzGGuWF1aoPvYiIuLLZ7Pr94ON87gJo8+bNycjI4Pfff3e2nT59mt9++40aNWoQEBBAQkICK1ascFlv2bJlxMbGapC1iIiIXJbPnSlq2bIlcXFxDBw4kGeeeYbAwEDeeecdAgIC6N69OwD9+vWjV69ejB49mjZt2rBp0yaWLl3Km2++6eHqRURExFv53Jkio9HIO++8Q+3atRk1ahRDhgwhJCSEDz74gBIlSgBQr149pk6dyubNm3niiSdYunQpY8eOpU2bNh6uXkRERLyVz50pgovzq7322mtX7XPXXXdx1113FVJFIiIi4ut87kyRiIiISEFQKBIRERFBoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEuAVC0dmzZ0lKSqJKlSqkpKS4LFu8eDGtW7cmLi6Ojh07smbNGg9VKSIiIt7O50PRjBkzsNlsbu1ff/01I0eOpE2bNiQnJ1O7dm369+/Ptm3bCr9IERER8Xo+HYr27t3Lhx9+yIABA9yWTZkyhXbt2jF48GAaNmzIyy+/TFxcHNOnT/dApSIiIuLtfDoUjR07lq5duxIdHe3SfvDgQfbt20ebNm1c2tu2bcvGjRvJyckpzDJFRETEB/hsKFq+fDl//vkn//jHP9yWpaamAriFpdjYWHJzczl48GCh1CgiIiK+w+TpAvIiOzubiRMn8swzzxASEuK2PDMzEwCz2ezSfun1peV5ZTL5bJYUEQ/x89PPjVud/o19n0+GopkzZxIZGcn9999f6Ps2Gg2EhwcX+n5FRMS7mc1Bni5BbpLPhaLDhw/zf//3f0yfPp2srCwAzp075/z77NmzhIWFAZCVlUWJEiWc61osFgDn8ryw2x1YLOfyvL6I/D35+Rn1S/MWZ7FkY7PZPV2GXIbZHHRdZ/J8LhQdOnSI3Nxcevfu7basV69e1KpVi8mTJwMXxxbFxMQ4l6empuLv70+FChVuqgarVR96ERFxZbPZ9fvBx/lcKKpWrRoLFixwafv999+ZMGECY8aMIS4ujgoVKlCpUiWWL19Oy5Ytnf2WLVtGo0aNCAgIKOyyRURExMv5XCgym80kJCRcdlmNGjWoUaMGAAMGDGDo0KFERUWRkJDAsmXL2LFjB++//35hlisiIiI+wudC0fVq37492dnZJCcn88477xAdHc20adOoU6eOp0sTERERL3RLhKKEhAT++OMPt/YuXbrQpUsXD1QkIiIivkYPVRARERFBoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEUCgSERERARSKRERERACFIhERERFAoUhEREQEAJOnCxDfYjQaMBoNni7jiux2B3a7w9NliIh4Ff3svj4KRXLdjEYD4eFBGI1+ni7liux2G6dPZ3vFN5eIiDcwGg0UK1YUPz/vvThks9nJyDjn8Z/dCkVy3S7+T8OPtKXJZKcf9XQ5boIiyxDd/imMRoPHv7FERLyF0WjAz8/IF4s2cfKvLE+X46Z4iVA6PZjgFT+7FYrkhmWnHyX7+AFPlyEiIjfg5F9ZHD+S4ekyvJr3nksTERERKUQKRSIiIiIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICOCDoeibb76hX79+JCUlUbt2bTp16sQnn3yCw+Fw6bd48WJat25NXFwcHTt2ZM2aNR6qWERERHyBz4Wid999l6CgIIYPH87MmTNJSkpi5MiRTJ8+3dnn66+/ZuTIkbRp04bk5GRq165N//792bZtm+cKFxEREa9m8nQBN2rmzJlEREQ4Xzdq1IiMjAzmzZvH008/jdFoZMqUKbRr147BgwcD0LBhQ/7880+mT59OcnKyhyoXERERb+ZzZ4r+OxBdUq1aNc6cOcO5c+c4ePAg+/bto02bNi592rZty8aNG8nJySmsUkVERMSH+NyZosvZvHkzpUqVIiQkhM2bNwMQHR3t0ic2Npbc3FwOHjxIbGzsTe3PZCq4LGkwGDAaDQW2/ZvhrXX9Lz8/n8v68jegz+Wtz1v/jb21rv/lDXX6fCj69ddfWbZsGcOGDQMgMzMTALPZ7NLv0utLy/PKaDQQHh58U9u4Grvd4TPhw1uZzUGeLkFE/ob0s+fmeMP759Oh6NixYzzzzDMkJCTQq1evQtmn3e7AYjlXINv28zNiNgcx/aMNHD5xc+GtINSqUpaH7qnt6TKuyWLJxmaze7oMEReXvr/l1uWtP3t85bNXkO+f2Rx0XWeifDYUWSwWnnrqKYoVK8bUqVMxGi8ebFhYGABZWVmUKFHCpf9/L78ZVmvBfugPn8hk3+HTBbqPvChbwnztTl7AZrMX+L+RiMj/0s+em+MN75/nL+Dlwfnz5+nTpw9ZWVnMmTOH0NBQ57KYmBgAUlNTXdZJTU3F39+fChUqFGqtIiIi4ht8LhRZrVYGDx5Mamoqc+bMoVSpUi7LK1SoQKVKlVi+fLlL+7Jly2jUqBEBAQGFWa6IiIj4CJ+7fDZmzBjWrFnD8OHDOXPmjMsDGatXr05AQAADBgxg6NChREVFkZCQwLJly9ixYwfvv/++5woXERERr+ZzoWjDhg0ATJw40W3Z6tWrKV++PO3btyc7O5vk5GTeeecdoqOjmTZtGnXq1CnsckVERMRH+Fwo+u67766rX5cuXejSpUsBVyMiIiK3Cp8bUyQiIiJSEBSKRERERPDBy2ciIiLeyBumqbgcb63LGykUiYiI3ISwoFAcdrtPPDVark6hSERE5CYUDQjCYDSybeZszhw56uly3JSIj6NKl/s9XYZPUCgSERHJB2eOHMWyf7+ny3ATXKaMp0vwGbrQKCIiIoJCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoCeaC23IG+d/NBud2C3OzxdhoiIXIFCkdwyTMFm7F48KaPNbiPjdLaCkYiIl1IokluGKbAoRqOR2WsXcCTzuKfLcVE2rBR9mvXCaDQoFImIeCmFIrnlHMk8zv70Q54uQ0REfIx3Dr4QERERKWQKRSIiIiIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKAnWosUKm+drBY0Ya2IiEKRSCEICwrF4cWT1QLYbTZOZ2jCWhH5+1IoEikERQOCMBiNbJs5mzNHjnq6HDchZctQu18f/P39sNnsni7nsnQmS0QKmkKRSCE6c+Qolv37PV2Gm8CwMOx2h1efybLZ7GRknFMwEpECo1AkIpiKFsVoNPDFok2c/CvL0+W4KV4ilE4PJmA0GhSKRKTAKBSJiNPJv7I4fiTD02WIiHiE994KIyIiIlKIFIpEREREUCgSERERARSKRERERACFIhERERHgFg9Fe/fu5bHHHqN27do0adKESZMmkZOT4+myRERExAvdsrfkZ2Zm8sgjj1CpUiWmTp3K8ePHmThxIufPn2fUqFGeLk9ERES8zC0bij7++GPOnj3LtGnTKFasGAA2m40xY8bQp08fSpUq5dkCRURExKvcspfP1q1bR6NGjZyBCKBNmzbY7XY2bNjgucJERETEKxkcDsct+cz8Ro0acf/99zN06FCX9qZNm9KpUye39uvlcBTcpJQGAxiNRjLPnPfKSTkD/P0IKRpI7lkLDrvN0+W4MZoCMAUFY8nOwupl9QWa/AkODOaCxYLD6l21ARgDAggICeasl372/PyMBIcUwW6346s/sfT9fXP0/Z13+v4Go9GAwWC4Zr9b9vKZxWLBbDa7tYeFhZGZmZnn7RoMBvz8rv3G3oywkCIFuv2b5R/s/r56E3NQqKdLuKLAy3wmvUmwl3/2jEbfP7mt7++bo+/vvNP393XU4OkCRERERLzBLRuKzGYzWVnus31nZmYSFhbmgYpERETEm92yoSgmJobU1FSXtqysLP766y9iYmI8VJWIiIh4q1s2FCUlJfHjjz9isVicbcuXL8doNNKkSRMPViYiIiLe6Ja9+ywzM5N27doRHR1Nnz59nA9v7NChgx7eKCIiIm5u2VAEF6f5eOWVV9i6dSvBwcF06tSJZ555hoCAAE+XJiIiIl7mlg5FIiIiItfrlh1TJCIiInIjFIpEREREUCgSERERARSKRERERACFIhERERFAoUhEREQEUCiSv5mePXvSpk0bcnJy3JYNHDiQZs2acfbsWQ9UJiL5aerUqVSpUoWHH37Ybdm4ceNo0aKFB6oSb6dQJH8rY8aM4dChQ8yZM8elfd26daxYsYKRI0cSHBzsoepEJL/9+uuvbNq0ydNliI9QKJK/lZiYGPr06cOsWbM4ePAgABcuXOCVV17hrrvuomXLlh6uUETyS9GiRYmPj2fGjBmeLkV8hEKR/O307t2bsmXLMmbMGABmzZrFyZMnGTVqFMeOHWPo0KEkJCQQHx/Pww8/zM6dO13WX716NZ07d6ZOnTrUq1ePzp07s3btWk8ciohcw9NPP81PP/3Eli1brtjn8OHDDBw4kLp161K7dm2eeOIJ/vjjj0KsUryFQpH87QQEBPDyyy+zfv16ZsyYwZw5cxg0aBBBQUF0796d3bt3M3LkSKZOnUpQUBCPPPII6enpABw4cIBBgwZx++23M23aNN58803atGlDZmamh49KRC6nefPmVK9enenTp192+ZkzZ+jZsye7du1izJgxvPbaa5w+fZoePXpw9OjRQq5WPM3k6QJEPKFBgwZ07tyZt99+mxo1atCzZ0+mT5+OxWJh8eLFREZGAtCoUSNat27N3Llzee6559i1axe5ubmMHDmSkJAQAJo2berJQxGRa+jXrx8DBgxgx44dxMfHuyz79NNPOXLkCF9//TWxsbEA1K9fn+bNmzN//nyGDx/uiZLFQ3SmSP62evfuDcBjjz2Gn58fGzZsICEhgbCwMKxWK1arFaPRSP369UlJSQGgSpUq+Pn5MXToUL777juysrI8eQgich1atWpF5cqVL3u26Ndff+X22293BiKAYsWK0bhxYzZv3lyYZYoX0Jki+dvy9/d3+fv06dNs27aNGjVquPWNiooCIDo6mlmzZjF79mz69++P0WgkMTGRUaNGUbZs2cIrXkSum8FgoG/fvgwZMoTffvvNZZnFYqF48eJu60RGRrJnz57CKlG8hEKRyL+FhYXRtGlTBg0a5LYsICDA+XVSUhJJSUmcOXOGdevWMWHCBJ5//nnmz59fmOWKyA1o06YNU6dOZcaMGS7/gQkLCyMtLc2tf3p6OmFhYYVZongBXT4T+bfGjRuzd+9eYmNjiYuLc/lTpUoVt/4hISG0bduWdu3asXfvXg9ULCLXy2g00rdvX1avXu1yZ1ndunX5888/SU1NdbZlZmby448/UrduXU+UKh6kM0Ui//boo4/y1Vdf0aNHD3r16kXZsmU5deoU27dvp1SpUjz66KN8/PHHbNu2jaZNm1KiRAkOHTrEl19+SZMmTTxdvohcQ4cOHZg+fTqbNm2iXLlyAHTu3Jl3332XPn36MHjwYAIDA5k5cyYmk4lHHnnEwxVLYVMoEvm38PBwFi5cyFtvvcXrr79ORkYGkZGR1KpVi1atWgEXB1qvWbOGCRMmkJGRQYkSJWjXrt1lL7mJiHfx8/Ojd+/evPjii862kJAQ3nvvPSZOnMjIkSOx2+3ccccdvP/++5QpU8aD1YonGBwOh8PTRYiIiIh4msYUiYiIiKBQJCIiIgIoFImIiIgACkUiIiIigEKRiIiICKBQJCIiIgIoFImIiIgACkUiItft008/pUqVKqSkpHi6FBEpAApFIiIiIigUiYiIiAAKRSIiIiKAQpGI+IAzZ84wbtw4WrRoQc2aNWnUqBGPPfYYv/32GwA9e/akffv27N69mx49ejgn8V2+fDkAP//8M126dCE+Pp7WrVvz448/uu1j165dPPnkk9xxxx3UqVOHRx55hG3btl2ztszMTB544AGSkpJITU0FICcnhylTptCqVStq1qxJs2bNmDRpEjk5Ofn3pohIvjN5ugARkWt56aWXWLFiBT169CA2NpaMjAw2b97M3r17qVGjBnAxnPTt25e2bdtyzz338NFHHzFkyBDsdjvjx4+na9eutG/fnrlz5zJw4EC+//57QkJCANizZw8PP/wwwcHBPPnkk5hMJhYuXEjPnj15//33qVWr1mXrOnXqFI8//jiZmZm8//77REVFYbfb6devH5s3b+bBBx8kNjaWP//8k/nz57Nv3z5mzJhRaO+biNwgh4iIl6tbt65jzJgxV1zeo0cPR+XKlR1fffWVs23v3r2OypUrO6pWrerYtm2bs339+vWOypUrO5YsWeJse/rppx01atRwHDhwwNl2/PhxR506dRwPP/yws23JkiWOypUrO3bs2OE4ceKEo127do677rrLcejQIWefzz//3FG1alXHL7/84lLjRx995KhcubJj8+bNeXsTRKTA6fKZiHg9s9nM9u3bOX78+BX7FC1alHbt2jlfx8TEYDabiY2NdTnTc+nrgwcPAmCz2diwYQMtW7akQoUKzn4lS5akffv2bN68mTNnzrjs6/jx4/To0YPc3Fw++OADypUr51y2fPlyYmNjiYmJ4dSpU84/DRs2BGDTpk038U6ISEHS5TMR8XpDhw5l+PDh3HnnndSoUYNmzZpx7733uoSY0qVLYzAYXNYLDQ2ldOnSbm0AFosFuHgJLDs7m+joaLf9xsbGYrfbOXr0KLfffruz/dlnn8VkMrFs2TJKlCjhss7+/fvZu3cvjRo1uuyxpKen38CRi0hhUigSEa/Xtm1b6tWrx7fffsuGDRuYO3cuycnJTJ06lWbNmgHg5+d32XWv1O5wOPJcz913383nn3/OggUL+Oc//+myzG63U7lyZZ5//vnLrvu/IU1EvIdCkYj4hJIlS/Lwww/z8MMPk56ezn333cesWbOcoSivIiIiCAoKIi0tzW1ZamoqRqORMmXKuLT36NGDqKgopkyZQmhoKL1793Yui4qKYvfu3TRq1MjtzJWIeDeNKRIRr2az2cjKynJpi4yMpGTJkvlyi7ufnx9NmjRh9erVHDp0yNl+8uRJli5dSt26dZ13qf23f/zjHzz++ONMnjyZDz/80Nnepk0bjh8/zqJFi9zWOX/+POfOnbvpmkWkYOhMkYh4tbNnz9KsWTNat25N1apVKVq0KD/++CMpKSkMHz48X/YxePBgfvzxR7p370737t3x8/Nj4cKF5OTk8Oyzz15xvWHDhnHmzBlefvllgoOD6dSpE506deKbb77hpZdeYtOmTdxxxx3YbDZSU1NZvnw5c+bMIS4uLl/qFpH8pVAkIl6tSJEidOvWjQ0bNrBy5UocDgdRUVG89NJLdO/ePV/2cfvtt/PBBx8wefJkZs+ejcPhID4+ntdee+2Kzyi6ZMyYMZw7d44RI0YQHBxMy5YtmT59Ou+++y5ffPEF3377LUFBQZQvX56ePXtedkC3iHgHg+NmRhuKiIiI3CI0pkhEREQEhSIRERERQKFIREREBFAoEhEREQEUikREREQAhSIRERERQKFIREREBFAoEhEREQEUikREREQAhSIRERERQKFIREREBFAoEhEREQEUikREREQA+H8sHS3wVsah+gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.countplot(x='smoke', hue='cooked', data=df)" + ] + }, + { + "cell_type": "markdown", + "id": "81274425-b884-4604-a2d4-7f2cc6b4a1c2", + "metadata": {}, + "source": [ + "### Number of people who like their steak rare, and who do all 3 risky behaviors(smoke, drink, gamble)" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "8817c157-0528-47c7-8680-c886dd5499f4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of people who smoke, drink, and gamble who order their steak rare: 5\n" + ] + } + ], + "source": [ + "df = df.dropna(subset=['smoke', 'drink', 'gamble', 'cooked'])\n", + "smoke_drink_gamble_rare = df[\n", + " (df['smoke'].str.lower() == 'yes') &\n", + " (df['drink'].str.lower() == 'yes') &\n", + " (df['gamble'].str.lower() == 'yes') &\n", + " (df['cooked'].str.lower() == 'rare')\n", + "]\n", + "count_smoke_drink_gamble_rare = len(smoke_drink_gamble_rare)\n", + "print(f\"Number of people who smoke, drink, and gamble who order their steak rare: {count_smoke_drink_gamble_rare}\")\n" ] }, { @@ -274,14 +1136,70 @@ "id": "about-raise", "metadata": {}, "source": [ - "*Summarize what you discovered through the research. Consider the following:*\n", "\n", - "- *What did you learn about your media consumption/digital habits?*\n", - "- *Did the results make sense?*\n", - "- *What was most surprising?*\n", - "- *How will this project impact you going forward?*\n", "\n", - "✏️ *Write your answer below:*" + "**OVERARCHING QUESTION**\n", + "*DO PEOPLE WHO EXIBIT RISKY BEHAVIORS (SMOKING, GAMBLING, DRINKING) ORDER THEIR STEAK IN THE SAME RISKY MANNER AS THEIR BEAHVIORS (RARE). IS THERE A RELATIONSHIP BETWEEN THE TWO?*\n", + "\n", + "## *Findings \n", + "-The number of total people in the survey was **432** \n", + "\n", + "-The number of people who smoke was **72** or **17%** of people in survey\n", + "\n", + "-The number of people who drink was **339** or **78%** of people in survey\n", + "\n", + "-The number of people who gamble was **216** or **50%** of people in survey\n", + "\n", + "-The number of people that order their steak rare was **23** or **5%** \n", + "\n", + "-The number of people who smoke and order steak rare was **6** or **1%** of people in survey\n", + "\n", + "-The number of people who drink and order steak rare was **19** or **4%** of people in survey\n", + "\n", + "-The number of people who Gamble and order steak rare was **12** or **3%** of people in survey\n", + "\n", + "# The most surprising stat was that the Number of people who do all 3 risky behaviors (smoke, drink, gamble) and order steak rare was **5** or **1%*\n", + "\n", + "\n", + "\n", + "**What did I learn about my data?**\n", + "I learned that you can extract a bunch of different data about a survey. This was kind of a silly survey, but fun to see the results. What I learned was that out of small sample size of 432 people, doing risky behaviors such as smoking, drinking, and gambling, have nothing to do with food choices, specifically risky food choices such as ordering steak rare.\n", + "\n", + "**Did the results make sense?**\n", + "Yes. The results made sense to me in the fact that I came in with a preconceived notion that the two wouldnt be related. What would have been interesting would be if you did a study between people who do risky behaviors who also live shorter lives.\n", + "\n", + "**What was most surprising?**\n", + "# The most surprising stat was that the Number of people who do all 3 risky behaviors (smoke, drink, gamble) and order steak rare was **5** or **1%*\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "infectious-symbol", + "metadata": {}, + "source": [ + "# Discussion" + ] + }, + { + "cell_type": "markdown", + "id": "bearing-stadium", + "metadata": {}, + "source": [ + "*It's important to recognize the limitations of our research.\n", + "Consider the following:*\n", + "\n", + "**Do the results give an accurate depiction of your research question? Why or why not?**\n", + "Yes becasue it answers the question.\n", + " \n", + "**What were limitations of your datset?**\n", + "I only had a small sample size.\n", + "\n", + "**Are there any known biases in the data?**\n", + "I dont believe so.\n", + "\n", + "\n" ] } ], @@ -310,7 +1228,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.12.3" }, "toc": { "base_numbering": 1, diff --git a/lab_pokemon.ipynb b/lab_pokemon.ipynb new file mode 100644 index 0000000..cc49dc7 --- /dev/null +++ b/lab_pokemon.ipynb @@ -0,0 +1,2307 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "90041b00-672b-4bd4-a8e8-0cab3f0548af", + "metadata": {}, + "source": [ + "# Lab 04: Data Science Tools\n", + "\n", + "## 0. Jupyter Notebooks\n", + "\n", + "Welcome to your first Jupyter notebook! Notebooks are made up of cells. Some cells contain text (like this one) and others contain Python code.\n", + "\n", + "Each cell can be in two different modes: editing or running. To edit a cell, double-click on it. When you're done editing, press **shift+Enter** to run it. You can use [Markdown](https://www.markdownguide.org/cheat-sheet/) to add basic formatting to the text. Before you go on, try editing the text in this cell." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "5923b0d7-c0e0-48fa-b765-4aa6002c2d4f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "5" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Other cells are code cells, containing Python code. (This is a comment, of course!)\n", + "# Try running this cell (again, shift+Enter). You'll see the result of the final statement \n", + "# printed below the cell. \n", + "# Then try changing the Python code and re-run it.\n", + "\n", + "1+1+1+2" + ] + }, + { + "cell_type": "markdown", + "id": "257ef44f-8f53-4136-9d0d-23a811ec53e9", + "metadata": {}, + "source": [ + "### 0.1 Cells share state\n", + "\n", + "Even though code cells run one at a time, anything that happens in a cell (like declaring a variable or running a function) affects the whole notebook. Try running these two cells a few times, in different orders. What happens when you run *Cell B* over and over?" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "0e2a2927-f6d1-4b13-97ae-ff97416723e9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Cell A\n", + "x = 9\n", + "x" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "69dd7908-b213-4d0f-8016-e46a4a491961", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "18" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Cell B\n", + "x = x * 2\n", + "x" + ] + }, + { + "cell_type": "markdown", + "id": "adc581ac-db13-40a8-bcfc-bf5d6e5472c5", + "metadata": {}, + "source": [ + "### 0.2 Saving your work\n", + "\n", + "When you finish working on a notebook, save your work using the icon in the menu bar above. Your notebook is stored in the file `lab_pokemon.ipynb` in the lab directory. You can commit your changes to `ipynb` files just like any other file. Once you finish with Jupyter, you can stop the server by pressing **Control + C** in the Terminal. \n", + "\n", + "*If you're doing this lab on a cloud-based platform like Binder, then you can't save your work. So don't close the tab!*" + ] + }, + { + "cell_type": "markdown", + "id": "0269bf0f-b993-4dfe-99cd-a7d38e94546c", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## 1. Pandas\n", + "\n", + "Pandas is probably the most important Python library for data science. Pandas provides an object called a **DataFrame**, which is basically a table with rows and columns. Most of the time, you will load data into Pandas using a `.csv` file. CSV files can be exported from Excel or Google Sheets, and are a common format for public data sets. \n", + "\n", + "In this lab, we'll be working with two data sets: The first contains Pokémon characteristics and the second comes from a wide-scale survey conducted by the US Centers for Disease Control ([details](https://www.cdc.gov/brfss/annual_data/annual_2020.html)). We will demonstrate techniques with Pokémon; your job is to replicate these tasks with the CDC dataset. \n", + "\n", + "**Note:** Pandas has *extensive* capabilities, and there's no way we could possibly present them all here. If you have a clearly-formed idea of what you want to do with tabular data, there's a way to do it. This lab introduces *some* of what Pandas can do, but expect to spend time reading the documentation and Stack Overflow when you start working on new tasks. \n", + "\n", + "### 1.0 Getting started\n", + "\n", + "First, we'll import pandas (using the conventional variable name `pd`) and load the two datasets. *Run these cells and every code cell you encounter in this notebook.*" + ] + }, + { + "cell_type": "markdown", + "id": "f60aa4b0-7050-4e43-9619-5f8500770cb0", + "metadata": {}, + "source": [ + "import pandas as pd\n", + "\n", + "pokemon = pd.read_csv(\"pokemon.csv\")\n", + "people = pd.read_csv(\"brfss_2020.csv\")" + ] + }, + { + "cell_type": "markdown", + "id": "d4e0b811-b8bf-4e9a-a934-3aad8f0520bb", + "metadata": {}, + "source": [ + "### 1.1 A first look\n", + "\n", + "#### Demo\n", + "\n", + "Let's start by learning the *shape* of the data. How many columns are there? How many rows? What kinds of data are included?" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "579d8dda-ca39-48b1-8819-b17651029729", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "pokemon = pd.read_csv(\"pokemon.csv\")\n", + "people = pd.read_csv(\"brfss_2020.csv\")" + ] + }, + { + "cell_type": "markdown", + "id": "ee8b0718-56f9-4fc8-bd35-fa0ccb445179", + "metadata": {}, + "source": [ + "OK, 800 Pokémon, with 12 columns for each. And you can see all the columns. Not all the data is shown in this preview, of course. If there were more columns than could be displayed, you could see them all by typing `pokemon.columns`. \n", + "\n", + "#### Your turn\n", + "\n", + "Now do the same for your data set, `people`." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c9e5e4ec-b197-450c-ae2d-318006fa0a2f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
agesexincomeeducationsexual_orientationheightweighthealthno_doctorexercisesleep
055female52other1.5583.012TrueTrue7
165female81heterosexual1.6578.023FalseFalse8
235female84heterosexual1.6577.114TrueTrue7
355male84heterosexual1.8381.655FalseTrue8
455female84heterosexual1.8076.664FalseTrue8
....................................
16642045female83heterosexual1.6386.181FalseFalse6
16642125male72heterosexual1.7886.184FalseTrue6
16642225female12heterosexual1.9145.361FalseFalse8
16642335female54heterosexual1.6068.044TrueTrue6
16642435male72heterosexual1.7586.183FalseFalse8
\n", + "

166425 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " age sex income education sexual_orientation height weight \\\n", + "0 55 female 5 2 other 1.55 83.01 \n", + "1 65 female 8 1 heterosexual 1.65 78.02 \n", + "2 35 female 8 4 heterosexual 1.65 77.11 \n", + "3 55 male 8 4 heterosexual 1.83 81.65 \n", + "4 55 female 8 4 heterosexual 1.80 76.66 \n", + "... ... ... ... ... ... ... ... \n", + "166420 45 female 8 3 heterosexual 1.63 86.18 \n", + "166421 25 male 7 2 heterosexual 1.78 86.18 \n", + "166422 25 female 1 2 heterosexual 1.91 45.36 \n", + "166423 35 female 5 4 heterosexual 1.60 68.04 \n", + "166424 35 male 7 2 heterosexual 1.75 86.18 \n", + "\n", + " health no_doctor exercise sleep \n", + "0 2 True True 7 \n", + "1 3 False False 8 \n", + "2 4 True True 7 \n", + "3 5 False True 8 \n", + "4 4 False True 8 \n", + "... ... ... ... ... \n", + "166420 1 False False 6 \n", + "166421 4 False True 6 \n", + "166422 1 False False 8 \n", + "166423 4 True True 6 \n", + "166424 3 False False 8 \n", + "\n", + "[166425 rows x 11 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people\n" + ] + }, + { + "cell_type": "markdown", + "id": "7fab76ef-d453-4568-a916-4d4c29535a42", + "metadata": {}, + "source": [ + "### 1.2 Descriptive Statistics\n", + "\n", + "#### Demo\n", + "\n", + "Let's get a sense of the data contained in some of the columns. For categorical data like `generation`, it makes sense to look at value counts--showing us how many of each category there are. You can use the optional keyword `normalize=True` to see percentage of total instead of frequencies. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "9afca362-9edc-423c-981b-dc42107d5de0", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'people' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[9], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mpeople\u001b[49m\u001b[38;5;241m.\u001b[39mgeneration\n", + "\u001b[0;31mNameError\u001b[0m: name 'people' is not defined" + ] + } + ], + "source": [ + "people.generation\n" + ] + }, + { + "cell_type": "markdown", + "id": "a9b98eee-bdc2-4c63-bab2-ee82e2466d0f", + "metadata": {}, + "source": [ + "For numeric data, we could start by looking at the mean value. We can select multiple columns and get all the column means at once." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "5fe580d0-5939-4152-9f8c-4c32d35a4479", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "hp 69.25875\n", + "attack 79.00125\n", + "defense 73.84250\n", + "speed 68.27750\n", + "dtype: float64" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pokemon[[\"hp\", \"attack\", \"defense\", \"speed\"]].mean()" + ] + }, + { + "cell_type": "markdown", + "id": "0d8e6e78-fcfc-4c38-a418-545fe4216a44", + "metadata": {}, + "source": [ + "We can also compute the mean of boolean data. In this case, True will map to 1 and False will map to 0. So the mean value equals the percentage of data which is True. " + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "dc69ef53-70cd-4ae0-80e7-c9c8e28de76f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(0.08125)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pokemon.legendary.mean()" + ] + }, + { + "cell_type": "markdown", + "id": "69333e87-8df2-4b46-9005-2b8c9df3a7b4", + "metadata": {}, + "source": [ + "Just over 8% of Pokemon are legendary." + ] + }, + { + "cell_type": "markdown", + "id": "f563d97d-d9d3-4f2d-a46a-5d5dfc6382de", + "metadata": {}, + "source": [ + "#### Your turn\n", + "\n", + "**1.2.0.** In this survey, people are grouped into age bands of 18-24, 25-34, 35-44, 45-54, 55-64, and 65+, with the lower bound reported. What percentage of people are in each age band? (When we talk about \"people\" in this lab, we're referring to the people who responded to the survey, not the whole US population.)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "8fbcc766-8399-4f93-a6c8-e0607250a72a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(48.76603274748385)" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people.age.mean()" + ] + }, + { + "cell_type": "markdown", + "id": "38006e7b-4771-4c29-86a8-19d04a50fc25", + "metadata": {}, + "source": [ + "**1.2.1.** What are the mean height and weight of people in this survey?" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "b7f910c8-3d40-49ae-b270-678734c04100", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "height 1.705082\n", + "weight 83.053588\n", + "dtype: float64" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people[[\"height\", \"weight\"]].mean()" + ] + }, + { + "cell_type": "markdown", + "id": "f74634bb-8664-46e4-b371-6f45cbb7c8ef", + "metadata": {}, + "source": [ + "**1.2.2.** The `exercise` column indicates whether a person has done any physical activity or exercise in the last 30 days, outside of work. What percentage of people have done exercise?" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f3891188-a85f-4089-8388-d4d81c7438ad", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'people' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mpeople\u001b[49m\u001b[38;5;241m.\u001b[39mexercise\u001b[38;5;241m.\u001b[39mmean()\n", + "\u001b[0;31mNameError\u001b[0m: name 'people' is not defined" + ] + } + ], + "source": [ + "people.exercise.mean()\n" + ] + }, + { + "cell_type": "markdown", + "id": "f6082e65-321c-4ee0-9457-74f9bb1b0363", + "metadata": {}, + "source": [ + "### 1.3 Filtering\n", + "\n", + "Sometimes we're just interested in a selection of the data set. The way to do this is to create a boolean series, and then use this to select which rows you want to include. Vocabulary note: A dataframe is two-dimensional, with rows and columns. A series (a single row or a single column) is one-dimensional. \n", + "\n", + "#### Demo\n", + "`pokemon.legendary` is already boolean, so we can use this to select just the legendary pokémon. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "12c0c6c9-c07b-4183-82f6-5e346c74aac9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
nametypesubtypetotalhpattackdefensespecial_attackspecial_defensespeedgenerationlegendary
156ArticunoIceFlying580908510095125851True
157ZapdosElectricFlying580909085125901001True
158MoltresFireFlying580901009012585901True
162MewtwoPsychicNaN68010611090154901301True
163MewtwoMega Mewtwo XPsychicFighting7801061901001541001301True
.......................................
795DiancieRockFairy60050100150100150506True
796DiancieMega DiancieRockFairy700501601101601101106True
797HoopaHoopa ConfinedPsychicGhost6008011060150130706True
798HoopaHoopa UnboundPsychicDark6808016060170130806True
799VolcanionFireWater6008011012013090706True
\n", + "

65 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " name type subtype total hp attack defense \\\n", + "156 Articuno Ice Flying 580 90 85 100 \n", + "157 Zapdos Electric Flying 580 90 90 85 \n", + "158 Moltres Fire Flying 580 90 100 90 \n", + "162 Mewtwo Psychic NaN 680 106 110 90 \n", + "163 MewtwoMega Mewtwo X Psychic Fighting 780 106 190 100 \n", + ".. ... ... ... ... ... ... ... \n", + "795 Diancie Rock Fairy 600 50 100 150 \n", + "796 DiancieMega Diancie Rock Fairy 700 50 160 110 \n", + "797 HoopaHoopa Confined Psychic Ghost 600 80 110 60 \n", + "798 HoopaHoopa Unbound Psychic Dark 680 80 160 60 \n", + "799 Volcanion Fire Water 600 80 110 120 \n", + "\n", + " special_attack special_defense speed generation legendary \n", + "156 95 125 85 1 True \n", + "157 125 90 100 1 True \n", + "158 125 85 90 1 True \n", + "162 154 90 130 1 True \n", + "163 154 100 130 1 True \n", + ".. ... ... ... ... ... \n", + "795 100 150 50 6 True \n", + "796 160 110 110 6 True \n", + "797 150 130 70 6 True \n", + "798 170 130 80 6 True \n", + "799 130 90 70 6 True \n", + "\n", + "[65 rows x 12 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "legendary = pokemon[pokemon.legendary]\n", + "legendary" + ] + }, + { + "cell_type": "markdown", + "id": "b4ad804a-f5f0-441f-bb83-51f360c1c154", + "metadata": {}, + "source": [ + "Let's get all the ice pokémon. We can create a boolean series from another series..." + ] + }, + { + "cell_type": "markdown", + "id": "4ea42d67-4dd0-47c8-b4da-1c29fb4507ea", + "metadata": {}, + "source": [ + "pokemon.type == \"Ice\"" + ] + }, + { + "cell_type": "markdown", + "id": "a5ea9e89-f466-48de-9133-346c99f4a6c1", + "metadata": {}, + "source": [ + "And then use this series to select just the ice pokémon. " + ] + }, + { + "cell_type": "markdown", + "id": "c65eb1bd-72b6-487e-adac-ae2071762ca2", + "metadata": { + "scrolled": true + }, + "source": [ + "ice = pokemon[pokemon.type == \"Ice\"]\n", + "ice" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "8161cdbd-76af-4a45-bed9-665ad37cd267", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'ice' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[6], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mice\u001b[49m\n", + "\u001b[0;31mNameError\u001b[0m: name 'ice' is not defined" + ] + } + ], + "source": [ + "ice" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "3ce81665-f1c6-4528-9d0b-56b5da9ccbe3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
nametypesubtypetotalhpattackdefensespecial_attackspecial_defensespeedgenerationlegendary
156ArticunoIceFlying580908510095125851True
157ZapdosElectricFlying580909085125901001True
158MoltresFireFlying580901009012585901True
162MewtwoPsychicNaN68010611090154901301True
163MewtwoMega Mewtwo XPsychicFighting7801061901001541001301True
.......................................
795DiancieRockFairy60050100150100150506True
796DiancieMega DiancieRockFairy700501601101601101106True
797HoopaHoopa ConfinedPsychicGhost6008011060150130706True
798HoopaHoopa UnboundPsychicDark6808016060170130806True
799VolcanionFireWater6008011012013090706True
\n", + "

65 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " name type subtype total hp attack defense \\\n", + "156 Articuno Ice Flying 580 90 85 100 \n", + "157 Zapdos Electric Flying 580 90 90 85 \n", + "158 Moltres Fire Flying 580 90 100 90 \n", + "162 Mewtwo Psychic NaN 680 106 110 90 \n", + "163 MewtwoMega Mewtwo X Psychic Fighting 780 106 190 100 \n", + ".. ... ... ... ... ... ... ... \n", + "795 Diancie Rock Fairy 600 50 100 150 \n", + "796 DiancieMega Diancie Rock Fairy 700 50 160 110 \n", + "797 HoopaHoopa Confined Psychic Ghost 600 80 110 60 \n", + "798 HoopaHoopa Unbound Psychic Dark 680 80 160 60 \n", + "799 Volcanion Fire Water 600 80 110 120 \n", + "\n", + " special_attack special_defense speed generation legendary \n", + "156 95 125 85 1 True \n", + "157 125 90 100 1 True \n", + "158 125 85 90 1 True \n", + "162 154 90 130 1 True \n", + "163 154 100 130 1 True \n", + ".. ... ... ... ... ... \n", + "795 100 150 50 6 True \n", + "796 160 110 110 6 True \n", + "797 150 130 70 6 True \n", + "798 170 130 80 6 True \n", + "799 130 90 70 6 True \n", + "\n", + "[65 rows x 12 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "legendary = pokemon[pokemon.legendary]\n", + "legendary" + ] + }, + { + "cell_type": "markdown", + "id": "0af5f534-0bec-4577-beee-29b350102265", + "metadata": {}, + "source": [ + "Let's get the high-speed ice pokémon. You can join conditions together using the `&` (and) and `|` (or) operators. `~` means \"not\", so `pokemon[~(pokemon.type == \"Ice\")]` would select all the non-ice pokémon. Due to order of operations, each condition needs to be wrapped in parentheses." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "bbbeeeef-3490-48f1-aadf-c39c31c6c41b", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'high_speed' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[29], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mhigh_speed\u001b[49m\n", + "\u001b[0;31mNameError\u001b[0m: name 'high_speed' is not defined" + ] + } + ], + "source": [ + "high_speed" + ] + }, + { + "cell_type": "markdown", + "id": "c84dc7ce-24f2-4ac7-92d7-99ed331488e0", + "metadata": {}, + "source": [ + "You could get the pokémon who are fire or ice by selecting `pokemon[(pokemon.type == \"Fire\") | (pokemon.type == \"Ice\")]`." + ] + }, + { + "cell_type": "markdown", + "id": "1f0e9625-b194-450d-b003-b88798cc2f45", + "metadata": {}, + "source": [ + "#### Your turn\n", + "\n", + "**1.3.0.** `no_doctor` indicates whether there was a time in the last year when the person needed to see a doctor, but could not afford to do so. Create a dataframe containing only these people. " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "198cb0c6-3f43-43c2-9eee-3939c12ea537", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 True\n", + "1 False\n", + "2 True\n", + "3 False\n", + "4 False\n", + " ... \n", + "166420 False\n", + "166421 False\n", + "166422 False\n", + "166423 True\n", + "166424 False\n", + "Name: no_doctor, Length: 166425, dtype: bool" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people.no_doctor" + ] + }, + { + "cell_type": "markdown", + "id": "9d213707-a15b-4751-8df9-48aa568af209", + "metadata": {}, + "source": [ + "**1.3.1.** `health` asks people for their general health, with the meanings of numbers shown below. Create a dataframe which contains people whose general health is good or better. \n", + "\n", + "| number | health status | \n", + "| ------ | ----------- |\n", + "| 1 | Poor |\n", + "| 2 | Fair |\n", + "| 3 | Good |\n", + "| 4 | Very good |\n", + "| 5 | Excellent |" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "8a8c1ad6-4c1e-4996-ab5e-5212dadb1851", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 2\n", + "1 3\n", + "2 4\n", + "3 5\n", + "4 4\n", + " ..\n", + "166420 1\n", + "166421 4\n", + "166422 1\n", + "166423 4\n", + "166424 3\n", + "Name: health, Length: 166425, dtype: int64" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people.health\n" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "a50cfa93-8ff7-46ee-b4c4-5c07255ca870", + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'DataFrame' object has no attribute 'health_status'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipykernel_1131/1799491424.py\u001b[0m in \u001b[0;36m?\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mhealth_status\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpeople\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpeople\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhealth_status\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/.cache/pypoetry/virtualenvs/lab-pokemon-MIddldub-py3.12/lib/python3.12/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 6295\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_accessors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6296\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6297\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6298\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6299\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m: 'DataFrame' object has no attribute 'health_status'" + ] + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "ef61ce67-b36f-4e80-9d57-8b80a7d9eb2b", + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'DataFrame' object has no attribute 'good'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/tmp/ipykernel_1131/4081568713.py\u001b[0m in \u001b[0;36m?\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mpeople\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhealth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"good\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mpeople\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgood\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/.cache/pypoetry/virtualenvs/lab-pokemon-MIddldub-py3.12/lib/python3.12/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m?\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 6295\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mname\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_accessors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6296\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6297\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6298\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6299\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m: 'DataFrame' object has no attribute 'good'" + ] + } + ], + "source": [] + }, + { + "cell_type": "markdown", + "id": "7add542b-bfd2-481a-b5b4-4e1ca744078a", + "metadata": {}, + "source": [ + "**1.3.2.**. `education` indicates the highest level of education completed, with codes as follows. Create a dataframe which only contains female college graduates who needed a doctor but couldn't afford one. (The survey asked people for their current sex, and only had options for male and female.)\n", + "\n", + "| number | education level | \n", + "| ------ | ----------- |\n", + "| 1 | Did not graduate from high school |\n", + "| 2 | Graduated from high school |\n", + "| 3 | Attended some college |\n", + "| 4 | Graduated from college |" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "315682ae-7d54-4d78-9a63-d23c83ba1576", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(3.0645515998197386)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "people.education.mean()\n" + ] + }, + { + "cell_type": "markdown", + "id": "f4b023b1-b754-4b6a-a7e6-b840ae180501", + "metadata": {}, + "source": [ + "### 1.4. Grouping\n", + "\n", + "Now things get crazy. You can group a dataframe using one or more columns, and then compare their statistics. \n", + "\n", + "#### Demo\n", + "\n", + "Do different types of pokémon move at different speeds? We'll use `sort_values` to put these in order from slow to fast." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "069ea0ab-eff6-4985-9f46-db956fe1df91", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "type\n", + "Fairy 48.588235\n", + "Steel 55.259259\n", + "Rock 55.909091\n", + "Bug 61.681159\n", + "Grass 61.928571\n", + "Ice 63.458333\n", + "Poison 63.571429\n", + "Ground 63.906250\n", + "Ghost 64.343750\n", + "Water 65.964286\n", + "Fighting 66.074074\n", + "Normal 71.551020\n", + "Fire 74.442308\n", + "Dark 76.161290\n", + "Psychic 81.491228\n", + "Dragon 83.031250\n", + "Electric 84.500000\n", + "Flying 102.500000\n", + "Name: speed, dtype: float64" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pokemon.groupby(\"type\").speed.mean().sort_values()" + ] + }, + { + "cell_type": "markdown", + "id": "bdc801b7-d3ae-45bb-80f4-ebeb474e20a1", + "metadata": {}, + "source": [ + "Do types differ in other stats? Let's sort by hit points. " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "5c420c0e-b5d2-49ae-ab98-3305ee076169", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
hpattackdefense
type
Bug56.88405870.97101470.724638
Electric59.79545569.09090966.295455
Ghost64.43750073.78125081.187500
Steel65.22222292.703704126.370370
Rock65.36363692.863636100.795455
Dark66.80645288.38709770.225806
Poison67.25000074.67857168.821429
Grass67.27142973.21428670.800000
Fighting69.85185296.77777865.925926
Fire69.90384684.76923167.769231
Psychic70.63157971.45614067.684211
Flying70.75000078.75000066.250000
Ice72.00000072.75000071.416667
Water72.06250074.15178672.946429
Ground73.78125095.75000084.843750
Fairy74.11764761.52941265.705882
Normal77.27551073.46938859.846939
Dragon83.312500112.12500086.375000
\n", + "
" + ], + "text/plain": [ + " hp attack defense\n", + "type \n", + "Bug 56.884058 70.971014 70.724638\n", + "Electric 59.795455 69.090909 66.295455\n", + "Ghost 64.437500 73.781250 81.187500\n", + "Steel 65.222222 92.703704 126.370370\n", + "Rock 65.363636 92.863636 100.795455\n", + "Dark 66.806452 88.387097 70.225806\n", + "Poison 67.250000 74.678571 68.821429\n", + "Grass 67.271429 73.214286 70.800000\n", + "Fighting 69.851852 96.777778 65.925926\n", + "Fire 69.903846 84.769231 67.769231\n", + "Psychic 70.631579 71.456140 67.684211\n", + "Flying 70.750000 78.750000 66.250000\n", + "Ice 72.000000 72.750000 71.416667\n", + "Water 72.062500 74.151786 72.946429\n", + "Ground 73.781250 95.750000 84.843750\n", + "Fairy 74.117647 61.529412 65.705882\n", + "Normal 77.275510 73.469388 59.846939\n", + "Dragon 83.312500 112.125000 86.375000" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ptypes = pokemon.groupby(\"type\")\n", + "ptypes[[\"hp\", \"attack\", \"defense\"]].mean().sort_values(\"hp\")" + ] + }, + { + "cell_type": "markdown", + "id": "cc9a3d19-0ecd-487b-b34f-b748c44fc9c9", + "metadata": {}, + "source": [ + "Which type/subtype combinations are most likely to have legendary pokémon?" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "444a580d-e70c-48a1-bf87-77f98b8c9f85", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "type subtype \n", + "Electric Flying 0.600000\n", + "Rock Fairy 0.666667\n", + "Ghost Dragon 1.000000\n", + "Ground Fire 1.000000\n", + "Fire Water 1.000000\n", + " Steel 1.000000\n", + "Steel Dragon 1.000000\n", + "Dragon Electric 1.000000\n", + "Psychic Ghost 1.000000\n", + "Dragon Psychic 1.000000\n", + " Ice 1.000000\n", + "Rock Fighting 1.000000\n", + "Steel Fighting 1.000000\n", + "Dragon Fire 1.000000\n", + "Psychic Dark 1.000000\n", + " Fire 1.000000\n", + "Name: legendary, dtype: float64" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "legendary_percentages = pokemon.groupby([\"type\", \"subtype\"]).legendary.mean().sort_values() \n", + "legendary_percentages[legendary_percentages > 0.5]" + ] + }, + { + "cell_type": "markdown", + "id": "de23775b-8670-4371-913d-d8fa1d1f3a76", + "metadata": {}, + "source": [ + "#### Your turn\n", + "\n", + "**1.4.0.** `income` records peoples' annual income, in the following bands. `sleep` records the average hours of sleep someone gets per night. Is there a difference in the average hours of sleep by income level?\n", + "\n", + "| number | annual income, in $1000 | \n", + "| ------ | ----------- |\n", + "| 1 | Less than 10 |\n", + "| 2 | 10-15 |\n", + "| 3 | 15-20 |\n", + "| 4 | 20-25 |\n", + "| 5 | 25-35 |\n", + "| 6 | 35-50 |\n", + "| 7 | 50-75 |\n", + "| 8 | More than 75 |" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "75c1ac4f-3914-4c0a-a156-2e084002df66", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'people' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mpeople\u001b[49m\u001b[38;5;241m.\u001b[39msleep\u001b[38;5;241m.\u001b[39mmean()\n", + "\u001b[0;31mNameError\u001b[0m: name 'people' is not defined" + ] + } + ], + "source": [ + "people.sleep.mean()\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "f6413f2b-26a0-4b70-976f-90e45558c4bb", + "metadata": {}, + "source": [ + "**1.4.0.** Is there a difference in peoples' income or general health, by sex and education level? " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "d46df8a1-bbc2-45a4-9be1-cee1858cbf21", + "metadata": {}, + "outputs": [], + "source": [ + "# YOUR CODE HERE" + ] + }, + { + "cell_type": "markdown", + "id": "931d602b-ddf4-4c8b-80e0-f886267cce76", + "metadata": {}, + "source": [ + "### 1.5. Plotting \n", + "\n", + "Pandas has excellent built-in plotting capabilities, but \n", + "we are going to use the [seaborn](https://seaborn.pydata.org/) library because it's a bit \n", + "more intuitive and produces more beautiful plots. `set_theme`, called here without any arguments, assigns the default color palette. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "b1e06e4f-6b9e-42af-a27c-dbb525a259ce", + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "sns.set_theme()" + ] + }, + { + "cell_type": "markdown", + "id": "a15ad672-13e8-4bdd-bc31-a489a1730daf", + "metadata": {}, + "source": [ + "#### Demo\n", + "\n", + "**When you want to visualize the distribution of a series**, a [histogram](https://seaborn.pydata.org/generated/seaborn.histplot.html) puts data into bins and plots the number of data points in each bin.\n", + "\n", + "Let's see the distribution of pokémon attack values. Note how assigning `x=\"attack\"` spreads attack values over the x-axis, while `y=\"attack\"` spreads attack values over the y-axis. The number of bins is selected automatically, but you can specify this with the optional `bins` argument. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "5ce066fe-f81d-4b78-a394-c5c2f4dc9f46", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'sns' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43msns\u001b[49m\u001b[38;5;241m.\u001b[39mhistplot(data\u001b[38;5;241m=\u001b[39mpokemon, x\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlegendary\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "\u001b[0;31mNameError\u001b[0m: name 'sns' is not defined" + ] + } + ], + "source": [ + "sns.histplot(data=pokemon, x=\"legendary\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "bceb253b-ef4f-4aa2-aef4-cab2b3ca6d59", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'sns' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43msns\u001b[49m\u001b[38;5;241m.\u001b[39mhistplot(data\u001b[38;5;241m=\u001b[39mpokemon, y\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mattack\u001b[39m\u001b[38;5;124m\"\u001b[39m, bins\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m5\u001b[39m)\n", + "\u001b[0;31mNameError\u001b[0m: name 'sns' is not defined" + ] + } + ], + "source": [ + "sns.histplot(data=pokemon, y=\"attack\", bins=5)" + ] + }, + { + "cell_type": "markdown", + "id": "2aac9186-86c0-41db-a1c4-8719bb78b46b", + "metadata": {}, + "source": [ + "**When you want to compare the distribution of a numeric variable across categories**, a [barplot](https://seaborn.pydata.org/generated/seaborn.barplot.html) is a good choice. Choose one numeric column and one categorical column. \n", + "\n", + "Let's see pokémon hit points by legendary/non-legendary. `errorbar=\"sd\"` shows the standard deviation for each category. " + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "92be1ad0-12bb-49f0-a3f6-85fcfd98e943", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG6CAYAAADnOSfBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJtlJREFUeJzt3Qd0lFXex/F/Jr0QCCUJ0sVDU5oIG1QQ44Ku4iqyehYBlSYqHFYgB0RQEKQtrCBNwYCAwIusNLGBiIVl6axlaYoUAYEIhEQgffKe//WdeTMBFEOSmcn9fs4ZZp4yM3cIz/DL/977PAH5+fn5AgAAYAmHtxsAAABQmgg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVfCr8zJ49W7p37+6xbsOGDdK5c2dp3ry5JCYmysSJEyUzM9O9PSsrS1566SVp3bq12Wfw4MFy9uxZL7QeAAD4A58JP4sXL5apU6d6rNuxY4f0799f2rdvLytXrpSRI0fKBx98YMKOy6hRo+Rf//qXTJ8+XRYsWCAHDx6UAQMGeOETAAAAfxDg7Wt7nTp1yoSarVu3Snx8vFSuXFneeustsy0pKUnOnDkjb775pnv/VatWyYgRI2TXrl2Smpoq7dq1k9dff13uuOMOs/3QoUNyzz33yNKlS00lCAAAwKcqP7t375bg4GB59913pWnTph7bevbsKUOHDvVY53A4JCcnR86fPy87d+406xISEtzb69SpI3FxcbJ9+/ZS+gQAAMCfBHm7ATqOR2+X06hRI49lDT3z58+Xm266SSpWrGiqRjExMRIaGuqxX2xsrJw8ebJE2w0AAPyT18PP1crNzZUhQ4bId999Z8YHqYyMDAkJCblkXw1DOhC6qLQnMCAg4JraCwAAfJNfhB/t4nr22Wdl27ZtMmPGDGnSpIlZHxYWJtnZ2Zfsr8EnPDy8yO/ndOZLevrFa2ozAAAoPdHR4RIY6Cgb4SclJUX69Okjx48fl7lz50rLli3d23SA9Llz50wAKlgB0ufouJ9rkZvrvKbnAwAA3+T1Ac+/Ji0tTR5//HFz3h7t6ioYfFSLFi3E6XS6Bz67ZnvpWKDC+wIAAPh85Wf8+PFy9OhRSU5ONgOcf/rpJ/c2Xdbqzn333Wemvo8bN850dem0+VatWkmzZs282nYAAOCbfDb85OXlmRMa6gwvrf4U9sknn0j16tVlzJgxJvjoyRBV27ZtTRgCAADwyZMc+qK8PKecPXvB280AAABXqWLFyKse8OzTY34AAACKG+EHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAUCYtWJAsjz76kLkHCiL8AADKnKysLPnoow/E6XTK2rUfmGXAhfADAChzcnNzJD/faR5rANJlwIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVnwo/s2fPlu7du3us27t3r3Tr1k2aNWsmiYmJsnDhQo/tTqdTpk2bJm3atDH79OnTR44ePVrKLQcAAP7CZ8LP4sWLZerUqR7rUlNTpUePHlKzZk1Zvny59OvXTyZPnmweu8yaNUuWLFkiY8aMkaVLl5ow1Lt3b8nOzvbCpwAAAL4uyNsNOHXqlIwcOVK2bt0qtWvX9ti2bNkyCQ4OltGjR0tQUJDUrVtXjhw5InPmzJHOnTubgDNv3jxJSkqSdu3amedMmTLFVIHWrVsnHTt29NKnAgAAvsrrlZ/du3ebgPPuu+9K06ZNPbbt2LFDWrVqZYKPS0JCghw+fFhOnz4t+/btkwsXLkjr1q3d26Ojo6VRo0ayffv2Uv0cAADAP3i98qPjePR2OSdPnpR69ep5rIuNjTX3J06cMNtV1apVL9nHta2ogoK8ngsBAMX0Ha7LfK/DZ8LPr8nMzJSQkBCPdaGhoeY+KytLMjIyzOPL7ZOWllbk93U4AiQmJrLIzwcAeFdwcL7HcoUKkRIVxfc6/CD8hIWFXTJwWUOPioiIMNuV7uN67NonPDy8yO/rdOZLevrFIj8fAOBdOiSioHPnLkhOToDX2oOSFx0dLoGBDv8PP/Hx8ZKSkuKxzrUcFxcnubm57nU6I6zgPvXr17+m987NdV7T8wEA3lP4O1yX+V6Hi093gLZs2VJ27twpeXl57nVbtmyROnXqSKVKlaRBgwYSFRVlZoq5pKeny549e8xzAQAA/Cr86HT28+fPy/Dhw+XAgQOyYsUKmT9/vvTt29c91kdPgKjn/vnkk0/M7K+BAweailGHDh283XwAAOCDfLrbS6s7ycnJMnbsWOnUqZNUqVJFhgwZYh67DBgwwHR/jRgxwgyQ1orP3LlzzfR5AACAwgLy8/M9h8RD8vKccvas52A5AID/uHDhvPTq1c29PHfuIomMjPJqm1CyKlaMvOoBzz7d7QUAAFDcCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArBLk7QYAQFnjcASYG7wnKMhxyXLhdShdTme+ufkCwg8AFCMNPRUqREhgIP/RelNwsOd/shUqREpUVKTX2gORvDynnDt30ScCEOEHVluwIFnWrv1A7r77Xnn88d7ebg7KSPjR4DPzfzbJ8ZQ0bzfHWrk5mR7Lo19fJ0HBYV5rj+2qxZaXfl1uM8cH4QfwoqysLPnoow8kP99pAtBf/9pdQkNDvd0slBEafA4fT/V2M6zlzM3yWP7hx3PiCOL4xi+oy8Jaubk5Jvgop9NplgEAZR/hBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKn4RfnJzc+XVV1+VO++8U5o3by5du3aVL7/80r1979690q1bN2nWrJkkJibKwoULvdpeAADgu/wi/Lz22mvyz3/+U8aMGSOrVq2SOnXqSO/evSUlJUVSU1OlR48eUrNmTVm+fLn069dPJk+ebB4DAAAUFiR+YP369dKxY0e5/fbbzfJzzz1nwpBWfw4dOiTBwcEyevRoCQoKkrp168qRI0dkzpw50rlzZ283HQAA+Bi/qPxUqlRJPv30Uzl27Jjk5eXJ22+/LSEhIdKgQQPZsWOHtGrVygQfl4SEBDl8+LCcPn3aq+0GAAC+xy8qP8OHD5e//e1vctddd0lgYKA4HA6ZPn266eo6efKk1KtXz2P/2NhYc3/ixAmpXLlykd4zKMgvciGuQeGfsS7zc8e1Cgzk3xDg68eHX4SfAwcOSLly5WTmzJkSFxdnurySkpJk0aJFkpmZaapABYWGhpr7rKysIr2fwxEgMTGRxdJ2+K7g4HyP5QoVIiUqip87AJSU6Ohw8QU+H360ejN48GCZP3++3HLLLWZd48aNTSDS6k9YWJhkZ2d7PMcVeiIiIor0nk5nvqSnXyyG1sOXXbhwwWP53LkLkpMT4LX2oOz8ZusrX/CAr0lPz5C8PGeJvLYed1dbWfL58PPVV19JTk6OCTwFNW3aVL744gu57rrrzKyvglzLWiUqqtzckvnhwHcU/hnrMj93ACg5Gnx84XvWNzrffkV8fLy5379/v8f6b7/9VmrXri0tW7aUnTt3moHQLlu2bDHT4XWgNAAAgF+FnyZNmkiLFi1k6NChJtToLK6pU6fK5s2b5cknnzTT2c+fP28GRWtX2IoVK0wXWd++fb3ddAAA4IN8vttLZ3bpSQ418AwbNkzS0tLM7C4NONr1pZKTk2Xs2LHSqVMnqVKligwZMsQ8BgAA8Lvwo8qXLy8jR440tytVh/TcPwAAAH7f7QUAAFCcCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAChzAhyB+qdr6f+WgV8QfgAAZU6AI0giYhua4KP3ugy48K8BAFAmlauRYG5AYVR+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrcJJDL3E4AswN3hMU5LhkufA6lC6nM9/cAKAkEX68QENPhQoREhjIf7TeFBzs+Z9shQqREhUV6bX2QCQvzynnzl0kAAEoUYQfL4UfDT4z/2eTHE9J83ZzrJWbk+mxPPr1dRIUHOa19tiuWmx56dflNnN8EH4AlCTCjxdp8Dl8PNXbzbCWMzfLY/mHH8+JIyjUa+0BAJQO+l0AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWKXIV3U/ffq0LFy4ULZt2yZpaWlSqVIlad26tXTv3l2io6OLt5UAAADerPzs27dP7r33XlmwYIGEhYVJo0aNJDAwUGbPni3333+//Pjjj1LcVq1aZd6zcePGct9998mHH37o3nbs2DHp27ev3HzzzXL77bfL1KlTJS8vr9jbAAAALK38TJgwQapWrSrJyclSpUoV9/pTp05J7969ZeLEifLqq68WWyNXr14tw4cPl+eff17atGkj77//vgwaNEji4+Plpptukl69eknt2rVl6dKl8sMPP5h9HQ6HDBgwoNjaAAAALA4/X331lUyePNkj+Ki4uDjp37+/jBgxorjaJ/n5+SZIPfbYY9K1a1ez7umnn5YdO3aYLrfjx4+bStOyZcukfPnyUq9ePTlz5oz8/e9/l6eeekpCQkKKrS0AAMDSbq+YmBj5+eefL7tNu5u0K6y4HDp0yAQc7U4raO7cuaarS0PQjTfeaIKPS0JCgpw/f1727t1bbO0AAAAWV3769etnKj81a9Y042xcDh48aKo0Wv0pzvCjLl68aLq39uzZI9WrVzfVn8TERDl58qTp/iooNjbW3J84cUKaNm1apPcNCiq5iXCBgUyyA8rq8eHv7QdsOD6Cijr4OCsry3RDaRDR7q7U1FQ5fPiwOJ1OmTNnjrmpgIAAWb9+fZEbqBUcNXToUBOqkpKSZO3atfLMM8/Im2++KZmZmZfMLgsNDTX32saicDgCJCYmsshtBlB00dHh3m4CgDJ+fBcp/Gjg0VtBNWrUkCZNmkhxCw4ONvda9enUqZN53LBhQ1MB0vCjXWzZ2dkez3GFnoiIiCK9p9OZL+npF6Ukk6+v/AMAfE16eobk5TnFX3F8A945vvW4u9rKUpHCz/jx4839hQsXzNgfrfYUdt1110lx0KqS0oHMBd1www3y2WefSatWreTbb7/12JaSkuLx3KLIzfXfL1/An+kXI8cfUDbl+cjxXaTwc/ToURk4cKDs3r37ivsU12BjHcwcGRlpZpjdcsst7vUaeHTMUcuWLU03nHaPRUVFmW1btmwxz2nQoEGxtAEAAJQdRQo/o0aNMgFIp5Jr95eeU6ekaLeWnjto5syZppKjXWt6np9NmzbJ/PnzpVmzZuakhs8++6wZD6QnPHzllVekZ8+eTHMHAADFE3527dolI0eOlAcffFBKgw5uDg8PlylTppgTKdatW1emT58uf/jDH8x2PdniSy+9JI888oiZ8v7oo4+a5wAAABRL+NEupcInOCxpPXr0MLfLqVWrlsybN69U2wMAAPxTkfqrHnjgAXNRU66fBQAAymzlZ9iwYe7Hubm5snHjRmnfvr0Zg6NdUgXpuX3GjRtXvC0FAAAozfCzdetWj2XXWZW//vrrS/bV8AMAAODX4WfDhg0l2xIAAIBS4BsX2QAAACglhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEH1gpwBOqfrqX/WwYAlHWEH1grwBEkEbENTfDRe10GAJR9fhV+Dh06JM2bN5cVK1a41+3du1e6desmzZo1k8TERFm4cKFX2wj/Uq5GgsS16GHuAQB28Jvwk5OTI0lJSXLx4kX3utTUVOnRo4fUrFlTli9fLv369ZPJkyebxwAAAJfjN3X+6dOnS1RUlMe6ZcuWSXBwsIwePVqCgoKkbt26cuTIEZkzZ4507tzZa20FAAC+yy8qP9u3b5e3335bJkyY4LF+x44d0qpVKxN8XBISEuTw4cNy+vRpL7QUAAD4Op+v/KSnp8uQIUNkxIgRUrVqVY9tJ0+elHr16nmsi42NNfcnTpyQypUrF/l9g4JKLhcGBvpF5gS8wt+PD39vP2DD8eHz4WfUqFFmkPP9999/ybbMzEwJCQnxWBcaGmrus7KyivyeDkeAxMREFvn5AIouOjrc200AUMaPb58OP6tWrTJdW2vWrLns9rCwMMnOzvZY5wo9ERERRX5fpzNf0tP/f2B1SSRfX/kHAPia9PQMyctzir/i+Aa8c3zrcXe1lSWfDj86a+vMmTPSrl07j/UjR46UDz74QOLj4yUlJcVjm2s5Li7umt47N9d/v3wBf6ZfjBx/QNmU5yPHt0+HH522rl1bBXXo0EEGDBggf/7zn2X16tWydOlSycvLk8DAX87Ou2XLFqlTp45UqlTJS60GAAC+zDdGHl2BVm9q1arlcVMabHSbTmc/f/68DB8+XA4cOGBOfjh//nzp27evt5sOAAB8lE+Hn9+iISg5Odmc+blTp04yY8YMMzNMHwMAAPhdt9fl7N+/32O5SZMm5hxAAAAAZb7yAwAA8HsRfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFX8IvycO3dOXnzxRWnbtq3cfPPN0qVLF9mxY4d7++bNm+Whhx6Spk2byj333CPvv/++V9sLAAB8l1+En0GDBsl//vMfeeWVV2T58uXSsGFD6dWrlxw8eFC+//576du3r7Rp00ZWrFghDz/8sAwZMsQEIgAAgMKCxMcdOXJENm3aJEuWLJEWLVqYdS+88IJs3LhR1qxZI2fOnJH69evLwIEDzba6devKnj17JDk5WVq3bu3l1gMAAF/j85WfmJgYmTNnjjRu3Ni9LiAgwNzS09NN91fhkJOQkCA7d+6U/Px8L7QYAAD4Mp+v/ERHR8sdd9zhsW7t2rWmIvT888/LypUrJT4+3mN7bGysZGRkSGpqqlSsWLFI7xsUVHK5MDDQ5zMn4DX+fnz4e/sBG44Pnw8/he3atUuGDRsmHTp0kHbt2klmZqaEhIR47ONazs7OLtJ7OBwBEhMTWSztBfD7REeHe7sJAMr48e1X4Wf9+vWSlJRkZnxNnjzZrAsNDb0k5LiWw8OL9pfsdOZLevpFKcnk6yv/AABfk56eIXl5TvFXHN+Ad45vPe6utrLkN+Fn0aJFMnbsWDOVfeLEie7qTtWqVSUlJcVjX12OiIiQcuXKFfn9cnP998sX8Gf6xcjxB5RNeT5yfPtG59tv0JleY8aMka5du5rp7gW7uW655RbZtm2bx/5btmwx1SGHwy8+HgAAKEU+X/k5dOiQjBs3Ttq3b2/O53P69Gn3trCwMOnevbt06tTJdIPp/eeffy4fffSRmeoOAADgd+FHZ3bl5OTIxx9/bG4FadiZMGGCzJo1SyZNmiQLFiyQ6tWrm8ec4wcAAPhl+HnqqafM7dfoZS/0BgAA8FsYFAMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxC+AEAAFYh/AAAAKsQfgAAgFUIPwAAwCqEHwAAYBXCDwAAsArhBwAAWIXwAwAArEL4AQAAViH8AAAAqxB+AACAVQg/AADAKoQfAABgFcIPAACwCuEHAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxSJsKP0+mUadOmSZs2baRZs2bSp08fOXr0qLebBQAAfFCZCD+zZs2SJUuWyJgxY2Tp0qUmDPXu3Vuys7O93TQAAOBj/D78aMCZN2+eDBgwQNq1aycNGjSQKVOmyMmTJ2XdunXebh4AAPAxfh9+9u3bJxcuXJDWrVu710VHR0ujRo1k+/btXm0bAADwPUHi57TCo6pWreqxPjY21r3t93I4AqRixUgpKQEBv9wP7ZUoeXnOEnsfwJ8EBv7yu1j58uGSny9+i+Mb8M7xrf93WxN+MjIyzH1ISIjH+tDQUElLSyvSawYEBEhg4NX/JRZV+aiwEn8PwN84HH5fkDY4vgHfPb59oxXXICzsly+YwoObs7KyJDw83EutAgAAvsrvw4+ruyslJcVjvS7HxcV5qVUAAMBX+X340dldUVFRsnXrVve69PR02bNnj7Rs2dKrbQMAAL7H78f86Fifbt26yeTJk6VixYpSrVo1mTRpksTHx0uHDh283TwAAOBj/D78KD3HT25urowYMUIyMzNNxWfu3LkSHBzs7aYBAAAfE5Cf78+TSgEAACwb8wMAAPB7EH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAFiF8AMAAKxSJk5yCHt1795dtm3bdtltPXv2lKFDh/7q8/WyKI899ph88sknUr169RJqJYBr8dxzz8nKlSt/dZ/9+/eXWnvg/wg/8Ht/+tOfZPjw4ZesDw8P90p7ABQvPb4HDx7sXr799tvl+eefl3vvvder7YL/IvzA74WFhUmVKlW83QwAJaRcuXLmVngdxz2KijE/KNPS0tLMNd/atGkjN954o7Ru3dosZ2RkXHb/w4cPS69evaRFixbSvHlz87hgOf3nn3+WF154QRISEsw+2mX2zTfflOInAlDYihUrpH379vLyyy+b4/KZZ54xXdr169eXY8eOufcrvE6v7vTGG2/IXXfdJU2bNpUHHnhA3n33XS9+EpQWKj8o82MFTp06JTNmzJBKlSrJrl27TLn8hhtukCeeeOKS/QcNGiQNGjSQ5cuXm4vlTpw4Ufr37y8ff/yx+aLs06ePqTTNnj1boqKiZPXq1dKlSxdZtmyZNGrUyCufEYDIDz/8ICkpKbJq1SpzgeuzZ8/+5nOmTJki7733nrz44oty/fXXy/bt22XUqFHml5yuXbuWSrvhHYQf+L01a9bI2rVrPdbpb3/Jycly2223ScuWLc1ve0oHNS9atEi+/fbbK36B3nrrrVKtWjUJDg6WcePGycGDB8XpdJrfGr/88kvZsmWLVKhQwR2WNFAtXLhQJkyYUAqfFsCVaMWnRo0a5rEer7/m4sWLMn/+fHnllVekXbt2Zl3NmjXl+PHjMnfuXMJPGUf4gd9LTEyUpKQkj3VanVGPPvqobNiwwcwU0S6tAwcOmJK3/pZ3OQMHDjSBZ8mSJdKqVSvTXdaxY0dxOByye/duU/258847PZ6TnZ0tWVlZJfgJAVyN2rVrX/W++l2gx60OpNbj20UrvnpMa/XI9T2CsofwA78XGRkptWrVumS9Vmv69u0r3333nQkwOjNEx/3omJ0r0d/27rnnHvn8889l8+bNMm3aNHnttddMKV1fT7u6dHxBYSEhIcX+uQD8Pr8VVvLy8tyP9RcZNXXq1Mv+MsQxXbYRflBm7d27V7744gszHkcHM6qcnBzTteUqjRd05swZmTlzpjz55JPy0EMPmZuOF2rbtq05l1C9evXk/Pnz5jV0zJCLDqDWcULdunUr1c8H4Mq021rpMeui1V8XDTxBQUHy448/elRztQtbq0KjR48u5RajNDHbC2VW5cqVzZfbhx9+KEePHjWzsp599ln56aefTFm7sPLly8tnn31mwowGJ33O0qVLzZfoTTfdZLrAGjZsaLrGdNzPkSNHZPz48aYSVLduXa98RgCXp7+sREREyJw5c8wvPBs3bpQ333zTY6r8X//6V3n11VfNxAU93t955x2ZNGmSxMbGerXtKHlUflBmxcXFmUHI06dPl8WLF5tzgujARp3lpeOACtOgpNNedYaX7qPT4TXs6JenDoRU8+bNM1+OGqJ0u4YenUmmU+gB+A7totZjdfLkyabLW6uzesb3fv36ufcZNmyYxMTEmACkM8WqVq0qAwYMkN69e3u17Sh5Afmujk8AAAAL0O0FAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QdAiatfv7452aS/6d69u7kBKFsIPwAAwCqEHwAAYBXCD4BSd+7cOXnxxRfl1ltvlcaNG8sjjzwimzdv9thHr8at++h105o3b24uKDt//nzThVbQ+vXr5aGHHjKvc9ttt8nLL78sFy9edG/X7rb27dubi9bef//95iK1d999t6xatcrjdfTq3v3795cWLVqY1yl4EUyXzMxM+cc//iEdOnQwr3PzzTdLjx49zIVwXZ577jl5/PHHZeTIkWa7XldKrxfVtm1bcTqdHq83fPhw0xYApYsLmwIoVVlZWSYcnD592gQavYL28uXLzcUkk5OT3ReJfeaZZ0yo0H2uu+46WbJkiQkeBa1Zs0aSkpJMqNGLzR4/flymTJkiBw4cMOElICDA7PfTTz/J6NGj5emnn5Zq1arJ3LlzzUUuNTDpxWk1LHXr1s1c3HbMmDHicDhk2rRp5mrgGrxchgwZIjt27JBBgwaZi90eOXLEXBRz8ODB8v7777vfT/cJDQ2VmTNnmtcODg6WtWvXytatW92fT4PURx99JH369CnFv30AivADoFStXr1a9u3bJ8uWLZOmTZuadVoV0YHFegVuDUJaBdKgoFUbrbK49unYsaN8//33Zlmvyaz7t2nTxty71K5dW5544gn5/PPPpV27dmZdRkaGjB071h08dJ8777zT7KPhZ+XKlaby895778kNN9xg9tG2acXIJTs7Wy5cuCAjRoww1RzVqlUrU6GaMGGCCXNVqlQx63Nzc03Yio+PN8ta8dHHWm1yteHjjz82wejBBx8shb91AAXR7QWgVGmw0ZBw4403mpCgt7y8PBNG/vvf/0paWpps2bLFVEv++Mc/up+n1RhX6FAHDx6UkydPSmJiovt19NayZUuJioqSTZs2ebxvs2bN3I9docTVPaaVGq3kuIKPqlq1qsdzQkJCTMVI23Dq1CnTxqVLl8qnn37qDkcuFSpUcL+Hq+2dOnWSdevWmSCmNHBpt1/B/QCUDio/AEp9vI92Q2n4uRzdlpqaagKEhoaCKlWq5PE66qWXXjK3wlJSUjyWw8PD3Y9dr6vVI6WBKyYm5pLX0JCmFR2XjRs3yrhx40zwioyMlAYNGkhERITHayndVljnzp3l9ddfNwEoISHBhMCCFSsApYfwA6BUlStXznQ7Xek//urVq0tcXJwJQNpdVDAAnTlzxv04OjraPQ5Hu58KK1++/FW3SYOPjt8pzBWwlI7/6devn6lGzZ49W2rUqGHG+CxevNiEot+i+2s7P/zwQ/O6Wp0qWNkCUHro9gJQqjQAnDhxwlRxdMCx66bdVDrgOTAw0OyjXVgbNmxwP08rKzqzy+X66683r3Hs2DGP19HgpAOj9+zZc9Vt0kqMvs4333zjXnf27Fn58ssv3cvaJaeDtZ988knTReYa3OwKPgUrP1fyl7/8Rf7973+bsUXafaaDogGUPio/AEqVTktftGiRmSL+1FNPmbE1GgjeeOMNM+NKx/rouB2dbq5TwbXbSWd7vfPOO7J//3536NCQpDPBdDq8PtYxQ+np6TJr1iwzJudK3WqX88ADD8jChQvNVHd9Ta3KvPbaax5T0/X1dDbYpEmTpGfPnmaMz4oVK8wUelVwev2V6LR2nU329ddfywsvvFCkvz8A147wA6BU6RgZ7SrS6owGiZ9//tlMP9fp4hoqXHTKus6i0v20CnTXXXdJly5dPM7P8/DDD5vxNVoxevvtt81r67l1tEtNu5mulg5mXrBggRnPo7PCNGDpuYf0NVxdbbVq1TJtmTFjhpkyr91qOiD6rbfeMjPVdNB04XMQFaaVHq0y6ZihJk2aFOnvD8C1C8i/mlotAJQiPV+Pdjlp4AkLC3Ov15MFHj161MyU8kd6bp877rjDnMNIz3UEwDuo/ADwOTrIWc+UrOFHx8lot5aOrdGZUuPHjxd/DHMa2LR7T6tKOvMLgPdQ+QHgk/Q8OnqGZD3Ls3Z76ckIdZyQnujQ3+gAbz2ZoXbRFTzZIgDvIPwAAACrMNUdAABYhfADAACsQvgBAABWIfwAAACrEH4AAIBVCD8AAMAqhB8AAGAVwg8AALAK4QcAAIhN/hcVyzcDEXbUKQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.barplot(data=pokemon, x=\"legendary\", y=\"hp\", errorbar=\"sd\")" + ] + }, + { + "cell_type": "markdown", + "id": "4f75e1fa-a5d7-4d2c-a458-8190a7cd700e", + "metadata": {}, + "source": [ + "Here, we use a barplot to show average hit points by type. `errorbar=None` removes the standard deviation bars, because they clutter up the plot with too much detail. " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "17f1c289-5990-4420-bfcb-e50eee0b8af6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAG1CAYAAADOYzEeAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWXNJREFUeJzt3Qd8U+X3P/DTtEBLaaFlg1j2XmVP2YrsIZsCspU9ZAgIiJS90S8gIAKyZCNLhoCgskQ2Foqssgq0FGgZTfJ/neM/+XUhLU2ae5983q9XbHOz7mlD+vF5zn2ui9lsNhMAAAAA2IXBPk8LAAAAAAxhCwAAAMCOELYAAAAA7AhhCwAAAMCOELYAAAAA7AhhCwAAAMCOELYAAAAA7AhhCwAAAMCOELYAAAAA7MjNnk8OiccL+ZtMai/mbzC4KF2j6vUx1Kh/qtfHUKMaDDqokffRxcXljfdD2NII/mU9e/acjEYTqcjV1UDe3h7K1qh6fQw16p/q9empRg4Rbxsk3NwM5OPjSRERkRQdrd0ak8NNJzX6+nqSqyvClq5GtvgDQnWq16h6fQw16p/q9emhRg6C4eGRmh+5AdtA2NLQyNbX6y9QSGiko3cFAADsKGfmtNTno6K6mCYD20DY0hAOWtfuPHX0bgAAAIANuel96m3Tpk1yuXz5Mj19+pSyZ89ONWvWpJ49e1LmzJkdvYsAAADg5HS79IPJZKI+ffrQ5MmTqVatWrRixQr6+eefafTo0XT27Flq2bIlPXz40NG7CQAAAE5OtyNby5Yto4MHD9K6deuoWLFi1u05cuSgihUrUsOGDWnJkiU0bNgwh+4nAAAAODeDXqcPV65cSU2aNIkVtCzc3d1p+fLlNHDgQLp16xYVKlSIFi5cSFWrVqU6derIdGNQUBD16tWLypcvT8WLF5ftS5cutT5HVFQUjRo1Sh5TokQJatasmYycWVy7do26detGZcuWJX9/f/n+77//TrGfAQAAAOiDLsMWB6iQkBCqUqXKa++TM2dOSp06tfU693V9//33NHv2bHJ1daWuXbtShgwZaM2aNfTTTz9R/fr1acqUKXTx4kW5/5w5cyQ8LVq0iHbs2EHvvfceDRo0SF6bDR48mLJmzUobNmygH3/8kQwGA/Xt2zcFqgcAAAA90eU04oMHD+Srr69vrO29e/emo0ePxppS5BEt1r59e8qfP798/+jRI+rUqRN16NCBPD09ZVv//v1p8eLFErCKFClCN27ckNty5cpF3t7eNGDAABkFS58+vdyfb+ewx6EuVapUFBgYSFevXpVeMg5eAAAAALoNWz4+PvL18ePHsbaPHz+enj9/Lt9zw/z+/futt/n5+Vm/55DG4YtHtC5cuCDB6dKlS3IbhyXWo0cPCW+VK1emkiVLynRi48aNycvLS27nUS4OWKtWraIKFSpQ9erVqVGjRghaAAAAEIsukwGPNvGyDjFHsRhP63Go4otlBCpmH5dFaGio9Hvx9B8/hoMXTzPGxH1Y3IA/d+5c6QvbvHkzNWjQgH7//Xe5nUfFDh06JEc/cgDj+3FTvmXUDQAAAEC3YYt7rngakAOQZUQqrjt37rz28TyiFR4eTqtXr6ZPP/2U6tWrZx0l4+Z7xuHp5MmT0jjPgWr37t0S8vgrLynx5Zdf0qtXr6hFixY0bdo02rp1q4S4Y8eO2alqAAAA0CNdTiOy7t27yxQgj0rxAqa8kGm6dOnkKEM+UvHIkSOy1lZCsmXLJkcb7tq1S44m5F6rSZMmyW0vX76Urzdv3pQANWHCBHr33Xfp9OnTdPv2bRnx4lGzAwcOyPTjkCFD5HU3btwovVt8ZCMAAACA7sMW90bxkYU7d+6UIwJ5qYeIiAjKlCkTlStXTgIXN7Rbjh6MiY88PH/+vCyIystAcJN7q1ataN++fbIgart27Wjs2LFydOJnn30mo2B8n6FDh1LTpk3lOb799lu5vUuXLhLcuKmej1zkYAYAAABg4WK2zJuBw33+vxM4NyIAgOJyZ09HgZ+Uo7CwZxQd/e9BWUnh5mYgHx/Pt368HrjppEZfX09ydTWoO7Kl6pngAQBAbfisdz4IWxrBA4x9Pirq6N0AAIAUYDSayGTCxJKzQNjSCBcXF4qIiJJ/gCriYVZvbw9la1S9PoYa9U/1+vRUIwcthC3ngbClIfzBoOW5aVtQvUbV62OoUf9Ur89ZagT9QNjSkMQ02em9NlVrVL0+hhr1T/X6nKVGngkBfcHRiBrBvwb8AwIAgDcxm4zkYnDV/JF6yeGGoxHBHjho3dm+kF4+vO3oXQEAAI1KnTEHZW/Yy9G7AUmEsKUhHLRe3L/u6N0AAAAAG3K6sBUQEPDa8xd27dqVzp07J6vF8+ryAAAAAMnldGGLffjhhzRq1Kh42z08PCg6OlpOdA0AAABgC04Zttzd3Slz5syO3g0AAABwAuoeG5uMacYRI0bI9xs3bqR69erRV199RWXLlqVPP/1UtgcHB1OPHj3I39+fqlWrRkOGDKHQ0FAH7zkAAABoEcLWG9y4cYPu379PmzdvpkGDBtG9e/eoffv25OfnR+vXr6cFCxbQ06dPqU2bNhQZGeno3QUAAACNccppxG3bttHu3btjbeORq8WLFyd4fx7RypUrl3w/e/ZsypYtG40ePdp6O2+rVKkS7dq1i1q0aGHnvQcAAAA9ccqwVbt2bRo6dGi8Pq7XyZ07t/X7Cxcu0OXLl2UKMaYXL17I9CIAAAAAOXvY8vT0lGnAxIoZxEwmk4xijR07Nt79vLy8bLaPAAAAoAb0bCVRgQIFZAQre/bsEtj4kj59egoMDKSgoCBH7x4AAABoDMJWEnFz/JMnT2Qa8tKlS3LhxvmzZ89SwYIFHb17AAAAoDEIW0nEjfIrV66kZ8+eUbt27ahjx46UKlUqWr58Ofn6+jp69wAAAEBjXMxms9nROwH/ur58LM6NCAAAr5Umix/5dRov34eFPaPoaBOpyM3NQD4+npqv0dfXk1xd3zxuhZEtAAAAADtyyqMRtSp1xhyO3gUAANAw/J3QJ4QtjeDZ3OwNezl6NwAAQOPMJiO5GFwdvRuQBAhbGuHi4kIREVFkNGp3bjo5eE7b29tD2RpVr4+hRv1TvT5nqZH/XmTIkNbRuwFJgLClIfzBoOVGQFtQvUbV62OoUf9Ur0/1Grl5HPQFYUtDEnNEg95rU7VG1etjqFH/VK+PocaEmUxmuYBjYOkHjeBfAw8NAwAA2JrRZKLwsEjdBC43xZZ+wMiWRnDQWn1hJd2PvOfoXQEAAIVkSZuV2hXtSAaDi27ClmoQtjSEg1bI0xBH7wYAAADYkC4ntfv27UutWrWKt71169ZUqFAhOnbsWKztW7dupcKFC9PDhw//83kjIyPphx9+sPn+AgAAgPPSZdiqXLkyXbx4kZ4/f27dFh4eLieDzp49O/3666+x7n/ixAkJWxkzZvzP5126dCktWbLEbvsNAAAAzkeXYatSpUr06tUrCVcWv/32m4Spli1bJhi2qlSp8sbnxbECAAAAYGu6DFv58uWjrFmz0p9//mndxgGrWrVqcrl06RI9ePBAtj969IiCg4Nl+969e2X6sXTp0lSiRAlq0aKFNZjNmzeP5s+fTyEhITIVeevWLdm+YcMG+vDDD6lkyZLy9fvvvyeT6d8jI/g+fN+FCxdS1apVqU6dOvT06VOH/EwAAABAm3QZtixTiadOnbJeP3z4sAQeDkVeXl5ynZ08eZLc3d0pTZo01K9fP2rYsCFt27aN1q1bR76+vjRs2DB6+fIlde3aVS7ZsmWTx/J05Nq1a2nq1KnSI7Z9+3YaOHAgffvttzR9+vRY+7Jp0yYJYbNnz6Z06dKl+M8CAAAAtEv3YYun/ngkKzQ0VMKWq6ur3GYZsTp+/DiVK1eO0qZNS2PGjKEuXbpQrly5qEiRItSpUycZ+eLGeU9PT7kPPz5z5szy9ZtvvqFPPvlEAho/5oMPPqBBgwbRypUr6cWLF9Z9ad++PeXPn19GywAAAACUWPqBAxU3xV+9elVGoooWLSojVYxDF08JWvq1OCxxuEqfPj0tWrRIHnP9+nUJacxoNMZ7fg5hd+/epZkzZ9KcOXOs23kKkYMWTyHyaBnz8/NLoaoBAABAb3QbtrhnK0+ePDK6deTIEenJsuDvv/jiCzp//rwEqsDAQFkOolu3blSzZk0qW7YsNW7cmKKioqhPnz4JPr+lL2vkyJEJNtfzNOP9+/fle56mBAAAAFBqGpFxCOImeQ5cPJplkTNnTsqdO7esmcWjXdzEzss6VKxYURrheSqR73/nzp1YRyHGPF0OH9nIj71586aMXFkuHOC4NwsAAABA+bDFU4k7d+6UkFSmTJlYt1WvXl1u4/vw7TwS9ffff8u0Ik8B8lGGlulBbpBn3LP1+PFj+ueffyg6Opp69OhBK1askB6tGzdu0J49e2jcuHEykpU6dWqH1AwAAAD6ouuwxSNVvLApf02VKlWs23gqkVeEt4x49e/fX5Z86N27NzVr1ox+/PFHmV7k4GRZr+v999+X5vgmTZrQhQsX5OjEESNGSNhq0KABTZw4UVapHz9+vEPqBQAAAP1xMWMlT82Yc2IGzo0IAAA2lTNdThpQbgiFhT2j6Oh/+5G1zs3NQD4+nprfZ19fT3J1NajbIK/qmdkBAABsCX9bHA8jWxrBv4aYDfoAAAC2YjSZKDwskkwmffzJd8PIFtgDB62IiCgyGrX7pkoOfjN6e3soW6Pq9THUqH+q18dQY8I4ZOklaKkIYUtD+B+NlhO8Laheo+r1MdSof6rXx1AjaAnCloYkZihS77WpWqPq9THUqH9arw+jL6AqhC0N9WzxsLDqVK9R9foYatQ/rdZnMhopLDwKgQuUg7CloZ6ty8uXU9S9e47eFQCAFOeRNSsV6NSJDAYXhC1QDsKWhnDQirx1y9G7AQAAADbkVGGrdu3aFBLyf4uG8qrzfB7FVq1aUffu3R26bwAAAKAmpwpbjE/BwxfGp/o5c+YMjR49mjw8PKhDhw6O3j0AAABQjNOFLT7ZNJ//0CJXrlx09OhROTE1whYAAADYmjaP/01hfDJqi4CAADn5dExxt507d06CWalSpahOnTq0detWKlq0qIQ2AAAAgJicPmzxNOJPP/0kfVuJce/ePercubP0evFo2BdffEGzZs0io9Fo930FAAAA/XG6acSFCxfS0qVL5ftXr17JhUeoGjdunKjHr127lry8vGjixInSYJ8/f37p+fr000/tvOcAAACgR04Xttq2bSvTgiw6OpquX78uI1M8Lfjjjz++8fEXLlyg4sWLS9CyKF++vF33GQAAAPTL6cJW+vTpyc/Pz3o9X758sq19+/b022+/JfgYDmUWrq6uZDLhXFQAAACQOE7fs2U5VQ7jEMUjVk+fPrXexttu3rxpvV64cGEZ3eLpR4tTp06l8B4DAACAXjhd2IqMjKTQ0FC53L9/n06cOEGBgYGUJUsWqly5MpUuXZqOHDlChw4dkinGCRMmUEREhPXxPALG18eMGUPBwcEyGsb3sZxyBwAAAMCppxG5Od7SIG8wGChDhgxUrlw5mj59uixsygue3rhxgwYMGECpU6emjz76iBo2bGgd/cqYMSMtXrxYAlrTpk0pW7Zs1K5dO5o6dWqsPi4AAAAApwtb+/fvf+N90qVLJ8Hrda5cuSLBa/369dZtf/75p3zl4AUAAADg1NOIyXX37l3q1KkTbd68Wc6zyP1akyZNogoVKlD27NkdvXsAAACgMU41smUL1apVo1GjRsl6Xdy3xWtu8Qmuhw4dmuzn9sia1Sb7CACgN/j8A5W5mC3NSOBQ/GtAgz0AODOT0Uhh4VFkMr39nyU3NwP5+HhSWNgzio5Wc5ke1Kgdvr6e5Or65klCjGxpBAetiIgoMhq1+6ZKDn4zent7KFuj6vUx1Kh/Wq+PQ1ZyghaAViFsaQh/+Gk5wduC6jWqXh9Djfqnen0AWoOwpSGJGYrUe22q1qh6fQw16p/q9THUqB0Yqfw/6NnSCPRsAQCASkxGE4WFR75V4ELPFtgFB609q4/So/tPHL0rAAAAyeKbxYvqtatIBoMLRrcQtrSFg9aDkHBH7wYAAADYkCYnfHndKr7EPCG0xYgRIyggIIC05OjRo1SoUCG6deuWo3cFAAAANEaTYYvx6ux8vkEAAAAAPdNs2MqVKxetXbuWfvvtN0fvCgAAAIB6YatJkyZUuXJlOTVOQtOJLDw8nMaPH081atSgkiVLUtu2bWVKz2LevHnUsWNHGjRoEJUpU4YmTJhAGzdupHr16tGaNWuoZs2aVKpUKerfvz/du3dPTrnj7+9P7733XqwTTT9+/JhGjx5N1atXp2LFisl+8fWoqKgU+VkAAACAfhm0fHTexIkTJehMmTIl3u1Go5G6du1KJ06coGnTpkmIKliwIHXr1o3OnDljvd/x48cpU6ZMtGXLFmuv1+3bt2nXrl20aNEimjt3Lu3bt48aN24sQWrDhg0StsaNG0dhYWHWPrELFy7Q/Pnzaffu3TRy5Eg5ETWPvAEAAADoMmyxnDlz0vDhw2ndunV0+PDhWLfx9fPnz9OMGTOoQoUKlD9/fhnlKlCgAC1ZsiTWfXnkiqclc+fOLdejo6PlJNIcznhUrHDhwpQ3b176+OOPrV9fvXpF165dk/tXrVqVJk2aJKNg77zzjoy6FS1alIKCglLwpwEAAAB6pOmwxdq0aSNhh6ftYk4nctDx8vKSwBRzNKxcuXKxQlDGjBnlfnG9++671u/Tpk0b63qaNGnk68uXL+Vr+/bt6ebNmzR58mTq3bs31a1bV0bPTCbtLrQGAAAA2qD5sMW++uorevLkiYwuWbxu4Xve7ub2f8uHubu7J3i/VKlSxbpuMCT8o+BA1atXL9kHft4GDRrQwoULpQcMAAAAQIlFTXPkyCF9Uzy6xdOB2bNnl3WtOIDxKJZldIuD1smTJ2VK0VYuXrxIhw4dkqlMnkZkPMV448YN2RcAAAAA3Y9ssVatWlG1atVkOo/x90WKFKEhQ4bQsWPHKDg4mL788ksJX507d7bZ63JzPY9o7dy5U1777NmzNHDgQAoNDbVOMwIAAADoPmwxnsqz9F+5urrS0qVLpVG9b9++1LJlS7p8+TItW7aMSpcubbPXzJo1q/Rq7d+/X6YQBwwYINu6dOlC586ds9nrAAAAgJpczK9rfoIUt3bOXpwbEQAAdC9TzgzUZkBdCgt7RtHRST+YzM3NQD4+nm/9+JTi6+tJrq4GNXq2nOks6QAAAHqHv2exIWxpBA8w1mtX0dG7AQAAYBMmo4lMJkyeMYQtjeA1wiIiosho1O5waXLwMKu3t4eyNapeH0ON+qd6fQw1agcHLYStfyFsaQj/o9Hy3LQtqF6j6vUx1Kh/qtfHUCNoCcKWhiSmyU7vtalao+r1MdSof6rXp6caMerjXBC2NNSzxcPCqlO9RtXrY6hR/1SvTw81Go1GCg+PQuByEghbGurZ2rRoMj248++irQAAoKZM2XNR854jyGBwQdhyEghbGsJB6+6NK47eDQAAALAhTU9q165dW86BaLkULlxYTgDdsWNHOn78eKKeY+PGjfJYAAAAAEfQdNhiXbt2pcOHD8uFTwi9Zs0aSpcuHXXv3p1u3779xsfzKXb4sQAAAACOoPmwlTZtWsqcObNcsmTJQgULFqTx48fT8+fPac+ePW98vLu7uzwWAAAAwBE0H7YS4ub2b6tZ6tSpJXTNnj2b6tSpQyVKlKCmTZvS7t27XzuNePDgQWrRogWVKlWKKleuTCNGjKDHjx9bbw8ODqbevXtTxYoVqWzZstS/f38KCQmx3h4QEEDTp0+nzz//nMqVKyfTmkOGDKGnT5+mWP0AAACgH7oLW/fu3aMvv/xSRrxq1KhBgwcPps2bN9OYMWNo69atVLduXRowYADt3bs33mMfPXpEffv2pZYtW9KOHTto/vz50vs1depUuZ1DVZs2bSTEff/997R06VIKDQ2VHrGYYWrZsmWUKVMmWr9+PU2bNo327dsn2wAAAAB0dzTiwoULJfSw6OhoevnyJeXLl09Gs6KioiToLFiwgGrWrCn36devH126dEm2cfCKG9T48Tly5KCcOXPKhe/H652wVatWSYjjkSsOXGzu3LkyarZlyxbq0KGDbMufP7+EPJY7d26qWrUqnTp1KkV/LgAAAKAPmg9bbdu2lak7ZjAYKEOGDOTl9e/ZxHl0ivF0X0zly5enmTNnxnuuIkWKUKNGjWSakPu4OCRxSKtXr57cHhQURMWLF7cGLcb3y5Mnj9xmkTdv3ljPy/sTERFh07oBAABADZqfRkyfPj35+fnJJVeuXNag9abV2C19XXHNmDGDdu7cKUczhoWF0WeffUbdunWzPi4hJpOJUqVKZb0eM4wBAAAA6Dps/RdL4/vJkydjbT9x4oRM9cV1+vRpCgwMlJGpLl260KJFi+T6H3/8QQ8fPpTnO3v2rEw1Wjx48ICuX78uU5cAAAAAyk0j/hcOQLVq1ZKlIPh0Nzz6tX37dunj4p6uuHh9Lu7L4lGq1q1b04sXL2QqkvuufHx8qF27drR69WoZ7frkk08kdE2ZMkVua9iwoUNqBAAAAH3T9cgW494sboQfNWoUNWnShH755ReaN28e1a9fP8FwxrfxSFazZs0kXLm6utK3334r/WDvvPMOrVy5Uvqv+KhEnl7kni0OYN7e3g6pDwAAAPTNxfy6RiVIcd+O74NzIwIAKC7bu/mpx9ivKSzsGUVHm5L8eDc3A/n4eL714/XATSc1+vp6kqurQf2RLQAAAAAt03XPlmoyZc/l6F0AAAA7w2e980HY0giezW3ec4SjdwMAAFIAL6ZtMqGLx1kgbGkEH00ZERFFRqN256aTg+e0vb09lK1R9foYatQ/1evTU40ctBC2nAfClobwB4OWGwFtQfUaVa+PoUb9U70+Z6kR9ANhS0MSc0SD3mtTtUbV62OoUf9Ur88ySwCgNQhbGurZ4qFv1aleo+r1MdSofyrXx6dXA9AahC0N/d/Y9Z/O0YuHzxy9KwAAupQmoyf5NSru6N0AiAdhS0M4aEXdf+Lo3QAAAAAb0tzEfUBAgJwQ+nWXR48eUe3ateW0O7bCJ7Lmk1f/F37tjRs32uw1AQAAwDlocmTrww8/lHMdJoRPCm1r7du3p0mTJlG5cuVee5/Dhw+Tl5eXzV8bAAAA1KbJsOXu7i4ngNYSre0PAAAA6IPmphHfxp9//kkdOnSgkiVLUs2aNWn8+PH09OlT6+2vXr2iOXPmUK1atahUqVLUokULOnLkiHV6kI0cOZJGjBhBt27dkm0LFy6kqlWrUp06deS54k4jbt26lZo0aSKvyff5/vvvHVA5AAAAaJ3uw9alS5fo448/purVq0sAmj59Op0/f566du0qyymwiRMn0po1a2j48OG0bds2uW/v3r3p6tWrMj3IPv/881hTl5s2bZIANXv2bEqXLl2s19yxY4c8V9OmTeU1Bw8eLK+Lni4AAADQxTQiB6Ldu3fH2163bl2aNm1arG1LliyRESgOTyx37tw0Y8YMue+xY8eoWLFitH79ehozZgzVr19f7jNo0CAJYjxilTdvXtnG/Vh8efz4sbWPK3/+/AnuH4ewBg0aULdu3ayv+ezZM5n+BAAAANB82OKjDYcOHRpve9q0aeNtu3DhAl2/fp38/f3j3RYcHCyP4WlEnj6MiUej/oufn99rbwsKCqKGDRvG2ta6dev/fD4AAABwTpoMW56env8ZduKuFty4cWPryFZMvr6+FBIS8lb78F+jVG5umvyxAQAAgAbpvmerQIECdOXKFQlnlkt0dLQs5XDnzh25nipVKjp79my8kahly5a91Wvmy5cv3vPx6/Xv3z9ZtQAAAIB6NDlE8/z5cwoNDU3wtvTp08e6zo3wfCQiH4HYsWNHioiIkO/5ObiXKnXq1LKdj0bkkS4OZ9zDxVOBkydPlufgqUaecgwLC0vU/vXs2ZP69esnRyLWqFGDTp8+TatXr6Yvv/zSBtUDAACASjQZtnbu3CmXhHBoiql06dK0ePFi2d68eXMJTpUrV5ajBTloWfqzXF1daezYsfTkyRMqXLgwLVq0yNocz4GNn4MD1+jRoxPVU8bB6ttvv6UpU6ZQzpw5ZemIZs2a2aR+AAAAUIeL2bI+Ajhc0PdHcW5EAIC35JHFiwp2rijfh4U9o+hoE6nIzc1APj6eqFEDfH09ydXVoM+RLWc+Yz0AALwdfIaCViFsaQQPMPo1Ku7o3QAA0DU+Qt1g0P2xX6AYhC2NcHFxoYiIKDIatTtcmhw8zOrt7aFsjarXx1Cj/qlen+WzNEOG+GsyAjgSwpaG8IefluembUH1GlWvj6FG/VO5Pu71AdAahC0NSUyTnd5rU7VG1etjqFH/VK+Poca3ZzKZ5QK2h6MRNYJ/DTz8DQAA4KgRz/DwSE0ELjccjQj2wEFr7dq1r13MFQAAwF4yZ85Mbdq0IYPBRRNhSzUIWxrCQev27duO3g0AAACwIXUntQEAAAA0wKDV/qWNGzdSQEAAVapUiYoXL0716tWjiRMnanaabd68eXIaHwAAAABNhy1ekK5Pnz5ykuhatWrRihUr6Oeff5ZzFp49e5ZatmxJDx8+dPRuAgAAAOizZ2vZsmV08OBBWrduHRUrVsy6PUeOHFSxYkVq2LAhLVmyhIYNG+bQ/QQAAADQ3cgWTx+uXLmSmjRpEitoWbi7u9Py5ctp4MCBdOvWLSpUqBAtXLiQqlatSnXq1KGnT59SeHg4jR8/nmrUqEElS5aktm3b0tGjR/9zui/uNn7e9evXU5cuXeQ5qlWrRvPnz4/1GD5ykKc2+fbevXvT48eP7fIzAQAAAH3TVNjiABUSEkJVqlR57X1y5sxJqVOntl7ftGkTff/99zR79mzy8PCgrl270okTJ2jatGnS91WwYEHq1q0bnTlzJkn7MmXKFGrevDlt376dOnbsKIHs+PHjcttPP/1EX375pYSxLVu2UJkyZeiHH35IRuUAAACgKk2FrQcPHshXX1/fWNt55Mjf39964alEi/bt21P+/PmpRIkSdPjwYTp//jzNmDGDKlSoINt5lKtAgQIy9ZgUzZo1o6ZNm1KuXLnk9b29venPP/+U27iPrEGDBtShQwfKkycP9ezZU/rLAAAAADQdtnx8fORr3Ck5DkybN2+WCzfIR0VFWW/z8/Ozfh8UFEReXl4ymhVzsdBy5crJbUmRL1++WNf5eV+9emV9HQ53MXEIBAAAANB02OJRJF7FNmaPFcuaNauEKr6kT58+Xh+XxevOPMTb3dxefyxAdHR0vG0xpyoTen4+ajKmVKlSvfb5AQAAwHlpKmy5urpSp06dZATr0qVLCd7nzp07r308N7Y/efIk1igWB6STJ0/KlKIlFD179izW465fv56k/SxSpIh1StGCl6UAAAAA0HTYYt27d5f+J+7FWrBggYQubpzfv3+/NL9v2LBBFjpNCB81yEFoyJAhdOzYMQoODpZGdg5fnTt3lvuULl1ajljkHi5+3jVr1tChQ4eStI/co7Vnzx5avHgxXbt2TXq4du/ebZP6AQAAQC2aC1sGg0GOLOTV4vmoQg5Y9evXl9DEjfO8NERgYOBrR8aWLl1KRYsWpb59+0p/1+XLl2XtLg5ZjINav3795H7caH/kyBHq379/kvaxZs2a0oTPwa9x48ay6CrvJwAAAEBcLubXNTpBiuO1vHAiagAASGm8cDgPUoSFPaPo6Ng9yY7g5mYgHx9PzezP6/j6epKrq0F/K8g7Mz44AAAAIKXh7499YWRLI/jXwMtUAAAAOILRaKLw8EgymRwfC9wwsgX2wEErIiJK3uwq4jejt7eHsjWqXh9Djfqnen0MNb49DllaCFoqQtjSEP5Ho+UEbwuq16h6fQw16p/q9THUCFqCsKUhiRmK1Httqtaoen0MNeqf6vUx1Jh8GOGyPfRsaQR6tgAAQAv4DClhYY7t3XJDzxbYAwety6dWU9TT+47eFQAAcFIe6bJQAf92ZDC4YHTLhhC2NISDVmREiKN3AwAAAGxIuUntgIAAOUdiQpcpU6a88fF8Emy+L5/KBwAAACC5lBzZ+vDDD2nUqFHxtnt4eLzxsf7+/nT48GE5NRAAAABAcikZttzd3d96NdzUqVNjJV0AAABw7DTiy5cvadWqVXIepTZt2lBwcDCtXr2azpw5Q1r3+PFjGj16NFWvXp2KFStGlStXlutRUVEJTiPWrl1bph8bNGhAFStWlPMXFi5cmEJCYvdW8c8hMdOUAAAA4FySHLYePXpELVu2pIkTJ9L169clYD1//pwOHDgg/VKnTp0iLRsxYgRduHBBQtPu3btp5MiRtHnzZlq7du1rH7Ny5UoJZIsXL6aePXvKFOOWLVust//zzz/0119/yc8FAAAAIFlha+rUqfTs2TPasWMHbdq0SdaHYnPnzqUSJUrIV0fbtm2b9F7FvHTv3l1uq1q1Kk2aNIlKlSpF77zzDjVp0oSKFi1KQUFBr32+GjVqUJUqVaQ+nmZs2rRprLDFYY1vy58/f4rUBwAAAAr3bP3yyy/0+eefk5+fHxmNRuv2NGnSUNeuXWXkyNF46m/o0KHx+rhY+/btaf/+/RIUr127RleuXJEpw7x58772+bjWmHgEa+nSpXT69GkqWbIkbd26lXr06GGnagAAAMCpwtaLFy8oQ4YMCd7m6upKr169Ikfz9PSMF5Asq+L26tWLLl++TI0aNZI+LO7bGjNmzH8+nyWoWfAIFo+MccjiKdQHDx7I8wEAAAAkO2zxdBk3x/PUWkLTd8WLFyetunjxIh06dIjWrVsnYYlxOLxx4wblypUrSc/Fo1vffPONBLi6deuSt7e3nfYaAAAAnKpna8CAAXTkyBHpW5ozZ46cZuann36i3r17065du6hPnz6kVZkyZSI3NzfauXMn3bx5k86ePUsDBw6k0NBQOcIyKRo2bChHNm7cuJGaN29ut30GAAAAJwtb5cqVo++++04WCOWj87hBftmyZRJYFi5cSJUqVSKtypo1K02ePFl6tngKkYMjb+vSpQudO3cuSc+VLl06GdFKnz69NN0DAAAAJMTFbDmc8C1wvxKP7nDw4D4pZ8NLXZQpU4YGDRpkk+c78+scnBsRAAAcJq13TipZfQCFhT2j6GiTw/bDzc1APj6eDt+PN/H19SRXV4P9VpDnU9ocP36cwsPDZXqOFwflUS9nsHfvXun/4rW1eCkMW55tHQAAwFHwd0gjI1s8ksVH9HHQ4P4nPjKRAxcvA/Hee+/RvHnzZC0qlbVt21YWMuUFUZs1a2aT5+RfA/e/AQAAOBIf+BUWFkkm01tPfCWbm2IjW0kOW8OHD5fV4nkF+Tp16khA4F8Mj/bwEgotWrSQ+0DSRUREkdGo3TdVcvCb0dvbQ9kaVa+PoUb9U70+hhqTj0OWI4OWimErydOIHLR4wVBuDrcwGAz0/vvvy6l8+DQ4CFtvh//RaPlNZQuq16h6fQw16p/q9THUCLo+GpEHwrhHKyHZs2enyMhIW+wXAAAAgBKSPLLFa0r973//owoVKsQ6AjE6OlpO2Iw1p95eYoYi9V6bqjWqXh9Djfqnen3OUiP6e50gbPH6WnxOQe7X4guvUxUWFkYHDx6ku3fvyrpT3DhueUMEBgbaY7+VwyOGPAevOtVrVL0+hhr1T/X6VK/R0f1UkHRJbpDnkzwn+sldXGjfvn1vsVvOaeelEHoUmbSV7AEAwHn4pk1NHxbOKd9rvXk8OdycvUGeV18H++Cgdf/pc0fvBgAAANhQkie1v/jiCzp9+rRNV2EvVKhQgpcpU6bI7SNGjEjSyBuv9fVffvnlF7py5Yp8f/ToUXmtW7duJbsWAAAAgGSPbP3xxx/0448/Uu7cuWVNLT4hdZYsyVtx9sMPP6RRo0Yl2B/Gjfeurq5kKyEhIXLS7OXLl1P+/PnJ399fVsP39fW12WsAAAAAvHXY+vnnn+nkyZO0efNmWrRoEc2ePVtOxMzBixvmU6VKldSnJHd3d8qcOTOlhLgtarzafUq9NgAAADiftzo2tmzZsjRhwgQZEeKpPg4sfARitWrV6KuvvqKgoCCb7WDcaUR+TV5eokSJEtSoUSPasGFDvGnA0NBQ6tu3L5UuXZoqVqxIkyZNktMJ8X04ELJOnTrJdGPcaUSehlyyZAn169dPRr348VwTj7AlZR8AAAAAWLIWIkmTJg2VL19eTkCdL18+OW/itm3bZGqxR48edO/ePZv+lPnkz3xeRj7p9ZYtW+iTTz6RsBfX+vXrZb94Xz777DNatmwZbdq0SRZd5SlQxkGra9euCb7OnDlz5PFbt26lYcOGyfphP/30U5L2AQAAAOCtphEZrxK/e/duCRvHjh2jtGnTSt8VnxuxVKlS0kA/aNAgGjBgAK1Zs+aNz8ehiJ8v7ujZ4sWLY23j0FS8eHEJQCxv3rz08OFDOU9jTHzqoM6dO8v3uXLlkv6sc+fO0UcffWTtzeL1wGIuyhoTj9DxyJfl8StWrKA///xTTjqd2H0AAAAAeKuwNWTIEFn+ISoqSgIRh4z69etLM7sFBy5LMEkMnrrj8y3G7eOK68KFC1SlSpVY23gEKi5u3o+Jg9WLFy8osXiULiYvLy969epVkvYBAAAA4K3CFvc4tWnThtq2bRsv1ERERNCvv/5KDRs2pEqVKkkfU2LwCJOfn98b78dHJZpMb17cLKGjF5Oydiv3oL3u8YndBwAAAIC36tl68OABNWjQIF7Qsoz6WE7Vw+dO/OCDD2z6Uy5cuDCdOXMm1rZTp06l6DmlbLEPAAAA4DwSNbI1fPhwunPnjvX6uHHjKF26dPHux+dMzJQpE9kLN7Tz9OT06dOpZcuWsjDp3LlzkxSiuL+M8RGTRYsWdcg+AAAAgPNI1MgWj1DxNFrMqTjLdcvFYDDIUgu8zIK9FCxYkObPn08HDhygxo0bS8jp2LGj3JbY9b18fHwkJE2dOlWOOnTEPgAAAIDzSPKJqHndKx7ZittEnhJ4+s7NzS3WiBQfyfj555/LVB7fpud9+OHPf3BuRAAAeK0s6dypQ5k88r3WT9KcHG7OfiJqXgbBUXiNq2nTpsm6VkWKFKHr16/LelnckJ8SQcve+8BncwcAAHgd/J1wkpEtR+Jd/frrr2WBUl4wNWPGjBJy+vfvn+BSEXraB35e9HwBAMCbmEzcuuOi+VGf5HBTbGRLV2FLdRERUWQ0avdNlRz8ZvT29lC2RtXrY6hR/1Svz1lq5P8xz5AhreaDSHK4KRa2UmbuDRKFPxi0/KayBdVrVL0+hhr1T/X6VK+RgwjoC8KWhiQmHeu9NlVrVL0+hhr1T/X6nLVGnlbkC2gXphE1Aj1bAADwtqN44eGRSgUuN0wjgj1w0Pp6/QUKCY109K4AAIBO5Myclvp8VFQa5lUKW6pB2NIQDlrX7jx19G4AAACADWliUrt27dpy0mrLhc8/WKZMGVmZ/fjx4yny+rxW1uts3Lgx0SfVBgAAANBc2LKcc/Dw4cNyOXToEK1Zs0bOv9i9e3e6ffu2Q/eNT7zN+wUAAACg27DFJ4jOnDmzXLJkySLnIBw/fjw9f/6c9uzZ49B948VKeb8AAAAAdBu2EmI5/U3q1KnlnITt27cnf39/Kl++PPXr18864tWnTx/q1KlTrMdevXpVpv4uX74s13/99Vdq06YNlSpVit577z2aNWsWGY1G6/1DQ0Opb9++cjLtihUrygm1LbfHnUZ89uwZTZgwgapVqyb7w9Od586dS5GfCQAAAOiLZsMWnwrnyy+/lBEvDke9evWSkLV161ZatmyZBC0++TNr0aIFHTt2jO7cuWN9/ObNm6lEiRJUoEABOUF0z549qWzZshKcvvrqK5mm/Oabb6z3X79+vTw/n1T6s88+k9fgU/IkZODAgTLVyYGMXydXrlwyDfr48eMU+MkAAACAnmjmaMSFCxfS0qVL5fvo6Gh6+fIl5cuXj2bPni29W2FhYTK9mDNnTgk3vP3hw4dy/xo1alCmTJkkiHEoM5lMtGXLFglYlpNn84jWsGHD5Do/Lwc5y+PZ+++/T507d5bv+fmXL18uo1UfffRRvBEzDlpLliyRkS02btw48vb2ln1Mnz59Cv3EAAAAQA80E7batm1LAQEB8r3BYKAMGTKQl5eX9XZulOepu7lz51KlSpUkYH344YfW6cYmTZpIwOKw9ccff9CjR4+oUaNGcntQUBBVrVo11ut98MEHsa7nzp071nUOTS9evIi3n/xcjKcbLdKkSUMjR460wU8BAAAAVKOZaUQON35+fnLhkaWYQYsNHTqU9u/fL1N4vNo6B6+WLVvKCBjj74ODg2U0ike46tSpYx1lsvR+/RdXV9d42xJaXD8xzwUAAACgubD1X3jqbuzYsZQxY0Zq166djG4tXrxYwtWlS5esU4PcrL5z507at2+f9HFZ8G1nz56N9Zzff/89tWrVKsn7ws/FYj4fT3vyWl27du1KRpUAAACgIl2ELR8fH9q+fTt98cUXErD++ecfaV7nkau8efNa78ejWytXrpSlGmJOG/IU5F9//UVz5syha9eu0cGDB6U5vmbNmknelzx58kh/Fy9LwdOVvC9jxoyRKccKFSrYrGYAAABQg27C1rfffkshISHUunVrat68Od26dYu+++47aZ634B4unvpr1qxZrGnBIkWK0Ndff00HDhyQPi4OSrxUxCeffPJW+xMYGChHLg4YMEBG0PgoSG6Y9/X1tUm9AAAAoA4Xc0KNSTp18+ZNGXXiqcS4De968Pn/TuDciAAAkGi5s6ejwE/KUVjYM4qONpEq3NwM5OPjqfm6fH09ydX1zeNWSnR788gSL3q6atUqql69ui6DluXs7QAAAImFvxv6oETY4vWtRowYISFr/vz5pEc8wNjno6KO3g0AANAZo9FEJpMyk1RKUmoaUe8iIqLkH42KeJjV29tD2RpVr4+hRv1TvT5nrZGDlmphyw3TiGAv/I9Gy28qW1C9RtXrY6hR/1Svj6FG0BJdHI0IAAAAoFcY2dKQxAxF6r02VWtUvT6GGvVP9fq0UKOKU3qQfAhbGsGtczwHrzrVa1S9PoYa9U/1+hxZo8lkpLCwKAQuiAVhSyNcXFzozvaF9PLhbUfvCgAAvIXUGXNQ9oa9yGBwQdiCWBC2NISD1ov71x29GwAAAGBDSoWtgIAAOnbsWKxtqVKlokyZMsmJoj/77DPy8PCwyevkzJmTJk+enOznAgAAALUpFbYs50ccNWqU9XpkZCQdPnyYJk2aRCaTicaNG+fQ/QMAAADnolzYcnd3p8yZM8fa5ufnR+fOnaMdO3YgbAEAAECKUvf43zjSpElDbm7/Zsvnz5/T7NmzqU6dOlSiRAlq2rQp7d69O9b9+VyLXbp0IX9/f6pSpQqNHTuWoqKi4j1vdHQ09e/fn2rWrEk3btxIsXoAAABAH5QPWxyGDhw4QFu2bJFQxQYPHkybN2+mMWPG0NatW6lu3bo0YMAA2rt3r9x+8+ZN6ty5M2XJkoXWrl1L8+bNoyNHjtD48eNjPbfRaKRhw4bJqNmKFSvo3XffdUiNAAAAoF3KTSNu27Yt1igVj2LlyJGDunXrRr1796bg4GDat28fLViwQEajWL9+/ejSpUuyjYPXunXrKEOGDBQYGGgdDfvqq6/o1KlT1ufl/q+RI0fS6dOnJWhxwzwAAACA8mGLjzocOnSoLBLKU4ETJ06UaUAOWhyc/v77b7lf2bJlYz2ufPnyNHPmTPk+KCiIihUrZg1arFKlSnKx2LlzJ7169Yry5csXr0cMAAAAQNlpRE9PT2mIz507NzVp0oTmzJlD69evl5Gp/8LhzBKuYoas17FMMd69e5fmz59vs/0HAAAAtSgXtuLi0aiPP/6YVq9eTYcOHaJChQrJ9pMnT8a634kTJyh//vzyPX+9cOGC9GRZ7NmzR0bNXrx4YR0JK1WqlIyiLVmyRPq2AAAAAJwubDFufueRLl72IVu2bFSrVi1pdufG+X/++UdGpriPq2vXrnL/9u3bU1hYmByByD1ex48fp6lTp0pw46MaY2rbti2VLFlS+rdevnzpoAoBAABAq5wibHFAmjBhAt2+fZtmzZolvVncCM+Ln/JU4y+//CJHHNavX1/unzVrVlq6dCldvXqVmjVrRoMGDZKA9sUXXyR4TkOeouTQ9s033zigOgAAANAyFzM3K4EmXF8+FudGBADQqTRZ/Miv03gKC3tG0dEmu72Om5uBfHw87f46juSmkxp9fT3J1dXgfEcj6v2M8QAAoE/4DIfXQdjSCB5gzN6wl6N3AwAAksFkMpLJhAkjiA1hSyO49ysiIoqMRu0OlyYHD7N6e3soW6Pq9THUqH+q16eFGjloIWxBXAhbGsIfDFqem7YF1WtUvT6GGvVP9fqcpUbQD4QtDUlMk53ea1O1RtXrY6hR/1SvLyVrxAgWJAXCloZ6tnjoW3Wq16h6fQw16p/q9aVEjUaTicLDIhG4IFEQtjTUs7X6wkq6H3nP0bsCAAD/IUvarNSuaEcyGFwQtiBRELY0hINWyNMQR+8GAAAA2JBB71NvGzdupICAADmVTvHixalevXo0ceJECg0NlfvcunVLzod49OhRu+4Lr0J/5coVu74GAAAA6I9uw5bJZKI+ffrQ5MmT5VQ6K1asoJ9//plGjx5NZ8+epZYtW9LDhw9TZF9CQkKod+/eKfZ6AAAAoB+6nUZctmwZHTx4kNatW0fFihWzbs+RIwdVrFiRGjZsSEuWLJGTStsbzngEAAAASo1scbhZuXKlnEQ6ZtCycHd3p+XLl9PAgQOt206fPk2tWrWSqcY6derQhg0bYj1m8+bN8nwlS5ak2rVry0mljUZjrNs5wJUoUYKqV68uU5UvX76UaUp+PtapUyc5oTUAAACArsMWBxyeuqtSpcpr75MzZ05KnTq19fr3339Pn3zyCe3YsUPCEk83Xr9+3TpKNmbMGGrTpg1t3bqVBgwYIKNiPEXJLl26JPfv168f7d69mwIDA2nLli20ePFiyp49O/34449yPw5aXbt2tXv9AAAAoB+6nEZ88OCBfPX19Y21nfumYjbC85TiwoUL5Xvu7+IRKzZo0CBavXo1nT9/nt5991369ttvqWPHjtShQwe5PXfu3BQeHk7Tpk2j/v37S7jjpRk4wPFz8oXDWLp06cjV1dW6H+nTpydPT88U+zkAAACA9ukybPn4+MjXx48fx9o+fvx4ev78uXzPDfP79++33pYnTx7r9xyK2IsXL+jRo0cS3sqWLRvruSpUqECvXr2iq1evykiYv78/ffTRR/TOO+9Q1apVZeqQpyQBAAAAlJtGzJUrF2XOnDnecg5Zs2YlPz8/uVgClYXBYEiw9+t1ze18tCNzc3OjNGnSSA/Ypk2bZKrx2rVrMor2+eef27QuAAAAUI8uwxZP3XEzOjetcz9VQu7cuZOo58qUKZNcTp48GWv7iRMnKFWqVDLNyEc9zp8/n4oWLUo9e/aU4MXTi9z/xXiKEQAAAECZaUTWvXt3unDhgiztwAGoZs2a0kMVFBQkRyoeOXJE1tpKjG7dutGsWbNkxIynCM+cOSPhikexvLy8JHR9/fXX8vw8fcjTlwcOHJCpRZY2bVr5yq/NgYwfAwAAAKDrsMXTgrNnz6adO3fKMg482hQRESGjVOXKlZPAVb58eWlufxM+gpCPXOQjFvlIw2zZslGPHj0khDE+6pGXeli6dKmEMl5aokaNGjRixAhrDxkHu6lTp8oRjnzkIgAAAABzMWNFTs2Yc2IGzo0IAKBxOdPlpAHlhlBY2DOKjv63vzclubkZyMfH02GvnxLcdFKjr68nuboa1OzZAgAAANAL3U4jqihL2qyO3gUAAHgDfFZDUiFsaQTP5rYr2tHRuwEAAIlgNJnIZEIXDiQOwpZG8PIRERFRZDRqd246OXhO29vbQ9kaVa+PoUb9U72+lKyRgxbCFiQWwpaG8AeDlhsBbUH1GlWvj6FG/VO9PmepEfQDYUtDEnNEg95rU7VG1etjqFH/VK+Pocb4MArneFj6QSP414CV6AEAwNZMRiOFhUfpKnC5Kbb0A0a2NIKD1uXlyynq3j1H7woAACjCI2tWKtCpExkMLroKW6pB2NIQDlqRiVjxHgAAAPRD3UntJOJT7wQEBDh6NwAAAEAxCFsAAAAAdoSwBQAAAGBHCFsJePXqFc2ZM4dq1apFpUqVohYtWtCRI0estwcHB1OPHj3I39+fqlWrRkOGDKHQ0FCH7jMAAABoE8JWAiZOnEhr1qyh4cOH07Zt26h69erUu3dvunr1Kt27d4/at29Pfn5+tH79elqwYAE9ffqU2rRpQ5GRkY7edQAAANAYHI0YBwcnDlFjxoyh+vXry7ZBgwbJOlh829atWylbtmw0evRo62Nmz55NlSpVol27dskoGAAAAIAFwlYc//zzj0wj8vRhTIMHD5av8+fPp8uXL8sUYkwvXryQ6UUAAACAmBC24kiVKtV/3m4ymWQUa+zYsfFu8/LysuOeAQAAgB6hZysO7sXiwHX27NlY21u3bk3Lli2jAgUKyAhW9uzZ5b58SZ8+PQUGBlJQUJDD9hsAAAC0CWErDg8PD+rYsaMcjbhv3z66ceMGzZw5U4LUe++9J83xT548oaFDh9KlS5fkwj1dHM4KFizo6N0HAAAAjcE0YgK4P8vV1VWmCjlYFS5cmBYtWkR58+aV21euXEkzZsygdu3ayf3KlClDy5cvJ19fX0fvOgAAAGiMi5kPswNNODNtGs6NCAAANpP2nXeo5GefUVjYM4qONpFeuLkZyMfHU/P77evrSa6ub54kxMiWxs7ODgAAYCv4u6INGNnSCP41uLi4OHo3AABAMSajkcLCo8hk0s+fezeMbIE9cNCKiIgio1G7b6rk4Dejt7eHsjWqXh9Djfqnen0MNcbHIUtPQUtFCFsawv9otJzgbUH1GlWvj6FG/VO9PoYaQUsQtjQkMUOReq9N1RpVr4+hRv1TvT6GGtXgasMatTCyh54tjUDPFgAAgO2ZjCYKC4+0S+BCz5bOcNDas/ooPbr/xNG7AgAAoATfLF5Ur11FMhhcHDq6hbClIRy0HoSEO3o3AAAAQOWwVbt2bQoJCbFe5/MUZsqUiWrUqEEDBgzAKu0AAACgK5oLW6xr165yYc+fP5fzEk6bNk3OWbh27Vry8vJy9C4CAAAAJIomD2VImzYtZc6cWS65cuWiOnXq0NKlS+nOnTu0ePFiR+8eAAAAgL7DVkJy5MhB9erVo+3bt8v1QoUK0dy5c6lWrVpUrVo1unbtGt2+fZsGDRpElStXpmLFitF7770nI2Im0/+tQ3L48GFq3rw5lShRgho1akQbNmyQ57r1/89JyCNps2fPloDH92natCnt3r3b+viNGzfKfli+Fi9enFq0aEEnT550wE8FAAAAtE43YYsVLFiQbt68Sc+ePZPrq1atksA1f/58yp07N33yySf05MkT+u6772jXrl0yFckjYfv375f7X7x4kXr16iVhbMuWLXL/KVOmxHqNwYMH0+bNm2nMmDG0detWqlu3rvSK7d2713ofHmFbs2aNBLlNmzaRh4cHjRgxQpZvAAAAANBt2PL29pavT58+la886sSjT6VLl5YRKb4+YcIEKly4sEw/dunSRZrr//77b7n/smXLZCRq2LBhlDdvXmrYsCH17dvX+vzBwcG0b98+Gjt2LNWsWZPy5MlD/fr1k1GuBQsWWO/36tUrGj9+vLxugQIF6OOPP6YbN25QaGhoiv9MAAAAQNs02SD/OjxqxdKlSydf/fz8rLe5u7tLAz2PaJ05c4auX78uIevBgwfWacQLFy5QlSpVYj1n+fLlrd9bQlnZsmXj3WfmzJmxtuXLl8/6vaVhn0MYAAAAgG7D1vnz52W60NPT0xqwLCIjIyVs8QhX/fr1pS+rZMmS1KFDB+t9XF1dY/VvJRZPD7q5xf5RpU6dOsH7AQAAAOgybN29e1em+Hr06JHg7dz4zmHsyJEjMnXIwsPD6eHDh9YQxNOLPOoV06lTp6zfc6M842Z3bry3OHHiBOXPn98udQEAAIDaNBm2eJTK0v/EI1U8vcdHCL7zzjvSH5WQbNmyyVduav/ggw+kiZ2n/nhq7+XLl3IbN8w3a9aMpk+fTi1btqQrV65Ig73ldDk8Ncghi/ux+DpPU/LRjxzy+PUBAAAAlAhbvKYWXywryGfPnp0aNGggYckyhRgXTxmOHDlSmuA5GGXNmlUew489e/as9WhGPnKRQxjfjxvgeepx3rx58jqMb+PLqFGjKCIiQh7Dt/MyDwAAAABJ5WJ2okYjnkLk3quiRYtat23bto0+//xzmU6M25eV0tbO2YtzIwIAANhIppwZqM2AuhQW9oyio5Pes/0mvr6e5OpqUGvph+TidbY6deok04K8AOrvv/8uo1a8BISjgxYAAACoyakSRuvWraUXLDAwkO7du0cZM2aUoNW/f3/SAt8sOOcjAACAan9XnWoaUcv418BN+QAAAGA7JqOJwsIjyWQyO2wa0alGtrSMg1ZERBQZjbafU9YCfjN6e3soW6Pq9THUqH+q18dQoxpcbVgjhyx7BK2kQNjSEH5D2aOBT0tUr1H1+hhq1D/V62OoUQ1GRWpE2NKQxAxF6r02VWtUvT6GGvVP9fr0UKMWRlkg5SFsaahni4dMVad6jarXx1Cj/qlen5ZrNBqNFB4ehcDlZBC2NNSztWnRZHpw56ajdwUAAOwgU/Zc1LznCDIYXBC2nAzCloZw0Lp744qjdwMAAABsSNmwVbt2bQoJCbFe59Px8Amqa9SoQQMGDCBfX9+3fu6NGzfKqYH4nI0AAAAAThm2GJ9LkS+WE1oHBQXRtGnT5HyIa9euJS8vbSx2BgAAAOrS5uEaNpI2bVrKnDmzXHLlykV16tSRE1zfuXOHFi9e7OjdAwAAACegdNhKSI4cOahevXq0fft2uc6jXb169aLy5ctT8eLFrYHMgs+dyCNhgwYNojJlytCECRPiPeeuXbvksWvWrEnRWgAAAED7nC5ssYIFC9LNmzfp6dOnMs2YIUMGCUo//fQT1a9fn6ZMmSInrbY4fvy49Htt2bKFAgICYj3X3r176bPPPqOxY8dS27ZtHVANAAAAaJlThi1vb2/5+vjxY+rUqRN98cUXlC9fPsqdO7f1pNRxm995O09F8n0sDhw4QIMHD6bx48dTq1atUrgKAAAA0AOlG+Rf58mTJ/KVR7Tat28vI1oXLlygGzdu0KVLl+Q2k+n/Tg+QMWPGBJvp+ajGly9f0jvvvJOCew8AAAB64pQjW+fPn5cRqsjISGrSpAn9+OOPlDVrVglemzZtind/d3f3BJ/nq6++ovfff59GjRpFUVFRKbDnAAAAoDdON7J19+5d2rdvH/Xo0UNGtMLDw2n37t2yDlfM6UM+fc6bNG7cmCpVqkQNGjSgmTNnSugCAAAAcJqRLR65Cg0NlQs3xHMze/fu3WXa7+OPP6Zs2bLJiBQfTXj79m06fPiw9GAxnh5MDF5WghvkV65cSSdPnrRzRQAAAKA3So9s8RIOlmUceOQqe/bsMgrFRyB6enrKkYc8pTh58mQ5MjFnzpzS6M4jX2fPnqV27dol6nX4MVu3bqXPP/9cjlh83bQjAAAAOB8Xc2LmyyBFfDu+D86NCACgqGzv5qceY7+msLBnFB39fwdhJZWbm4F8fDyT/Txa5qaTGn19PcnV1eDcI1t6PCM8AACoCZ/xzgthSyN4gLF5zxGO3g0AALAjo9FIJhMmlJwNwpZGuLi4UEREFBmN2h0uTQ4eZvX29lC2RtXrY6hR/1SvTw81ctBC2HI+CFsawh8MWp6btgXVa1S9PoYa9U/1+pylRtAPhC0NSUyTnd5rU7VG1etjqFH/VK/P0TVi1ApeB2FLQz1bPPStOtVrVL0+hhr1T/X6HFUjn+YtLCwSgQviQdjSUM/W9Z/O0YuHzxy9KwAAkERpMnqSX6PiZDC4IGxBPAhbGsJBK+r+vyfJBgAAADUoOXHPq7m3bt2aSpcuTf7+/tSyZUtas2aN9fawsDA5+bQtBQQE0IgRWLoBAAAAFB/ZWr9+PU2cOFFOCl22bFnphTpy5Ah99dVX9ODBA+rbty9NnTqVbt26JafZAQAAALAn5cLWqlWrZCTro48+sm7Lmzcv3bt3j5YvXy5hC2coAgAAgJSi3DSiwWCgU6dO0ePHj2Nt79mzJ61du1am+jZt2kTHjh2jQoUKyW0cvr799luqU6cOlSpVipo2bSpTkTEFBwdTjx49ZFqyWrVqNGTIEAoNDU3R2gAAAEB/lAtb3bt3pwsXLtB7770nAWvRokV05swZ8vLyojx58sj04ocffiih6fDhw/KYWbNm0erVq2nMmDG0bds26tSpE40bN45++OEHuZ1Hxdq3b09+fn4yTblgwQJ6+vQptWnThiIjIx1cMQAAAGiZctOI9evXp2zZssmUIfdqHTx4ULbnzp2bAgMDpY/L3d2dUqVKRZkzZ5awtGzZMpo5cybVrFlT7vvuu+9SSEgILVmyhDp06CBBjJ9z9OjR1teZPXs2VapUiXbt2kUtWrRwWL0AAACgbcqFLcZHIfKFF5i7dOmSBK6VK1fKNOCePXti3ffKlSv04sULmRbkKUiL6OhoevnyJT1//lxGyi5fviyjYTHx43h6EQAAAMApwtbdu3dp4cKF1KtXLxmJ4vBUtGhRudStW5caNWpEx48fj/UYS7M8j1RxI31cqVOnltDGo1hjx46NdztPTwIAAAA4Rc8WByNePytuczvz9vaWr5kyZZLV2i04YLm5udHt27elJ8ty4dEwnkbkwFagQAEZwcqePbv19vTp08u0ZFBQUIrWCAAAAPqiVNjy9fWVBvk5c+ZI0/vFixfp5s2b9Msvv8iSDxUrVqRy5cpR2rRp6f79+3Ibj0y1bdtWHrNlyxbZxk3w06ZNoyxZssjzcnP8kydPaOjQoTItyZdBgwbR2bNnqWDBgo4uGwAAADRMqWlENnDgQGmGX7dunRxNyD1XOXLkkCMQeXqRNWvWTHq3eFrx559/ppEjR5KPj48ELg5hPILVv39/CW4sV65c0vM1Y8YMateuHbm6ulKZMmWkCZ8DHgAAAMDruJixwqdmBH1/FOdGBADQIY8sXlSwc0UKC3tG0dEmu76Wm5uBfHw8U+S1HMVNJzX6+nqSq6vBuaYRAQAAALRGuWlEPUuT0dPRuwAAAG8Bn9/wXxC2NIJnc/0aFXf0bgAAwFviZYJMJnTmQHwIWxrBy1FERESR0ajduenk4Dltb28PZWtUvT6GGvVP9focXSMHLYQtSAjClobwB4OWGwFtQfUaVa+PoUb9U70+Z6kR9ANhS0MSc0SD3mtTtUbV62OoUf9Ur8+Za8SomrZh6QeN4F9DzJXtAQAAkjKSFx4eqUzgclNs6QeMbGkEB621a9dSaGioo3cFAAB0JHPmzNSmTRsyGFyUCVuqQdjSEA5afI5GAAAAUIcuw1ZAQAAdO3Yswdu6du1K586do5w5c9LkyZPf+FwjRoygkJAQWrFihR32FAAAAJydLsMW43Mdjho1Kt52Dw8P+uSTTxL9PPwcRqPRxnsHAAAAoPOw5e7uLvPUyeXl5WWT/QEAAABIiLrHxv5/zZo1o5EjR8ba9uuvv1KJEiUoPDxcphF5WpIdPXqUihYtSgcPHqRGjRpR8eLFqX79+rR3717rY3kUbNasWVStWjUqXbo09e/fnyZOnGh9DgAAAACnClstWrSg3bt30/Pnz63bNm/eTLVr16YMGTLEuz+HqWnTpsn04k8//UQFCxak4cOH07Nnz+T26dOny1GDY8eOpQ0bNsjoGvq9AAAAQLmwtW3bNvL394916d69e7z7NW7cmF6+fGkdnXr69Kl8zyHsdQYOHEiVK1em3Llz06effiqPCQoKoqioKFq1apXcXq9ePcqXLx+NHj1aRsMAAAAAlOrZ4pGpoUOHxuvjisvHx4fq1Kkjo1k8Nbhz507p0+JpwNfJmzev9ft06dLJ11evXlFwcLCMkPH0Ycz1scqWLUuXLl2yUWUAAACgEt2GLU9PT/Lz80vUfVu2bEm9e/emhw8f0tatW6lp06bk6ur62vunTp06wRXe3dz+/XFh0X0AAABQfhoxKXgUi3ur1q1bRydOnPjPKcT/wuGOR8/++uuvWNtPnz5toz0FAAAA1eh2ZCspDAaDHJW4YMECOQqRe63eBq/hxUcdzp07V8IbPw8HOA5bFSpUsPl+AwAAgP45RdhiPJrFYettR7UsBgwYIP1b3BjPDfO1atWSnrAXL17YbF8BAABAHS5mJ2lA4jW0evXqJWtsJWch0z179khDvK+vb6xTBGXLlo0CAwOTtY/z58/HuREBACBJcuTIQX379qWwsGcUHW0iFbi5GcjHx1PzNfn6epKr65s7spQf2eIjCHnZBh7Vat68ebJXjF+yZIks/zBs2DA5UnHfvn30xx9/0NKlS5O9r7ZYER8AAJwL/nZon/IjW/v376fBgwdTqVKlaN68eeTt7Z2s57t165ac4Pr48eOyDET+/PnlSEdedys5+NfAy0gAAAAkldFoovDwSDKZ1PiT7qbYyJbyYUtPTCYTqfrb4BzJByqoWqPq9THUqH+q18dQozpcXQ0SIrXMYHBJ1EAJwhYAAACAHTnFOlsAAAAAjoKwBQAAAGBHCFsAAAAAdoSwBQAAAGBHCFsAAAAAdoSwBQAAAGBHCFsAAAAAdoSwBQAAAGBHCFsAAAAAdoSwBQAAAGBHCFsAAAAAdoSwBQAAAGBHCFsAAAAAdoSw5UAmk4nmzp1L1atXp9KlS1OPHj3o5s2bpIqFCxdSQEBArG0XL16kjh07Sr21a9em5cuXk56Eh4fTF198Qe+99x6VKVOG2rVrRydOnLDe/vvvv1OLFi2oVKlSVL9+fdq+fTvpzcOHD+mzzz6jSpUqkb+/P/Xs2ZOCg4OV+R3G9c8//0idGzduVKrGe/fuUaFCheJdLHWqUOPmzZupQYMGVKJECWrYsCHt3LnTetutW7eoV69e8u+0WrVqNHv2bDIajaQXR48eTfD3x5c6deooUSOLjo6mOXPmUK1ateTfYYcOHeivv/4iCxXep8IMDjNv3jxzxYoVzb/88ov54sWL5q5du5rff/9984sXL8x6t3LlSnPhwoXNHTt2tG579OiR1Dty5EjzlStXzOvXrzeXKFFCvurFxx9/bG7UqJH5+PHj5qtXr5rHjx9vLlmypDk4OFhq4npmzpwp3y9evNhctGhR82+//WbWkzZt2phbtWplPn36tNTRr18/c7Vq1cyRkZFK/A5jevnypblFixbmggULmjds2CDbVKnxwIEDst/37t0z379/33qJiopSosbNmzfLvy/+rLl+/br5m2++kc+cP//8U36v/Fnas2dP899//23es2ePuUKFCuY5c+aY9YL/DsT8vfHl559/NhcqVEh+TyrUyObOnWuuWrWq+ddffzVfu3bNPGrUKHPZsmXlfavC+9QCYcuB/5D8/f3NP/zwg3Xb48eP5Q/3tm3bzHp19+5dc69evcylS5c2169fP1bYWrBggfzRfvXqlXXbjBkz5ANDD/iDgP8onzhxwrrNZDKZ69ata549e7Z5zJgx5o8++ijWYwYPHiwhWi/Cw8Nln/nD24L/R4Dr5vCl999hXLzvnTp1ihW2VKlx0aJF5saNGyd4m95r5H93tWrVMk+ePDnWdv63xrXxZ2jx4sXl/WyxZs0ac5kyZXT7P7PPnj2TmkeMGCHXVamxSZMm5kmTJlmvP3nyRP497t69W/fv05gwjeggly5domfPnlHlypWt27y9valo0aJ0/Phx0qvz589TqlSpaOvWrTKVFhNPt1WoUIHc3Nys23iq6tq1a/TgwQPSOh8fH1q0aJFMWVi4uLjIJSIiQuqL+fu01Hfy5En+nxrSg/Tp09OMGTOoYMGCcv3Ro0e0bNkyypYtG+XPn1/3v8OY+N/Z2rVrafLkybG2q1Lj33//Tfny5UvwNr3XyFO/ISEh1Lhx41jblyxZItNqXF+xYsXk/RyzvqdPn8q0lB4tWLCAoqKiaPjw4XJdlRozZsxIv/zyi0yJ8hQo/5tMnTo1FS5cWPfv05gQthzk7t278jV79uyxtmfJksV6mx7xnPq8efMoV65c8W7juviPdtx62Z07d0jrOAzXqFFDPggsdu/eTdevX5e+u9fVxx+QYWFhpDdjxoyR8Mh9ZxMnTqS0adPq/ndoweF42LBhNHr06Hj/BlWpMSgoSMIy98BUqVJF+gsPHTqkRI0ctlhkZCR169ZN3qetWrWi/fv3K1FfXJb/6enduzdlyJBBqRpHjRol/4POfWj8P7KzZs2SXuZ3331XmRoZwpaD8B9gFvMPN0uTJg29ePGCVPT8+fME62V6rPnPP/+kkSNH0vvvv081a9ZMsD7L9ZcvX5LedO7cmTZs2ECNGjWiPn36yKilKr/DcePGSTNu3JERpkKN3HR89epVevz4MfXr109GZLnBmA924IM49F4jj94wHuXh9+fSpUupatWq9OmnnypRX1yrVq0iLy8vatOmjXWbKjVeuXJFavv6669lVIsPMBo6dKiMzqlSI/u/sTlIUe7u7tY/wpbvLW8gDw8PUhHXGTd0WP7B8KiJnuzdu1c+EPgooOnTp1s/BOLWZ7mux98pTxsyHtU6ffo0rVy5UonfIR/BxtMT27ZtS/B2FWrkaRc+ms3V1dX6+VK8eHG6fPmyTLXpvUYeCWE8qtW8eXP5vkiRInThwgX67rvvdF9fQu/ZZs2axfpboUKNd+7coSFDhsioXbly5WQbj25xAOMZEhVqtMDIloNYpi7u378faztfz5o1K6mIh4MTqpfpqWYOHTxawIcqcx+F5f+0+HeaUH38ocD/56aX6QqeNuSREQuDwSDBi2tR4XfIo3W8vAWPRvLoFl/Y2LFjqXv37krUyDw9PWP9cWYFChSQJSH0XqNlHy29hRb8PuXeH73XF7e/l5cEijsKq0KNp0+fplevXsXqg2Xc78vtGSrUaIGw5SDc/JcuXTr5v8+YfST8f2bly5cnFXFd3Cwecx2YP/74g/LkySNNknoZzp8wYYL0wcycOTPWEDf/n9mxY8di3Z/r49EvDix6wE2ngwcPlqkYC/4w5PclN1ur8DvkkcgdO3bIaIHlwvr37y+jeCrUyCNY/L6L+fnCzp07J4FE7zVyYziHSf5jHbdPjXt9uD5+z1qmGy318WP4s1dPeBSWfydx91uFGrP9/34sPpgj7u8xd+7cun+fxuLowyGdGa/HxOui7N27N9Y6W7x+igqGDx8ea+mHBw8emMuXLy/bL1++LIfa85opGzduNOsBr6tVrFgxc58+feKtfxMREWEOCgqS26dNmyZrwixZskSX62x1795d3ofHjh2TJSB4KQj+vYWEhOj+d/g6MZd+UKFGo9FobtmypblBgwayJhy/HwMDA2WpAP6dqlDj119/Lcvn8BIIMdfZ+uOPP8zPnz+XJVm6desmn62WNah4bUO94TWmunTpEm+7CjUajUZzu3btZJmg33//3fzPP/+YZ82aZS5SpIj5r7/+UuJ9aoGw5UDR0dHmqVOnmitVqiTrUvXo0cN88+ZNsyrihi3GazW1bt1aPvR5zZgVK1aY9eJ///uf/FFO6MK1soMHD8qip1wff4Bs377drDccHMeOHSsLDfK6b/w/ARwkVfgdJiZsqVJjaGiorMnEv0f+A8WL1XLwUqnGpUuXmmvXri3/k8PrNXHgiLkuHi9CzLXzWk28Fh7/cdcb/p+fgQMHJnibCjWGh4ebx40bZ65Zs6aEZ36fHj16VKn3KXPh/zh6dA0AAABAVfpoJAEAAADQKYQtAAAAADtC2AIAAACwI4QtAAAAADtC2AIAAACwI4QtAAAAADtC2AIAAACwI4QtAIBkql27No0YMcLRuwEAGoWwBQAAAGBHCFsAAAAAdoSwBQBgA69evaKpU6dS1apVqXTp0tS1a1e6fv263MZTjAEBAbR+/XqqVasW+fv7U+fOnenSpUuO3m0ASAEIWwAANrBjxw66fPkyTZ48mcaOHUvnzp2jQYMGWW+/ePEizZo1i/r27UvTpk2jsLAw6tixI92/f9+h+w0A9ueWAq8BAKC8rFmz0jfffEOpUqWS6zyq9b///Y+ePn0q1588eUILFiygcuXKyfWSJUtS3bp1afny5TR06FCH7jsA2BdGtgAAbIDDkyVosXfeeUe+RkREWK9bghbLkiWLTCceP37cAXsLACkJYQsAwAbSpk0b67rB8O/Hq8lkso58xZUxY0YKDw9PoT0EAEdB2AIASAHcoxXXgwcPJHABgNoQtgAAUsC1a9coODjYev3evXt06tQpqly5skP3CwDsDw3yAAApwGw2U+/eveUIRVdXV5o/fz6lT59eloQAALUhbAEApIAcOXLI2luBgYEUFRVFVapUkaMVM2TI4OhdAwA7czHz/24BAIDd8KKmx44do/379zt6VwDAAdCzBQAAAGBHCFsAAAAAdoRpRAAAAAA7wsgWAAAAgB0hbAEAAADYEcIWAAAAgB0hbAEAAADYEcIWAAAAgB0hbAEAAADYEcIWAAAAgB0hbAEAAADYEcIWAAAAANnP/wPcAv90YIcJlQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.barplot(data=pokemon, x=\"hp\", y=\"type\", hue=\"type\", errorbar=None, palette=\"muted\")" + ] + }, + { + "cell_type": "markdown", + "id": "213d6139-203f-4d81-a4b1-6f98cb184662", + "metadata": {}, + "source": [ + "**When you want to show how many observations are the intersection of multiple categories,** a [countplot](https://seaborn.pydata.org/generated/seaborn.countplot.html) is a good choice. \n", + "\n", + "To demonstrate this, let's convert the numeric variable `speed` into a categorical variable, `speed_category`, using the built-in function [cut](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html). " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "3c8e9f47-9aea-4bf0-a628-7aa1a66a8eee", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'pd' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[8], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m bins \u001b[38;5;241m=\u001b[39m [\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m50\u001b[39m, \u001b[38;5;241m100\u001b[39m, \u001b[38;5;241m200\u001b[39m]\n\u001b[1;32m 2\u001b[0m labels \u001b[38;5;241m=\u001b[39m [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mslow\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmedium\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfast\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m----> 3\u001b[0m pokemon[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mspeed_category\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241m.\u001b[39mcut(pokemon\u001b[38;5;241m.\u001b[39mspeed, bins\u001b[38;5;241m=\u001b[39mbins, labels\u001b[38;5;241m=\u001b[39mlabels)\n", + "\u001b[0;31mNameError\u001b[0m: name 'pd' is not defined" + ] + } + ], + "source": [ + "bins = [0, 50, 100, 200]\n", + "labels = [\"slow\", \"medium\", \"fast\"]\n", + "pokemon[\"speed_category\"] = pd.cut(pokemon.speed, bins=bins, labels=labels)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "22f78bec-3d18-4133-ba9f-6595d7181ded", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG1CAYAAAAWb5UUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARENJREFUeJzt3Qd4FNX6x/E3hTRCIAmEjnQQ6RAEBeSiFLlYkKteFRQuTQFDkSKIVEGki0gTkC4CioqiYkcQMICdjnQCEQgJhBSSzf95D/9dshSJSchuMt/P86zZnZndnV2H3d+e854zHmlpaWkCAABgEZ6u3gEAAICcRPgBAACWQvgBAACWQvgBAACWQvgBAACWQvgBAACWQvgBAACWQvgBAACW4u3qHXBHOu+jzcbcjwAA5Baenh7i4eGRoW0JP9ehwefs2XhX7wYAAMigkJD84uWVsfBDtxcAALAUwg8AALAUwg8AALAUwg8AALAUwg8AALAURnsBAJBFNptNUlNTXL0beZqXl7d4emZPmw3hBwCALMwLFxd3VhISLrh6VyzB3z9QgoJCMjyfz40QfgAAyCR78AkMDBYfH98sfynjxiEzOTlJLlyIMbcLFgyVPBN+Dh48KI888oi8/PLL5q/atWuXjB07Vn7//XcJCQmRTp06ydNPP+3U1DhjxgxZtWqVnD9/XsLDw2X48OFSunRpF74SAEBeZ7OlOoJPYGCQq3cnz/Px8TV/NQAVKBCcpS4wtyl4vnTpkgwYMEAuXrzoWBYTEyOdO3eWMmXKyHvvvSe9evWSSZMmmet2M2fOlOXLl8uYMWNkxYoVJgx17dpVkpOTXfRKAABWkJqa6vSljFvP/l5ntb7KbcLPG2+8IYGBgU7LVq5cKfny5ZPRo0dLhQoVpH379qblZ+7cuWa9BpwFCxZIRESENGvWTKpWrSpTp06VkydPyvr16130SgAAVkJXV+57r92i2ysyMlLeffdd+eCDD0yIsdu2bZs0aNBAvL2v7GbDhg1lzpw5cvr0aTlx4oTEx8dLo0aNHOuDgoKkWrVq5jHbtm2b6X3y9nabXAgAcEM2G6HHVfQcXln5nnZ5+ImLi5NBgwbJsGHDpHjx4k7rtAWncuXKTsvCwsLM36ioKLNeXX0/3ca+LrNnhg0Ozp/p+wMA8r7ERC85fdozy1/E+GeBU2t9ChYMED8/P8m14WfkyJFSp04deeCBB65Zl5iYKD4+Pk7LfH0v9/clJSVJQkKCuX69bWJjY7N0Vve4uCu1RwAAXE1HH12e3ydNUlJsN92+ceP60rlzN+nSpYfkJr17dzd/Z8y4XHLiSvpe63seG3tREhIu11zZBQX5i5eXp/uHH+3m0q6ttWvXXne9prqrC5c19KiAgCupT7dJnwB1G39//yztW0YOZACAdekXMVwjo4HTLcOPjto6c+aMU52PGjFihKxbt06KFSsm0dHRTuvst4sWLSopKSmOZToiLP02VapUyZHXAOQW2p2rF6vTll29ALAul4YfHbauXVvptWzZ0ozeevDBB+XDDz80w9d1OKGXl5dZv2XLFilXrpyEhoZKgQIFzAixrVu3OsKP1hDt3LlTOnTo4JLXBLgjDT2FCgVkuEk4L0tNtcm5cxcJQHC5uLhYmT17hnz//XcSH39BKlasLN2795T69Rs4trl4MV5mzJgmGzZ8K0lJiXLXXY3ljjtqyPTpU2Tjxm2O7b7//ltZuHC+HDx4QAIDC0jz5i2kR49ejl6Q+fPnyPr1n0qfPgNkzpwZcuTIYSlatLh06tRFWrf+t+NxtF52+vTJsn37j+Lr6ydPPtnxmv3W/Xj77Xny7bdfyalTJyVfPh+pVu0O6dWrj1SqdLnhYezYkRIdfUpKly4j69d/Zmpxy5YtL3/88Zu8997HTnP0jB8/Rn7++SdZseJ9sUT40dab69Fgo+t0aPu8efPkpZdeMnP3/Prrr7Jw4UIZNWqUo9ZHQ46GKJ0AsWTJkjJx4kTTYqQhCsCV8KPB5813Nsnx6MzXw+V2JcMKSq8n7jbvB+EHrqTlGRERz8nZs2dM4ClcuLB88slH8sILz8uUKTOkXr1ws92LL74ge/fuMUGmaNFismbNKhOY0tNwMXr0MGnZ8n7p1u05OXnyhMyZM1MOHvxTpk170zE8/MyZ0zJ16gR55pn/meDzzjtL5JVXRsjtt98ht91W1tTR9u7dzYywHjRomPl3oqHp2LGjUr16TcfzjRkzQn755SezTyVLljLr582bLaNGDZMlS1Y6nu/nn3eY7+lx4yZKYmKCeHvnM4Fpx45tjoCnQeqbb76Up556JgfffTcoeP47GoI0/OgMz+3atZMiRYqYkWF63U5bibT7S0eLaSuSzvA8f/58Mz8QAGcafA4dvzw9PADX+fzzdbJ//16ZM2eh3HFHdbOsYcO75fnne8isWW/IvHmLZfv2SBMUxo6dIPfc0/z/t7lLnn76cTl06KDjtA+zZ78hd955lwwfPsbx+KVKlZG+fXvK5s2bTGuR0u/IwYOHOYJH6dK3yX/+01Z++GGjCT/r1q01LTmLF78r5cqVN9tUq1Zd/vvfdk4TEutkxH37DpR7721hltWpU8+0XGkLlYa50NDCZrn22gwcOFTCwi43dGihsl7/7LNPHPvw3XffmtCVvvXJkuFnz549Trdr1qxp5gC6Ee0OGzhwoLkAAJAbaLeS/sCvUqWqo35V3XVXE5k583VTwqHhR1thmjS5Uher3UXapbVgweWRV9p9pd1LHTt2dnqc2rXrSv78+SUycqsj/Kj0LThh/z91jLbKqF9//cm05NiDj9LWJu1ms9OGhSlT3jDX//orWo4ePWL2QQOUPRzZFSxY0BF87Pt+//1tZeXKd2TAgCFmoNKnn641QSj9dpYMPwAA5HU6HcvlAT8Nr7teu6jOnYsxAeLqc1hpmceVxzln/k6ePN5crnb69F9Ot9OPjPb8/8fVFhmlgatgwULXPIaGNN1Xu61bN5u6oMOHD0lAQH6pWLGS+PsHOFqi7OzL0mvT5gFZvHiBfPfd11K3bn0T8NK3WOUUwg8AADlMi5K1a2rkyFeuu75EiRKmNeTcuXMmnKQPQHrey/SPo3r27CN169a75nEKFMj4CVcLFiwkx44du2Z5+nnzjh8/JkOGDJAmTe6RCROmSYkSJU2Nz/vvr5KtW3+46XNoy5J2k3399RfmcTU8pW/ZyikM/QAAIIfVqVPXdFcVKhQiVatWc1x+/HGLLFu2WLy8vE3XldbNbNq0wXE/bVnZsOEbx22t1QkODpGoqBNOj1O4cJjMmjVD9u7dneF9ql8/XKKijsvu3TsdyzR8/fHH747bu3fvMpM7dujQyQQZe3Hzli0/OLUi/Z22bR+SyMgf5YsvPpP77mvpmLw4J9HyAwBADmvT5kF5772V0q9fT3n6aR19VczU5yxbtkjat3/c1Ppo+AkPv1NefXWM6XYqVqy4fPzxh3LgwH5H6NC6Vx0tNnHiODOi8+67m8j58xdk0aJ5/z/n3e0Z3qdWrf4tq1atkKFDB5rH1JqhRYsWiM12ZSZlrVHS59Si7CeeeEqSky/JunUfyebNl2t+rp6+5nq0eHvKlAmya9cf0q+fa+p1CT8AAOQwnX/nzTffMsPWZ86cbkZLabh59tne8t//XpmnbtSoV2XGjKlmu9TUFNNF9PDD7eWzz9Y5tnnggYdN99Hy5Yvlo4/WmMeuUaOWDB/+iumWyqh8+fLJ66/PNvU806ZNMgHrwQfbmcfQUVyqVKnSMnLkWFNwPXjwC+Zk4jpa7Y035piRajoEvkKFin/7PNrSU69efTl8+LAZTeYKHmnpq5PgmATt7Nl4V+8GkG30pIt6st6hr6+z9FD3siWDZVyfNhITE88pbJBlly4ly5kzURIaWtxM9JfdTp6Mkt9//9XU1+iEg3bDhg2WEyeOyYIFyyQ3SkpKlHbt/i2dOnWVxx57Itve85CQ/Lnj3F4AAOD6tOVl3LhR0rjxPaZORrubtKhYR0oNHTpCcpuTJ6Pk008/Nt17OoFi27YPumxfCD8AALghrQOaNGm6vP32WzJ8+ItmHh89RYQODW/RorXkxjC3atUKc2LykSPHma46VyH8AADgpnQuHL3klTC3bt1X4g4Y6g4AACyF8AMAACyF8AMAACyF8AMAACyF8AMAACyF0V4AAGQzncdGL65gs6WZC26M8AMAQDbS0FOoUECGZxu+FWcpOHfu4j8KQL17d5eff95x3XV6uo3evfv+7f137NgmERHPyqpVH0nx4iXE3RF+AADI5vCjwefNdzbJ8ejYHH3ukmEFpdcTd5t9+KetP82bt5A+fV64ZrmeKyyvIfwAAHALaPDJTefS8/X1ldDQwmIFhB8AAPC34uLiZNas6bJ58yaJiTkrBQoEmROu9ukzQPz8rpx01e7o0SMydepE+eOPX00LVI0aNaVXr76OM75fuHBB3nzzdfn++2/k0qVLUqXK7dKzZ4RUrVpNcgKjvQAAwN8aN26k7N27R8aOnSgrVqyRiIj+8tlnn8hHH71/3e1HjBgqRYoUkXnzlsjcuQvF09NThg4dYNalpaXJwIERcuLEcXnttWkyd+4iueOOGvLcc11k797dkhNo+QEAALJ+/afy7bfO596qWbOOTJ48XcLD75Tates5Wm60qHn16nflwIH9132sEyeOmfvodt7e3jJkyHA5fPiQ2Gw2Uxz9+++/ySeffClBQQXN9j169JLffvvFnPj0pZdG3vLXSvgBAADSuHFTee65iGvqgFS7do/Kxo0bZN26tXLs2BE5ePBPiYo6IbfdVva6j9WtW0+ZPn2yrFmzWurUqSt33nmX3HdfK9MCpK072vrTvn1bp/skJydLUlKS5ATCDwAAkICA/FKqVOlrlmtrzaBBfeXPPw9Iixat5d57W0rlylVlwoSxN3ys9u0fk+bN7zM1Qtu3/yjz5s2WRYvmydtvLzePlz9/fpk/f+k198uXL5/kBMIPAAC4oX379sqWLT/InDkL5Y47qptlKSkpcvz4USlRouQ122tB9NtvvyUdOnSSNm0eMJe//oqWdu3ayE8/7ZDy5StKfHy8KXQuV668436vvfaKVKxYSdq3f1xuNcIPAAC4odDQUPHy8pKvv/5CgoODJS4uVhYtWiBnzpyRS5eSr9leR4Jpi8/x48fl2Wd7mRalTz/92LTqVK16uxQrVlwqVaosI0YMkb59B0pYWFFZs2aV6VKbMmWG5ATCDwAAt2jCwbzwnIULF5GXXholCxbMMSElJCRU7rqrsTz++JOmDuhqWuA8ceLr8uab06RPn56SmJhows6ECdOkZMlSZpupU2fKzJmvy/DhL0pCQoKULVvejCSrVy9ccoJHmlYd4Zqpwc+ejXf1bgDZxtvbU4KD88vQ19flqknXslvZksEyrk8biYmJl5QUm6t3B7mctnqcORMloaHFJV8+n1x9eovc/p6rkJD8GX7PafkBACAbaejQ8MGJTd0X4QcAgGxGAHFvzPAMAAAshfADAAAshfADAAAsxeXhR+cJGDhwoDRs2FDq1Kkj3bt3lwMHDjjWDxs2TKpUqeJ0ad68uWO9zhQ5ffp0adKkidSuXVu6desmR48eddGrAQAA7s7l4adXr15y+PBhmTt3rqxevVr8/PykU6dOZty/2rNnjzz77LOyceNGx0W3s5s5c6YsX75cxowZIytWrDBhqGvXruYcIQAAAG4VfmJjY6VkyZLyyiuvSM2aNaVChQrSs2dPiY6Oln379pkTn+3fv1+qV68uRYoUcVxCQkLM/TXgLFiwQCIiIqRZs2ZStWpVmTp1qpw8eVLWr1/vypcGAADclEvDT8GCBWXy5MlSuXJlc/vs2bOycOFCKVasmFSsWFGOHDkiFy9elPLlr5z7I73du3eb84M0atTIsSwoKEiqVasmkZGROfY6AABA7uE28/y8/PLLsnLlSvHx8ZFZs2ZJQECA7N2716xbsmSJbNiwQTw9PaVp06bSr18/KVCggGnhUcWLF3d6rLCwMMe6rMyIC+QVrppp1l3xfiA72Gw3nsRQJzhkksNbx8vLI0vf024Tfp555hl5/PHHZdmyZaYOSOt4NPxo4NEwM3v2bNMSNGHCBNMltmjRIkddkAam9Hx9fU2XWmbpAaunAgCQNwUF+bt6F5AHJCZ6yenTntd8EXt4eEhQkK94enq5ZL9stlSJi0sypSMZMXr0CHNS0b+zZcsOcZfAqbmgYMEAUyOc68OPdnOpsWPHyi+//CJLly4115988klzFlml3WNa8/PYY4/Jb7/95njhWvuT/k1ISkoSf//Mf7hpYo6Lu5jl1wS4U0sHX/hXxMUlmPMfAVmRnJxkBtmkpqY5nStOg5AGn4MfvyUJZ6JydJ/8Q4tLubbdTPDJ6PnrIiJekB49ejluP/RQa7Ps3ntbOJa5y7nw9L3W9zw29qIkJKQ6rdPPuFxxbi+t8dm8ebO0atXKnAVWaaLTIKRFz3rdHnzsKlWqZP5qt5a9u0u3LVOmjGMbva1D4rPCXf5HA8h+Gnz4N47s+CL+Oxp8Ek4dEXcXGBhoLlcvCw0tLO7q6sD5T7m04/v06dPSv39/E4DsLl26JDt37jQjvwYNGmSGvaenLT5KA5KO7tL/QVu3bnWsj4uLM/cPDw/PwVcCAEDetG7dWnn88Ydl2rRJ0qrVPTJkyAuyY8c2ady4vkRFnXBsd/UybX1atmyRPProQ3LvvXdLp05Pyvr1n4o7cGnLj3ZjaQGzDnXXi47+mjNnjgkwGnp27dplhr7PmDFDHnzwQTl48KCMHj1a2rZta8KR6tChg0yaNMkMf9dh8xMnTjSjxVq2bOnKlwYAQJ5x/PgxOX36L1mwYJkpLTl3Luam95k7d6Z8+eXn0q/fILnttrLy8887ZNKk8XLhwgV55JFHxZVcXvMzZcoUM9xdR3CdP39e6tevb4qeS5QoYS7Tpk0zEyC+9dZbZoTXAw88IH379nXcX+f4SUlJMTNBJyYmmhaf+fPnS758+Vz6ugAAyEs6deoqJUuWcrTy/B0dkPTuu8tl5Mixctddjc0yve/Jk1GyfPliwo8GmpEjR5rL9dx///3mciNeXl7m9Bh6AQAAt0bp0qUzvO2hQ3+agvBRo14y9bt2qampZpBSUlKi+PpmfrRWrg8/AADA/fneJKxosLGzzzM0evR40+V1tXz5nKeoyWnM9AUAAP4Re2mJnmXB7tixKycV18CjPTOnTp2UUqVKOy6bN2+Sd95Z4tQa5Aq0/AAAcIvm3Mmrz1mhQkXx9w+QJUvelu7de5rgs2LFUsd6HYn98MPt5a23Zkn+/PmlevWa8tNP22XWrOnSoYPzKG5XIPwAAJDtp5dINZMNuub5U2/56S0CAvLLyy+Pltmz35AOHR6VihUrSe/efWXIkAGObZ5/vr8UKhQs8+bNNiPFwsKKSpcuPeTJJ58WV/NIy+j81xabAO3s2StNeUBupzPO6ilbhr6+Tg4dv/kQ1byqbMlgGdenjcTExDPJIbLs0qVkOXMmSkJDi19Tw8K5vXL+PQ8JyZ87ZngGACAvyssBJC+g4BkAAFgK4QcAAFgK4QcAAFgK4QcAgCxg3FDue68JPwAAZIKnp5djaDlyhv29tr/3mUX4AQAgE3SWYv0STky86OpdsYzExIvmPc/qDNEMdQcAIBM8PDwkMLCQxMWdkQsX8omPj59ZhlvT3ZWcnCiJifESFBSa5feZ8AMAQCb5++eXS5eS5MKFWBE55+rdyeM8xN8/0LznWUX4AQAgk7QFomDBUClQoJDTWc2R/fREqVmt9bEj/AAAkEWX61Cy54sZtx4FzwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFIIPwAAwFJcHn7OnDkjAwcOlIYNG0qdOnWke/fucuDAAcf6Xbt2SYcOHaR27drSvHlzWbx4sdP9bTabTJ8+XZo0aWK26datmxw9etQFrwQAAOQGLg8/vXr1ksOHD8vcuXNl9erV4ufnJ506dZKEhASJiYmRzp07S5kyZeS9994z206aNMlct5s5c6YsX75cxowZIytWrDBhqGvXrpKcnOzS1wUAANyTtyufPDY2VkqWLCk9evSQypUrm2U9e/aUhx56SPbt2yebN2+WfPnyyejRo8Xb21sqVKjgCErt27c3AWfBggUyYMAAadasmbn/1KlTTSvQ+vXrpW3btq58eQAAwA25tOWnYMGCMnnyZEfwOXv2rCxcuFCKFSsmFStWlG3btkmDBg1M8LHT7rFDhw7J6dOnZffu3RIfHy+NGjVyrA8KCpJq1apJZGSkS14TAABwby5t+Unv5ZdflpUrV4qPj4/MmjVLAgIC5OTJk45gZBcWFmb+RkVFmfWqePHi12xjX5dZ3t4u7xEEso2XF8dzerwfgLW5Tfh55pln5PHHH5dly5aZ2h6t40lMTDRhKD1fX1/zNykpydQFqetto11qmeXp6SHBwfkzfX8A7i0oyN/VuwDAhdwm/Gg3lxo7dqz88ssvsnTpUlP8fHXhsoYepS1Dul7pNvbr9m38/TP/4WazpUlc3MVM3x9wx5YOvvCviItLkNRUm6t3A0A20s+4jLbqujT8aI2PFjW3atXKUdfj6elpglB0dLSp/dG/6dlvFy1aVFJSUhzLdERY+m2qVKmSpX1LSeGDEcirNPjwbxywLpd2fGvRcv/+/U0Asrt06ZLs3LnTjOwKDw+X7du3S2pqqmP9li1bpFy5chIaGipVq1aVwMBA2bp1q2N9XFycub/eFwAAwK3CjxYzN23aVF555RUzOmvv3r3y4osvmgCjc/3ocPYLFy7ISy+9JPv375f333/fjAbTofH2Wh+dAFHn/vnqq6/M6K9+/fqZFqOWLVu68qUBAAA35fKanylTppjh7hpazp8/L/Xr1zdFzyVKlDDr582bZ+qA2rVrJ0WKFJFBgwaZ63YRERGm+2vYsGGmQFpbfObPn2/mBwIAALiaR1paWto1Sy1O6wHOno139W4A2UanbtARjENfXyeHjseIVZUtGSzj+rSRmJh4an6APCYkJH+GC56Z7AIAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFgK4QcAAFiKt6t3IK/y9PQwF6uz2dLMBQAAd0H4uQU09BQqFCBeXjSspaba5Ny5iwQgAIDbIPzcovCjwefNdzbJ8ehYsaqSYQWl1xN3m/eD8AMAcBeEn1tIg8+h4zGu3g0AAJCOy/tlzp07J8OHD5emTZtK3bp15YknnpBt27Y51nfu3FmqVKnidOnYsaNjfVJSkowaNUoaNWokderUkRdeeEHOnj3rolcDAADcnctbfvr37y9//fWXTJkyRUJDQ2XJkiXSpUsXWbNmjZQvX1727NkjI0eOlPvuu89xn3z58jmu6zoNS2+88Yb4+PjIiBEjJCIiQpYuXeqiVwQAANyZS8PP4cOHZdOmTbJ8+XKpV6+eWfbyyy/L999/L2vXrpUOHTrImTNnpFatWlKkSJFr7n/q1Cn54IMPZPbs2VK/fn2zTENU69at5aeffjItQQAAAG7T7RUcHCxz586VGjVqOJZ5eHiYS1xcnGn10evlypW77v23b99u/jZs2NCxTLctWrSoREZG5sArAAAAuY1LW36CgoLknnvucVr2+eefmxahoUOHyt69e6VAgQIyevRo00IUEBBgWnV69uxpuri05UcDlK+vr9NjhIWFycmTJ7O0b97emc+FDHF3xvvhevw/cMb7AViby2t+0tuxY4cMGTJEWrZsKc2aNTMBSAuaa9asaQqfd+3aJRMmTJATJ06YvwkJCSYEXU3DkN4vs3RodnBw/iy+GtgFBfm7ehcAJxyTgLW5Tfj58ssvZcCAAWbE16RJk8wybfEZPHiwFCxY0NyuXLmyKXbu16+fDBo0SPz8/CQ5Ofmax9Lg4++f+Q83nZMmLu5iln5V8uF6RVxcgpnsEK7DMemMYxLIe/QzLqOtum4RfnRk1tixY02X1muvveZozfH29nYEH7tKlSqZv9qtVaxYMTNUXgNQ+hag6OhoU/eTFSkpfDBmF/2S4f2EO+GYBKzN5R3fOtJrzJgx8tRTT5mRWulDjM7no91g6f3222+m9ads2bJmhJjNZnMUPquDBw+aWqDw8PAcfR0AACB3cGnLjwaVcePGSYsWLaRHjx5y+vRpxzrt0mrVqpVZrzU/jRs3NsFHa310HqDAwEBz+fe//y3Dhg0z22lXl87z06BBA6ldu7YrXxoAAHBTLg0/OrLr0qVL8sUXX5hLeu3atZPx48eboe468aGGG53rp1OnTtK9e3fHdtpqpOt69+5tbutM0RqGAAAArscjLS2NM05epx7g7Nn4LA2T19FiQ19fZ+lze5UtGSzj+rSRmJh46itcjGPyMo5JIO8KCcmf4YJnl9f8AAAA5CTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsJRMhZ/IyEiJj7/+iT/j4uLkk08+yep+AQAAuE/4efrpp+XAgQPXXbdz504ZMmRIVvcLAADglvDO6IaDBw+WqKgocz0tLU1GjhwpgYGB12x36NAhKVy4cPbuJQAAQE63/LRq1cqEHr3Y2W/bL56enlK7dm159dVXs2v/AAAAXNPy07x5c3NRHTt2NC0/FSpUyN69AQAAcJfwk96SJUuyf08AAADcNfwkJibKrFmz5JtvvpGEhASx2WxO6z08POTLL7/Mrn0EAABwbfgZO3asrF69Who0aCC33367qfUBAADIs+Fn/fr10q9fP+nevXv27xEAAMAtlKkmm0uXLknNmjWzf28AAADcMfw0btxYNmzYkP17AwAA4I7dXm3atJERI0bI2bNnpVatWuLv73/NNg8//HB27B8AAIDrw0/fvn3N3w8++MBcrqajvQg/AAAgz4Sfr776Kvv3BAAAwF3DT8mSJbN/TwAAANw1/MyYMeOm2/Tu3TszDw0AAJC7wo+e6T0sLIzwAwAA8k742b179zXLLl68KNu2bTMnPH355ZezY98AAACyXbadlyIgIECaNm0qvXr1kgkTJmTXwwIAAGSrbD8pV4kSJeTAgQPZ/bAAAADuFX7S0tIkKipK5s2b949Gg507d06GDx9uWo3q1q0rTzzxhOk+s9u8ebM88sgjZjLF1q1byyeffOJ0/6SkJBk1apQ0atRI6tSpIy+88IKZfBEAACDban6qVq1qJjK8UQj6J91e/fv3l7/++kumTJkioaGhsmTJEunSpYusWbPGPFaPHj2kc+fOMnHiRPn2229l0KBBEhISYsKO0hojDUtvvPGG+Pj4mJmnIyIiZOnSpZl5aQAAII/LVPjRup7rhR8d6dWsWTMpW7Zshh7n8OHDsmnTJlm+fLnUq1fPLNNi6e+//17Wrl0rZ86ckSpVqpgzyKsKFSrIzp07TeuShp9Tp06ZGaZnz54t9evXN9toiNIWop9++sm0BAEAAGQ5/Dz//POSHYKDg2Xu3LlSo0YNxzINVXqJi4szLTr33Xef030aNmwoY8eONa1C27dvdyyzK1eunBQtWlQiIyMJPwAAIHvCj9K6mgULFsiPP/5ogooGGW196dSpk+m+yoigoCC55557nJZ9/vnnpkVo6NChpuurWLFiTut1DqGEhASJiYkxLT/6vL6+vtdsc/LkSckKb+/Ml0N5eWV7HXmuxvvhevw/cMb7AVhbpsKPBovHH3/cBKDatWtLtWrVTN3O22+/bbqhVq9ebVpf/qkdO3bIkCFDpGXLlqb7LDEx0dTxpGe/nZycbELQ1euVhiEthM4sT08PCQ7On+n7w1lQkL+rdwFwwjEJWFumwo8WH3t7e8u6deukdOnSjuVHjx6V//3vfzJ16lQZP378P3rML7/8UgYMGGBGfE2aNMkRYjTkpGe/7e/vL35+ftesVxp8dH1m2WxpEhd3MUu/KvlwvSIuLkFSU22u3g1L45h0xjEJ5D36GZfRVt1MhZ+NGzeabqn0wUfp7cxMcqgjs7SORwuVX3vtNUdrTvHixSU6OtppW72tEyoWKFDAdInpUHkNQOlbgHSbzLQ8pZeSwgdjdtEvGd5PuBOOScDaMtXxnZqaamptrkeHoV+4cCHDj6UjvcaMGSNPPfWUGamVPsRoDZHWFKW3ZcsW0zrk6elpRojZbDZH4bM6ePCgqQUKDw/PzEsDAAB5XKbCjw4/16Ho1/Phhx9K5cqVM/Q4GlTGjRsnLVq0MPP5nD592tQO6eX8+fPSsWNH+fXXX003mM4arQXWn332mXTt2tXcX1t3/v3vf8uwYcNk69atZludN6hBgwamFgkAACBbur169uxpJiKMjY2VNm3aSJEiRUxg0dmXtUts+vTpGXocHdl16dIl+eKLL8wlvXbt2pm6oZkzZ5oao0WLFkmpUqXMdfsEh0pbjTRA2c8irzNFaxgCAAC4Ho80nTAnE3RUl7bIaGuNnYYgPb3Eww8/LLm9HuDs2fgsDZPX0WJDX18nh47HiFWVLRks4/q0kZiYeOorXIxj8jKOSSDvCgnJf2sLnu1FxTrEffDgwaYFaPfu3eYUE/+k3gcAACCnZSr8aO3NtGnTpEOHDuaUE/aRWX/++afpqtIh6o8++mh27ysAAIBrws+KFSukb9++0r17d8cyDT9aa1O4cGFZuHAh4QcAAOSd0V46lDz9+bjSq1Wrlhw7diyr+wUAAOA+4adkyZKyefPm667TE4pefT4uAACAXN3t9dhjj5kh5zpMXc+6ricy1fN8ffPNN+b8XjriCwAAIM+EHz1zu3Z9LVmyxNT32Hl5eckzzzwjnTt3zs59BAAAyDaZHuquQ9x1ssOff/7ZnF8rKChIatasecPTXgAAAOTq8KP05KJNmjTJvr0BAABwx4JnAACA3IrwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALIXwAwAALMWtws+cOXOkY8eOTsuGDRsmVapUcbo0b97csd5ms8n06dOlSZMmUrt2benWrZscPXrUBXsPAAByA7cJP8uWLZNp06Zds3zPnj3y7LPPysaNGx2X1atXO9bPnDlTli9fLmPGjJEVK1aYMNS1a1dJTk7O4VcAAAByA5eHn1OnTplwM2nSJClbtqzTurS0NNm/f79Ur15dihQp4riEhISY9RpwFixYIBEREdKsWTOpWrWqTJ06VU6ePCnr16930SsCAADuzOXh548//pB8+fLJRx99JLVq1XJad+TIEbl48aKUL1/+uvfdvXu3xMfHS6NGjRzLgoKCpFq1ahIZGXnL9x0AAOQ+3q7eAa3fSV/Dk97evXvN3yVLlsiGDRvE09NTmjZtKv369ZMCBQqYFh5VvHhxp/uFhYU51mWWt3fmc6GXl8szpVvh/XA9/h844/0ArM3l4efvaPjRwKNhZvbs2aYlaMKECbJv3z5ZtGiRJCQkmO18fHyc7ufr6yuxsbGZfl5PTw8JDs6f5f3HZUFB/q7eBcAJxyRgbW4dfp577jl58sknJTg42NyuXLmyqfl57LHH5LfffhM/Pz9H7Y/9ukpKShJ//8x/uNlsaRIXdzFLvyr5cL0iLi5BUlNtrt4NS+OYdMYxCeQ9+hmX0VZdtw4/2upjDz52lSpVMn+1W8ve3RUdHS1lypRxbKO3dUh8VqSk8MGYXfRLhvcT7oRjErA2t+74HjRokHTq1Mlpmbb4qIoVK5rRXYGBgbJ161bH+ri4ONm5c6eEh4fn+P4CAAD359bhp1WrVrJ582aZMWOGqff57rvvZOjQodK2bVupUKGCqfXp0KGDGSb/1VdfmdFfWgxdrFgxadmypat3HwAAuCG37va69957zcSHc+fOlbfeesuM8HrggQekb9++jm10jp+UlBQzE3RiYqJp8Zk/f74ZPg8AAODW4Wf8+PHXLLv//vvN5Ua8vLxk4MCB5gIAAJCru70AAACyG+EHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYCuEHAABYiluFnzlz5kjHjh2dlu3atUs6dOggtWvXlubNm8vixYud1ttsNpk+fbo0adLEbNOtWzc5evRoDu85AADILdwm/CxbtkymTZvmtCwmJkY6d+4sZcqUkffee0969eolkyZNMtftZs6cKcuXL5cxY8bIihUrTBjq2rWrJCcnu+BVAAAAd+ft6h04deqUjBgxQrZu3Sply5Z1Wrdy5UrJly+fjB49Wry9vaVChQpy+PBhmTt3rrRv394EnAULFsiAAQOkWbNm5j5Tp041rUDr16+Xtm3buuhVAQAAd+Xylp8//vjDBJyPPvpIatWq5bRu27Zt0qBBAxN87Bo2bCiHDh2S06dPy+7duyU+Pl4aNWrkWB8UFCTVqlWTyMjIHH0dAAAgd3B5y4/W8ejlek6ePCmVK1d2WhYWFmb+RkVFmfWqePHi12xjX5dZ3t6Zz4VeXi7PlG6F98P1+H/gjPcDsDaXh5+/k5iYKD4+Pk7LfH19zd+kpCRJSEgw16+3TWxsbKaf19PTQ4KD82f6/nAWFOTv6l0AnHBMAtbm1uHHz8/vmsJlDT0qICDArFe6jf26fRt//8x/uNlsaRIXdzFLvyr5cL0iLi5BUlNtrt4NS+OYdMYxCeQ9+hmX0VZdtw4/xYoVk+joaKdl9ttFixaVlJQUxzIdEZZ+mypVqmTpuVNS+GDMLvolw/sJd8IxCVibW3d8h4eHy/bt2yU1NdWxbMuWLVKuXDkJDQ2VqlWrSmBgoBkpZhcXFyc7d+409wUAAMhV4UeHs1+4cEFeeukl2b9/v7z//vuycOFC6dGjh6PWRydA1Ll/vvrqKzP6q1+/fqbFqGXLlq7efQAA4IbcuttLW3fmzZsnY8eOlXbt2kmRIkVk0KBB5rpdRESE6f4aNmyYKZDWFp/58+eb4fMAAABuHX7Gjx9/zbKaNWvKu+++e8P7eHl5ycCBA80FAAAgV3d7AQAAZDfCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBTCDwAAsBS3Or0FAMA6PD09zAUiNluauSBnEH4AADlOQ0+hQgHi5UUHhEpNtcm5cxcJQDmE8AMAcEn40eDz5jub5Hh0rFhZybCC0uuJu817QvjJGYQfAIDLaPA5dDzG1bsBi6G9EQAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWEquCD+nTp2SKlWqXHN5//33zfpdu3ZJhw4dpHbt2tK8eXNZvHixq3cZAAC4KW/JBXbv3i2+vr7y5ZdfioeHh2N5gQIFJCYmRjp37mxCz6hRo+Tnn382f/Pnzy/t27d36X4DAAD3kyvCz969e6Vs2bISFhZ2zbpFixZJvnz5ZPTo0eLt7S0VKlSQw4cPy9y5cwk/AAAgd3Z77dmzx4Sa69m2bZs0aNDABB+7hg0byqFDh+T06dM5uJcAACA3yDUtP8HBwfLUU0/JwYMH5bbbbpPnnntOmjZtKidPnpTKlSs7bW9vIYqKipLChQtn6jm9vTOfC728ckWmzDG8H67H/wNnvB+ux/+Da/Ge5By3Dz8pKSny559/SsWKFeXFF1+UwMBA+eSTT6R79+7y9ttvS2Jiovj4+DjdR+uDVFJSUqae09PTQ4KD82fL/kMkKMjf1bsAOOGYhDviuMw5bh9+tDtr69at4uXlJX5+fmZZ9erVZd++fTJ//nyzLDk52ek+9tATEBCQqee02dIkLu5iltI7B/EVcXEJkppqc/VuWBrHpDOOSdfjmLwWx2XW6PGU0dYztw8/SkduXa1SpUqyceNGKVasmERHRzuts98uWrRopp8zJYUDMLvoP2beT7gTjkm4I47LnOP2HYzawlO3bl3T+pPe77//brrCwsPDZfv27ZKamupYt2XLFilXrpyEhoa6YI8BAIA7c/vwo6O8ypcvb4ay68iuAwcOyKuvvmrm89GiZx3OfuHCBXnppZdk//79ZuLDhQsXSo8ePVy96wAAwA25fbeXp6enzJ49WyZPnix9+/aVuLg4qVatmil2to/ymjdvnowdO1batWsnRYoUkUGDBpnrAAAAuS78KB2urq09N1KzZk159913c3SfAABA7uT23V4AAADZifADAAAshfADAAAshfADAAAshfADAAAsJVeM9gKA7MQJJC+fxkcvgBURfgBYRsECfpJms3FOKRN+UiUmJoEABEsi/ACwjPx+PuLh6SkHP35LEs5EiVX5hxaXcm27iaenB+EHlkT4AWA5GnwSTh1x9W4AcBE6vgEAgKUQfgAAgKUQfgAAgKUQfgAAgKVQ8AwAgBtg/qmcm3+K8AMAgAsx/1TOzz9F+AEAwIWYfyrn558i/AAA4AaYfyrn0MEIAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAshfADAAAsxVvyAJvNJjNmzJBVq1bJ+fPnJTw8XIYPHy6lS5d29a5BRLy8yNg2W5q5AABcL0+En5kzZ8ry5ctl/PjxUqxYMZk4caJ07dpV1q5dKz4+Pq7ePcsqWMBP0mw2CQryF6uz2VIlJiaBAAQAbiDXh5/k5GRZsGCBDBgwQJo1a2aWTZ06VZo0aSLr16+Xtm3bunoXLSu/n494eHrKwY/fkoQzUWJV/qHFpVzbbuLp6UH4AQA3kOvDz+7duyU+Pl4aNWrkWBYUFCTVqlWTyMhIwo8b0OCTcOqIq3cDAADDIy0tLVf/FNXWneeff15++eUX8fPzcyzv06ePJCYmypw5c/7xY+pbkpVf6B4eIp6enhJ7IVFSU21iVT75vCQwwFcuxcdJmi1VrMrD00vy5Q8ytWmu+tfGMXkZx+RlHJPuheMye45LbV330APLCi0/CQkJ5u/VtT2+vr4SGxubqcfUN8/LK2Nv4N8pGHgljFmZHsy4/EHvahyTl3FMXsYx6V44LnPuuHT9kZ9F9tYerf1JLykpSfz9KbQFAAB5LPwUL17c/I2OjnZarreLFi3qor0CAADuKteHn6pVq0pgYKBs3brVsSwuLk527txp5vsBAADIUzU/WuvToUMHmTRpkoSEhEjJkiXNPD8630/Lli1dvXsAAMDN5PrwoyIiIiQlJUWGDRtmRnhpi8/8+fMlX758rt41AADgZnL9UHcAAABL1fwAAAD8E4QfAABgKYQfAABgKYQfAABgKYQfAABgKYQfAABgKYQfAABgKYQfZImeVqRKlSpy7NgxV+8KkCHNmzeXN954w1x///33zfELZLfffvtN7r//fqlevbq89tprWXosnY5vzZo1cubMmWzbP6vLEzM8A0BmtGnTRpo0aeLq3UAeNGfOHHOWgXXr1kmBAgWy9FiRkZHy4osvyldffZVt+2d1hB8AluXn52cuQHaLjY2V22+/XcqUKZPlx+JEDNmPbi9kyHfffSePPPKI1KpVSxo1amR+heg/7qulpqbKwoULpVWrVlKjRg3z95133jHrdPs77rhD1q9f79h+3LhxUrVqVTl79qxjmT7PzJkzc+iVwV1o99O7774rTz75pDl2tMtgx44dZlmzZs2kbt260rdvX3P+Pjtd/9RTT0nNmjXNNqNGjZILFy441p8/f14GDx4s9evXl4YNG8rbb7/t9JxXd3vpdV129X7Zl2l3WadOnWTGjBly1113SZ06dWT48OESFRUlPXr0MP8+WrRoId9+++0tfKeQG7pWf/zxR/nggw/M8bNz505z7kltZdTPQP0M1dsJCQmO++j5KO+77z7TTab3f/PNN03o0dKCp59+2mxz7733XnN8InMIP7gpDSa9e/eW9u3bmyZc/eDXZtgJEyZcs+348eNNcNHt165da76Yxo4dawJRwYIFzRfYpk2bHNv/8MMP5q/+A1fR0dHmg0L/kcN6pk6dKl27dpUPP/zQdBU8++yz8vnnn8vcuXPl1VdflS+//FJWrVpltt29e7d07tzZfKF89NFHMmnSJPnjjz/kf//7n+OXsoalX3/9VWbPnm2Cj4aS48ePZ2kft23bJgcPHpRly5aZLzANZ//5z39MWNMvpgoVKpgfB/xat67Vq1ebYKzHxMaNG2X69Onmc00/O/V4HjJkiAlGeuyor7/+2nSTaXjXH4cDBgyQWbNmmeNaH8deo6bHvnbVIuvo9sJNnTp1SpKTk6VEiRJSsmRJc9EvE23lSd/6o7+4tZVHP/gfeOABs6xs2bKmGFq/vJ555hnzi0a/NOyPq18i+otdw49+UGgLkz4+RajWpAFbjxH10EMPyejRo03Lih5HlStXlnnz5sm+ffscv5TvvvtuE5CUbjN58mTz61l/dRcpUsR88Wjw1pYfpev/9a9/ZWkfbTab+ZIKDAyUcuXKycSJE02r0sMPP2zWP/HEE/LNN9/IX3/9JWFhYVl8R5AbhYSEmHof7VLV47Bx48YSHh7u+FwrVaqULF26VPbu3WtuHzlyRHx8fMxnn37O6kWPHf2ry/WHo/1x6abNHoQf3JT2W7dt29Z8yeg/ZP3C0cCizfvbt293bPfnn3/KpUuXpF69ek73b9CggSxatMiMVNAvHm0dOnr0qLmvNgHfc889Zr3S8EOrj3Xddtttjuv+/v7mb/qaCf3g1yCu9Jf04cOHzS/jqx04cEBiYmLMde1CsytcuLCULl06S/sYGhpqgo9dQEDANfuo7PsJaFeutu7oiK1Dhw7J/v37zY/C8uXLm/UPPvigvPfee6ZMoGLFiqZLVa9r+MGtQbcXMkR/MX/66aemS0K/VAYOHChdunRx2uZGzfz6S1l5e3ubX+f6D15/kWuXl/Z960VbgPTDQLvECD/WpcfI1Tw9PW94XGkLo3YfpL9ot4Eu9/DwcGx3s+e4kZSUlGuW6S/6jO4joMef1oO98sor5tjTbivt4tISADtt0dGu3uXLl5vQ88svv5iSAe0mw63Bv1jclP5D1MJkDS1a7KldWHp7y5YtTvNOaK2DfjGkbw2y10hoi5G96VZbfzTkaFeXdhdoINJfOPoPXZt4r245Aq6nUqVK5he0thbZLxpWtDZIC5C1xdJeFG0XFxdnuhhuRI/f9AXT2rIEZMWuXbtkw4YN8vrrr5taHm3l0ZZCPQ7tPxi1tkdLBvSzLyIiQlauXCmPPvqoqbFU9iCP7EO3F25Km/j1F4l+MTz22GOSlJRk/lFqaAkODnba7vHHHzfFfYUKFTLdDdrCo/ft37+/4x+w1nRooaretv/60RCkv9r1F/s/+WUO69LCZv11rPU3HTp0MMFGr+toMD02NUi3bt3a1A3pde3ymjJlyt92R9WuXdsUlWp9hn4xaZDS+wKZpcedfqZpy7m28Jw7d87UTGpNmP1Y1M9UnQgxf/78pj7t5MmTZlCJvVZNu1btRf76mavbIWv4lsFNaYuOjjbQlhkNMtrEr2HlrbfeMr+w09NRDPqPU0fenD592nwJacGqhiY7rdHQf7xa/Ofr62uWaR+3jpShywsZpUFFC6D1F3W7du3MF4R2oerQdntg0S8UvfTr1890P2g4Tz+twtVGjhxpLnq8asFpnz59zBcRkFlFixY1dY76GaqDPbQVXGsmtRVd64CUtvJoKNKRsvqZqq3k2v2lLUVKi/21NlJHL+oPSQ3+yBqPNMZjAgAAC6HmBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAAWArhBwAygCnRgLyD8AMgV9AZwHVWcD0Bbk7T89V17949x58XwK1B+AGAm9DzfR04cMDVuwEgmxB+AACApRB+ABi///67PPPMM1KvXj1z8lk98eLPP/9s1r344ovSsWNHWb16tfzrX/8y63VbPct0eidOnDAnXmzQoIHUqlXLbLNz506nbfQM1hMmTDAnaqxevbo88MADsm7dOqdt9CSkepJHPQGkPk7Pnj0lNjY2U68rOjranOxUT3qq+61ngP/pp58c6/VEp3o2eH1duj+677169XJ0r+lrX7NmjRw/ftx0u2n3W0Zfx6VLl8xJfps2bSo1a9aULl26yAcffHBN992mTZvkySefNO/9nXfeKS+88ILTSYP1OatVq2ZaoO6++26zj3qSTH2cgwcPOj3nhx9+KLfffvs1Jx0GcAXhB4BcuHBBunbtKsHBwebs01OnTpWEhATzZX3+/Hmzza5du8zy3r17y8SJEyUmJsYECQ0X9hDx3//+V/744w95+eWXZfLkySbEPPXUU44uIy0a1mCxYsUK6dy5s8yaNcsEEj3ruoYCO338N998U/7zn//IjBkzpFChQubx/qn4+Hh54oknZOvWrTJw4EDzWL6+vuas2IcOHTL706NHDxM+9Aza8+fPN69v8+bNMmLECPMYGrw04OjZuN99910TyDL6OoYPHy6LFi0y75O+nsKFC5v3Jj3dXvenePHiMmXKFBkyZIgJZ3oG+jNnzji2S01NlQULFsjYsWPNNm3btjWvRcPO1Y+nQU8fD8AN6FndAVjbTz/9lFa5cuW07du3O5YdPnw4bcKECWlRUVFpgwcPNusjIyMd60+dOpVWo0aNtIkTJ5rbU6ZMMbePHTvm2CYpKSnt3nvvTXv++efN7Y0bN5rH+eSTT5yef8CAAWl333132qVLl9JiY2PT7rjjDsfj2nXp0sXc9+jRoxl+XUuWLEmrUqVK2s6dOx3LLl68mNayZcu0lStXpp08eTKtY8eOTq9LjRkzJq169eqO2/r6//WvfzluZ+R16Punz71gwQKnbf73v/85XkdqaqrZXpelp/fV9+C1114zt9977z1znw8++MBpu/79+5v9stls5rb+v6patWra2rVrM/weAVZEyw8AqVSpkoSEhMizzz5rWiu++OIL00qhrSXFihUz25QqVUrq16/vuE9YWJhp7YiMjDS3tbVEu1uKFi0qKSkp5uLp6Wm6fH744QfHNh4eHqYlxb6NXpo3by5//fWX7Nu3z3S1aXeRdkOld//992dqlJbut+6Xnb+/v3z++efy6KOPmn1dvHix6W7SbihtAVqyZIns2LFDkpOTb/i4GXkd2tqkLUStW7d2uq+22Nhpl5Vun36ZKlOmjHlvf/zxR6fl6V+H0pYx7Y7btm2bo9Unf/780qJFi3/8XgFW4u3qHQDgevqFqTUk2n3z6aefmu4dPz8/eeihh2TYsGFmGw0KVwsNDTXdXOrcuXNy+PBhueOOO677HNqNpttoIKhbt+51t9EutLi4OHNdu+DS026nf0qfT/fx73z00Uemu0lrZLR7TQOGvvabPe7NXod2A6qrnz/9bX0cpUHzarrs6nqpgIAAp9sNGzY04U5DT3h4uPnbpk0b0x0G4MYIPwCM8uXLm1obrS359ddfTS3JO++8Y1ohlNb4XO306dOOL/MCBQqYQtxBgwZd9/F9fHzMNvoFrq0t13PbbbeZ51Za76L7dHVQ+Cf0+a43L5C27BQsWNC8Ji2G1mJurW+yBzwtZNZWo7973Ju9Dvv7pe9RiRIlHOvsoUhp2LJvczVtEbo6AF5NW5/atWtnWqu0tklbkl577bW/vQ8ACp4BiMhnn31mWhH0C9fLy8t0uYwcOVKCgoLMCC6lBcLp57o5deqUKczV4lqlwUe/fMuVKyc1atRwXDRE6SgxfVzd5uLFi6bVJP02e/fuNQXB2nWkz60tL7pP6X3zzTf/+HVpN93Ro0dNN5SdjtJ6/vnnzT7p/mtRtt62Bx8Nf/ZuOl2ntPsuvYy8Du1K09esXYjprV+/3nFd3ytt0fr444+dttF91u6/G7UspffII4+Y1jINPRUqVDCj4wD8PVp+AJgvWf2i1xFMOpOxdoNp95eO9GrZsqXpTtEveq0J0hFN+qWuI6e09URbTZQOjdego3919JK2WujQ75UrV5rRSUprZLR7RkdQ6UW/rLWlZ/r06dKkSRNTd6R03bRp00x9joay7777LlPhR4OBtoo899xzEhERYfZJW2u0pkiHltuD3ejRo6V9+/ZmOL12/9mH8GvACQwMNCFQW2d0P7RbLCOvQy/6mNqlps9XtWpVE4Tsr0MDlV50agB9f3R4+4MPPmhajOzvrY4kuxltVbrrrrtk48aNZsQagAxwdcU1APfwyy+/mFFHDRo0MKO2HnnkkbT169c7jXZavny5GZ1Ut27dtN69e18z8kpHKUVERKSFh4en1axZM+3BBx9MW7VqldM28fHxaePGjUtr2rSpGdHUvHnztMmTJ6clJiY6bbd48WIzUkxHXemILH3ufzraS+mILh0VVb9+fbPf+hp37drlWL906VLH8zRr1sy81i+++MI817fffmu22bNnT1rr1q3N/s6ZMyfDr0NHu+k2jRo1Mu9p9+7d015//XXz2DExMY7tPvvss7R27dqZx7nzzjvNqLETJ0441ttHe93otet7dfvtt5sReABuzkP/k5GQBMC6dKI/HXn09ddfu3pXcg2tUdqwYYNpCUpfu6PdUzppoY4Gyy46R5MWOWuXG4Cbo9sLQK6jdTk3+92mxcDaPecq2mWnExJqN5nOdK0F0lrHs3TpUjOxYnbQsKN1VtrltXz58mx5TMAKCD8Ach2dx0bnt/k7WpSs9T6uoi0xCxcuNLVL2nKmQ/115JyOLtNZr7ODtsQdOXLEjLDLSHE0gMvo9gKQ6+zZs+dvJyFUWrSdfqg8ANgRfgAAgKUwzw8AALAUwg8AALAUwg8AALAUwg8AALAUwg8AALAUwg8AALAUwg8AABAr+T/DxOfFb6pecwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.countplot(data=pokemon, x=\"speed_category\", hue=\"legendary\")" + ] + }, + { + "cell_type": "markdown", + "id": "fd508c13-9900-4be1-958f-4f9e9e9b633a", + "metadata": {}, + "source": [ + "**When you want to show the relationship between two numeric variables**, a [scatterplot](https://seaborn.pydata.org/generated/seaborn.scatterplot.html) is a good choice. \n", + "\n", + "Here, we plot pokémon hit points against their speed. " + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "444d9832-bd57-4238-9ea4-5ee898847170", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG1CAYAAAAWb5UUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiRZJREFUeJztnQmYFNXV/k/39OzDAMMmuIAoizgM4gcqCkqMUWNEEdRsuOMCotFI3P5Go8YdlyigoJjEhS9xDZpNP5MYxQUhURBZFSFG2WdgYPZe/s97Z6qprqmte6p7enl/zzMMU1V9695b1V2nzz3nPb5IJBIRQgghhJAcwd/ZHSCEEEIISSU0fgghhBCSU9D4IYQQQkhOQeOHEEIIITkFjR9CCCGE5BQ0fgghhBCSU9D4IYQQQkhOQeOHEEIIITkFjR9CCCGE5BSBzu5AOgLR63DYW+Frv9/neZskFs5x8uEcJxfOb/LhHCefzppjnNfn87k6lsaPCbho1dV1nrUXCPile/dSqa2tl2Aw7Fm7ZB+c4+TDOU4unN/kwznO7jmuqCiVvDx3xg+XvQghhBCSU9D4IYQQQkhOQeOHEEIIITkFjR9CCCGE5BQ0fgghhBCSU9D4IYQQQkhOQeOHEEIIITkFjR9CCCGE5BQ0fgghhBCSU9D4IYQQQkhOwfIWJOOJ+HxS2xiSbZuqpbgwIEUBv/girN1DCCHEHBo/JKMJ+Xwy9+UV8vG67dFtI4f0kumTqiSPBhAhhBATuOxFMtrjYzR8wMdrt8vcV1ao/YQQQogRGj8kY2loCbUzfPQGEPYTQgghRmj8kIylvjHYof2EEEJyExo/JGMpKQp0aD8hhJDchMYPyViK8/NUcLMZ2I79hBBCiBEaPyRjQTo7srqMBpCW7cV0d0IIIWZwXYBkNEhnnzGpShpawtLYHJSigoAU51PnhxBCSIYYP/PmzZPFixfLs88+q/4+77zz5KOPPjI99r777pOJEydKKBSSkSNHSlNTU8z+GTNmyFVXXZWSfpPOBYZOeVGe9O9bLjU1dRIMhju7S4QQQtKYtDF+nn/+eXnkkUdk1KhR0W2PPfaYtLS0RP+ORCJy7bXXyu7du+U73/mO2rZx40Zl+CxatEh69OgRPbakpCTFIyCEEEJIJtDpxs/WrVvltttukyVLlsiAAQNi9nXr1i3m7+eee05WrFihDJ3S0lK1be3atVJWViZDhw5Nab8JIYQQkpl0esDzZ599Jvn5+fLaa6/JiBEjLI+rrq5WnqFp06bJwIEDo9th/BxyyCEp6i0hhBBCMp1O9/yceOKJ6seJJ598UoqKiuSSSy6J2b5u3ToJBoNq+5o1a6RPnz5ywQUXyJlnntmhfgUC3tmFeXn+mN/EezjHyYdznFw4v8mHc5x88jJkjjvd+HHD3r175YUXXlBBzIWFhTH71q9fL+FwWK6++mrZb7/95J///KfcdNNNKlbo7LPPTuh8fr9PundvXVbzkvLyYs/bJLFwjpMP5zi5cH6TD+c4+aT7HGeE8fPWW29Jc3OzTJ48ud2+P/7xjyrjS4sBQuzPN998IwsWLEjY+AmHI1JbWy9eAQsYN0JtbYOEQsxESgac4+TDOU4unN/kwznO7jkuLy927XHKGOPnhBNOkPLy8nb7sBRmZPDgwSqGqCMkI10aNwLTsJML5zj5cI6TC+c3+XCOk0+6z3F6L8q1sWzZMhkzZky77bW1tXLUUUfJK6+8ErP9008/lUGDBqWwh4QQQgjJFNLe87N582apqakxTWWHJ+iYY46Rhx9+WGn89O/fX958803l9YFgIiGEEEJIxhk/27dvN9X80bj77ruVGCK0gnbu3KnS3h999FEZN25cintKCCGEkEzAF4FsMmm3VlldXedZe0ibR/YYSy8kD85x8uEcJxfOb/LhHGf3HFdUlLoOeM6ImB9CCCGEEK+g8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8UMIIYSQnILGDyE6Ij6f1AfDsmNvs/qNvwkhhGQXgc7uACHpQsjnk7kvr5CP122Pbhs5pJdMn1QleZFIp/aNEEKId9DzQ0ibx8do+ICP126Xua+soAeIEEKyCBo/hIhIQ0uoneGjN4CwnxBCSHZA44cQEalvDHZoPyGEkMyBxg8hIlJSFOjQfkIIIZkDjR9CRKQ4P08FN5uB7dhPCCEkO6DxQ4iI+CIRldVlNIC0bC/sJ4QQkh3Ql09IG0hnnzGpSgU3I8YHS13w+NDwIYSQ7ILGDyE6YOiUBPxSUlbQuoGGDyGEZB1c9iKEEEJITkHjhxBCCCE5BY0fQgghhOQUNH4IIYQQklPQ+CGEEEJITkHjhxBCCCE5BY0fQgghhOQUNH4IIYQQklOklfEzb948Oe+882K23XLLLTJkyJCYnxNPPDG6PxwOy6OPPirjxo2TI444Qi699FL56quvOqH3hBBCCMkE0sb4ef755+WRRx5pt33t2rVyxRVXyOLFi6M/L730UnT/3LlzZeHChXLnnXfK7373O2UMTZ06VZqbm1M8AtJZhP1+2dUQlM827JTdjUH1t5GIzyf1wbDs2NusfuPvdCbT+ksIIZlEp5e32Lp1q9x2222yZMkSGTBgQMy+SCQin3/+uVx22WXSq1f7itswcJ5++mmZOXOmjB8/Xm17+OGHlRfozTfflNNPPz1l4yCdQ9DnkzkvLpfl67dHt40Y1EuuPLtKAm2lKUI+n8x9eYV8vG57u4KlqOeVbmRafwkhJNPodM/PZ599Jvn5+fLaa6/JiBEjYvb95z//kfr6ehk4cKDpa9esWSN1dXUyZsyY6Lby8nIZNmyYLF26NOl9J50LPDxzXloRY/gA/I3t2B8xMSTAx2u3y9xXVqSdRyXT+ksIIZlIp3t+EL+jj+HRs27dOvX72WeflXfeeUf8fr8cf/zxcu2110qXLl1ky5Ytan/fvn1jXte7d+/ovkQJBLyzC/Py/DG/iTdgqcto+Ghge31TUPw+XztDQm9QNLSEpbwoT9KF2sZQ2vaX93Fy4fwmH85x8snLkDnudOPHDhg/MHhgzDzxxBPKE3T//ffL+vXr5be//a00NDSo4woK2ipwt1FYWCi7d+9O+Lx+v0+6dy8VrykvL/a8zVzmm5qdtvvrG4MSyLP3lDQ2B6V/33JJF7Ztqk77/vI+Ti6c3+TDOU4+6T7HaW38TJs2TX70ox9J9+7d1d+DBw9WsT/nnnuufPrpp1JUVBSN/dH+D5qamqS4OPGJD4cjUltbL14BCxg3Qm1tg4RCYc/azXVKigKO++H5saOoICA1NXWSLqA/6dpf3sfJhfObfDjH2T3H5eXFrj1OaW38wOujGT4agwYNUr+xrKUtd23btk0OOuig6DH4GynxHSEY9P6i4UZIRru5SklhQAU3my19YTv2+yIRFSyMJSMj2F6c70+ra4L+pHt/eR8nF85v8uEcJ590n+O0XpS7/vrr5cILL4zZBo8POPTQQ2Xo0KFSVlamMsU0amtrZdWqVTJ69OiU95ekFn84rLK6YOjo0bK9sB/GD7KkYDjo0bKnsD+dyLT+EkJIJpLWnp9TTjlFpk+fLrNnz5YzzjhDvvzyS7njjjtUCvshhxyijpkyZYrMmjVLKioqZP/995cHHnhA9ttvPzn55JM7u/skBSCd/apzRqjgZsT4YKkLHh8YPhpID58xqUoaWkLRY4rz89LWkMi0/hJCSKaR1sbPt7/9bSV8OH/+fHnyySdVhteECRPkmmuuiR5z9dVXSzAYVErQjY2NyuOzYMEClT5PcgMYOt2KA3Jwv64qHsbM1QrDoSTgl5KytuD4NDckMq2/hBCSSfgiUBIk7dYqq6u9CypF2jyyx6wezCRz5hg6O3YeGaf9Xp2nM+B9nFw4v8mHc5zdc1xRUZodAc+EZJLyslfKzFR4JoSQHA54JiRTlJehJu2FMjMVngkhJPnQ+CHEBViCslNeRsC1vTJzyJPzuG2HEEKINTR+CHEBYm/sqGto6dDr3R7nth1CCCHW0PghxAM16dLi/A693u1xbtshhBBiDY0fQlyAbCuj8KAGtkNbyG4/Xu/Fedy2QwghxBoaP4R4oLwMrSEvlJmp8EwIIcmHPnRCPFJe9kqZmQrPhBCSXGj8EBKHsKCT8rJXysyZqvCcjuKMhBBihMYPIRQW9ATOISEkU2DMD8l5KCzYcTiHhJBMgsYPyXkoLNhxOIeEkEyCxg/JeSgs2HE4h4SQTILGD8l5KCzYcTiHhJBMgsYPyXkoLNhxOIeEkEyCxg/JeSgs2HE4h4SQTIK+aEIoLOgJnENCSKZA44eQDBcWTCc4h4SQTIDLXoTEAfRq6oNh2bG3Wf026tc47SeEENL50PNDiEcKxlQ4JoSQzICeH0I8UDAO+/1UOCaEkAyBxg8hHigY1zcFqXBMCCEZAo0fQrxQMG6gwjEhhGQKNH4I8ULBuJgKx4QQkinQ+CHEAwXjksIAFY4JISRDoPFDiAcKxv5wmArHhBCSIdAXT4hHCsZUOCaEkMyAnh9CPBQo1BSOe5YVqN+JGj5u+pKOgopI+d/bEpattU1S1xJWfxNCSLpBzw8hLgQM3R6TbX2Jh6DPJ3NeXC7L1+/r04hBveTKs6skQO8XISSN4NcykvM4CRhiv5tjsq0v8QAPz5yXVsQYPgB/Yzs9QISQdIKfSCTncRIwxH43x2RbX+IBIo9Gw0cD27GfEELSBRo/JOdxFDBsDLo6Jtv6ogfepNrGkKzdVC17mkLtvEt1DS0dEoEkhJBUwpgfkvM4Chi6ECj0SsQwnfqi4Sa+qLQ4v0MikIQQkkro+SE5j5OAIfa7OSbb+gLcxhdB5BHBzWZgO/YTQki6QOOH5DxOAobY7+aYbOsLcBtfBJFHZHUZDSAt2wv7CSEkXeDXMUJcChQmW8QQXhSt7UsmVEpgok/21DdLcWHq+6LhJr6opKxA/R/p7FedM0IFNyPGB0td8PjQ8CGEpBtpZfzMmzdPFi9eLM8++2x029///neZM2eObNiwQbp37y6nnHKK/OQnP5GioiK1/1//+pf86Ec/atfWM888I0cffXRK+08yG02gUHuYi4kh4eaYpMTVpLAveooclquM+2HolOX7pSy/rU80fAghaUjaGD/PP/+8PPLIIzJq1KjotmXLlsmMGTPk6quvllNPPVU2bdokt956q+zatUvuuecedczatWvloIMOkoULF8a017Vr15SPgWQ2es9Lop4U6NnA84Hsp7LifOW1cfJ8OMXVwMPTWSUy/D6fWroyS2PHduwnhJBMo9ONn61bt8ptt90mS5YskQEDBsTs+93vfqe8N1dccYX6G/uvvfZaueWWW+T222+XgoICWbdunRx66KHSq5d5sCUhbvBCMTlRhWM3cTXw8HQGPl9Ezhg3UP3fOC5sx34RGkCEkMyi0wOeP/vsM8nPz5fXXntNRowYEbPv4osvlhtuuCFmm9/vl5aWFtm7d2/U83PIIYektM8ku/BCMbkjCsedodvjlqJAnry5ZKMM6d9dbr3kaLnx/NHqN/7GduwnhJBMo9M9PyeeeKL6MWPYsGExf8Po+c1vfiOVlZVSUVGhtq1fv17FAk2aNEl5kQYPHqy8Q1VVVR3qV8DDb9p5ef6Y38R7OjLHEO+z97yEpbzI/iG/q8FZ4bibhdZNSZGDRk5Rvqf3Y7xMPaNSGYEvvLUu1is2uUry/TAM6fnxAn5OJB/OcfLJy5A57nTjxy3BYFCuv/56ZewgPghs3rxZ9uzZI/X19WopLC8vT5577jmZMmWKvPLKK2o5LBH8fp90717q8QhEysuLPW+TdHyOt22qtt3f2ByU/n3LbY/5pmano/fm4H7mcWiB+mZlTMDQMoLtFV2LpEtJWwCxDmSC7d7bpOKLIDLYtazQ9Dgv+NmUUSk7V67Dz4nkwzlOPuk+xxlh/GCJ65prrpGPPvpIZs+eHfXq9O3bV5YuXSrFxcVq6QwMHz5cVq1apTLGEBeUCOFwRGpr6z3rPyxg3Ai1tQ0SCjH7JRl0ZI6LChwymgoCUlNT12FlZrs2EFsE74reANK8K8GmFqlpii0f0RSKWMYoFeYlxxNTXhSQA3p3UXNs1ifSMfg5kXw4x9k9x+Xlxa49Tmlv/Gzbtk0uvfRS+frrr2XBggUyevTomP3l5eXtYoIQA4QlsI4QDHp/0XAjJKNd0rE5Ls7323pesN+pTU3hWL/0VVSQJ2ccf4hUHdpTGpuCUutrVXA2y9zCopqpbk84IsFwJK2yw3gfJxfOb/LhHCefdJ/jtF6U2717t1xwwQVSXV2tlrqMhs8777wjI0eOlK+++ipmeWzNmjUJL3mR3MMLxWSjwjEMHywVrd1UI7c88b5cP3uxzJj1tsx+ZYXKLLPqB7K6epYVqN9W503Hqu6EEJJJpLXnB1o+MGyeeuopFeC8ffu+D3z8feSRR6pgZ2SE3XzzzWrpa/78+UoH6MILL+zUvpPMwgvFZL3CsU988vTrK9sFQTt5Z+y0hrR9e+pbXKsuE0IIySDjJxQKyZ///GeV4QXvj5G//e1vcsABB6jsr1mzZskll1wiTU1N8j//8z8q6Llnz56d0m+SuXihmKwpHNcHw3Fr99hpDcFXNKdtH1LNU1nVnRBCso20+pS89957o/9H5taKFSscXwN150cffTTJPSOdoZacif1J1DvjFMdzXFW/6L41m2osVZejVd3jGFu6Xats6y8hJP1IK+OHZAdeqCVnYn/054nXO+MUxzNhbKvKMnjtnS9UPBHQG0CJVHVPt2uVbf0lhKQnaR3wTHJTLTkT+2M8j+adMSPqnYlDxbm5ZV/WRGNzSB54bllUdfne6WNl9szxKo4oHgMg3a5VtvWXEJK+0PNDPCXd6lSlqj/G88TrnSktDsi5Jw2Wof27K0OnIN+vDCi0A2MHf+vBNk1xGYaPGkOcno90u1bZ1l9CSPpC44d4ips6VanMREpVf4zn0bwz0Pk58/iBUlKYL2Ul1vEp+YE8lRavLyEBzxEMKNTQqq5tND1vIjE+Vn1O96yxTOsvISR9ofFDPMWN0nE29sesHbfeGSzXPP6yeVFUMOOcEcpgMgoxJhLj49TnePanmkzrLyEkfeGnBfEUeCHs1ZIT81Kke386ch675RwYQE3NQWU4dVSHyMs+dwaZ1l9CSPrCBXKSdmrJndUfeGCgz7Njb7P6HU8AbUfO42Y5Jx4F6GT0OR3ItP4SQtIXen5IWqolp7o/XqRQJ3qeX15xbKct56Tbtcq2/hJC0hMaPyRt1ZJTRTyFQsN+vypfUdfQImXF+VJcGFCqzm7GjfM8tWilDDqou0wYNzCa1YXYoCMG9ZJP4hQtdCP25+YYr65VqsQHM+neIoSkJzR+SNbj5NVxm0Id9PlkzovLYwKTkZGFgqao6+VEYzAkJx8zQF57d0NMVtfow/rI1ImVsuC1la4Dmt14qlIpCEjxQUJIJkHjh2Q1brw6bmJuisqLYgwfVG1HGjt0eb7aulf6VJRIcb59HE4k4lOGjzGra+nqrer35ROrJBhy9py4GRNw681KpeeMEELSARo/JKtx49UpKrR/G2A/lrr0hg/0d4weHCdPRzgSMa3HpRlA5512mCqK6rSc42ZM6v8pEgSk+CAhJNPgJxLJatx4dfw+n2UpCmzHfsT4aMDjY+bBcSqz4NSXBof9btvBfrcZZF6QynMRQogX0PghWY0bYTyfLyJnjBvYzgDC39iO/aXF+dHtWOqy8uDoPS/x9qXYZVaXmzGlUhCQ4oOEkEyDxg/JajRhPDO0TKqiQJ7841//URlYD197gtw97Tj1G39jO/aXFAaixpG+yKgZdQ1BpeFT1xKW+mBEGkKtmkFoA1ldZmA79ns1JjfHeEUqz0UIIV5A44dkNW6E8fBz/mnD5PV3N8i1D/9Tbn78PfUbf2M79iOdHVldMICMRUaN1DW2yPWzF8tVD74tTy5aKVt2Nsj811ZKY0tIGVRmHiZsb2oJejqmVAkCUnyQEJJp+CIRfjIZCYXCUl1d51l7gYBfuncvlZqaOgkG7b0GJDlzbKdBg32zTbKVtAe4UecnGArLvD98alpmAYbMkP7d2xUoxTb8PPBsa7FTs+rtv7xijHQrK7LVEXI7pniOScUcE2f4OZF8OMfZPccVFaWSl+fOp8PFeJIT2AnjxZOtBEOkwCfKo4HgZr0BpMUIoZq7HsQHobK7sdipnm5lBdKltFAei0NHyI3YXyoFASk+SAjJFGj8kIwHHofaxpBs21StPCVFcda9cpOtpD3QNe9GQ1NQLp84XIKhiNQ3tqh0+JZgWPx+kTsuGyM1e5okP7DPqwMvz4ZvdsvRh/eR/n27tvP8HDmkl8x9ybyy+5yXVshV54yw9AClE/T+EEIyARo/JKPxQlnYbbaS8VzQ+7n1kmPkxb+tk9Ubq6PaP0bPDbbn+X3y5ocb5b6rxikjx7gsNnZEP8sMMmzf29Ci+uFGSbqzoMozISRTYMAzyViclIWdqrJr1dXhpbjrimPl3JMGK4MGP/j/rZccLT+/+Ggs6KhYH9Tl0p8LsTu/f2ud2mal/YO/sT0YjsiU7x4mj79s7t3ZW79PR8gM9BEeIPQjG68FIYSkEnp+SMbSEWVhMy8FPDA3nD9akAOw6J326s2nHzdQln++Q8XtACxdacfo/28Exs25Jw2SPhUVMvvF5Qlp/GA/2kEwNFSg0w2qPBNCMgkaPyRjiSdWx42XAsbFuCP6yXvLvzFVb0bIDTw8mpGj1/vB//X1voyZXPl5ftlb32zZ1527G5XxZbb0he3Yr2kIleW3H5MTTtXoO+taEEJIZ0Djh2QsiSoL23kpKsqLLPfps7aAXu/Hqt6XFvNTWhyQkI2tMfuFj+W+GeOUUWaMGbp0YqXc8vh76m+0Ey8drUbvBqo8E0IyCX4ikYxFUxY209uJKgubPNztvBRO6s36/fDqaN4axPRAFNEsngcgWwtYeXeQAfbeiq/lB98ZJBdPOFx5aLDUBY8PDJ9de5vVa5UKdBweG3h8jIZPMrLIEr0WhBDSGXARnmQsiSoL23khnNSby0r21fjCctb3Txqszuf37TN0jGB7Y3MwqhJt7K+mD/TCW+vlprnvi9/vU4HUUJn+5dNLooYPXhuvoaKvRm/WL+z3Aqo8E0IyCXp+SEaDFGooMDe0hJWBUVQAbRl7nR87L0V1baOtB6NbWaE8dt148fl8quBpcSBPnX9HbZOrmBcsM10yoVK2ja2PiQuCMKIWSN3Q2KI8Mq0xOkG11FWSoNKzvhq9GYnGENlfC+r8EELSGxo/JOMF8fCa8qI86d+33JWkuualMCo0w7gZfkhPOfzgHjJ/UWz5ClV/a+xAef/Tb+TQA7oJetm7e4mEfT5llMBAsQt4jvU2ReSOBUss+4dj0SayuqKGiYXh46Sto69Gb0YiMUR2UOWZEJIJ0PghOSmIZ/RSFBfly5qN1fKTh95W+2HETP7WICkI+KUlFJaVG3Yqb89nG6pl4Rtr9/V5cC+ZNrlKSvJbBQ+xXGUMeMZ27NcMAa/iY5y0dTA+rRq9VRZZvDFEhBCSDbCwqQksbJpc4ikkmoo5RlCwsaaWvj+DDuyu/r92U42lEYFlqjkvLbcc05WTWwOL9Snn8MoE8nzy4crNKt7nsIMr4jL+INA4Y1arsWbG7JnjlRdGZXsZSmckku3F+zi5cH6TD+c4+QRY2JSQzBDEswsKRn+w3AXsRAzRht2YGluCUhDIM005v/ys4TK2an8JQAQ5CTXJYODEE0NECCHZDrO9SMpx89D2Gq2UxY69zeq3vtyCU1Aw4necUuCd2gj489p5XwD+nvfqp7KztkHFESVLW0eLIepTXqB+0/AhhOQy9PyQlJNqQbyOBgUjvb25pTUTywqnNpqDIduU8wtPHxa3x4vaOoQQkhj0/JCUoz20zYg+tFNYcFMLCjbjiEG9pE9FiUqBtzpGCxy22+/kGWpoDMbt8coEbR07jxshhHQW9PyQlGOXau71Q9ttfBGCf82CgqefXSV54bAceWhPqTykp8x7pX0xVE180KoNbNc0fKxAva28vOzS1unsjD5CCOmQ8fPNN99IPPTr1y+u40nukaqHdiJBwfUNQSkxBgVHIgLlmivPbj0GnpquZQXSEorIrj1N0f5ffc4IqTMJLHZKOd/b2Cy9u5WoivJWc2Kli2SmreOVhlKiuEnDTwcDjRCSm7gyfk488USlceKW1atXJ9SZefPmyeLFi+XZZ5+Naeuuu+6SlStXSkVFhVx44YVy/vnnR/eHw2GZPXu2vPjii7Jnzx4ZPXq03HrrrXLggQcm1AeSOlIhiJdIULCdsKB2THFBoaVXw6wNvA5epLkvWRcuvfOK4+Tp11aatol33xyXXpR08LikW0YfIYTEbfzcfffdUeNn9+7dMmvWLBkzZox897vflV69esmuXbvk73//u7z99tty4403SiI8//zz8sgjj8ioUaOi22pqauSiiy5Sxtftt98un3zyifpdWloqkydPVsfMnTtXFi5cKPfee6/st99+8sADD8jUqVPl9ddfl4ICb2T7SXJIhXcinqBgvQYPlqGKTdLB0eeWcKTd8pfeq6Fp+hhfV1vXJBPGDWwNblbCirGFS7fV1Fu2OW1Slezc3RDd3q2sQL533ECpawxKQ1Mw2l/Mn53HxaxvbsaNY3Y1BOXr6h22c6NdT+NlNKpfo8I9jjde7872WHUW6v5oDMm2TdVqbosC9iVaCCEpMH4mTZoU/f+VV14pEydOlF/+8pcxx0yYMEF5aP7yl7/I97//fdcd2Lp1q9x2222yZMkSGTBgQMy+F154QfLz8+WOO+6QQCAghxxyiGzatEnmz5+vjJ/m5mZ5+umnZebMmTJ+/Hj1mocffljGjRsnb775ppx++umu+0FSS6q8E27ji5QQoIkGj14IUOszDBg7r8aW6nrp0704Og7tdRdNOFx++fRi675abEeb22oa5P9dfLTc9fQSqa1rll9OO06e/MPKdv2demalY996dy+OjsnNuOOZG+3ct15ydIzh87Mpo+S1dzfEaCUZr3c6eKw6g1wdNyGdSdx+5/fee095fMyAAfLxxx/H1d5nn32mDJzXXntNRowYEbNv2bJlctRRRynDR+OYY46RjRs3yo4dO2TNmjVSV1envFAa5eXlMmzYMFm6dGm8QyMpwk0GlpfgAQKPx6PXjZd7ph+nCpPib+3BAq+GlQYPtmO/vs9uNH+Wf75D6oMRleW0bVeDDDqou6r8bpURhjIZqANmxd76FrVkdsMFo2XGuSPbGT5af7dV19v2De1oY3Iz7njnRgNj0cYKjw8MH2Mb+uudrHsC/dvbEpattU1S19KqsJ3L7wVCSILZXt27d5cVK1bIcccd127fhx9+KH369ImrPSxp4ceMLVu2yODBg2O29e7dW/3evHmz2g/69u3b7hhtX0ckur1Ck9t2K7ud7cC9bx8PElaFSr2a46ZQROYaSk9o36wL83xqOcdOgwdLQn6fL/p6FCy1AwVP//z+Rpn94vLoNhgC3x51oJx5fKtatJnH5rpfvWPZJs6J14RCEenRtciyv07PSq0djMnYDz3xHKOfGw0Uc4W3B2Cpy0odW7ve6v8e3xONoYilx6ooz5e17wViDT+Lk09ehsxx3MbPOeecI3PmzJHGxkbl6YExBC/MX//6V/nf//1fufnmmz3rHM5hjNspLCxUv5uamqShoTUGwuwYxCYlit/vU7VJvKa8vNjzNjMRxDXY0dgcVBXavZjjPfXN8vBzyyy/WeMBXV/TaNsm4k9Qg8vo1TCtBTa4l3z+9S5TT8kTr66Q8SMPMI37+fyrXaq2l1lsEs6leYXgVQrbrITgOKsYpyMG95JuXQrlxvNHq5gc3OdYkrJKw2+N3bFfdkFWW76qyxEL2nzguWXK61NSlO94vZ2I956AYvac339s6bG69kcjpUcavB+T+V4g1vCzOPmk+xzHbfxMmzZNZVUtWLBAxd4AfEAWFRXJT37yE/nxj3/sWefQJuJ69MDoASUlJWo/wDHa/7VjiosTn/hwOCK1tfbLB/EACxg3Qm1tgyqamusUFQQc96MonhdzrL5ZmxgCANurdze6ygiDd8Po1cAyVow3aTAyt4bLTx/5p+X5Lp5QKU8tah+rM+PsKule3noP6/uLfWeMG6gMCU1JOmRj/aBvj/x0vMx71RDjNLiXnPPtwXLz3Peixg6MJIwDbZsZQG6UtpHOr58bPWgTHp+xI/p16H5I5J6odfDm1e5tFn8avBeT8V4g1vCzOLvnuLy8OHmFTZH1dcMNN8j06dNV9hU8LPD+jBw5UhkkXoLsrW3btsVs0/7G8lowGIxuO+igg2KOGTJkSIfOnYxqtLgRWEkYGVh+U+8EvBBY/gFbdjUmlO1jnOP6RntlZeyvKC+y1eCBRg/6oPVZ82rMnDJKJp84SMXRVJQXyqYte+S/2/baChoiowvnMWY/IaA5GI7IeacNk8nfalFtYokKnhzNOEFfkAmEpS+r/g7pXyH5fp+KaUJws75vdyz4MKZvGAsSttAP47KUNm7t/27nxgi24xj7jLvWDyunY+J57zgpakPLCZIE6fpeSHTcxB38LE4+6T7HCb/7kW6ONHcEGCNQ2eih8QJo9vzrX/+SUCgUE1d08MEHS48ePWTo0KFSVlamMsU0amtrZdWqVeq1JD0xK8sAY+DWS46R95Z/IzNm/UOun71YZsx6W2a/skJlwyQCXtfs8OZTXp02dWZjMLJevdnYZxgRs55bprwebyzZKHsbEEi8PGZ5zHTsuuyntZtq5I4FS+TeZ5bK/3vifXn93S+kdk+TdC8vlL98sFHtg1GiGT5XtqlNF/gitv31hcOqz8jqQjta38yMMhg1VYf2tBx3InNjjKtSGkcOZTi8LtXhVGsNIpbpQCaUKCEkG/FFnBb1TVi0aJE8+OCDsn37duUJgsDgY489prK2sD1RfR1oBH399ddRkcOdO3eqzDIEREO7B4HWv/jFL5TWz1lnnRVNbf/d736ntIj2339/pfPz3//+V/74xz+q/iRqsVZXe+dqRvA0Yojgvk5nSzjV6DVdyksLVHVzs+BPPAicFIGNc4y2Z7+8QmVZwciw8lxA1VnTq9H0bkwVnk36DMOpJD9PVWPfUdskN8xZLOeeNNjyfFh6Qn+A5TFDesnUCZWSn+9XxopRKVqPm/7imB27G+XGOdYp9vfPGCtFhQHHdlq1gKz746TR40bDxyudH/T3MUOws9V1Twdaxx1WMT5Y6oLHh4aP9/CzOLvnuKKi1PWyV9yenz//+c9q2Qsp5w899JBSWAbf+c535J///KcSHfQKeHeeeuop+fLLL5WxAyXn66+/Pmr4gKuvvlrOPvtsueWWW+SHP/yh5OXlqXikRA0fknqF555lBRIMhR0VgRNRGEYMDGJmjJ4LGCLY3tQSbKfe3Lu8QP02ezjq+6wUitu8FjAIgHY+tK9Hy+jCfix1WcWjYKwRiSj9HPShj01f3PRXHePg5YCR4aadbsUBqTykh/rtZm6MD2+n/W6PcYMbj1U6gXEiqwvLlvhNw4eQ5BK37/eJJ56QH/zgB8oDo1+OguhgdXW1Eia85pprEuoMVJqNVFVVye9//3vL18DY+dnPfqZ+splsV751qsG1p75FIjbKwkZ1XK09fdYR0swRX4NYmvLSQrnliffkjsvGSHFbeQ23Ssdmx+iVpHG+X15xnMrq0s6H2J33VnyjHm5OOkHoe3GXQtfX2+7ewL5Ant+1ynVHMM6NihmyqVWWTNCX5pagTJs0XC192nm1CCG5R9zGD7ww8PyYgdgfLH8Rb8kFBVinzCKUcLhp7nuOysLa3CCryph1pAcKxNiundcLpWOUoNAEAVHKAjE7erRYn8ICe92W4qJ8tWTX0TpeWj2w1Rur1XnxzNf33cu4EuPcaDFcL/5tXcrvW7vrRMOHEJLQsheWor744gvTfdiO/cQ7ckUBVvOcmKHXuXFSFtbmZu2masf2NK+HV0rHUF0e0r+7MqzgWTIufWleKIgMW/UN29F3N9fb6d745PMdap92Xq1vP7/kaJk981sqjsoLI8RsbuBp+/1b61yNw0vcXCdCCIn7k+C0006TRx99VIkaahleCHpG1XXE+5x66qnJ6GfO4qY6djZglfWi6dwgVsaoLGw3N9DSufws6/Y2bd4d9XqgLScVYzfHLF29VXmY4PHBktrpY9vHGmHZq6k5LBNM9qGvV5xVpfru5no73RtI4Td6v9C3O5VHqjVWyQvM5sYprilZ962b60QIIXEveyGeZ926deq3v+1b1HnnnSf19fWqIjuEDknqYmFULEVbzEqmAy8EvBF4MCLGB0tdep0bPYjhsPsSj+P31DVF28M8IaMJqek+X0QuO6My+vB30oRBhhOMBftjYtswxhoVF+ZLcVGevL9is9z3TGvdOWMcUq9uJWq5zE4nSH+9ne4Nu9giL+8bs/lzE9eUjPvWzbUsy8+O9wshJIXGD9LYkYGFAqcffPCBEjns0qWLKkB6wgknKC8Q8Q436sPZhJbtEy7OVzE+ViB4FQrLdiAYWWsv9kHriwnwddKE0TK57I9p34Y+1ghFVaPZYDpxQ7Dhm91q+/1XjVNGkh36UhFO196uBpn+tR0Npjcbu1P9s2Tdt15cS0JI9pPwJwEKm+IHpSSQVq55gYi36LOIkpmpk24gK6ejysJu58bNudCK3THFbvqrAq2PUbEw+gBs7Mf20sKAtITCtu3oRRSd7o3qWvOaZfq58SKY3mz+bOufJfG+dXMtVeQ3ISSnSUjkcMOGDSru5/3335e9e/cqkcOXXnpJBg4cqJbAMp10EzlUD6hXDLWasizbyzJrxxC8aszACvt8KrAX8S3a8hEe+kcc2lP8ccyN07lqGpqltLhQHn+5/THTJ1dJQ3OTlBYVyda2khJaevuXX++WSydWqjY04UVLIcfJI6R6T6PU1rXIa+9uaHcexCqVl+ZLj9IC23vj6MP7yNQzhyvPE8ppwFxCX+BdQvFU7b5x7I8hE8zuPjbOn1W2F8bx/ZMGy37dipJmtLu5b9IRCvAlH85x8glkiMhh3J6f1atXq+KlyOo6/fTTVSV3TW8HKssoN6EXISTexsJkq86PGXhQQYnXTsUYM4CSGEbPxQhDyQbHc4nI1DMOV+0hbgTLJz7dG6QwPyC3zX9frj9/tOTnHR49Bp6au369RG6+6GiZ+9Lydv1A+rv2wHUKUN5cXS9dywrl5/M+aBcPpMU+zbp6nO29gWWd/ECeaV9Q8LQAg3LZH+xXQo4JXqsPV26WoQdXtNM7Qo0xjMNt2/Gi74udIjUhJHeJ2/i57777pLKyUp5++mn198KFC9VvKCxjCeyZZ56h8ZME2sWuJNHw8UJQ0U0bbkQFNRXjaJCq3vBxSPV2Komhb+fXf1ol40cdJD26FgmKpofDEVUW4u1//UcuOm2Y6n+/XmVy3SPvtHv9jHNGyLxXWvV0UN5Ci+fBw37F5zvkyEN7thlV9gHK8Bht2VmnvDNGXSKz5SLj/MH7hfHOtpgTVHpHwVPNIxZPMD3OtashKF9X77C+VpGIFAT8EinKU31a+MZaV20nA7v7Jh3R5vebmp3KWCsuoLFGSFoZP6jkjrIWgQCqS4fapcGjphbJXLyIAXHThhtRQSe88lw0hULyg1OGKp0eY3+wZIX9RX5/jIih/hikryM9HUKCWK4yxvNUHtJTnvvzKjlx9EG2/YCx9NTvVioPjdny2jSdMWc1fyihYTcnqPTep3uxug5ug+ndXCssP27b1ajimXAc9ITctE28eS8QQuIjbr9zYWGhNDaaB1Lu2rUr4aKmJDsEFd204ZUQnRvPhRv8vrx2ho/WH2zHfvR7waJ9IoY3nj9a/cbf22vq1TKVMU5HawNeIXiVtCBgO+FFxOls3VmvlooevvYEuWvacfLItSeov5/58yrH+dtWXe/oXdKug52wZDwCkJG2uCvN8AF2Y416sAhFGQnpJOL++oUMLwQ7H3nkkdKrV+uHG9Lb6+rq1FLYsccem4x+khTghSfFTRtYVnISosOShRPQ7enIfo3mYMi2P9gf9IksWbVV/RiBEYSlLrOlKoD5OP97w1TAMbxDSNE3BgEjmBkxPQgU7tmtSOabeKFwTGMwJCFDmQo9TvYpvEv6awlvnFUwPbxMdc0hx2uF8WDJTX+cNlbtOLO2iTtRRjfvBUJIko0fFBD9/ve/r5Schw4dqgwfFCRFzS8kjmFJjOSuoKKbNkKwfjwQosNz3i6t2aeO6LgwnpOgIrwc8ADZ0dAYjAofzpwySiafOCgmK0wTckT80JOLzL1Q4NIzK6Wuodm2L1bp7/oyIdq1dAqmdyMaiOQKo6ihUeSxrChfyssKJBiKSM2eppwJ2vfi3qMoIyHeE/dXir59+8qiRYvkggsuUMbOQQcdpNSdkfn1yiuvyIEHHpiEbpJMEVR004ZnQnQ+Ud4Q4/KK5iURn7sHq1N/VJaZzbjg5ejdvcS2jeK218MomPXcMmlqDslfPtioyk3AY4TtMFoQP/SJhecMBlA4ErHtL/piV9ZDKxOiH48WTN+zrED91hskbq4V2jITNdREHu9/dpmUdymUea9+KjNm/UOun71YZsx6W2a/skLFh+Uybu49Qoj3JPTO6t69u1x77bXe94ZkvKCimzYQI+KFEB0yYt74YKPyuhjTwrH9srOGu2qno4KKyM4qLshThUzNlvzQxs7dje28IpecUSk/PmWIVNc2SVlJvuxXUWIpTBh9bVNQLTFZ9RfGU77fp7K6ENxs5l3yWgASc4N+Wx2HIGzEPXU0Ky8boSgjIZ1DQovJO3bsUMtbP/jBD+S73/2uTJkyRebMmSO1tbXe95B0enHReOI03LSBFF5ksph5bLDdbYovjps6sVLWKu2YJXLvM0vVb/yN7fG049Qfp3HhmGmTrdtAyrzRSIERc+v8D+SNJRtVBhbacOM5c+qvLxxWx6BNtG30LsUTc+N2biAqCfFCs2KtGGsuFOdNBK/eC4SQJCs8r1mzRs4//3yl6TNy5Egldghj6OOPP1YeIYge9uvXTzKZdFN4TjWp1/lJTIgO53ht8QY5fewh0tC8T++mqCAgf3zvCznjuIFx9Vvrj5WgoptxWY0p9nX5qkzFnvpmpZejb0OpLhsCkK1Ul73ob7xzY3utfD5pDkekqSUkjU0htaRTnO+XnXua1FKXFffPGKuW3HKZ6LVsu04UZUwOmfZZnIkEMkThOW7j58ILL5SamhpV3FTL9gJbt26VqVOnqhIXv/rVrySTyXXjJ1NokbD4fHmWpQwikZDkJ+bc7FTStZxJovdxfTCsYnysmD1zfNLUnjMJfk4kH85x8glkiPETd8zP8uXLZdasWTGGD+jTp4/MmDFDKT2T7MZ7b4K1wrMdfn9AZhvE4fQaKcic0uIl3JzLC1Vqq/1a2w1NQelSUigtoZDU1beWyDC2AQMHMTtaO+qYgoBEImGpD0akvrHF9bx7da3QTm1jSLZtqlb9LTIERqeyOK9XYyKE5C5xGz9Y2tqzZ4/pPig+FxUVedEvksUK0F6o2qIfDQ4aKQ1tGiluzuWFKrXZ/iNQ+PTsKiWQuPzzHUr75rm/rrXti7EdqyKhTvPu1bXqaDtavJSdnlCq+kIIIQkte7388svy8MMPR4UO9ZXep02bJhdffLHSAcpkuOxlTrxVwK2Ad+QxE4+NZgigKKWdB0jrB+po3TT3Pcvj7pk+Vnp1K3I8l7EeFowN6NNAuBCj6dO9RG17+vXP5IA+XWJqd2mV2y8/a7jteTQdIARj2/UFGNvBOK1eZzXvXl0rq3YwH8jiGtq/wrUnqqMeG6/GlK5ky+dEOsM5Tj6BbF32+sMf/qCCnVHZ/YADDlDLXYgB2rhxo4TDYZk/f776ARBAfOutt+IfAUlLvKql1VFVW60fF0043PY8CMx1cy694jIe6mY1uo4+vI+cd9owVe7CWLsL+jkIuLY7D1LxgZUKtNYX7f96bNWjLebdq2tl1o5+jrDs6NYD09HivF5WoSeE5DZxGz8wePCjB8KGVVVVXvaLZKkCdLyqtmbeAq0fhfl5jhop23c1uFIo1rw9x1TuJ8/8eXW7Nvv37WpZ/wtMPcPeEDMqIFuNO6J8TfG91mzevbpWZu1Y1TFLtm6PV2MihJC4jZ977rlH9u7dq2p5wevT3Nwszz77rGzevFlOPvlkOeqoo5LTU5IVCtDxqNpaxXdcPKFS/R9KyT87b5RltheWztwoFMP40TwZ8LKYKSzbeV9wbqdHvZkCsllfIgm81mzevbpWZscl4onyAq/GRAgh/kSyvb71rW/Jc889p/6+6667VPbXa6+9ptLg//a3vyWjnyQNcFMFPB5VWzM0j41ddfi1m6rV+db/d7c88OwymT65Sh69brzcM/049RuxM1rwsJtzFeYHop4MKy+Lk/cFtbt+fvHRqsgpYnTgSdKfB7FBKGlm1xdkUZn1N5EK6V5dK7N23HiikoFXYyKEkLiNn0ceeUQOOeQQOffcc6WhoUHV+frhD38oH330kZx99tnyxBNPJKenJCsUoN2q2trFdzy1aGW0fhUMoMvv/Ztc/eDb8sLf1klxYV5MsLSbczXq4nWsvCxO3pe6xha58+klUYVpeJJgAB3Rdp5Nm3dLwO+zrUXW1BI07S/qcUE9OZ559+pambWTiCfKC7waEyGEJKTzg2wvxPkgmBnBz2eeeabad9pppykPEMlenKqAuwWeGXhorBSK7bwHKNOwp67J0I98qehaJMGmFgkaqsbrz2WmUKw/l+ZlMcazWG03VksHOAZV4B+59gQJ5PnVeS47o1J21DbJbU9+EK10rs8YQ92tOy4bI8VlBaZzg/imK84aLi1x6Py4vVZO2kX72mk1FMuKCzzV7emM+48QktvEbfz4/X4pLCxU/3/33XelvLw8GuyMWCDq/KQ3HRUW9BKcF1ldWnCzvoCjk/cA/dZnDyG9sktJgdQ02QdTi0RQDL6tA37Z2xSUgoK8aMDzsAEVMu6I/eXp11bGeJ6Qzn7pxMp2Qc8wfM4/7TDZU9csN54/OmrMwFsTDIWloO1k6CuMLq3SuRlmY0YANJrI8/vEH45IfsAXDeoN+3xS1xxyFG6ELRgKR5Q9ghWrcCQshXmtBkMiekuhcFimTx4hTy36VJZ8ttW1B8are6+jWWPpSEdEJAkhKTB+Kisr5cUXX1RGzl//+lcZP368SmnfuXOnPPnkk2o/SU86KiyYSpE5L1WBrcYNbZ5b570vE44fqEQEf//WOmWYaIbQ5BMHKaOjID9Plny2RW55/D05+ZgBUa9Nnx4lApms/31jrSxdvTWmbSx7QWSxJFAQ95jcXKeOHAMj7td/XiUXfO/wdvv1Ctma3pLVNZ82qUoZfvCmOXlgvLj3shUKNxKSASKHn332marhBW2fiooKWbhwoQwYMEDGjBmjdH4WLFiQ8QZQNoocdlRYsDNE5uKpcWU1x07jnjBuoOT5RAU8W41r6IAKZeAYeeia4+W3f2qfFg/j6ZIzKtXrGvRLVD6fbKlpUEaW0QhATA+qsGNUTtdJPDgG40Y/b3nifbECweOlBXkdvuZe3HvZSrYLN6Yb6fBZnO0EslXk8PDDD5f/+7//ky+++EIGDRokJSUlavsvfvELpfhsrPlF0oOOCgt2hsicF/EdTuO+8PRhrf23GdeEsa0ChUbwxjYzfLS0+TkvxQoAIkj7/meXxniPtGWyOxZ8KPdfNS7ar3iFEOM9BuPeurNe7IBHRy8Ameg19+Ley1Yo3EhI55BQWkZZWZmMGNH67VLjlFNO8apPJAnEIyyYTiJzHY3vcBo3UtSdWrRK7a7Z0xSXAOC8V1cow8cq5sdK5NBokCASSF+CQ29EIdbITTsYt1PWllLI9uCae3HvZSsUbiSkc6AqWI7gVlgw20TmnMZd7KLPZSX5rtt2EgC08iK5vQYwSHy+faKMxlIb2F5aggrw4jjuT9Zvt4xB0jSQ4Pnp6DX34t7LVjLxPUVINkB/ao7gRuwvG0XmnMa9c3ej+oEejxnY3qeixFRbBtuNr3MSALQyStCXvQ3NKtPH6ToVF+wTZdSDv7Ed++3Gjb6HIxH5ZvseFbRsp4HkxTX34t7LVjLxPUVITgY85wLZGPAczbixKAURV7aXyyDkVGI3x1bjRrbXzXMXS2FBntx+2bHy+MvWc2NVkdzYNhSeIXRoxWMzv6VEGs3Oc/1j78rB/cpl2uQRttepriUsVz34tvU5EKic71d9m/vSCuXhMQoqvvHBRpk6sVK1ty8Fvb0GklfX3It7L1tJ1/dUNpIun8XZTCBDAp5p/OSQ8QO0B52ZsKBbrAyBZODmXK3HtArwWWmkmI4b2lRNQfGJT577yyrp369ruxgaKDNDoNBufPq2u3UpkHl/+NQynR0B3OivsS/VtQ1y/ez3Wo8b3FOmn32ESpVHvAyWjTCuvLbrtLW2SW6a23qsGfdOHyu9y9u0gPx+2VJdL3vrW2LigqA3FE82kX6OiwpwHeLXofHi3stWvJhfklmfxdlKIEOMn7T3Ny9ZskTOP/98032oLo9aYo8//rgqu2Fk7dr26cm5jp2wYLqJzLnRP3GrkWI1bmyrD4Zlyaqt6seM8757mG3GjbFtnNvqmzzmDj/GvhQV7ouL+XjdDrn07rfapZ1rGVHxFIbdWl1vmc4eTzYR+lxelCf9+5Yn/KHmxb2XrXgxv4QQ96S98TNy5EhZvHhxzLZPPvlErrrqKpk+fXrUyEGJjZ/97Ged1EvitXfIrrApDAt4LIDTMdo5Na8DdHe6lhVKSygS1eAR8Um3sgKViWWaPdUYlOIuhdIYDEkkAsVkvLbVe4H4Gr33Av1uDobkkgmVEj49Io1N7sZfWhiQK88eIT1QoiMUll7dS1RJi917m9TrVVxM23m0GBor3RxVGDYSUXNzyjEDbOeZ2USEkFwk7Y2fgoKCGO2g+vp6ueeee+Sss86SyZMnq23r1q1ThVapMZQ9irVu9E/U/11opGjqwqgGj2yohW/Gigyib7+cdpz89o+rTLOnSorzZf6ilco4MgYaI+B5elvcit24HYUAIxF5f8U3Ma/V4nNuf+pDGdK/IhofoxU/tYqhwX54s9AWxAztYDYRISQXybhsL1SNRzX5G264Qf3d3NwsGzdulIED7T/kSWpw8thgv1f6J26OgcdHMxLsNHhQs+vg/bvGbMdxr7+7QZW4OG1sqyLykP7d1W8NBBOjfZwn0XFbzZmWvYV+L9edB2jFT7Echhgf/MbfWvCwNjdaQdZUZBOpWKZgWHbsbVa/3V5rQghJNRn1ta+6ulp+85vfyHXXXSfdunVT2z7//HMJhULyxhtvyF133aWqzI8ePVotgfXu3btDQVteoQVguQ3EymRQnNHeGxNWsQ1OFDmkP2O/3+HhikrvenVhOw0eHAPVZSMwbqCE/IunPozxBqEKO4KGtdfiPImO227O9P3SztNNp4tTUByI+VuVk28bO8CyHfqrvT7GIzW5SvKVkI+vw/dxUyhi6fUqRP0Q4kgufU50Fpzj5JOXIXOcUcYP6oh16dJFvv/970e3YckLFBcXy69+9StVYPWhhx5SQdJ/+MMfEqoy7/f7VLS615SXF0u2g6rUdiCbBUGdTuxurLWNa0GdrIquRbaFQrF/0+Za1xo8yLJBqro+I0q7HzS0/sAbozekWpWXExu305zp+w2PzsH9Yj1Ue+qbVWyQlhmGmKaKwvzo3MBQQ3+1khoQbTygT5n0SPB+NN7HOP/Dzy2z9HrB+OpSwrgit+TC50RnwzlOPuk+xxll/MCYmThxYoxBg7+PP/54VWRVAzXHsO3vf/+7nHbaaXGfJxyOSG2tfd2jeIAFjBuhtrZBpdFnMzAgnPYjm8WZiIp3Aca4ltbtEQk2tVhnVk2uUvv1mVFO5RxgoECjx+jd6VJa4Oglgj5OouN2mjN9vxGjo2/HzuNy5aQqmdM2N5qhps2NPxR2eR2c72PluTIxQAG2V+9uVNeC2JNLnxOdBec4u+e4vLw4e1LdNdasWSNfffWVTJgwod0+veEDsNyFZbEtW7YkfL5kpJriRsiGFFa7TC7ok9h5Y7DfzRwgi+qvH2xUMTbGIqDYDoFCtIOFpNbipwaNlHBEguGIynxCUDKWr7T4FytvEvYDBEZXj+gnd1w2RvbUt0iezyfnnjQ4xhuk98ZoGVaJjttuztD25//dpc5fdWhPlT1W62tVBnaT7WZaGLZtbry6j+sbHWp3IasuwKWvXPucSGc4x8kn3ec4Y4yfZcuWSY8ePWTo0KEx2x9++GH561//qn6wFAL++9//Sk1NjRx66KGd1NvczeSCEeSkc+MGZCxdOrFSBfkaM7C0jCY3Gik4DtlYaMcq/kXzJsHTE1uVPfYYvTdI88Zo2V7qPAmO22rOcM6JJxyi0tYXvRNbxwvtXjyh0lW2W7I1mVifihCSaWSMwvPNN98smzdvll//+tcx21euXCk/+MEPVNr7hRdeKDt27JC7775bLY0hRkgziOIhmxWeO+rxmW3iaQBGteB4dH7sjnWrCmw1x2gbaeqaenMwFJGe3YrUMfg/vEX6GB94WNZuqrH0DsETtf6rGqXjg7cOlJeNOj+J6htpKr91jS2q3QKk6Yci8uyfzdWnDxtQodLgrbh/xljp6ZGGT/Q6NLaWwNDrG6n7wmC4acSjIp3rZMvnRDrDOU4+ASo8e8v27dujGV56Kisr5cknn1TBzpMmTVK6QN/+9rdVKnwihg/pmPaOphbsVgXayZPUUVVg9MlKvdmsDpdTRtg53x4kJ40+sC2l3NeuPx1Rv0ZLC15bGTMXd087NqovZPSAnTByf+Wp0pbikuVx0XSSrOpyeeXtI4SQVJExxg8MHCvGjBmjfkhywbd+PGyROWSlhKw99N14QJQ2zkvL2xlUq7+sluWf75Ch/Sta40UcPChoZ1dDUL6u3iFlbXWwNK+EXZ/X/3dXu1gbp4yw/IBfGRvIrDKeS+tLa5FQ8/1utH76VBTL9eePlvw8v2oHniqIFaLO2K69zep4GCJPLlopU8+slNkvLrfU8Am31RGz64+T581o+GjnR9HUGeeMUO3BUDWNL6LhQwhJQzLG+CGdD5Y7tHgYMyVkLePJjcIzvAnbquvbGT76mBv9Q91KIdrJK2HXZ8TTjB95gDzx6j6PhVNGWEswLDfMftv0XE59ceNVg+FjVWEeKtS3PP5e1AD6ZN12ueSMynYGnDZXMHFmO/TH6VqhuKrZEqA6//rtaj8qyKey5hshhHSU9FYhImlFYX7AVCFZUyLGfjcKz5rqMiqNG7FTYTYqJevVm4390dSQ7fr8h39+IQG/T66cPEJ+ecWxcuP5o6Vbl0I5YrC5IjIMhxWf77A8l1Nf9P3e2xJW1dnrWsLqb8QeAXh8jIaP1g5UqGecOzJmO+qTweMye+Z4FeOD3/gbApCzHfrj5lq5UdEmhJBMg54f4ho8oK28ANiuPcCd4oKQZW2lqGwXc2OMK9KrN5v1B/uhT2h3TENzUPXnl08vUYYXPE9YSlqzsVoqyouiy2TVtY3So2ux3PfMUstzGc+jX27bsbtRupQEJD+QZ+odQsYYiqtiqcuuvxeePixmG5aXzDwue5tDrubG6VoVO8QNYX9Hi9h6QTr0gRCSOdD4Ia7xwguAY0JtGjNmujtOMTf6uCLEsdgB1WWnwH+0h6wtbWkMsUvXnzdKFi//Ri0r6ZeCJoy1rh9n7It++U4z5qwyybT4mRvOH+U4JlST1/dJ6f2YPOS9mhuUybDTRirKz2uXARhvEdt0KKRLCMktuOxFPNVzcXOMproMQwP6OvrCm04xN/r29erNZiDex01/UA5CWxqDpwaaOnrDR/OEYDv2m58r33H5Dh4gO29MaXGB45g0T4z2cG8MhkwLiXo1N5rStrE4Kv4+/7TD2mWnJVLEtiM4Ld3VByMsskoIaQc9P8Q18DLYqxi3qg47HYMHkeZNMNadwtKS4znavs1D88fOK4H9WPpwaq++Jdyh4qc4F7KoRh/WR5au3mrZjqNXqyEoPboV2Y4J+jqI6yksCMhTf/g0JoVf7+3wam5wrd6wUNpuag6aSgiYLVF2lvzCtrH1Ss6AniBCiB56fohrND0XPEj06PVc3ByD1OgZZ1fJlWePUEtMhw/soeJrelcUS37AJ9McXq/vD+Jzfn7x0UqzB8tKWG7Sq0C76Q+Cht0aKMZnp6YO/dSiT+Wys4arMaEvME6MOHq1igOyt6FR9d3M04LtDc1NyiiBRIDR8NB7XDB2u3bczg2OmzqxUi3XwYi495ml6jf+dhITS0UwtNM5tOuZSm8UIST9oeeHxIUbPRe3mi/vr/gm5lu7Zkj841//kemTRyjPgtXrreI8HvnpeMn3+8Sn07Jx6o9++cfJQOlSkq+MG70HRCt5MeW7w6JjwjFGnGqLwXBrbhF54NllMnPKKGlqadUTwhJWYX6e2v6TH4x0LTaJdParzhnRpvPTqsxsVMh2c6307WjHoB0twL0zy1o4nUN/PVPljSKEpD80fkjcdEjPxeeToPhkwaJPZdBB3ZV4n7Fo6cH7d5W5Ly+XqyZVqUKleOhu2924T6QvErEUBGxuCUkASzpx9Fm/nGdnoOCYZWu2WS6Lba+pj46pvLRQRg7uFWOk2NUWQ6X1XXsapaSoQE4ZM0B+8tDb7ZSbtaWonXuaXItNdlQhWwPtdCsOyMH9ukZl610tg+rmOVEBSDvs+qAvVqsRrxBnNpKr4yZED40f4jlWXhksZ1XvblRVIaxKNsDzk+f3qYd4c0Tk8Zfap4VPm1wlqzdW2woCuhEW1MAHP/rmVPz08rOq5JqH9gkcGunepUgtB2FMWraXltYPYMzAuLtsYqW0hMIqcwtenb0NzXLD7Hej4oWYq1svOUbuWPBh1ADSL0W5FZtMdqZUPGUtOiIAmUgf9MVqzTxFuZohlqvjJiRjC5umEhY2TVLx08G95NiqfjJ0QIU8tWil5fLPed89TD5atUXW/aemXdaV1g48LEdX7ifP/Gm1ZTtYqnHjWYBHYt6rnyqP06ihvaWuMShdywrUtarZ06RKWsCDsF9FibzzydfmfRrSS44d3k/mvLRPlVrzzlQd2lMCeX5VqkNfRBXxQe+t+MayvcsnDpfaumbTkhOPmZScwPmg+Iz5RRyTm4KybgvVOhWPtfMkWPU33utkh74PzcGwEqPU5tk4JhDPuFNFsj8n4r3e2UgufRZ3FgEWNiW5iG08yrrtakkI9raTkJ+t2GFbO06CgFhiwZKPEzgOWVr4wXmNxU71xsWDPzle5v9hpSuvEB68GAN+Hr72BLlxzuKY/T26FpkaPmqMa7dLMBTeV5Vd91AyE5vU6wrpDTC7b/XxFKrtyDKoGzFKN9fJbR/g3Vj/VU07w0fzRiH13YtxZxpeXW9CsgEaPyTl2TdOx+ypaxan758Rl0J+0VgX2+PcZXvhYfr19jrTtO/dexotq6trYzISj6CjcXu8ZUHMvtW7Ea00O3+8OF2nepfXyS1OQdypGne6kavjJsQMGj8k5dk3Tsfk5fmke3mJ7TG9u5coD5IdbmNf9IKATtlegTyfqUdq7Ih+tq+DF8dIPIKOTtvjKQvi1L7b/W5xElxEir/X2HmjUjXudCNXx02IGfRxEk/Rsm/MQKzOzt2Nyrg5YpDFMUN6SZ/uJVJckKdEA6Hdg7RxFB3VtHywHfs1TR8zWlPH3X2Ya4KAQMv2smrTmD2kbUcbVmM6wuJ1mAurIqp60Ug3c+zGi+SmHTfnjxf9/FrNXSpJ1bjTjVwdNyFm0PghnmInnIcsrQN7l8mr//hcplkI8CHrCsGvTcGgXHD6MFNxPWzH/pZQSLVp1g5Sx1tC7kT29IKAZiU3NAMGbX759W5L0UAUJzV93dlVsmlz+9f17FZsei6zbCmnOU7Ei+RG5NAL3AguppJUjTvdyNVxE2IGs71MYLZXx7HMAPL5pDksEooEpSCQLw0WAnyoyfSkTUbY1DMqpbgwT579y2o544RDojo/WGJBGvlr//xCZY3F82DVdGga2rK9WkKt6s/oP7xIMKZ8kifNwZCKUykxEQ3U2jDuj52PfLV8tqe+NZOrML9VMDBe3RV9m+WlBTLvD59aau7YZfK40X1pPSas+gl9nqKAP+6HpdXcdBbppneTqs+JdBt3KsnFz+JUE8iQbC8aPybQ+OlckK2DdPNrHv6n5TGPXjdeZQgp/ZiXOqbzk1UaLhaaOx3RcKE2TGrg50Ty4Rwnn0CGGD+McMsxvFDZddOG1bdLbXtTC7wVRW2en5Z26s0Txx9q24dGlR5dYCjh0NpOUWFA6hobJeDfd143fU7kGBWvgvpgBq/O7r1N6v+JnscO/dzitT6fT3y+iBQH8tplOcFjhbmGd83qW75df3Cu3/5plXxv7EA5/3vDVLulRQHZsbtRfvvnVXLRacNcew3SzeOQDMXpbCHdrhUhXkPjJ4fwQmXXTRt2Cs8LFq2UjVtqlTLzbIt2vtmxVyKQRnYRw2LVn0snVsotj7+n0tIh/OfUZzfjMh6DgGsoMb/4t3WmNcpue/JDGdK/Iu7z2GE2t9r53lyyUS0H6vVuoPlj57Fx6k9TKCQ/OGWoPGmibYQ5xv4ivz/jvEfJUpzOBtLtWhGSDLjslSPLXl6o7LppA98OrVRkcQyMESdl5vO/d5jU1DbJ6ya6NfpzAav+4MN6yncPk2Wrt8qqDdUJt2N3DDLPEIBt9jpkcZ1/2mGyrbpBFUPtU1Gi6o092oFrYKfQq80txP3cqhijPadxB0MRefyVFZbHwKAt8EUySlk4FYrTmfo5kW7XKhvnONsJZMiyF7O9cgQ3KrtetGGnIotjoEfjpMyM/QG/zzQTSvNyYCnHrj9K26YxKEcdtp9jn92My+wYjMXqdVBu3rWnSWWp/b8n3pc5Ly+XlnBE1m6qtj2PHW7mVtP0caPm62bcCO62Owb7nXDTl0x7L2Qr6XatCEkWXPbKEbxQ2XXThtMKCPRonJWZW5Ra8iO/+7dSLjaqKaNY5R2XjZGQw9LY3voWabJRXdb6HHHQk0a8DDSljZXUnXSE9No7eHDMe3WFzJwySmY9t8xUDdrpGrhRz3ZznHaM0/zhGHirOnrfpEJZOJ4YlVQrTmcSVIEmuQKNnxzBC5VdN234HZ6WMGCc2sF+PJi12lim5yoKqIrpTudywt24EVQs7SqpQ3QxnvPDAJr8rUGqnQdMDCCnvrhRz3ZznHaM0+oFCrEWOAjfuZm/ZCsLxxuj0hmK05kCVaBJrsBlrxzBC5VdHGOnuoz9diqyOAYGC55HP7/46Ohr4VEx9gUV1O3UaOF1KXUYE7xE+IGytNUxdQ3NUlzgPDc4xlg7KxE1aHij0A48SGbnscNubrXzaUq9btR8kd1k139cK1RH7+h9k0xl4YiJ4aOvaYb96a44nU5QBZrkCjR+cgQvVHZxDDJ8zFSXsR37rVRkjz68jzoGQcw/eehtufPpJdHXwhOilarQ+qIUk03awTGnHzdQnlz0qYRRwPJs82MQFwS1ZvxcPqmqXekJ7Vz3PbNMLa9Zzc3lZw1XYzKrpG6lBq0/v5l3RovPifcaWM2tdj6oSGtKvW7UfBE3Zdd/xF1pYzQ7p9v7JpnKwonEqKSb4nQ6QRVokisw2ytHsr28UNmNJxPEGIMBT40x7Vr/2ssnDpdAnj9GX0Z7fWFBnrQEI7K3vllWbaxWD2QsGemzlrZU1yuvihYXpD/mqklVEvb52o17195GmfnoYnW+6ZOGy4H7dZGiwnwVKF1cFFC1t2a/8LEcvH9Xufj0w+WqB99u13ctDuiYyr6yc1eD7NejRNb+p0aeWrSy3bKWlpGFZbP7rhyrPGCJKB1jvI3BkEQiPmUAor9oB94pt3pLYMfeZrl1/gcxcUz6+bvmB0cqAxdjnHX18epcWjuJqDMnQzsGY7h+dus1NOP+GWOlp0WMSropTqfT50S26vyk0xxnK4EMyfbKXf9ujoIPdygjRwM64/iwd/Mt21g5XAOGgP61xuDhlmBY/H6f+H0+gclgpWWjGTX6c+KhjzpZL/9jvam6MawMLH4gHgkB2fiND3Is+2j06VEqN81933JsMqG1z0aDRotLwjju+s1H6phHfjpeDju4IqYvWv8R6wNUOQ9truJ84KLvBYE82zgXoxCiNlZs1x5ieKjZxVVpMUQ4Rv/YM1lJcvXAtKu03hkxKh15L2Q7ybhWhKSTYU3jh3ieCWIWgPpzXXAwDARj8LB+2QFCiEYjS1tygsGkfw3O+eSiz1QKOfZNGDtQfU73riiRkvzW+lN2ootYjtu4uVapQtuxraZBCRreseBDU4+OFt8DUcN3Pv6vfO+4gSq4We+N0oKco7ETCb7hneJcpk8eIXMNXjbN+PrrBxvV8iOE/GA0oi+m9cAG95L1/90Vnas1G6uV5y5eYctkC+NpMSpWNc06Ms+EkOwV0KTxQ1yDcg1O+60ezHpnAYwUY/AwwN8Q1Bt0YHdZsmpru/axH2nvepqD4Wg7RkNKEye0MhQebzMUUCpjd12z7djQfyg5K7VogxGgeXSM3h0YeH/5YGPMOL2Kc1m9sVoFi5stV22trrc0HrHshlpomBtk1J1z4mDl8DAqHZ/z7cGycsMO1V8cA6PP2J7WDsZiZ4wlUxhPi1GxqmmWDUs1hGQDEYcvbakW0KTxQ1yDmlV4MFop42K/1dKYlhmlBftaLbXgjQDvjRvtHDzgkI1kJ1aHJS67pbqmZuj87MtqMlWLHtzq2UE7Pzx5iMpSg6GnYkT8Ptm8s07uv2qcLF7+TUwKO/6v6RSVFuWrpS4vXLyoh2blOcN2Kw+dZjziNZgbhPvBqDHTUsJ2jOn4I/ZXBWbNdInczrHdcqgX4BujsaZZtsSoEJItNHQgbCIZ0PghrtlT36w8G8DoKcB27Ld63sAjgQczYm70BowZdvu1OBQYPpeeOVx++sg/OyS6qIn9af0zG9vFZ1TKzx59R/1dXduq2ow0/xvn7Au0vWf6ce0MOn08zb3Tx7a+sT14IHcpKZDn/rrW1HMGLvjeYY5zC+FGxO7YxfxgbupUpluow3OcbGE8xqgQkt7Up5mAJo0f4hoEzf583geWqsuzrh5n+Vo8QHHMI9eeoJaq7CgrMV9egwemvLRQeV769SyVllDY9sHsRnRRE0vU+mc2NmRxaefRjC+jgGEqhfNQb8uuPEMwOMTytVq/NeFGO3CMkw3hdo4JIblNSZoJaPJTibgGSwnIYjLzFOgF0KwCUPHafL9PAm0ic6YFQQf1UkVAjW0ofZ+xA+WWJ95T7WCZI5Bn3Q62QwQRz+67px2ronY0owrLPdt3Ncrb//qP6jPWorV2jGPTa8Hg/5//d5dcefYIKSvOV94fGBPVtY1RwUWrvijhPI+yiaC8bMdei/INWmC21h/YLHbBwiUFrfPnNC54XRh0TAjJpOQE6vzkmM6PJ9H6FsGlWrS+m2OCPp8KmDUuMWkZRDBI6lvCsq2mXj2ktWBeGD5u2oH4odikzOuznuza0QKYkcU18YRDVKba799apwqXGscGZtuMySvqg2GZMau95pDGYzO/JU+/vtI01d5s3I8bsy8G95Jpk/f12elaub3mJHc+J9IVznHnznEoyZ8T8ej80PgxgcZPx3Ua3Byjicwh/qTUQmTOrh2jlk3rOk5rCjeOsRJk1MQGoS6NbCXtnHrRu9KSgOTn5cme+iYphHigzyf5AZ888cqntiKPymhTY2pRS2HJEM5TYpOGDxBjP4A2N0jj98GE9LXOjbE/dmJ/7QQVm4Kt5T7ivFYk9z4n0hHOcefPcSSJnxNZJ3K4detWOf7449ttv+eee2TSpEmyevVqueuuu2TlypVSUVEhF154oZx//vmd0tdcwE1wqZtj3IjMWbVjpxeBduEdscosMGY9oQ+m/ZGI9CjdF4Bn1yYMEXiqnn4tVqMoGd4Pt+ndMfPW+krTOba6Dk5zbNYvBh0TQuxIl8+JjDB+1qxZI4WFhfLWW2+JTxel2aVLF6mpqZGLLrpITjzxRLn99tvlk08+Ub9LS0tl8uTJndrvbKUjnp/Y7fnKm4IAXngV4J3Ab+juaK+BN6euzZOCOBuUyYBRoj2UjUrR23Y1SJ/uJdLYbK/bo2U9wduhPfT3eaJaz6X3bqDf8FDZgcDoqRMrJRSKRNvw5/nkxb+vk++fODg6R3bn0XA6BsbUlZNHOJZnSPha6ZYMzea4b/cSwZmMfWwOBmVvvfm5ctEzlItjJrlLxOeT2saQbNtUrT4PigKtQrPpSEYYP+vWrZMBAwZI79692+377W9/K/n5+XLHHXdIIBCQQw45RDZt2iTz58+n8dNJCp1mx0BJGQKBZvEl3z9psHqILnonVvhQL7CnZVth2wXfGxZ9KJvp3eCYKyZVSbeyAtm1t9k260nLwlJxLS8uN41rwZFzXl4hE9rS/K3o0a1Y5r+6sl0b08+ukpZISArEb3uemBgbh2PUHBtUnN1cB7fHXH5WlRJSNJtjzOvd08fKvFc/bddHxBPd/ZuP1Lzrz5VOyq6pIhfHTHKXUIbd7xlR1X3t2rXKqDFj2bJlctRRRynDR+OYY46RjRs3yo4d5gJ4JDkKndhvdUz/vl1V0Gy7167bLl9t22uq+Ix2EVwMr4N+285djbZK0ao/L62QG85v1e1xynqCl0Uf0IsHPtSTsTSGvu2ub5FBB3VXmV7GSuAaWgkIM+0d9CXP3/48+mOwHfvdHNOR6+D2mHmvrlDzazbHM84d2c7w0fr45B9Wqv36c6HPTn3JNtzMPyHZQiQD7/eM8fx0795dfvzjH8uXX34p/fv3l2nTpqk4oC1btsjgwYNjjtc8RJs3b5aePXsmHLTlFVoAlttArHQF7kx7hc7WJRezY+xUnXt0LYrJnnIqaaG9j+zaxOsuOeNw05R5LesJnpQCv8iuhmCM4WOlnox+oPSG1r5+Hzwl1zxknoGFYxEobHyd8Zh6l8cg+DrR6xDPMZrStnGOcb3s+njh6cNi2kGfnfpSXtQqk5AtuHmvGMecLZ8T6QznOH3u984m7Y2fYDAoGzZskEMPPVRuvPFGKSsrkz/96U9y2WWXya9//WtpbGyUgoJYVUjEB4GmpqaEzomSBYhW95ry8mLJZLCOa0djczAh1eZ4FZ/htcFymdPrEKMDQ2b33ibZU9+iDBvEjPl8Ebny3BGqMjr2IWYFwoloFyU6rOqOgWEDK1SmmCaEiAKqH67cLLv3NNoKLmqKykb08TToB+Kg4HXSV683toM+Jnod4jkGjuoWkzl2UmptMOx3Oh596d+3XLIJN+8VqzFn+udEJsA5Tp/7vbNIe+MHy1lLliyRvLw8KSoqUtsqKytl/fr1smDBArWt2RDcqhk9JSUlCZ0zHI5IbW29eAW+ZeDNVlvboNLoM5XWYOPE9hsVkd3uM9sPw+DBnxwvNXvsjVukzwebWqQ03y+lXVsNYo2m5pD86n8/bqcBdNnESnnlH5/beqHuWLAkug1GEzwjY0f0c+yLETsvE7br64Tp26l1KMLqdJ3cHtO7e4kyDuNVYi027Hc6Hn1BWmw24ea9YhxztnxOpDOc4/S535MBrm1Wpbojc8vIoEGDZPHixbLffvvJtm3bYvZpf/fp0yfhcyZDAwJvtkzWlijO9zsodO6ru2U8Rl/Y1Ojx6Nal0LJdLT5HDwQH31vxjRw3op/t6xDPY6UzYbY+jb49tWil6pfVcpre26T1Takhu1F4Nqgl21W31/YbjSKfUxFWh+sQzzEl+X4pNlHb3rm70Xas2K9d46lnVioPm1NfMvl9keh7xWrMmf45kQlwjtPnfu8s0n7hEx6eI488Unl/9EDTB0tho0ePln/9618SCu37hvzhhx/KwQcfLD169OiEHmcvmr4MbmY9en0Zq2M2bd6tYmywXfN4QGQQXpSb574npx83sF0wMY5FJhg8PcZt8M7srGlUGWTG12lZR0i7jru68LrWqvNOXigtdgjj0nRvMD6zvqiMsXC43TE4j13sjL4fWju//PUSNR84t9l8OV2HeI9Bn6dNih3X7Bc+lsvPGm4579iPa3zrJcfIe8u/kWseftvy+up1ibIJN3NLSLbgy8D7Pe0VnsPhsJx77rnS0NCg9HsQ+PzCCy/IwoUL5eWXX1YGzne/+12l8zN16lRZsWKF/OIXv1DHnnXWWQmdkwrPydX5aQlHVLaQ3gDRPEFVh/aUAghgtdP5aVWBDoYj8un6bXJgn3KlvPzAs0tVdhGCcBFrgiUXeB7wAP5/Fx0lFWWF7fpRvbdJfvbYvorsRn5+ydFyp25pS/9GvmRCpdIi8rfFDhUFYsfupFqtle1AfA/4xZMfxGjoaMVUYeDcfukYVXRVa2d3XaNc96vWfhu1d/A6LFOVBHwpUeMuQ5Zcm86PXmdI0/kpLy2Iucb6/qJlaDHh22A6fih2ls5Ptn1OpCOc41Tc72EV44OlrlS/x7OuvAVS1h988EF59913pba2VoYNGyYzZ86UUaNaU5lh8EDhedWqVdKrVy+5+OKLZcqUKQmfj8ZPcnGqTTV75nilAGpkb0tYrn7w7Zh4G338jR48bB/56XiZ94q5hg0ys6wClM1qY3mhV2HUwfjF1GMkFI60W/rSvEr79SiWYt0bOdF564z7uLP7monwcyL5cI6ze44rsq28BdLVUcrCiqqqKvn973+f0j5lM8lWpXXK/lG1uroUKmFA6OM06FSE59/0bXng2WWy/r+728UR6Q2f26Ye3c7w0WvYIBZl9ovL250bRo5PInL5xOHSEopIQ2NLzBw4KS9b7TeLM4IX63WbmB8sc23d3RhtpzjfF3dVZDdq0l4pt+rvG3jl7LLW1L0VU3ojc1WT060/hJAsMX5Idql0OmcL5cvv/7ZOJn97sDJQjF6Rn503ShlAeLAidgjoA6kRawKPip3uBFSizTSAEJsy89F31QM7RlU5EnFUXrbb3xJsH2fk99lr+vx3296oZ0urVO+mppeGG6VoNySqFG2XteZ0D3SkL6kk3fpDCJHsWfZKNbm67KWqhVtUQteqhcf7jdaqbtRjNlXJj6vqJ4cdXNGuVISGMgTOGaGUnstKA1KUH2iNPWlEPEq+rN1ULV1KCuSe3y617NdNF4yWPfXNMrR/hdQ3tkhzMKyyqIyeCpwLld8BYlgO3r9ru/icL7/erQKAHzMYGvo2Lj2zUmbM+kfM9hvPHy33PmPdR+N+tHM1+oLq6i5idOz6o69m39F7Algdg3NBF8lYfiTRe8nr+7MjeN2fTPmcyGQ4x8knwGUvkmnYZkEplc5QXHEadt+Kr5xUJXNMPBhXnFUlP3nobbn/qnG2XhEshfUuL1DnmGOocYUH7oXf26cybEZ+wK+8Sog9KSoMyPWzrdWZYVhBoPDUMQPa1xEb3EsuPqNSBfjhIQ/Dy+jlQBsIku6ovhHaQfA3KrDrqyJH2mJs9MYQ+uykFK1Vs+/oPaH+71KhuyPZH17fnx0l3fpDCHEPjR8SVyyO2zgNp1ov+FaMH7NMLBgPWjaUFSrrqKDQUq8HdbiOGNzLtGyGXjsI58YSme242zKcTOuIrWvVBmo1fGosl3mQiWZcZrOKWTL20dgXrQq9nYH5g5OGOM6fvp2O3BNOlBbly/0zxnY4HsbL+9ML0q0/hBD38GsJcR2HEU+chptvxXgI4ptxz7IC9Rt/Fxfmq7id7l0KVTYXln7wG8Gz2K4BYwQp41bnWPDaSrXUZKYtAxVnlIhAe/D6oOSF2Tmi4y4OKO+KkyYPfsNA0hdijbZRFFBZZvr+YIkNmkXwHunRsr30+kb6vrgxMFsc1GvNFKcTvSecjsG59Nc4He5PL0i3/hBC3MN3J4mCb+XxZhN5/a04PwBD5Jh2OkD64FnEA5UWBmR7m5KwGfC8fL29LqYOV1lJvtp+3a/eUSrROA/qci18Y227c2ieG4wb59pZa30uvfKzWSFWtIsMKcQ6oQyG1h8sa63csEOGHlwhk08cpPSNEOyN6vBm3qOoUnRbrI6dgYn4JSf1a62dDt8TjmrS7u+bDvclhTE/6dYfQoh76PkhSVHpTPRbcTAYkRf+ts50KQteFSg6n3PiYLWtqNC+SjC8O4jPQcbUXz7YqOp5zWozKtDei39bJ3l5PuXxgefnu2MGKM/PzCmj1G8YCTiX8lA5jEcfn2MsgaEpPPvCYRkxqKcsemeDCmRGv2B4rdpQLb27FyvvSGnAp46BcaZH344bAxNeo8vONFdhNrZjh1dK0dmoIptu/SGEuIfZXibkaraXl7olKhPGJqPLKhPGKGRoBLEjt87/QAVEw1Py+Cufmi5HId7nirOGy+69zVLX2BJVTdZ7U2DgoEDq/D/EZpWhf1PPqFT1w1BGY9bV49QcWI3HmNH06HXjY1SPjYaGpr3T0WOchATn/Gy8FLZlwlkpTnup3JoqvZt009Xxqj+Z9jmRiXCOk0+A2V5ED9KqIRKHtOp0+MC2Q4vFiS5LtZWl2PcBn6+Wp+ClCUUi0tjU/kNf+1bsVpNGA21pmJVw8Pv9+4KQuxWpmBlg1LI599uDVSwPsqwe/f3HqgTGPVeObU2HLwrIjt2Nqi7Xk4vap9Ojv0+9tlKmTx4hy9dtbx1zwG86Hi0+B8tU2vhglNVJRC1z2RGxOQYGCrKxokHJJgYLjJBfXnGs7K1viSmLAQNP1VALtC67QE8Inwf4neg9h9eVF+VJ/77lSf1Qc2NImN2fnUm69YcQ4gw9Pynw/KiMHAsjIBOE0IwZRZqQIJan9NlUZmOK91ux5s3Qip8aM6wQHHz62IHSu6JYPdBhPmDZCLW9NAOpurZRDuhVJr946kO5+YKjpKJbkTxp8O7AaLnkjMNtvUwwLLAcJZGQBMSv5uGT9TvUuWB4wLDSawNh/Fgmu2PBh1EPk1FUUAkPvrQiKcKDmiH25pKNynMFw2qOhwJ8dt/ovBD7y3XBQHolkg/nOPkEMsTzw5ifJBPNyFlrnvKN/emMWUYRvDG/fyvW8LEak1lGl5sgUpzDKrUc24thfIR98pvXV8n2XQ3R/SjhgFPA8IEBUlqa387wAfh7e82+15kBjwoMFb8/oJahZr+0QmkKIVYHBg4MH3ilYKShHtixw/vFGD7aedAGXo8fo+FjPMYNVlleaOeP722QS88cLnkmhk+y7jsnWQPjuVRx12BYduxtVr/xd7xtEEJIR+CyV5LJdCE0s/7jga8X+vNyTNpy2daaBstz4CGP2BPI8yxdvVX9aCBwGQaKBqqvW6WoOz1P4UXSBAG182rAwNH3D3E++vMa+2vWRrKEBzE36v8puu/iucetvDsXT6jM6PcJISSzoPGTZDJdCM2s//psJqvXdKRoZVMLCpq2au+YBSpr5zBqE2KprLy0VR9IWwJDO9iO1xtjiLp1KbRNB9dEBhEs3KqjbI0bUUanNowChskUHvTyvnN7j9t5d7aNrU9ZfwkhhMZPksl0ITSz/jmVZfCyaKVVcUycQ2/8aDFCz/11dbs4JLUs9cLHctW5I2PKU2ixS8AuiNmNICBqitnvd25DL2CY7HvKy/vObX/sPEROi1rp/j4hhGQW9CMnGS2GxQy9SFwm9V8ry+DlmOziWIyqydo5kLZ9RFs/tBghszgkbEe2lzGGCMYUYnRQSBUp75qaNNLWNWNLEwTEj9WYtWOc9rs5xqt7KpX3ndtz2XmIcE9l8vuEEJJZ0PhJMpkuhGbWf6uyDMkqWqmVjzCeA+ng089uLRmhlZewen3PrkWm+2HgoMBpQX6eEkJEMDM8Q5rhowkC4gf/txMNdNrv5phMEx502x8n7w3uKZT/yNT3CSEks2Cqe4pEDgOF+VK9uzEjdH7MiFfnJ9428bIb5iy2PPbe6WOlrMT8HMiSgm7PjTavv2f6cXLT3PdsxRMryovaBAFb1DJWIuKD2n47UcF9x1ifxw1uZAS8FAR0SmF1OpeT8OVVk6pUVFQ6CRimEqZhJx/OcfIJZEiqOxfSU0SXkgIJNrVISaAtuiHDPtDbCbm11eFCtEY0SLcDOjVYbrIDho/K9jE5hxIEdIy5sd+PmlqPvbjcUX/HSXzQab8a90vLPdGycSOul0oBPqdzOQlf4njcURQMJIQkGxo/JCnovRswTFDYE4aBViZha02dTBg3UAYd1F0teWhxRGZLU3g44hlY1xKOtmM8VyAvbFtkEt4Vs/0Iep56ZqXAAYoaXxedPkx5kWa/8HFUf+eqc0a49sxYjRtg7E8tWqnGjLFrGWkYOxSlL4MwYSc87FNZLgIGHkqb5Kp3hxCSHtD4IZ6jVIwNXpTRh/WRSydWyuMW2VxaNhYwel9OP26g/Oyxd2PicGIUk19cLms3Vat2YGcY63RNm1QlT7/+mWpHv1/L9kKBU8T96M/5y2nHyS2PvxeX/o7ZuPX9bQyG5ORjBsRknOmzy7C/2KXL1is6Q1WZ5SAIIZ0NY35MyPXCph0Bng/j8hGAV2XtphpTz45WGBQeIGRtHVPZV/bWN4vf74spH6E/Ht4YoD+XXscHd3XvihIpLsiTea9+qoQQjTo/B/YpU7W9jBli2jngnfnl00vknuljpU95QULj1vcXYzCrJQYQPI6A3wJf6t6OKgbHJMPOqvhsLt3HnQHnN/lwjpNPgDE/JBeBl8Ts4W6nCo3jzzx+oLzQppqsZXbdMX+J5fFuVZdxnKYAbdz/8LUnmBo+WrsXnj7MtUaP1bjt+qsHBsiO3Q3Sp3txyupYZbr6OCGEJAo/2YinWCkdO6lCa/s1ZWVHFemG1rga+77YH+OkTNzQGFT9QRFTM/Q1qmCvwLsF75JVf/UV661qiaWyjpUXStGEJBuzWnCEdBR6foinWGVVOalCY79eWfn680Z1WA3ZyWPjRpl4+uQqaQkFJWAoOhqPGrXWX7+LWmKp9Lhkuvo4yX46IyaN5Ab8dCOegqwqBDcfvH/XaGwNHuooRQE15k8s4l16dy+RsSP6RQ0Hu+wvvRpyR45paGqxfT0ytRa+sUbO++5hMSnrejVqYxwR/p45ZZTM0hlAWl/8yHQ6Z4TSE9JneiGmaUj/imgtsVTVsdKUma0y5JSqskcPmFRmlJHswK4WHDykxpg0QuKBxg/xFKR1I6sLKeL6+BoYRFBjftyg8aKyucYOlFueeE+uP2+0HHZwRWtJine+UF4UYJY9paWP4/84VyLH9O5abLkPY/jtn1apuB9jmrsWK6PVEzNmb8GY0zxAMGq0vuBb7HvLv2nnLULGGYq53vfM0pR6XJx0d7x6sPDbO0kExqSRZMJsLxOY7ZWcDKKjD+8jl545XBqbg1Gl6ECeT/bUNysvS0l+XozCL5atCvMD0tCmmGymqJyIqrJRf8f4esT4YKmrMGCuvIzYg+tnL7bNYMPD/fKJwyWQ54/qG1nNyxGDeymj73/fWGuaZZVs3HplErmP480oy2Vy6XPCDdr7zE6VvWecHlLOcfIJMNuLZCt2hoR9ja4dEgy1HoeYRRgGLaGQBEMRtboS9vlUO3oNGByNR2NEWtV/7TE/Bu1iuU1bboIxtXtvk1Qd0lPqm0OyrWaP+H0+CYUj0tQcVCU7sAxnegafT4oKA6oI6n49Wo+BxpAxxgffTJuDYclvC/SxmxdknCHWKRl1rOyulX5MWJbE+HFq/G1WJqO2MSTbNlWrNooCflf9jOfbO5fGOk42zSFj0kgy4d1D4sJJyM8qQ0hbIoLmzuqNrYKEz/11rW05CadzuTrG55Ntuxrl3U++iRU/HNxL+lSUqqru+tgcLeAa23DMtMn7zhVvkPM32+vkjSUblUHjlDlVWpTvuRfEk/nr4LKVm4wyGLpcGus42TaHqYxJI7kHF0xJXF4EY3wM0MpAYL/VtzEEBSM2Bh/M2v/t2sHPk39YqcQPUfcLnhb8xt/Yrh3j1J/mcER+/9a6dsegH9iOvuhfh35p23CM1o5V8KXxNWbZW4ipwRKfHS0hb1N43cyNm2O0ccNgxTKfdi0mjB0oyz/f0erC68C3c3jHcB67wNbmNm8USTw4OBPnT4tJg6GjJxkeUpJ70PNDXONGyK+0wPzbml7k0EnwEO3gs/rUMdalIBqaWyvBO/UHIW12x0Bc0W6b1g5Wr6yX89q3o+kVAcxFYKLP8lssjoWSdfmIfq7KaLiho6KL+nFrnjqza1F5SE8pSPDbu37cdktj3+yok9cXb8hYD0YqyNbgYNaCI8mCxg9xjRtRQTy8zTKI9B9VTgKGqp3igPz1g43K0wPDQp8aju3nnzZM6hqaHdvBw9uYjq5PMTfri3EbBAoNMj+2r9Evn2kgqBvB3lj2My4xaceOHNx7XzX4JF8rjAlxVHZzg/lD7KCdp27eq/Ypx9h+2ZnD5Qnbccd+szeCfjG9WTxZXsxEWAuOJAMaP6TDAob79gcsv62JLhTZSfBQtePg+RFfxFV/8vw+S68FtmO/EWP/SkvyVYC0Hf16larlIM14MMYAIUg4FA6bGnPasW7KaLjFaW6QOQfvmt3clJUE1FWz89S58SqEI07jtu+rdj0y2YORbBgcTEh88B1BXIMUckdRwbZMIuO3NcQcaMsfbgQM8VC08jaAS8+slOLCPFcih3btoHip1XIVgFcC2Vzbahosz4Vx4VwIbrYLzsQcIDXezJAwzl9KrpXD3KAYK66j0/dsJ69CUSBP1n9lPm5t7uyWxvTXI5M9GMmEwcGExAe/QhHXIEUaWUB4IOkxigo6BS+q6u3jBtq2E3aI1cF+N/2BppBdO3rHj+ZVQv+0vy+fVCVPLVpp2Wct+BLncgrO7Mj8xYsXc4P9Ppu0f7deBafAVau5M14PN+fKVRgcTEh8UOTQBIoc2uNGVNBJhwRaO11KCpXOT119ewHDeATO7Prj1M59V45Vyz94qELcEIHUe+v3tVOzp1F+9ljr683iY2AYlAR8cemsdGT+4kU7F2J8Ep1jJVRoiOFKRKjQaW5a94dla029Wm7TYo+05cNsF0X04nMim3R+kkG2fRanIwGKHHrHrl275KGHHpK3335b9u7dK0OGDJHrrrtORo1qLX9w0UUXyfvvvx/zmqOOOkqeffbZTupxdoOHJwKbo8G5cTy4o8thAbw2IgUBv5SWt28nnhgG9KdbcUAO7te13RvOqR1lfGgxJOGwlBr6g1gdDTyEjUs3s2eOj4lnchOc2ZH5ixe7c7mdY6/KYDjNTet+nxzUuyzpJTeyFQYHEyLZY/z89Kc/le3btysDqEePHsqoueSSS+TVV1+VgQMHytq1a+UXv/iFnHTSSdHX5OfbB1HmKqn6Zqg/j1amYl9Zi7bzIobDoi/xxDDYqQ93NBYi3tcb5xfepKaWtvIcccy3W2XmjlzLeMaGIParzx4hjcGw7KlrTuq9w/RmQojk+rLXpk2b5OSTT5aFCxfK//zP/6ht6DK2nX766TJlyhQ59thjlSE0bNgwT86ZrcteqVKA1Z9HX/wzRmF5SC8558TBMQrLxr6odiw8ADHHOIzJTTuO43HxeisF6BjVaBfnVarLFsVavVBdTmRs6XQfZyuc3+TDOU4+gQxZ9kp746e2tlY+/vhjGTNmjBQU7MvygPEzbtw4+fa3vy0XX3yxOqa4uNiTc2aj8ZOqApPG89gV/8QDHSnQMRXRDX2x827EM6aOekncxKtY9cU4TvTtqklVMUVctTYRgPSoodyEvh0tA8vLa5nMwqbEPZzf5MM5Tj6BDDF+0n7Zq7y8XE444YSYbW+88YbyCN18882ybt066dKli9xxxx3y3nvvSUlJiZx66qkyffr0GGMpkQvoFdrFcHtRkgGWhewVYMNSXpTn+Xmc1JyNyshmfcnPC0h5THyKL6ExWbXjFrvX2/XFOM7VX1arkg3zXmnvubn8rCqVWm+vuuzz/Fq6mZt0uI+zGc5v8uEcJ5+8DJnjtDd+jPz73/+Wm266SXl+xo8frwygpqYmqaqqUoHPq1evlvvvv1+++eYb9TsR/H6fsly9przcG89UIiAexg7E4/TvW+75eZzUnM32u+1LomOC2jJECxFPA4G9rmWF0qXEvaFs9vrG2ibX40TGmNHwwfLgoAO7y45dDXLThUcp76Mx2wnAOxPI83l6LeOdj868j3MBzm/y4Rwnn3Sf44wyft566y2ZOXOmHHnkkTJr1iy1DR6fG264Qbp27ar+Hjx4sAp2vvbaa+X666+Xnj17xn2ecDgitbX1nvUbFjBuhNraBvVQ6wwQeOu0H25Kr8/jpOZstt9tXxIZU1MoYhkrU+hgVNi9/uIJla7HafSG6eOizJSW9WrRWJaC5yfeccc7HrP5SIf7OJvh/CYfznF2z3F5eXH2LHtpPPfcc3LXXXepJa377rsvuqQVCASiho/GoEGD1O8tW7YkZPyAZKxV4kborHXm4ny/Q2aP35O+Gc/jpOasV++Nty9uxtQSiujiWfJlzaZqVahTj9u6UXaVs9dWVbtWKTaewa52lrYfRpGmzIw+enEtnSqBW81HZ97HuQDnN/lwjpNPus9xei/KtYFMrzvvvFN+/OMfq3R3fSzPeeedp5bB9Hz66afK+zNgwIBO6G1uK8Aaz2OnjPz9kwbHqPcmohtjNya0gsDgGbPeVmJ+M2b9Q9795BvlTYG3RY9WNyrRytlQgUa8jpNKMfYbFZPhCbJTWsZ+vTKzV9fSTSVwQgjJRtLe8/Pll1/K3XffLd/5znfk8ssvlx07dkT3FRUVySmnnKL2I+Zn7NixyvBBrA90gMrKyjq17+lGqvRTjOeBzg+ylMx0fmZdPa5Dfdl3rtZyDVjygecDbT9m4tUwelP0ONWNsqucjWWpPXVN7eZX0/m547Ix+zK62gwVzXPjFBdVWpSv5k+v8+PFtczmSuCEEJLRxg8yu1paWuT//u//1I+es846S+69917x+XxK+BBGUK9eveTCCy+Uyy67rNP6nM6kSgG23XnCYdPzetEXnAvZTQjy1dIr64Nh19lXXlXGhhCh2biL8/xSbBijXjHZTZV7s/IXHb2WrAROCMlV0v7T7YorrlA/dmA5DD8kfXCjUOzlMbsagvJ19Y7oMQ1Nzbb9M3pbvFB7LsnPk7DPZ9tfvabOJRMqJTDRJ6FQpFMqcqdjJXDWpiKEpIK0N35I5qEUig1CfUaF4mQfM21ylYrr0aeJ69F7W9zGytjVuMISFBaR7Pprpcp85aQqT2pnxYtXNbsyTYGcEELSXuG5M8hGhedUAS/MYw4KxSDZx4wc3EuOG9FPZr+4vP0+iAlOHC61CdaoMvNOYJtTf+e8tNxSldlK8TkVBkg6KDynSoE8ncmlz4nOgnOcfAIZovCcEdleJHPAko9d5hL2p+IYPESH9K+wzIgq8In0LCtQMTPxPlS1WBv969301y6zCgVezdpNBZ11Xj3MPCOEpBIuexFPQayLHfUNQYm0U7pJzjF19S0pqw7uNG7HecnxzCpmnhFCUgmNH+IpKI9gR0mx8y3n5TGpym5zGrfjvOR4ZhUzzwghqYTLXsRToEBsFDTU0BSKU3lMqnDTF+MSXLvMqhxGyzwzg/NDCPEaGj/EU5DWjewmoyGgVyhO5TGpwk1fUqGwnamkSoGcEEIAs71MYLZXx9H0eRCbg+WnEhsNH6+OqWtoVZM2OyZVOPUlk3VsUnEfZ/L8dJRc/JxINZzj5BPIkGwvLqSTpIAHflm+X8ry9ykdJ+uYfURUWQsz3IglevHgRomNxqagdClpe3AbzpGqGKRUjttLUj0/hJDchMYPyWi8EkvMRoG+VIybEEIyEcb8kIwFXo05L61op6+Dv7Ed+90c44XHx2j4aPo0UE/G/lSTinETQkimwk9AkrF4JZaYjQJ9qRg3IYRkKjR+SMbiLCzYGutiBwKpUyHQl2pSMW5CCMlUGPNDMhZnYUFvxBIzUaDPC7FJQgjJVuj5IRlLugghpqNAXzoJQBJCSLpB44dkLOkihJiOAn3pJABJCCHpBkUOTaDIYWbhRuTQjVhiNgr0eTlu3sfJhfObfDjHySdAkUNCUgMe5t2KA3Jwv66Wb7j4xBKzR6AvFeMmhJBMg8YPSUv0XhSoEvt8PvH5IlIUaO9NwbG1jSHZtqlaHVsU8He6x4UQQkj6QuOHpB1masmIVTlj3EB5c8lGmXpGZVQ1OR2VlQkhhKQ3DHgmaYWVWjKE+V57d4P079s1qpqcjsrKhBBC0h8aPyStsFNLhgE0tH/3qGpyOiorE0IISX9o/JC0wkkNubklHD0uHZWVCSGEpD+M+SFphZMackG+37VqcmcoKxNCCEl/6PkhaYWdWjKCntdsqomqJqejsjIhhJD0h8YPSSus1JK1bK9Nm3dHVZPTUVmZEEJI+kOFZxOo8JxeOj9FUCV20PlpaAlLY3NQigqgrEydn2TA+zi5cH6TD+c4+QSo8EzSkXQsweBKLbl1q6lqMo4tL8qT/n3L+aFGcvL9QgiJDxo/OQQFAQlxD98vhGQvjPnJESgISIh7+H4hJLuh8ZMjUBCQEPfw/UJIdkPjJ0egICAh7uH7hZDshsZPjuAk+EdBQEL2wfcLIdkNjZ8cgYKAhLiH7xdCshsaPzkCBQEJcQ/fL4RkN/Td5hBIz50xqYq6JYS4gO8XQrKXrPD8hMNhefTRR2XcuHFyxBFHyKWXXipfffVVZ3crLdHEA3uWFajf/CAnxBq+XwjJTrLC+Jk7d64sXLhQ7rzzTvnd736njKGpU6dKc3NzZ3eNEEIIIWlGxhs/MHCefvppufrqq2X8+PEydOhQefjhh2XLli3y5ptvdnb3CCGEEJJmZLzxs2bNGqmrq5MxY8ZEt5WXl8uwYcNk6dKlndo3QgghhKQfGR/wDA8P6Nu3b8z23r17R/clWpnWK7Qqs26rzZL44RwnH85xcuH8Jh/OcfLJy5A5znjjp6GhQf0uKNBX/xYpLCyU3bt3J9Sm3++T7t1LxWvKy4s9b5PEwjlOPpzj5ML5TT6c4+ST7nOc8cZPUVFRNPZH+z9oamqS4uLEJj8cjkhtbb1nfYQFjBuhtrZBQqGwZ+2SfXCOkw/nOLlwfpMP5zi757i8vNi1xynjjR9tuWvbtm1y0EEHRbfj7yFDhiTcbjDo/UXDjZCMdsk+OMfJh3OcXDi/yYdznHzSfY7Te1HOBcjuKisrkyVLlkS31dbWyqpVq2T06NGd2jdCCCGEpB8Z7/lBrM+UKVNk1qxZUlFRIfvvv7888MADst9++8nJJ5/c2d0jhBBCSJqR8cYPgMZPMBiUW265RRobG5XHZ8GCBZKfn9/ZXSOEEEJImuGLRKjXbgRTgqBnL0EQFgPskgvnOPlwjpML5zf5cI6TT2fNMTK1fT6fq2Np/BBCCCEkp8j4gGdCCCGEkHig8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8UMIIYSQnILGDyGEEEJyCho/hBBCCMkpaPwQQgghJKeg8ZNkwuGwPProozJu3Dg54ogj5NJLL5Wvvvqqs7uVsWzdulWGDBnS7ueVV15R+1evXi1TpkxRc33iiSfKM88809ldzijmzZsn5513Xsw2pznlPd6x+b3lllva3c+YZw3OrzO7du2SW2+9VY4//ng58sgj5Yc//KEsW7Ysuv+DDz6QSZMmyYgRI+TUU0+VP/3pTzGvb2pqkttvv13GjBkjI0eOlOuuu06qq6s7YSSZO8cXXXRRu/tYf6+n3RxHSFJ57LHHIkcffXTkH//4R2T16tWRiy++OHLyySdHmpqaOrtrGcnbb78dGT58eGTr1q2Rbdu2RX8aGhoi1dXVaq5vuummyOeffx556aWX1LH4TZx57rnnIkOHDo1MmTIlus3NnPIeT3x+wdlnnx156KGHYu7nnTt3Rvdzfp256KKLIqeffnpk6dKlkQ0bNkRuv/32SFVVVeSLL75Q9y3uWcwx/v/UU09Fhg0bFnn//fejr7/xxhsjJ510knr98uXLIxMnToz8+Mc/7tQxZdIcgzFjxkQWLlwYcx/X1NRE0nWOafwkEXw4jRw5MvL8889Ht+3evVvdMK+//nqn9i1TmT9/fmTChAmm+5544onI2LFjIy0tLdFtDz74oHpQEGu2bNkSufzyyyNHHHFE5NRTT415ODvNKe/xjs1vOBxW2998803T13J+ndm4cWNk8ODBkWXLlsXMKx60jzzySOTnP/+5MjD1/PSnP1VGpHZ9YJTii5UGHu5o89///ncKR5K5c7xjxw61/7PPPjN9fTrOMZe9ksiaNWukrq5Oufk0ysvLZdiwYbJ06dJO7VumsnbtWjnkkENM98EFe9RRR0kgEIhuO+aYY2Tjxo2yY8eOFPYys/jss88kPz9fXnvtNbUsEM+c8h7v2Pz+5z//kfr6ehk4cKDpazm/znTv3l3mz58vw4cPj27z+Xzqp7a2Vt3D+vnT7uF//etf+PKvfmvbNA4++GDp06cP59jlHONzGf/HvJmRjnNM4yeJbNmyRf3u27dvzPbevXtH95H4WLdunVon/vGPfyzHHnusWnd+55131D7M6X777ddursHmzZs7pb+ZAOJLHnvsMTnwwAPb7XOaU97jHZtf3M/g2WefVceddNJJcscdd8iePXvUds6vMzAGTzjhBCkoKIhue+ONN2TTpk0qTsrqHm5oaJCamhoVR4iHe2FhYbtjOMfu5hj3cZcuXdS9i5ggxFU98sgj0tzcrI5Nxzmm8ZNE8OYC+hsG4AZA8BeJj2AwKBs2bJDdu3fLVVddpb6JIAD0sssuUwGNjY2NpnMNON+J4TSnvMc7Bh4afr9fPQSeeOIJufHGG2Xx4sUyffp0FejM+Y2ff//733LTTTfJySefLOPHjze9h7W/8XDGHBv3A86x+znGfYy5qqqqkqeeekqmTZsmL774ogrmB+k4x/t82cRzioqKom8w7f8AF7u4uLgTe5aZYOllyZIlkpeXF53PyspKWb9+vSxYsEBt075paGhvrJKSkk7pc6bjNKe8xzsGHhI/+tGP1LdiMHjwYOnVq5ece+658umnn3J+4+Stt96SmTNnqmykWbNmRR+wxntY+xtzaHaPA86x+zmGx+eGG26Qrl27Ru9jLPVee+21cv3116flHNPzk0Q0V/W2bdtituNvrHWS+CktLY15CIBBgwYptypc22ZzDTjfieE0p7zHOwa8Pprho7+fAZYDOL/uee6555RH+Fvf+pbyomkeSsyh2fzBeMdSDe5xpHEbH86cY/dzjC+mmuFjdh+n4xzT+EkiQ4cOlbKyMuWt0EBw2KpVq2T06NGd2rdMBB4efNvQzydYuXKlHHrooWpOEVgXCoWi+z788EMVWNejR49O6HHm4zSnvMc7Br4VX3jhhTHb4PEBuKc5v+5YuHCh3HnnnSoW8KGHHopZYhk1apR89NFHMcfjHsZnCYzP//mf/1FLjFpQLvjyyy/VFyrOsbs5hp4PlsGM9zG8PwMGDEjPOe6UHLMcAtoSRx11VOStt96K0ehobm7u7K5lHKFQKDJ58uTIaaedprQioNlx9913RyorKyNr165V6ZajR4+O3HDDDZH169dHXn75ZaXv8corr3R21zMGzJ0+FdvNnPIeT3x+MWdI94WWz6ZNm1Qq8IknnqhSsTU4v/YgZfrwww+PXHnllTEaM/ipra2NrFu3Tu1/4IEH1GfGggUL2un8YL4x7x9++GFUg8aox5TLbHCY42effTZy2GGHKZ2f//znP5E//elPSpsK9266zrEP/3SO2ZUb4BszrGQoECPwDlYuVDIPOOCAzu5aRoL06gcffFDeffdd9Q0YKb9Yf8a3O7BixQq566671DdjxE5cfPHFSp2YuAMBt19//bXKPtJwmlPe4x2b37/85S8qeB/B/FiGmTBhglxzzTXRJQXOrz1Yfnn44YdN95111lly7733qozQBx54QEk0YN6wdHPaaadFj4PcwN13360ymAAylhCsa1ySzFWecDHHzz//vPqB+rgWt4ZkFHjX0nGOafwQQgghJKdgzA8hhBBCcgoaP4QQQgjJKWj8EEIIISSnoPFDCCGEkJyCxg8hhBBCcgoaP4QQQgjJKWj8EEIIISSnoPFDCMkqTjzxRCUmSAghVtD4IYQQQkhOQeOHEEIIITkFjR9CSNbR0tIi999/vxx33HFyxBFHqHpkmzZtUvuwJIYq1C+99JJ861vfkpEjR8oFF1wga9as6exuE0JSBI0fQkjW8ec//1nWr1+vCi7edtttsnLlSrn22muj+1evXq0KNc6YMUMVvKypqVHFWrdt29ap/SaEpIZAis5DCCEpo0+fPjJ37lzJz89Xf8Pr8/jjj8vevXvV33v27FGVqkeNGqX+rqqqkpNOOkmeeeYZmTlzZqf2nRCSfOj5IYRkHTBmNMMHHHDAAep3bW1t9G/N8AG9e/dWy19Lly7thN4SQlINjR9CSNZRUlIS87ff3/pRFw6Ho54hIz169JBdu3alqIeEkM6Exg8hJOdAjI+RHTt2KAOIEJL90PghhOQcGzdulC+++CL699atW+Xjjz+WMWPGdGq/CCGpgQHPhJCcIxKJyBVXXKEywPLy8mT27NnStWtXlQJPCMl+aPwQQnKOfv36Ke2fu+++WxoaGuTYY49V2WDdunXr7K4RQlKAL4KvQIQQkiNA5PCjjz6Sv//9753dFUJIJ8GYH0IIIYTkFDR+CCGEEJJTcNmLEEIIITkFPT+EEEIIySlo/BBCCCEkp6DxQwghhJCcgsYPIYQQQnIKGj+EEEIIySlo/BBCCCEkp6DxQwghhJCcgsYPIYQQQnIKGj+EEEIIkVzi/wNY4PA9tIdeWwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.scatterplot(data=pokemon, x=\"hp\", y=\"speed\")" + ] + }, + { + "cell_type": "markdown", + "id": "03e81709-393d-4c41-bce5-2dffc9cf5553", + "metadata": {}, + "source": [ + "You can distinguish between categories within a scatter plot by assigning a categorical variable to `hue`. We set the marker size with `s` and their opacity with `alpha`. " + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "86f9747b-00a3-407f-9b73-0bce40bac50d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG1CAYAAAAWb5UUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvQd4nGl57n9P7129y5J7W3vt7Y1d2AVCWSAJCSGEHJJ/aKGcBEgIh3ZCCRBYOksLJRBOSCC0ZVmWZXuz1/a6W7bVu0aa3tv/up/RyOqSbcmS7PfnS5elmU/ffN87o/nuecr9aAqFQgEKhUKhUCgUVwjalT4AhUKhUCgUikuJEj8KhUKhUCiuKJT4USgUCoVCcUWhxI9CoVAoFIorCiV+FAqFQqFQXFEo8aNQKBQKheKKQokfhUKhUCgUVxRK/CgUCoVCobiiUOJHoVAoFArFFYV+pQ9gNULT63x+aY2vtVrNku9TMRW1xsuPWuPlRa3v8qPWePlZqTXm42o0mkVtq8TPLPBJGxuLLdn+9HotPB4bwuE4stn8ku1XcQ61xsuPWuPlRa3v8qPW+PJeY6/XBp1uceJHpb0UCoVCoVBcUSjxo1AoFAqF4opCiR+FQqFQKBRXFEr8KBQKhUKhuKJQBc8KhUKhUFwk+XweuVwWVzr5vAbJpA7pdAq53NJ2fOl0emi1SxOzUeJHoVAoFIqLsEYJh8eQSERX+lBWDX6/VsTgcmCx2OF0ehfd0j4XSvwoFAqFQnGBlISP3e6B0Wi66Ivy5YBOp1nyqA9FJqNJ0WhAfna5fBe1PyV+FAqFQqG4APL53ITwsdudK304q8rrJ7sMHj8Ul4QCyOHwXFQKTBU8K9Y8/KRFZ0+FQqG4lORyuSkXZcXyU1rri62vUpEfxZqF0WVDLoZ8ZATZyBiiFiN0Fh+0Fg8yWouESRUKhWK5UamutbfWSvwo1iQM9OhCPYh1HkU+nSzOdLEYkUycgcZkg7VlF7LWcjXDR6FQKBQzUGkvxZqDwl8fH0bszEERPtPJJaKIte2DIRNekeNTKBQKxepGiR/FmkOnySPVfxqFfDHfPhsURZmRbuh06iWuUChWBzfdtAff+ta9WGu8/e3/n3xdTqgrg2LNoc3EkA6NLrhderQf2mzikhyTQqFQKNYOSvwo1hwaRnzmifqUKOQy0BQW3k6hUCgUVxaq4Fmx5iho9dDo9Cgs0Oqo0RtlW4VCoViNhMMhfO1rX8Jjjz2CWCyK1tYN+P/+v7diz55rJraJx2P40pfuwaOPPoxUKokbbrgJW7duxxe+8Fk8/vj+ie0ee+xhfOc730JHx1nY7Q7cfvuL8Dd/8zZYLBa5n+m2Bx74Nd75zr/Hvfd+Cd3dXaisrMYb3/gmvPjFfzCxn8HBQXzhC/+K5557FiaTGa973Z/POG4ex7/92zfx8MO/w9DQIAwGI7Zs2Yq3ve2dWL9+o2zzsY99GMPDQ6ivb8ADD9yPiooKNDWtw7FjR/Df//3LKR49n/zk/8WhQwfxox/9BJcKdWVQrDnyBhsM7gpJa82HsawOOa0JUB1fCoVilZFKpfCOd7wFY2OjInjKysrwq1/9HH/3d3+Lz372S7j66r2y3T/8w9+hre2UCJnKyir89Kc/FsE0GYqLj370A7jzzpfgr//6LRgc7Me9934FHR3tuOeeL0+0h4+O+vG5z30Kf/EX/0uEz3/8x/fxz//8IWzevBWNjU1IJBJ4+9v/Gnq9Hu997weki5aiqbe3B9u27Zh4vP/7fz+E558/KMdUW1sn93/zm1/DRz7yAXz/+/85sd2hQwdgNBrx8Y9/GslkAnq9QQTTgQP7JwQehdTvf/8g/uzP/gKXEiV+FGuObF4DU+16ZEIjKGQzs26jM9ugL6tHWgkfhUKxCvnNb+7DmTNtuPfe72Dr1m1y23XX3Yi//du/wVe/+kV885vfw3PP7ROh8LGPfQq33nr7+DY34A1veC06OzvkZ/qZfe1rX8S1196AD37w/07sv66uAe9611vx1FNPSLSIJJNJvO99H5gQHvX1jfjDP3wZnnzycRE/9933C4nkfO97/w/Nzetkmy1btuFP/uRVE/vNZDKIx+N417vegzvueJHctmvX1RK5YoSKYq6ysmLCBPI973k/Kioq5WfO++L399//q4ljeOSRh0V0TY4+XQpUzY9iTZI1e2HfsBc6q33aPRoYnF7YNl2LjM62QkenUCgU88O0ks/nw8aNm5DNZuWLYuGGG27GyZPHEQ6HRfwwCnPzzbdN/B7TRUxplWD6iumlm266ZWI//Lrqqt2w2WzYt++ZKY87OYJTUVEUKYzKkMOHD0okpyR8CKNNTLOVMBgM+OxnvyjCZ2RkWMTZ//zPf4uAKomjEi6Xa0L4lI79JS95GR555PcixMivf/0LEUKTt7viIj/33nsvHn/8cXz/+9+Xn//8z/8czz777Kzb/su//AvuvvtuebHs2rVLQoiTefvb346//du/vSTHrbj0cGBwxlYFy2Y3NIkA8vEQTCYDDCYXciYX0tBDGTwrFIrVSigUwujoKG677bpZ72eKKhgMiICYPsPK6/VO2k9Q/v/Xf/2kfE3H7x+Z8rPZbJ74vrTf0gR2Ci6Xyz1jHxRpPNYSzzzzlNQFdXV1wmq1obV1PSwWq9w32Vm/dNtkXvrSl+N73/s2HnnkIezevUcE3uSI1RUnfn7wgx/gnnvuwZ49eyZu++IXvzhFRXJR3/3ud8uL5kUvKirfzs5OET4/+9nP5AkqYbXOXHTF5QVfDxmNCbBWweCqhdVtRSAQW5aBegqFQrGUsCiZqakPf/ifZ72/pqZGoiHBYFDEyWQBFAgEpuyHvPWt78Tu3VfP2I/DsfiBqy6XG729vTNu5zW3RF9fL/7xH/8eN998Kz71qXtQU1MrNUU/+cmP8cwzTy74GIwsMU320EO/lf1SPE2ObF0xaa+hoSG8+c1vxmc+8xk0NTVNuc/tdqO8vHzi64EHHsDhw4fxhS98QcJ55NSpU7Db7di0adOUbUv3K64M1BwvhUKxlti1a7ekq9xuLzZt2jLx9eyzT+MHP/gedDq9pK6Y3XjiiUenvNc9+ujvJ35mrY7H48XAQP+U/ZSVVeCrX/0S2tpOLvqY9uzZi4GBPkm7laD4Onbs6MTPJ0+eQDqdwutf/0YRMqVi6qeffnJKFGk+XvayV2Lfvmfx29/ejxe+8E6YTKYrL/Jz7NgxySH+/Oc/x5e//GX09fXNut3Y2JhEht7ylrdg3bpz+UiKn5aWlkt4xAqFQqFQXBwvfekr8N///Z9497vfije8gd1XVVKf84MffBevec1rpdaH4mfv3mvxiU/8X0k7VVVV45e//BnOnj0zITp0Op10i3360x8XR/sbb7wZkUgU3/3uNzE8PIyNGzcv+pjuuusP8OMf/wjvf/97ZJ8MInz3u99GfpKvGmuU+Jgsyv7TP/0zpNMZ3Hffz/HUU8Wan1Itz3ywePuzn/0UTpw4hne/+z1YCVZc/Nx+++3ytRDf+MY3JFf5pje9acrtbW1tUtzF20+ePInKykr8xV/8BV75ylde1HHp9UsXFCuNWFCjFpYPtcbLj1rj5UWt79pb43z+wieM03/ny1/+hrStf+UrX5BuKYqbN7/57fiTP3n9xHYf+cgn8KUvfU62y+WykiK6++7X4P7775vY5uUvv1vSRz/84ffw85//VPa9fftOfPCD/yxpqcViMBjw+c9/Tep57rnnMyKwXvGKV8k+2MVF6urq8eEPfwzf/vbX8b73/R2cTqd0q33xi/dKpxqLpjdu3DDv4zDSc/XVe9DV1SXdZBeCTqe5qOu0prCK8gX/8A//IJGfUsFziWg0iltvvVWKmP/yL/9yyn0vfOELJcz2wQ9+EFVVVXjkkUfw+c9/Hh/96Efxh3/4hxd0HFySkqpWKBQKhWI2GOU4e7YdZWVVMBqXPnXDVNbRo0ekvmZyofL73/9eqc353vd+iLW6bq94xUvwpjf9NV772ted1+8y5eb3D6KlZd2UNVlzkZ/F8OCDDyKdTuM1r3nNjPt++ctfSk60VOPD2p/+/n5861vfumDxk88XEA7HsVTwU4bTaUE4nEAup4pxlwO1xsuPWuPlRa3v2ltjXoj54TuXKyxLowXLZ2goeNNNt0qdDNNNLCr+/e9/h/e//0OrsrlDoymuM9d3emhlcHAAv/71LyW9RwPFl7zk5ed9DlxrrnkoFEciMXV8EZ/bxUb11oz4YeSH4bXpzKb8NmzYIDVEF8NyvKj4YliNL9bLCbXGy49a4+VFre/aWWNeiJcT1gF95jNfwL/92zfwwQ/+g5R4cEQEW8Nf9KIXYzVSGF+S2XJKzKiwpojd2B/+8MclVXehXKzgXBPiZ//+/bN69tCTgGkvpste/epXT9x+5MgRrF+//hIfpUKhUCgUSwu9cPh1OVBZWYX77vsdVgOrXvwMDAyIpwHTWdNhJOi6667D5z73OfH4aWxslHZ4Rn1omKhQKBQKhUKx5sTPyMjIhOfPbHz84x8XM8QPfehD0grItnf6AN18882X+EgVCoVCoVCsBVZVt9dqygePjcWWbH9sx/N4bMp9eBlRa7z8qDVeXtT6rr01zmTSGB0dgM9XDYPBuCTHeLmsc3aZXsPzrbnXa1t0wbMylFAoFAqFQnFFocSPQqFQKBSKKwolfhQKhUKhUFxRrPqCZ4VCoVAoriRoAEizQFbk0nT3UvD2t/9/OHTowKz3cdzG29/+rnl//8CB/XjHO96MH//456ivr8NqR4kfhUKhUChWATQBjKayGByNI5HKwmLSo8pnhd2kl7FLy83tt78I73zn3824nbPCLjeU+FEoFAqFYoWhWfTxjlF0DoSmOEcf79CgqdqFLU1e6JZ55KTJZILPV4YrASV+FAqFQqFY4YgPhc/Z3uCM+yiESrdvX+ebfW7EJSAcDuOrX/0CnnrqCQQCY3A4nDJw9Z3v/PtZx0z19HTjc5/7NI4dOyypu+3bd+Btb3sXWlpaJwaWf/nLn8djj/0emUwGGzduxlvf+g5s2rTlkpyPKnhWKBQKhWIFiSazEvGZD94fS2axUnz84x9GW9spfOxjn8aPfvRTvOMd/xv33/8r/PznP5l1+w996P0oLy/HN7/5fXz969+BVqvF+9//93IfU3jvec870N/fh3/5l3vw9a9/F1u3bsdb3vImtLWdvCTnoyI/CoVCoVCsYHHz4Fh8wSGpvJ/bra91LlsR9AMP/BoPPzx19taOHbvwr//6Bezdey2uuurqichNdXUN/uu//h/Onj0z6776+3vld7idXq/HP/7jB9HV1SkT2VkcffToEfzqVw/C6XTJ9n/zN2/DkSPPy+DTf/qnD2O5UeJHoVAoFIoVgl1dLG5eDNyO2y8XN910C97ylnfMqAMir3rVH+Hxxx/Ffff9Ar293ejoaMfAQD8aG5tm3ddf//Vb8YUv/Ct++tP/wq5du3HttTfghS+8SyJAjO4w+vOa17xsyu+k02mkUilcCpT4USgUCoVihWAJD7u6FgO3W86SH6vVhrq6+hm3M1rz3ve+C+3tZ/GiF70Yd9xxJzZs2IRPfepjc+7rNa/5Y9x++wulRui5557FN7/5NXz3u9/Ev/3bD2V/NpsN3/rWv8/4PYPBgEuBEj8KhUKhUKwQTGFVea04rtPMm/rS6TSy3aXy/ZnM6dNtePrpJ3Hvvd/B1q3b5LZsNou+vh7U1NRiOmNjY/jmN+/F61//Rrz0pS+Xr5GRYbzqVS/FwYMHsG5dK2KxmBQ6Nzevm/i9f/mXf0Zr63q85jWvxXKjxI9CoVAoFCuI3ayXdvbZur1KNNe4YDPrV6Tby+fzQafT4aGHfguPx4NwOITvfvfbGB0dlUGj03E6nRLx6evrw5vf/DaJKP3617+UqM6mTZtRVVWN9es34EMf+ke8613vQUVFJX760x9LSu2zn/3SJTknJX4UCoVCoVhBWP9CHx8y3edHr9OiqcaJzY3eFWtzLysrxz/900fw7W/fKyLF6/Xhhhtuwmtf+zqpA5oOC5w//enP48tfvgfvfOdbkUwmRex86lP3oLa26P78uc99BV/5yufxwQ/+AxKJBJqa1kkn2dVX770k56QpXArbyDVGLpfH2Fhsyfan12vh8dgQCMSQzeaXbL+Kc6g1Xn7UGi8van3X3hoz6jE6OgCfrxoGg3FpHJ6TWenqmnB49lpXLOJzMeu8XK/h+dbc67VBp1ucg4+K/CgUCoVCsQpgLMJm0kk7+5TZXmtI+KwVlPhRKCZ96soXCoilcsjlC9DrNLCZ9NCgoN57FArFJWMlipqvNJT4USjGhc9QMIG2rgBGwwkROzqtBmVuCzY1eeF1mFBQb0gKhUJxWaDEj+KKR6PVoGc4igOnhqd84mL0Z2gsjrFwEtdsrUal26w+kSkUCsVlgJrtpbjiiadyOHLGP6ewyWTzOHx6BClVhKpQKBSXBUr8KHClz9UZDsSRyuTm3S4STyMUnelnoVAoFIq1hxI/ClzptT5joeSitg1GUyKWFAqFQrG2UeJHccWzWEGjXc6JggqFQqG4ZCjxo7ii4YC96jLbgttR95SpgmeFQqG4LFDiR3FFw5Z2trE7bfO7s5Z7rHBYLs20YYVCcWXDaDQHmao0+/KhWt0VVzwGnQZ7Nlfi6aMDiCezM+532U3YtaEc6m1IoVAsJ3ptAbp0BNngIPKpBLQmC0zuKuSMDmTzy/cO9LGPfVgGj87H44/vx+WEEj+KKx5Gf1xWI27ZVYfekSh6BiPI5vIwGnRornGiymeDSadRLs8KhWLZMGgyyPYcQ3yoG4X8ue5TjfYkTJUNMNRtRaawPNHnd77z7/HmN7994udXvvLFeMc7/g533PEiXK4o8aNQjM/UMeu12FDrQnOVU8Zc0OFZr9VInY8SPgqFYjkjPhQ+yYGOGfdRCPF2MwBd/U7kliECZLfb5Wv6bT5fGS5XVM2PQjEJCh2dBjBoNfLHoQqcFQrFcqNLh5Ea6p53G96vT4exEtx33y/w2tfejXvu+QzuuutW/OM//h0OHNiPm27ag4GB/ontSrf19/dPfKj8wQ++iz/6o1fijjtuxBvf+Do88MCvsRpQkR+FQqFQKFYIFjVng0NTUl2zwfu5nbbCvSIfyvr6euH3j+Db3/4BUqkUgsHAgr/z9a9/BQ8++Bu8+93vRWNjEw4dOoDPfOaTiEajePWr/wgriRI/CoVCoVCsELTRYHHzYsink1jJBrA3vvGvUFtbNxHlmY9EIoH/9/9+iA9/+GO44Yab5Db+7uDgAH74w+8p8aNQKBQKxZUK6wnZ1bUYtEbzitYf1tfXL3rbzs52pNMpfOQj/wSt9lyFTS6XQzqdRiqVhMnESqaVQYkfhUKhUChWCKawTO5K6eqaL/Wl0eqgd1citYJ1iKYFxAqFTYlSau6jH/2kpLymYzDM76223KiCZ4VCoVAoVpCc0Snt7PPB+7NGJ1YLBkOx7T4Wi03c1tvbM/E9BY9Op8PQ0CDq6uonvp566gn8x398f0o0aCVQ4kehUCgUihWEBob6uq0wVzdLhGcyGp1ebuf9y9HmfqG0tLTCYrHi+9//NymGfuaZp/CjH/37lFb5u+9+Db7xja/iN7+5T7b55S9/hq9+9QurooVepb0Uaxp+ejAWEtAm40iPhmDQ25DXapHPT95Gg0wuj0w2L9WFFqMOhVXews5p84lMTgoCDHqduFCrtnuF4vKFBob6+p1wVDZLV5cUNxvNkupixCezioQPsVpt+D//56P42te+iNe//o/Q2roeb3/7u/CP//j3KPG3f/u/4XZ78M1vfk06xSoqKvGmN/0NXve6N2Cl0RTYiL9KuPfee/H444/j+9///sRtH/jAB/DjH/94yna1tbV46KGHJgZTfulLX5JtIpEI9u7diw9+8IPnVZg1nVwuj7Gxc6G8i0Wv18LjsSEQiCHLC7BiSTAjgfxIOxLtzyMT9kNv0EPnqoJl3U4UvI1I5fTI5gvo9cfQ0RdCIpWRyew+twWtdW547SbxoVhVaDQYjSRxtjeE0VBCihttFoM4TdeW2cWDaKVQr+PlRa3v2lvjTCaN0dEB+HzVS1rDwg9s7ALj3/9a/NCj12uX7TU835p7vTbodNq1Ffn5wQ9+gHvuuQd79uyZcvupU6fw5je/Ga9//esnbmMescRXvvIV/PCHP8QnP/lJVFVV4dOf/jT+6q/+Cr/4xS9gNK5sQZVi+bAggfjR3yHefuRcu2hOh3TkFOK9bXBuvwX6dXvxxFE/RgJT20j7hqMY8Mewc305mqrsKKyW64xGg/b+MI6cHZnS0ZHO5BAIJ9FfFsOeTRXQ82QVCsVly1oUPGuNFa/5GRoaEnHzmc98Bk1NUyvC+an8zJkz2LZtG8rLyye+vF6v3M92uW9/+9t4xzvegdtuuw2bNm3C5z73OQwODuKBBx5YoTNSXIpPFZm+YxPCZwaFAiJHH0NupBuRWGbON5fDp0cQjs8cZLpSBGNpHD3rn7OVddAfw5nekJr0rFAoFGtd/Bw7dkyqxn/+859j586dU+7r7u5GPB7HunXrZv3dkydPSqX59ddfP3Gb0+nEli1bsG/fvmU/dsXKYMhEEG8/vGDLZfj0QbRUW+feJl9A12BkVYgJjVaDjv6QzBSbj+7BMBLp+Z1gFQqFQrHK01633367fM1GW1ub/M8aoEcffVSKW2+55Ra8+93vhsPhkAgPqa6unvJ7FRUVE/ddTHRhqSjlIBebi1TMjzYek4LAydkfFgif+78gqazEcC/KmtPzihvW1eSX+Pm+ENLZPAKR5IJCLJnOIZ3Lw2a+9H+66nW8vKj1XXtrnF9lRcirAc34kpRqlpYLnU5zUe/bKy5+5oPih4KHYuZrX/uaRII+9alP4fTp0/jud78r9tlkem2PyWRCKBS64MflBYhFcUuN07k4F0/F/KTSWugNU9tBS+jG/xhyhZwUN/Nni2Xu2i+TyQC7zQSLuehZsVJE42mYTUbkCgu/mfKYl+P1uVjU63h5Ueu7dtY4mdTB79de9IX4ckS3TCKegpO6wOWywmw2X57i5y1veQte97rXwePxyM8bNmyQmp8//uM/xpEjRyZOnLU/kxeBQ9cslgt/cbMeJByOYylfBPxjC4cT0kmmuDiMGhNgcSMbHp24TTMudHLZ/HgHVwEmTwXGkvoJkTwblR4LUskMkok0VhQNYDJo4Q/Mfxxmow6afF66VS416nW8vKj1XXtrzGsPO47Z2aTVquesFPHhOnN9lyPyw7XmmodCCSQSU0sA+NyuuW6v2aC6KwmfEuvXr5f/mdYqpbuGh4fR0HDOHZM/b9y48aIeezna9PhiUC2sF4/G6IKlaRvCzz8y6dbiXxmFD//gdBoNrBt245nu+JydE/wjbax0IEM/nVVAc7UTvYPh8TOZnZoyu4iklXwdqdfx8qLWdy2tcTFSyxlWRqNpCfa39imMv4EtV8qLa13k4t4HV7X4ee973ytC5jvf+c7EbYz4kNbWVvHyoYvkM888MyF+wuEwjh8/PqU1XnF5kcnkYWncCfNIH5L9Z2bdxrbxGugqmqDv91PKzip8tqwrg8tmKOmmRbOYXPaF5LvpO7ShyYtTnWPys0GvldRdOpuTfXmdZmxo8CCfU22wCsVqQKvVwWKxIxoNyM8UQKX6wyuZfF6D3BK/T/GDLYUP15prfrHjMVa1+Lnrrrvw1re+VUwMX/GKV6CjowMf/ehH8bKXvQwtLS2yDUUO2+TZ/k7zQ/r80O/nzjvvXOnDVywjCdhg3/MSmHqOI955pJgC0+phKq+BpeUqaCs3IFUw4obt1WjvC6FnKIJEKitigiKitd4jKa/FKhTm9BPpPEKxlBQdmww6uGxGcYsuRZZYKxZP5xCKppCmQDPr4bIaJVKzON+OAjbVu1HptWIkmMBoMIlcPg+3wwSPw4wqjxWqrEChWF04nUXrlZIAUkCECVNTywGFT2nNL1vxc8cdd4jx4de//nV84xvfkA6vl7/85XjXu941sQ09frLZrDhBJ5NJcXj+1re+NTF0TXH5koAd+ubr4KrbAk0uCb1Oi4zOhrTGIh1RxKTTYmuTFy21LmRyBQlSU7CwqWrx7s4anB2IoK1rDPHkuSiSxaQXEbWuxiEaqq0niPbeoIijEnRn3tzkRV25bVERJh5jZ38YfSPRif3QpLHMbZYOL6/duKwdFAqF4vxgpMfl8sHh8CCXWz2+YSuFTsf1sCIUii959Een0y/ZQNRVNd5itaDGW6w9lmuN6b9zdiCMI20jc2qXPVsqEY6m0dY9+yc/RsF3baxEU6V93ghQtgA8c2xghiN1CaNBhxt31sBlWRlhr17Hy4ta3+VHrfHlvcbe8xhvoYLoCsU8MI3FGpy5JAsjSYFICie75g558+PFyc7Rec0J+elxKBCfU/iUxlyc7AxAo/5qFQqF4qJQb6MKxTyChCaIqXlEi8NmRN9IDKFYet5CR6bLgtHUFGPGyeRRkNqkhRgeiyGaXB3daQqFQrFWUeJHoZgDCpVofPbZYCUMeh0isbREZRZq8ogmMnMKpGyugGRq4XoBjuTIKg8YhUKhuCiU+FEoFhA388GOBtbi6BYxH8yo181ZrMwuNBZsL4RmfFuFQqFQXDhK/CgUc8DiZLadzydswvE06ivtkv6ar5iZnj0+l3nODjOjXoPaCvuCx+R2Fru+FAqFQnHhKPGjUMyD3axHzTyihK2cdosRteXzC5f6Sue8ooX7qa+wy/iKuWDAZ329G/pVMIVeoVAo1jJK/CgU48JCq9NIVxfb2yemqxcK2NFSJlGZ2SRHhc+GpioH9myqQBlNE2fZb0OVE1uavSgsYHRoM+lxzbZqWGcRSfTO2NZSjmqfdZGGiSsD102vzcOgyUE3f8ZQoVAoVgwVP1dc8bB8eCyckm6reDIjPhGNVQ5Uem0w67UwaIGrN1agtc6NroEwYskMzCY9mqqdcNuMMkeM1TjXba2Wji5uk0xnJSLUWO2Ey2qYVTjNOI58AWUOE27dVYeRUBK9wxG5jY7UdZV22E368x7FcalgIbcxF0NubABpfy8KuRy0ZitMlc0oWL3IQJmOKhSK1YMSP4ormmyhgINtI+gbjk65fTSYEHfma7dWyYgKbaEAj82Iso0Vcj/1znQDL70GIl6qPJUThc3nOzmaYsek16K+zCamiMX9FIpOqatY+BhSo4ieehb51CSfolgI6dEBGMtqYGq6CmmowY8KhWJ1oNJeiisWpmiOdwRmCJ8SsUQG+44PITVJ5FDMLDQRmveVtrtQWBh9bj+rVPWMY8jHEW/bN1X4TCLt70e27yQWabyqUCgUy456O1JcsURTWfQMhefdJhJPYzScVJOa54Drkg8PI5eMz7td0t8LXWZ2kalQKBSXGiV+FFck1DKhaBqZRcye6RoMS8GxYiacMZgZ6Vlwu0ImjUJifqGpUCgUlwolfhRXLItNS3E7Nf53dtgfV8gvbtxGIZ9d0AVboVAoLgVK/CiuSChmWNC8GFx287Ifz1qlAC10VucittRAa7IpEalQKFYFSvworlgcVgNcdtOCRdFse7+Y4uXLGa6LoaKxmEecB73DhYJpMSJJoVAolh8lfhRXLAatFttbyuadqbW+wQOHRTlCzEfe7IKlZt2c92t0eljqtyCrMV7S41IoFIq5UO/qiisWtpOXu824fns1TnSMYTScmEjLMCVGU0O6N9Nfh4GNAjSIJbPI5gvStk1HZhpBl36HnU+5QgHxVA65fF5EFbeRupjLON2TzetgqNkCq8GM1GDHuc4v+v84vDDXb0LWVrGgw7VCoVBcKpT4UVzR8IJc5jThhh3VImxSGY5l0IqbstmoFY8diprRSBInuwLwBxNiREgxVOayYEOjF+Uups40GAomcKorgLFxEcWBqOVeKzY1euG1zz/4dK2TKeihq9wIq68eSEWZDwOMJhSMTmSgQ0FlDRUKxSpCiR/FFQ+FChNfDrNevkpQ+LDmZzCQwLPHBpGdVPfD3xkJJjAW7sfuzZUSCXr26BDyk0I8uXwBg/6YuEVfu60a5c65p7pfDnC9choLYJ404+zyPV2FQrGGUTU/CsU8JDM5PH96ZIrwmQwFzoFTwxgKJKYIn8nQS+jw6RFkVNG0QqFQrAqU+FEo5oCprUAkLWMu5t5GA38wiXAsAwsHj85BOJZGKJ5epiNVKBQKxfmgxI9CMY+wCUaSC2wDJFJZBEJJmIy6ebcNRdKSRlMoFArFyqLEj0IxD9pFjLWgnqGoWaich/u6jEt+FAqFYs2gxI9CMQfszip3W+f172MBs8NqRFWZbd70GMWR7zIveFYoFIq1ghI/CsU8uKwGlLmsc95PLVNdZoNJr52zKJpUeKxwLHKchkKhUCiWFyV+FIpJ0Rl6/Eye4M6U1q5N5XCOj8FgHRC3K9Xu0Azxmi2VaKp2wjKpTX4yHocZV20oP+eGuAgYbSoei3bOOqHJ2/C4VgsGgxZGow56vXp7USgUqxPl86O44tFoNYgmsxjwxxCJp2E06FBbbofTaoCWA1CNOty0owZdwxEcOzsq6S2zSY+t63wy98uiLxY633pVHXpHougZikgUyGTQoanGiWqvDUb94up9qGEyuQKC0TQG/FHkCoDXaUKF2yLdZDRlpBhiC/5YJI2h0Zj8XpnHgjKXGWa9dsXqiszaFDSREST7zwDZJHR2L6yVzchYfMjklBBSKBSrByV+FFc0TFSd7g7gdHdwStrqTHcAFV4rdm+qkDEVRXfnOKp9rAGikCmgbyiCWDyDHa0+6DUamA1abKhzobnaKZ4/dHjWazVSO7Q44aNBOJHB/hNDCEVTE7d39kM6yTiHrLHSgZFQAgdODiM6qcaooz8Eq1mPqzZUoNJjueSjJCy5AKLPPYhk/9kpES6t0QzH5uthbt6NZF7N9lIoFKsDJX4UVyyMoJztC8tcr+nw8j00FseZ3pAYGbb3BSf8eiZT+nn3eFqLQodZM914Gup8RlokMjk8fXRg1sLpVDqHg23DMBn1eO7kEJKp7Ixt4sks9h0fxE07a6VW6VJhRgzRA/cjOdA54758OonQ8w/DrTfA0LQXmYwyelQoFCuPikUrrlgS6RzO9ATm3YbRIEZ95qN3OILIPJ1eixVi/f7YvB1jTpsRh9pGxFdoLugmfbo3KKm8pUTa9GWERX5K95uW7yChwVmFzzkKiJ7eB32qKCAVCoVipVGRH8UVSyiWnldIMI00Fk7KbK7actucURze3u+PYnOD54KHl3JSfPdgeN5tbBYjjncMwue2wjiP/9DwWEwmy1sMF//ZJj++Tu19IVkrK9v6vVaUOc0w6YsF4omuowvuJxsOoBAdBZzOiz4mhUKhuFiU+FFckTB6kc7k5t1Gp9Uimc4taiZXMpUb77i6MPHD1BqjNvOh1Whk6nzRK2hu8cP9LIWfEIutnz/jR89QWB5Nq8kjnkxLrZPVpMe1W6vgc+qRTyUWtb98OiGRorzKfCkUihVGpb0UVyTUBuzYWijlZTUbYFxEy7bVYrgowcHCaHaZzQeLqM0mw7ymi4T7udgxGvx9pvv6BgPQpiLIj3UjM9yF1FAnEPUjHovi2RNDSKQBncWxuH2aGD27qMNSKBSKJUGJH8UVC1vZ6dMzF0zzuO1GVHgt86az6AvELrALTXkRg16Lzc1e1FY4UFNuh2vcV2gykVgKGxs8MI631s8FTRetC8wZW4hYKofewTHkAv1I+/uQS8RRyKRRyKSQCY4gM9yNWDCA4WAC5uYd80ai5Pzc5dDYfBd1TAqFQrFUKPGjuGIxG3TY2OiZN5JCr54tzfNftJtrXHDMYXC4qPRbvoCz/WEcPTuKw2f8eP7MCFLZPJprXVPEWTyRxc71ZbCZ5xY2bIlvqXVflBAjkXgKydFB5BJFH6HpFHJZZMYG0NM/Bo2zCtaGjXPvTKuFfdN1yBhVvY9CoVgdqJofxRULBUJ9hR3UCb1DEREOpQGl6XQWFosBrbUu8evhv7O9AaQntWozWtNU7cKmJs+EtY3eoEGegqGQB3R66EzWedu7E5k8njk6iEAkKULIZTdiYDSG59uGcdpiwI07aoqeQRoNdqwvR5nDjOu21eDgqWEpxp4Mf5c+P2xzvxjxw+PIZVLIxqPzblfIZpBJxpDRmGG96oXQ6I2Id5+Q20vobC44t94ITdVmZBeoaVIoFIorUvzce++9ePzxx/H9739/4raHHnoIX/7yl9He3g6Px4O77roL73znO2E2m+X+5557Dq973etm7Ot73/serr322kt6/Iq1GfqsLbNJYXNb9xjCsQxMBi2aalxoqXWJwKFh4OYGNxoqHfAHE4insjAbdSh3W2Azl1yXgUI8gOETpzDW14NsOg2jxYKyxnXwNLSgYHTOFCQaDZ4/7RfhQyigWPtTX26XyE88mRGfoRfurZe5YJwfls/n4bTocdPOGunC8oeKxcZepxkumwmGcVPFi8WqKwD5+QvCiV2XlXNPwAHTzhfDun4v0v4eSY/pHB7o3NXImDzIZtVAV4VCsXpYNeLnBz/4Ae655x7s2bNn4rb9+/fj7W9/O97xjnfgxS9+Mbq6uvDBD34QwWAQn/jEJ2SbU6dOoaGhAT/84Q+n7M/lcl3yc1CsPeJpGgsOiqMyIx6l4aPsaBoejWHP5ipUe80iKNg63lBhl+0oVFjgTOHDGVbp0V60PfEIUslznU+pZAqRwAH4O86i5cbbobWyFf7cY0eSGQyNzZ5WotAxO8wTBoc+u2lC1PCxKdo8NiN8jmJt0Ln7lkZkOI05uNwOhIKRObdhlKyxwob8eDdcKqcDTBXQNVTJGmXzeaR5lxI+CoVilbHiNT9DQ0N485vfjM985jNoamqact+PfvQjid7wft5366234t3vfjd+8YtfIJ0uOuu2tbWhtbUV5eXlU76MRmWlr1gAjQaHz4xOjJKYEDTjAoIt4wdODSGWOqdYeF9xXMW5C3o+FUH7viemCJ/JREIh9B16BprCOU8htsUHwsl5ozSlY+kbiU4ZtjoZ/v5SRHqmPi5gNuqxrbUc+nmKq9c1VcJtKqAwrdiZRohMcanOLoVCsVpZcfFz7NgxGAwG/PznP8fOnTun3Pe//tf/wvve974pt2m1WmQyGUSj0YnIT0tLyyU9ZsXlAYeZ0hBwPhh1GRyNzdk6LkNGR4cQC88dISGjAwPIRac6RS9Ws5QiK9MfN5MvIJrKIZrKIp3Li+HgUpE32FBpiODaqxrh8TqnTI23Ws3YsqkOm8oBg8MlYkehUCjWEiue9rr99tvlaza2bNky5WeKnu985zvYtm0bvF6v3Hb69GmpBXr1q18tUaQNGzZIdGjHDrbfXjhMZSwVpYvSUl6cFBe/xpFAQiwJF/LEGQrEsbFh9g4qg0GH4cG+KeJgNvib8YAfbk/VxH7cDtOi/HjKPFbZrvSa5NT3M/1hdA6EEI0Xi4vpR9RQ5ZAC7cX4Ei2IxgRLZRMqOp6Ht9WDmK5C6qJMJj0shSRMcT+MtipoLG7oV/4z1GWBep9YftQaLz+6NbLGKy5+Fks2m8V73/teETusDyIDAwOIRCKIx+P4wAc+AJ1Oh3//93/H61//evzkJz+RdNiFwAuNx2Nb4jOgs79lyfepuPA1Hg6nYLEsnB7lMFGHwzKnUGFKyjAtPaTRaGHxeKF1VSGrLT5G3uqV4ysJJaPZiMoy+4xhqZPhRPl1dW64XFb5OZpI4+CxQQyOxsVbp3T8lFNdQ1HEkllct70aTttMn6DzpeBqhslsQrLnBCzR9mIbWKwArckCU2MrTFUt0Bov/nEUU1HvE8uPWuPlZ7Wv8ZoQP0xxvetd78Kzzz6LL33pSxNRnerqauzbtw8Wi0VSZ2T79u04fvy4dIx95CMfuaDH4yfzcJgXl6WBCpgvhHA4oVIEy8SFrLFRp0UqmZFW8vlwVjsQiSRmjfxQEFl9lci0nT53LHoDHE2b0T6cRtfBfiSTRXHTuFmP7mivRJFY0EwtsbHeLZPcZxu1wXEWmzaUw6ABAoGYiKbOwQg6euceENqTSMNlM2LTHJGq80Wjd0PbdA2MqTCQy4pgy2jNSGvNSMayAL8US4J6n1h+1Bpf3mvsdFoWHXFa9eJneHgYf/3Xf42+vj5861vfwt69e6fc75w2KJE1QawBYgrsYlgOT5JSIahi+TifNbaZdPA4zRgJzC102epe7bMhnZ677dviq4LZYkEiXtyPo2kT9p8OYGTk3KBSs82GdEGPtq4xBMNJXLOlUtraPTYDrt9ejVNdAfiDceTSaWjyGWld39BUhuoys5wPhVIql8PxzjGZIM+5Y0xv0YNoeodXR19I/IvY9r40aACdC3qTFnaPDbFADNl51kNxcaj3ieVHrfHys9rXeFUn5UKhEP7iL/4CY2NjkuqaLnweffRR7Nq1Cz09PVPSYydPnrzglJdi6eAFe6E5VCt5PNQGO1vLZHr7bFBY7FxfDtsCM8A0Zgea91wHvcEAq8uN3lB+ivDRGw1wVdWioCn+uQ0H4uj1F4uoqVtcFgNu2FKO2zfbcXOLHres02OPyw9Xz5NIHn8E+mgfhoMxnOoO4ljHKHqGIlLv0zUYRjienjFZIpbILDgkdaG1We2steNVKBSri1Ud+aGXD4XNN7/5TSlwHhkZmbiPP+/evVuKndkR9v73v19SX1//+tfFB+iNb3zjih77lYxGq0EslZUW8myuAJvZAKfNCKNuaQz4zutYNBrxmwnHM4hKxEQDt900YU5IX5+brqoVM8H+4Yh0dzFsWuaxYH29W3x0FvLOyeUAc0UztrzAgjF/EPuf6ZIp7QajATa3CzZPOTTGqfPBJDpTbhPnZp02j/zASWh6TqGUJS+Mf+WzKfQdeBLZqq0o6Cun6BxOeO8fiaLKZ5NzKh3nYkXBQmuzGtFrC9Clw8jFQpyxAa3FgYLJhazGuGQeRwqF4vJn1YqfXC6H++67Tzq8GP2Zzu9+9zvU1dVJ9xc9gt70pjchlUrh6quvlqLnsrKyFTnuKx362R0/O4qewfCU6APFz7aWMlS6LZfsIkURNhJK4sgZ/4SXTymVVVtux9Z1Phi0gNWgw1WtPqm/ydKtWaOBxaiDBvTZWdxjse28M2qFyWGH1pOBz11ArgAkcjrk0jo4DFN3RPdmdm3p9BroU2GE+87Mvt9cHiOjUeiTx+DeWo4Kj1UiPiW415FgAnaLQcQLcTnM4kC9mLU5etaPYGTq2nCw6jZZm9UVWjEVEkh1HEV8bFBmixXRQO9wwdK4FRlLxaKfL4VCcWWzqsTPJz/5yYnv2bl1+PDhBX+H7s5f+MIXlvnIFIuBUudQ2zB6h2fOhGJH0zPHBmQuVYXLvOwCiNGP0UgKzxwdmJEC4s+dA2Fp3d67uRL0D8znClKEPNG7RIPB83isk50BtHUH0FjjQs9YBtlJhX6UEFWww207F51gyksz3imWGeqffZSERoN4Mi3RmWwkDGc6hPUNbkl7TS7S5mMx0uayFvffWueSiNJca8zjHZtnbbomrY1+legfI1JInNmPTMg/7Z4CspEgoiefhX3z9ciYfUoAKRSKtV3zo1hbBKKpWYVPiVyugOMdo8hegqsTszYnOsbmrX2heeFouDhQ9GKIJHM4O96BlUplUemdapPAs2Ux82RB5HNZZKo8U0+SwuEfo8kCvc0JncUuCkWKnCcVFmejIWgKwO5NFRKdmkxpO6bqqr3WecUlj+L4AmszxLUJXfzaLAVco0J4eBbhcw4OU031noROs3oLLBUKxepBiR/FksBIRkf/uXTMXLDTifUlyw0jIaPB2cdNTKa9j6JFc1Hn3TsckRofwiGlGxrcM0QDhQajKbydwqWlzjU+vgLQ2t1IV2xCF2pwJOrG6Uw54mWbxSOI3YsT6PRSLG0x6nHH3gYZvMp0osNqFIPDG3fWYEuTd8GziSVzi1qbs1ybVSB+dMghNdix4HbpkB+69PxO2wqFQrHq0l6KtQuv/ewyWghKhCRTNOMDRJeLdCa/oH8PiSezUuczx+isRYmfCDuuJkVgOI7i6k2VOHByeMoxpLM5aLWsffLBx6GlhYKktM7E3Dhx8AgymXOeOSe1WtTW+LB53VaMHXoOGq0OeYsbKX8WI+m4mB/WlNnRWO2EFhpsXueF3ahbVMqHx7GYteHzxLok/QqHf9j6n88UJ9/PSz5frAVS72oKhWIB1NuEYkng9ZEX5MUw3Q15OZhrEOh0eMwSXLnATBw1hHHa+QyNxVHutuCF1zaisz+M0VDRjXlDgxfb13knanMonE71hnCyN4qchn+K58RPPp9HT+8IcvkyNDWtE5+hgdi5bZhCK/kTsduLRduLzSbSX2gxsOuNtUMrjkYr4m+x2yoUCsVCqHcKxdJQgEQhFoKeOuxMWm7Yrs100ELUVzomLvC82Gt1GhFOi73m08iL+5gOO7B6B8Mod5uwo6UMuzaUY+/mCjjHz52Plcjk0dEXRF6jg8FbDY1h5qiIgYFRmKqaYWjYiqHAzOhHmdsi+z4fiWI16eGwLXJtVkHHV05rhMFXs+B2rJcqmOyX5JgUCsXaRkV+FEsCIxkVHosIjslpoOlwThXbyJfb9pyjK1ob3Dh4cnheIVZdZpN6HXrdsAOMx85276ZqF7xOk3gTLRRRcdkMKPdYZzhF09dnNFgULOtq3TAbtEil8/CHE+gbjkKn16JjICIDTs0GMwzl9UAqhiwLoPN5aPR66Gxu9CfM2LauAteZnWjvD8koDJNBh+YaF3wu03mnpegMvb7egwMnh+Zdm5oy2yX3ZZoNHoPJV4/UYCfy6bnSXxqYa1qR0xiL4TiFQqGYByV+FEuGSafBtduqsO/40BRfHcIi39Z6N9ZVOy/JvBdeMBvK7UilcjjTE4DTboRex9RQQep8+P/erVUidA6fHUXXYAgFOvvkC9JdxMGhLrsJe7dUwm4qppQkPabVimW7pPgKBXkcRo6u3lSB/SeH4A9MLSSmLqmvdGLrOi9CsQyePTYo+/c4jSJiWH/TPRgWc0FGcbRmN3QWV/ECrtGKMIsm+XgaVHnMqPZZ5DZGZCh5WK/ETfnzbEJFp2PNDFNlGhS0Bll7bldfYUMy7cOpzrGJYu0SjMzt3VIFi6TSFickeJ46TQGaQl6crHMF7ZLaGWQMDtg27EX8zHPIJaeNI9HqYK3fiIKnflWINYVCsfpR4kexZPBa5zDrcdOOGoxGknJRz2QLcmFnN5LDor/g2poLQTPe+u12mnHkrB+9I2FJN21q9KK5xgm31YjD7aMSTUmkcwiEk9KVxVocl90owoJC7sYd1XJufcMxPN82glgyA4vJgB2tZTJDy2LQwKzX4rqt1QhGU+M+OVnYLUZJBbqsBikc5jH4XEaMBaI4cmIQtdU+BINR+Dx2EUH03ilzmhn0KR79uHiwmg3yrXzlWCsEhONZdA+FMUKxVShI6zzXuFRPxJZvXSqIzHAXstGA7M/groCprA4Zo0seY0OdW6I79A0KRFJy3g2VTvhcZjmfxYoXA1JAxI/0ECMzKWj0RpgqG6FxlMsQ1KXQQBQ1WWs5rFtuRj4ygsxon0THdA4PDN5aZI0uZPMrn6JTKBRrAyV+FEsKL3QGnQbVHgvqymwTFz6J9lziD+XUEEfPjkpdDR2NWetC2nuD6B0K45pt1egaCGFgNCYmjNMdmI36pBw3nZCfPT6Ik51jE/cz0hJNpNBc7cZVG8vhNOuhzxdQ5jChylM55bwZ6QnGUjDpC3jgkWMYC8bkPrfTikQijRP+AVRVOFHuc0j31+QiY35LUTMRLdMA3UMxPH96ZIpvEMULRdy2dWVYX2cHBtoQ6TkFFM5tk40GkRxoh23dTsDdIB1fdpMe25q9smM+Fr2Yii34i3uyTPk4Emf3IRM6tzYkExqB3u6Cdf1epPWOJRNAaa0VGncTDL7m8X0WkKKVtgr4KBSK80AVPCuWBV6YmB7iRftSpLmmw6Ll9oGw+PjIjKx8YeKLF3Ze5Nv7QhgOJmcInxKMxlBUPHN0cEobf225DXs2VyFf0ODJI/349/tP4pkTQxiLplDQzDxvNiCFIgk89MTJCeFDOrv92LG+XATNwHAYwXB8RgqKYzhKRdIkEE2Li/Zk4VOC53a03Y/h4TEk+s9OET4l2AoeO3sI+tQ5scK1KE1gPp9UlV6TQ7Lz0AzhM9mUMXH2APSFpfV14jGeW2OlehQKxfmjxI/isoRpLA4PnQtGblj7MxZOSvHwbDD+wujIaCgBw3gbf12FHW6HBQ880yVzsdjVxUhSW08Qjx7sw4nOgAigKY+l08E/FsVooCh8dAYDDBYrRiIZaWm/fmcdLGY9hkeiyGZzE8fXUOXEVevLJ/5IGb2ik/R0gTTlmAs5nDzZBY3DN+c2hXwOmaGOi+7k0qbCSAfODRuejUx4DJpE0f1aoVAoVgtK/CguSxKp3Lymi0wvmYw6Kcyey3fIYNAhGs/AyMLfcU8gDv184nCfDBwtwfvGQkmJNnG+V78/LvUzJTTaAnoHA9Dp9TDaHMhoDIgkcgjHc9h3YgjBSBK3X9OMa7ZVSY0SB8C+YE8Ddm8on+LJQ4doiq350OQy8A/5kdTPbzuQDo5Am5tWOHwe8Pyy4ZFZo0vTyQQGFu27pFAoFJcCVfOjuCzJLZC+YYqIxc1el1l+Nhv1InKoNfibklZhka2mgNoKu9T71JTbZIRHdpZUSzEaU6ybOdUdgNdlkagOW+U16QJsFiM0RotMUJ/srkwNdfysH2e6g2ipd+EFe+pR6XUWu5amnQNvWkw3Uz6XQ2Gh9vdCHhrpKMOFMzFZfaHtKEL5QCpFpVAoVgdK/CguS4wGraR15koR8brPiMu1W6pwsmtMIip+f2Ki28tpNYow2lHvkagOb3fZTDjbN3uax2UzSqptLJTAia4xSWMdPj0iqas9mytQ5rHBbNLLY85GLpeDTquVYadzCRy25VtMemSyc/sosc3cYrdBn597G6I1WlDQ0RNn3s3mfpxCAXrrwqaWhF5FixmnoVAoFJcKlfZSXJbYTQaUe63zbsPrcWO1A43VxdZvppUolih0UpkcfE4zWutcMJt1SKWzErxgNGc6NHZk6owt7oNjcZmGzn2xWJpdWY8c6EW51w6HSYPaCseUcRiMh9itRjTVuFDlNsPtMMKSGYU1PQxLNgDDpI8njCJxu3nPSWdAY1MNjPHRebczVTYhp7lwp20JGtl9Mol+PjR6A7SuSuW/o1AoVhUq8qO4LNGgIBPO6d3DYaOzsbXZh1NdQZzsGMXmJo8YFcZTWXFApilj/0gETxzuxy276nCyfUwEDT2LIvHMlE8PTdVOmbZO00LWGTntpqJYGod+Qb3+GOqrXTh1dgiN1Xbk8oxK5UUIpdMpbKmz466tJiSf/R9Eh7uQz6ahM9tgqd8A67pdSNuqJRXHguu+4YgIrNmwW01Y3+oDTrXPuTYGVxm0nho5roshq7PA2rAZ0bOHxHNnBhoNLPWbkDXYi74DCoVCsUrQFJbShvUygS20Y2PnWpIvFr1eC4/HhkAgJhcwxdJBB2NdJgZtPg2TyYBUXo+M1iIt0ExfBWNpHGsflbRWKfrA1BHNB2sq7HjkuV5EExm5n94+en1x9AaLm2n257YZsWNDOUxGPQ6dGobJpMfDz/VOjIBoqHRInQ8Lo1lnxEjO5iYv7FaDtNDThJBiiuMsrtpQhkQigZ7+EKKpLCuEpA5m98ZK3FARwuATv4BFBynE5iRz5CnaCtDaPPDc9MdI2GpEY9DX5kTnKPpHojK9vpQS44DTLc0+2ExaGDJhJLtPIBMcLk465x+7wQiTrwaG2k1Ia+aP2Cz2dUxXZ22kH8meU8jFw9JtpsmnobM4YK7bBJQ1I5Vb/kG2lwPqfWL5UWt8ea+x12sTI9vFoCI/ijUJBYchF0Om7zSS/n4gl0bGYkS6oIehrAHGinVI543irnz9tmpEk1lxXaYgspn0sJp06B6OjU9XL/7B0kmZ/jl6o2582nuxgHnQH8PuTRVoqXOJCEqmsugbiYqIYhRoaCwm2xaLposjKX7/XC8CoSTqqx0SUaLuGo2kUea2o3WdRVra+VgUU3sbtQg8+iDymQx0RgMK8SCy8RDy6WJnl1bbj7DhZ/Dc+lokjEVDwl3ry7GxwYt4KiMpKBo4cpgrx3OIQNI5YWi5BuZ0BIV0vLhgRhtyBjvSS/h+lCtoUHDWwbq5DNroIDIhv+TEctks4oNd0Ab9MNVuRNbsVakvhUKxalDiR7EmMebiiLc9I0Z6pNRank/Gkeg+AWM8BGPTLmQKnF5OJ2OdfE3Zh1GHyjIbAuGUpIt6hsIYHotJp1ZNpV3EDaefe1xmdPaHcaYnWJwZVu2E12nGU0f6Jf1kMRskHcboS4XXivue7ITDapB5Ymd7QxKhedMrtkvk6Af3n4DTZkI0noZeXxwnsVUbxdDACKq8VmjTUWSCg1OOM5/PIHp6P6ybrofJl0HGUCkix2LQwjJpEjxvmwzHPWTZ8j657X0ZPohpkEN2pBPxrhNFkTW5/T0WRjY8Btuma5Ex+9TMUYVCsSpQ4kex5qDQyfSfnRA+s5H298PorYHG1TDDtZi1Lsc6x3CmP4zHDvWJ2aHZqJPIzh/esVG6tZ47OSQFyxQx9ZUOVPtsaKl1iTgKi5OzBlvXlYlAouChW/TJzlH8fv+ojLNgRMjlMMlAUqamWBPEYmipRuJA1AKQzhRQU2ZH1n9Cmq5YJ2TMRmc/oUJO5lmlwyOwbr8T8dT5qwhGuGYrzblYdKkwIj0ni63ss6ibfCaFZNcxmDbeiAxUCkyhUKw8Svwo1hz6bAwxf7HuZj5Sgx0wuWqmXHCzhQL2nRzG0GgMqWxeUlUUPyxmZvHx/hMUPUkxP5R0mE4r0R46Kw/4o7hpZ614AT18sFd+jxEf1gz9fn8PKr0W3LizRlJj6XQWLocZLTUujIbiMmOMRn+sB/IHE+IVVGxd18FQ0MPOlFsqibx0T1EAzSJutFrE24/B2rwDMFQuaq1o1JhOJeEPpxCOJOTYfG4L3C4rUsmLV0LMr2cHehZUVZnIGMypECBpO4VCoVhZlPhRrDlYDJxPz97tNJlcMgZNLgVoiy3vjMgMjcZF+DA7w+nsZS4zEqmsRGPKPFbc90QHqnxWSXdREFV6rfCHEiJOKHJoYLhnS6UIH2KzGDA8FpfbqFc49Z2pMEoXg14jnWDXbK2S25gCYySJZomldnrOA9M3NyF54gC0hTzsVjP0Oj0KYgw4Ca0ReqcPib42FHjui+hSZ/3R2V4/HnnyJLo7eyeCMm6vC1fv3oDrtteyChoXgwZ5ETYLwmgXnw+TV6W+FArFiqN8fhSXLxo2vJ+zMKbRHtNTkzbAUCAu7eO7NpajezAsUR1GfarLbGiucUpRcmJc6JCeoYi0wU/eJ8USxdO+E4MiqFg8zagRtwvF0jh4chguuxHVZVYZi8FjON4xJmJo37EhBPQ+WNw+aX2nKILFPe4AdA5r8zak/ANAnseysC2zwaBFe+8ofvyTx9HVcU74kOBYCL97cB8eeqYdWu0iXZrnQNZ3ITfpcTQarRI+CoViVaDEj2LNkddboLct7C5scPqQNxTHVxAKC7azE16ES91RLEimSWEmk4fbYZY6Hg4y5e2MFrGlnXVGHIBKQcPtWPBMQpEU6qscYmbIbbkNf99uMcLtMMFhMUgUqKMvLPU98UR2ik8Q+cn+MLzXvhQWh0eKhRPpPLT6c4XMxspmWDddh9DRx2CpbobG4pjy+9QePL7J88TSqRQefvoUEom5I2TPPnMUw2PzzwpbCK6j0Ve74HY0O9Qs0hFaoVAolhslfhRrjpzWBFP1uvk30mpFNORyk6IS4yKhBIucyz1WESdMfTENFYmnJb3F71mXw4JlFjyzVkZGZbDFXq/FDdurpR6IYyzo5VMajioTvvg4mqKfEKH5IR+XNUUl8TWZM70hfG9/GrUveQOcm6+Fxu6F1l0l7fru6+6G8+oXY/SJnyEfD8Ox9UbkbRXjp6gRz5+BQALHuwI41RtEKJ6Rhi621Xe398y/jrk8Dp/sh8Vy4dlv1kNp3ZXQGs+JzNkwequQM9ov+HEUCoViKVE1P4oVoxixKOpv6YBapA8Mt9N56mGpDiMxMIuTsVYLa9NW5Ky+Ka3dnJtV4bGiI1FMfTHq01DlEAfo0WBCRlkEoymJCFGw0OSQNT2jwSRGw0kRC3WVDjFEzGRyuOvaRpzsCkg9T225DT1DUUmT8TGcNqOcH/fLomqPwySt76wl8s/izqzR6XEyaIXGtAUV2xvg9NmR97N9/BgSz9wn23j23gnLuqsRSWSg0QJ9o3EcOTMyUX9EjmtGRdA1V9thNBqQSs092Z74x6IoXGQLWFbvgK11F6Knn0Mhk57VUdpUvxWpyUJUoVAoVhAlfhSXHIqCTL6AYDgtHVQcku51muSibTXqZvjVzEaGZoZ12+DwVEpXVyEZgdZkhMlRCX15E3IWr4yQmC6aWMfDuh2KFGLQarC52YN4MofqMjssxlGUuS1w2U0yGJWpL87zqi2zQavTYkODB73irJzDNmcZXnbTOjxxuA9D/ihu3V0rRondgxERJBQ621rKkMnmMBZMSN3Py25qxrGzYzjdE5A0nNtpwo6WctgsenQMsJ7IgL6sHnZ7DpqzB1HI5+Dacj1sm6+FrqwRkbxN1m8kmML+44MzBrcyDcUC7NFgHNu2NuO5A23zrqPRqJfzuhgDIK5r1l4Nx9abkfH3ID3G2qScRINMVc3QOCuRwrk0nkKhUKw0SvwoLimsiwknMtJSzsLiEp39xbEO21vKUFduW9S08UxBB1irYGithL6QhtVmRjRV9NWZ61rushqxa1OFFCFTAPFh+v0x9A5F0TscwUtvXIenj/TjVNcYjOORIkal2J5e7rbINs8eK5oQPnawF6+4pRXXbquSGqDnz/hxvH1UfIQ048XQTx2BOEy31rlR4bbIVPfrtlbilt21CEeSMgm+fziKYLhYe8PD9voq4F5XDX11tagZjdmOVMGAUoCHeoeT6OeaWE9SmSyMRjOcDou0uM/F9k01EsW6WCiAUnondLXbYa5aD00hL0NWswX9DJ8lhUKhWGmU+FFcUhKZHJ4+OiADQKfD9NOBU8MwGmpQ6TYv+qJJJ2PoLdBZbNJOPR/cZ12ZDa6r6ySCc5QDS1M5bGz0oLHKidFgDDvWl4sDMzuyTAYtPE4LKn02GWmx//n+KR1Lv9vXDbtFL4LnycMDsz7mowf7cM2WKhmxcbwziNEQ/XZ02Nzkk0hRdYUNkUha0mksqF5f70EmXUBa6x5XeVP3F0vlZB/zYTYZEE1lUFnhmVP81NRXo77SiUxm6cQJU4OAsdiQJgJUCR+FQrH6UOJHcclggS4FxGzCZ3IEoa17DOWu6kU0dC8eGgzyusyUEfdrN+nRXO1ER39IvHjiyTT2nxyUgai8v6HahQqvRdJWPcMRPHKgT4aXzjzePE51BbBlnU/qeugKPRmKp7+6exueOjqAjoEQIrFiMTXTZg/u68bVmypx3bYqKbiuq7KjzGVFBYXfPFGdbC63YMt4NluQzrWKuma0d/K88jOEz6tevAs2qwmZ+cuCFAqF4rJDiR/FJYPREdbDLASjGoxuTJ/FdWFoEIqn0TkQRiiWksgKu7doXjgWSeH50/4Zv0FdwZQc63SY+jrZOQa7xTCr+KHAGA4mYOkPY0uzF0NjcSmaZqcYTQZfen0TjrUXx2Vwiju7wPRsS5fusTwOnByWqe90frZaDGipcSK3wCRknVY7Pg9+fvR6PbZvqER12Z3S1eUPRKVrbdvGGon4KOGjUCiuVJT4UVwyGFUpFRrPB6MaFAa4yDlQFAfHu8ZwpicwJVLC+h1697Q2eKWweXLt0eQIlN1ulJQYC5MpgmaDXj5sdae5Iae9s36IQslspKFfHnabEU8dGRD/n3Q2Jx1nLKQ2UMBodHJcx9pHcf32arT3BtBc5YRJN3/Mi91oHpcFYwukvhjR0kKPMrcDf/CCrdLVxeJm1vgw1XUphI/MYWM0bVz0qcnuCoViNaDEj+KSwdQToxyxRVww9eMt8BcK98HBpae7A7Pez24sRmPYvbXv+NQp6oRCxusyS6SEwofCbToOm0Eu5nR0dliNIkYolEqpr/X1Limklv2ls1LnYzaxjT6PeCojwoeCgLf1Dkdlsjw9hkx2TqKfG51Gg02NHjx9NDmnmGCnGYexlu5PJErt8Msw2XQW+KjBWBrt/WGEIkkpdK/0WWWKvcNSNJdUKBSKlUKJH8Ulgxf6phoXAqeG592OXVWMblzMLAQOLW3vDc67jWa8yJqdWmPhqd47jNJEYmk017oQjqUkPTXxexpIO/z2Vp/U1nC6O4easvV8MmajQWp5uD1TVRajHsFISgRJ8cwKyEAjM8TCsTR2tJRJbY4BaZniDq0eOY1xQsAUoyh5EWJ8/N2bKsXnh+cwGZ4PZ43ZdWmJ9hT0JuQKl260RDHiFsCZ7sCU1BwjbO29IezeVIFan011gSkUihVDiR/FJYMX8WqfFe1zpJoIXZM3NnrBqVwXc2mMp7ISRZkPRqEocsqYQpomfghTWRajDtduq5YxEIzeUICwPocC7XjnWNEHqFBAIpXBDTtqJAX2/JkRERo8xw0NbolyOJ3Fc2bajy3qJQFUTAdpxUyx3x/GjjozEsf3o5DLQWswwlTRCIOnFuG8ET0DUfQMhiW6REfp9Q1u3LyrDsFwEoFwUlJaNWU2eI1paIYOIx7kceShs9jFbwf2CmQWMxH1IuD6dA1F54y48fwpJB276+CgwFUoFIoVYFHvPv39/ee105qamgs9HsVljkmvle6mw2f90ill0OuL87KyxdoapqF8TtNFp0VmS1NNhwLEYTeipc6N4UBc0lUUMkzRUPSw02vn+nKJWMXiaTz0XK+YMfLQ/uuh05LGa63ziJszhVHXQAQepwlXb6rA/hPD6B6K4A9uahYX6Vgii3Q2L3PBJh8ZRZLZQj8hCx576gQ2e+uRi0Zk9EYsFkc0GIDF1YVM9U6caA9PePvYLEA0nkU2l4DPbZbH0GsKyI+0I3bqME9OzkOHLAqJMSTHemCsboGx8Sqk8+fSakzZ0WuIHWhUYk6rAflpBddWqxH5iB+FdBrhhA4mZwWy07aRURuZvBRrn+oJyGNPjuxQ5HnYfWbNQa8FEpEQPI5yZOnJNAn6LeqycRFt0BqQ05mviDohrU6DZKZoYSA1ZjrtjA49hUJxicXP7bffLm9mi+XEiRMXdDD33nsvHn/8cXz/+9+fsq+PfexjOHr0KLxeL974xjfiDW94w8T9vIB+6Utfwo9//GNEIhHs3bsXH/zgB1FfX39Bx6BYXng9pIszTf8YOenqDUoXWJnTgs3NXpS55m/zXiys0+EFeaELp8NiRGOlA6+8tQW9IzEZR2Ex6dBc40aZ2wwLC5dzwK1X1Uo7+0gwid881YGrNlRIsbNWU0AvHaMzeZT7rJLe4nlsW1cmtTwb6NmzN48f/+6UiIHpR8M/qxdf14i2030yRyxKT554Bm1dAUmFURRazX5s3Aa86Jqb8PChQWnRT2cLeOb4oESCdDot1jd48AfbLUDHYWjzeeg1WRRiAaQDg8gn4/JAmaF2OPU6mOt3IZnVylywY12jONg2gkA4Ab1Oh8ZqJ3ZvrEC11wKdtgB9MoDw4WMInDyARCgAvckET/NmuDZeDZQ1IJMqIE7hNxgR5+yqMjsOnx6R+iW2/jO6xhTmxrI88v4ziJ8dQCqbQdRqRTa3EcaKRmR0Don06ZOjSA92IBkaEWdrcYiuaIDRV4+M1nJZToTnazSSyIrlwuBYDHqDHvlsDjXldjRVOUWEq/SgQrFC4ufjH//4hPgJhUL4zGc+g+uvvx4veclLUF5ejmAwiIceeggPP/ww/uEf/uGCDuQHP/gB7rnnHuzZs2fitkAggL/8y78U8fWRj3wEhw4dkv9tNhte85rXyDZf+cpX8MMf/hCf/OQnUVVVhU9/+tP4q7/6K/ziF7+A0Th/4ahiBdAUC5GPni2mhlgHQ1LpDA6eHMKg34arN1ZItOVisJv1kppi6zk7uhjhYUqNj5lKZSXNRa8dzur60W/b0DUYlloZp82A4UAezxwZEPHyiltaUOW14JFn+2RSO1Np/J9Cpb0viFA0LZGf0hR4YtRr8JIbmjliTC5qTE/9wU3r8OC+Lgz4i5/sSaXHgluvZvpHi9NtQSAeQDbrxMETw0inWQ0EMUEcCSUw/MRR7LQ345bdjXjsUD9+90zXlNLl2ngKpw6dhjkWQnOVDdmhDqQDQ1PWJJ8ZQ+i538BtsKDg3YBfPNEtnXDnyOLwmREc7xzFq25eh61lGfQ8+B8IdE+anxbRIOofwuDR/Wh96euAqs147FDfxHwxfhhhhGssnJBaqQ2NHmz2JhE8+iyy6XOpzmQ+i3jPKWT9vbBtuhb5ZBTR0wdRyJ2bU5bLZhDvPAa9vw+WDdcgrbWd12vAYNBClwpCk01LgVfB5EQarKHCqhE+I+Eknj06KJE3/mzRaJFIZMRegWKSXYBMDyr9o1CsgPh59atfPfH92972Ntx9993453/+5ynbvPzlL5cIza9//Wu89rWvXfQBDA0N4UMf+hCeeeYZNDU1TbnvP//zP2EwGPDRj35UPEtaWlrQ1dWFr3/96yJ+0uk0vv3tb+Pv//7vcdttt8nvfO5zn8PNN9+MBx54AC972csWfRyKSwM7gI6d9U+8mU//VDvgj+GsI4wtjZ6LCvszksBIDbue2H6+//iQTGxnm3mFzyYRGZfDKIKFwodQEE2u/WHd0K+e7MArb25FIpmVQaeHTgdFvDA9Vurqohs0BRY/H7B2h07NHHjKURcjgXix+NhixKtv2yDpMQoFzvJi+zvHZRw/3o3k2CCv9jDoNNCOy5rCeNcZRRgLp4PDQzKs9enD/TN6tspsQHJ4BKFoDB5zAfZ4cXjrdLKhUWTDfowlTOidw3OJKS2XBRg98LupwmcSmUQUnQ/+F1pe/eYpg1X5fFrGj1eGvJqzCLcdmCJ8CCfcM0qWS8aRPrMPsDinCJ8pxxMNIt19DLp1e2fMa5sLSz6M9NljiHUcRSYahFajhbG8FtbW3YBvHVL5la83SmSK9U+ScpwFmoEePDWCG3dU4+J6HxUKxXTO+2/qiSeekIjPbFCAHDx48Lz2d+zYMRE4P//5z7Fz584p9+3fvx/XXHONCJ8S1113HTo7O+H3+3Hy5EnEYjGJQpVwOp3YsmUL9u3bd76nplhm+Mm2oy8kwmE+ugZCUodyMUgtjVGHPn9MhAiLjVkvw6jEoD+Gw6eHwbISui7PRyCcQtdQGOUei0gqHjtb1ieLJKbteKFnuzsZGI1LVIniyWEzoWc4KlPhv3ffcekIoyg6cGIYD+7rQVt3CLl4BPlMBlWVHhgSo1IDVSLHVFmhIKKNkaKnjw2MDyKdipge5gtgIG14eAwFq3fq/TodtHYv8t4GZJw1UsN09aayWf2L+NdWZYhh+OTzU45lOvHQGJL9Z7BnS9XEbeyQo78QsZkNcBTCiIUjM9y6PU6zyDtGlFPDXfLakFH1c8Aolj69sEEmseZDiO77JcKHHkYm5BdRmc+mkRzowNjjP0G2/VmYtBc/z+xi4LLyNTSf2zmhfUJ4FnNNhUJxcZz3xx+Px4PDhw/jxhtvnHHf008/jcrKyvPaH1Na/JqNwcFBbNiwYcptFRUV8v/AwIDcT6o5AHLaNqX7LhQWgi4VrMmY/P+VCoVHIJosXujmga3f7MKymowXvMa8uDzfPop0OovGKocU47J+hhdzXvBZi8IZY6xx6RyIzFobxKPk7zB1tXtDOSLxDDx2E2KprLSXTz4LCiKLWY9jZ0flf84Na+sOoLrMBpNRKxe5Ha1lGBiNSRSJYz4o0CiYtlZYUVWek/sL0W4RTZOhsOKa2dweHH2kV0wUp69gOKVBldOJzGgE0XAUOZ8XJa9EjdmGlLlcBFg6moGuO4jf7+9GzaatUrvE9N1o6JyYq6mwIxMaQSaZgJa5u7nEagGI9Z5B5c3XTDynTAM217gk3ciIVSbYL887o1wlnFajnIPoHQ2QS0aRjwWhN5mRT89h3MjCq1QUevP4vLM54Oek5JHnRFDNrtsKiBx7HGUVDdA7G7BScL1YZD/5b6H0/fS/D3bylbMWTuW+Lhr1Xrz86NbIGp+3+PmjP/ojfPnLX0YymZRID8UQozD3338//uM//gPvf//7l+zg+BjT63ZMJpP8n0qlkEgU3yhn24a1SRcK33w8nvOrL1gMTiejB1cuTDuZTAbkCrOLHwoIl80owjOVLSCZY4eQSS6i57vGdHHm+IoCtMjkchKxMRh0UpvDNnE+ViGcRN9wFHXldonWzIZ2PEJAs0N/KIWNTT4cahsuioJx6BbtsJrQMxQVkbVzg1cKkXmB50U/HMvIY7KY22zUY5T1MPE0vA4zzCYdGpqcWO9MwBrsQCw6+3G4y3yIaGwixgDDlMfn63UwlMbO9S3IjvaJamNEhbdrjBbEzOXoHwxKPY573RacHo4hm8mheyAM/5kQbtlVR9kiBdZET6Eyfp0tPlPTn6/SzwURRjqNFhbLub/BQDSFm66qk7ofg794HHq9TuqknHaTeBRNRJzyeaR0Wnmj1Bm0KOjmjsjwtWNa4O8yPdqHWP+p4jnMQ6r7KNzXt0KrX97W//kwGvVT1m3yeU752WyA2229hEd2+XOlvxdfClb7Gp+3+HnLW94iXVXf+ta3pPaG8BOJ2WzGO9/5TvzZn/3Zkh0c98m6nslQ9BCr1Sr3E25T+r60jcVy4QvPKEA4PPtF6ELgGztfCOFw4spuX9UAZoMWo4GpzylhsTEviBQWbPdtrHJJ4bDXacGmJo+kfOYz/pm+xv5QEmd6gghEknJRZxqKBc+cxcV2dYogpsWYAmP0pygqZtmvVoO6Crt0gQXDCdgq7GioYrQoLPskLHhmcW80kUZthQ0ep1G25zGVtmutd8vEetYN/emdm7BrQ0yiLaz3GImmUamJI+4PSHcPj41mhiWsNivMjdtwdiiJdTVumR1GISNLqoFEyFjE3R5xoLWhFYmOBDS5ovtzwezFwHAYuVwOFk85sq46BNtGYLRaEMzQ6TojqbhtrWUTk+J7h0IwXF0Bnd6IQo4pl8kLP2mqmAawVDdhJMQPIueeU34miUZTqCqzoa6Z3VwhqfEx6LVybuxmSo6vN0VaXm8GzE4kRgdFDM2KVgejxoR4YH5/cGMsglR4fnNLkvT3Ix4cQ0Znx0rA5422ApPXjSKRwieVykyJRLI7MrDAeSsWh3ovvrzX2Om0LDridN7ih29W73vf+/DWt75Vuq8YYWH0Z9euXSJIlhJ2bw0PT3UDLv3M9Fo2m524raHhXAibP2/cuPGiHnu6j8lSwBfCcux3LcF6EBbaTr6cUjxotBo8crBH/HkoeNjtxe9ZMMy6h6s3V6LWZ12w64VrzHqhodG4pBUofEreOEy/8DYW49KRmREmp80kxzJXSoEjLFpq3Xhu3L2Zbe0bGr140TUNeProoAgepuhYwFxfWSHRnq6BsKR9EumsPN92m0Fqh2RivEYjXTw/feQMwtG0XPDsVgOyLV5cXbsTibFONNVkcKZnDDqDAb6aWtgaNuIXh6LQa/vx8lta8LNHz8ixUEywG0wERaGAI11hWDa04poby2E4+wjSOgPiOR00OiM89RtE+Bw73gUttLCXNaOzPyvnzm4yCkMOYmU6L50BRrJ2lG/chsFjB+Zca5PNDlv9Rvxy30wfMF68ewYjqGhyosxhgzZTvMjPfDMswFTeIGtDUTQXRpcPGYN9wb8fxkwWkx3iNnxZrOTfo89plsggX4/T164kfqRT0WK44t83lhr1Xrz8rPY1vuCWB7abs82dFw0WKjP6stTih549P/rRj+RTq06nm6gram5uhs/ng8PhgN1ul06xkvgJh8M4fvw4Xv/61+Nyo1TDsJZT/z67WcTDqa6xids8LjMef75fLoBWk0GiI5PFCC/sx9r98LnqYJpD1ZfWhmKC5oKlqExJ+ExPv7HWJpNJ4rrt1egbLhbS2i16iQzxYsSoDOuC7rq2GT6HSS5SjNKwFT6ZzGBdrUPEE6NHFDQ0L6SI2H9iECaDHskMO7eKRnX8XUZYaIpoZ+t6MCEiiWkvwsd7/PAQeqocuH7zDtQ1AK0tSYTjBfRFtDi6nwXbaWxvLcPGRg+u314j3WuS1hqXkXSJpotQLKOFY912aHUJWPMF5OCAcSSM9sEgxjrPyLpK15PTDetYSCbdk0CEw14NIn5YcjIcBXbseSHiI4MID88UNzqDCc23vxoZawVMhm5ZG6NRC7OBs8tyUrdFcWb3+OD27kK0/TDyqZn1PFqjCabWPcgnogAjP6xCn/5YZptEvlL5RXyiM9qhs7mQi4Xm/XsxldUir7cB2ZX7Y7IYtNi5oVyey9kG/jI1u2vc9kHV+ygUq0D8/OxnP8O//uu/YmRkRN74aTD4xS9+Ubq2ePtS+euwnf2b3/wm/umf/km8e1ho/Z3vfEe8fggfhyKHvkM0QKytrRWfH0aM7rzzTlwOSEFogRfsjFy0mWpwy6dBDofEGqSATQ1uuOxGnO0NyVgIuh9TPJR7rHJuE0PNNRqJnrCVuhBKoX80juZqO7T81J6ftDaJDKJjGZiDKTEoLLaua9BY5UQgMjLrUTAdVldhQ4XHiqs2lOH6nbUSieGoCLNZL/U5PBaaHGoKwMtuWYfRcEpqiUKxNFKZAra3lCGTyeKpI0M41TWK63fUyv5Y+1OcTM/OML1EVfh3wkLfMo8FXX1BpJJpmKx0t6bRoh4ajQU9wxFUeC0YjZlw1YZadHeOQW/K4UXXNqLSY0NTrQsWHXD71XWSinu+bUTEC9u4GXna0uwTh+wCU0SNO5Ad6ULH6SBOHmO7ugYGmwMmXxU0Nh8lhaQTGaEaHotL3Q4vsjSf3LO5Ek1VDhT0XjT9wV8gdOo5+E8eRDxYNDksa9kMz9broCtvRiavxQuvbUQ4HJF6pVg8BYvZBJfLJuLOmAkjH0/DXtssF/BUaAzpoB9anR5GbyWMVa3ImNzQmL2wbzYj1X8G2fBYcQK90QRjWQ0MlS1I6+3zpj1LZEwe2Ju3IHr4YRSyxZSdVm+kWkMe4/PNdHoRU4kVFD6Ex1LtteKmq2pxuicgry2+9Jn+rfJZi+7hFv0V4XCtUKx68XPfffdJ2usVr3gFXvCCF+Dd73633P6iF71IRAlNB9/1rnctycExukPxQ/+gV73qVRJpeu973yvfl3jHO94h6a8PfOADUiDNaBHrkSjE1jr8ZB+IpXHktF+KZEsf/liHUuWzSSSAnx7X2odCvsFzsCXf+DP5Ao52jEndDT1u+EZPUZPM5KVehh1KpTd/pofO9ppx9aZKlDlMUlh7+IxfalVkJIXFiAq3GWd6QyJc2GnF+9hqPh1GZPZuroLZqMXZ3jB++2yXdH0xeqIZr0G6cUctbthRDaNGg30nhvDrJztlmxIUT6+8tVUGdaayOQwF4tjRWi4dX5nx8Rp8rphOYuF2Y40TdpMW7d3DciE3wIBULCZ1HlanE+vrXJKGY2QoNS76iD+QkHEH1T4LbDRrLAA7mr2oKbehfySGVConRd1MD/5+XwS1FXapMRpK18PXUgN9tFgknMjpMJbRwZNj7Q1g0GrE3brKa5UZYVaDTkQUGx255ul0ATBVwHXdy+DcfI20jGs0WmgdPqRyLEovFoQP9g7h2LEziASL6Uy73YJd630YO9UNmy4zIdIZvTW6vfDsuAlZrQk5vR0pPrfy/GqRt1XBuL4C5mwMGrb4a/XI6m1I8/5FvMYZHDYlBpH3VEPvLEOi/dC515zZBr3dg7zBCufO25BzVAEr2+0u0J7AbTXgmk2VSHKshVEvgtqs105JfykUiqVFUzjPeCpFz+7du/HhD39Y0lFbt27Ff//3f8v/3/jGN8SY8Le//S3WMrwwjo0tXYEh0yPsHmPR4vnkQKNMhxzqkxTCbNAr5Ybt1XIRW6swFXSkfUzawktQOBzrGJ0xmHTvlkqZik6RdPdt6/Hs0QExASTijmsxosxlwiMHesEsAqNL9ZUOERFneunGnBJjvZoKGzbWe2ToaCCaxg/uP4H0tBlTJV59aws8Lgs+/6MDss/psOnqvX++F/uOD2L/iSG86rZWSZlxsGfvcFSiPyywvuu6JtjNWvz4gWNSDM1uLZdNL+JH9qPRYNOWZsSSeYmGMdrT2Te1Y5ERgRt31sjFMhDL4MnDfbMedzqXl4vm+noOVQUOnRmRqEIJumrT2boUYfO5LCLydOf5OtbpNTjb3ocDTx8uzuKSbYqpGraTs1W+orocZT73FIGud3pg2XAd0jjXpLAU2LJjCD787+IJ5L72ZcjHQ4i3H0QmMCw+R+a6TXBsvxU5D00OFzrbS8+Fvk8oFo9a48t7jb1e26ILns+7Eb+jo0OiPLPB2h86NisuHl7M27qDcwqfkv8HTfwW8s1ZzbDOh1GsyWJoOJiYIXwoDphSYlcVa2jo0VOq65kMa1YqvbaiyWAyK1GY4bEYNnIC+lW1uH57lbTTDwcS0nb+4DPdknKbC384WWxt17G+pih2GM3h35esegE4cGJQZnmxjoiip6M/KELlmm1VIlZYp5NKJJBNxFBT7pD9GmWG07lCV7fbJj/HEik5fkZzJtrVx4tXeE4nOwOS7zvRMTqr8OG2Y6Fkscssm5f1YqSMReUlmEpkITi3Ze3Rrk3l0F/ASygZT+D44bYJ4UPKypzIDp4R4SPrNzyGTGbqc5kNB5APDCzp69Zo1CHVfQTJoS7k00mMPfZfiPe0wbr+WnhveS3c178aOmclksNdkLCXQqG4otFfSCrq7Nmzs5oc8nber7h4aKQ34J+ZrplOZ38I9eX2c3UyaxCXjUXOFklR0SeHNSjT4dRyRn0oljie4tljgzKiglGg6YKQKR9GXSh+HIySRFIToyhKQuqOaxqkVojF0XOZGLMVOZnKSaprXY1rwgyRwVKmf/TSim9Ce38YZrMBd17bIDU0HEr5m6c7pYaHdS+s3+hoOwt9IYubrtkpx8gC11QsDbvNDK/LLCKkt38ERptdZoHRDJHRGmY9WMdkNbF2SCNCjqlQpsZmgy3yUhvGv8feENbVODE8GsONO2rk2FgPRdGk10HGfzRU2MV+4HxTpxSB/tEwErGpz1WN14zokb6Jn/O5HCKRBHw+ztQ69yA0ITR765G/8J6LKejTAQTPTnWXTw93ydeU7Rxe+Jp3AXr1PqVQXMmc9zvPS1/6UnzhC18QF+Vbb71VbuMnSE5dZ72Pmqe1NDBdUhqAOR+MdPBCqltCR+pLDQttWTfzzNFB+MOJGREd1qSwmPfQqWJUkV1U7H4qjsmYqly4ZnR1vnpTBZ4/PSIdTCUxQBhtYCSEhcyhCIuF5y4nobkiIyRMQzmsFkmxTRYJFE0mg02ic6y9YcSFKVOKnT+4sXlinlg2a0Q2kYA/FMHx54/jruvW41jbIFIOIM8J54ERJHJOec53bKjCSCCJk5O64UrnXOG1iiBjRGeuWhDeXOpwkw4zrVa6yThWhNGfna3lIlyYdmuudkCvKUaWGHGT9u98flFCiL8ficwUqXwZ5sbb2osb6sQKgNvn6dI8vm9GZ0APIe3SiB9NJoVsdGFj02wsAA0fd+VHeykUihXkvN8CWMzc1tYm/5dcZv/8z/8c8XhcJrLT6FBx8TA6wYvrQhcipmDWctqL8BztJh1u2lmNHn/R/I+igwMy19W6pGX6+dPDctEvbl+QIuIZxsPjjAQS8LktUjfDFuxBv1W6opjuaqpxim8Ku6p6h+Pz1tEyX83H0et0Ei2Z/lzwZw4qZUsyW97zuaKP0PBzcek040DTroEIbBYdtHkn6qtd2NRaA6MhL4XRnUNhBMMpuD0u+JwmXONzo3MgijP90VkjOhz6qq90iBCaCy4JxQzXiOvGAu4SXNOSizMHsJJ4OidRJkajmCuvLbfD66AJZFEMzfecsTh3xu3g61aLgkaLvM4o9VvJrAZDYzHpfGMUi4KMNTjzzfI6b7Q6aA2mBWuYtUbr0j6uQqG4MsQP28vZgcUBp0899ZSYHNJvhwNIGQkq1ScoLg46/Za5LHOmN0pUl9thGu8MWcvIxVSnxcY6F8LbqtE5EJIUFw0DJ0duCAdCMhJkNuikW4aFzRRKRpMBAc5uiqWlqJgdW9duqigKl/FUDR+n5L/DYaXcpjSkdPorl91kOzdUiPBg7dBsMDXF+VgNlXaZ50UTR+6bnV+9IxFU+2yoLXNgx3YHRv1jeHz/afQPBESwcpCpy2kXj576Ci8iWeAMi5w1s9ekMNLFPy+m8njOjH5Nx6DXSIqMkZyrNpRDW+D6mKTYezLr6z3oGY7heLt/SoSR6+1ymLCHdUK0U5jjZcVzrKz0QqfXIzepdskfycBZUY1RfwAxPmYBqKo0iON2UbTqUFNmh7euBjmdebzT6+LJmn2wNGxG5sjs1gYlrPUbkefQ19kHyCsUiiuECw7+suaHXxwlwbbyybOGFBcPgznrGzwSBZlrCjovJE1VzjUvfCaTzeTFw+aRAz1zFnsPjyXwkpua0d0XgsthxuBoDANjEYl0lLstaKpxIRThiAynRG8mAmOFosApuQz7XCaphfnF4+0iohilKAkMevNQoDACx9qiJ58fmPVYKBxa6lyoq3KgeygKf7Rojri5ySfpyLbuMak/2tW6BfseOynCRz4fFICBwTHkB4qiqnswjBfesRc+t23KkNHJ8FhK58TXxnPHh2ZErlg7dOcONxAdhi98CJFoCh67F5r6GnSH9TKKwu0wygvs8KmhWcUN04EsKOfML9M8xWRsaW9oqUfHqY6J2wZH4/A1bkGs52ERO26XbaJOijClORTKwOupW9LXLX2XrK27ET39HPLJ2Ts1tQYjrJuuQyqvcl4KxZXOBb0LtLe3S93Pk08+iWg0KiaH//Vf/4V169ZJCkxx8fBaUeG2YMeGchw945/hAMtIB2tX7Gbdkvr8yIVZUxwtwQJb7vtC3GUpHMSehYMv+f0sFzp26DAqQ8FhMumQSRXFDud4vfKWVtz3RAcik2YfEZtZL8XK66ociMbSePDZLnksZsH4f/9IVETQy25qgdOim3NUFMmmcrh+e7VMXH/icJ+k2Ogwnc3n0dEflgGc12ytlP2+YE89HjvQI6aK584RuOvaJjRUOnDgxJA8Ns+FkQ0WbdttelyzpUoECvWM3lUOlyuKSDgqj8FlLXaQaeDyebH/5Ahu3FmLR57rlfRU8aGKIzH4XOzaUCHryFRenc8OzRbIdHieI0UFvX42uZJItB+Ey4wJ/yNNdBQafzvWN2yBraoajTU+SSPO97RyTSgqm6sc8ph2qwaZVBypSE6Ku6PRPHI5DXbtWC9DUns7e+W5TuS0ODQIrN+yG6n+NlnDYPRct5fRaoVtw9U4G9Chpab4OlsqMq56lN32Jxh74ifIRs5ZJ8hzZbHDe8PdyPtakJ/afLYq4IdHgzaHXDws1hU0s57vtatQKC6x+Dlx4oQML2VXF4ubOcm9ZGD28Y9/XMZNTDYhVFwEhQKaq+wSzegbYfdPXD7909yObd8ceLiUn56z+QL84ZS0arOQmsMoGUWhceBCNSAleCGXOhJ/TLqd5MJpMWBdrRtuu1G8FfR6YCScwYkTw9KyzSJbpu+u3liJKq8Z+WwerTV2/PlLN0vLdkd/SB6bRogttS54HEYM+OPo6BtDk0+PeGAUyWhchJvL4YLZ6cax9hF4HXVSSzTfsbZ3BnD9jmrpfHr2+KCsscVkwN23tKK+yi6Fwlzz23bX4sYd1TKclF1nDpsR126pkiLo+x4/i6pyO+68rlGGjh5vH5MiaWfKhPoKJ7a1+PD7fT0YjhRQ1rwe7kQUscCYdEIZLGbY3D6kNUa09QRlvVn8HUtm5LGpecvdZjRUOxGLZSSdRx+NQDyNXn8MA6MJESo0UbxlgwW5Mwfhduth1GngMmSRpKNyPF4cKtsbwTVXvwghY7mcw0L0DofRWqHHmD+EZ0/QxDAEvcGElo3NqK2rgMXhRDKpx969W9C6vh7tZ3sRyeowxmOsWY/qdc2ID/fAYQlKnY3eV4uU0YPjY4AuGERduU2K3ZcKdtTnK7ag7CXlyAy1I9V3WsSjsaIZxtr1SFsqZZvVBAW0KRdBbqgbse5jiOfSgNECc9MOaN01SGD+KfYKheISmRy+8Y1vlIvVt7/9bfl527ZtEyaH/+f//B/p+vrpT3+KtcxqMTmcTMnvhRf45XB+TWXzePbEkFxcZzNTvGZLJSwL+KPwGEejKWlDT4y7E0+G4mXPpnK09Ybxw9+clDERk2Hn0UtubMbNO6tlhIXcpmf6id8Vo0dcP9711NEB9HZ0Ijg4ON69xMJvLbIcjqnRwltbhw0b12FHixf5OaILSU5UDyXx+OF+HDw1DI/DLBEWLi0LpDl4kg7OFDhPHu4XJ/Frt9XCYtJKmoXdVL/b1yNppBt21OK3z3ajbyQis734PPGyHk9l8dIbmlFbbsOjB3sRjLJ7LCuFxTQbpOdO72AYNqtRurFYi3Oi3Y8NTR647GbZTzSeQVvnGKxWI7Y0e2Wq/H/9rk0iQITF1pUeK3bZB2GN9qLKawEifmTCoxOzv0oYPFXArlfhvoNj84pZPtN3XF2OoweOonP/0zPud1TX4baX3gG71yfjPeosCRhjQ9D66vDUoW4MD/rFt6iuxguH2w2Nw4dwIjfxurCa9bhtV52kCJcDg0Enjs+l1016Hr+slYKvW3PKj9Czv0B6dLCYbjXoJJLG58Zc0wLH7rsQ17pW+lAvG5TJ4fKjXyMmh+cd+eEk989+9rPQs9Axl5vRBv/LX/7yfHepWARFsbM8tT3c68G2kVmFD2En0IFTI7huW9W8LsCM+MwlfEjvQBg1FQ78+/0nZFbZdLKFAn71eLuIkKs3cG5WbtY/ngS9gAYGERgckIPny5Dt3XzNS5t3IYfR3h4MOh3YUO+SQurZ4Gin58/48dzJYfmZozQmMzAaxy8fb8crb2mR7qieoaSMwSgJDg5oDcfTuOmqGjx2qE+mtcvxpbLFDrxCQdJ6R8745TZGvx7aX6xlCkXHRGhxnAWPg2kuFl9X+KzQasulyPvE0QFJfbidJmxtLZN1pUnib57qmBA+hPvzWgsIDfRiIBSSkSe2WEgef/orhu7HtnQQulwSWe3cDss7N5Wh7fhZdB56btb7IwO9eOT+3+PFd98JjzGN8MlnkIpF4dpgwGDfUFGEAugbGIMzHIXBEYPGWTmlXo1vkssFXzurLcozHWM+jshzvxHhMxvJ/rPQmh6B+ao/QCqnjBkViqXkvN99TCaTzNCajWAwuGRDTRWXDpr9sRV5PvyBuFzo54IXe5rozSV8yPpGj0RYwrG5r0qUOo8/34tocp5P6vkswiPF+VhzbpLLIxoYnbP7UOaHpXN47uT8juQUNOyq4vBTXrBL8NMFI4Ss9zHodVIjNPmRqH3YJUYoZFgDxPqXyYHWbK5Q9GiiY7ROIxE2drAxqsWZZXSh9ocSONMTxO+f64XVakA0np5o+Z8M00fsuqLbct9wCBqre/YTKhSgzybgNmYlnTcXHmMOHceOyzyvuQj1dWNoKIiGcosIH5IPDaO6yjOlIJznmUuE4bYVW+k5WmNzs2/Zoj5rhvAwksPd826S6GmDLu6/ZIekUFwpnPe7Dzu8WOw8OHju0wovMLFYTFJhN9xww1Ifo2IZEdESiC9Yz8O7B0ZicpGei1LkYy5sNhOOd4wuWEDd2R9GOD53TYqukEUhO7cQK0EzO0NhdqHF6z4nu88WgZrYZnz8xonOUVS4rbhjTz2u3Vol09z5xQnq9VUOnO4JIpfPT9jHlFaoVLDKzjEKINZRTR7lQXgbxQ9TYNtayvDTR86ID1FztVPMEiu9VunoYwfc2Z6gzECjBcJ0qCeNFouIm1AojvQcUR0NJ5xnkthQY5UC29mwW4yIRuPI0DRwgeeq/XQn3F7nxM/x0WFsaHDJsNYSJrMJ6za0iOP2gbZhqZs6fGYEJ3uCSOXyczpsX87IOI5+1iTNDyfTZ0b7Fh3KVygUi+O8/6Le8573iKHhi1/8Yil8pvD55Cc/KT8PDAzgf//v/32+u1SsMFnmXRZBsUV89isVL/QlZ+G5YP3JbFGLGfsad7ieC4s+j7pq74R4Y0SGc7poSMgi7VJEg8XDunkMXRiRWEzBLa//LIRmATLTKfRg4v/0E5LvmeKRw9XMWtfBmV+dg2Fxm6bzNGeTTewbBUnzvfTGZpzqGsNYOCXnztlmOnZ5aTVSc0SfHh7vic4xlHusMx6n25+EpXqdfE8hNhem8jqkY1H4MoPYu6VKjm0yFGL1VTaGzkQkLUQ2mwEK5847l80gN3AGN+xqhNfrhM1mRlVjAx490IvDp4eRyXLQqxnxREa6GB9/vh9RmWOGKwyNCJvFwO2uvPVRKJaX8675qa6uxs9+9jN85zvfwdNPP42GhgYRQ+z8+su//EsZe6FYOzAKQ8O8xeC0m+aM2mh1kIJd1gfN/WDF4aQjgZljESbD7jDW1My9H8ig0rFgFOFIQjqjKMyKLeFasQEo8zlR6zGygnTW9Bj1AedusZbnXFv5TKwWg0Ra4uNt+IxeTIZT42PJLDTjNT7jh0efY7lgcUgpo1is2aI4YzHy3be2iB8OW9O5HvxVFk9zFhfFlNtuQjCSnHFMXHt2dplMM/9sWRTtL7jgrKhCemwA2lm8jrUmK4zVLUgM90NndaDGZ4HLaZPC8zAn3uu0MmPNbtYjEsgXw2MLRH48Xk9xbMUkkpEQjNnj2NNUC2PVZjx+eAgOhxnVbjcMTIuLBUJxWwrIQ20juGFb1VyG3ZclbBrRu8sXta3O6UVG9b0rFCvv8+PxePDud797aY9EsSLwIsSuJgoGFuXOBaMVvFDPOVMqV0BzjQvdA+E5hQRb6Omrw9TXfOzaWAGfw4TcHFEirdWBMlMWuzdVwuiphNXlGfff0UCnyWN0cBCWTBBupxkFjQmYNHV8Mh6nUY65vT8kkQi2+k88hkYDs0knbspMbx0+PbM2iEJkNJDA3s2VOHLWL+aLJVjM2+B1yPoO+mOSxmKB8wPPdMtoi0wui77hmKS9WGjOVntGRNwOk9T1zLaG9PKpLrNJPdNs7D8bwU2brkJLrQ/GUNu5mJdGC6O3EuaGrUgFR1HI52CqbEK2oIdBW0CZw4QKl/mcp1OhAK/LgrKWDfCfOTXn86QzGNCyoQlnzw5Ao9WiMOkCnU7EkR/qRkLvlJoVj9EEnUE/xSepBKNq4UQGrvGRG1cCLOS3VjZDazQX55zNgcHpg9ZZqTx/FIrVIH78fj++973v4dlnn5XxFvT8uf7668Xg0Ok8l/9XrA0Ybdi6zocDJ4dndZNmAGDzOp/4Cs1Xr8Ohm821brT3BWe9n3UvV2+pkrqZZ47N3uHCGpebdtbMKXwIMzKa8iZUVFlw6PQoHn/4mHgBMQW2qdGDW3fXoW5dNXJgy/Dc+zHrdLItzQBl5MW4hcBkh+ebd9aJr1AxtTPz3Fk3dJW9HHff3IKHD/ZKdxdTR6WCas7N4uyvu65vQvdgRMQOi77rKu148fVN8niMJtWU2eB2mHH0zMhEofSM884X0FzrEKE6GywuPj2cx57bb4J5xIdcLCjPl9ZsRS6dQWJ0WGqlDK4yaD01U8TedFGrs9ix67qr8fBgPzLR2Wu5tt18KzwuK472JlDZuB6BjqlCyWyzYzCclBEbOrsXeY7tmOX1w5voau2xTZ38frmTMXvh2HYjQgcfmnVdNHoDHNtuRsbopgnXihyjQnG5ct4+PydPnsQb3vAGGWuxa9cuET4UQwcPHpSIEE0Pa2pqsJZZjT4/yw3TNgNjcZzoGJsyB4qprI1NXtT5rEVHYro/FwqSBqJYYDTDZtJLPY9MBQdwtj8k9TGlFBGjKBw0So8ar92IZK6Atu6gXKzZKVWsfGE9UA5NVS5UuiwzbBQmI8Myc3n86LenZBL8BBMvZQ1eeWsLbr+6HjaTFkYTi7ozMoSUwoRpNa+dXYsZaPVa9AxH8cThfrT3hSfqZZiuorfRtmav1N6EEhkpaE7wvHMFKfzmDC1GYSj6+JhHO8dE1BVdl4vO1qw7YmQolkjjTG9I6pNYyMwoGkVRKV1HA0gKp0cP9smssbFISiI9PCPuh6kwml021zilU4pFwxydMRZijVBejoWt9xzX4bbqoE+HkelvQzbQXxz3wOfObIWhrAH6mk1Ia2YWTU/HYtFgoHcIh/c9j6HTJ1AYf06ctfXYdNVV2LixHqmCCUOBJCLhMCzhHkT6zkrnFyOFNY11OJ2uQH8EyBts82bQtreWYX2ta0HxQ0FKTyoKS25q1Bdff2tVNJm0WRQGTyB2ah8ywaGiz0+2AGNZDewbr0OurAWZnCp2vpLei9c6+jXi83NBJoeBQECGm5aXn8tZDw0N4a/+6q9kxMXnP/95rGWuRPFTurCkc3mpYeGFlxdqm9kgbsFycdFQRCRwqjuAQDghFzNemMu9VmxqpLAxSHieLz56/rCOhQKJF0K7RS/V9fwdSqJjHWPYd3xIhAJfgLz472gtwzWbqxYcS2E06yV99L1fn5y4bXwqx0SZCr/e94Y9qC+349fPdOGZowNSTEw2NxWjQ1e1lskogWgqiwDFRjYvqT+eN4/ZaTNIKobjMs4MRMSjh9ExijQWIl+1sQJ37GnAulo7OI/AH05IBIOBGwotWTuDVoqxmcriQbK77GTnmDhBU/zxtba5yYtrt1WJIDtwekRqYGKJ4nPA9bOPH4NWp5EuM6bRmKpk67zFbBD3bT4W15BijGtgzMWRC/YByRgKLFzm2hgsgNUlzsHpwsJ1XlJMrknK8NFgJIFEIgW9QS/eRE6nHbFUAdl8MULGaBXXT5uNw5RLQK/Jw2C24vSYBs+dGlmwm/DmXbXw2U3zbsOXROdgRIR1aditDEott2Fjg2c8Mok1B98f9NkItPEgNIUMCjoT8mYP0lqmmVfv+8VaZK28F69l9GtE/Jx32uv555/HZz7zmSnCh1RWVuLtb387PvCBD5zvLhWrBAocuixL7cWk+otiKkiDzqEInm8bmZIa48WZF2PWrVy7rRrlTrNc0DkQ02SbdIGlIGGtA4BHDvVh33jay8ShXCySTWXFIJHt8q+5bf2cYyn4pzQcTOCxw/1TbhcLyHEfSGng0kCiOX9wQxN+/WTnlG1PdAbk64/uWI+bdtTgkQO9ko4inLBus+rFXdkfBKrK7BLpefxQn+z7Rdc0SLqI4oc+PN+77xj+/CVbRHD85KEzMrOLZyQdaGYaI0bEfPFP79qELgqofd1yDjxEtr3T6+b50yNSK/WaOzZImzmnsPcMRTEciMssM6PBLsfWVOFCe18IY6GErDELx/V6DfZsroLLWoxCEQqfeNszyEbH04+iCEurBBjLhmBs2oUM5hZAkvpL+BE5+QzymZQcr93qgFmTRjKZxajNg2zlJiR0LtkrU3ESgTE46P8szzO/ytxFEV1a39ng+bptCwufo+1jM1KqFIi0RvAHExL1WsiFfDXCC0QWNuidjqkXDSV8FIpl47zFD1NbkcjsNQBMVZjNc7vGKtYu8XQWR8/655wwzyjGkTMjuPmqOujnaNth2/fAcHxC+MwGZ4Jxxtade+tnfGrgBXkkkIRGp0FHX3jOffAQGY1gHdB8czN/83Qn1tW4ZKK7HJ8GMp19JJjA08cGpAuMoyRC0SRa6jwSpXrg2S4kksXWbA4w3dpSJmKkaygiwofkxz/98IJMJ2YKJX8wiWPto3Jf8Vx4WwJN1U5JDzISxMgSTQD7R2ISDeJQ1Koyq/zMaNH9T3VKlMNjN4kxpctqlBTJ4dMj8OyuF8EpUZiB9nPCp7Qgk0j7+2H01kDjapizhkuPDJJdR0X4TJCMUgEhW96M470x9B8/DI2nWpyiGeGqKbfLcZsmffKiKNqxvlwGv85mX8AI284N5bJG8wWhmQacq5as1O12siuA3RvKJ55PhUKhmIvzTia/7W1vk8jPgQMHZkx6Z7qL0R/F5QUvqBz1QIEzH3RC5kysOdFATO4W4njHGAKxdNE8M53DYCAhX/FMHmf7QnJ7cd7X7JxrOJ/LlagopHRaLZ49MYjWBo+Ijq2t5Rgci8uAUdYpcVgoL+oepxX/9dAZiUzVlTsmpt1TDD11uB8hGiUWmLo7F71gLRPFE6mpsONU95gcjMtmlI4tFnZ72WHFUK2LM8W0OHR6WL7vH46IAHzm2IA4R//qiQ45b7pB0ymatUK0FCgJUYon1glJtCYbQ8rfu+AapwbboZ/HA0mTDCMzbTK6/J6zEU+f9KOzaxjpVEqmkEu6NJOXCAxrsNKTxAeFSF2ZFTfsrJFaJ6ZJi+ujFafnG3fWwGc3zit8+HzTBmAh+keiE5YECoVCsaSRn//5n/+RYmcaHNbV1Um6izVAnZ2dkp/++te/Ll+lN60HH3zwfB9CscqQgaWh2ed+zSaAmPqarQA1nsrDH1h4PywOTqRzONkxhsGxmKSdSp46dFPess6LjY0enOiYeXGezKZGH+Kp2Y3kKG4YiSh2lWlwvGsMtXE7HtxXHDfAdFRthUMKk3/2aLsID3oZUmSwhb50HozwPH2kH7furhchUxR/GkmNlcQJC6IHxxJiKMg0DVNhFAultB+Lwek5pImkxNyQHkeZZBZ2q1GiSpNhoS93m8nkJ4qqCae01/qs4mqdTy28xrlkDJpcir4BM+6T4bmM8kwTJPQGavdnEBgrjrIg+XRiyrw3rg+72jbUnSteZsMd2+l9W6tl0Ctv5nFbTToRRwvV6bCeSGqmFoDinPVYnG2mUCgUSyp+KHj4NZn6+nrs2LHjfHelWCMUC5sXd0HhRW2uixkFx2Jq0Xhx5IwwRlam3J4vIJHOSN3LLVfV4mRHYFY/HM24KKGn0A9/c2L2cwKdhk2oLrfjySN9kn5hl1oJFu9GoikpXKZgKcGIy7o6t4gfRmDYgWVmrUuhgGqfTYqQOQctEE1POR8aJTLNxbQenZonQ48hmv3RuZmiayJ9li/IpPpZT3BaSGvCqFqsgGdvy5++k/m2oG/PdNJmL7pPT0090cxxOl0DYTRWOaSYvETxNVGQouSJ2xabnhovZF/0xgqFQrHU4ucTn/gEotGozPJi1CedTuP73/++jLa48847cc0115zvLhWrHEb0WGvSPTh3nU0pQkSjvrlSGFazDo01LkktzQUvpi6nadYuAQqRKq8NDzzThbe8ZideelMz7nu8Y8Z2FD5/dtcmiap0Dsxen0Z90VLrligMi3FdNhN6hqd2+LENfiSQEHHDbUouzvzPZtGjuswuw1wp6jiPi3U4LP5uqnFi27oy9PujUovCqMzVmytxpjc4EcUqYTQU27T5lc5kxeRwfCC6uDzTf2my0bK01RcKUkvDVBnXmpf7Cm/RgDKvt0BvcyLLqe7zoHd5kWf3V47defwqdkpxbIfUTFlc0Oj0KEwabJrRmpBITDWo1FqdM8QuO+b4/Bnmc+k+D4w6rUTgSmnEuaBb92RxpVAoFHOhvZBurxe84AX493//d/n5Yx/7mNQA/fznP5c2+N/97nfnu0vFKocXN6/DNGMO1HRYx0IRMBfZTB7b1/mmzLaaDiMoO1vLxPV3OoFwCo3ilKzFD+87ghftrcff/dluaROvKrOgtsKG2/fU4x/esKcYGeqaOy3GfXicJolUUZxIKmba0Fa5gI/PCuO2jPRQCNGMsLXOLRGOYDQtYsts1kuEiCkapuY4Lf6G7TUT9S2lkR2TdQIfuxjpYRwKUlSdSmdhNesnok88Nqb7SrComFGxySKTbsz0YyI5rRGm8Rlfc6LRwlTJbTSIpnM43h3Gb5/rxSPP92MwlJSi7KzRAaOvauqvFfJTIlEURxoT/Xumqh/ZZAmHUVHUlZ73+aAHktmoUl4KhWIZIj/33HMPWlpa8Md//MdIJBIy5+tP//RP8cEPflC+vva1r+GOO+44390qLhG8UDNCwwsW60YWi0mvk+gF/XL4yZ77IKWRCBzOuXN9+YKzoCrcJrzkhmb8+skO6YSazp4tleJ2fOjU8KzCiDOorttWLYW1v3mqC611TvzxC1slWsKoEdutzXoN8pmciA92bj34bLcULpciJay3KfeYikIilUU4akQoksKGere03PNiyyhOUWSYJPJFIcIojsWkQzSRFlHCSIM+nRVhuHVd2Xj6KiVFt4wosS6podIhX7QCuH5HDX73bLfUvdCUkHPDsuNhHo7Q2FDvkuWj0GqpdeKGHTUwGvVIJLL47q9PiCiiyOE2jPzQO4mF2hsbvWCZC6NKUgfkrYOlJoxE/1nobS7obQ5oDSZkEzEZpWCsaEDOVo6jXSH88vF2iV6VoGfQ9tZyvOzGZpQ3bEc+lUQm5IfObIPZUEBdfSXaz/QiV9DA4KtGXmuc8Zx7XVZYTRx3MfP5Nxi0UgvI4zwfDxCnxSBjTw6cGpoRPSMUR83VrlnvWyuU/qZK/ysUiuXjvE0Od+/ejc997nO49dZbpZj5b//2b/GjH/0IO3fulEGnb37zm3Ho0CGsZS5Hk0Ma5I1F00WfmHBSjPfWN3hQ7jQtOvzHN+VYKof2gbC0XjNKYbeasK3FK2aCk2s85j8WYCSUxuGzfnSxHZ0FsW4zdm+sRIXXjEf29YhJ4lx4ZAaWWYqQg+NdT/SK2dJSBodZh8KkC2CmUDTGe/rogKSkePHd1lKGq9aXI5nJ4ie/O4MNjR7psqIfDdvJWTjLTi/un49FUdM1GBHTRqaXGAHjBHYOAaVQ4zYUOGxJL/dYxIDvRMeoiIC7rmuQY6MAC8dS2NTkw4A/ijPjE+J5HlubfbBZdOgbioppokOfRDo4gtHuDkk7OcqrYK+qw2jejH1H/XKsVV6rrFHvUESCLIwO8VgcpqJBpElXQCCWFBHWPRRDHhppq+ex0qRwKJDCt35+RITYbNA08PUv3gynIYtwOIK+3hE5fljd0Gp1yBY0GAykZY2mPLcajXRwlTk5BPfc7dxqNJLG6Z6ArCPXhNEzGmPOM4Fk6r61Gums6xgIY2QsLs87I2otdW6UucznH8ZeJXCZIoks+kdjUrJEry16QMlree1quVXJangvvtzRX64mhwx7m0zFlt7HHntMZnmVip1ZC6R8flYffPk9c2wITx7unxJtYZs2L/wvvKYRtkV0yCQzeRngyW6sunLbxCf49t6gREk2N3oWdQHibC62N79oTx1iiSp582e6QhygoYHPa0N8nvoiFh0z/cRJ4KzF4QXCbNbB6x7/gysll7TAqc4gDrcNYn2dF9tafHKlGR6L4SePnMZLrm+WgaJjkSTue7JDWtV3b67Eowd6pTCZ0+61Gi12byyXKFkyk5OLLc+70mOVyA27sxh14O+zE4vRJUZj7ryuSaJMFIXMpnHEBU0XH9rfDbNBh0p3se2bAuyxQ73wOi24ZmsFbLlRnHjwN+htZy3TOTHp8Liw4wUvxCtu3Ir2wbh4FLEeqZgwg7ThUxTddW0TWmocONkbxgNPd6J/NI5EKj1+EdWgrsKBu29rEXdtCqHUaGxW/x26ePtDCfQkszjdHUEup4MWFuhyOYyE4jDodDKuhHVgpWgLz2dba5m4T0/+TJXM5vHQc7041u6f8liPHezDNVsrJZK3mDcivtYcZj2uavUhnfHIOTGlWBqtshbJ5Aticsnifr6uLBYjEomieG6udYlvkqpiUiiWnvMWP9u2bcOPf/xjETn3338/brvtNvmjHR0dxTe+8Q25X7G6VPizJ0fw++d6ZtzHGV0nOsfkgvTym9bBME/ghtcWjl1gEW+ppX0yp7sDcvHb0uhZ9Jwl1gCZ9ONyiYa244/UUutC/wgvuLPvh4/DqAEdjWmORzSFmed9sieEXz/RLufH6Iecc74gXjmcD9Za44LNYsQPHygO5IwmssjkBnHrrjpExmdx8Xj4Oy+7uRmRWEaMCln7w9QU3aCpT547MSTChzAdxeJwXswohJ440g+f04JKHz+R0DKgOMG7zz81ssg02t/cWYNj9/83BnpL7tXnTiocCOLZX/0cN/yhHY8cSIr783TGQklJJ77slhb88vGzGA2nEEuy1f/cE9szHMGDz3Sjtd6FA21D0p02Oe1VotpnlTlvYhUgz6dWWspMBiPc9uKMM7a0s/ONURh2s1EEOiz6KWkwrgqFz+EzIzMeg23pjz/fD51Whxt3VCKfXdzrJp8rOmwXl6gk/9Ye8jdF4TNc/JuaXCbF19yZcb+prc1eZdyoUCwx5x0pfs973oMnn3wSf/InfyIdIm95y1vk9pe97GXi9fOud71rqY9RcREwTbDv2MC821C4cFTDQvthumY+OHOJabGLhcNPr95UKZ/qp0NBcdWGCvgcxdqXuYhncpLqmhxp4IWEhoAUPoQZG5oH1lXYJuQBhcB9T3VgaDSOmjIr6irsqPBYcKpzTARZU7UD126pgsNmwv6TQzL2gnVDhAaGezZX4vnTfvzy8Q6c6gpgNJjEyc5RiQyxU23v5qlFxKXj+pM7NyLa34HRwSG5bTYdajUZ0HP4AOp9RrmfrfF0qF5X65Z0HG9jIfRjh/qKtUJzpLRCsbQMc2WbPlNJNG2cTnONG4fahiUFPIMCa8C0InIr3FbctqsWO1p8EpWZrkTozHzsrH/uJwrA/hMDCMVm92O6nAknMmLMOB90KY/N8TwqFIpLGPnZunUrfvvb3+Ls2bNYv349rNaiSdqHP/xhqQeaPvNLsbL4Q0kEJk1pnw1erzi6Yl11M1KzvNEyh9o9FFnwEzZTaqwnoqPvxaQheFGtLbPBba9Hvz+GQdZCjF/sKUbsrIVYIJUcjmXQNzy1zZ1CqBgJKbbdUy1wNARrZaxmg0yzZzG0TGy3GEQQPt/ml6GnTPEM+WMSNbJZjTJRncZ7rBMqwUGnTG0xisPoFAuj2f1l0GnRMxTE8fZRvPyWdaj0WqRmikNk2WLPeqGNVSb0PXJ84tP/ufn05362263oaOvAphfvQnpLFYbHEiJieB9rgPZsqZK03E8ePiNF0LOls2SfGogw272pQga1cigqBVEJik5+saZI/J3meDKZ2uocCKPaWzlrbt9g0OFUZ0AijPPBQbp9IzFsaXCv2ens5wtfY7187hYyeMzmRUDbKuzzumArFIplFj/EbrdLgfNk7rrrrgvZlWIZ4XVrroLW6VAUzPXmyoslu6AWg/jhaOaf07QYGOanZwudgktdUMx0MBW2mAJZ8auZvk92po1fXC1Gg0RGeHFhZxdrfCiC3A4WDBeKRe+hpHR5MVo0OQbFIt/o+NwvFjfznJk+og8NhQ8jKezK4u2yL01BHoc1Q48f6hfvHqfdWKz5Sefw3IlB7Go0I5lIyDFOtiicLILoM8SUm1Gvwa+f6pTjKsFCdvoavfFlW6V9fnIsR47HyunvpVmZBRFk0mbPIbTTvHEofFiLxPVgVGqueW6ERe9z3c/XQTS5sDMzYRE0o1BXivjhM1pKlS4En4vJXk8KhWKFxI9ibcALHSMBi4HFvXO54/JNl9GBxWAx65f0E+rki+H5JNQYkdFxhMWkY+EFRHxqcjmpZbGZjXLhp1ChEGGEh4KFYsGgs0sx+PH2Mbl/cvaHLfUs8OZjsD6Jv1df4UD3UFiKpvkQLJCmnxH3y4t6KULEKNbVmyqkXqYEDzGd18JqtyHsn92buTi1voDycjd6/YkpwqdEivO1BsKo8LIYvSgWK90mOPUZZKN+5JMZcW42GZxoaamSomWjvij2JsNjr/TY5EHZ5r/Q8y0CaZajLhSKka3FwA66hR7r8qIA27if00Iw3amiPgrF0rJWu0MVi8TnNEkx6nzwIklH4nR69ugOoyBspV7It44dWGwRX8r3aUY7mB7iFyMJM+4fn+bATjR67GjGX9EeuxEN1c4p21KE0JuHsGA3k8th14YKaYFncTOLkdm9xSjY2f4gzvYGsaXZI/5Fo5NMF7lO21p9InRGAnG5MNGDh+fNSAo/0VN00fRRxn3k8zLUc0LETBIKPHxGlx45MorqzdvnXTsp8Hb6cGp4bhlI40W223M3DWVmWFN+RAd6kIxEkE4mkYrHER4eRL0lgesa9eJFFEucq7fRjnsO7VxfBq9jflNLQm+dudpZKaK4LykMnwfn+LDXK0n7MILJrsCFPH0ozmUArtI+CsWSoiI/lzk0h6O53q8eP1ts2pmFbS3l4pMyHw6rXtI8vLjOxYZ6j6SqliR1oWGxLH2JghJZIYwitNS5xHiQ3V3iHRNKiUhhfQ3bhDksk342ZU4zrt9eI5007CoiJZESTWiltoffs0D4t+PDTMcfVlyd6dYcjKSlG2xDg1vEFGuCpJW9wo7mOhf+87dtxeGo+Zw8Pi9UpRQQIxncd2kt7GaDiNBgNAkUzl3wKOiY8nn8+T788Y27UNFQj972zlmXRG8yw1S7AW2PTZ2vNZmB0ahMUOdQWGs2hLFgcErqjBfbMq8TtU4N4m1P409vfiG2rfOJRxE9kCiGWOBtM2qxod4rpoJzXXhpEski7/nw2U3YtbkC+44NzvU047ptNXBZDeNDZq8c6IbODjk2CsxFa70HtqX6m1IoFBducnglcLmZHBa0wNGOAB4/2Dc+dbwI0zLbW8pw81W1MM3S8TMddiIf7xgTb5fJ5na86NMwsaXaOZE440WWk9n58uL5cz7Tot/ANRq09QalSypf0EhkpOQ+zMNc3+DFxgY3jraPiTgqPV7JI4VX+23ry9Ba60RbbxiH20Yk4lOqbWGxKdNQjdUu9AyFEYtn8djzvSJsTAY9cvm81DhR7G1vLUOV1yJDSxllYmqJrw+9XidRH84ZY4cY04Kt9W6xFKBx4bpal3REMfJTOm+eBvfNWhv66JSOm2tGXyC304hGexYjh5/CaG/XhBjIZrIwOZxovfE2PNKlRfdgHO39IalJmixsXA46Q7tgN+txy64aPPq7pzA4FBAhJ7VEGg0a68pw4/ZKYKgNHosGztargPL1Mt+LC5ea3K2nATqHolKczfUorXE6lUFVmQ07WsoWZWxJL5snjw7i4KlzlgDEYTHi+h3VuKq17IoNQTNCeLwzIB8qKJxLr2HWZLU2uMWOQfk947J5L74S0K8Rk8NVL36eeeYZvOENb5j1Pk6X5yyxr371qzJ2YzqnThX9W6508VMa0hmJZ6R7ipEUzpmqr3LAZzeI6eD5pKGiyawY7LG7iwM+6XRc+nTKC2TJSZpeNKzjoJt0U40L9RULu0BTYAyHUnjicB+C0QwGR6Pir0NsVoOIEKab6NJ8tmds4mI6WfzIcWg0uPXqWqmXaOsNSVcXhUdTjVsGhmayOUk9cMjqNVurpMaFHVz8mWvTXOOSOigKvUJBI2LrYNuIDCflYzE6QmdmbsdC54HRmKxDW3dAvqfzdGE8WsX98GLGWqIbdtbKxYyO0Vy/Sh9HQRiw/+SgdJbVVlqxpc6JWlsGhuQYorEkjA4P7GWVsLg9+I/7T2EklJA1EGfgeFr+Z6SJf/I8Fgq7v7i9FpHuU0jqHDJNnuta6bHAmA4iGxiAw6QRQWpwl8Gw8ZY5PZVKInY0nJQ6I7vNCKfVCNsc4yvmfP3ptAiwxX6ITtlZWRMpMGc91RV+EeLfFDve2JnJHDQFvs9hliimivgsLavhvfhyR6/Ez9LAqfGh0NSwMMdncKwGh6q+5jWvEW8ho9EoHkSTudC2+8tR/JRg+QWLfvmsz+rhsuj9TJ3tRRhZ6PXH5py/xDQQh5Ca5ntxajR48ugAnjs1LEXBs70462SelQdeh3nCe2iG+NEC12yvwUPPduNAG9vZrdjU6MPDB3sRi2eko2lzsw88FAoat92Mm66qQWdfSC72jOpwna7fXi37YuH4sfYxKSgORlMirth2T/H3yptbpHj1aPuoCL3TvUHxZ2GHV2ku2tZWH67eWCHjRFjbwtdEyevl98/14tFDfeLVw/OgpxCjQxzbcN32ajFRbOsJ4hU3rxOzxF88elZ+l1ElPl6pI0g64TgfbXMl9lZl0fX0QzAYjDBbLcXaqXgMuVxOXoMOG8WHHQaHB8ZNt0pUaj4onti67nJZZ30d87jZGl8SnpyBNpsxH9eU61maZK84B9fX7bYiGIyd19w9xdp8L75c0a8R8bPqa34oaiaLmHg8jk984hN41ateJcKHtLW1yaBV5TG0MLzwLkVXzWwXrmgqO26MN/tFjR5AFBBXbyyf07E2lc2ii/Oo5hA+hN429OHhFO+BOfzzmNLaf3wIxzrG5Gemyh4+0CsFzYT+O5FYGjkJX2gwFIjjuZPDIiho+shJ6W6rHk8fGcAL9tbjgWe7RcxQdPF/ul3TxZkmgxQvrAtifREv/Cx0ZtqLURkutcNqgMWol0/zEymwbLE/ivthFKqxyiG1RpwGT02aSOclrdc7EsO1WyrFc4gjKV7zgvVyDPTpmexbVIKmgxzQGouNiBjNZNLIhGa2m7NbjeLXbHOhIFXi878mqG9ne84pesKJrAhIClFetPnmR5HWWueCx2ac8nt87V1Jhc3nQ+lDxOr+OKpQXB6sevEzHU6N5zT5973vfRORITpLr1u3bqUP7YqmZNpWinbMBS+QscZiYfRssMaHnjsLvf8PjERht85dbEsH5n0nihESn8ssE9lLwkfgPDCTDsEIJ7cXi70p2q7fVi2zw1jHQ/ddiphsroBEMoPhQFIKg7e3+nDVhnIcODU8sU+mLTg5noXUHPcwMl5TxYhJKJKUCxvTPCzsLVFMH8blWNj5c6qb9UvnXH74HY0UKYroxkwx9cTzvXjVC9bDwnRe16gMCK0us8tYDdYaNVY7cPS0Hxa9EU6PD9Gx2dWhdJ1ptTCUN0gn3YUgY22iKRGItAgowRqjnsEwBv1R7N1SjSrPOdGnUCgUq4E1JX7Gxsbwne98B3/3d38Ht9stt505c0ZC+b/5zW8kDZZKpbB3715JgVVUVFzwY5XSEktBKQy32HDcWoSXtpEgU0Xz1/QwWhFPZ8V0b9b9MHKgm2rSNxtcS25Xerzp/1OEsf7FSlFgN4m/jmaaPw1TRrl8UuaVleqK2E3GYZLs6OJ4DEarKNg8DjNGAsW5XEfPjOKOvfXS6USjRNbYMOrDiA/riUowujRZKDBdxq46CiGKoqA/Jbfze47cSNB7yGKQwlduwygSz2ckmBCRQ6E1OJaQ6MrLb2yEf3u1FKCzjoZjJDiglXVW0s5v0MPctA2p2NPIpmc6fFOYOevXQ2PzQs+K+At4HVM0PS+Rq/yszzuf68NnhuHZVQfLHGJXcWW9T6w0ao2XH90aWeM1JX5++MMfwuFw4LWvfe3EbUx5EYvFgs9//vMyYPWzn/2sFEn/z//8zwVNmecbOXOWS43TOb/fzlqBvjDsGmOkhLUpjDgwc2IyGWCxLBxFMBkNc65vIhsRc0GOO5ibAjY1eeU71vlM2bdpXFRpOMJCP+Ejo9Vm5H/ezigEfWUoaiha2OLN55yCg8W4Hf1BXLe9Roqq/cGk+KywyJdFyozskNM9QSl2ZopObGw0GphMeliyc0ejjBRibuu5Yx1LTBx/gQaE4Jwt7QyRwkLxMo9l3GtJA71Bhxy0MniUgojT2ScLjpOdAdRU2GAq98K38yake08iNjosfkPEbHegYes2uNdvgdZovuDXMeufuBzTn4PpojiayqGmcqrnkuLyf59Yzag1Xn5W+xqvKfFDMXP33XdPETT8+ZZbboHXW7wYEs4c420PPfQQXvrSl5734/DiGA7PnHR9oVAB84UQDicuqsh4peGFjAXNbV0B8bwhjE743GbsaC2XFuuBafO0ZkuP6TWQYrjZYMCNhcys56F/z2zQG6W23CYjLKS1fVywUvikUhl5/uih4nWYZO3ZqcSuq9JEdY+rGEVhYTOPp1QgzfQS61RYl/Lgs93SQdU7HJHUF7vMbttdJ9EgTrTnjC8a+LGdnSZ+nNcVCifmHVnA6Mfk8zZzjESi2K3F6A/rmJjawvjPjDbRYJERo2eODSCZyklE0mwsptdGQ4lZI2ROmwGnOsbE6+j5AOBzb0dldQbaQgYajQ4wO6CvLkcolgNisQt6HVMo8rkurf989A6GUeliobdKfV0J7xOrGbXGl/caO52Wy6fgucTJkyfR09ODl7/85TPumyx8CNNdTIsNDs5urLYYlqNKnS+EtdphwMhO+0BEWsYnF2SybJcT0B8O9mDvtmqc1QSneABNp8pnk3qf0jpwv9FkToz+GNVgyqa2woZgxCm1OoywMPVEmL6il47PWYzEsE6Gqa3eoWLbOGG0p7HKiboKqwwa/dXjHSJI7rq2ESaTTgQERQ1dnTnMlI/HffCcrlpfLm3hDz3XK6KC6RweA9vUj3AyeQFiGPn7/d2iTihQWHfEOV1OmwljwcSc583oDA0nJz//7CBj1IwihlT7zqXNmJLbvYkT4oclDbd3a7XU0nANyr1WPPl8vxQtl7nNM+ZhaMcNCNk6zcdlgXgPH89qlGhVU6UTBb4WF/G8U1TSpycQSUtxtcUch8Oih4vjKAqL69iiUGKUUF1sLv/3ibWCWuPlZ7Wv8ZoRP/v374fP58OmTZum3P65z30O999/v3yVxh/09vYiEAigtbV1hY728iOWzMlU8pLwYXqGURO+uJlqYX0Li1y3rPPhyJmiQGI7uVw8s+zwKcBuNYibcKnmJZbK4VjHKEaCMaTTxR3zd6rK7airdMDfNozrtlbJY9EMjkW1fSMRieqsr3dDWyhge7MXrbUuyXMZTDrmfaBnCisLmZbOsRKdAxGc6BzFLVfV4dGDvTLPioKIdTQ8B6a6OJaDU9G/88ujxSGSeSCZzopbdDabk9oe+iSxhZ3mfmxR1457sty0k35COolwUPhRMFHY0OsnFM+IbxAjONx2snDkzxwj8dSRAdk/7+MxdfaHsb3VgVAsiVt31WHfySG0dQflvDhAtXvIIVEk1hyx0JrRp+lw33qNRkwsd7aWF2uIGB3Tz242OTFNvjC1Lb3bH5VhrDSDlPPV6WC36KWdnvPMFkOll6MrVu+boEKhuPJYM+Ln+PHj2Lhx44zbX/SiF+Fb3/oWPvzhD+ONb3wj/H4/Pv7xj2P37t24+eabV+RYLzd40esfjYmIoUhwOkxIpfMSiWCkRYp3wykpvF3f6MZtVzdI4a0/lJDf4QXdYzeJEKGTNC+wiWwBv3uuVwwBi2MnDOKVU0AeiUSx8PeaLdVSZ1Ns6U6LYNm7uQqbG70waFmUDiSzBTFVLPny0DSw0mNENJZDe28AL7mhWaI8nYNhKSi++7YWETuJdEYEDoUV01nrap147vgQYomspLEMRq0cs1y0NRoZTcFIE3/esaFCDAspAl6wu046uLivP7ilGcFwWtrmuZ/Geo+knjwOIwq5mVESrgNN/m666v9v7z2gI8vPMu+3pCqpSiqVSjnHVrc65zDTk8fj8YwDYJtsA7YxsLDLfsviQ9hDWODgZcln4bCsF7Mf2PhjwQZjMzb2jO0ZT+wwPZ2TupVzVimUKkj1nd9766pLUpWkDupW+D/n9Ey3VKq6919X9X/u8z7v81bI6av90tE/oOF/n3z/NjlQJhIdG5DxiSFpPOSX1sZqOd08qcoUnqtzTQNaaizyu7X8t/C5NUtHYjIZiqqviZyf0vxsKfLfGjTKzUJ0dlYC8U442vxRlngf8B+19U/IV169qY/j/SFpm2shGo3Jd9/pkncfqxa/L1Pf+1SABOr5m4qXgYHBGsK6IT8DAwNzHV6J2L17t/zv//2/1ez8oQ99SHOB3vWud2krfLJBmAa3Dza8kbFp7YCi/PHaue55wzD9OZmqMLgz0yQ4bQUEQlrsyeO0ftNOjgJS4vdIcHZWXjzZJl9/o3XOQMxbRanm+eO1MjQypWpHvs+jJmW73HN4b4lUqddnVlwup6oSL7zeYqU3z6AmEfqXJkd2lcoTB6q0XBUKRZU4VRR6dbwFfWTbayxSwogtpFnUHA0vnKQby6OmaG3dRj1BdZq1ZoL1Dk0pATvYGJYrrcM6tfzwjlLNLYJ7vHm2V1480SY9Q7f8YviF3vdIrezdkp8i7G/WGgHiECVSe8pEgldek+HvXJPBwVGrnIevqqJOfmjvE/K1phydeYYR+sLNAfnAo/UyqtLyLXZBzXtsKizhmZj89VcuSkuP5cMieJDjfe/xOsn3OqVvZFou3hyU0fjsNFt5433YUZcvJy736Lnje4Ic6QxZh0MfQyDjyYu98tzxWjl7tV+Vq4XgGA9uLxa3yyQVGxgYrC2s+YTnB4GNnPB8J2AzvdoxKk0dI3L+xmBKgvTMkWolIeTjJLusKDE9frBKn+OfX76hxuFEMGYC7w+mX7rI8L0Q/mdTWIgIicdFPrcMjIfkL754TsdRAHtj5nV55Y+9b6f++7VznfMyaABEjM374s0hnYCOyoE35mqb1TYO8BRBAPC5oF4xtoLXJ0/nuYdr5V9eviGZGU6mEchPvH+X+m/+15cvJF2bDKdDfuqDe+RoY6FmBg2NRzQTKRyJ6kgMVJWWrlHZV+WSsRNflZ7rl6W8IFu6yDtKWMcsn0/Kn/5h+b9npiUwFVXVjHJabWmODCX4jaYiM0oIj++pkG+ebFtEPCBrH3h8i5y62JMyl8mX49Zr9auvNSsBSrbG5BY9/3CtljIJOezqH9fn43one4gASJ/HaYjPJvmcWA8wa7z6cJqEZ4ONAtQJDL1kyqREfOgpHVCp+DTlLzZJDMYLiQ+qUIHfIyde7xW/N0Mzc/DPsHFSjgH8m/buokNl8trZrjnikwyMe7jRMZp0TAAGajZufEUoWBOTISU5mowcjOjx8/p8jREQbb0BNQuTSk2mD3PN2M+1SytN5BJjLfAbJQElJM77zNV+aaj0y+tnu/Xx9qR5yESmK03VGPdEh1y5dlkJFYTjVtxh/JzGx2Xq+knZU/uonG0OaDcbigsKl420dIf0dE/KwcYSudwymJR4UL7CME3pLhlQ4Vp7xqTIn6UEdGGKtA2yk5gV9/CuEtnfUCCNVX7NK0LRwpM0m6TUt5rQIbFxcmYIl4GBwVJY2ylEBmsCbCpDY1NzJCQZ3JmUhSylgrJIMtClhLkXLMyzYYJ6a7c1ww3lBwUhWdVyOBCUgZGwnLrSt+Qxc8dBaztG6WTAaE1JDeNufWWubvJ4esoKs+TJw1VyZGepqjKU3Jjh9dDuMg1mZIzFTSbJx4+tvtyvYy54LVKYE9Wlx/dXyCP7ytWHxBDUl9/u1GnsdEklgq6s4aERmbhxdi4MkM170To6RAZuXpXGglmNGuD4akt9eh6ENuKTKinwaj4Rpbz2Pmvu2UJUFOXI6at9OqE+GazDc6gSVl2a2tRMaz5kq380KO9cH5SmzjElnZAxiM/9AtfJRDiqA2zP3hjU//NvU/U2MDBIBaP8GCwL7qYZBooXBPOsrVosJD9s2CgnyJ7JyimUl1BdMMGyqTL53Qabt53DQ0c0BCHb7VKSlKgk8dcp7bxKnS/DpkdnFsdD+SrZY8knYoxFJBpV4/C5pkEJTIbk2WO1avJtah9VUkH2z8j4tP792WM1eizMAMODhKeFSfNMWUdqRb0CZP6gvJy41KsGZYzRW6vy5BtvtUm+D+N3tio2c4NPXemSkxGT0UEIWab0jVjmcs6ddbAfx14eDU2LU6JWlkZ2huyqz5eqohztfuPYMID/2l++sWTcgAYPBiP6mPQkRFWHmJJBFIrqeSYDxnfIFuXJE5d7JRi0PD/X24al0J8lB7cXaaTBahfVuRKZF9fWPTZXngNX29KktixXdtXla+ebUYIMDAwSYZQfg2XBBka5B+MqpIXWZQZ16ubvdqmSQNcRyhCbZuqNJqYEATN0Y23evJEIKDVspDbS09I05C9ZCY3H4R9a6ngxFEOmKF9Vl/i0bMXxovDQLs7GiAGYFntmU9G9NB6MyFe+e1NJGgnQnA8maZ6DPycv9Shx2Fmbr+epnVITYVV8iv0e3Xz5Oqbil9/uUOIDrEGkw0oiMYFz/qwnpIx/Q2Qisw6ZcUD2eHWL4On4DiakZzi1Pd9Od3Y6LfKICRvD+Mkrver/Ydnxqy21NoB15zhTNQSwfpx7WZF3HqGwwXvIVPhQxCI84QRPlT3m5OSlPjVcryY4fAbXNneO3vIlORyq9o2Mh+TVs13yMuXR0aAEtVNtVQ/HwMBgHcEoPwbLgg2V0QqUUsiawWuS5yXkLu6ziD8O8zBqRKL5NhFTwYgcaCyWf3uzTdp7AvKuo1Vy/vqAEgGHI6Ykob03oIpCVYlXN9mF5Ifv0YK+d0uR3Owa00wdLXtMRXQYqf3wkUBQwwF5Dle6Q7LdXt0UOVY2dgjarEDe0uVG16gqHLSr3+gc002SIERKUHiDICkcF8bkd671K9lhyjrAv4TSgfGYDivKXahbKFkuV7p+nyGktL9DbOgWm5mNquoEuUGBQWG5PjAjz9Rsl9DVV5W4hcJRJWsoT+QNUUpyxETya+pldNYjYxMTcnh7iSotqEgEPXKujxyokAPbiuSti6kDPq21KVDyN5PCkMixYWRu7x1XD1IiB6K7j4XGUD08Ni1ucgcWvgZzxkaDUlmQndIDdrcYD0WlreeWemhlR0Wt6fLx8zpD12COW84M9Mm+bcVSnp+1asdjYGCwfmDuhQxWBAL1IDfA3jxUuIkP4eQP87bo9koFNlJKTHQnVRTnaPv5h57eKnsairTcw0TyY7vLNNkYgpVsk9pS6RdfVrp2XO2qL9DSDZlDlJLefaxGx2IAUpPx26Ao8TQa8hcvHdnKFEoWXV5s4OT84McBRPuMT4ZlYHRah4ry+GxPhhIVfEklBbfmkqG88JqoOTUlOTrwlEBAurqY8s6gVEgGpJDN2VYoGFmBagYgZacv94mUNIjHl6dqD2pQME6AIFSoOWlp6VK466hEnFmad8SIjcQWc4jV25d7NTcoMyP1rzaK1KP7y1MSH5Dvy1CSx6iMH3p3oxxsLNI12l6bp3EE+IoutwwpoUvFJQhrXHZC7R0C0k2yeOL1ForOalk2seTK3zlf1vPtK30yHB/LYmBgsLlhyI/BikAl5dD2Ei0ZLQSbOoblPXUFagimu0nNt/lZSkr4GcosDCytKvLK9z6xRXoIHuwOaDmIbJ7ivCy52jIsD+8pkzRHTMYmw1rCYNMnj4eQPtKj68pypGswqBk3mH77h2n3ztfNubIoW559qEaO7ymT7328QbZX+WRnXUFSo3ZOlksO7yiWyWBYSR1lHJ2v5XbqH1ra+RrEh+9zfHzfnYnPxUpXpksLAkYZjO+RmUMn1XRoVkkLGzPKBCoRZIHOM46Fw7EnoXNkqDooLa/ciErRo98rucXF1jFr+WZaiZwzI1Man/mAzBRuk8mpqHpcIFcQMdYYD46GTY6HNQDy4+/frcRlIUrzs+T7nmiQHaxNvbU2c+UvHdlBeKNLjmwvlboyn7gzULv6VO1prMmX2nKfnsc71wZUFUMJTAXM4ollM802wsfE3zX9+86vRw45GLpVbuP6GAmEZCZJkjTKGSQNosy4FPt8MWtzdFxfa30C9b2EDvHl8oqvgYHBZoQpexmsGAzipOsJ1aKtJ6CbiteToYNGSTnmY5T/H91VJm19AbnSMqTKCC3sh3aUSk62S1p6A3K9fVge2VumG1FLz5gSjGJ/lqo6fA9Vg+ceGg9pQCKbVXFhlhKiwUBIB55OTUXkPQ9VizO9Ts5c69fgRTbAHTUF8p6HaqWyKEtC01FtX8eojRqDD4QPfjxAlMvIFCIEkTEYuTmZSlKco0H1BXEyqEY8hnlgjObYXpOvKgKKDTPGIANs/p19AT1OCB+G5pxsp74Wz1NVUhgPM4ypT+dGl1U6hByx+WAOZ40ITKQbrseRL3Xv/QmJDHbKWOtlncTuKSwXb8126Yt65XNfuSbve7ROaitypXtgUtr6RlTVQqWpKcuV8cmQnG8alOeOV8sv/dhhudIyIs09YxruuLMuX2d7lfjdet5bK/2Sn+vR+ID+kUk9Ls6JKfLMIaPc+eS+ctldn68xBkOBoGTF32+eC4vWUhUkzhFOwXUxGZ6Vjv6AXLgxqO8tZUVKhQyMXUKkSgleF4Jqg/dqIsWQVcz4tgGcAM6p8IyST1K/R5ir5nAoUa8s8UpOpmvDlsX4PZqYjkp7X8Aq28Zi+v4zwoWRMSaG22AzwYQcJoEJOVwajvidsn3l2AMrtSV+IiQnL/Wqj8W+w6YywYiJA9uLJSvTKYHJiHzl1RsyOBZaHIK4r0J21ltpyJduDmnr9MDItBp6ycyhPHagsUhVm8stI/JP37muioL9WmTxoCT9+Pt2yd66Ap3LZT23tcNq6WnGKtNhyP3W2x3yzvUB3TgZp2FNbQ+pgoOHBmVkb0OheoEoK5EOzUR5Ep45LlQiyn38DJ6o9z9aJze72OQHtMhmb/R4pg5tL5ZX3+mSax0jUsNwUSEQclLLYozhsFKbB/UcvuexOiktzNbjZ71OXOyVKNPqszM0hfqVMx16jAvXj2TrnCynErzsTKd43JZRmj8oNuGwVSbjJzELt3SOSo43U1Uk7QJjyKuIEtBiv3uuRJjBWjDSw+uRgaEJeeWdLvUtLQVIcFVRlgxNhOUr322W7sHFrffkQhGU6EkRj7AUmA337bfb9f1kbVj/hQZtzPFPH6mW1nhnIetwaGepnLncuyhyAPVtf2ORVOsYk/v/sbianxPkUXX0T8rZ6wOLOgH5vd1VXyhbynMWDcndaNhon8VrEU4TcmiwUcGekeyi5o4a4kPasfU4a+SE5v+IaAloR12hfPNE6yLiA9jE3rrUo+QHEnKtbUSTmCEIgHIMHhy6s1CJXjrVFjcHz1jeD1q0MQY7HPKFb1yT/B/YL6W5Vqt2soni3my6ljI1kRolACWB7i7yb/j9YSNlgjxeHz2/6aiqHhwbx6SVKYnJ4OiUKj201zPTCxXhSnqatv2j6uApgkRlpDtkW41fju8t17gAUp4p81G2wrj8ZvOwlpKGx4Lyz6/clKcOsWmPzu1HkDE8RP/63eZFxAdPEcpUe9+4hlLy/+xMl9RV5GonmiuhPAWJudk5pgoagLgtxKkrvfLEwUrJcqXPdXTxoQZYY8zpjLdYSCDmpWj73RIMz8jX3mhNSnwAydmYw58/VjPfVb0CQIZRsgizVJ9UGqNI5scwoGRNxKMOlADOzEq/dsYtfi1IAYb2HE+GKpgbCSMTET23ZN17EL2LNwe0FIwqaG6HDTYDNk+h22BVoQZUDLhx4mMjHC8d4cXYtaVQmtpH5nk1FoLN7NTlPu0AY9dnIyJ8kD+oPuzhJDO/fq5LDdOoIpAV7vwxGbPZUh6jy+rtq72SQQkrBfpHQjqJ/vi+cinM88iZa31qvoZgUCrBR8PX2aAJOnzX4Sq53Dw45yHSbjeHQwkOxuOygiydk3X2er88dahKzdQ28O3Az663jUiWx6ndXJBD2vH/74vX5M14dxZ+KbrDIHSQMp83Q78OQXhkX4V09k7INPO+EoCy1FibL6+d71Zi1to9LtPTM1qiO3WpVwlpKMEYPB2enZexlAy8fhcEL4mnh+MuyyPLp1jXKREoaxDWoztLtYzWPzatnXJL4UrzsIwsSPxeEWIx7eijBIna50vIJELx2bulUInoYLwzD8LDWuHzSgVINMZ3SqgbBZwLnZHJiI8NCA9laBOHZLBZYJQfg3sGey6WDe60maSOQRhlpMDnkfbedt2EFrZP2yBf59TlXtnTUCh5uW4JRWfmVAOdrF7sVc/N6Su98tCe8pTHglpzuXVYnjhQKd54+GAi8OH0jQTVL4SZ+fmH69QPMhSYlod2laoao96i6agUH8jSUhebA6U2VA8bLleatsKjGhxoLJHzNwa0HMT/G6vztLVf835iot1nbb1jMjIWkq+82qI/zxR3FC3MwfiQIBa0+TPQdCoUkV31pWoWp/vNOi/mnqXPC5rcUpWrZTEIH2RsJjarCodtRkYtw4x9uLFYn38qHJ03mDYVmNW1pdyX9A6J56ku9qrXaDAwLWPjIZWbMVSjIKTFS2WQveXAuZCSXVBXoKrV7YB3dg9G+PJcHbXR0h0Ql9OhyhMlPCIAEstavK+YxZdC/8iUkr/E3Kn1DMjy4EjqUTA2UBy5eSCc0sBgo8OQH4N7AvasZHeW+rW4zyY6O6MjEfDBUGKaXKASAQ0WdKWrP4V0Zn9OhlQWV6hpFjMvJTRHPCGZjX4pTAWjKS0M/CiEA3T0j4u/ZUgn1kNkWrrGJD83U8+J/B9aunns8X0V6jdKbKVmjIM/N1MO7SiRwbFJzfjhqJhd1trTo+dJSYpuo7HJkHT2T6rBOvGOm/PFo0NpjufOZKgrqc9ZGVKhHVXW44KRWT1njLm0eaOosZ5UeiBclKMwZvOYhaULCOREbb5kZ6QvqQAsLIfo8zhSf59jJcunqtBq/5/vlXEsKs+lAutrGcPltoFHivPaXuVXszZeMSIJ7DXg8P0+t/pazlxNXapLPK+N5AbhfFbynpsUbIPNBEN+DO4J0tIt30miCRZ1AA/N2ERMyzaQkQJfppqe+Zi1Av/mf+CieOB7oTOKPYpREn3Dg/pcKDQE79G9db09Wzf/pVDgd2vAYTLMzFi+FL5LaYfhnenp1rBOQImNv3P8kDQe9913OmVXbb48fbhKjyUSndFjoTyGP6m50yrvaAuxmoxpx45qiQvDsx5JvPSCDwcSSAwAP4/vJhKZmTfPizWDDNo9CXwP3w+vSxkOYsGaMxuMcpmdDs3/F7aRQz55b7xF2fEuLMeyGyLZRprjs8zjrJynxV9HxSmOZ0MtB+aU3a7qsxCQR48rTQlqQ7VfhgMhPTbWl2gC1mAl+zuENXFY7HoHChbnZJP9VKCEudT8PgODjYSN8xtu8ECBAkLpYeFHJwoGd9pszt861a6+H7wwbOKQD3seFmCaOxvtU4erNLH562+2Sp+aUy1FBBPv195sk56hKfngkw3qY1gKx3aWLqkOFfrdUl/pV6MsJbv6Cv/c95jz5XRaJlrICkSBvZmp5XRs0ZWF0fbEpR5rnlm6NY4DYgF4POUpusEwSVPaggihDFH6IheJfZivk4jNxoTXJ7HUsqXCL1YSjQUM07XluUo0OCtUFzb1DM0Jine7aSBlpjiThOjYA0u97nRtq18OeJ/4IcjhdHRWxoN03k1Z0+xXsEdiiuccEt/jZGB6fEke5EfuGjrahDXwuKS+NEcayn2Sl52hXyOXqbLIu+xz1FfkpiTN6xEQOTv8cyngpbMH6xoYbHQY8mNwz8DU87oEAgG4k0QloWUbQ3JpvkdqSnPUpEwmDl1bjGOgdR3yBDFijAReHPw2eBDCYSsQkE2UTRcvDnepRf7kQzfBsZ0lqsosdSeb5UyX5x6qlRyPU8kKnoc9DQX6PTxKeIxQlyABdEhBNDDXYojFX4NKFQnPalr17i0EBooqMmw0eJf4Gv+H9OzdWjQ3uJVOMR7DOkAQIIccZ1G+x0rNZvJ6sVfJWaKiQlmC58cbZINIgTzfrXXIzLCM2skSLCiJqUoza80nW4qUQM600y00I+80Dcp33u6QF0+2ybdOd8hr53ukfyy0IlNwbrZTnjhYNXdeCwHZe+JQpXjd916E5lwTSzn8vaHSr+uQCgRalhdkb6gSEOdCwwB5W6mA0rmlIndDnbeBwVIwOT+bKOfHkZYmo5NhLZcgMJAZk5HGINKVHxMkJDIbk7GpiJYRKMX4szG4WsoIz9QxMKFdT0BVCjY+h0PNsJPhsBT4sjR8b3ScsQPpqmLQMo5qQqbOP37rugSmImo65fK0cxv4YOb1CMajHPXEgQr57tkuTYqm2wvwHBiSSXYOhSOyq9YyJw+PW11hOreLFGeC76Kzku5K01lQaekoVJZiw3lNTIXkRueojE6E9XEoJXSXMbST4yKpmCTl7bWFUpibqcrUhHqMrAwh9STFZ4jx8xhOKU/RxUZJz5/j1u/zXJTXeocmJN1h+Z2qSn3SWOVPmp7Mz0yFZ+Vi85AqYZiFMVYzSNUihB5VLXTdea+is3pOqGysF2Uhzo/n4Vro6J/QsRAobrxPKGX4nKpLsmVyekZOX+uV4txsyVLiZJXUyArqGZzS86gt9SqZWubKkyudo3MRAbzbvA7herT915Vmq2/pfsCa/zWjSh/DYzl0XWUH5D1DqotzVGF7EFjtz4nwbEzzqRgBYpfA1ARemC276vLV6GwNBeYam9EuRtYLxQxFaKnRNesFa+WzeCPDaXJ+DNYKtLNpLCQnLvVqqzmKBftqVYlPju4qtcLNVnKNpqVJc29An4fBpMyk4s59S1WePLS7VMrz3BKbsSayMxeL/BsIBX4DWo4DU2Fp6xwVz1aXeDLTpLMvIkOBcf3A5W6czRQChepiTxaHUIQjVvAexMCZniGjE9a0dtrcUXc4DxQQPrTpMJqdscjG1mq/XG4b1ZZtcnR4XoAaw1DQHTV5mmMzI2nyrZPtel6UsNyZkLBieXRfudTEN3cIAqUuknEhLJSrdm0pkM7+cbl4s1/niw1r1k9Yj43t81LLkJKwx/ZX6NgPxl6QfH36Sp92IbE2lMXIonl0f6VkZaZruYpNKNkduGYl9U/Ijc4RmZqekTxfhs5mQMF519FqOd80kBAsGZOh4aAqVHwYoXhAPuh22lKea0m+DocSMszB6mtyUAr0yJ4thcIIWAhCdUmunLzcqwnPrDHPBWmhpAjBm5ieUbPxcgF7jB555kiVbqh4vThvyjF5ORkSY9bCfUrXswzcDp3xhYLINcR5U7LULr6V1PPWKTLSHHKgoVC2VeVpJyFrwU0AeUmQX/5N8Of11mG9PnmfAMnlKIEoQ86NuzwGmwxG+dngyg/Ep3tkWr70rSYZT5Jvgtrw7odqZX9D/pIEiDDBC63D8vXXWySaRCniA/SHn92ugX6MtbDBZswdNiQBA+8PPtOoJOPrb7Raz8udZUa6lZcTnZXvfbxe283PXO2XwVGrTGTvR7aKBLnYs6VAZ1O98HqL5gtBRvgD60fC37ulQL02/++/XlLSQ4cVpCWxRfx9j9RpvP+f/8NZbXtfCDw/n/zAbtlakyt/8nfv6KBR9mjuhI/tKdfQONrYj+0q0xZ0zNmoLCgItLXzmp0DEzrmgrIex/Hl7zQl3eaZVP/hd22TYh/zxJI8wCFypX1UR1F0D03OBffZniZSpgk0vNQ8pIoRreOoPpTJUIbIGcJHBarwwlTlyRe/dV3b4ONPP3dc/P2pI9Xqj/nrf700p+JZ5nBLKeR13/9YvSpUperXSf4xwvvf1j8uZ68NzHVZQfDsawglj/VLTJNeTQSjs/LlV25KWzx7yN7L7Vdm8O4zR6rvaOTGelclUIYIEMWXlgyUYg9uK9Y5f+sVD3qNNwOc60T5MZ6fDY7IrMjLb3cmJT62QvCd0+0yOrF059ToVFi+faotKfEBeHNaegLaFp4INry+4UmrsyhmZQGR43Pr+1bXF/simx+bUjQamze3yZrKfuvvyO8ENmO+ZYM+sK1YDdU8D8oNSgZBg0T5Z7osPw+lJfcCXwm/JN94q82ac5QEHMe/fPemjAbCEg5F58o+kCpSgnuHpvSY6b6i20vnd5XkaDnx26c7dNI7Xpl/e6NZvvFmq5ISb5YVWrgQIxMhefWdTplVFWQxxiYjqtrxPtrEx15f/rDuzZ2j8tDOEtm7rUjTmZ85Wq2T5glLtIkPCIVm1KhtK2F2x5tNpFiXa63D+n6mygPiuvm3N1tVEZsbjJoElE/IGEpsL0+8hiBo524MrLglfjksJdzwocw1YRMfoINNEx5DPhMzvyB5mwm8581dgZTEB1Au64nP2jMwWO/YXL/hmxBDgZC09y6T5huZkWvtIxrYl2rTaO4OJM3lsUG3zrXWER2cmAgIiS2fYxwmcZjuqUQooYlvjkzmpgRG6zNGXmZO2R+1/J3p4iQk0+LNhzBlHco9zZ1j0j8c1PwbNvWSAq+8fr5bMjPT1cMStP1DcR9NRoY1SZ3NjjJXMrD/oRbhk/ieJxvkXYer5T0P1cmx3WVK2phLhQEaXxBriMpCKYixFfy7a2BcHt1XIWVFKECTcuZqnypCicQuETe7x3Q22qLjSHdIK2XGWdrVF3/fBiGM7P6vnO7Q9WCeFapYYi4RgASeuTagYZG8F7k5bp1WT0KyToj3ua006vYRLYHZHWwLwTle7xidG3uxeP0c0js8qaWupTA+GVb/0Z1CfWgzMRmeCEvX0JT+n/LNwnTqQDAiF5sHl30+FL3IvWg9W0dA1WT473IgGdz+XTUwWM8wnp8NDDZv7uRWUk0gHTfVHR13hd2D89Ob2cAhDxgn2QQ9bpf0DE5qiYe5SKggPB/fs5GZ4ZLh8WklI3SGYWq2weMhJmyU/cNTWqph9ASPtY+L//G4rXgWpiPiy3bpYxdurjyOPyPx14JMETDIdHbOhflPxbkeXRtGbVDGWrhuqCCoPCQlQ6iYYo5KxGb+fU80yOmr1ggOyAEKFEeI4RgDMaorShTdXUy9Z+Amx037PDzk8QOV8vKZDiVWiUAihggUZM8nh+zDoxMhJT+oTKlAyrQSpPGQZahOlXE0G9PsoQy/R4kaShLnws9DlPJz3VpapFTZUJmn/+a4kqlATLNPtRfyvpG1sxKQc1ScewelL4dDWvrGNUk68fjwqeDhwcBsHyDqEmXZ5UCJELKcLBl8owLyuJLUb0aD2EGcBgbrGYb8bHAkm82UDBCPVORHyz2kGFL3L8qW8qIcvVNk2CWbDB1O+IV606a0wyhxM7SfsiC+oe7fVqyEiLZbV3q6NHeNankFVcbpTNfn4s77sQMVShLouILEgDyvW2dYofq8fq5TwxAnCDpccNh2Dg6Rf5RbJicjqnLoscSPbZrhpfFQQPtw8R5pAKOWkiw/CqoHpIbUYAgi4yggKZEoRCSqJT1nerqqJWysvHZuTqYqUhCtxHIPf6UcV1qAZ6lQjc8rfb/sdbTeoyUIQjxccSnYmUTM3ELNw7SOF4qhrACyh2m9NN8KkqSbDpOzRY5uvTYEUWewLXE8K83M47xvV1DgZ250B+RC08CiI2Ajf+dqv8YrbCnzWUN2xSrtLadc4IPbbIWdeEPmsu+BXn+bbXEMNiQM+dnAQDEgSZgNPFGBSQY6jhgpkQzRaFTLO+FoVLuvXjnTqSZmG6grlHMYMokB2PbQ838UIoL5IB+vnOnQMhwKyOh4WE3SzPBiEObZpgHdKNmseK3+oSkdZ3GwsVhnE7GZsRHf6BjRuV0l+dlaAqNjSEdnLDhmyBndY/wMLe68FvlBzKBia6OM9NThai2tUUpiHpWtQCSKD5CdhspcVUEgQ5AZTMIQOUpKmLJRqVBTMAajIqFEcR74kQZGgqpmoCJRtkMNQoGanA5r+3mixwKViIyehWBdygu9mtAMEbM9PxwPHiL2ItZEk52F182ZCz1MBjqtOEXu4HkUJI2J9DqlPt7uj9LD4NLLNwf135wrnWB2VhGPZc121OalbIHGGM1xt/UsXU6BkJApdLu9F7SsX20dTkm9+DreJaIRaPHP9jiloiRn2UGr1WU+PbfZTWSIhfijFiYmtCcDNzEEly6X+m1gsNZhtMsNDrqIdtRZwX2pQFmDVuRUeT98GcWHsEHUikTiAyjJ0L1VU+rT10tEYa5bydGr5PH0BFStsTsAGCnx5oUeDTPcXp2nGy+loPc/Wq+bD6U0UpxpH4fksCHzd24+a8t9cupKnw4OZfNcqJiw4R5m3tbotG7UkDC6+FCWuPOnXBeYCMlDu8tVAeKjHAKQ+JnOM0JQ8EJB+urKfOrpIdmZ7iqgpEHnkaWpegY54TGoKZXFOXrOPGc2KdEzt2Zl3ewc05b7ROwm/XpBycta/5iuGyoLxwORowy3T43eGTr5HRKJvwhyx5yxpZKtOU4NtIvFlBBSDrIVKogQ60HpjmGqfB/SBonknCBVnCNlPUgrBm/WNRl4SoIsMYAvBZ7HJp8rBQoEmUvLjWyA9PM4Hp+ZniaHGouXFC7oRNu/rWhTER/gdDg0DmEpcE1x3RjiY7ARYMjPBkdsdlYe31+hkf3JQAkJsuHzLL35oGZQGiHszJ4fBSGxg/gwzmLwZeNgswSQAspBlK7YcGlBt0II8+c2UTqnAlMhbb0WR0x+6Jlt6iN55/qAvHWpVy7cGJTXz3XL21f7lEww8XxfQ5F6DuhgYkOGADDgk9flNVFEGGKJ12dHXb7k+6z5WSgYeJI4YspbGRkOefpwpRzdWSqTU5ZywnMwFZzHlBVmyYefapALTYPaYk5WDwRGTcSRGZ0hxWNRgjAKo4zw+pwr3VaYa3lNyEp+jlvJC0GPkDiUGqtkZGF7Tb48tLskZWtodma6HNpeImX5Hjmyq0xudI5pB9npK/36h6nuGJ5zvJmyrTJXGqv9qoxBsCpKrHRfd2Z8fVzpUl5EsF2hkhodKqrlMsujxXvKEFdUKcpdvM9cJ7xfqGkkXbOeH3i0Xv1dNvTc4+TJBqM3juwo0ZiDZKD8tn9rEW/9bQFfFhk9K4FFUK0Ii62VufLofmtQbjLi8+zDNVJRMJ+UbgagupUXZqmJPxm4PnY3FOp1bGBwN7j1OZH2QGO1TM7PBs/5sRGemZWW3gk519Svmy8EYXttgWyvyZP8uI8lFdjMLrQMq+KBV4ZNEQKAB4SAPTZ+5nLhlXj8QIWOWGjqHJWW7oAOtnzzYq+ODWATpQzE2IbaslztAsMMPDM7q2GAu+oL5GbHiG7sEANa0IcDQRmfjKhig4L0vkfrdVQGIYv4i/gF4rEoUpAOBojSVdYzNCkdPePy0J4yKSnI1k6rvuGgnjdG2NqyHG1XR+2qKc9T39Hpy71q0GWTJ0eIu9x3rg3Iza5R3bwpwVHy47ggSsf3VijBuHRzUNUXxmFwTqwJredMcIc0qOo0O6vED1WGeWW03h/ZWaqGbVr1q0u84lrGIMMGPjIZlRfeaNEcHw12dDgkL9ctngynvi7K28N7y/T9xA9DGc/lTFeDuTfbJSV51pT4r77WrMQUde1y87D0j0zpOdWV+1VlunBzQPOKHt1frp1q5AeRo8SHFe8VRDAvK37dOETDDmmpR82DYNL55vU4ldRAqjAQk3lE1AHXDe8ZIz64djLjidS3+wFq5R7Nj1ZIBvKgmPhum6m50nuGg/LO9X71NxHCiIJFxk9pnlvn1D0IrIXPCZIWCOtEmeTa4f2m81JHz8Rn761nrIU13uhwplhjPq9RxftH+VwPaV5UWZFX/NkZc6n09zPnx5CfTUJ+ANklZKyQzcLdPYnCqXw+C4//jYu92snEpo1XxJ4+ztVDBxLek6Jct+ysL5TAxLSWp/J8HlUSyPVBOUJ9KMjNVL8OM6IGR4KW+uGwfEOUdPAHEalMhg4bLv4UWyGxX4d0ZuZw4R9CeWFzQ/Xgg3o0EFJyRupzkd+tJb+27lEdX6HqBqUQxjPQUUY3UGmOvHG+RzdRykiQhKlwVJraRqW9d1wVEpKaOcgPPrlFs3/4N8oP5T5AuQClh0iB+nK/doUNjAVVJYIM8Lr4TQ40WsoNXXH80u/fWqiEjZLDSrqc2PAvtgzruaIo0fJPWYrzJrsHXxT+KM0SisXk2293qPeI10AFO7S9WEuMzx6rke+c7tD3E3LJxqajSWIxJUHjE2EdebC7vkDXko0QBWj3lnxp6RmXkbGgtsc/e7Ra/R+XWoalrQcSO98MTSjevobCOXXQbkm3Z5nx9bsJNqR1nRylpT7BWJunDlUlVTYZ94I3jKPzuNNlNsHM/SCwVj4nAISVcijrx+/6eic9a3GNNyqcSdaY64mxRyj5C/2neM0Oby+WHJpn7pKOmPEWBkmhybx80MeJy0qID+B6RLWA+EBqwPSCWJbQWFBJTDAU0TIQ3h2MvZRhKPEAZmgx7POfX74h3YNT834ehQQVCAXnx967Q18ThWBsQf7L2ERYfRvMFrvWPqzKAcSK0lZrD/6giKoZ+bmZcmh7qbx9xfIUJYJfRAhcJBLV0RcoEtc7xjTlGQLBJg5pYFNkhZj2TtkLtauqOEfviK1ZXhF11XJHg9LzzRPtqij9wLu2yatnu9V3pCZmX6bs22qRANQROqm2VfrFpe01FulYCVDdUHwghChpBB9CpGLxnCWSmy/cGNCZX/ivEstCrMs33mqXdx+r0W46RpJ8951Obb0PhUeUpCVGBkCsIC8QV5SAugqfnGsa1LElkNDe4Sn181C2omNvITgnVB7W+sC2QlWANM7AYXVT6WPuckPlw7K0wKvXVSrwfR6XqiTsjv8uPGjis9bAJmRPtt8oxMfgwcDhcEjfaFCHVSf7nR8dn5Y3L/ZYVYMVEpd7AeP5MViREkbpaDIhWXgh+JiknEZQnp1fA8NHcbCnhzPBnZTYhcQHUFKBpKAOQIAK/JhtF3NzfnUYYgqJ4JeKTZ72cUpPqEeUUpjKPTQalJNXerUEt+g5YjEtyZQV+eSF15t1YCleH5twsXHbBSjKUviKSvI9kpXpUpUIIzW/xHx9a3Wetq2/QaCiK01qynLlbFO/+oVQjfg/dz9fe71V2vomtARFFxVS722/D7MMf8XjlCmvnuuWNy90K2Ek0frkpT4lX8UF2XqnTjv7QkDYrrUNKyFlffD1UOrCwI5ny/ZqQdbwF2HWpjRGOZLXhGjNPx5rftlSdXtmREG8VgO8LB6z4ryspN/n63zfdGYbGDw4zMRicjWegJ8K3HRyI7rSaJZ7AaP8GCwLZMTpcFQqaRPumx92OAeH5beBICW21tOujony/I1BLXe9dq5r0Y+iIFALxluUKenavky5pNCfJVO9gUWtzJTB2IjxldBJxIausmof86ysJGcUid6hQR0qmgyezHT9hcOXgw8GHwvqDeUae0I84G8oWQ/vKZdQlLTqiBTlZenQU86LdeH1KfdhZiYVmTWiOw5jN91meJboaNpW5ZfdTM8mS+gO7qa5Ec/3Z8mLJ9sWBSTiiaIMxygTfDqpUpXJ7MGw/PffvKrdYc89XKtqErlElLYqS7waBXCldUj8Xrc8c7RGE7RRlBIDXiBLBEcSksiA2FQlBIgk+Uj+mrxVmd2FX+jYrlIdD9LcPablP1K969Wjkrmu51AZGGwETIWiMhJIPkIoEURQ1Jbm3DdFxpAfg2XBnT35PXhrAOWMxG0M/8a26nw1BWMG1mTh+M3+0Kjlv9lZF9OvQ3ISQdcQXh9KRGWFXk3XRaFQAhKLSUWRV83Ltp+Eu3mMvigSEJJ3ri0OCrQ3XQhYrtclrnSftvMjhgSDURmbCutzUOrhNSifPXOkRsuA/D2x351zI1Ea4/aXv3tDcuJZPFbOjfV3SBTdVmTKkAgNuIvpHphU0kNJD+jwVbcrZWv4ckAJs6fKL4Q9/4y1w8Sbk704LwhoSQ+iEnMocUFBo3RIqznfu3hzSI8PhQoliJJWU8eI/myiwoO6hHeK11uubIcJfNlwxrsAl1uRL1NK/CX61vHeQLSMm9HA4MEjusLfRT6X+L29X+qPIT8Gy4ILl24iNsKtlX5NWaacwSaMuZbuIBQQJrGTuxOEVCSAmUGQALJpUElQJazW9wwlIKgRbLx0RGHgtVUjvkenFHfx/J3XO763TBWWqeki3ZRtP9FCcEyUa0YCYekZmpJTV/u0BEeXmScjTWorcjWtmE0ZYzKt9NUlPqmv9KnRmQ2bFnUIWZY7Xa62Dat/B1P04FhQ1RCOm/DG8mKvqmJ8fd66kZY8PKV/IC4Qiljszk2WkxC2YFhLWpTnFo/0cKjZkKRmTITJoObVOOlEIWPdUX4SwWcP5JLWbzxWyUB7PGVAwvFQy0hQWjJUcZWZiD3wFiyd/GNgYHA/gddRPyOW+QzAomDPXrwvx3XfXslg3QIlgJLWjc4R3SgpT+Gv4UJlE6bTB0AU8PcsHKRpe2cK/Lj6S3QCOgSnudvqiLLBc1Mq2sqw0PhIC5Qi/uA5eWQvQ0HTNYWWbGJ8O5Sr2PgxV9NCSdmLDi5GZfA6kCMd+BkHCs3xveXaofTcw3XSUJUrnX0TamLuTBvXcpp6SByiKgvdCT/8nu3aJs9oDkgP38O0HIlMSigSlaFAUAndQ7vLtDWesouOUZidlalgRElJWX62jrW4m3mZ/CxmYcp9HGdi1wSlKsgkrfdqzC7JSfoceKLwXdEFNzYxrWQo8f3ioyfbk6GZShieb3aO6vPyucWHF0ZwwLoy2oTZWUvGJKQ5lIiuRsnLwMBg7SPb7dROX2YgLgWCa/m8uF+fFcbwbLAi5GQRcOfTv0NYICCUwhjpYJdc9jYULtlmeK1lROrLfTpugE4knbcUH0JKhg2bOx1lzz5UrSoRuSs7awu0vPXw7jJVlJhWzs8d21ki0+FZudg8pH6iwbFpbV2nmwxvEaQFFYRsokSweROaiDLy5vkuefpwtRIKbetN8BO1dI1pWWjP1iJNgiY08MTFHlU6UKDwzVD24bwhEFMhxmjMyLaaXH08a4MCk5/r0dIdhIs2+ruBHcKICofRG4JDyZA/EBU8RWTUQBQXKkOA6fX4lBjV8fCeUvXH1JQSHJkjRX6PlORlaRgmEQEkc/N3Igco4VF65HwgPPZUeogoydJLgeiCnBQBhwYGBhsfaYS41uYlbcKwwU0bI4Pu502S+VQyWBFoVaarCcWjoz+gSguXqWbYuJ2ypcov9WU5EmHyeGRG82YwPkNsIEukQzMDy5vllI+9f5d85dWbcupyn5ZPeAzlI9KY33WkWsta/iyra4yyC6ZpNl+6q9j0USJOXurR12fW0JYSt/jd1JWnJaskV7DEkBzNHLAMlKjIzLyxFfyCQaJQYiAKP/zcdnntbJeWgFCd8PBMBMM6l4oONUzMqEnlRZayRQkPRYcSHYF+HLur0CJNjx8ol4qiHCWBKCLk5kBOCJO0RyakO9M0owaiws9ThluonnhcM+IIjli1M1eWhJ05kh5DgfNpJhGfI/iHbCKCWoz6wwcIHySRmRlthyfBmfIVd177txWq14mp9GX5mfL88Vr57tkukRglLJ4npu9VfaVfSVJXX0CO7CpRApmbnankic4Np8MiWwe2FWnpkHVD/eP94u+8nxZBy9HkalvtxvNFOZH3QkeBuKy5bBsVVq4Rw2DJy3HotWPaxg02Khzx0tZUeEZi8Rlx9rDcwhy3HN1VKueaBvTz9dbPiDaQEPR6J2Gnd3W86yHksK+vTx5//PFFX/9v/+2/yYc+9CG5cuWK/O7v/q5cvHhR8vPz5WMf+5j8+I//+B2/3kYNObxbcKFOxQ21qCKUoyAiKBu0gmfEJ8MPT4TlavuImpj54GdD3rWlQAITYensC2i7dkNVvkCfOnopo6VpCQtChT+IX6Dq0lwdzcCkdMZEcJWiGuGt+dbJdukfnpTjO/OlyDEqo23XJTAyZpGhkmKp27NHhiRP/ueXL1tT2+MlG72r0JKVQ0kDuRLToYiWvzif1t5xNWhj/tVE25xMa66YK03OXhuQiy1DOgYDDwuEBnJHtxk1bTqtqFlD4Gg7Z3grpUHUsG01eTI4PCmN1fnSOxKUs9cHpKVrVAkh0QD7thZLY41fPOlp4nbOiGOoVaaaTsp0902R2Rlx5pVI9tYj4ipvlOFolrx2vlsVmeHxaVVvOG8UKY4J1YbxDdEZkfa+gHaaoUxRqsRwXeTPkkKfS2aiMYmlOTSvh3OnVMbjOG/IU1PbsJYCayv9MjI2LdfbR2VkfFo3cNYLkkMJEKUOMzg/x9gMyCx/KJuV5nvEwxDMWEzGpylzjknv4ISV8OxMl8oSn+Yi2Y/ZaCZP8qNIOSf7ipsExp9ApklKTmaR2iifE2sZZo1XB7Ps0yNBLZNTEvcwbig9TVPyCb91xG8GGDJNZyafl3wO8ztBAOm9cvpsuITnV155RX7+539eXnrppXjXiIWcnBwJBoPy/PPPy9NPPy0/+ZM/KWfPnpXf+q3fkt/8zd+UD3/4w3f0eob8LAYXbv/otJy83KP+Fjq7KBdxZ8sdP+WQx/ZVyND4tI6S4I6e94oNFZXgrYs9etfPpkhbNQbp2ZlZeexgpW7kupEOT8Vnf+Vpizim6scOVGiZhqyYLZU+6R+ZVkL03iMlIp3npeXq9fissTQlKVqGSk+TY089IqdH8uQbp6zW+sRfLhVTnGnynodqtOTzrZMdOlUe8oAy5Uq3xkE01hVoqCFPeuJyj7x9pX9RgjGKC6oKv9RvX8FPVKHnrx1rrE1kVknbJz6wSxOF/79/u6yjHhaipsQnH3l3jaS3nZbhN77MRbjoMd6GA+J+6PulaWBGXjvXLV3943NdcBwPnqtH9pVJLdlHTQOa5cO62CoUahbKw/a6fE2i5r1k3AiltEyXUwkixnIM3we2l6j36Z9fuaH/hvRQEnzfI7VqIKelHtID6aL0yXHkZmXI44cqpaYkR85e69fvPbKvQpW3E5dI+V58Tlw3D+8p09LY2v8kWhnCszENh2Rtk/0eMcusptRLkPmG+5xY6zBrfO8xKyLnbw5qA4h9jXs8GRIMhvWGc1tNvuyo9s99BtvNGfqz91gJ3XAJz9evX5fa2lopLi5e9L2/+Zu/EZfLJb/9278tTqdTtmzZIm1tbfKZz3zmjsmPwWKwYb99jTKV9YERXJCajJTZPjChioFdyoBXQygu3BySkXFrFATlKxg/GyGbI0nI3C2gHgE2YsiUnd3zyjud8uTBKv13MDSj5mRftktygj1y6XqT9ToE+MU9LhAgjqX36gXZvfu4vJmVIYGp8KIbbcpdyK1vXezV2V2AUQ4l+flKaijj/OurzarOHNtdJj5PpioqbGqQOMo/GLTxxaBoMSoCDxKKEuQu8Xe6uTsg//Jqs3z4qS1a8tK63AL0j05K+miXjLz5laTEB0x1XJOBsi651OPUCfM7a/P1tXgpPEgQyqstw/peDY5MLUq2tsFssfFgRH1Jc0NrI1ZXV3gmprkcl5oHxLm1RFUhwDkzu8zhSJNvvNmmHi3WC6+QTcCIEPjqq83y0ed2qCLIsaE+8Z6lmr7Oe8UQ20f2lG0IAyKlvavNw0mJj/1hj/RPN53xQhmsd6SlWflqNvFJhuttw+ohLPG75/yha0FzWRefN9euXVNSkwynT5+Wo0ePKvGx8dBDD0lra6sMDg7ex6PcuICEYCheSHgSwWR1xktMJDwGcs+Q0O74+AE8KWwK+FyG4vO3ID5KJkhMdqUpCSJHiP2Ur/GalJ4gK2wcqBNHGnKk98Y1VSLUO5KRrqRDk43TLAUIAjbccl2O7khuyMWvUuBzq+/nsf2VWgKjjd7vy9TZXATzIc1CIBii2tIzJpdbhjVQz27HtI/PCj+MakggoxYW3szwaKLdgyGrld8Gag2vTzzABx6tk8GxkEjVPkn3Jp+s7Siqk6sXm2R2ekJJCa3+BA1iBIes9Q5O6lqiuqRqdQckPJ9vSvW7YRNXh1y4OaidZTaO7CxR8meDNYZo2QneNt6+0qcEEnJL2W1obHrJFGjmtAVWKQX6fmMyNCNdAymCQONQj1Tv+H1NszUwWA1EZmblRufi8TYLwWNu5eavDawb5ScvL08+8pGPSEtLi9TU1MjP/uzPqg+ot7dXtm3bNu/xtkLU09MjhYVLd6MsJY/eK9gy3ErluLUGjrtveOnocU+mSzo7R5WcZGWSISO6KUIg+DsECrZPaziqCUSGtnRUHkdcAXC7nNqijqKgmcWWo1pbJCFXE1MRVRpKc9LkWt+ghgyykaBc2BkSmKL5Oj8fGByUqn3Oeb9ybMJPH6kWX3amvHymU14/362+GUY6oDBRGsKTBFHjGHk8pmt8PvwbU3MVylCvtcFR2gqHZnUOEqMUvn2qPemvOAGKlO/wMVkEMF12NxTq89F+PzQwLOndFyU3O1221jws5UU9MtN6dl4wYCS7SIZv9Eh6bYm09IX0OxAxzhfjN8cdjcyqukbGUar3i/cCJQ5PEh1kiXBKmnqXIFFjE1Nq+u6InytqBV1wnCDPzZpD/vw5dL7dUnY6+sfF5azUDCi8RJTSrHb51Hd7+InwBqyFO8K7QWgqoiXP5YgNYZ5sBk6nY8N8TqwHmDW+t5ieJnssMu96t/+e+DVU4PDMrGQtuFF6kFjz5CcajUpzc7M0NDTIr/zKr4jX65UXXnhBfvqnf1r+z//5PzI9PS0ZGfPnJGVmWum2oZBVarld8KZRF77X8Pk8sl6RkenSOm7q7zslPT0dE5m43dbjbEWAcD/ARPk0B8RCdPwDLel1Fblzj9WumAU5wNYcdozUaaq+HN9TIQ4HaoNTS1ILyykQFL7HZszrMjqDuWQQKiaQP3W4UstnjG/gsbppxzsSGL2BmsTYB0IPLRbj0NERKEBMkMfDQ7ZQR7/lCcNTA6Ep9Jeo14dyUjL2Y3U9xFTtgVzs21akoZCQA5DmyNTXGRsalTMjYxLYViPbq3dLrPOifp81wSPCGqbHIOe3PkQmVX0i28erZTU8S5x7qveLD37IPQZllLlE2KVKi4Bavwt2fV67OeKP4zVYf46Mr6dRB5s7V4e+RnF+tkYIjMY/+DA5owYl+vZsZGa6xO9PPqNrPWE8NLPk70ni+WZ7M+e69TbK58R6gVnje4PoyJS4dRp78mvcBqo8vxfcQK0VrHnyQznrxIkTurG63dbC7d69W5qamuSzn/2sfi0cnp9Ca5OerKw7+zBlUwwElg5kuh2wEfDLFggQ6rf+THZsVrlZLmkOph5sOp5OarDl88DoBkIhAvlyJDrDvC2ZU2asrJkJLWe1do3pBsn4CdQVFAzUHbJlHA7oQEy/BzEam7B8KhlVeZLj98nI0GK5FRUEM3Zz15gcOrRDysoL5ae+N1/C4Rn1Y0AUTl3qkWK/RyfDq4IxE4uXaMJqviaHiJEPEAD2aZ6TshbKkyczIoUHKrRNnOuklAC/mVmdt6VJycmEC4flZSor8sr5GzfVKIwXJnEa+eRMmuR5/RKZnlAC0nStVcoe3i456dclFkE9i4lMDIq/qEgmHBDF+SVIVLSegQkNFESJoRRmvw8LMTPjlmydLzab9DF0u9meLMImbTWGDrbqkhzt2uJr/IE86YiLhPRGyCBt8Vdah1UdYmYPxBPCRfmScuNCYSSL8MqRe9dk8KBAfnY0Yo39WAoleR4JTYdleiq0YT4n1gPMGt9bzEZnhduw8YTPET5TIT6hUGTO0JyV65FYdGbVf8d5bzeU4Tk7e7EKs3XrVnnttdektLRU+vtvdeEA+98lJSV3/Jqr0QnAL9t67TCgJGHNc0puXB0NhLQ7CnObfcHzfzZRwvMoxYBje0qlrTcgF24MqVKB8tNEPTgWU+LB8zMpnb/DGtgwIUTMzaK0hCLzzJEq2bF/t5x59U2JBK31pEuMtknauSE+oGTbDglHRcL8R7NznOqLoQWT9wEJlkwhiFYirrWPyLFdJToxnbIaJRsmnAPMwHhU6F6iffzdR2usX/YM51zGjRr64l4fR5qVynywsURyPC7ZVs3AVo9OgcdPA7ErzM2SmdislNbvFxktlrHuThnuH5CbXWNysKBaZnqbdDON9d+Q7YcflhevQyYXe2QgZ5GZmOxvKNJSYapOionJkJbFiAtIdsdGJazQ71bi+g8vNc3xuUvNg9qZxftHGY8PGfKBxiZvffBxzkd3luj5kbB9ZGepltfIG+Ja4LgIh4Rg2vyH1nrMv+v1dyMRtO1DnIl5SAWuETriIil+l9bz58R6gVnjewNiPshU0+T7BVCPZvwziBFFdJpG11BZe80XPlF4Dh48qOpPIsj0oRR25MgRefvtt2UmoUPmrbfekrq6OikosAZxGtw+HEnuzPG0sOEnQ2amU6qKsmXv1sJ5P0u7NVk3kBIycZgU3tQ+qiUkxixAdBi5gMcEoBwRarizPl/Vksf3V0ggPoaBzAiJT1mXwjrZsatBgxP5U1nk1Q8ze5TFU888LK0Tbvn6m+2a6MyfF0+1K9GqLvNZ2TdpoioUfiLC/5j9BWjdhsxgTua5IWSUqyTeVYUSBtk61FiiCkt1sVdJEAqRZhZlOSXPl6FKFgbsrdV+efexajl5qVe+/kardj91x0d5kJr8nbc75KUT7fKtM73yZvO0THpKpW73HpkYD8qM26/kAwXFU1ghFVXlkp+bXNHkMbSnkzWUpb6nuOk8g3LTrV/1XK9bDd/8PyliIrvrC2R7bb6+D9uqrdBDcpgIdDy6s1RJHQodZT97bVD1njpcJf5stxIf/EhTwbCaxPmeDd5jFDj72BgbwjrdDuxk8LUC+3j4sN9Rmy+5OckHy/KYnfWFkpt9d2nfBgZrAbOzMVWDidlIBRpByIFba36+NZ/zg5z+gz/4g5rnQ34Pxud/+Id/kC984QvypS99SQmOnfPzyU9+Us6fPy//9b/+V33sBz/4wTt6zc2a8wOxmQrPanmDjY6yB8SAu1nL/EuAYUgJBnfwnAsJypqEXJUrPrdLO50Gxqa1EwlTJz+Xl+OWmvJcTR0+c6VfFRVC4PA70G5eUZitBmI8PSgceE6O7S7RLBo2UMIHuUzxCKGehKKz8r//6bx87NkacYx2Sm/TNRkZHlEPSmVlmew8fFBuTmbLqxcHJcvjUqKCOkOwH+UmRk4wHgPzLl+fooV+YEI3cbxA6Bc//Ow2Lc3xeuQKTYYYxyGaWFzgyxS32yV5XibSZ2oJieTrntGgtHaPaacYJkDOoxxvU0G2XLoxoCM9GIFBgjLq0avvdKlHCEJFqS4tXjaJRaakKs8lO0rTpS5yQzLGu8Vdf1AclXvkW1dDurGiQJG8bBlnrUGlDZV5cmB7kfh5Hxwx6R0OyuBoSPpGprQ1nfVD6cr3Zqi6Mx2ZlZaegJalCKzk/Dnmhqo8Lcuw9kMTYVXbyA0i7NDrdckPPL1N2/sv3BzQmWe8NpPvUbQglRA7NnmM5FYQpktyczxys3NE15T3qcDnkcM7SqSh0i8+j2UmXwkcaQ7tKISgQvYgnJTpnHFD/f0E1w4lW1r88YRBBFG5vO50TblFgaRzMdnaJpPc1svnxHqGWePVQTRGqOq4fraj8mZ5rPBXwk8ri7Lvm8qy4UIOaVn/oz/6I3n11VclEAjIzp075VOf+pQcPnxYvw/hIeH58uXLUlRUJJ/4xCfkox/96B2/3uYkPw5p7R/XslViPgwEhY2triwnIaQKkhSdG1NA+Shx89LSj0Aqoroxc9fvyUjXzfalU+0aWMhj2Czs9nVKH/hBdNDmzIxsrcqXb55oUxOx2klIZnY4ZEd9vrz3eL28cb5LR1Ts3VokjWUZ4nXO6n6SnpUtF9sm5F++e1PVBEgF5SBUJGaT4RmCMBzfU66bJr6j0XHKNjFVryaCUe3gQvmACJFtw+tC6Ci70aFFCQzFhzLX/oZi2dOQr2tx/saQkivUHHsddNioFxUgpkQBknWwsUizj965RnnWmtdFCnamM02ISOLDA6/4h59qkD1lqCcRaZ/KUuUox2OFAaIq+X1uNWjzvlBS4n1DlYGwdQ1PyrdPd0h3/4SkxT8M+DlUNkaI5GWla5wQHxTBcFTLZTwP7xN+HP1UcIj0DAeVDGOwtrs3uIZJ5EaBwmtEiZJRImzyjDUh1RhCh3LECA68TbzXmB05bggMH4woJOm3GR5I+33PwOTc7DKOiHVgxliB1xrAel/gEE3rvtQ8pF4xG7wfjGDZXuPXsM1gZEbnyS1a23X7ObG+YdZ49W8GIjSdEOkxM6s3WfdzXteGIz/3G5uN/EBmbnbjwxlI6tcFO+sLZFtlbnJDb9LnFN3IyW+BbADKLGyEJBPbZa5E8NR4g/CJYJZ9+YyVzpwIyNbWqlz50fdsl89/7bLUlPuVxKAEMHuLGVwQLBQYylYQn8Q2eMYLNLWP6FgJvCmaLn1zcO4XlE2bVnjGbFxpGdH5VD5vhpZ4CnIxKo/Hjc/p+vycD9PchwIh+c7p9nnHyobPZogS8tzxOh1pwTT59x2vkxOXe+Vmp+VNmvO9ZLmUwFAW4jwfP1ipOyVZSMd2lWmq85bK3JTtovUVftnfUCADEyH57Jcv6pT7ZGAA6kee3ynZCW3WyT7Iuoen5NSl3lsp0guSWymJQYouXL913dDVZXuuwKHtJTrDi6yfRFAGfeJApRLKlYBfG1K2U4UHQiBJ187LTt55ci+RbG2STajet6XwtpJN1vrnxEaAWeONvcb5Gy3h2WB1wZ0/CcpL7RkQBnw1K8lpgEyNT0fknWsDWt6xn5c7fu7YkULxAiUOuLOOY0bNooy5wOybDGy6zJmitPTBp7fK/32xSdOM8RNhvJ0MhqV3gCyeHBmk7JawE2rb9XhIR1po8GLMoR1d3I3bv6KoQ0xlB0w+ry3L1Q2O4/n26U7NrEncwPFB4Q+63t6z6FghMPiFOIYz1/p0hAXQUMeZmA4etTdz1gUVinZwfo5jhFjVlubo9290jsjRXSWa4FxbnjNvNII7XnrcvSVfHOkib57vSUl8wPWOUR2OenxXiXbBJQNrdbl5KOXmDiBqbT0j864bCB9lRsp7AKXmXYeqFpGfIpSujDTttFvJ9dQ/OpWS+OjxRmblatuwPLSzdEFYwr3HStYGwzPXjj/uIzMwMFhbWPOGZ4PVBRvLwOj03GaVCnhxyKRZSSotJObNCz1zfhQbuP3Z9OkEYjJ64nNBjEYYl5CXpUoJPptk4Plor2boJspMWWGWVJXmqJ+Ckhb7EVk4PcNTGmS4EL3Dk1oK21KRp4oO5SIUI8ZFYFrG43T+xoDGtbd0BZQsXW4ZkjcvdM8RH0pztKtT0rraNqIb/PbaPFU5UHASj1U7wVxO6eqf1FZ7Sh8AYkNJESWHgEUIDMTOGn6Zq8Mw7SnpAPLArLMD24ulotinM7EgT9vrCqS+Mk/nhl1rG5W+kZAmbS8ML1wIkpoT07gXAsUOBSoV8IPx8xDVxPeREiHvhQ3Wl3RwiOLcY9IdUleWuyLiY68jqtlyGCBQMZT6nO4V8GkttTYAzo36aML0DAzWJozys8lBeYopvCsByoQVUJd602Jja+3A95L8OVEF8Pa09oyrWZgp6kDbIKOzash941y3khgtOWVnqBKCQoOyQ9oyk8Cvt49oGQ01ADNpdrbl34FUQKDw5dCZBMHAi8Jz2F1JbMhkzfBPlBuyehhh0dw5ot4XOyQRksSoDEZT2Nu73VJPec4qfzm1W4t06Ms3B2VfY7G0947pYFYGeubmuHWjVGVnMqLPTZoxAYCkO1OuwRMEAYNc+rIypLl7VMMU6bCywwbtLjfGgvzMB/eId2uhtuhfahlS9cauXkM8IVql+ZaCZntjFgJShz+HcMpk18RUaOlrAgI4MRVW0jyP4MZiWjrk6/axkwGSl50xpwztbywSf7ZrxV4AzgF1cjlAFK0Zb6uXIqtrswRpTAS/V4nKo4GBwdqBIT8GugGv7HHpy3bUYGpGoUgFfp4NHlSX5irhYQ9EhWmopmPILVuq/LJzS4F2FNEZBMFA4RgOBFURQqXBM6PdZ/ENlk2GcgQlsScOVmonFEZdVSFiVqmCP2xePN/uLUVy/uaAkimehwRpXoOf4zltozJqD23w/AwECO8Pvh/bs8T5kDeox5HmkO++0ylPH66SwOSAkiw2brw8ECDWeWZ2VokZQ0kZGUK5BlUNlQzFC0UJAkZ+DgTm5KUF5TQNEXKoEnT2en9SAoHRvGtwQkuIEKxkwLNkzyhb/B7hj1qaQPC6dokuGR0mRJJOLIgeKhVddwX+LIvQelZOfOYSo1fYCo/ytJpgbSB+K/U+QLjn00MDA4O1AEN+NjnYhChBsYkt5WFgTyHLYblNC7O4NfYgNSAMjMGASFQWZmuKc6YzXZq6x5Q8cWdNJxSenQg9lPEyC51MbDu0epMYbPtVKPHQdQTRodSAKvTY/gptz+a82IBtzub3ZqgxGOJDuCDqEN1Jk9PM9HKqHwmVAdOulS5tBSeiZGBwVjKU4JOB4OA3Qimig4nvkSVEizulMzq1MEpr/o+HCfMoKhF9PfJvyMNBSWLSOooYgGg9srdcrncs9mFVllDycmqoWLL3IhyJytYqvw5hhXgl+m8SsYusGW+GREPJ3yvIH6W4ZMZ0wHtUV5GtAZSpCDElvuwirxzeXiw+T4aamznm2+2x4OcqS3K01LkUWD/yqFYby62NDS3tJSRfGxgYrB2YgrSB5LhdWnZZCmUFXs1jWQ74PyhtrOSumKlZWFPIaEG5oST0le/e1EwalBSb+ADIxevnunQiOUoJ2Tlshp4Mq/UbBQchA+LQ0Teh3VrvOVajQYKVJV5NU8Yv8wPPNEpz16icutQn/SOTOmML6WI6ZBmOeV2UI6aSD4+FlPRhzoVnQDoYCJoIvk5LfU62K15ywew6LkXxOVWcF6rOo/srVPUg14bJ9QwE3VmXLz/07m3WsNbCbJ2aTo7QE/sr1OMyEggtUjUggKwFKlgy4JtiSjwDM0ndTvTa2KAsxVqkIj4AElFbboVKpgKaT0OVf8nuKoh1LuGPd9Hyys+RFbJwDtn8YxHZVpOn7eWrDUz/9ky6VPDnuLWsa6peBgZrE0b5uU+w8my0YqGb5ZqaKxOLaQozyg+ll4VgVtOhncXxmQ2UICyyYpc7+DsbszVU1Oo8utG5tEGVTTFLiYu1O/C/3qFJLfdAQNhcmPtVlJ89Z6BlztT1thE5vqdMyzl4cihBMWQT0oXhGRJBgjImbqaLZzgd6u9BfaGTSxwxJTmkLuMZ+pdXbmrnFwoO+SyjE9PayfOeh2rl9KUeJU39w9bYDW1dp5Shg/yYUD+jpUCSoclCwiBtpSk7tWTG642MTcnW6gI50FCoqca9FVapz+Nx6jngjULZePZojeysy5PBsZD888tNi0gWCs6Th6pkSwUKSFgXHuXGnenS94GREaMTIT1OZnZ94NF6ee1sl65Rvljrx/ey3Onyg89sl9LcDC3XpQJmZBQkynIt3Ywfmf99MnsaqnJ1PfBrMVeMK0JVvXjpCUP2wW3Ft3WHZU2Lt9RB/GO2KZogyWO7S+X05b5FfjKuxx31BVJRkH1fMkV4ja2V1tpApBeuDcQHIpuRznqs+uEYGBjcAUzOz2rn/GAono5K93BQegdIKiZpN0vViJxMaxNdK4COYSqmTZfyjieTTT1X05j5GkrLbMwhZQVZ4s3OVGMv5lo2f86J+S3+rAyZCEU0vThVBxkk4pH95ZIX9/4Agvi++PINff2rrcOa17O7vlBDAfEQxeKT4GtKc6W80CM3OgOakwPBwdBM2YvFptsK0zSlMVQWvDEEFVI2I30UgrV/a5GqOf/40jVNd95ek6clDMzS1vT2NFU0vuexegkGI9LUOabPg5eGSACSmim14WnheRur/VJV7JW2vgn19tDd9Oi+cp0jdnhniXpvMh2i5unhyYiW1N65PqCEhdRlko7LCzySRkhjepoEghHpHJjU14KQMgersTZPM2x4k4LqbRqR7oFJTW+O2SXE4hwdDcKx+nMzpSgvWyYmI5qZhJpGqCBrUuJnGPDSJZtbcEggGJb23nE1LvO+s74YmCFtXL7M6+kfndauNwL/8Pjs3lIgpXlZKyYAECYCAXl/ILQQDFQrSDBJ2pp+nWY9BjM57zuPgRhDUFEv7//v0q214brl/a0t9Ul+Tubc2twOTAbN6sOs8erDuU5yfgz5WU3y43BIU9eYDuXMdLvmwuEAGywzjZiHdT8TMFcC++LhqAjlu94+rP9mrMRUMCrlxV45cbFHNx4UE0gOfhZ8LszC2l2XL4OBaTlztX/RXTplKUpNZflZqhjYQBH7+lvt2vE0NjGtE9BfO9ut5NEuo+FhYa0IOGTeV2mBV/7ma1fm2o7ZcPDfQEh++JlGHavARvrtUx3anYUiQ8mMjZlOLbwbkCYSeElcTgQKzvG95fLe4zXicqbLiyfbtZsrXcc3WNcG+gaJz4e2F8mNjjE5c21A1SnIDJPVm9rHdJzDkV2l8sPPNuoxozTRBcTGjkDCa0NYDjSWyJMHKsQVNyGnpaXpZmpPT2eQqP2i7f2T8sLrLTI2uaAslu6Qw9tL1ViNlwjlxm55h1xod1Z4Rq879Vrdxq8+1wSlNJ8va96HWmhmVk5d7tNyG4RTVcFZypAh8WZlaJBkdiZG+QVJsCifah6meMbYlLCau5N1UlWV+mR/Q6GWzuxz4Vyt57TiE9bC74sGe85YSeN3ArMxrz7MGq8+nOuE/Jiy1yqBD+iekSndMMmwWQg2YYLvvJ5KyV1jQWh8gLNBoWSgPgB4CmMFGCdBazcqCOoQpk4I0EQwLH3DDi1/YSLeUu7TBF9as7mbB6gTmHs9bOoLCB9dMcyIotyzrSZfvvpqS0KbtqVSsIrpTmuy+8HGYiUupCvb3VKYmdlwKS+xOTZ3BeT/e/Ha3ObocNASbvmXXrjWIl63RcSuto4kXYeLNwelodI6v5norDyyv0LLMC3+gPqLMICTG/TauR49Bspu9ryyl062zylf5Brt21qgXV52d9rwAlWMc4IQPbqvTGYikLxZCYUWf3CMTITV7Iy5l/JdYis153n6Sp88sq9cyTWKXFv34uniet1lVUnuCjxcidcEHXGJgLCevT6o563ntCCbCSIIASYskuuC34PxIMGIAe1049ghzbzfpy73qA8qGTp6A2qe3l2fr+tvdditnRuGNVXCNjAwWBGM4XmVMBOL6fTypT6i2ayau8eSkqMHDdqtSRW272gpC7GZstlDfACqRWAqrIoKoORBOznjGDRDJt0h5fkeOdxYrH+qirzixiOSbFFiMZ3aTkoxvh98PXRD4TeyJ2ZDaHKzMrWDCkUFH8+5pgE5d71f7zAgKXiNaC2HaEEO+HkbEK+ju0q1TFJemK3KCgrFwtZl1BKIF89JizXdW0OBoI4z6BuZVOKFAvTKmQ5Nvkb14PGU/p46XKnzyBJLfrTvN3WMzc38SoWz1wdkbDJ1vg7XCWvLa2W70/XcFhp8aaUnjZqyG3O9Ul13+HhWEli5FJjRRpfaUqBjj3Pi2LuHJq016xhRtQ71jTiCS82D2nG31O9KW29AS5QGBgYG9wJG+VklsPmn6shJBNPReWzmGkuCheCosTauYrFJsbnfWDB2AsLD16fDlvGZcDxMsMHQjLjiQzhXdmfsUK8IJOv01X41Gbvis7gObCuSE5d6tYRWlG+RGnw+bPKHthfr61HqwePCeuKH+eZbbXKze0w9GCQvcxwoFLSf055Ndg8KFeSGfzMuwwZlNo6jMM+jpSV8TTtq8zQYEH8HwYoMCH3mWI0+Dxs5vhz+/+ZFkq3nKyClBVk6QZ6OMNSdVKGSvBamZW++1Sm2EBwTQYeA8/FluSTL7bMGioZmrAwj5pkFw/q+oEalAutLrAAE9U4AceJYVhLih7HbnZmuKtDCY0KpI/CS83a50qUo1520DEy5DrLk9i1O7TYwMDC4XRjys0pg9tJKav8YWtei62rh/sNxcve+0F+xcPOzY01mbyPYDXI1NhXWkRhjUxHduHm9ifGQvHWxR7u1yO2hXEIGD6ZdFBA6qphczoiL9x6vkxdPtqmZmM0T301X/4SqE4QO8rNkB6Fo5eZkaCs7RmAIHqMp6KaijEb3lq3a8DoMPkVNSYzxg2yQowM521FXYKkYwYganBcSH4APhjZ4lLLlyMZShIX3JJEY6BR7h0OnuOd4MuZ8WZC05ejmrbydO1d/OJ+VAIWtrXc86bmp7yl+0YyNh7R0mSqoMFVatYGBgcHtYm3JDRsIlGgwzS4HPCL3I5vkdoF52C4HsUeSscLdNybhpVKfIRFs9hm3cU4QAzwvkAqCAjELF/gyNe0YVQlFgDLXvq2Fmu7Ma1hmZWszxHf08tsduulDzjgcPESoE1src5X0oBKRZcR7AkmhM428G4IMeW6671B8tFU8Rvp0jhIEu6srMXNo7rijs9I/MqXlNjKKEoeeJgLFii40lC0UsVRQIpPQAbcQvB9cLwuhoc9xYzSVLEjhcmobCtFKk4pTJnUvuBZSgcf1DU0l/R5G7tz4DDbCMVMRKlvVMjAwMLgXWHu77gYBIXG0Hi+H+opcJRprDdlup5QWeueNpMDfQRkqEXR8UXKxiRDkoqSA5GTnsmoPPzVF63IgJMPjISUrECc2b/5OgKHX7dKMl7HxaSVgdEPxGnsbipR0UG6CVNzoHFPDNJskmzoJyrTGM0MLNQgzLj/H9zFEozI9fqBSdtYVaDkMAoqnCV/QQ7tLtUsJozKP5z3q6l9sHAYQKUILUSyGF4QS2mjrnZA9Wwrnhpdi8iULJi/HrcZle3RGTblP8rypCQWq0XLBg5z7rnpGgyydhkzZDqJ5p4BwEeJHjtBSoBzJgFlLPVsMCCvhj/bctVQdaPk+j+TchkHbwMDAYCmYT5NVAl0pEAU1CKfoYiEErvw+BbPdLujG2l6dJ4OjU9qFg68Gf0YoHJHGmjxtpdb8FYdDyxb8vzgvSz0tO2ryF3VzzXtuh0jX4KSak2djjLOY0U4oiACEgM2SUhJK0NzPxCx/FJstPp2DO0rkcy9c1vZ6/Em2YlJdkqNt7f3DQTm4vVjzV+z9dCru86FEhdGZFOV9xA0Ue8XpTNfcHQaKQpautXWIz2tlBUGImjsIbZxNqtbgSRqfjghiVzLBhaBFzNysDaUdSmP4clgi1hWyRxYQZIwxa6kmImjScbFXuvrHk5bXAOuwb2uRvHW+O+X636vrjq49iBZenmTPBZ+hLJjjdupxUc5cdE6xmASnI7KzvkCutAwlneFlEzruEdZiidjAwGD9wZCfVURWRpoc31MuV9qG1ctig7JNRXGOek3u5u57tUErODOmLjYPy8DwpN7p45HZVuVXkkG7cu/AlCoXlKdQE3bWFujjJkIzauCdnbHu/gt9mbpBEviIUZbnIY+H4eGRmYiSDjZ0SkRlRdlKBmgLhwRRXmLPi8Ucum51pT7xetLkI8/vkOGxoAYCQtDYbCldkR7Nz01NR3Q2F3k/EB++RwYEKg1t6pXF2eojQYXBB0TyNqGBHX3jqgI9vr9CZ0qV5rvlQ083yBvne5R42PsvHWMP7SmX+jIUPof8uw/vlZdOtMu1dqtLDjK0d2uxPHusRmrLsnQTH6nOl5tdo+ILZ8wpYKhne7YUqOqz3CiojDSHHN1VJldahzSNm5RhwHOzZihZ2ZlpmlHExHfKTbZXJtl1h4+LtQlHrZIZLeUQspUQI46VvCBX/HhQcRJLXYyb4PuU4LZU5iZNDwdkO+HBKvRXyvhEWCaDttFeNKASYlSQs/zaGBgYGKwUJuRwtROeYZiYaWMiI2NBlfWzMinlWCWQ9QDiXcanrY4iylGUbyAREBW8MNys055OeQoPzaXWUXntXJc0o+yoGuOVR/dVapcW5IKvs2kzImH3lkIlCf/2ZquGCVLKKvBTEmKiOv4ba4wGCgHGZTbmmrJcyXY5JDA9o0nJPO/X32zVx6FOoY7gF4KlsNmTuUPZBSLDmnMOtMND4i7cHNYhpyV52RIMRfR1D+8oldoyn3z9rRZp7xmX/+eHDkhhTqZMR2dkdCKs63Aa1MQAAD+eSURBVMAa5Ga79Lw1yCstTULRGVX5IBN0gTEIlfKfy8WYBtGW7kxKeBC6yKwmZ/M86nPyZmpMwMGthUuqZrfeE0jLjHbX8Rus6+92zvtZHgPZREGDSCRed5CuSU2sHtHxHrZ/ipBI1C7UsLQVhpexnvi2KCfqyA9nuh5LIoni0ZBoxkEkA6XLxw9W6sBbngfDO2QNAg4p2wyfUiaAb/Vh1nj14TQhhwZziMWkOC9bXBKbuxjWC/GxO9e8+G/ieT42MhcZXmPy+sVe+corN+cKRCgATFH/wjeuKrHwZmfoZswGR0ZQZ/+4JjaTWXO1bUTTfhk90T8S1AGlAB8QRmdapjEvN1TkynserpMvvHhNc3ZQp+h4YuwEZSUUCAzLlJpQcSAVEKQM15R2gKWlO+RDTzTIt093yuXWYd2kQ9lRbbmmlf2d64PyxMEKqS3xydlrg3KlbUSe3FcmrhmHFOVkiiRYuXg/SWO+2DYsX3utRUuA2HKzslxzal9NWY4mOJN3c+btTv0aapnb7ZozJtOtxTwoTNPMPFv+PYlp2cnjutX6vZA08e9sJqsnGO/t624iFFVP08IEbkpTrDHrtbM2f0WmQJ6T8p+PIaoJg1QTr3Geh5BCFDXa/nl+W7FChaOU6k63Eq0zFlxXm4H4GBgY3F8Y8mNwz9A/FpIXXmue54xBRUCdQQ3B00OJgzt6G9zhv3q2U8uDBN1poGIoOrc52kbq7XX5mq8DUJdOXu6Vrr5x/ffVtmFNen7lTJdMhy2fEEQJNYXk52O7StTHg6+IfRTFh9lQEB28ShjT8WYBe7/muT75vbs0m4eZYE8dKE953mPBsHz7ZNtcyzZ0IrHMSbmN5GpIBYoLXiJyk3qGpuYmwesYijSRsqJ6XYPV3PBRhPDXLCQ+ibjRMaoDavOXMGDfLiBADeU+qS72qmrF+6hGc7czofXewCA5Vvv3wmBzwXR7GdwTZGamyzvXrRwdG9zVo/zY4y2gLaQzJ8a4QD7sAZ3ve6RODjRiUg6pAgRJwp/yriNVOmqCIDxUoLKiHO3WosQF8AqR+/Ouo9U6rR0lh9eAaFFWg8DsaSjUri3KTNuq8zXjJ8+XqV+j2ytZ+jJG3mM7S62p9Qu8WRCIyfCM9I9NazfXroYi2VLhn0fsbEDCIF6EFLIeBAyibNnEB9DizTm29YxL0J7jtUrQ6fIpWs8TsRrp4xofkIZK5JRcj0uy4h1wBgapIkPCMzEZGg9J19CUDFMyjpeuDQzuBkb5MbgnIFyPklIi6JJiw+eDivwdMm6yPC7d6CmTMALE9ouQw0M20C6Mv9rxlaHlK/wor53rVi9Qab5DVRSUILJ5tlXnzb0WCc34cfD7QIJokyc3BqPt3/zrZX1MVWmOPHmoUksszMeiNo3nhbJYqjZ2SBOt+4lhjgzzvHh9SNUljEY3ukbV64MB+sC2YrnYMqhpxDZmZkRC6rtB3XHE/TfOuTEhNiAB48GItPQEZFdN3qqRAnw5KwkMpF3eeq/uzevq+aP3GK5jsAJwmTR1BeRGx8i8jlk6B7fX5ktFYVZi9qiBwW3BkB+De4I0R5q2KaPk1Ff4pKrEpyZjWsurinPUUDs6MS1F/qw5k65CDc0O/Tk2ZdQaSlQ83h4Cmrh5xgd5q8maskkiIFqMtqDbiteljZ50aJvc3Owc0z94kFA1CD3EexOOLm7Btu861WBd6tPoAsBd54mLvXps5A5xPihQlLB0qncspl1i3zrVMZcUPTY5rS351WU+Vb7ITOJnUZMoqUHkAKSOzKfOvnENYcxcpfwnO1NnObDeK3xo6tdKc+j4FogpihNT3HlPMMcbxcdgqWvveueoXG4eWvQ9SuKnr/TKbGOJ1JR4zXVkcEcw5MfgnoCw4B31+eLzZmgJ61un2lWtefZYrXp5Ml0YW7OV7BAKiFEZ7qJdPRnpGkj4zrUB2VqdJ9WlPlVmEsEeTPfU+GRIyRMt3Ym+oKQZM7UF0j9qlXey3HRDufT1xidCUlPm0/Z4kpdRnpJlMaEQQZQcsRmdIs5Gjs8I4oNxN89nDVbFVN0X9yNR6mO0xiP7y+X1s91KgGilz3A5deApa8ExADrO9m4t0q63qy3D2taNBwYvDspMZvryCeF3AuZskZeUaop64kwySlR3vLk4HNLeP6ElxkR/EWvEe4yheg3mexqsAWDIv95mRUYkAzdPl1uGpDjfs+bmIhqsD5irxuCeIBye0c0M5eZ806CqMOyZHf0BaajK1bt+Nv4cb4aWfOrKczXfhrlPhCNS6jq6q0Q3Q4jQQvMrUvfs7KyWn1q7xzQQMFlong0sAZigCSfETL1/W7Hm/2BuphWSn2eWF89JRlFpfpYSJDKJ8AWVFWTJEweqpKVzVLI9ZBTNqurDOVB6Y6L8q+e6dLwF4zf4OYBi9faVPi2nkU9DKYwS2LW2YS39aWt7OkqXaNgi3iV8Qjvr8rVEB7mDZK0mJ/C40qW2bPmk6Kp4NMCdgHPoHJzQsSULjdWsER6tC82DpmphkPTaoaS8XGmWrlFS1e9WnTTYnDDkx+CODc5uyEJCG3U4HNUZV4kzzZraR7WEU1Xi1ewXCADkAeJRxCiJXaXyI882yv6thTqCQk22sZgOMkV1oAV8a5VfFZL0OGnYXlMgu+rzNPeHC5gyCmMfGJNAXgxE5P2Pb5Ha0hw5vKtMTl/tU/MyJl9Umn946boU5GTK00eq1aA9NBrU42G6O2oHGTc/9Mw2bcOnVJWb5Zpra8cnVFOeo0oPhA/gX4IMQRi0IwW/zGRECYyW2LrG9BgJ8kN9guxQ9tJ294x0uXRzUJOQeV1UJUghYYP3ArTh8x5B0OzwZAgNcQH4owAqVoHfo4GQvDf8IR2b+IBbz2PNSlspmBh/pWV4kb/Hfh7KGgybDSQQIx1vkp5mzKx3CdZwPa8j18ZSNzaJICnd8pIZGNweTNnL4LbAvRgdTnYpg426sTpPCv1u9dPk57g0rwYFiNZ0fD+oIN/3xBYd/UANn7IPygOhg5RfKHcV5nnkA49tkXA0KpdvDikR+Hffv08GR4LS3heQUCQqBxtLtDurxO+RmeiMvPtIpexuKFSfT2t3QD00x3aVSm25T1OZu/qnJBqZkQ88Wq93koNjU+pLwvRMmF+jJ09LcGevDygBorOJf++sz1ciw2v5s1xWNhMt+JEZLZH1DU9rR9qRXaX6c81xszYKEmUuykn4alB2qsp8+jyUBV3p6dJYm6f5RYNjQSUh6hvK86jSNThqJSQ3VOXpz99N6zdEhxDIroGAkjgIGgSxNN9j5QjNzsqRHaVSXR6Uq61W0CHEDvWO9yUvi/BGKwyREgQde5yPNztT07ohRkvdOZHhtFDxwRTPpsYdPWSMsh/T3g9sLZLRyZAmQFN+hBSimOGNMu7olYH9HyI/OhnWa53fMXK1UFWZM7iS4My1BK6PFT1ulUrDBhsfJuH5fiQ8b5BU0cloTL72eoucudo7r6WddmVCB/HPNLUN69dQaUIRK7sFMsJm39E7rmMx6qv8qnacuTqgZuRcb4ZugkW5bvnhZ7fL7i1+6R4Myitvd6pSlOVxxu8GQ5oM/exDNbKl3CcXmkfky680qVKBb4gdgNEIdHr90LONMhoIaVmKfJ0gZbiZmJbZIGz4kfCdjASCUlGSoyqNMz1d2+JfP9ulpulH91XI88frNEzwUvOwkrCugUlVdphLBtlqrMnXMt3ZawO64fO8lOhoo0fZIsDvetuw/p3NH+WJtWH8Br95kKmJqbA8vKdcSvI9Ulnkla0V/rva9FF7bvYE5JtvtcrIggGnjMB4/nitlBdkydvXB+XfXm9RkzZryCuGQ1GpKPHK9z2xVQp9LrnWNqbk0iIsaVJc4JWZSFRN3lsr/ZKZZDK8I+71oeQF2HfJUYL4JJ4VBI9yJGXRizcG55XYIKkEVe5pKBCn4y58R+sId/o5AfEhgf3tq/0ysqBJAJWRuAdS1tcTARqZDMsrZ6xA0FTg9++pw1XizXRuus/itQynSXg22EigwPO115rlxOXeRd+bCs/Id97ukCM7S7W9ndwcLW+lWdO4KeWcu24ZmPHB/P03rynZubUTxqQkz6MdU5/58gX5zz9yUC63DKoiYmXSWESUu1ha4E9d7lGV5v994YIEJi3TrsPuBotZPWD/9mabPLK3TE5c7JkzGKOGoCZ0DUyoMjU6HpZDO4rl/37z+tx4Bzqu3n2sWq61j6ofB59QbnamtMbHMnA3Td4Qr8fzYrrk76VF2TJwI6gbESWkYDCiZQcUpKHAtOR4MzVYcGB0Ws+BEhtKCqMyIF2ezHTZWpUntaVeiYbv/AODc+wenpIvv3JjrtssEazlv77arKTuH168qjO9FiLQOiJZ7lY5uL0kPmzUUsTSnWkaKTA5FVHFjmGwWytzZfG9t0Uyrb9ZxAeytxAoPBPTYbnYPDTH9XgPIVpjUyFpPz8uvSNTsq+hUHKzM1SxMvdqyUuMb13o0etpIbgGIP9c16VxhXE9gPe7KC9LhxmnQnmxV3I8jHS5r4dmsEFgPD8GK0Lf6LScurKY+NhgiChzmzwJPhFAmvHVVksNKivI1lKYBuwlfAYTUpjtydBNNjMjTc7dGNCZXK+f61bVwWq5dmh56bvvdEpDdb6SGpczOXeHjFB6opxFOU2DEQuzZXtNvs4Nw3fDHjAyMa3EDJXGBsoNr0mpik2YO5dLzUOWf8LB8aXr1HkIjA1KgMV+q1ML5QblkLRnpt4TcEh5h840iA+ACGjooU6jd+mgVUgiY0FsMnfHcIgS1GTExwZmdBKy1fydRsK1V7bX5Km3CnIHMl1OOX25V+et4Xtq6hrTGWnX20eltTegpO8r370pb13uk+iCDZV/kubNWulokRT+DUobFrEcUwUM4gjZZW16Bid0zc7fGJDe4Sn5zukO6WAwqrF3zAPXJYQ0GfGxQZOAGu7XCfGxN6ZD24v1RiIZUFT3bmEO3n0/NIMNAkN+DJYFxuYLlCWW+Oxkk2PjIsjQNjxztwkpoisDMLOrqcMqoSSCz+TAVEjNynR98YEOkTq8s1RK8rM17JA/fBAe21WmxKazb0LvDpOBw6S0xDFDeBhUyq7ZMzQpnf2T2ub+zJEqJSZ0HTHGIREtXQHtdOL12FRQS4bHQ9LWG1DFis4vhqtS3iIHiLvp8amI7N9WpD/POXs9LlWNRsenZXdDkfow7CGt9jnzMyQ95+W6lXA19wRkeHx+2eJ2MToZ1cGxSwHVDJ8Vys4TBytVgYGAcjwNlXnqiaIU2dQxquQRctfea40GWbipouhdbhleZDplgGp9pV8CE/NLXTZQxHgN1oqwR7w+JPl2DYzPS75GQSQROzMDb1i/DJnunnlAfWyPj3lZCpTD+P1cT3A70+Th3aVyfG+5esBoKuD38rEDFXJkR7G41qmh22BtwJS9DJaFml6XyNSxQbkLJYMPJe7cISCoDLa/gxZ3yBEb2kLwNVuFIAgwP9ctX3+jde7nAYoAnVwff/9umZhmArs7+fHGFRxSYMcmwvLt0x26UeN/wJcD4YG4HN9XrqRD52olAHLG8WK6ZnOGGEDobBLXPh1R5YcP4uFAUMYnI/p6dIzxGLxPR3eWSt/QpP77+L4KnQ6PgpHIBPjs3laD6TpH3rrQrV9jfe52M1xK9QGQsIYqvypQrLFdFgSoa5jXMZ9DTiApzEBLBdaKOWmM9oDw2MBf1Vjpl57BKRm9Mj3vPWe1OefdWwrUl2Qd96wSpcRjsaFjQbKsjCber4LdZXGKa8CarMRXEYuv8XoDfq8Sv1uN+tww8DuT7PPDwOB2YciPwbLAbMqGvhzYCFER9tTnyfBYrnYQcZtOCjJGYu7e8bYkA5ssd/94htgcKXklEh8bGJ5RIZRkOZPf+fHRCLnhMWebBuaNpoDUUJJC0WGq+buOVGtQYSJQrCBumIAZ70D5ZuGeDHFgXTBwD45Oqz+B/GmUJh4/MDw1R5aCwbCaviF0kELOky4viB6GbIiPvekTB3A3gEAmG52RCAzfRBIwiy0Z2RgJhOTkpV5V2VDLEtcv2fvGZjQwGhRvac48Twm+w/pyn/hzMqRnYFLGg2HJcKYraYRwokbY6dsYnMcmkqte5C/ZniwI9lQ4Klkr7Aba6NAU8hWsBWoZ3rL1CC6pWJzw3N2tgYHBLZiyl8GyYC7Vni2FOnphKRRxh1aQJWkxhxTlZmoL846aPKkqztZW8KlgWPZssUpDCz+Y6R5CXcKQ3D04lZT42KD8lJfjWTLfA7KGx8aRMM4BLw6bvrU/x9Rzw2a9MOmYYaowqAs3hnTjxewbnF7sqYBATQWj2u1VV+bTLjPKXO09gTniA5o6xnRd8CtRWqKsRxs4/75402r9B3UQpBWQzKXgz87QlOylUOzPkuGxoIyNz+8Es8HxYOqGzLpdS5MxSoeQQOaoLXw7IEX4mTp6AqqclRdk6/n1DExIS9eYqmcQRUgmZDBZqB3kCvJst81zbOvIurLqSBOHXjfLoTA3a54yZ2Cw2WHIj8GKUJibqeWbpS6kp4/USIHX8uGwQUE2aIXGRwIwvhble6SuYv6HNd6YwGRI1RWnCwXIahlPhbaeMQ00ZGNMBTZZNlxHnAhZSlG6khn8ONwtY8rFgF1eyHwul/4hiHB3fYESLAgACgVjLlKpH+T9EGRIl9XQWFBCSUgbxl061fZtLdJOM8p3/B9VyQbE8l2Hq+cFC94JZmfI7ylZUkEi48id6VrSJMu68X260lI+DzPK4v4u/FrJOol8ngypKvXJ2ERIVRsM5jbJ4Ws7awuspG+nQ1WrhdhRky/jU6H5qpwx/cyBNS+JJ6QvpQ6RL2UsMgYGt2DKXpsIKA6UGaKzhNdZYw5Wmp+SFhN59kiNKjivn++eV1Zh83rmSLUc2lookcjs3GuRrWPl/ORoKepy65D09o/L+47X6XOofyPXI9kep+bnbKv2S22ZT260j8ioz61lEciEfYR8dmfEu60GR6f0NRkdQYZQptPK+QlFIlJd4lOz7ch4UMpoQR8OWhtm3B+NSRnTL51NKDq0zF5pHdENHNPy6+e7xJeVKY/sLbcGtEZn5ND2ErnUMqRqkQ08RLvqC2RHbZ44YlaHGSSO8h4vx2aO0uTNtozRH3pqq/iyXfLmhfndWLT5P3+8XrZX50kk/nVHWpqMozbFGInhVBIJmbRhJUlbQ0P1WJzWUFnWuzg3Uz789DZ58USblq3m3kOHaNAh+Tm9QxNKxngPUKNscMxMsd9S6Re3K00qS6zhr4lKFs9D2CGbLu8JBIgE6+T8MCZ76vP1ekARS1R3aJnf31isRBavUW5Oppqb9Xwy0rWESD4Sg15tMCCW0L7NkPuzUmQ4rXDPM9f7tTU88X3gmt7TUChF+v6YNTMwWFchh6Ojo/LHf/zH8vLLL8vExIQ0NjbKL/7iL8rhw4f1+x//+MfljTfemPczR48elc997nN39HobLeSQjZIsEILn2IBIS8ZjUVKQrZ4MuqZWGoCW7krXchLqxWQoIvk5bvWuFPgyJRqe0U1ueCKsmxmkhNRjTLyYgWl7x0DMjonhlXIHycwEEzJhndIQ7eEvnmrXJGhKX3T+oALF4mSDdnL+z53ss0drtTsKFYUNkteGPPHcmU6HvHSqXTcCPD7k6fB8KDS0umOcDkVmlbjtrs+XWXHo+w5ZoJxWV5YrNzuHpW/I2kzw60C6MExDcijTUNLRuVy1ebp+4yGrTf5m15j+Oy09TQpz3bqBY37mZ7ZU+ZXM0DLO+0BJhw3dTlTmALuHJuXMtX71NuFR5bUhZYQfEp/DWvSPTsvNrlEtXfFvSkgQFohUWjzoMBiJysDYtHaaQYxIbiadeToclW+f6tALA/IE+WFMAMTH7yUKIF1fhEBEOm3O3xzUTit8N5BPzjkjHaJlEdK924qkvsy35DUE2ZwMRVVp432A8Bb63OpPIplpKjSrA3FbegJ6rKwtvioStG1AwhgY6yWhegPibj8nWP3xYET9V5QHKUny+8RQYUMW18Zn8WaAc52EHK4L8vOJT3xCBgYG5Dd/8zeloKBASc2XvvQl+ed//mepr6+X48ePy8///M/LM888M/czLpdL/H7/Hb3eRiM/wciMvHmxVwIL0n7nppDvLJVSf6o79+Qg4A4iwVrZ3ReQhs5BNu4+7fapLvfp6ARKSPbmRZYMZGhwZEp21OXrxo56w7FhBGa4Z2amS1uoCcfDU5PYH85kdwgVqbUYjBmdAYnKzsrQ3JjRQFBmorN6TrQAQzqsY9P/xp/m1ok+ur9CinPdujkQG5Se7lTCwZiNNy70LgpZg8Awc4zNBTWEtlvuqhn5gUnYKtc5dCOnPZ+NnbIbQ1aZCA+B2Fadp3fjHMfkdESzSijn8OfM9QF58cT8DiwbTLJ//uFaaWofUZKVDCg7e7cUzKtnc/2BuWvP4ZA3L/Zo0CPgfXQ4rMckqkuP7GNtMoW3F0IH4eXBGLhZL0qI22rypbYkZ8WJ1FZmU9zEuuBnIK/T0Rm5eHNYR3LYGzaPJwdp39ZC9TRt1I38Xn1O2DO9NPBzYy7Vuv0s3gxwrhPys+Zvodra2uT111+XL3zhC3Lo0CH92q//+q/Lq6++Kl/96lflox/9qAwNDcm+ffukqGixmXbTw+GQc02DSYkPYDM+c7VPniTv5TY6aKLRxd4WZkCdpYNIja6Z0jcUnCM+gDt+Ag7xfuChOXGpV545WiP9Q1Nznhrmgx3dXSbF+QwKpYw1O+ejoRRCecenoYBuORFvD6eUwugLj8faGHmmc9f75eCOUqujCOUobnJOBP4evEH2ZhqN8scq77B/MGn9zQl+/tYvcGLZCy8Ld9aQS9aQ12FzH5sMy0hCXg8kCPP0tiq/9A5OKOG52jYq3QPj+r7w6viQSoty5shaMrR0j8nVthFpiadNJwMT7ylB1ZR4E85r/gcQpJGkbY6L8pvVAT2bZG0yrPZiEWms8ms+Emne4xMhVX/wTGVlWN1eK8VSGzLHm5GWJgdRuar86rlicVC18Gzht9+oxOdewqyRgcEGMDzn5eXJZz7zGdmzZ8/c1+zE30AgINeuXbPKFHV1D/Q41yrwjSwVEQ8gF6gAdzMFGlNlZ//EXEsyJS7KMolA+SHUzzb6akBbT2BewjK42jqkwYQkEGdnOiU322WNN8hM1/LY0Z1lOi9rqY94vE39w5NattH2+fipca1Quqmt8KuSArlKdt5a6vJm6MytwtxbP4+/pbosRw7uKNENmrIcJl5UKwCJSyQ+Nmhx53XxF5H3829vtejjWAOeG0WJ483xZujoCZ6b9UoEXWcnLvXojLCl0Nw9pr6uVODcGNj68N5yNaBzzKwX89o4RrrF6NRLNBar0sP3qvKkvixH1bLMdEqFq7DRxmKS43ZKdVG2VBd7JTfLGqJqVAwDA4N7hTWv/Ph8PnniiSfmfe0b3/iGKkL/5b/8F7l+/brk5OTIb//2b6tClJWVJc8995z83M/9nGRkJE8AXgnsUsG9gC3DrVSOu1fQgYfDESUJyxGbvuGgKhN3etfITw2M3iJQkCG6hRLb0emcQvWwOnastegfDeroicTjowyGHPHQrhIZD0atf8fVEW+WUyaCUVUFEn/G/nvi1yB0TGh/fH+FBKYi6jeajs7K9DTek0n59ql2fZ9LC7N1Mn1uFkrH/PMv9rsl/0CFdmzpzKnJiCow3QMDulZ0cQWCESUbqCEoKfxZ2IbPs/L6+H1IRMZfQ4UpDxXL75Gm9lE5fa1PJiYjqrCgbKHOYACGVNpdWhduDmrpL3OJbi6OFYIEgUgFDg/fDQQzN9utoZG8P15PhkYW8B4tvGTs6xc/UYrJIquEzdGm9KA+JzYTzBqvPtLXyRqvefKzEGfOnJFf/dVflWeffVaefPJJJUChUEj27t2rxucrV67I7//+70t3d7f+/07ABkrN8l7D50s+p2Y10TNqlYOWg3ZR+ZbOzlkK5Lzg1fF44qF1znRtLU8EvwysLYZW+3v4dTIIP1xwjBmZLsnzZ0teEttWZGYy5TlxDHN/dzGpHOPvrA7lTHOmycDAuIyMWxPV3fHnGBwLyfi1AXl4d5kqS8ng93m026upc1R/1n4dDODTY0Gdr4ShGC8U55ZMpcjNceucM77POnizXVKUny2vnevWLrFwmPlWDi0LskaQLDxJlKUwsWJSx5vDzy71nkJaPG6X5OVlpXwMr3Hqau9cfg5kTOedjYelo39CGir9sn9rkV4Xa+E63kww67v6MGu8+ljra7yuyM9LL70kn/rUp+TgwYPyh3/4h/o1FJ9f/uVfltzcXP33tm3b1Oz8C7/wC/JLv/RLUlhYeNuvwx19ILB0qeh2wKbPhRDAjJskyG014XY6ZHra2uyXQm65T4/vTpUfDSp0O6Wn32pLjkat7Ba7HATCEYe4XemqgtD9BfBzTNFBFbw1PoPSUmx2Vg1zyRBj/ITE5jZuACGAkIRCET0HlJiwyynnm/qlq39Cyzp9w5NSU5orVaU50tVH2/Wtcw0GRU5d6pFH95YnzUNBOXrnSu9iI3J8gOmVUFS6+yekojjbGq+xwBPF1zwZ6dI3RGlwRktadMq9fbVPiQ9gEjq+ocm4CsPf3zzfLU8cqtS0bDrNSvOzlKgkrtdCoBDNzsykXD8O5szVfhlcwtR/salfPT8FCaGLD/I63gww67v6MGu8sdfY5/NsHMOzjc9//vPyu7/7u1rS+u///b/PlbScTucc8bGxdetW/X9vb+8dkR+wGi51nfZ9n93veGbyczxakkoFOr7YVMNLpCqvBLS8k9EDQQiMh7TtnInoNmgRZwwE7cs65NNhpRrTBZVIusqLcnSoYaq1IteEEQm0wy+EEp+ZmHQOTMhDu635WmB0Iqwt3RebB2UoMC17GwqkrfuWGRvgjaKc5lsQNMgvE5PMbT9TIiBgRXkebdnm7zwGszedaolgQCvHhorDudMCj+rF8dlnTlmP7Jt5pbJQVMbGw9r63d0/rj6dLjqhlvDa1Jb6dCZSqvWbiswoUVuO6GI+z2ssWvS4B3EdbyaY9V19mDVefaz1NV7bRbk46PT6nd/5HfnIRz6ieT+JXp4f+7Ef0zJYIi5cuKDqT21trWx2oGLs3VqobcnJgIpA2B0k6W6Bx2R3Q6GSGsy89RW5Gjho+3Dw1zDnidRgHrN/W7GEwtF56cmEHhJ2mLjh0orNHxuYbMmVwW+T+BhgdVuFlFTRQm53amm+UIL5eGgspAnFieAwLJ/S/PPi+BhuulQJ6cjOElW6eD2I5JaKXM0TsoPmaNMm0ZgAwbKCbB0eCtFKpBXMvSLoj59LDEEcHJvS58B4jUm7ujgn5bEwoZ55Y0sRGwzuyYjcQjCqAxP0/Qbrb0KcDQwMVhNrXvlpaWmRT3/60/Lud79bfuZnfkYGBwfnvud2u+U973mPfh/Pz6OPPqrEB6/PT/7kT4rXm9y/sZnAho6SgXfkRueYqgdsfqgZhXke2VaVJwW+lYccLv1iInWlPlU5RsZDMhQIyrE9ZbJ1LE/LNrOzszrxHXNxeXGVGnPPXh9QpYggQCacN5RbqoUizSFD49ZYBM4DtaQgN1NwoTjFIcd2l0hzz7hcaR2W3uGgpKWFtEX70I4SCYej0tlnGYXBws20uWtUW6o5hhVtxkt8H0O2My1NfuCZbZq6PDI2Lb7piOzcUqhdaihrLZ2j6hsiKRoDMx1sKMK0798aiRHT6eWYnZlGr6SRLqtMlxzeUSI1pT7xpDtkb0Oh5Od6dDo9I0No7mc2Wn15ripiy4xgWzGxsDN57hcIQpwKzcjoBCMwYkoCWQ/SsU37toGBwaYiP3R2RSIRefHFF/VPIj74wQ/K7/3e7+mHNMGHkCCyfj72sY/JT//0Tz+wY15roMzCFOz9DQWa14IfBkMtHhQyX1BI7hXCMzE5daVPzjcNaJmJvZN26h21+ToDi5A6NjkSjBmuyWbNHk8GUGtXQEtGlQVuGR6Pynfe6ZSmjpE56RSCQQjik4eqpMTvkfbBCbnUPKzeGDrGAJsk3VQECZLijBKjBDArY55HiPRgTNmJoAxFds0if1SMUpxXSVgqVJbmSFPHaDyccUqvSZ27VJAlH3xiixQXZGswIUnTmJeHA0F5dF+lvqbLk64Jy4DXR9GCDDKGAjy8p0waynPUEA0QuWpLvDqTzFa2IAgrJQkMYF04siIZmLlGoOP9IB6EW1+5OSQdfYF5uUp4wnbVF0ppvvueXqcGBgabG+si4fl+Y6MlPN8voF9882S7nGsaSPp9WsE/8vwOeeNct1xtG076GAZh/ujzO+TLr9yQ3hSBf5SV3v/YFvnsVy7oqA2g09vT0jQcsb13XEdcPHOkUnOEAISvNWG2FMfyxMFb3wd0ax1pLE46A4nxIN8505F0cGlDtV/aeifkxZNtSioTJ9JXl1CG8kkgGJaKgqy5XJzJ6ahu7IzT4O8Q0SyPSwebJootlLueOFChM9XuFVCULrYOy/W25CnRAFIGyfQmTAJfreuYZzrbNKjjPFKVZo/tLlPCu5E/rjbL58SDhFnj1YdznSQ8rwvPj8H6QN9IUBWfVCA7BqWGUMBUKC3KVlWImVqpQMmHwaioKAsBOSENuLVnTBUYOp8AM8Hww9AuDphrht/o1nO6Zc+WgpSbqycjTUtWCyfJ8y+PO0O+83bHXM5PIrZW58vJK32a4zMVV26A1+Pk1kOO7CzV0liB36M5Q4nEh5IYr0mH3L0ESs62Sr+UFSYvC5PRtL+xaMmcoHsJErFTER9AWfRyy5DOaDMwMDDYFGUvg/XD9s/dGFgydZmZXG9f7ZWCJfIfCPh76WSbRJi1lSKYke6qr77aLHk+tw5yTATlrOI8j45uuNg8pAGH6ouJ4SFJ1w40DNHMFRsZDercLYzZmJDxI6UCnKg0zy1PHKxSBYkxFWzKNeU+6YgPVaWslsidKOFBsOxy28RUWDy5jNOwnm8mGlMP1sHGYlWtKAPyeFQXhp3i8SE+YDXKTqzt4e3F0jfCRPVRPUbOgZIb88Hysl33pdwF0WII7nLg/STwkmRqAwMDg7uFIT8G9wQYVJkwvhQYPAoRocvKSjhevLniW6GzKid7/siLRCBr0q5e6M9KWrIkW4jk4onJ8DzDLoSDNvmnDlYqsZidmVXStlJfC6SFMtDe+nxprParSdzny5TP/9u1uRTqRDCyItFQjcfG4YD43VIw6LpiHhdpzk8crJBIeEY9Ucwws1rjV4+AYIymFFeW79EcJB2z4Upf9ddNBC9DrtFKoHPVDPkxMDC4BzDkx+CeIC3dIS7X0peTdns501XZSGxvTwSEyJM53/eyEKg4lISsEaaLQQs5pSTmY9FWPzkZnitt1ZXlaqeV/mi8hHW7Gz2PV5WItOp4eGEy4C9KTLnmvFOV1fg6j3Tc4THdKTRviRLbfX5dG5r2nb6yst7CkqOBgYHBncJ8mhjcG8yK7N5SsORDhgMh2VWfr+WVVL5VggZp5aYckgpMQj+4rXjehPVkPhI8Lbtq8uSJA5Xy+IEKObi1SIdkLlmbu01MTUVk79aipKnQeJvI5oH0ZGZYnWTJyAUEgLLbZmzn5pwpdS4Hj9spXqP6GBgY3CMY8mNwT4CqwwRuOrFSYXBkSvZtK7YFl6QgtfmhPWWamJwK7b0T8viBKk2MTgWUnwONRRIKzWh5h+yg1SIXJflWfs9C8Hqd/eOyvTZPy2x4jpKBwap0eW1GoDwV5brF501d5gT4sjz32PhtYGCweWHIj8E9Q3ZGmnzvEw3aVbUQZPQ8dqBS6kt98q6jNVqCWghtPz9ULVXF2fI9j22RnCTDO7PdTnnsQIVsrcqR739mm/4br0osTsDI12Eq+Uef3ynFvls/j7dHnTZpDv37vUSGwyEffnqrvP/ROlWtdtblq5EakFOE6vTI3oqkIykgPgwQXa0swXSXdd6zDstztRaBD+vozhJVxpKpYpQvt5TnbkplzMDAYHVgcn6SwOT83DnoJKelu3toSq60DGkAIfO86K4q8GYoS8GwHAhGpHNgUq61DavPp7wwWxOe6TJit8YGMjIZ1c4qpptzlVIeYWwEc65mo7OSliHSPxLW9nkeQ+lpV32BqgQoUKFgRDf+/rFpOd80qPPNKEERgMjUcl7rXrwfcBoSra93jcngSFA9RxVF2RpUSIcbydR2Jxrnw6gNfE10nnEuq3IHkiYyGAjLxZuD0jMwqf+uK/NJY22+Ditl/dbSdQyBJSCT0mibzlGbkVyvW3OSiC5wbIJPqc30OfGgYNZ49eFcJzk/hvwkgSE/94YEYYDm8uIKiyzIv7Eek6aTzK3HxCSSkOybuHZWNI9Vtrq1fg557VKPfPHbTXJ0Z6lUFGYxH0Gutg5LS8+Y/Ph7d8rO6nx5+WyXnLzUrV1FiSBg8Hse3yK1xd67ek9oyT9zbUDnhdnIwIwdswIKDzUWi8/DOljfS/zFXLWJx2kOefvagHzndMeibBzKic8dr5PtlcxPm11z1zEkiDWy12szTd7ejJ8T9xtmjVcfznVCfky3l8GqgH01tMz4BDbfUGjpX45kvzz8cl1oHZG/f/Gavs5r57q1bGSPlGDf/MabrdptdepS7yLiY6swX/nuTfno8zvEd4dDXWlJv3RzaB7xAeF4wvNoZEZOXe6Vx/ZViCtu4F7tzRwz+Y2egHzrVFvS82ZK/AuvNUve8zulKGdxWfFBA9JjNiUDA4PVhvH8GKw7TEdn5dV3upT4pAKdXm+c75HCvMXeokQCxDyuO/UAMZaiq398ycfwGsPjofs2IBQl6tTlvqTExwYp1Odu9N9z75OBgYHBeoH59DNYdwhMReRi8+CSj/FmZ8j1jhFxLpMhc711RAP+bheQGXw+hBQuh7a+wIql2LvFRDC65KgIG6Qqk5hsYGBgsBlhyI/BugMGaRKlU0G7v2IxHSKaKgjRBp6YOxsZRUL1yn4wysjy+wTCI5MlZy8EozVSBU0aGBgYbHQY8mOw7sAIDOZ3pQJ7uiM+W2u5ahPzwTJct/9rALnyJmnFT/oaORn3bRo5Kci5S4wGsZGbk6kp2QYGBgabEYb8GKw7kONDh9dSYNjokZ0l6rlZCvu3FemMrzsBHWP8WQrMMKsq8akKdT/A6I4d9fnLPo7zzrxPpTgDAwODtQbz6Wew7hCejsrxveWak5MKkJKH95QvaTQmlblsiUTq5ZCR7pDdWwo1OygVtlbniTdFsvNqYCYyK4caS3Q6eyo0VOVJQ0XupmojNzAwMEiEaXU3WHOgXTsyE5NgeEYiM9a08UxnuoYYMkSUvJ/CHKd88nt3yzvX+mUiGNEkYB44MzMjBbkeOdhYLLkep/zAu7bJ6+e65UbX6FwLdV5OpuzfViyHthfrMNE7BcdR4vfoOI4rLcMyHAjO5dN4PS4lGTWl3ns6S2wlyPWky/c/tVVeO9+tIZJ0dwESs3dtKZRju0skI9kwMgMDA4NNAkN+DNYUYg6Rtv4J7dRq6R6XsYlpJTbVpT5prMnT6eMkPTtmHJKdmS4leVkSmByVkcmQkqN8n1vTot3ONCU7JbmZ8n2P18vIRFhJkjPdIb6sDB1wei/yZHQ2lc8t+XvLtPUdooESxNgNjvVBjGTAh02w4vsfqZVH9pbLeDCsa0hScl52hsnRMTAw2PQw5MdgTRGfq+2jcqV1WLoHJmUieMuvw4ys3qFJ3czfvton+7YWy8lLvTI6Pq2m5nxvhng8GRIMhuVC04CMjAXlQGOxjspAeslj40+YCn4vCQAEiMJXjtupf2w86FlUjLBA/eKPDUN8DAwMDIznx2CN5fc0tY/I+CQqzWKj8vhUWK62DUuW2yXnbgzK2EQo5XN19k9I/0hQU58NDAwMDAwSYciPwZpAWrpDh5OSUUN44FKkJicrQy7eHFg2z+Zm56jJsjEwMDAwWARDfgzWBGgFHxsPKaFhoncqMK8LE/TYRHhZ8jMZjNxRerOBgYGBwcaGIT8GawKUp26VqJYuVWln1woUHX06U/UyMDAwMFgAQ34M1gTo1Cor8mqnlCfBNLwQ2W6XPra8OGduUnoqFPizxO0yKcYGBgYGBvNhyI/BmgCdURWF2ZLpSpP8HHdKwWZLRa4MjQbl8PbiJc3MZAXVV/gk9oA7rgwMDAwM1h4M+dlkgBQwYTx9GdXkQYAkZFKXc70uKcrLWkSA6spypbwoW3K8mdJQmStbKnNTnuPerUWS711+xpWBwcp+X8xHpYHBRoLJ+dkkcKQ5ZGI6Kj2Dk9oynuFKl4oir4b9rRUaRDhfaZ5HnjhQJe19AWntCWjnF6UwiE6eN1PyctwWqYnFZFdtvpQWZEtz55gG+XncLin2u6W21Cf+7Ayj+hjcMVAVp8Iz0j8ypdcgM9oIz8z1ZgpzcE0ToYHB+oYhP5sAfE5fbRuRGx2j2i1l40bHiJTkZ2kY4FoZckn5y5uZLrtr82VbpV+DDx1Kz2LiSk+LExpr5+GrhTmZUrSzRKJMWc/OlGg4KpHIzH2bom6wAeFwSFvfuFxsHpJwfDSIHZ2Q53PrWBTCLM0lZmCwfrE2djyDVZXtb3YH5Grr8DziA/jw7h2akrev9Mt9Gjp+WyTImeYQl8MhToeI0+FIqeRAdBgl4c3KMKTH4K5/X3pHpuSd6/3ziI+NkcC0nLjUK6Gouc4MDNYzDPnZ4GA4KHesSwFpf3QydbCggcFmQXQ2JtfaRpZUdUgg7x2eVKJkYGCwPmHIzwbH2GRYgqHoso9r7Q6I02kuB4PNDYbTjgamV/T7MmNURgODdQuz221g0AnOlPGVYDocNR4Gg00PSsMr+TUgZXy5hHEDA4O1C0N+NjAgM56MlXnasz23Jp4bGGxW0Fm4klm4ma50caaZj08Dg/UK89u7weHLdi1LbPisrynzycwCQ7SBwWZDttspBT7Pso+rK89dMxERBgYGtw9DfjY4GO+wrTpvyQ/q8mLyfjLu41EZGKxNpDscsr02f8kQUNrdi/M8prPQwGAdw5CfDQ5axqtLvLKvsVjcGfPnXPEBj+JzYGuRuRAMDOKxCUX+TDmys3SRYko5rLQgS47tKhWX6fQyMFjX2BAhh7Ozs/Lnf/7n8o//+I8yPj4uR44ckd/4jd+QqqqqB31oawKOmEhdaY6U5mfJcGBaxqcikuFKk6I8jxXWZqpdBgZz4PehPD9L8g9UyMh4WMYmrYTnIr9HcjxrJxHdwMDgzrEhbvj/4i/+Qr7whS/I7/zO78jf//3fKxn65Cc/KeFw+EEf2poBAYFuZ5pUFGTJjmq/bCnziTfDEB8Dg1SKaUZ6mpTmuWV7lV+2VuSKzxAfA4MNg3VPfiA4f/3Xfy3/8T/+R3nyySdl+/bt8id/8ifS29sr3/zmNx/04a05YFPgg50/BgYGS8P8vhgYbEyse/Jz9epVmZyclIcffnjuaz6fT3bu3CmnTp16oMdmYGBgYGBgsPaw7j0/KDygrKxs3teLi4vnvncnuJdpx+nxoaH2/w3uPcwarz7MGq8uzPquPswarz7S18kar3vyEwwG9f8ZGfNbtTMzM2VsbOyOnpOZPXl52XKv4VtBfojB3cGs8erDrPHqwqzv6sOs8epjra/xuic/brd7zvtj/x2EQiHxeO5s8anvBwJT9+wYYcBcCIFA0AQJrhLMGq8+zBqvLsz6rj7MGm/sNfb5PCtWnNY9+bHLXf39/VJdXT33df7d2Nh4x88bjd77N40LYTWe1+AWzBqvPswary7M+q4+zBqvPtb6Gq/totwKQHeX1+uVEydOzH0tEAjI5cuXNe/HwMDAwMDAwGBDKT94fT760Y/KH/7hH0p+fr5UVFTIH/zBH0hpaak8++yzD/rwDAwMDAwMDNYY1j35AWT8RKNR+bVf+zWZnp5Wxeezn/2suFxmUrmBgYGBgYHBfDhiZjrfIrAk9zrUDBOWMditLswarz7MGq8uzPquPswarz4e1BrTqe1gCN8KYMiPgYGBgYGBwabCujc8GxgYGBgYGBjcDgz5MTAwMDAwMNhUMOTHwMDAwMDAYFPBkB8DAwMDAwODTQVDfgwMDAwMDAw2FQz5MTAwMDAwMNhUMOTHwMDAwMDAYFPBkB8DAwMDAwODTQVDfgwMDAwMDAw2FQz5MTAwMDAwMNhUMOTHwMDAwMDAYFPBkB8DAwMDAwODTQVDfgwMDAwMDAw2FQz5WWXMzs7K//gf/0Mee+wx2b9/v/zUT/2UdHR0POjDWrfo6+uTxsbGRX/+6Z/+Sb9/5coV+ehHP6pr/fTTT8vf/u3fPuhDXlf4X//rf8mP/diPzfvacmtqrvG7W99f+7VfW3Q9s842zPouj9HRUfmN3/gNefzxx+XgwYPyIz/yI3L69Om577/55pvyoQ99SPbt2yfPPfecvPDCC/N+PhQKyW/91m/Jww8/LAcOHJBf/MVflOHh4QdwJut3jT/+8Y8vuo4Tr/U1t8Yxg1XFn/3Zn8WOHTsW+853vhO7cuVK7BOf+ETs2WefjYVCoQd9aOsSL7/8cmzPnj2xvr6+WH9//9yfYDAYGx4e1rX+1V/91diNGzdiX/ziF/Wx/N9geXz+85+Pbd++PfbRj3507msrWVNzjd/5+oLv//7vj/3xH//xvOt5aGho7vtmfZfHxz/+8dj73//+2KlTp2LNzc2x3/qt34rt3bs3dvPmTb1uuWZZY/7+V3/1V7GdO3fG3njjjbmf/5Vf+ZXYM888oz9/7ty52Pd93/fFPvKRjzzQc1pPawwefvjh2Be+8IV51/HIyEhsra6xIT+rCD6cDhw4EPu7v/u7ua+NjY3pBfPVr371gR7besVnPvOZ2Ac+8IGk3/vLv/zL2KOPPhqLRCJzX/ujP/oj3SgMUqO3tzf2Mz/zM7H9+/fHnnvuuXmb83Jraq7xu1vf2dlZ/fo3v/nNpD9r1nd5tLa2xrZt2xY7ffr0vHVlo/3TP/3T2K//+q8rwUzEf/7P/1lJpP3+QEq5sbLB5s5znjlz5j6eyfpd48HBQf3+pUuXkv78WlxjU/ZaRVy9elUmJydV5rPh8/lk586dcurUqQd6bOsV165dky1btiT9HhLs0aNHxel0zn3toYcektbWVhkcHLyPR7m+cOnSJXG5XPKVr3xFywK3s6bmGr+79W1vb5epqSmpr69P+rNmfZdHXl6efOYzn5E9e/bMfc3hcOifQCCg13Di+tnX8Ntvv83Nv/7f/pqNuro6KSkpMWu8wjXmc5m/s27JsBbX2JCfVURvb6/+v6ysbN7Xi4uL575ncHu4fv261ok/8pGPyPHjx7Xu/N3vfle/x5qWlpYuWmvQ09PzQI53PQB/yZ/92Z9JVVXVou8tt6bmGr+79eV6Bp/73Of0cc8884z89m//toyPj+vXzfouD8jgE088IRkZGXNf+8Y3viFtbW3qk0p1DQeDQRkZGVEfIZt7ZmbmoseYNV7ZGnMd5+Tk6LWLJwhf1Z/+6Z9KOBzWx67FNTbkZxXBLxdIvGAAFwDmL4PbQzQalebmZhkbG5Of//mf1zsRDKA//dM/rYbG6enppGsNzHrfGZZbU3ON3x3YNNLS0nQT+Mu//Ev5lV/5FXnttdfk537u59TobNb39nHmzBn51V/9VXn22WflySefTHoN2/9mc2aNF34fmDVe+RpzHbNWe/fulb/6q7+Sn/3Zn5V//Md/VDM/WItrfEvLNrjncLvdc79g9t8Bb7bH43mAR7Y+QenlxIkTkp6ePreeu3fvlqamJvnsZz+rX7PvNGzYv1hZWVkP5JjXO5ZbU3ON3x3YJH70R39U74rBtm3bpKioSH7wB39QLly4YNb3NvHSSy/Jpz71Ke1G+sM//MO5DXbhNWz/mzVMdo0Ds8YrX2MUn1/+5V+W3NzcueuYUu8v/MIvyC/90i+tyTU2ys8qwpaq+/v7532df1PrNLh9ZGdnz9sEwNatW1VWRdpOttbArPedYbk1Ndf43QHVxyY+idczoBxg1nfl+PznP6+K8FNPPaUqmq1QsobJ1g/yTqmGa5w27oWbs1njla8xN6Y28Ul2Ha/FNTbkZxWxfft28Xq9qlbYwBx2+fJlOXLkyAM9tvUIFB7uNhLXE1y8eFEaGhp0TTHWzczMzH3vrbfeUmNdQUHBAzji9Y/l1tRc43cH7oo/9rGPzfsaig/gmjbruzJ84QtfkN/5nd9RL+Af//EfzyuxHD58WE6ePDnv8VzDfJZAPg8dOqQlRtuUC1paWvSGyqzxytaYPB/KYAuvY9Sf2tratbnGD6THbBOBbImjR4/GXnrppXkZHeFw+EEf2rrDzMxM7MMf/nDsve99r2ZFkNnx6U9/OrZ79+7YtWvXtN3yyJEjsV/+5V+ONTU1xb70pS9pvsc//dM/PehDXzdg7RJbsVeypuYav/P1Zc1o9yXLp62tTVuBn376aW3FtmHWd2nQMr1r167Yv//3/35exgx/AoFA7Pr16/r9P/iDP9DPjM9+9rOLcn5Yb9b9rbfemsugWZjHtJnRvMwaf+5zn4vt2LFDc37a29tjL7zwgmZTce2u1TV28J8HQ7s2B7hjhiWTQIzxDpZLSmZlZeWDPrR1Cdqr/+iP/kheffVVvQOm5Zf6M3d34Pz58/K7v/u7emeMd+ITn/iEphMbrAwYbru6urT7yMZya2qu8btb369//etq3sfMTxnmAx/4gPyn//Sf5koKZn2XBuWXP/mTP0n6vQ9+8IPye7/3e9oR+gd/8Aca0cC6Ubp573vfO/c44gY+/elPawcToGMJs+7CkuRmxV+uYI3/7u/+Tv+QPm771mhGQV1bi2tsyI+BgYGBgYHBpoLx/BgYGBgYGBhsKhjyY2BgYGBgYLCpYMiPgYGBgYGBwaaCIT8GBgYGBgYGmwqG/BgYGBgYGBhsKhjyY2BgYGBgYLCpYMiPgYGBgYGBwaaCIT8GBgYbCk8//bSGCRoYGBikgiE/BgYGBgYGBpsKhvwYGBgYGBgYbCoY8mNgYLDhEIlE5Pd///flkUcekf379+s8sra2Nv0eJTGmUH/xi1+Up556Sg4cOCA/8RM/IVevXn3Qh21gYHCfYMiPgYHBhsPXvvY1aWpq0oGLv/mbvykXL16UX/iFX5j7/pUrV3RQ43/4D/9BB16OjIzosNb+/v4HetwGBgb3B8779DoGBgYG9w0lJSXyF3/xF+JyufTfqD7/83/+T5mYmNB/j4+P66Tqw4cP67/37t0rzzzzjPzt3/6tfOpTn3qgx25gYLD6MMqPgYHBhgNkxiY+oLKyUv8fCATm/m0TH1BcXKzlr1OnTj2AozUwMLjfMOTHwMBgwyErK2vev9PSrI+62dnZOWVoIQoKCmR0dPQ+HaGBgcGDhCE/BgYGmw54fBZicHBQCZCBgcHGhyE/BgYGmw6tra1y8+bNuX/39fXJO++8Iw8//PADPS4DA4P7A2N4NjAw2HSIxWLy7/7dv9MOsPT0dPnzP/9zyc3N1RZ4AwODjQ9DfgwMDDYdysvLNfvn05/+tASDQTl+/Lh2g/n9/gd9aAYGBvcBjhi3QAYGBgabBIQcnjx5Ur797W8/6EMxMDB4QDCeHwMDAwMDA4NNBUN+DAwMDAwMDDYVTNnLwMDAwMDAYFPBKD8GBgYGBgYGmwqG/BgYGBgYGBhsKhjyY2BgYGBgYLCpYMiPgYGBgYGBwaaCIT8GBgYGBgYGmwqG/BgYGBgYGBhsKhjyY2BgYGBgYLCpYMiPgYGBgYGBwaaCIT8GBgYGBgYGspnw/wNefxMuaHSBUAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.scatterplot(data=pokemon, x=\"hp\", y=\"speed\", hue=\"legendary\", alpha=0.5, s=60)" + ] + }, + { + "cell_type": "markdown", + "id": "f3741251-2a2b-437e-b68f-084fb4399e9f", + "metadata": {}, + "source": [ + "Finally, if you want scatter plots across multiple categories, a [relplot](https://seaborn.pydata.org/generated/seaborn.relplot.html) lets you distribute categories across rows and colums in a grid. " + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "7385237c-6a5c-4041-af46-559d6d84d1fa", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABi4AAAHjCAYAAAC0DeeqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QV4XGXWB/D/uMUrqaapuwv1luKlRRdbnAUWPljc3d0Xt0W26AKFooUW6m7U3dtUY+P6PedNpyRtZCaZJDOT/283T0vm3sx9b9Lce9/znnM0oVAoBCIiIiIiIiIiIiIiojigre8DICIiIiIiIiIiIiIiCmPggoiIiIiIiIiIiIiI4gYDF0REREREREREREREFDcYuCAiIiIiIiIiIiIiorjBwAUREREREREREREREcUNBi6IiIiIiIiIiIiIiChuMHBBRERERERERERERERxg4ELIiIiIiIiIiIiIiKKGwxcEDUgoVCovg+BiIioQeI1mIiIqHp4DY0czxURJRMGLogaiClTpuDOO+9EsnC73fjggw9w3nnn4ZhjjkHPnj1xwgkn4NFHH0VeXl59Hx4REVHSXYPnzZuHzp07V/jxz3/+U2339ddfq//esWNHfR8yEREluGS4hk6bNk1dF6dOnXrUa+PGjVOv/fjjj0e9Nn78eFx66aURv8/rr7+O9957r8bHS0QUL/T1fQBEVDdkkj9Z7NmzB1deeSV2796Nv//977juuutgNpuxZs0afPjhh+qmb8KECWjXrl19HyoREVFSXYPFAw88gO7dux/1+bS0NPXn6NGj8fnnn6Np06b1cHRERJRMkuEaOmDAABgMBixZsgRjxow5/HlZcLd+/XpkZGRgxowZGDt27OHXCgoK1Gu33HJLxO/z8ssv4/rrr4/58RMR1RcGLogo4VJf77jjDnWT99VXX6FNmzaHXxs0aBBOO+00nHnmmXjiiSfw7rvv1uuxEhERJaMOHTqgT58+Fb6elZWlPoiIiAiw2WyqQsDixYvLfF6CFVarFeeff756ti1t4cKF6tl32LBhdXy0RETxg6WiiBqAiy++GPPnz1cfkoY6e/ZsDB8+HLfeeutR25544om477771N9lNciLL76oggADBw5UJZkkaCCrP468qbrooovQu3dvFTyQVN6DBw9WekyVlZoovQrlSPJec+fOxU033VQmaBEmq1VuuOEGtGzZEsFgUH3urrvuUim2Dz74IPr166dWsgQCAXWMDz/8MI499lj06NFDHbtkb5QubbFt2zZcc801auwyPilNJam+pUtWPfTQQxg5cqT6GieffDLTc4mIKCmvwZE6slRURddhuU6//fbbqtSjXENPOukkfPzxxzV+fyIiSg7JdA0dOnQoli9fDq/XWyZwIcc2YsQI7Nu3T1UQCFu0aBEyMzPRrVs39d8LFizAP/7xDzUeuWbKe/373/8+/Mwr7y9effXVw38X69atU6Uc5forH/K8u3379qPKQH722WfquVi2mTVrVqXngIiorjDjgqgBkImC22+//fDfZaXkGWecoSYH7HY7UlJSDt8cbd26FU899dThfT/55BMVIHjyySfVTdzzzz+vtpEbG41Go26gLr/8cgwePBgvvfQSCgsLVYrqJZdcgv/973+qhFN5pIRERYxGY4Wv/fbbb+p9Tz311Aq3kYwL+TjyptRkMuG1116D0+mEVqtVN3ByvLfddhsaN26MtWvXqjHIOZLgg9wEyjZS6uKZZ56BXq/HRx99hGuvvRY//fSTOi9yMzxz5kx1kytfY/r06WpbCaCcffbZlXxXiIioIUima3CYXB/9fn+Zz8nx6HS6Cvc58jos20rJKQlyyLW2b9++ajxyXS0qKlITK0RE1LAl0zV0yJAhKqiwatUqlbUoAfw5c+bgxhtvVP8tY5FARpcuXdT2cnwS7JBjlYDGZZddphbJSUBGMjEmTZqkvp6UR5ZnYzkuWWT3t7/9Deecc476Gps3b1bZHLLN008/ra7db7zxBi644AJ8++23aNSo0eHjk68lgR9ZmCfXZCKieMDABVEDIDd44Zu6cGkHmVR/55138MsvvxyeYJ84cSJyc3PVKoswmeD/z3/+g9TUVPXfUvpBJhPkpkqyDOQGsG3btnjrrbcOT1jIihW5eZJ01wsvvLDcY6qsxERlJANCggLyUZrc+MkNXGlyPHKjJ+Qm7ZFHHkGzZs0O98mwWCwq4CA1R4WsdpGvH74ZPXDgADZt2oT/+7//w6hRo9TnevXqpW7qwitlZPWPpO+GAynyNSTdt/RNIBERNVzJdA0Ok8mTI8lx/PzzzxXuc+R1WCZTvvjiC1W7++qrr1afk1W0ct2W8UgPK1lpSkREDVcyXUPla8tzopSLkq+xbNkyFaiXa58skJPnSDm2q666Cg6HA6tXr1ZBByGBCwliPPvss2pcQp5Bpdm3ZEzIMYePS66z4b/Lc6s880qfkPB5lADK8ccfr8oql256LtddCYwQEcUTlooiaqDkJq1///5qpYWQlRWSRXDWWWeV2U5SUMM3e+H/lhsrWQHicrnUDZdM6kvQQCYl5KN169Zo3759pSmm4W3L+5AgREWODE6ESYqvNAot/SFBhTAJdIQnS0R2drbKnpBzIKUs5Fhl5Y7cSIaDEpJBITfL999/v7qpk1Utssr07rvvRseOHdU2coMpEy9yg/nf//5Xpd3KDbE0JiUiIkqma3CYlFmU1ailP6RcRWWOvA5L2Uc5bhlT6feX//Z4PGr1LBERUbJcQ6U5tyyYC/e5kKz9Vq1aqYBLOBAhr8l4li5dqr5euL+FZJlIsMbn86kghgRtXnnlFfV+8rmKyLVWSmBJ9kj4GCWAIcchZbdK69q1axVnnoio7jHjgqgBkzTSe+65B7t371YTBLKyQ26KSpMJ/tJkhYesgJRUWlkhIhP5chMlH0eSkhAVkcBCRaQ/haweKU+LFi3wxx9/lEkNFo8//rg6frFy5UqVSnxkQ7Qjfffdd3jhhRfU+GVCRW7WSqcEy6rP999/X6XT/vrrr2olj9xwygoVmbRJT0/HvffeqyZi5Gs9+uij6kNSa6XvRTjNl4iIKBmuwaUnjaTJaDSOvA6H64xXVPpRMiOJiIiS6Roq2Q6S6SAku0KyLcLk7xKEWLJkiSqvKOWdmjdvrl6TYIY8Z0qwRoIPEvCQZ04JxFS0sC98rf3xxx/Vx5EkA6U0yQYhIoo3DFwQNWCSCvrYY4+p0g5ycyQrOo68wcvPzy/z37KqQz4nNzoyCSGT+1IyoryJB0lLrYiszqxObVBZKTNhwgRMnjy5zKoaubELk9rZVZHxShaFNHyTJmfhcUt/itKrPOXzEoSQQIisbpFzJTe3ctMrn5NjlZ4X8rFr1y78/vvveP3111XDuB9++KHK4yAiooYpEa/BsZSWlqb+/PDDD8tdXCALFYiIiJLpGiqBC+k1IWWgVqxYoXo8hUk/DglIyHgkKyScbRFepCdZFtKLQ0pGhYMM8vUqIxknsr308jiSBD2IiOIdf1MRNRCywkRWlZQmNzxjx47F999/j40bN6qGmEeSZtNSOil8EzZlyhS1ykNukiTjoVu3bqoPROmVl7Ii5IYbblCpt1JqqTzRrtQMkxsvSW2V+p5SwzScWlva+vXrq/w6spJFzse//vWvwynEcjMbTpmV1yR9WMo+vfnmm6q3hWRkyMe0adNUkELGefrpp6smaFdccYWaZJFaqNL07csvv6zW+IiIKPkkyzU4lsL9pWQSSRqjhsk1Vko3SllG9osiIqJkuoZKRr4sgJOeEzKu0tc/IcEKCWgsX75cPV+GycI6KVEsmf9hsp00HS99bsL9L8KkTNSGDRvUM2w4UCEZGrfddpsKlLA8FBHFOwYuiBoIWdkok/Vz5sxRN2lS5iicZisT7/LfpW+EwiT9VrIJLrnkEvV3Ka00YsQIdeMkwk01JcPgtNNOU5P/Ul5JJv2lqXWsyc2YHIMEFM4880ycc8456oZPbj63bNmibl6lQZk0PysvqBEmgQghjUKlqZukDEsmh2RVhLM25DxJ6ag77rhDBTik54UENmSFjJwPeU1ShaXpmZSQ6ty5s2o2+s033+Ckk06K+diJiCgxJcs1OJbkminHLH2kdu7ciR49eqhr6Isvvlim5jcRETVsyXQNlSwPeXaVzHxpoF269HG4XJQclwgfZ/jZVfp4fPrpp6oHhzyzSjlj+XrSr6P0uZI+GZKxIQsEZBzS4FsyOy644AJVAuvzzz/Hb7/9pnpkEBHFOwYuiBoIyQSQVRnSRPrJJ5/E+PHj1eflhkn6O8iKlfJSWyV1Vm6AbrrpJrWyRYIFN998c5mbq/fee09N3svqFJnAl8n8//znP+pr1wZJA5abNuk5IQ2zJVghdUol7VfeU0o1SUkpuZGriNwIPvDAA+o4JcVYghLyORmHBEVkVYustJGb1+eff16l58p7yESKBDvCZark75KyK9vt27dPrQ6Vm+gbb7yxVsZORESJJ5muwbEk5+Ktt97CZ599hry8PHUNlXMh49XpdPV9eEREFAeS7RoqGR8ShCjd36L0a5IRIe9fuoziXXfdpfpfyHOnZJFIgF+CMpJNIT01JOgi181rrrlGPQvLuZK+FpLhIYvzZFGALMaTr92pUye89tprOO6442ptjEREsaIJVdbJh4iSnqwoOffcc1WjryObScvkv6SXPvXUU/V2fERERMmK12AiIqLq4TWUiCj5MeOCqIGSckryIVkLstrjyJs9IiIiqh28BhMREVUPr6FERA1H2c49RNRgSDNMSYOVEkmPPfZYfR8OERFRg8FrMBERUfXwGkpE1HCwVBQREREREREREREREcUNZlwQEREREREREREREVHcYOCCiIiIiIiIiIiIiIjiBgMXREREREREREREREQUN/T1fQDxKBAI4uBBR8y+nlarQVaWTX3NYDC5WopwbIkrmcfHsSUmji3+NWmSGnfX2WQ5tw1tbMk+Po4tMXFsiSsZxheP19hkObcV4dgSE8eWuJJ5fBxbw7jGUt1jxkUd/SPXaDTqz2TDsSWuZB4fx5aYODaqjmQ+t8k8tmQfH8eWmDi2xJXs46tPyXxuObbExLElrmQeH8dGVDsYuCAiIiIiIiIiIiIiorjBwAUREREREREREREREcUNBi6IiIiIiIiIiIiIiChuMHBBRERERERERERERERxg4ELIiIiIiIiIiIiIiKKGwxcEBERERERERERERFR3GDggoiIiIiIiIiIiIiI4gYDF0REREREREREREREFDcYuCCKExpNyQcRERERERERERFRQ6av7wMgasj0ei0MRj3MZgP0upI4otcXgNfrh9fjQyAQqu9DJCIiIiIiIiIiIqpTDFwQ1ROL1QijUY8/Fu/Aj7M2Y+c+OzQaDdq2SMP44e0wuGdzuFxeuF2++j5UIiIiIiIiIiIiojrDwAVRPbDaTNiT78KDb89Bgd1T5rVVmw+qj+aNbHjs2qGwWo1wOb31dqxEREREREREREREdYk9LojqmJSFKnL6cM/rM48KWpS2+4ADd746AyFoVGYGERERERERERERUUPAwAVRHdMbdPjg+5VwuP1Vbru/wI3Pf1sLnUFXJ8dGREREREREREREVN8YuCCqQ0ajDj5/EPNW5kW8z28LtsNk1EN3qHk3ERERERERERERUTLjTChRHdLrdVi0di8CwVDE+zhcPmzcUQCDgf9ciYiIiIiIiIiIKPlxJpSoDmk0GhWIiJbLI2WlNLVyTERERERERERERETxhIELojoUCoWQmWqOer80m1HtS0RERERERERERJTsGLggqkNerx8DumbDbIy82XaTTAtyW6TB5wvU6rERERERERERERERxQMGLojqkN8fhD8QwOj+rSPe55QhuXC5fAhG0ReDiIiIiIiIiIiIKFExcEFUxwK+AC47tRuaN7JVuW2nnEycMbI9fF5mWxAREREREREREVHDwMAFUR3zePwIBgJ47sYR6NY2q8LtBnVvhieuHQqX2wu/n4ELIiIiIiIiIiIiahj09X0ARA2R2+WD2WzAY9cMxc69dkyauRk799mh0QBtW6TjtBHtkJVmhtvlVYEOIiIiIiIiIiIiooaCgQuieuJ2++Dx+NAo1YTLx3WDTquBdLEIBoLqo7DAWd+HSERERERERERERFTnGLggqkehUEkAg4iIiIiIiIiIiIjisMfFW2+9hYsvvrjC1++77z6MGTOmzOeCwSBeeeUVjBgxAn369MFVV12F7du318HREhERERERERERERFR0gYuJkyYgJdeeqnC13/77Td8+eWXR33+9ddfxyeffIJHH30Un332mQpkXHnllfB6vbV8xERERERERERERERElHSBiz179uCaa67Bc889h9zc3HK32bt3L+6//34MGjSozOclOPH+++/jhhtuwOjRo9GlSxe8+OKLyMvLw+TJk+toBERERERERERERERElDSBi5UrV8JgMOC7775D7969j3o9FArhrrvuwumnn35U4GLNmjVwOBwYMmTI4c+lpaWhW7duWLBgQZ0cPxERERERERERERERJVFzbulZcWTfitI++OAD7Nu3D2+++abqgVGaZFaI5s2bl/l806ZND79WXXp97GI6Op22zJ/JhGNLXMk8Po4tMXFsDUusrrPJfG6TeWzJPj6OLTFxbIkr2ccXLT7LRoZjS0wcW+JK5vFxbERJGriojGRUvPrqq6r/hdFoPOp1l8ul/jzyNZPJhMLCwmq/r1arQWamDbGWlmZBsuLYElcyj49jS0wcW/KrjetsMp/bZB5bso+PY0tMHFviSvbxRYLPstHj2BITx5a4knl8HBtRAwlceDwe3Hbbbbj22mtV74rymM3mw70uwn8P72uxVP8fVDAYQlGRE7EiUUn5B15U5EIgEEQy4dgSVzKPj2NLTBxb/IvVREgsr7PJcm4b2tiSfXwcW2Li2BJXMowvHq+xyXJuK8KxJSaOLXEl8/g4tvhWGwF9auCBi2XLlmH9+vUq4+K1115Tn/P5fPD7/ejbty/eeeedwyWipHl3Tk7O4X3lvzt37lyj9/f7Y/+PUf6B18bXjQccW+JK5vFxbImJY2sYYn0ekvncJvPYkn18HFti4tgSV7KPL1J8lo0Ox5aYOLbElczj49iIGkjgolevXpg8eXKZz3388cfqc/JndnY2tFotUlJSMG/evMOBi6KiIqxatQoXXXRRPR05ERERERERERERERElXeBCSj+1adOmzOfS09Oh1+vLfF4CFM899xyysrLQsmVLPPvss2jWrBlOPPHEejhqIiIiIiIiIiIiIiJKysBFpG644QZVPuq+++6D2+3GwIED8d5778FgMNT3oRERERERERERERERUSIHLp566qlKX//Xv/6lPkrT6XS4/fbb1QcRERERERERERERESU2bX0fABERERERERERERERURgDF0REREREREREREREFDcYuCAiIiIiIiIiIiIiorjBwAUREREREREREREREcUNBi6IiIiIiIiIiIiIiChuMHBBRERERERERERERERxg4ELIiIiIiIiIiIiIiKKGwxcEBERERERERERERFR3GDggoiIiIiIiIiIiIiI4gYDF0REREREREREREREFDcYuCAiIiIiIiIiIiIiorjBwAUREREREREREREREcUNBi6IiIiIiIiIiIiIiChuMHBBRERERERERERERERxg4ELIiIiIiIiIiIiIiKKGwxcEBERERERERERERFR3GDggoiIiIiIiIiIiIiI4gYDF0REREREREREREREFDcYuCAiIiIiIiIiIiIiorjBwAURJR2NRlPfh0BERERERERERETVpK/vAyAiigWjUQezATBaLIcDF2k2PVzeEDweP4LBUH0fIhEREREREREREUWAgQsiSmharUYFKDQBL4oW/Ig9f/4Bv/0gNDoDzG26IX3QacjK6YZih1cFMIiIiIiIiIiIiCi+MXBBRAlLMivSU/RwrZ+PfZNeA4J/BSZCwQBcGxarD3Prbsg+7x5oNHq43QxeEBFRzen1Wuj1OkiSn2T1+XwBZvcRERERERHFCHtcEFHCSrFo4dnyJ/Z9+0qZoMWR3NtXIe+zR2GzGqDTsf8FERFVn8mkh9Vmgi3FjO37HFi7vRD7ijzIyLTCYjWqgAYRERERERHVDDMuiChhS0SZLCZsn/y+5FdUub1nx1o41s6DuU0/OJzMuiAiouhJYMIfDGHCT6vx+6IdcJUqQZidZcUpQ3Jx2sh28Hp89XqcREREREREiY5LwogoIZlNejg3L4e/aF/E+xTN/0HtR0REFC2zxYhCpw//ev4P/Dh7S5mghdhz0IkPfliF+96cDYPRUG/HSURERERElAwYuCCihKTXBFRvi2h4dq4FggHodPzVR0REkZPyT2azHve9OQsFxZ5Kt121+SBe+mwJvL5AnR0fERERERFRsuHsHRElJOlUEfRWPnlUnqDfpxqpEhERRcpg0KvSUPsL3BFtP2vZTthdPhgMulo/NiIiIiIiomTEwAURJaQgAJ01NbqdNFpojWaEqm6JQUREdJjZYsAPszZHvH0wBEyasUkaMtXqcRERERERESUrPk0RUULyBXVI6TUmqn2snQYiGAggEJCwBxERUdW0Wg30Oi227C6Kar/NuwqZ4UdERERERFRNDFwQUULyeHwwZLWAqXn7iPdJP+Y0uH21elhERJSsqpWux8gFERERERFRdTBwQUQJO3/kcvvQ5LQboTFZq9w+te8JKsjhdvvr5PiIiCg5BIMhBIIhtGiSEtV+LZukIMTahERERERERNXCwAURJSyny4+QNQstLn0Shqzm5W+k0yN9yJlodOKVKLL7OIlERERRc7m8GDu0bVT7nDayPTS85hAREREREVWLvnq7ERHFhyKHHzZLFlr982W4d6xF8ZJf4S86AI3eAEtuT6T2PREhjRaFxR74/extQURE0fN5AzhhUA4+nbwGxc6qaw7269wUWWkm2IvddXJ8RERE8UKv18Jg0CNUqlpiKBCEx8PMdyIiig4DF0SU8ByuAJxuF8xZ7ZB5wpXQ6LTQajTwBUIodofg87GxBRERVZ/fH1AfD181BPe+ORuuSiZfcpql4s5LBqiG3kRERA0pYGE0G9T1b8qC7VizNR/BYBDZWTacMjQXqekWeN0+BjCIiChiDFwQUVKQElAulw8uddMMZGba4Mx3MMuCiIhiwuX0okVjG168eRQ+/GEV5q3MU/0vwmxmPcYMzMElY7si4AtAo2FjbiIiahgMBh1sKWZ8NnkNvpuxCW5voMzrX05dhwFds3Hr3/vDrNHA7ebCMiIiqhoDF0REREREEXA6PEi3GHDzBf3g9QWwZO1elX2RlWZGvy5N4fUG4HH51ApTm81U34dLRERU67RajbrmvfrlUkxduL3cbaTl04JVe3Dry9Pxwk0jYQqFmHlBRERVYuCCiIiIiChCkt0Hlw9Gow4DuzSFJFYEg1D9LMJZflIug4iIqCEwmQxYuGZPhUGL0nbus+Otb5bjn2f0ZOCCiIiqxKcqojhgNOphsRhgNhvURAgRERHFN8mucDq9cDi8cLm8LE1IREQNktGkx8RpGyPefsbSnYCmpLwUERFRZRi4IKrHlFqLxYj0DCvc/iDW7SjEhl1FCECjGpfJayyPTURERERERPFIgg8Olw+rNh+MeB+fP4jpS3YycEFERFViqSiieqDTaWFLMWHZ+v346vf1ZW70JFjRt1NTnH9CJ+Q2T1P1tEs3/yQiIiIiIiKKh8V4B+2eqPfbX+ACH3GJiKgqDFwQ1UfzshQT/jd1Az77dW25jcsWr92Lpev24rpz+mBE7xZw2N3q80RERERERETxIBQKwVCNvk5Ggw5aVhcgIqJEKhX11ltv4eKLLy7zualTp+Lss89G3759MWbMGDz99NNwu92HX/d4PHj44YcxZMgQtc2tt96KgwcjT1Mkqo/mZfNW5pUbtChNVqC89uVSbNldrHpfEBEREREREcUL6e/UrJENGSmmqPYb0LUpqwoQEVHiBC4mTJiAl156qcznFi5ciOuvvx4nnHACvvnmGzz44IP48ccfVaAi7KGHHsLMmTPx73//Gx9++CE2bdqEG264oR5GQFQ1KQNlthjw5ZT1EW0v93JfTFkHvYHJUURERERERBQ/JPjgcvtw4jE5Ee/TvmU6crLT4PH4avXYiIgo8dV74GLPnj245ppr8NxzzyE3N7fMa5999hmOOeYY9bq8NmrUKNx8882YNGkSvF6v2nfixIm47777MGDAAPTq1QsvvPACFixYgCVLltTbmIgqy7bYursIW3YXRbzP4jV74Pb6YTSyeRkRERERERHFj4A/gDNHd0BWmrnKbaU81GXjusHt8bEUMhERVanel3GvXLkSBoMB3333HV577TXs3Lnz8GtXXHEFtNqysRX5b5/PB7vdjkWLFqnPDR48+PDrbdu2RXZ2tgpeSOmo6tJXo05jZY2YS/+ZTDi26H+u1m8viGofybrYvseOds1TY5pOy+9dYuLYElMyj62+r7PJfG6TeWzJPj6OLTFxbIkr2ccXLT7LRoZjiw15RpWJpaeuG4Z73piF/QV/lfYuTa/T4OYL+qFzTiY8bm+1f075fUtcyTw+jo0oSQMX0rdCPsrTrVu3Mv8tAYsPPvgAPXr0QFZWlsq4yMzMhMlUtp5i06ZNkZeXV6PmyZmZNsRaWpoFyYpji1x1V5bYbCb1EWv83iUmji0xJfPY6vs6m8znNpnHluzj49gSE8eWuJJ9fJHgs2z0OLbYMJn0ePOu4/HbvK34ftZm7NhrV59PsRhw3MAcnDGqPVJtRpgMOlhi0MOR37fElczj49iIkixwESm/34877rgD69evV/0whMvlgtFoPGpbCWRI0+6arBgoKnIiViQqKf/Ai4pcCASCSCYcW/Q3c7ktUqPer3ljG+x2N3y+AGKF37vExLElpmQZW6wmQmJ5nU2Wc9vQxpbs4+PYEhPHlriSYXzxeI1NlnNbEY6tdt53dL9WOHloLvz+EIKhEExGneqDEQoE4bS7UdOfTn7fElcyj49ji2+1EdCnupEQgQspC3XTTTdh/vz5ePXVV1UvC2E2m1WviyNJ0MJiqVkk0O+P/T9G+QdeG183HnBskX4tHzq1zlSBiN37HRHt06tDY6RajSgqjN0DSNlj4vcuEXFsiSmZxxatWJ+HZD63yTy2ZB8fx5aYOLbElezjixSfZaPDscWOei+PHy6nR5X51mgApz0U05LHYfy+Ja5kHh/HRhRbcV+gbO/evbjwwguxdOlSvPfee6pBd1izZs1QUFBwVPBC9pE+F0TVodNpYLEYoTfq4fL4YTDqYTYb1E1XTYVCIbXa5KzRHSLe529jOsLn9dX8zYmIiIiIiIhqmZRHDk9y1kbQgoiIGoa4zrgoLCzEpZdeqjIupDxU586dy7zev39/BINB1aR7yJAh6nObN29WvS8GDhxYT0dNiVwP1mQxwGIyYO6KPCxYvQcerx8ZqSacMCgHOdlpcLm9cLtqFkTwevw4bkBrbNxRgJ/nbq1020vGdkXXtlmwF5Xf4IyIiIiIiIiIiIgo2cR14OLJJ5/E9u3b8e6776pm3Pv27Tv8mvy3ZFWceuqpuO+++/DEE0+o8lAPPvggBg0ahD59+tTrsVPiBS1SUs2YtWwX/vP9KhTYy/ZI+X7mZrRvmY7bL+qPdJsRLufRJcoiJStPHA4Prj6jJzq0zsA3f2zEzn0ljcvC2rdKx3nHd0Lfzk3htHtUpgYRERERERFRVTSxKBeQhM/8ghkgRESJI24DF4FAAD/++CN8Pp/KujjSlClT0KpVKzz66KMqaHH99derz48cOVIFMoiiYbWZMHneNrw9cXmF22zcWYhbXp6O528ciXSroUaZF9Jku7jYjWE9m+P4gTnqa2/dXQSNVoOOrTLQskkK3G4fHMVu3lgRERERERFRpfR67eEyx3pdSVVwaagrpYp9Xn+DrE1f3jmRhYQN+ZwQESWSuApcPPXUU4f/rtPp8Oeff1a5j9VqxWOPPaY+iKrDZNKj2OnDO99WHLQIc7r9eOrDBXjpltHwuH2qdmd1qRsmZ0npqeaZFrRsZFWfl0BFQYGjRl+biIiIiIiIGgaL1aiea39ftAM/ztqMrXlF6nmyVdMUjB3WFscNyIHP569R5YBEPCdGox5/LN6BH2ZtxrZS5+TUYW0xpgGeEyKiRBNXgQui+qDV6zBx6tqIAwVb84qxcUchWjaywFXDfhdCykBJdgURERERERFRtBP0BQ4v7n3uDxw8ojeiPLu+8dWf+OSXNXjk6qHIzrTA6ShbFrkhnpPXv/oTExrYOSEiSkQluXJEDZSU/kyxGvHHou1R7Td53haEWDeUiIiIiIiI6onZrIc3EMJdr808aoK+tEK7F/e8PhPFLh8sFgOSmZSF8vojPyd2d/KfEyKiRMXABaGhNy2Tkk1SKioaBwrd0DJwQURERERERPVYPUCyKWQSvioOtx8f/bgaOr0OyX5OJkR5TmQfIiKKPwxcUIOn02mh1UYXhDAZdAjWcxMKWUlithpLPixGWCxGNRYiIiIiIiJK/sbT0nBaejhEas7yXQgEQzAYdEl7TnQ6DaYtifyczP5zt+ozmaznhIgokbHHBTVocoPi8QbQs31jLFu/L+L9+nRuAk2o/gIWJrMBew868fPcLSr7w6DXoXfHxhjZtxW8Xj88bi8CAXb3JiIiIiIiSkZ6vQ5rtuSr59lI+QMh/LlhP3q1awSfL/L9EuucHIzynAST+pwQESUyBi6owfN5fTh9ZLuIAxcWkx7HDciBw15xvczabDLm9gXx6JuzsXrLwTKv/b5oO975dgXOP6Ezxg7Nhb3YrcpgERERERERUfKVPXZ5/VHv53T7Va/HpD0nnmqcE0/ynhMiokTGujLU4Hk8fvTr3BRdcjMj2v78EzqplRh+f90GBSTLwuMP4uYXpx0VtAhzuHx477sV+OK3dbClmHjzRURERERElIRCoRAyUkxR75eVZlL7JiMZV2aqOer9slKT95wQESUyBi6owZNyUU6nB49cPbTK4MU5Yzpi3PB28Lija+YdqxJRz09YjAK7p8ptP/9tHbbvtat9iIiIiIiIKLlIieCOORlolB75RH2q1YBeHZrAG0UppUQ8J1lpPCdERMmAgQsiAG63H36vD0/+33DcfelAdGubdfg1o16LMQNa45VbR+O8EzqpElF1XYLJZNLjYKEbyzfuj3ifiX9sgE7PBmNERERERETJuADP5fLhlCG5Ee9z3MAcuL3+pC0pXJ1zcvyg5D4nRESJjD0uiEoFL6QElDTlGtA1G1qNBr5AECaDDm6PHwF/AMVFLtRHBqlGp8Uv8zZHtc+sP3fjpvP7QafT8iaMiIiIiIgoyfh9AZw5ugMWrNqDtdvyK902t3kaLjq5C9wuL5L9nJx1bAcsWL0H6yI4JxeelPznhIgoUTHjgqiUQEBWaHhRWOCEw+FWjbiLi10qy8Lt9tVL0ELI++YXR9cM3B8IsskYERERERFRkpKFd263F49fOxSDezSv8Nmvf5emePr64fB6/ElfEil8Tp7gOSEiSnjMuCCqJM209J/1zViNsk8GvRb+qltiEBERERERUQLyuP1ACLjtwn4ocngxaeYmbN1djBBCaNU0FaeNaKd6PkhWgcfjR0PAc0JElBwYuCBKAFqE0K9LU/w0Z0vE+7RtkaYCF44gy0QRERERERElK5l8lw/pjXjumI7QaLXQaTUqCz/oD6iKAg35nJwzpiO0Wkm90CAUDCIYCDbIc0JElGgYuCBKAHLDNbBrtloVcrAospJRsorE7aq/8lZERERERERUd8LZA3q9FpmZNuTnO+D3N+yFbMyoICJKXOxxQZQApFyVxxvApWO7RrR9m2apGNWvNXw+3qQRERERERERERFRYmHggihByKqZfl2yccX47pU23M5tnoaHrx6CQrsbBkP0fTGIiIiIiIiIiIiI6hNLRRElAKnLebDQjQfemYOHrhyMvp2b4sdZm/HH4h1wHUp97dg6A6cOa4vhfVrii9/WYc8BB/7vb70B+BAPJNhiNOoP1RYFAoEgvN5AfR8WERFRpXj9IiIiathkEaHFYlT3BFKK2est6Z9BRES1i4ELogSg0Wnxy7zN2L3fgRue/wMj+rbEqUPb4p9n9YLL7VOZFYFACL8v2o5bXpyGbXuKoddpcdP5/eDWadUkS32RiR6LWQezyQB/4V74Du4GNFrYsnORkm6F2xtSY2AvDiIiiic6nQZGkwFmswG79tmRd9AJvVaD9q0ykJJmhN/nV72kiIiIKDlZLAZo9TqYDDqs3ZaPIrsXFrMeXXOzYDDqEQqG4HB46vswiYiSFgMXRAlAJvXzi0uacnt8Afw2f5v6aJRuRqrVCJ8/iP0FLvVamD8QhNPjr7SsVF2sTElPMcKxfj52z/0Wnt0bS72qgaV9H2SMOBfpjXJQ5PCrXh5ERET1TRYE2FJMmL5kJyZO24gtu4vKBOQHds3GBSd1RvMsG5wOD0KMvhMRESWVlBSTClr877d1+HneVhQU/xWgsJj0OHZAa/z9xM5ISTXDfuhZnYiIYouBC6IEYdQf3a/iQKFbfVTEoNfC76m/larpqUYcnPoxihb8UM4WIbg2LoFr0zI0Gf8vpHUchEI7My+IiKh+6XRaFbR4/as/1SKBI0mQfd7KPCxaswd3XjwQvTo0gsPO1ZZERETJwmYzqioBd/x7BjbtLDzqdSnXLKWb5y7fjWf+NQLpqWYUM3hBRBRzbM5NlAC0CKF/l6ZR7dOuZboKXASD9VMmymrSwv7nHxUELUoJBbFv0r8RKNilynEQERHVJ6NJj0kzNpUbtCjNHwjh6Y8XosDu5fWLiIgoiRiMBjz54fxygxalHSxy4743Z6lMTYOB02tERLHG36xECUAafw3omo2sNHPE+4wf3lbV3q6PDAYpo2GymFAw55vIdggFUTjra3Deh4iI6lNJXyYDvplWurRhxaQs4/+mrodWH9tbao1Go46lPss9EhERNUSpqWbkHXBgybp9EW2fd8CJOSt2w2w21vqxERE1NAxcECUAKUshDawvPbVrRNvnNk/DqH6t4PX6UR9MJj1c29fAX7An4n0c6+ZDE/Sr1SpERET1QTInFq7eU6aOdVWkD4Zep1V9nWpCghTSBFRqZTdunIKsLBsaN06FNcXEjA4iIqI6EggB383YFNU+38/cDF05pZ2JiKhm2OOCKEF43D4M69UCdqcP7363osJMCglaPH7tULjdPgQC9VMmSlaJendviG6nYAC+/D3QprSorcMiIiKqlFxaN+woiGofjy+A/QUupJjktjpYo2bgm3cV4dvpGzF/ZR7c3gBsZj2G9W6JM0a1R9NMK5wON/z++rm2ExERNQTSq3Hr7qKo9tmyu0iVadZqZdFhrR0aEVGDw8AFUQJlXdiL3TjhmBwM7JaNidM24vdFO1RjMNGxdQZOH9kew3q3gMvlVWWi6lW1SlSxMzcREVXcNFsm+KWMUigUgs8XiHmAXhYFVKfEYk2uXiVBCzNe+myxyt4ozeH2Y/K8repDgheXjO2K4iJ3vS1MICIiOnLBmtGoP3xt9vsDSRFgD0V7Za+P+sxERA0AAxdEiRa8KHLDZtKryYtrzuqlVnpKiQq5UfS4/SgqdNX7hIasMjFmt41uJ40W+oxsuL286SMior/IhIjOoIPJqMfarQdR7PQizWpE5zZZcHv9CPj88HoDMXkvraYkczEassKycboFLmfk5aVKs9pM+PcXS44KWhxJFiyYDDqcfWwHtZCBiIiovkjQXW/Qqb5Q67cXoMDugcWoR5fcTNX/KegPwO2un7LFNRUIhNC6aSrWbMmPeJ9W2akl4078mA0RUVxh4IIoQZt1w+OH2+lVq1tkTYjcYMULj8eHrNzu0KU1RqBof0T7WDv0g0ZvgM9Rz5kiREQUN6Tng0anw6eT12LKgm2wl8omTLMZcfzAHJx3QidoddqYZBrK9XVwj+bqaxc5vBHtM7x3CwTVKtPoZyukd8Weg06VQRmJr35frzIvZMJIMk6IiIjqmsmsV42ov/59A36aswUHi/4KppuNOtVr8e8ndYHFaoTLGdm1NJ7oNMD4Ee3w6/xtEe8zdmhb+HldJiKKOQYuiBI8AyMeyyvJcXncHqQfMx4Hf/1PBHtokD70bLgS776WiIhqiUzq+0LA7S/8oSb3jySBha//2IB5K/PwzL+Gw2zW13h1p2Qsuj1+XDG+u6pxnZ1lU02z84s8mLZ4B+au2I2Auvb+VSLj7GM7IlDNyQqtXouJ0yLvCeUPhPDj7M0YOySXgQsiIqpzJpMeJpMBd78+C+u2HZ2RIP2Zfpm7VV0vn7puODIkeJFgD3kOhxuts1PRrW0WVm0+WOX2WWlmjOzbEg47syGJiGJNG/OvSEQEwOkOIa3fSUjpdWwVW2rQ6KR/wNAkRzUUJyIikoCA1WrEA2/NKTdoUdrOfXY89M5cWKymQ1mI1SeZDBKwGNKzOQ4UujFpxiZM/GMj1m/Px2XjuuG9+07EcQNblxyjBrjxvD5ommmp9vXLZjFiydp9Ue2zaM1e1e+DiIiorpnMRjw3YXG5QYvSCu1e3PfmbJWdodcn1jVLyj35vAHcd8UxaNkkpdJtJUPzsWuGqsUEsSpbSUREf2HGBRHVClm1WmT3ofEp/4SpZScUzfsOvoO7y2xjatUZmcPPhbFVVxTafexpRkREh1d0rth0AFt2F0W0vdTX3rC9AK0aW+GqZsko6aVhtRnx7ncrMXnuVlWrurT/TV2PY7o3xw3n9UHnnEzkNEtFuxbpcDqq19siTPp0RLd9gIELIiKql2tzod2DeSvLPtNVRBYATFu8E4O7ZcPvT6ysC7vdjZRUM168eRQ+/nE1pi7cBkeprE7pbzWsVwtcemo32Mx69p4iIqolDFwQUa2RlScFRSFYO49Aq97HwZO3Cd4DO6HR6mBq3h769CaqJEdBsQQtGLUgIqISOr1OZTtE49sZG/Gvv/WRq0/076fTqqDFkx8uwIJVe8rdRi5TUvoi74ADz94wAqFASJWFqMnlS0orpqeYUOyM/JjTU4xHBVWIiIhqm/STmvTH+qiue9/P2oTR/VslXLkoIcEIyf686JQuuHx8N5UhKU3IJVDRt3NTleWpCYVQzKAFEVGtYeCCiGo986LYGYTdFYAprTV0GTnq8+5AEJ583uQREdHRTEZ9xNkWYdt2F8No0MFRzWyLqQu3Vxi0KE2O68MfVuGik7rUOFPQ6fJidL9W+O/PayLeZ0z/1ggycEFERHVMo9Via5TX5q27i6HXadUkfyIuVHMeai4u2Sa9OzQ6NA5ZoOevdoYnERFFjnnmRFQn5EZVaoDLzZ98eDw1a6BKRERUmpoOqUaLC2mLYbYY8F0UGR4S5JB+GDWt2+33BTB2WFvodZEdeKrVgOG9W8LLaygREdWDUDX3qGELqnonz65FRW4UFrpQVORi0IKIqI4wcEFEREREccXjC6BV08obYh5Jtq9OY0yDQa/KP23LK454H6fbjwWr8lSmRk1LKuo0Glx7du+IGpbfdtEAuD0+lc1IRERUl4LBIFo3TY1qn1ZNU9U1S0ojEhERRYuBCyIiIiKKKwGfH+OHt4tqn9NGtEMwEH3gQgICBcXRN9jem++KyQpSl9ODkX1a4pa/91MZFeXJSjPjkasGo0ubTLgTsE44ERElvlAgiPEjors2jx2WC5eb2QlERFQ97HFBlIBkosRkMgBamTGRj5D6v9/nh9/PVZhERJT4JRn6dG6isih27LVXuX2bZqnompuF/HxntUoZSm+MaJlrmG0RJqtQpcn3wK7ZGNG7JWYu24nZy3fD5fEjxWrAsf1ao3+Xpmrix1nDZuBEREQ1uTY3yrCiX+emWLx2b5Xbp6cYMaZ/DpwO91ELBuRZVi5nf/W+CMHj9idkHwwiIqo9DFwQJRiz2aBqce/e78DPc7biQKFL1dnu1aExju3fSpXJ8LhZRoKIiBKXTOZLP6RHrh6C216ZgYNFZSc9SmuSaVHbSaPr6kx4SMA/t3karGa9KgEVKQkmxGqxgIzX5fDA6/ZhQJemGNA1u2QyR0prhIIoKHCyzAYREdU7yfq785IBuOPfM7C1khKLNosBj1w9VDWxDl8r5bomz7EWswELV+85HKRPtRoxZkArdGmTpa7lbvaPICKiQxi4IEogFqsRLm8AD782C2u35Zd5bdriHXjvuxU47/hOGDe8nVq92RCzLyQbRVbxEBFRYpOJC7nuvXLraHz042pMW7IDnlI9LCwmPUb1a4VLTukKTSgEVzVLKEmgX3pNHNu/NX6YtTmifXp1bIz0FJNaRWoy6REIyMTMX69X9zokx+JyshRUTcnkmNwPSByLq3eJiGKbdSG/YJ+7cSQ++WUNfpu/DcXOvwINep0GQ3u1wCVjuyLFbIDT4Tl8XbSlmFWmxlvfLD9qQcLkeVvRorENt17YHy2b2OC0eyr9HV9X5K3C71cXCwjCQ0v0ZuZERLHCwAVRAmVaSNDi5pemodBe/qSGrBT9z/erUOTw4YITO6G4yNVgSkpIg1SLIQSj1YpQqCRgk55Scs7c7gBXqhIRJSCZxJfAwBXju+Oq03tg2fp9aoIkzWZA745N4Q8EEPAF4JaJlGpeW7V6nVoZev4JnVWZpoqusWF6nRaXn9odWi2QmWlDMBSCVqOBx1tyDJIFGZ5vSEm1wOPxwevxMxOylskkj8pK1YegN1vUvYBGo4XP7YLbp1Hfh4ZyT0REVJskuz8UDOLc4zrhklO6YdmGfcgv8qjMRakCoNNqEPAHDgcthCxEmLNiN178dHGFv4t37Xfgrtdm4olrh6FlY1uZnk6qvJTZoJ75pLyjXHvlGmx3eNV7eQ9dg2PFaNTBbACMFosqYyXXk6DfB7fbD7c3gEAgdhcUlYli1kOn16lsFBlbRoYNDpcXQX8QbvYIIaIGjIELogQhN2pPvD2nygkV8dXv6zG8d3M0y7TAleSptnITm2bTQ+NzoXDO97Av/wMBRwGg1cOS0w1pg8Yhq30fdVMrN5pERJSAqzs9fuj1OnTPzTq8kl6yHaqbWajXa2G1mbE334mJ01ajR/vG6NAqAw9fPQQPvzMX+RU06zYZdbjjogGwWfTYc8CJG174A0a9FvdefgzaNE/D5Llb8PPcrerrykRE+5bpqpGp9K5wuVn+orZIsCgtxQDvvu04OO87ONbNR8jngcZohq3LEKQfMx7WzBYosvvg90ffwJ2IiMqS8sTwBlSJw86t0g/1qgD8Xj9cvsBRv6NlDdkrny+tMoDs8wfx5IcL8P59J8Dr8anFZxKUtlqNWLB6D76dvhGrNx9EIBhCVpoZxw9sra6zks3hcnpqvFhNxpFm00Eb8qNo4Y/IWzoFgeIDgEYLU8tOSB94KjI7D4LT5YPT5Y9JgMRmM2PDjgJMnLZRldDy+AIqCDSiT0ucOao9GmdYVBCoIVZTICJi4IIoAchqU+llsWLTgYj3+WbaRlz3t95y+4dkJTeW6akGOFfPwv4f3lB1wA8L+uHa8qf6MLXoiGZ/f0D9ymPwgogoMcmEcywmnSVokZJqVuWnZJIgxWLA1Wf2wu2vTMdpI9rj9TvGYMqC7fhpzhbs3FfSGDwz1YSTBrfBSYNzsWu/Hfe8Pguv33mcCnZccVp3OJw+/OOxyWoVZpiUKFq/vQAvfLIYn/6yFo9fOxQWi7HaJa2okqBFqlHdB8jihdJCXjfsf/6uPlL7nYRGJ16BwiJO/hARxYoqceiq/Heq3qDDj7M3wx9h5qGUkZIgRY/crJJyfzotbn15OjbuLDxquy+mrMfXf2zATef3w6Du2XAUu6udXScLI9JT9PBuW46937yAkL/U9ToUhGfHGuzdsQaGxq3R/KKHAYuxRsELCVpYbSY8N2ERZv2566hKCr/M3ao+zj62Iy48uTOKi9zM3iSiBkeLOPLWW2/h4osvLvO51atX46KLLkKfPn0wZswYfPTRR2VeDwaDeOWVVzBixAi1zVVXXYXt27fX8ZET1S6NVovJ87ZFtc/sP3fBqNdBp4urf+YxlWLVwr1hEfZ//1rZoMURPLvWI++Th2GzGpL6fBARUdXMFiM+/3WdClqI3h2bYMfeYmzeVYSXP1+CR96bh/RUI/5927H435On4vPHT8UHD5yEzm2y8PpXy3D/m7Oxv9CN+SvzcNm4bmqC5PEP5pcJWhxp94GS8hcanVZNVFDspNr0OPDzO0cFLY5UvPgX5E/9r8rSJCKiumO1GDF14Y6o9vl1/jZodVqVbSGLBY4MWpTmD4TwwieLsHLTAXWNry7JpvTv2Yg9/3umbNDiCL7927H74/thMWlV8Ly6QRIJWrzw6eKjghblVVP4auoGVW6LiKihiZsZvAkTJuCll14q87n8/HxcfvnlyMnJwVdffYXrrrsOzz33nPp72Ouvv45PPvkEjz76KD777DMVyLjyyivh9XI1GyWX/OKyDcyqIjdwTo8/aRt7ldQ5NeHAbx9EtL1n1wY4Vs+B2RQ3v/aIiKiOyQSDlJeQSYCwVKsBBUV/lYZaveUgnp+wGBc+8BNuenGaysS4+KGf8fC7c7Fg1R5V7iK80lNKQX30wypV2qIqe/Nd+OaPDaqGNcUuIzXoKEDx0t8i2r5wwQ8IeV2qRjoREdU+eRaV57Zon2Xzi9xqwdmUhduxZXdRldvLtfmdiStUj4jqNO+WXaQ084Ff3690QVyY78BOFC36RfXBqA6TyYAde+2YubTyoEXYF1PWqTFWN1BCRJSo6v2ufc+ePXjwwQcxb9485Obmlnntiy++gMFgwCOPPAK9Xo/27dtj69atePvtt3H22Wer4MT777+P2267DaNHj1b7vPjiiyr7YvLkyRg3blw9jYootmSORLInomXQa+Evv0x3wjOb9HBuWlZSczRCRQt+QPMug+FwslwUEVFD9Fe5ir/qSHh8QdXo80guj19NKlRE+l1IlkU0ZRx/mbcVF5zYWTU2rWkdbgLMhhAKp38X+Q6hoLoXsB1zJrjGiYgoNk2lQxrNoR4XIWhCIdUoO9y8Oly2Sa6zUv5INGtkxclDctE5JxNmox5Ojw/L1u3H5HlbUWAveXg1GXTq630/c1PExyPNvWXxQZvslKh7Sklmh3fvNnj3bIl4n6JFPyN90KlwuF1RX9NlEUM48zMSskDi5zlbcNIxOfAd0UOEiCiZ1XvgYuXKlSo48d133+G1117Dzp07D7+2cOFCDBo0SAUtwgYPHqxKSu3fvx+7du2Cw+HAkCFDDr+elpaGbt26YcGCBTUKXEj941gJl6ZJxhI1HFvdkB/HAV2zVb3tSMkqUAlcuDXl/zzH0/iqw6ANoHD9wqj2kZJRCAZhMukO30wnmkT/vlWGY2tYYnWdTeZzm8xjq6/xyUTBojV7y3xu865CdGydoRphhidVItGvc1PVwyIaBcUe1TcjK8WYsBMP8fRzaTCZ4Nq0LKp9nJuWImP4OdDrQ3E9tlhL5rE1hPFFi8+ykeHYqk8y1yRDYcP2AkxZsA0Fdi/MRh0GdW+GIT2bw+P1w+fxq+CD0+1TZRmXrtuLG87ti76dm2DeijxVClkWCaTZDBjeuyXOP7ETfl+0A29/sxx9OjVRwYCtecVRHde8lXnIbdYx6n8Dem0IzvXzo9rHX7AHfnsBjEZr1L2TrBYDlqwtez9SFbl/OWVobkz/fdc1/ptLTMk8Nop/9R64kL4V8lGevLw8dOrUqcznmjZtqv7cvXu3el00b978qG3Cr1WHpDJmZtoQa2lpFiQrjq329e/SFFlpZlWaIhLjR7RTf1b1sxwv44tW0OtCyBd9Okko4EVaWioSXaJ+3yLBsSW/2rjOJvO5Teax1fX4vP4APEf0opASFPIxZkBrfD9zc0Rfp1fHxkhPMWLGkoprbldEMjxSUsxIdPHycxn0RVd+RO4dNDodMjONcT+22pDMY2sI44sEn2Wjx7FFx+sLYNc+O555bRa27ykbWPhj8Q51ffzH+B4Y1rvF4YzGv43pgAtP6oJ12/Pxj8d+RX5x2ec4CWI0b2zDDef2wWPXDEWrpinwB6NvRC2ZkHq9Dik2U1T7BX0eOHzVSMXze5Ga1Sj6/Q4da3Tb+6HXaWGthX/fdY3/5hJTMo+N4le9By4q43a7YTSWfagwmUouQB6PBy6XS/29vG0KC6N/kAyTyH5RkROxIlFJ+QdeVORCIBD9xTeecWx1x2gy4LJTu6kGXlXJbZ6GkX1bwunwVHjs8Ta+aNlMGuhs6dHtpNVBYzCjsNCZsCU6Ev37VhmOLf7FaiIkltfZZDm3DW1s9TU+adqZnnL0ZMYPszbjkrFdMWPpThTaK5+4kEmDi07uqoIdqbboG2Wm2Yyw290JnXERLz+X6akmdS8QKD4Y8T46azqCfj+KHO64HlusJfPYkmV88XiNTZZzG83YdDqNqvggGQWysl09M2gAl8uHYCAQ9cr6aHosyHtqtFrVp0HeV4JQkq0gGeMejz8uvm8Gkx778t24/dUZRy0ECJPrqDyzSgkoWRTgcXnRvJENM5ftwsufLzlcPupIu/c78MDbc/DoP4eqa63Qakr6V0QqI8WIQCCA/PzoFrhZzLrony3l+2ZOQXGxK+qfi/QMKzJSTCrjJFKyvbyPwx5dwD6eNLTfJ8kiGcZWGwF9qhtxHbgwm81HNdmWgIWwWq3qdSHbhP8e3sZiqVkksDZuSOQfeG3d6NQ3jq32BYNeDO3VHHZXT7zz7fIKb/jatkjD49cMg9vti+gGN17GFy2P3oCU3sehcO63Ee9j6zRIPXB4o1zdEo8S9fsWCY6tYYj1eUjmc5vMY6vr8QX8QTWJsviI8gzTluzAgG7ZeOTqoaoJd0XZjdLX4s6LB6gJpk9/WYdbL+yHtycuj6g5t2jXMh2N0swoKHBUeB1PFPHwc+n1eJHSfSQO5kWWKSNSeo2G11f5scfD2GpLMo+tIYwvUnyWrd7YLBajKn80Y+kOTJqxGZt2Fqheg00zrThpcBuMHdoWRl0ILqcnpr/DpeGyLcWkAuLS90DKKHl8AVhMelV26cxR7dGiSQocdg/8/kC9fd8kkGIxGfDEh9MrDFqUJiWfBvdoDrNBr66Tr365rMrzJts98/FCvH/fCeq4+3XJxsLVeyI+xhMGtVHX+mjH7PFqkdJzNA5O/W9EzbmFOacbtAYT3I7oqwA4nV6M6tcSn/26LuJ9jhuYg2CS/DtsCL9PklEyj43iV1wXKGvWrBn27i37YBn+7+zs7MMlosrbRl4nSiay6sZe7MbxA1vj7buPx6nD2qqb2TBpbnb7Rf3xwk2j1KqcaBuSJRoJzBgymsLUsmw5ucqkDT4NsmiJiIgaJmkYKqUrJOuhNJlIeenTxdi0sxCv3TEGV57eAy2bpBx+PTPVpJpqv3nncSp48dA7c1XwQ1aVSl3uSI0f3k5dvxI9aBEv5Jqe2vcEaPSRZb5oTFak9BgBt5cP3URUlsVqhNMbwLVPT8GLny7Bhh0FaqW//L7ec9CJj35cjcsfnYwNOwthjbIMUdVBCzP+/cVS3PLSdExfslMFLYSsxp+6cDv+9fwfeO+7FUhJNddrfwOTSY8Vmw4g70BkGT1y/ibN2ASNTosfZ2+GP8KV2rJ4YMHqPao/xhmj2kd8fCVlHE1RZ6eE7w8kM9/asX/E+6QNGg9XNa8nAX8A44a3g05SSiLMthjcoxm8Xj7MElHDEteBi4EDB2LRokUq1S9s7ty5aNu2LRo1aoQuXbogJSUF8+bNO/x6UVERVq1apfYlStbghdWgxcUnd8EXT5yK/z05DhOfGY8nrxuGfh2boKjQpSZFGgKX24cmp90IrbnqtL+0gWNhbJrbYM4NERGVv1JMrgMS6D9yssAfCKkSFg+/O0cFNv5922h8/fQ4fPXUOHz44Ek4c3QHrN2aj/vfnA3HocUBX/2+HpeP74ZmjaxVvvfArtlqdaVMjlBsSLktmQdrPO46CUtUvrFGi6an3Qif18/VgkR0VPBAUunuem2mClJURAIJkpW3a78TFoshJu8tQZA3vlqmmlJX5sfZW/DxT6tgscYuaBI1rRa/ztsa1S5/LNoBs0mPqQsrH9+RJs/bikAI6JqbhRMH5VS5vVy3bzqvL7ye6j/rOT1BND7lGuhSs6rc1tZtOKzt+8Ltrt41XSoAGPVaXHNWryq31es0uOPiAerZNyAnhYioAYnrwMXZZ58Nu92Oe++9Fxs2bMDXX3+NDz74AP/85z8P97a46KKL8Nxzz2HKlClYs2YNbr75ZpWpceKJJ9b34RPVGllFIv0rDhywqxqXBQVOFOQ74XJ5E7bmYHU4XQEEzelocfnTMDQp/4ZWVmFmjDgPWWMuQZGdq1yJiBo6t8uLTq0z8cjVQ9A44+gm2Wu25OPdb1dg7vLdasGA0+FW19uAz4+B3bJx1Rk9YTOXZDxOWbBdTco8dd0I9GhffnNOCZCceEwb3H3ZQDgdDes6XReKHAFYOgxA07Nvq7A+uS4lE9nn3gNjmx4odiZ+uUgiii3pK/HV7xuwr6Ckh2ZVpYzen7RS9R+MRQbDgUIXfp2/LaLtv52+STVoll4Y9UFKRR3ZVLsqHp8fWo3sF11fhoJij5qwl2fea87uhbPHdFAT/eVp3zJdVR2wGHU1WqQmQQifxoSWlz8NU4uO5W+k0yNt4Kloctq/UOzw1ahvooxtdP9WuPn8vki1lv/z1CTDonp+yBjl/oWIqKGJ6x4XklXx7rvv4vHHH8eZZ56JJk2a4I477lB/D7vhhhvg9/tx3333qWbekmnx3nvvwWCIzQoIqn9SR9okN4ZaDTQajUoZ1YRklV18rZiTlTp6g07VQdVAg5D8LxB9I7VolNwoNeyZ+GKHHzZLBlr94zl48jaheMmv8BcfUAELS25PpPYeg0AwhIIiThYREVFJ2Q8JRkhPqHfvPQFL1u5VK12LnV5VgnFozxaqnJTb41dZjuFJCWnMKvcgUmNaap3LPlJ3e8m6vchINeGhq4Zgf4FLlcXIO+BQEzwdW2eq0o4GvVbVJo9lQ275+jLpFZK7Du1f90ceT80mUmJNjlHKhITvjUTAF4jZuZBxFxT7kZrTCzn/ehuOtfPhWDMHQY8TWlUaaiSs7fvB4/agsJgLGIio/N9Tv86PPJNg+cb9yC9yq2tGTZ71dHodJkbR40B+t0+auRlnjmwH1MMctry/UbJToiDXKCH7OaPITjAZdOoZTq4Vci0+97hO6uOXuVuxctMBFUBqnGHB2KG5aNMsTS3gczlrflLsTj8sZguaX/wYfAd3omjRz/AX7oNGq4OpVRek9TsRIY0ORcXeGl/H5Hw6it0Y1D0bI/u2wsxlOzFnxW6V2ZNmNeLYAa3Rp1MTOF0+dd/C6xcRNURxFbh46qmnjvpcr1698Pnnn1e4j06nw+23364+KPmYzQaYLQbs3GvHz3O34kChG0aDFr06NMax/VurmwWPSpmsvwlpvV6nmrjJPZmktK7dlo9gIITsRlacOrQtMjOsanVEbQYwGjqHy69uhM3prZE+5lI1mSMre+RestAhDaS4upKIiP4iD/9upxdetw9dWmegS06WVBIq6ccZCqmyi+XdW6iSEG4/bDYjRvVtiWG9WqgFFvL1ZB1ops2IC0/qXHId0mrV15BMDXsMV/nL+5ktRljMBhU0mblslypdZbMYMbJvS/Tu0BhOtw8el7deJzlMZj1MJiMK7R78MH0D8vaXBHM65WSqwI+sVpaSHrEIYEjwQjIvdG43zDl9kZnbW72XTAr5QjocLHDFVTCHiOLLjr121bMoGvNW5uH4Aa3gib4v82Hq9/jafVHts3jNXpx7XEdUnRtSC0Ih9O3cJKpm2T3aNVILAXp3bIJpiyMvFyUT9tKIWshiRX+xWy0UlH6PJwzKgU5Xco2V3o4FBY6YXu9cbr86ZpMlG+mjLlKLJyUEEwhqIIkjPl/sSg/LtcnlkPsRPwZ0aYoBXbPLji3fyesXETVocRW4ICqvQdpDr83Cum35ZV6TpmXvfbdS3bSdNrK9KpdUH9kXRqNO1SX96IfVquGY94hj+OaPjeqmS2pSmjUa9leoRXKzKqth5SZemtZlZlrhzHfEVVYOERHFFzVhcKhfRTQcjqMnuEpXRS+5DtmQH+PrkEye2FJMWLX5IF7931LsLyhbemPKgm1ommnBjef3RYeWGfW2QlMWnmj0Wjz54XwsWrO3zGsSaPn4p9U4eXAuLh/fXR2j1PqOBan9LYsZyuJ9ABFVzlON3kNub6DGv18lwBpuxB0p2V6nrZ+K3z5vACcMaqOefSM9bmmuLfl2Z45qH3HgQkpEjR3aFn5f2e+LBLrlQ66xKbVwjT1qgYPbh+gKXFWfBCokY6QuxkZElEjiuscFNVzywOvyBnDLS9OOClqESQrlhz+uxoSf16jggVoIUYfkRlPe98VPl2Di9I1HBS3Clq7bh1tfmg6tZGaYGCskIiKi6i/qWLZhPx55b+5RQYuwvfkuPPDWHKzZlq8yM+qa3OvoDDrc9vKMo4IWYVLiY9LMTXhuwkJYbWbodHV8E0dEVEp6SvQNr7PSav78KRPT6SnR/Z6W7f31VG2gJIs9hHOPr6D/wxEky0Kaa9vtHlXOaXCPZhHtd/rIDip4EcvyikRElJgYuKC4JKWXXvhkcUQpu1//sQFb84pVsKOuj3HeijzMWLqzym13H3Dgza//hL6eGqkRERFRYpNVmFI+4vkJi1BV1QipC/7MxwtLggi6ur3d1xv0eOfbFdi5z17ltrP/3I1Zy3bGpMktEVF1Sa+E3OZpEW8vTaKH9W5Z42wxt8enyh9H47gBOfVWBlcW7hn1Opw6rB3OOrZDpdv26tgYd186EE6PX5VWdjg8uP2iARjYNbvS/aRnxYUnd2YjaiIiUhi4oLgjD9kHCl1YselAxPt8M22Dam5Wl4xGvcq0iJSURpCUU6nNSURERNGRCXhZpGCxGNWfdT0hX98MRj1+W7BNlSeJhPS9mLZYggJ1t2hC7nGkUfj0KOqYfzdjE0wmQ51nzhIRhUkvwvEj2kW8/Yi+rRA61Di6Jvy+QEnPH31k1zObWY9R/VrCW0+9E+U5fcXG/bj3jVk4fWR7vHDjSBw3sPXh45ff41Im+d7LB+GBfwzG2xOX46up69VzutfrV6WQ7rl8EB795xDVy0F76Pe+XqfFqH6t8NLNo/CP03rAXuxhmSQiIlK4/JvijkanxeR5m6PaZ+7y3bjlgn5/NbKqgwdzu9OHtVvLL2NVHknpnbZkB0b1bsG0VyIiogiprAG9TvWVWrXpIOwuL1KtRnRt20jVJQ/4AmpCJNmZjHpMXbg9qn2k58Xw3i1Ql4s6Zi7bWWH5zPKs316AgmI3jAaZ2OL9ERHVPemlMKZ/a8xZvrvKxtPNG9lw1ek9juq/UB3yTGgw6XHDeX3x/CeLKu2ZIdkOt13UHx5PoE6edys4CPw6fxs27izENU9Nweh+rXDmqA644dy+cHv9MBl0KHJ6MXnuVrz9zXLsK3AhK82My8Z1h8vpUddqf0EAHVqk4c6LB6jf+1I60GjQqjLQQX8ARYXOeunNRERE8YmBC4o/ISC/OLo2WP5ACC63v85W68mNY77dE/V++UVuGR4RERFFQHo0yAr+Cb+sxdSF2+Bw/zVRlGIxqJWefz+pC7Q6DdzVaLKdSGTRRLT3RwV2DwwRruSNhWAohAOF0bcyldKgTdOjrzFPRBQLwWAITqcH91w2UJX3nbJguyq5d6ReHRrjrksGIhgIqCyNWHA7vTimezM1kf/G13+WWypZJv9vPL8vurbJhMNeV+2iK3gGLi55BpZAw09ztqiPRulm2CwGeLwB7C9wlTl3EpgO7yvnWT5ccr12+dTnNBoN7KGSzxMRER2JgQuKS7JaI1ryYB6oozkLWQUSaUpvabKqhJUQiIiIqma2GOALhnD7S9NUw+kj2V0+fDt9E+av2oNn/zVClY9yu5M3eCErbKW2eLT3HeVNvtUWKftRnXs4WW3LFbZEVJ8kECGT51ee3hOXntoNP8zagg07CtTnJMti3PC2qheGx+2L6bVGvr692I3eHRrjgwdOwtwV0vtnF5xuP1KsBozq2wr9uzSFy+1TQYv6/F0pxyrXlSNJwLqioHW4THKonAMvCVbwlz8REVWMgQuKOxqE0L9LNn6cvSXifdq1TIdBmn7VUdqsNERr1siGzFTT4VUnkRjUrRlXkxAREVVBVmFaLUbc+MIf5QYtStu934EH35mD528YqSaeypscSQZuj1/VDt+13xHxPr07Nq7TMlqBQAgDu2Xj/UkrI94nPcWIFk1SVHkQIqL6JKWbfD6XKk04bliuygbQHMomQzCIwoLa+T0l1y3p/+D1+NCnfSP06dAEGi0QkkfbUAgFBc74eIYMhdCvc9Mqy2mV1qdjE3X9StJLMxER1bKG1dWQEoJMOvTv2lSlnEZq/PB2cHt8dXZDpFJc3T7VTC1SHVtnoEUTGzye5F0NSkREFAvSrHn5xv3Ymlcc0fYbdxRi3bZ8mM3JuyYn4A/gjFHtI95eymdK89RAHTY4lVXITTOt6JKbGfE+Jw5qo/aToAcRUTyQfjtSwsnl8MDp8Ki/u0uVKqwt8ntQyihJPwin3aP+dLm88RG0kMCON4ATBuXAZNTBYtIjO8uKJhmWSksSynUrFv1AiIioYWLgguJOuO7l5eO6RbR92xZpGNWvJbwxqjMa3QRCB3WzVhWdVoMrxnc/tBK0Tg6PiIgoYen0Wnw3Y1NU+8j2Wl30ZYoShdxDNEq3YMyA1hFtf/LgXNUHpK4bl8uK4SvG94BeV3VxTFmkctaxHeo0uEJERNWvOiBeuHEUPntsLN666zi8e+8J+O/Dp+Das3qhTbPUMttLlmCX3Kw6CfoQEVFyYuCC4pLUDj2mR3Ncc1ZPVS+5shJRj18z7NBKvWCdr8QJBYJ48rrharVJRWQFyp2XDFDH6nYd3WyNiIiIyjIZ9dgWYbZFmGxfXu3tZCIrf68/pw9G9GlZ6XYS3Lj6jJ6q9Ehdk3uyNtmpuPvSQZX2A2uSacFT1w1XpUfqOrhCRETRkSw+q80EXyCI2ct34R+PT8YZd0zCGXd8h3vfmAW9XovnbxypFuvJtr06NsZ9lw9S161kLeFIRES1L3nz6Snhsy4cxW6M6d8aA7o2w7fTNmLqwm1wHFqtISUIThvRHkN6NlcptLFexSFNxKS2qTAa9QgGfeWm6ErqrtTgfv2OMfhj8Q5MmrEJW3YXqdcyUkw48ZgcjBvRTj24S7pvefdscmMn76HVysN9SKUI8wGeiIjqklyHdGqFvAbBYFBdhxJtniHBDrfa9dedDjduvqAfxg1rizkrdqv7Eynb4fb6oddqMax3C7VYwm53q+3rmvzcyDF2b5eF9+4/Ed/P2IRf5m1FwaGeYLIiV+6N5B7P7wvA4Yi8VxgRUSxI7wqTSQfdoSw9efbzN/DMr/A50WjCz6RyL/DXNcRqM2P1loN48sMF8JS6tsjvfGli/u8vluJ/U9bjkX8OweCezdAkw6qCFpItSJExmfQwmw3q7zabEU6nr16u40RE8YSBC4pb8iBuL3ar+pkXntQZV5/ZE15fADqdFsFAEB6vH0WFrphmWsiNgk6vk3kbrN58EG5fQDXg7pyTqXpayAP2kTcPkkUhdTuH9mimVjjKtE8gGFKrPu0OryopJUGL8hqPSg1vk1mPvANO7NhbrG4Y27VIR0aGVZW+klWLXKFCRES1QQLnct0zGA0ocniwaXuBun61apqCFo1TVO8oyYCsj9raMinSOjsVew5G3gi1ddMUdZ+Q7GQiSaPxolMLK7rkdIZnxxoEXAXQWdJgbt0Ffp/UR/fW62SHCl7YPWoRyBkj2+GiU7rC5w9AKz90MobCfQjs2QBTkxwYUvVw+zTqnoeIqDbJc6TRpIfFbMDWvCL1DCbZ8R1aZSA1zaKe6aRkcUM/J3qdFh1z5JwYD/en2LanGI/9Zx78lfQj2n3AobIv/n3bsQxaRCElxQSjNgCNVgv3tuXwepzQWdOQ3rorgn4f3H6NCmIQETVEDFxQ3FM3PB6/egiXyX6ZyK+NSRSLzQSnx4//TlqFmct2wldq1U1WmhknD8nF2cd2gNvtheeIDA9ZoeP3ew8fowQg5BgrCjpIKq0txYz5q/Lw1dQNapVKaT3aN8L5J3RGp5xMOO3uuGnIRkREyUGuVVLyYcPOQnz261r8uX5/mddlxf5ZozuozEaH3V3nK1EDPj/GD2+Lhav3RLzP+BHtEAgkf+DCZtHDpPMjf9pnKF4+DSHPX8EdrdmGlJ6jkTnqfOi0ejhd/noPspi1GgT9XjiW/AbHqhnw7tmGkM+tXtfojbB1G4bMURfAYLOi2MFJLiKqHZJVYUsxYcqC7fh2+kbs2Gs//JqUJu7fJRsXnNQZLRunNJjyRuFz8tv8bapPVHnn5MKTuyCnWSre/W5FpUGLsL35LkycthGnDW9by0efHDLSDND4nTj4+2ewr5hx+PootNY0pPYeg8wR50KvM6KomGWniajhYeCCEobcPEoZpdpgsRqxr8CFe16fBXs5q2wOFrnxyS9rsGjNHtVTQ+pRVLSCpCTIEKp0skiCFhN+WYOvf99Q7jYrNh7A/Ztm459n9lRZHFI2qwHcOxMRUR3WqZ6+dCde+9+ycq8vm3YW4rkJizB+eDtcNq4b7MWS4Vh3FyK5xvbu2ERlf5SeSKlIbvM0dM3NQn5+5Bkaichq0cMYcmHne/fAX7jvqNeDbgeKFvwA54bFaHHp4wiZjXDVY1NUKXthM2ux++P74dl19D1PyO+F/c/f4Vy/AM0vehQptiawOxm8IKLYKlk0ZsLLny3BtCU7j3pdHt8WrN6DJev24o6LB6B3hyYqaJ/MwgvpXv5scaXnpFGGGeOHt8farfkRf+1f5m7Fecd3qreszUSRnmoAnIXY+dE9CNjLLmQUQWcRCudMVNf0lpc+jpQUI+x2Bi+IqGFhc25q8OSmTW/Q4f63ZpcbtChNbthe+nwxjKaS2pPVYTIbMHPZrgqDFmEykfTWN8uxcUfh4VqXRERENSXXFCn58HoFQYvSJs3chN8Xba/Rda86ZKLD6fLi0X8OReMMc6XbZmdZ8cjVQ+B0epN6hazKkrEasfvTR8oNWpTmz9+NvM8fh81qVFmg9cVm0WHvty+XG7QoLeiyI+/Th1WvDrkvIyKKJYPJoJ69ypugL00yCp75eBEK7J6kf/6Sc/LV7+urPCe5zdOxYHVeVF9bFv1J2Si9lGCmCrNdDAYDdk94qNygRWm+fduQ979nYD7Ug5OIqCHhkwE1eAajXqXHFka4emH2sl2qpJQ0Mo2WTB5I/dD/TV0f0fYy//LllPXQV+O9iIiIyqM36PHFlPVqNWUkvvp9g7p21fUEuNvlg0mvxcu3jFblGo98YJceWGOHtcVLN4+CXpv8PRLMJj1cW1bAt297RNt7d2+Ee/cGmM36esu2CLqK4Fw7P6LtZeKmePkfMBv5eEJEse3hIL8/pRRSJPyBoJrQ1yZxEDV8TiZFcE5MBh08pZp0R0r2qce4edyTwL5jzRz4C/dGtL17y3L4Du5GamrlizmIiJINZ0OpwbNYDPhh1uaIt5eJnh9mbsKZo9oD3ugf4qX8xvY9xRHvIynLTrcESnSqVjQREVFNVvhJ4+uFqyJfPbl7vwNrtuajTVNbnTctdbu86tp52aldceVpPfDnhn2wO31ItRnQq0MT1YA64A80iAagkvSyf8EPUe1TNP97ZI39P7hQ90z6EIrm/Fhp+cwjFS/6GS17H8dyUUQUM3INmbdiN4ockT+4SRbC1Wf0UhP8gUDd9niqC0aTDnOXR3ZO7C4vMlJMUb9HeoopqbMga0oaoO9b9HNU+xQu+AFZYy6ptWMiIopHybuMgCgCqpE2NNi5r+r62aVtzSsuKRIeJZ1Og407C6PaR+73du61Q6vlP1ciIqoZuQ7t2m+PONsibOOOAnXNrA8SlHDaPXA63Oiak4FBXZuiS+sMVX9cGqg2hKCF0BmM8EaYbRHm3b8dOn39lDuRHxfvvm1R7SPj0+h09fazRkTJR6530T5/SbbAwSKXumYmo1BIg027IjsnC1fvxdBeLdREe6Q6ts5AeopRLS6g8mn0huiv6fu2qWskEVFDwplQokPBgai2r8P3KtmHq1WIiChGqnMdQv3z+4Mq40N6Wcif8t8NilowUYc3LEREDViyP35FOj6V6ejyYVjvFhF/7dNGtFOLCpL9HFbXX+sReU0nIqoKAxfUoEnzT7n+t2ySEtV+Odmp1QomBAIhtGuZFvU8RcumKQgGG9gEDRERxZxch1o0SVGr4aPRvmW6umZS/Ql4PTA0bh3VPsbGLRH010/vD/lxMTZuFdU+hsYtEQoG+LNGRDEj17u2zdOj2kf6OjRKNyft7yJ5vmzbIrJnUnnklZ4f/xjfHdlZ1iq3H9yjOYb1bgmvJ7n7TtWEPNaHAj4YorxGGpu0UtdIIqKGhIELavBcLi/GDs2N6kZv3PC2CFZjpaesPOnQKgOtmkYeKOndsQlSLAb2tyAiohqTsg0yIdO/S3bE+zRrZEXX3KwGU5IpXskcUNrAsVHtkzZwHNz+eirx5dcgbeCpUe2T1v8U1deEiChW5No1pGdzpFojL5s3om9L1aQ7WTP7vB4/hvZsEfE5+W3+NlVa6oWbRqJH+0blbqPXadQz9R0XD1BlHGWhBFVMfrbkmheN9IGnwheqn/KPRET1hYELavB83gBOOKYN0mzGiLYf0qP5oUBC9BM4kqXhcvtw9rEdIt7nnDEd4avGexEREZXH7/PjnOM6Rdyq6cxRHdS1K1lXniYKt8cPa9teMDRqGdH2xuxcmFt2gtvtr7fJQq01HdaOAyLaXmtNQ2qv0XB7k3OikIjqhzTXdnv9GDe8XUTbywS8PKtVZ5Faop2TU4e1jficNGtkg0GrwSNXDcGbdx6H8cPbYWDXbAzu0QyXjO2Kjx86GZed2k31n6rOc3JD43AFkNJ1CHRpjSPa3pzTTV3/HQ53rR8bEVE8YeCCGjy/P4CAP4BHrh4Cm1lfZaOxW/7eDx539VNfJW12ZN9WqvZnVa48vQc65WTW26QDERElH7fbh9zmqfjnmT2rDF6cPCQXxw/KUaszqX5J4Ej6ezS74AHoUstf8RqmT2+KZuffD4fLW699smRipukZN8PYrPLJMa3ZhuZ/fxBeb/KucCai+uPz+HDOcR0xrFflfRp0Wg1u+Xt/ZKWa1bUy2c/Jucd3wtBezas8J7de2B+ZKSbY7R4UFDiRZtHjghM7qefiG8/ri1MGt4Hf64e92M2G3BGS8yTzEHLt09kqL2UmJaWyz7kTHp+UUqyzQyQiiguVz9ISNRAumQjIsuKlW0bjvz+txqw/d6v04LCMFBNOHNwG5x0vKxd9NSqXIWmzshLl0lO7oWNOBr6augFbdheV2UZKcpx3Qid0b9sIToebzbmJiChm5JIiZRzGDMhRPZ4++3UdVm46UGabNs1SceboDhjRpyUcdin5wCfleOB0SRaDDS2vfB750z6BfcV0hLx/rb7UmKxI7TkKmSMvgCeghctVvwEnuV/SaPRocckTKJj5JYqW/oags9Q9j06PlC5DkDn6QgSMKSh2MEBG1JBptRoVUFd9CGP4+CMBUbnu3XphP1Xq6LsZm1Bk9yDNZoI/GESh3YPu7RrhwpO6oHXTVLicHsQLvV6rzolch2M5aR0+J7dd2B+/tN9a5TmRbcNiFdT56/tdUpkgUppDqy4izRyNVwVFXmSmZZVc0//4BPaVMxHy/1UuUWtOQWqvY5E56nz4gxoUF7OUIhE1PJoQZ0SPIjcFBw86YnqzkZlpQ36+I+lWkSXb2CwWA3R6HQLBkJrEcXkDyEozqQCClMnw+wIxW0UiN2oWixFGkx4799qxbU+xah7XrmU6GmdYVIqty+mrtaBFsn3vSuPYEhPHFv+aNEmNu+tsspzb+hibPPibzQZ1HTpY5MbGHQXq+teqaSpymqXC7fLB6/XVWp1qfu+qz2TSw2KQeX8tXFtXIuiyQ2tJhSW3uyoF5vZpaq0nSXXGZjDoYDECRpMRrm2rEbDnQ2OywJLTHSFo4PJp4mJ1M38mE1cyjC8er7F1cW51Og2MxpJrkUGvVUELnU4Lu9OLgC8Q07JD8nUtViM0Wg3MRr1aqCYZBf5ACKFgCH6/X2W21fcMicGghdlsVL/j9TotgqEQdFotnG4fQoGgOsZYfd+qOic+n1/1hIzVOZF7D5NZD71BD4up5P1kjE6XT1VB8Hjk+beinxM9jCZDyc/JoXNid3jVfolcnio11QyjtmSOwbVlOYIeB3TWDFhyeyDo96mFCA5HcgQtkuF3dUU4toZxjaW6x4wLolJcLnlo9qkH7J7tsmC1muB0elBY6Iz5xI3ZYkRIo8EPszarCSO9tuQGbP32ArRobMOofq1htpRkgxAREcWa6rvk8qoPq0mP3u0bH17pWpDvqPeJG6qYBCU8npIHSUOzbtBqNOr7WVjsi8sHSln04fMBOrcHxiYdoW1acrzF7qCaFCOihsls1sNiNWHeijx8N2Mj1mw5CGmnlJ5ixHEDcnDayHawpZrhcnhq3GdJBestBnj8QXw/YxN+nb9NPYPJda9DqwxVxnd475YqgC+B+/qSkmJSE/RzVuzGpBmbypwTyZQ8fWQ7pKZZVFZITX/fqyCCnBNfAJNmblZNuMPnpGPrTIwf3ladk5L7hZqfExmXzWbC2m0HMXHaJixcnacCJGajDsN6t8QZo9qhRaMU1ceh9NhkkYUEV+aWc06OH5iD8SPawZZiVuck0fpxqWCMQQPPzk3wHtgBfUqWKgcp2ZSFiyfD0qYHTJnN4NFr4/L6TkRU25hxkQSrVOoTx1Y9VpsJW/OK8fB7c+GsoH9FVpoZj10zFJkpxloJXvB7l5g4tsSULGOLx9WgyXJuG9rYyhuf0ahTKz9lIkUmHmRyPlFvU5P5e8exJaZkHluyjC8er7G1eW4liACNFve+OQubd5Utm1s6Q/1f5/TB8N4tVP+E6l4TZCJeJraXrNuH5yYsgq+CcUj5xCeuHQqjThOTifpopaSaIMn991VyTiQb4vpzeqtSjnJOKpqor+r7Fj4ni9fuxXMTFpcpk1xaq6YpePzaYTBqw4v8qkeu8fIM/MzHi1QAoiISmJGSyjI2OW75OZHFfve+Mfuo8sqlz8kN5/XB0J41+zmpa3JOUm0G7P3mBTjXza9wu/RB45F57IWqtFSil+5Mht/VFeHY4hszLhIXm3MT1UM5qgNFbjzwzpwKgxZCVrvc/fpM+AIhVRKCiIgoGck1TlaPBrVarNySjyXr9yOvwIXMTKtaYSnBDCIiSq5JMJPJgHveqHiCXsik/CtfLMHS9ftKAh3VZDIbVVb70x8vrDBoIXbus+Ou12apMkaSgV/X10K9Xod7Xp9Z6TmRjJBXvliqgjAWm6na7yelqNZtL8Az/11UYdBC7Ngr52Rmjc6JBEkkaPH8hMWVBi3Et9M34fNf16nqBId/Tl6fVWHQInxOXvpsCZZt2F+jn5O6JOckNcWIfd++VGnQQhTOn4SCWV8hzVa3P5NERPGAT4JEdUxu+j74fhU83qp7ZRTavfjs17Wq7wYREVEykYd2KU+Rl+/GsxMW4bKHf8Fj/5mvJpZueWk6rn1mKn5fvBOpaWZVSoGIiJKDwaDH1IXbK52MDpPF8+99twIWs0FlYFTnWiMLx979bkVEZYR2H3Dg+1mboa/jwIXBqFelmiQrP9JzYjqUqVidcyIT/O9+G+E52e9Q5Y2re04k+LBjjx2z/twV0fZf/b5BBSOkRNSUBVGck29Lfk7CzbvjmZwT777tcKyZG9H2BXO+gSYUqPOAGhFRfWPggqi8BmUWIwwmA1wev/pTbnZjcQMkEy/yNRet2RPxPr8v2qFuUGTFCRERUUXkOiHXL7PVqFZhqj/V9QtxyWg24s/1+3Dry9Mxf2Weqld95ETJ2xOXq7ISslJTVqLW2bEZdSrbQ2qvh88lsx+JiGouPGk+aeamiPfJO+DEik0HqvV7WCa/t+4uqjSL4Ug/zd5c7UBJdWi1gNGgw/czN0d3TjYegNVqrNY52bKrKKLAUdhPc7ZU+5zIIrxvpm2MeHvJAJH30+q0UZ0TCTqt2nxQ9U6Jd2ZDCEXzJkW+Q8CPosWTYY7+201ElNDi/zc6UR2RmzBJSZXgwoylO7Bw9V64vX5kpppw/KA26NQ6A06Xt0bN2mRSae6qPUdNzlRGAh0bdxSgVWNbwtYTJCKi2g24m8wGFeT+fdF2LF23T2UyNEoz46TBuchtkaYacNdns9EjyeST3enDUx8uqLREhZCyEp/+sgZnHdsBfn/V2Yo1IedQzqU0C/1h9mZs3FmoamU3b5yCccPaIj3dAo/bp/pvEBFR9a5Z8nyzLYJV9KUtWJWHds3TqvGOGsxflRfVHnvzXThQ6IZRp0UwWLvXnXAGilPOyZ7oz0mHVunRv6Em+nOy56BTlTuuzjmxWgxYum5vVPssXrMX44a3i/qczFuZh9xmHRHvDGYLXJuXRbWPa+MSpPY7udaOiYgoHjFwQaRuoDWwpVgwdeE2fPjjajiOmNyZPG8bWmen4s6LB6BxuhlOh6da7yNZG3KjHi13BGWliIioYU4ApaSa8f3MTfjs13VHXWN+nrsVbVuk4a5LBiLNaoTL6UU8kNWXX/+2Bt4IA/I/zt6MC07qDJ9HW2tBfAmmSJbFm18vV6UppExFad/8sQEDumbj9ov6q+u52x0/gSAiokQhvz990oG6Gs9D1Wm5HKrms5QsADDV0cp9WUAn7xctKT1cnT7Usk913s8r5yTKrJdw1me07yfbVyfhRfaL99bc4XMS9EU3pxDye6CR9BwiogYkot96u3btiuqDKNFYbCWTPq9/9edRQYuw7XuKcdsr07Gv0F3tpl+yarNxhiXq/STrQ/YlIiIq/eBrSzHhs8lr8Z/vV1UYGJfyGLe8PB3FLp8qDxEPiwVMRr3KDomUw+3H9CU7VQ3w2jkmrSoL9fh/5mPyvK1HBS3CFq7eg9tfmQG9Uc++G0RE1SA9FWwWQ9ST0vI8VJ3Sh/I+sm+00mzGOnv+qu45yUg1Vat0U12eE9k8GAohIyW695Pt5VJcrXMSpyUyS58TOY86W0ZU+8n2oTrIACIiSrjAxZgxY3DcccdF/EGUSGTVSKHdgw9+WFXltrJa5+mPFsBqMVar54WUlujfpSlsUazead7YprI9vMy6ICKiIxo77trnwJdT11e5rQTln/3vIhV4r++eF1qtFgV2D5zu6DIQN++Ssk21c0xGkzRF3YpFa6ouZSFlKz74fmWdN24lIkoGgUBQTUgP6NYsqv1OGNQGoSpKC5ZHSgwe2791VBP8Pdo1gsWkr1ZmSHXIM6IcXf+u2VHtd8IxbSQqUDfnpH0jmI3VOydOpxej+7eOap/jB+VA+o5Hc07k/ubEQTkIVuPnpK55XS6k9BgR1T4pvcbAG4jzqAwRUX0ELp544onDH3feeSd0Oh2GDx+Oxx9/HG+//TaeeeYZnHzyyTCbzXjooYdifYxEtV6uYmIUzcJ27LVj3bb8ajX9kht1SekdMzAn4n1OHdYWLrePGRdERFSjZpfrtxeoQIcEPBJVdRYNVP01SxqVToqiAejvi3aofhjSu4qIiKIT8Plx5qj2EW/fq2NjpKeYqtVfSBZ/SePrY7pHHig5fVR7eL1128soFAzhjCjOSe+OTVRWgqMaJYzD52RQFMGjM0a2h7ea/Z0C/oB6ptXrNBFnTcj3y+cNqPeN5pyk2ar3cxJLJpMOGRlWZGaWfNhsR3fUlmqTaQNOAbSRLYLQpWTA1nEAXG4uZiSihiWip62zzjoLZ555pvpYsGABzjjjDLzzzjvq8yNGjMD48ePx4osv4m9/+xt++umn2j9qoliW2bAa8cfiHVHtN3n+NoSqOXkiN+qXjO2K3Aiay8lN+tihbeGr4xtnIiKKb7JKUjIGZy7bGdV+UgapvlMupCSGTLbIatZotGmeBp2+pKeHpZolG8sjJZ/y9jtUSchISVmueSvyWC6KiKga3G4/OuVkYuyQ3Cq3TU8x4ubz+8HjqX5fIb/Xh+v+1huNM8xVbjuqb0uVIe+p4z5GDocXXXOzcHIE50SuoTed31cFBGpyTq4/J8Jz0q8V+sk5qeb3QAIleq0G//e33lVuK8EN6SspC/dcLh+6yDkZ3Cbic+Ktwc9JTaWkmJCSZobVZsbqrQcx68/dWLx2HzQ6HVLSLCqYUfqchLQGND7ln1V/YZ0eTc+8FR63R91DERE1JFE/bc2aNQuvvfZaua+NHj0aX3zxRSyOi6jOVm5KFkRFfS0qUlDsgbaaEz9yk6LR+vHM9SPw7ISFql72kckUMiE1ul8rdYPtcnpqrREpERElJtXI0+OHL8rrg5RoUvUo6lFJ9qEfxw5ojR9nRZblYDXrMbx3S9z7xiw0ybTg4lO6IjPFpK6RNU1IlHsBdV6itL/QVd8xICKihCSZ5A67B1ee0QNpKSZ8M22Dyko/UsfWGbj70oEwG7RwOb01CpRIqcQXbhqFpz5cgFWbDx61jUGvxalD2+KSU7uqY6vrCeJgMAiX04erz+iJdJtRVQQor6F1+JxI6WF7sbvWz8m4YW1x8dianxO5Xo/o3RJGvQ7vfLschfajv5/ZWVbcckE/5DZPhdNRcn2XP68+s6fKuKnqnJj0Nfs5qYm0NAs0Wg0++3WtWiRSenxGvRbD+7RU9y6paRYUF7nU54scAaR3G44meiMO/Po+gs6io76uPr0pmpx+I3RN2qCwmIsZiajhiTpwkZmZiT///BPDhg076rW5c+ciOzu6uoxEtb0aVTIjZFJCbpA1Iakh6itz0yUNOXVaTYWNOMtjNGhVk7HqUit4QiHcefFAFDk8qjzFzn121UisbYt0lUprMujUDV4se1tIWQur1QhfIKQmWyRgI41d5QavNnpoyPvpDDpoZJZMU/KQIrVp6zt9l4go0cklqDpliqQ0BOpoLkayIrR6XanAQgg6jQbFxW61SvTs0R3w67ytEQVfThmSi627i1S5K/mQXhQPXzUYuc3S1KRGTci1yWSMvl9FeRkjct+h0WnV4gbJypDeGRpNoM7qpBMRxaoXkZS3Ccjzk0ajnhksVhM87tg9M0ifBZl4l5JRZx/bAb/O34YVG/era0KjDAvGDs1Fq6apcLu8MZmMdrt8MJkNeOyaocg74MSPszdjz0En9DoturTJPJzpYC+WRWP18zu7JKMhhLPHdMTfxnRUE+ArNx1Q56RxhgWnDM091PvQX6OgRUXn5IdZm7E3v3bOiTx/O+xu9O/cBMMeOAlzlu9WH3KtTLUaMWZAK/Ts0BhOp08FScLk+iljPWt0B5xzXEfsPuCATlvy/O71B5FiMahsC1eMfk6qIy3NDLmTuevfM7BpZ+FRr8txTl24XS1YfPL/hqFplhXFhS51TgqLfUhp1x9tbhgC+9p5cK6dh6DXBZ0lFSk9R8PSpjs8Lg+DFkRxqnPnzrj++uvxr3/9C4nk4osvVn9+/PHHSLrAxTnnnKMyLtxut8qwkEDG/v378fPPP+PTTz/FPffcUztHShQhmZA3WYywWgxYtm4f/li8E3anV63WHNa7harlKamncqMmNwtur1/Vw1y8tuqGnGH9u2SrIEhNyOS9fMgkxzljOpTU7VZfM6QmdIpdsbvx0ukAi9WsSlosWbsX05f8dU6G9mqhaoh6/QG4HB4EAqGYBCzkJlhiQT/N2aJ6gkhgqFmWVQVlGmdYVfDGXccp2EREyUKyFkSX3Eys2ZIf8X4Du2bXesKF9NCQCXsJ8P88dyvWbDmorgHZmVaMHZaL7Cwb/D4/9EaNWiH5xAcL4K+kkebgHs1w/gmd8eA7cw5/TlbmPvzuPLx77/EwGnU1mkiTrEYp3yirVx0RNgyXS3b/rk0PZ0TKtdxsMeJgoRvfz9p4aGJFg06tM9TEj1wT5brHAAYRxTtbilkFc1dvOYgpC7ejsNijavYP7NoMI/u2hNEXUMGEWGSEy9fw293Q63UY3a+l+ggvOJMHicICR42z6kqT38PykWE14O8ndlZBZgnSSLaDN05+R//1jGhQDaqPGyhNrTWHg/9yToLB2jknF57U+dD5l1dCMT8n8uytFsx5/OjbsTH6dGxcZoFhQb6z0qwOeWXFxgNYfijA1UQFc9qqcmL1SaPV4pkPF5QbtCityOHFfW/Oxrv3naAWd0gpLBmvZF7o3B6Y2/RDVm4fVRYz4A/CG9ThYH5JgIOIqKGKOnBx7bXXori4GO+9955qzC3kQiONuW+88UZceOGFtXGcRBFPJEhNyQ07C/DSZ0uwL78kDTNs2pKdqtnX/53dC306NYFDVo94Azh9ZLuIAxcy2X9s/1YxWeUiajv7QIIW1hQL1m7Nx8tyTgrKPyfXntVL1XN12L0IBKp/gyoTSFabCe9PWomf52w9ajLquxmb0KtDY9x5yQCVniwBJCIiip48+J82vB3WbFkUVbPLwkJnrR2TPIibzUZ88MNK/Dh7y1HZFJNmbkL3do1w1yUDYTJo1MKB524YgQk/r8GiNXtUwDusWaOSYPdJg3Px/CeLjipjIas0v5+5GacNbwvUIHBRUroqgDEDczBpxqbIG4BajSgqdKlrGbRaPPr+PCxdt6/MdrKadMIva3DiMW1w5ek9VXZIXTd8JSKKlNTn37nPgef+u0hlg5c2c+kuvDNxOS4b1w3H9m+tVs/HqpytrOavyyyH8OIpyVzMzLQhP98Rd6V5JfuiJn09olWXC8rkuhtpdoQEtVJSTfj813WYOH3jUSXF5F5D+qXcdelAWKzGOs+6SE+34GCRW2VTRCK/2IM/Fu3AyD4tgVLPwap8tTNY8jNptaDQIT+TfE4mIoq6xoBExO+8807MmTNHBS6effZZFcSYPXs2rr766lo5SL/fj5dffhnHHnss+vbtq4IjS5cuPfz66tWrcdFFF6FPnz4YM2YMPvroo1o5Dop/ZosJ67bn44G35hwVtCjdn+LJDxdgwco9sNiM6oawV8cm6NG+UUTvceHJXdTKzni7ua2I1WZRkz0Pvj3nqKBF6XPy1EcLMHdlHqy26q9Y0ek0Kmjx3IRFajKpohW0f27Yj1temq5Wp8gqVSIiip5MgA/p1ULVdo7Epad2UxmHscisK488bEvQ4qXPFuPb6ZsqLAElZS9ueXmaKlsoTTibZ1lwx8UD8MEDJ6kMjJsv6Icnrh2G1+8Yg0bpFtz12kzMXZFX7tf6ec4WWC3GkqzFGgj6Azj3+E4quFMVqVUtE3c+b0nWpE6vw60vTz8qaBHmD4TUxMozHy9Q10gpUUlEFG+kfKwELe56deZRQYswu8uHV79chp9mb1G/z4hqk1zb5efynYkr8Plv68rtgyIku/+WF6fB4w/CbK7bZ0t/MKQW5kVD+ntJ/xAiSj4FBQV44IEHMHToUPTs2RPnnnuumj8vzW63q22GDBmi5rhvvvlmfPDBB6rsVGm//fYbzjrrLPV1pF3DY489BqfzrwVo//73v3HCCSfgjz/+wPjx49GjRw+cdNJJmDhxYpmvs2vXLlXOqn///urr/Oc//znquKWq0vPPP48TTzxRfZ1+/frh8ssvV/PtYXfddRcuvfRSPPjgg+r1sWPH4oYbbsDIkSNV5mJp9957rzqWWKj2b0ubzYYmTZogLS0NvXv3htdbe5HtN954A19++SUeffRR9Q1o27YtrrzySuzduxf5+fnqZObk5OCrr77Cddddh+eee079nRoWmQgwm/R45uOFVfarkPTXlz5fom6GZD9ZAfnglYPRs33jKoMWJw/OVenRiUBu3GQi6bn/RnZOXvlsiSrtkZJSvQcRo9GAOX/uxuw/d1e5rdSUfeub5dAbGbggIqoOWZ3ndHpVbWpZbVgRmdO/6oweGNG7RUmPpVpisRgxf1WeyuSriiwueP1/y1TdZ8k8lEaV0ttJAt4yYTZ9yQ7847Ff1TW9stILsnJRSj5K4Lwm5Bj0GuCp64ajUbq50r4WD1w5WJU+lBIPeoMeb09cgd37HVW+hwRfZi7docpoERHFE3kekkDs0x8tKLf58ZHem7QCRU4fbAxeUC0/y0rVACk9XJUCu0dVFzCaDKhLcvexLa84qn225hWX9NnkQgaipOLxeNTE/pQpU1Qw4tVXX0WzZs3U/HXp4MX//d//4aefflJ9MV588UU4HA4VNCht0qRJan67Xbt2ql2DBB6+++47ta8qp3jIvn378Mgjj+CSSy5RyQWtWrVSyQYbN25Ur0ugQxb6r1u3Ts2p33///Wp+fcmSJWXe74477lDz6JKQ8P777+Puu+/G+vXrceutt5Z5v4ULF2L37t3qmOS1v/3tb9izZw/mzZtXJggi7STOPPPMmJzXaj05ffvtt+qkygmSiV8ZtER6DAaD+rzRGNsagxJlGjduHIYPH344yiPvKVkXmzdvVu8r3yi9Xo/27dtj69at6ht29tlnx/Q4KL7JRMCMZTtR7IxsUkZWgspKzRMH5aiUUpnYefSfQ7Bs/T5MnLZR/Slz/TJJMapfK9U4LivNrEpEJUqdSYPJoCZ/Ij0nMoEk9chPGdKmWu9nMuvxbRQrTmYu24VrzuqlemLEQ01ZIqJEUxKICOHp64dj0eo9qoyCZDTI/aX0bDh2QGucMbI90mzGWr9+SU3maFYdzl2xGz5fb1XH2++XHktB1XRbGljWB7kXSLcY8fbdx2PKwm0qczA8GSF1tE8e0gZjh7ZVkxTSE0quXfIfM5bsiPg95Bo5ok8rtQAilnXbiYhqwmo1YvmG/apBcyTk99e30zbi7yeVXR1KFEuyOOCbaRsi3n7p+n2qj4QE4Y4sxyyfk34mQvU08fp5HSaimJK58jVr1uCLL75QC/yFZCNII+zwAnsJYMgkv8yhS3ZDeBuZ8w4HGyRQINuPGDFC/RmWm5uLyy67DNOmTVM9p4XL5cLjjz+usjfC20i1ItlG5se/+eYblXHx/fffo0OHDmobOTbJ1AiTRAQJntx3330qi0IMGjRIZYY89dRTqq+1JC6EKyLJ/LsEZMK/T+XvkmQQPoZff/1VBUzOOOOM+glc/Pjjjyp6c9ppp6mTIVEkIYN++OGH8frrr+Omm25CLDVq1Ai///67ihI1b94cn3/+uQqOdOnSRQUw5IRK0CJs8ODBeOutt9TJbdy48hX0lDxkxcKUBdFNdvy+aAdOH9leTVa43X5VAqpTq3Tce/kgGNXKz5BK43S4vKqMhKwITTTSVC8avy/cjtNHtIv6fWQCR24UJVU3UrKydtqSHRjVpwUDF0RE1eRx++HzBtA9Nwt9OzeFXqdVWXZy/bI7S65fserLVFlvC6fbr4ImkZJjnLpoO04eXBIslwUE0iQ7GpmpJpiNejjtHsSCy+WFz+fHiF4tcMKgNoebhmq1GpXd4vf6D1+vpKfTrD93qaB/pDbuKFS1sCW7pCYNxYmIYkkqCP4W5XPUtMU7cOXpPeBySFC81g6NGiipGiCLA2RRRqQkEDF5/jacLr2vpLyIVqMWR8jiur35LmzZdVA1+G6TnYZmja3q/knKRtdkUYfsmdMsVS16jJRsL4s15IOIkocEJWSCv3v37mqCP0zmzp955hkUFhZi7ty5avH98ccff/h1CapKwECCGWLTpk3Iy8vDP//5zzJfZ+DAgUhJScGsWbMOBy6EtE0ICwcUwiWlJENCKhSFgxZC5tVL7yPz69ICQkj2hCQIbNmyRc3Di9IVljIyMg6/R/jYJbPiww8/xEMPPQSLxaKCJVIqq/R2dRq4ePPNN3H++eerAyrdwFeyGw4ePKgiS7EOXEhtLGn8fdxxx0Gn06kTI99QOfnyzezUqVOZ7Zs2bar+lPSV6gYu1IUyRsIpgMmYChhPY5PvWUGUEzPS20GOvfT3WyYk5MOr1yE11YziYtfhfhax/LmoC3qtnJPoJnMkzfbIcxLRe+m1OFgY/cSRlPmQu1L+m4sMx5aYknls1RWrf/PJfG6jHZtMuMuHTLZLEEAm3MOrCWv7+iXHmF8U/TVArlESwJDjCwWDqon1Rz+urrBH0pFOGtJG9e0oKRVVs3JRpUn/CvmQSQ9RelLjr3OpwcHC6ANChQ4PWmRZEyZ780j8N5eYknlsDWF80Yr2d75Wo4n6mUF+l5W8l/6o2taJIpl/bhJ9bDabGcWyeDDKS2XhoZ9jWVxgthhVb0XpjyElp0rr0CoD5xzXEf27ZMPj9lY7iGDQaXDaiHaYFEXG6dihuar6Q3n/ThP9+1aVZB4fx0bS30IqE0ngojzymrQ7kMn/cAZY6QX7pb+OkOSAhx9++KivI20TSpNgQVj464bLO0mwJDPz6JLCEmCRxf5hM2bMwBNPPKGCJtIaQhIFrFZrma8l5LUjSTxAYgWTJ09WiQQSwCmdKVLngQuJvEjGRXkk3SQcIYqlDRs2IDU1VdXQys7OVlkWt912G/773/+q2llHlqYymUyH64tVhzykZmYe/c2oqbS0v36Ykk08jM3rC8AUZb8Ek1Gn/hFW9v1OTa3/sdXonEgpiyjI9tLnojr/BopcZVNyI30/s9kAmzW2Jebi5eeytnBsiSmZx1bf19lkPreJMjZjNa8BkiFiPfTz4PH6MWZAa0yet7XKfaWU4/jh7dX1ozauIVWRa6XcR0RL7lWkLnysa8MH/T4g4D8Uv9FAa6y4V0dD+rmsDo4tcSX7+GrrGut0+6L+fWbUl2yfnp745zyZf24ScWw+yRSNsNTxkaRqgsGgh9Gox3fTN+LDH/9qLFvahh0FePLDBSp4ccGJnWE49PNcHY3SNRjQNRsLI8gOkUxRKeMp/36kP2cyfd+ikczj49gaLpm3llJNFU3aS/8JmdOW4IUE/EsHLw4c+CtrXXpJh/tODBo06Kivk56eHvExSdBC2ikcKRwcEdu2bVP9NCQLRKoXtW7dWi2EmzBhggpoVEW2l+OUvh3ydSUrpHRGSZ0HLiQKJHW3pBP5keTzpaNEsSBZE9LwQzqsDxgwQH1OOqpLMEOCJGaz+ajG4OGARTg6FC1ZAVdUFFl9z0hIVFL+gRcVuZIuHTCexiaNuPp0ahJVqSLZXkpbeN3euB5bdckqk76dmmD99r9+KVVFtpeaoNE2IJeHpOwsq+oDImUwInVM92bqvaTOaKwkw/euIhxbYkqWscUq2BDL62yynNtEH5vceDfOMKteEPsKIi+rOLB7tqrtkJ9f0txar9fhmrN6Iu+AQ62SrIhMsD145TGQxYrhfeuaTIoM6tYM7323MuJ90lOMaNnYhsJCZ0wyLuRnxGIEdFoNiv/8He4tKxAK+qFLzUJa35NgaNJK9UFxe4MN8ucyWhxb4kqG8dXnNTb8zDB/ZV5Uz1ESbHYeyrxIRMnwc5NsY5PjtqWY8eh78/Dk9cORk52KbXsib3496NB9xZ8bD1QYtCjtyynr0bZFOvp1agzvEX0xoukRc8fFA3DXazOxaWdhhdulWg147Jqh6t9oRfcuifp9i1Qyj49ji2+1sTj9SDJ5/8cff6h58RYtWhz+vGQjrF69WgU0ZJtXXnkFU6dOPTy5L4uppbdzmDTklq+xY8cO/OMf/yiTaSHBDKmCJBWIIiEZENLfYvny5WouXUi1JOkZ3aNHD/XfK1asUPPo0pi79NcNBy1KZ1xURJp0S48MCcBI2atwQkG9BC7kAOQkSzmmUaNGqc9JJEYGKv0tpKFILC1btgw+n+/wCS6d3TF9+nT1w3Bkmkz4vyWSVV3h0kCxJP/Aa+PrxoN4GJtW68f44W3xv6nrI54MOGNUe1X7u7Jjj4exVZcsuhw/on3JOYlwfuSMUR2g12mqNWYp13Hi4Bx8NnldRNt3yslEs0ZWFOTHLlCYLN+7qnBsiSmZxxatWJ+HZD63iTG2IDxevSrd9N+f1kS0R7uW6WjTLE31jwqPT/6Um+OHrhqMidM24qfZW8oEQmSCfnCP5rjw5C7ISjWpCbP6aq7p93vROMOKbm2zsGrzwYj2OXFQG7g8JT21akpKTKRY9SiY/Q0K505EyFd28rB48WQYm7dH9tm3w2JMQbEzdgsEEufnsno4tsSV7OOLVLTnQErjSV+fD39YBXeEv5+kT2AoGEqK853MPzeJNjaLxaj6WqzfUYCZS3filKG5eOub5RHtK8+V3ds2UiUov5wS2fOo+GrqenVvIX0vq3NPUVTkVpO6z/5rBD6dvBa/zt+KQvtfiwCNei1G9G2Ji07uihSLAcWFrqT7vkUrmcfHsTVcZ511lqoMdPnll+Oaa65RvSRmz56Nd955R/Vslt4W0qdCEgGkJYKUapI57f/9739Yu3atmlsX0iJB+kk/8MAD6u/SI6OoqEjNuUsPiopKUZXn9NNPx0cffYTrr79efU3JhnjjjTfKlHiUrydlH5999llcccUVKjng66+/VkGY0v0yKnPSSSfh0UcfxZ9//on7778fsRR14EL6V6xbt079GU5rkQ7pMhDJiJBeFLEUbuYh38RevXod/rwcg6TgSADjs88+U/025BsqpNlJ27ZtY579QfFNJgFS04yqxqRMdlRlVL9WyM60oqCgdibN40FxsRtpGVaMH9EO306vuu7m6H6t0DRLAgnVW70a8AdwxsgOqkn6vvzKb8hk8ukfp3VXTdGIiCjxyUKA00a0x2/ztyHvgLPKLL1/jO9e7kIDyfqTB6NTBrfBWcd2wLqt+Sp4IVkWXXMbqXrScr2Jh1W+sjrzivHdcddrs6rsyyEZKTKewKHm3jUhDzZpKUYc/O1DFC36qeLj270RO9+/Ay2veBYWsw0uXnOJqBzye9dg0uP8Ezvjg+9XVbm9ZGdI0LYgigw7okhotFp8P6vkufWHWZvx2DXD8NOcLdiWV3nWhcz3XXlaD5UFVOz0RbygQGzcWYid++xolGKAu5rXSVmJnpJiwrnHd8RFJ3fByk0HcLDYDavJgJ4dSvqu6rWapJ57IGropOqPlFd6/vnnVRCguLgYLVu2VFWEJCAQ9uKLL+Kpp55S20nzbennfMEFF2DixImHtznnnHNUP4l3330Xn3/+ufra/fr1U1kbUpopUtJaQRpnS/+Kxx9/XD1DnHvuueprhMtTtWnTRh3Lq6++imuvvVaVopLm3R9//LGa75cG3507d670fSTDQrI7pEdG6bn7WNCEIsn5KId0MZeGG9LoQ+p4SbqLZGCEI0SxIlEgiUxJDbAHH3xQBTLkm/n222/j008/VTXCTjnlFIwZMwZXXnmliu5I43BpYCKdzatDHpYPHoxd2QFZESdpSZIOmGzRyXgbm1p9mGrG298sx89zK66PPbx3C9zy9/5w2N2qEXcijK26rFYDTGYj3vr6zyrPya1/768au9rtnhqtknH5ArjnjVkVTlzJqpM7Lx2IHm0bwelwx3y1bLJ878rDsSWmZBlbkyapMfk6sbzOJsu5TZaxyTXY6fHjntdnYdf+8r/H0tPitov6qYaYZqO+0vFJgENKMsmfcssq21V03a4vUtJi9daDePKDBfBUcGxSSvHxa4bCZtarFZ01ZbEYoDu4Gbs/vi+i7c1teqDZeffiQIGnQf5cRopjS1zJML76vsYaDDrYUkz4/Nd1qplxZUGL+644Bn5fAI44CCA39J+bZBub/Du47JFfcKCwpPTw+Sd0wslDcvHQO3OxZXdRhQvi/nVuHwzt1VwtDli1tQCPvj8vqve99e/9MLBLUzhjcI02mXSwWEwqmCKkJLLD4U3q71ukknl8HFvDuMbW1M6dO1WZJglWSOuDsBtuuAHbt2/HN998g0TkdrtVTOD//u//cOmll9ZvxkWYpLbIh9TBknSXIzuix4p8XUljeemll3D33XerQEmnTp1UzwvJthASgZLIkQQqpDO61PyqbtCCEpv8ErUXe3DVGT1VWqlkXsxatgtef1CVP5Ja1GeM7oAOrTLUhHm8TX7UBqdqbKbB1Wf2VDd9ck5m/1n2nJw+qr0q2+SvYdBCuFxeNaHy+h3HYfqSHZg0Y5NaxSKk/4WUkho3rJ1679oIWhARUf2xF7tV8OK1O8Zg+pKd+H7mJtUAU37XS0NKKUUiWYCSPeFxeVTgojKSkeF2V69BZ12Ra1mXnEy8f/+J+HHWZvwybwv2F5RMuLRtkabGKxmNsoozFkELYTYA++d/F/H27q0r4Lfnw2RKUyuriYiOJM9Fksl27vGdMLp/K/XMIL/HpbydBI8lYCHloXp1aHxoIjaxgxaJwGjUqaoSMgEu10M577Hoj5RIPvt1HaSiyfM3jsTs5bvw46wtWLP1oLqvSLMZcdzAHIwdmqvuMeQexFRJw+u64vEE4PEws4KIyp/jvuuuu1TgQvpCyO946SUxefJkPPnkk0g0O3fuVMEWKYkliQxnn312zN+jWhkXkvohfS7kwOx2O7788ktVk0saiEgaSaJjxkXij01u7kwmA3QGHaxmA3z+IAx6LVwen1qFIZMHVf3ox+vYqksqqaWlWeELhGAx6VVJC1n16vb6odOUlJUKBEIxbeBkNOlhNklgU4NgKKRWwzicXlXiIxb1vRvK9640ji0xJcvY6ns1aDKf22Qbm0y2GE0GtYJXZUsEQ+q64HT7EAoE1YrGRB5fhRNMeh1sVqOqr63VlFz73C6fymaM1RjlPGakGrDl2QuBUORfM2PY2bAOPAPFzppdf5Pt+1Yax5a4kmF88XSNTU01Q54KLGbD4WcGlVEWDMHp9CTsOU6UnxtZBKY36NVz2uotB+H1BVXmXsfWGaqnoPQkqep443VsVUlLt+LxD+Zhydp9ZT7fskkKThmSi+MG5ahnWfk5Nxp0WLZ+H7buLsLxg3LgOBS4cPmCuPKJvxrdRuLV245Fps1Q78H9RP2+RSqZx8exxbd4ybgItzd47bXXVMNuKRXVvn171Rcj1j2j68Lu3btxxhlnqLJWklAwZMiQmL9H1OFoObEXXnih6h8hJ1XKNQmJEknNLGn0wWwHqm8Sk1ArNN0+uBweFciQzzW0FSqlBQJA/qEm2G69DgaDFikpZnV+aqsZvawslQ+ZtAqvFGKGBRFR8pPgdDhALQ87cg2Q60KpPnBJR43XG4Db5VUBm/R0KwrznTG/xqrFALKSM4qghQg4CqBBEn8DiChmZEGTcDq8MBq1SE21wGl3J+yEVaKQa6XVZsKefBc+/mmpalJd+vFVghenDmuLccPbqu+NZGAkm1AwiHHD2x0VuJAeFO9+twIf/LBKZVfIvUWxwwu7y4fnbhihFuIJCTxkZlhVD5ZI+1y0b5mOFk1SUFgQu8WrREQVkV4Q8pEMmjdvjnnzoivNF62o6zs9/fTT6NGjB3766Sfcc889h1et33fffSrNRbqVE8UTmSyXTIKGHLQ4kt8fqNMyWeHvAYMWREQNT0lfiuQOWpRW2wsl5N5bozdEvZ9Gb0IoFNtedESU3KTfJIMVdcdiM2H1lnzc+vJ0LFhVNmgh9hx04v1JK/H4f+bDajOqIHmykbLD0gNLMizKIxlA+wpc2L3foYIWkoUiZaDt9pJgm/B6/KrkWaT+dlxHeDy+hHxWlZ8Bi9UIi9Wkfn7MViPMZsPh/hpERIku6sCFNBG57LLLoNfrj2rEPXbsWGzZsiWWx0dERERERIdI5orGYIKxaZuo9rN2HIgAkm+Si4goGagSR54AnvxwgSpzXJlFa/biwx9WwRAH/RxiTQJlXq8Pj14zFI0z/mpcW57mjW146KrBh3p//PV5qbzQvW0jXHpqtyrf77zjO2Fg12x44ryf1pEk48SWYobJYsTURTvwypdL8cIni/HxT2uwv9iD9AybCmAQESW6qK90JpNJdQsvT0FBAYxGYyyOi4iIiIiSiKx3Uf0uGnjpxpqS8ycTLGkDT8X+H16PaB99elNYcrvjYL6r1o+PiIiip9Xr8M3ktSW9RCLwy9ytuPiUrmoCO9myYuzFHqSkmvHyLcdiws+r8fuiHapJfJjNYsDxA1vj7yd1gQYhtf2RmYnSaF5KarVploovp6xXvUJKk0yNv43piP5dmsJh9yTUfYlkWdhSTPj813WYOG3jUT8zP83ZosZ392WDVDaGlG4mImowgYthw4apxtz9+vVDkyZN1Ock88LhcOD999/H0KFDa+M4iYiIiCgByQO23qCDVZpWB6Rpdcnn3fXcADORub1BpPcYiaIFP8C7d2sVW2uQdfxl8LgSa2KGiKihkKC+NJyesnB7xPu4vQFMXbgdI3q1gN+ffBPT9mI3UlJMuOzUbvjHaT2wfON+2J0+pKcY0b1dY/ilgWMwBLu9bNCidHaiNOvumpOBx68Zin2FLmzdVaSazuc0S1X9QqQfhrxPIl0b5WdF+qC8/c1y/Dy34uv/+u0FuOXFaXjpllEq80L1/yQiagiBi9tvvx3nnXceTj75ZHTp0kUFLZ566ils3rxZRbZfeOGF2jlSIiIiIkqoDAupuSzTAT/M2oyf527B/oKSrN3W2ak4dVgujh/UBiaTAX5/+RMPVD5ZXet0+dH8okew+5OH4M3bXP6GGi0an3otzG37oKCYkxZERPFIp9OiyOGFwxXd7+ktecUY1gtJKxyUkDJaPdpmqbknmXPyuD1ISbEgP7/yZtoSkHC5fOojxaRHz3aNDn0+iMICZ0L2tJBzIdkjlQUtwgrsHrz82RLce/kgBi6I6smBQheWrN0Hp8cHq8mAvp2boFG6pb4PK7kDF9Ix/Ntvv8UHH3yAuXPnIicnB06nE+PGjcPll1+Opk2b1s6REhEREVHCkCaRG3cU4rH/zC9T4kFs31OMN79eji9+W4/Hrx2KDJsRAX9QTd5IwEMmG0pqVifgrEIdcbn9gFmPlpc9Dcf6hSiaPwnu7WukSAa01jSk9jwWaYPGAUYrCu3SdJTnkoiIEo9kRshHmJTHqs7XSAZ6gx7fTtsY8fZL1+9TQTEJeCTLOSBKBOu356sydfNX5iFQ6nlGp9VgUPdmOOe4jujYOrNejzFRVKubU2ZmJm6++ebYHw0RERERJTyLxYC9+S48/O5ceCupve1w+zBvRR5OHd4W3kAIKzcdUE1JmzWyokOrDLjcPvi8/qSr3x3L4IXXF4C5dS8069APGp1eoj7Q6HTwOp1w+jTwMtOCiCiuSVmjjFQzUiwG2KPIumjbPO1w+UVKfhKwkenPRWv2RLyPrFn4df42nDa8ba0eGxH9Zc7yXXj2v4vUM82RJIgxZ/luLFy9B7dfNABDejavteO4+OKLMX/+/HJfu+KKK3DnnXdWuv+8efNwySWXYMqUKWjVqhUSKnCxf/9+fPTRR+oEFBYWolGjRhgyZIg6KWlpabE/SiIiIiJKGAajHv/5fnGlQYs0mxEPXTUE/kAQT324AEvW7pVy1YdJ/WlprHnqsLZwOrwqA4OOJn1DHE6/+pDa1+GMFSZYEBElBlXSyOPHcQNz8O30yFbTS0+MY/u3htNRUoKRkp/qLevylblXikRBsSfqfYio+pkWFQUtSpPXn/3vQjx9/fBazbw45ZRTcO+99x71eYslccpVRZ1jt2bNGowdOxYffvghzGYzunXrBp1Oh7feegvjx4/Hrl27audIiYiIiCjuSTmCYqcPS9ftq3AbvU6L+684Bvvynbjn9ZlYtKZs0ELsOejEe9+txNMfLVSNKKXJN1U9+SWBDAYtiIgimwgOhkIwmAzqOmO2mmCxGlXZwroW9Adw5uj2MBkju9adNLgN/P4AMxIbECn5aDRE/7MpP1NMzCGqG1IeqqqgRZhsJ9vXJrPZjCZNmhz1kZKSgkQR9W89acQtfS5+++031efi+eefV0GMX3/9VWVbPP3007VzpERERESUEKUMpIxBZZPno/q1hM1iwHMTFsEfqHyWfd7KPEz4ebXK4iAiIooFs9WI1FQz/ly/H29PXI5nJyzC618tw6K1e5GWZlF9miSLra5I/wGzQYd7LxsEQxU9HAZ2y8YlY7upUorUsEqKWc0G5GSnRrXfMd2bqf5XRFT7jbjluSUa0gND9qsPhYWFuO+++zBixAh0795dVVKS/3a5yj+eLVu24B//+Af69++Pvn37qr+vXbv28OvFxcW4//77MXjwYLWNlJlavnx53Qculi1bhhtuuEFFaErLzs7G9ddfj9mzZ9f4oChxhG/mpCxB8o5Nk5Rjq8sbcSIialjcnkClr48d2hbfz9oc8Yqkn+ZsURkX1WnIWdfktoHXWCKi+GVLMWHHPgf++dQU3P/WbPy+aIfK/Ju5bBeem7AYlz7yCxasyoMt1Ryz3+fydSSTo7Kv53J60DknAy/eNAqDezQ/alvp/3Tl6T1w96UD4XR44PNVfq2Nljz3VnWMDW0OQqfTqExSY4SZMNF8vyvar6I5CFkQ4nb7VBnNSDVvbEPX3Cx43AxyEdW2JWv3qeznaEjPi8qy1GvTXXfdhVWrVuHVV1/FL7/8grvvvhsTJ07E559/Xu72t9xyi5r7/+qrr/Dll19Cq9WqOEA4I+yqq67C9u3bVUWmL774An369MEFF1yg3qMm9NVpzC1RlPIEAgGVhkLJTSYNDAY9zBaDSjmUSYeMDBvsDi8C/kBC16CWGwW5MTEYDWqli9cfQEaGFQ6XF0F/UN0oJCq59zGbDdDqdWqlhjTzlF8uFqsJPp9f3czIfxMREdWEXEoaZ1RcN7VV0xS0aZ6G3xduj/hrOt1+TF+yE4O7Z8Pv9yIeyaSG2QCYrFYE/T6EggFkpJnhdnvh9gZZzoOIKA5YU0zYkleMe9+YrXoslafI4cULny7Bdb4gRvZtCUexu0bPlnqDXpXrkedmo0EHp/QpCATUs2Xpxy/5u8PuQaNUI279ez94fAGs3ZqvnkmbZlrRvmU6XG4f7MXumF5TjEY9dAYtUuS50B9Qxx0KyiIEH7wev1rpX98kCCDHaTLr1WSZHKeag3DKc3pAZazEkmTjhDTSS8Sgvm/qnIRCCPiD8Hp9cJcTCJDnbZPJAJ08b1tKnrelNKZ8//xevzrG8iY1j/w5Cc9BON0+NbbSPyeSZSO9UH6YtRlb88qflyt9PFee1kP9zPA5n6j2OT3Vmy+U55zaMmnSJBWUKE2yId59910MGzYMAwcOROfOndXnpQH3f//7X6xbt67cr7Vt2zYMHToULVu2hMFgwBNPPIFNmzYhGAyqRt5Lly7F3LlzkZGRcTjQsXjxYtUjW6o31Vng4rrrrsNzzz2HnJwc9OvX7/Dn5WBffvnlw9EWSk4WiwEms0GtSvl+5iZs3lWkPp+RasKJg3IwfkQ7tYJFmmgm2sVRJvWtViMWr92Lb6dvwp8b9qkbBLNRh5F9W6mao43TLWp1SzzcvEVDVqlK3dateUWYOG0jZv+5W92o67QalWp8+sj26NwmSzV383pju3KHiIgaFlnAINcWaRwqzUaP1Cjdgv0FrnJfq8yW3YU4pls24o1MDKTZ9NAGfSha8CPylv6GgD1fvWZs2gap/U9Bes9RcHsDqoE2ERHVPVnBLs+pEjiQ3kkVBS1Ke+PrPzG4Z3MVmI72GUkm2eX9Vm06gInTN5b0cgqG1OK4Yb1a4IxR7dE6OxUO+9FBCJfLB7h86n27tZEJoJJJ84ICZ9Sreas6J/KM6PYF8M3UDfhtwTYU2ksWB7RvlY7xw9up52CZOHe7vPX6nC69R2Yt24VJMzZh7baSa2yq1YAxA3Jw+qh2SEk1q+f0mp4fvV4Hi82oJhK/m77xqHMi2Q6j+7aG0WRAUanyLrK4U85l3kGnet6esXQnPN4AJIGiT6emOH1kO/Tq2EQdY+kgS/jnZOWmA6oxe/jnxCg/J71Lfk5aNf3r50Q+PG4fnvi/YbjvzdmH52OOJM/5N57fFz07NIKj2FOjc0JEkbGaDNXbz1x75XDHjBmD2267rcznwgkHf//73zF16lR88803qgzUhg0bsGPHDrRr167cr3XzzTerYMUnn3yCQYMGqRJT48aNU8HklStXquvUscceW2Yfr9cLj6dmv4OiPjuSNiJveuGFF6pojKSJ5Ofnq0FKlOXtt99WH+ELofTCoORgsRjh9AVw08tTVcPM0gqKPfhiynp8M20j7rhoAHp3bKwurokSu5CbIYNJry7+KzYdKPOaTDRMnrdVfVxwYmf8bUxH2ItdqvllIpCbKFuKGW9+vQz/z95ZgMdVZn38Py7xNlZL2qbu7kZbSila3GXx3WVxX3aBZQ1YZFmWZVkcdpEPKZRiLdTd3VJJU0nSNjpu33NOOiGee6fJZGZyfjzzpCT3ztz73jv3Pe+R//l+VV6dsrSVW4/xa9zADrj/muGksCrBC0EQBCFkaFFN8hXTRnbB3KX7m/GdI1O6IineAHf+NhR++hwCtapB3IUHceKbf6F02afIvOZJxFsTUSHBC0EQhLAHmMk5TEFzylI/WaasgoIcyHOX7MOFk7oDKtZH5Iy2xhnx53fWsH55dSh7f+H6fH6dM74bbjq/f4MVFJVrMl+LjsnaHYV4/n91+03l5pfixQ834OP5u9lJTgmMHFBpJoLyj+QzImcXnWt9yYGk8uCHBnc9vxB5tSoMyu0edvZ/tXQffn3pYEwc3InHMtQESp0OfN1Io/6F/62vd0xe+nAjPpm/h8ckMcnCwQuqBqHAyQff7sKnP9VstEtxFEqMpNfgnml4/KbR/HsKXvB9YjXiT2+txpodBTX2c3v9nCxKLwqW/OK8n+8TCiSR/+L5uyfz/UVjsPPASf6s5HgTpo/KwvkTu8NE1T0VrqhLKBWEaGVo7zQOGpKfTSm0/ZBeNVsxNCdxcXHIzs6u83vy3992223Ys2cPBx9mzZrFfS6oR0VDUBxg5syZWLRoEVasWIG///3vePXVVzlOQO9HDb8/++yzOvsZjcbwBi4oWEGv6nTp0gWDBg06rQMRIhvK9tDotHj4xUUoKm64cQwZYn95dw2evn0cumYkwNGKmRlKodJMMhjqC1rU5n/f7+JmotNHdOFsiWiApKDe+mpbnaBFbZZvOYqXPtyAuy4fCre7ZmBKEARBENTg9fhw/Tn9sGXv8TpSBuQ4Iikpyi5SUxrdvWNixIUu4ix6eI/noeCTZwB/w+fiLSvC0fd+i863vMCOimiW1RQEQYg2zGYjZ+m3SzRzwEANtP3VM/vAYXcrDwjEmfDM+2vrBC1qQ3I/VJ142TRKjAtNjipUzBYjduYV47kP1rLDuyGOHLfh4VeW4u/3nQHDqcSE0/pcc6WUkkarwZbc47A5PEiKM2Fgj1S43F74PD9LT1Ngg6SX7n5hEQ4VlDcaYHr5442ItxgwsHt7xdeqNtY4C7btO4m/fbCuyTF55JVl+Pv9UxAfb0IAGny+cG+doEVtNu0pwh/fXIXf3TyGx5EqNJ55b22doEVtKAmE7pNLp/58n1DwguSeB3VvjxF9M7iSiAI/FESpIIUIr58TSQVBCB9UVT6qfyZWbDmqeB/anvYLNzt27MDixYu5F8XgwYP5dx6Ph+WgyMdfmxMnTuCVV17BrbfeiosuuohfBQUFmDRpElavXo1evXqhoqKC36NHjx5V+1Gz7z59+uCaa64JX+Diz3/+Mx+MzWbjagsq+3jvvfdw9OhRzJgxg8tFhNiDjAuK5DcWtAhC0cU3vtyGZ+6cwLrOkR7gJz1JMiKaCloE+e93O3H22K5sSEW6XjU5RxxuL75etk/R9os2HMYVZ/ZGktUQ1f08BEEQhNaFnA7klHjmzon423/Xc5PToD1wuKgC+4+U4ozhXdhpo4Q4sx4Th3ZCucIs2XBhNutxdMHbjQYtgvjKT6JkxReIH3MR3JGf1yEIghATcJ8/i4HXp0/cMhYlFeqSz2h7qgqg91GyriVHe15BmWLH1ReL9uKiKT24AqG5m2031fvwjTlbG3XQBzl2wo6vl+7DzDHZp3WMJPfk9gX4c5eSlFK196KgA1VqXj2zL7Q6DZwODwxGPeavzms0aBGErs2bX23Dvx6axlJKaiWjqNqCZLze+ErZmBw9YeNqHJLKpu0/nt940CLIht1FXB3Ro1MS8o6VYeVWZfcJBUZq3yekAEGJovQKNvWm6opI978IQixz6bSeWLujgJO6m4Ik4Wj71iA1NRV6vR7ffPMN2rVrh5KSEvzrX/9CUVER+/lrk5SUhIULF3Jg47777quqrqBeFwMGDOC+F3379mU5qcceewwdOnRgSSna5o033jitY9Wq3WHTpk2sWUUNO4g//vGP3PPiyy+/xA033IAFCxac1gEJkQdNghazAd+tPKh4n735JThSZGPDLdIhg4h0R5VC2aGUeUMNyiMdnV6LrxbvU2R8BaGx0OpUPxqEVoaMWLPVCEucibN36N+0IKGFiSAIQmtAjgNqRvngNcPx5m9nsNTimAEdMG5QB5RWuHDRGT3YYFfCrHHdWCs6knpMUdDCW1oEV/4uxfuUb1oAo8kInU4ezoIgCOGA7OEDR0px4GgZXB4vNz9WA8ntEEqdwZTwRz0OlEJyRPOW74fu1OeEa0wogaCp5s7VmbfiAMtFBR3kaqF9y+we3PW3hViwJq9G0IKocJDs0z7c++IiaLRaDjaRD2KuwgSHYICFkhEpMVEtiYlW5B4urSNH1RjfrDjAUaAfVh2scz6NQedJzS9IZlvdfXIA+gbuEwrU0EuCFoLQuvTskoIHrhnBgdDGoL/ff80I3r41yMjI4IbZ1OOCZKLuuusu/h359bdu3VpnewpyvP7669zPgrY555xzsHz5cm4VQT2wdTod3nzzTQ5i3H333Tj//POxZs0a/OMf/8DYsWNP61hVP9FffPFF5OTk4LLLLoPD4cCcOXNw5ZVX4ne/+x2/KEIzbdq00zooIbKgygLqaaFUCzQIaUOeM7aullokQYaXyUgVF8dV7bduZwHGDshENDizN+4pUrXPxt1FsFxsiBoprLYOl1BbKjUDqQ8LNXaj6H5asoUdfZ0zEriZnlTQCILQGpCGM73IiXDRlBzOWkWgMiOQnl+P3DAKf3xrdaNNUscO7IArz+oTdhmNpiA5Bvuetar28dvL4D5xFDpTKnw+kYsSBEFocTQarN5eKcWz73AphvZKx2YVa7+hvdNhV2FHWy0GXk+pgbLwqSdBa4yJUkh54USpE0adFn6/T/V8SdJUv3lxcZMVL/mFFXj6rdX4w23jYHN6FVVbVGfN9gJ075AItVBggKpD1VBY7GAFBupfoYaNuwthNuqx91CJqv027C7kfheCIEQ2tHb5668n4JMFe1gysHrPC+ppQfJQVGnR0kGL9957r9G/n3feefyqzSOPPMI/R48ejV27fk7QolhAsKd1fVDlBqk0NTf6UCouXnjhBda8osbb1Kj7ggsu4L9RlIYqL4TYgpwM7hBKQmmfaAj4U/am2lJSt8cPbRSkslNgRk32B0Hbh5pJI4Q/MEWN10m+7MvFudzErTrfrjyInl2S8cj1I7k0O1S9V0EQhNOFghe1MRi0GNQjFc/fPYmfY+REqT4fd0yNYwmGs8Z0hd1GDSnDI6GhFA3JMdRqxq0E2kdjbpFDEgRBEGpBGejB9dA3yw/goetG8JyjRMaDmD05B36F809weah27ewO8/qLxiSU9T1JFIVSzUDyxSs2H1EkO01QItbhonKkhqD7Hsp5Ef5AAC6P+qpOuubkGwjlGAMIwQfRBtfpdM7BJu5q/TaC0FpQUOLRG0bhRKmDg9mk3EL9/agRd2v0tIhmVM86VBZiMpn430uWLEFiYmJVY27qfWE2y0os1qDJITG+8pqroV2SOeKaaNaGJj/KAKGG29QYTCnJCSY2biIdygBJSTCrKnlNSTA1mvkqRAZkvJEk1D8/3cTarw2x51AJ7n1xMV68dzLLmjhVNMIVBEFoSWgapWaSGclm3HfVcDjdXuw+VMKOkYx2cejWMREOpwflZY6IkogKEtBooEtop3o/XVwi2x+CIAhCy0N+3nYJlT6KzXuPo6TcxdKF//t+l6Ks2ezMRJSU2BR9Fj3aae2cnGCGzVmh+BiT403cryCcY0JrPrUkxBnhDyEwYDLrVUk+EV8u3oebLxjATms1zmpap4eSX0hZ0KGMCV3zlER1+9H9QSiVy/x5v/DeJ62ujGHSQ2/Qs7wbBRrJZrQ7PPD7fKwmIKaUEA1QkGLayKzWPoyoRrWQPelVffLJJ9i4cSO+/fZbTJkyhR1o1GGc9K7o70JsQQ4EapbVp6vyMia9TovJQzuHrcFYqNBkZ7O7MWVYZ1X7zRidzZmWkQ45eqjJmRqmjugiskJRAGUubd9/otGgRRAqyX7pow0wRkHPGUEQ2mY1BgUnNH4/+mUlY3BOKgcziovtXCkWiUELwu32Ia7PWGj0lXJ9SjB1yIEuLiXi7SNBEIRYgar1zhjemR3TxLPvr8MFk3Iwe0qPRvcbMyATD1wzHDabS5WD1O5w8+ep4czRWfCHca6jMZk6vEvVmCiBKiRNBn1I85dBr1OVSEfkFZTz8Y3om6F4HwpY0Do9lLEM+AO8DlZT0TCoZyo7088cpc4pSfcHyY+NH9RJ1X70OQF/ZNpEzb3OTUqyIvdIGf763lpc+MCXuPjhubjooa/w6mebUVjqRGKSlSVHBUGIfVR/0x944AFuwHHFFVdw84077riDf3/uuefiwIED3IRDiD3cbi8umJhTo5HMhMEdWZftihm9MXNsV84UCTJ+cEc2HKJhYe7z+nDhZNLdVrZ9l4wE9OqSHBWZ626XFxMHd0KCVZnDmrI+yNjzRsF1a+tQ43U1jf+oPLHM7g6pvFsQBCFcgQCHwwPHqb48kV6VQDYOJYHG95+geJ/EkefC6ZIsQUEQhHDOLbR2HX2qPyE16X7sX8t4/ffiPZMxY3QWLKfsY0q+GzOgA/78y/F46LqRsNvcvA5WA62jzhnfDVkZ8Sx3eOWM3rj4jB4Y2jut3vUmZfmP6pcJl8sT3jEx6DC6v/KejRTs8bhDP0a1VRDB7c9T0dOBJFgSrMqTCapTXu7kzH5VYzIxhwMJAynhop1V0T4UF6H7IuDz832i1ykbmHaJZozsmwFXjCcYUtCCJI7/+PZq/Pa1FVi7o4BtLYKqLhauz8ddzy/CW3O3IT7BLMELQWgDqPZg9e/fHz/88ANyc3PRs2dPWK2VD+gnnngCw4YNQ1paWkscp9DK0ARJxt70kVnolB7P0f5yuwd7DhVz6ebgHqm49cIBWL7lKH5aewi3zx4Ir0ojrzUzPZMTLbjhnH54a+72Rrclo/aha0dwJk2kO1QIylIlBwkd8+9fX1mjKVB9xuE9Vw7j84qGgFNbh753ahrB0e26YPUhnDu+a4selyAIQlvC4QbanXkjnId2wnPySKPbWnuPRlzfsSgpk35DgiAI4cTj9uJXlwxmCVXqs5CbX4rb/jwfk4d1xrkTuuPOy4ayU5QCHMXlTk76KisNXaaQKgVeuu8MbNhVyJXPJoOOHf9Otw9fL9uPuUv38bqMAiUPU4DE6Qm7dr/H5cGvLh2MPfmVY9IYZwzvgqG90lBWpqxHRX09HbIyE7l3hVKyMhJ5jLp3SsKscV0xb/mBRrenANCvLh6MrfuOc5JhKGgRwK8vHYy9CsaEqjOocbutwskJZXQdH35laZP9JW+dPRBWkx4V5U7uVfjrS4fgxQ83NLpP1X1CMkkx3OOB/BFxcSb85d01HLBojLlL97Nv5tKpPXksBUGIXUJKvY2Pj8fgwYNr/O6ss85qrmMSIhCaIEmu4faLBmJ3XgmeeW8ta4RWJ9hE87EbR8Pj8cJRTyPOSIWaflLGg9VswLvztnNQpjZZmQl48JoRSE0yw25zIVpwOtzcGOgPt4/DSx9uQMFJe70ZHL+8eBCXANsqoufc2jIVDvUZu8UV6krdBUEQhKaTH3RaPTre+BcUfv48HPs21tlGozMgYeh0tJt2A8ptkSt9JQiCEMvParPFiBfunoy/vrsWW3KPcxDhu5UH+ZUYZ2TH98QhnXDRGZWO0FCe1dTLwWw24qP5u/H9yoMctAhCmfVUzUEVGFR98daX2/Cry4ZwZYa9FdZf9Y1JbSjgcu7Ebrj6rL7soA/VaU7STeeO76YqcMGKCAD+8OYqPHnLWO65+cXCvXzdakOS1tQra3PucfZV9OwcWuCitNSJhEQznr9rMv763hpszT1R/5hM6IZrzu7LATFK+KNXh/ZW/PXOCXju/XXIL6zb34TusV+c15+VKWynHO0OuwvjB3Xk93ztiy3cf6U2HdrH4d6rhyErPT7m1+lms4ErolZtO6Zo+88X7sVFU3pw9ZAkXgpC7CKaIYJiDEY9lm8+ihc/XF9VrledI8dteO3zLdh54CTuumIY9HoPN4dujsg7TWLUBFOr0YA/mqoC3D7W52wOqMkVGagkf0VVJUs3HcaaHQVwuX3cBOvMUdnI6ZzE8hXRFLQgyFFNgZmuGQl47eFpbJRSiWWF3QOrWY8JgztheJ90boBKxlA0VJIIlQ1t1UJGsSAIkQXJt2l0Wu4XRpmeXl+A5z16FKuQWY55dDoNjEYDGwUaLSVUgHtNkbRGa2cf2h1e+M16pF/yEPy2UpStnQdPyTFoNDqYOvZAwtAZCECLsgp3vQtruvZms77SztFqKgPMfqp+9DaLHRWNyJgIgqBUVkarr5xDCVrHkAQPOeXrS+aiwMITt4zB8RIH5i3fj4KTDg4o9O3aDmeOzuY+BxXljnqfM8FmwVXPJd4kwNK8FOSgv5lMBs66p8qO2tD8vnTTEazbWYg/3DYOf7tnMu/b3EGL4JjQMVIiocFkgE7nUzQmVA1SWFw5Jn26tmMJ4cbGRCkBDTB6QAeWU6ovia42lEyXnmKFz+/HzgPFPKa/uWwoLpyUgx/XHsL2Ayf4eFKTLZg2IgsdUuPYif3xgt04f2JlwCNUyssqgxdP3TqWx2JerTE5i8aEFSncsFdLdiQfQXqSBf+4/wzszivG/DV5KK1ww3xKfmrsoI4sNU1Bi6DdQj/JBzGkZyrefnwGO+xXbDnK140aoVMfkn7d2nGlRawHLQitXocvFu1VvD19p6gS5+yx2TXsKwpk6GndSzYjmw8BtiHIZhRXR8tDj2N6FtJCJui/o2ez71SQTxDUIoELQREWiwEFxXa8+NGGeoMW1Vm04TCXgs4amw2v9/TkEMwWAywWI/YdLsV3Kw/gRKmTm3uRMUNyVTTZk8HVHNmLXFVic8Ht9GBEn3R+6fQ6+MhIC/hRUmyL2omOjpvGye3yoEfHJOR0SuJJRKvTIuDzoaTE3uqOH0Ed8RYDOqfH15vR0xBj+mfiVOhPEIRWhh0cZiPKbC4cLSxDn+x22HuohBe6NNdRcHJQj/bsSDFbTXA7SWfb1zYd2GQLmA28oF+y6TAHCuKtBs6MJb1nCrzTHNeaczQ5I+hlMsUjfuyl0GoD0Gm1oPVZuZMc7vVrUtO5WS1G7DpYjO9X56G4rFJjm7JxyRnj8frgYjun7Ty7g2Oy8+BJ/MBj4uIxGdY7naU52uKYCIJQ1zlPzwqb04svF+Vi/5Ey/n1n6isxoTs37iXHcm1nvcvp5Ve8SY/Lp/fiOUan03JFgNPubjApjioTrBYDtu47gQVrDqG0wsUO6ZH9MjF5WCeen0ku6IX/bag3aFEdcko/8foKvPHbM7nXYnPaFUazgefIOQtzOXO9ckwSuE+EkjG54szKMQkmsjU2JmqwmAy8lqcAyWOvLsfJsoalfbJJ5eDaEfhmxX7MHNOVVQ/o+t7z4iL0ykrBzLHZHJww6LQot7vx7coDWLQ+v6oSg5qqU0AJpxm8INKSLLh6Zp9T9kWAg0F0zez2+n0cZIuQxHaXtDiWoQ6OpSaABqXH6O+kbEHr9EHd27Ofg+5J3tbvR3Gxvc0kFpL6xcY9Rar2oT6OVAFDUL8Lk6Wyx8n3qw5yxYzX50dasgVnj+vK8mPBPmpCy0AJx/RsPlxYwUGlwmI7S51RcJj64prMBv6eSBKKoAYJXAiKo9//t2CPYuf2V0v3cRMymoBDXVhSU6ZyhweP/msFG15U+ZBoNcLt9WHdzgK88/V2XHRGD24QTpkKzfXwIyOBjAea+OLjTCi222LmwcrBGRLkPjWxp6TEobjY1WxBCzLmggaaBEJaFqfLy0bavz7bomh7CnL0zk5h41cQhNaFshsNRgOe/WBtVabgvS8uwsFj5TW2W7n1KN6Zt4Pn00umkjPBVW/GZHNlR9EzHNDA7/dHRKCe5pO4eBM27TmOVz7dVEdCYfGGwyx1eOdlg9G/W/uIqBqk6+OqmmMtsBc3bENY40w4XurEg68sqxOEpozLt77azpIiJGUZqmxJtNHUmLz51bY2NyaCINQf+H/xo/VYvulIjaQ6qpj/YlEuBxTuv3o4TWnslK9NcC7l9R6vhxp/VpOywDPvr8WxEzXtaOrv+J85W/DgdSPQtUMSVmypv9cRfU7Pzkksd0QBapIzIsfqdArGNkMGctNjslfxmDQ3wSbb1Ez55vMH4rm7JuHj+bs52FBdWjop3sgqBxdP7cnVE9Qf5Oyx3Xi988//28zbUCUDvRqC7ClykDbXeqe0VH1PDw5EONQ7xslnQut0JfdkLBK8T9wev+r+KZSQSVUWZDN+8N1OfLV4H9y1xu7blQfRo3MyHrlhJKxWI/t7hOaFEo5dPj+eeGVZne8pJR+9/+1Oloy77hySnnO1meoLb9kJOPZvgt/tgNZogaXbYOgT27f2YUUVErgQmoQmT2LZ5qOK9yHnwprtBRjYvV2DGQlNRWornF489I+lGNIrjRuHUTaq3emF0aBlCacFa/LwzYoDrBd943n9OYuhtR0WbbkUkKpTKBOJjAeKqlNGJOl+khEsQYzmh7J9yLj/ZvmBOs7O2pAv8qbzB3BWsnxHBKF1MRp1/Mx84OUlLNVH/aEeemUpbA0scmm+++93u1je7/pz+rFUDskkNeccT1KQVFlJjwd6RtAz3GZ383OmNas8KIGBJDXIWdTQo4uyNv/wxio8esMo9O/enisnowGyc8hBf//fF9er102QQ4cc9dS0lRw55SE4UKIJytBTOib0k5JXYn1MBEGoiV6v47mBsvZ3HDhZ7zY0X6zedgwP/WMJnr1zEksdhTqXUaXF4eM2PPLK0jqO0CBU9UHOVmq4XXvJ071jEn5xfn9OHqJKSnJEkyyk3eXF7oPFXF12uhWD5LAlh+Fj/2p6TEhy6ZlfT4TfR5WA4ZnfWaXHH0ByvBkvfbSBK+eoKubGc/uxhDHLIlmNGJiTiu37T+K599fy3D+yXwYHpynBY96yA1UVJI2tSW+W9U7UUqnmFOBkVTW9Uml7khSjAOM/P92M+avzGtyWmq5TotCL90xhO0wqL5oPGk+PP4B7X1zcYEUVVb98sTiX+27edfkQ9t/Fsp/IdWQvipd/BvuetdTo5+c/aHWw9hyBlHEXsaSs0DQSuBCaRKvVoqjEwQ8aNew7UooB3duF9JlUQvbKZ1vwp1+OZwcNaZD+/t8rOHBBkPE3a1w3vHjvFHz4/S6Wkuqcag0pu0E4PYcXGQlHj9vw+aJcLN14mI16MhyH9EzDBZNyMLhXGmt+tlQWT1uFDHkqRabvCC3eGjLmSY/17iuGoX+3dtxUTxCE1kVn0HMggrI2KYvw8ddWNBi0qM6XS/Zh8rDOyM6IR1kjEgtqIOcPaQAvWJ2Hucv2V2W4UxXDWWOy+fisBj03jwy3D4CcUyRn+OKHG5r8bFrz/O2/6/H+kzPhoT4hEZ6hSHMkjf0zry5v0EFfnQ9/2I1JQzsj2Rq7i2yqriEH3sP/VDYm//t+F0uFxfKYCIJQF4ORNPBzG3TQV4fkhf73/U5cMrUnEELggqoQrVYDnnlpbYNBiyCpSRYsKKjpML3xvH4sabQ19zg3v16/s4DnK0oOGD+oAy6YnMMOV3L4nc4alubxzxWOCa2ZeUzO6BnWbGe7w40zhnfmjGvqUUEvkn3qnZXCUoAUyPnPnK01Ku0qZaGpX4kPf7pjPH772nI+/vrQaTW464qhGJhTWX0pRCeU8HrG8C7473c7Fe9D94lOo8H2/ScaDVoEob4jf/9oAx67cZTYD80IJUG98P7aRmXgglC11aQhndAvOzlm/Xe2natQ+MULCPjqOT+/D/Zdq+DYux7ps+9BXO/RLXIMDz/8MD7//PNGt9m1axeiAQlcCIrQnEa5X+3fUaZppRzFKedrLYd2ZRaiAzddMAArNh/BG19urZO9QlrQ9KKy1yduGYvNe4tYDxOIzQdfJELam/HxZjZAP1tYs4kWOZk27C7i1+CeaXj8F5UPYwleNC9kbNH35YV7JnMW1ZzFudh5sJgzF1K4qXwWzp3YHSa9joNHknwkCK3/3DQb9fhh9UEOQhwusjUqeVAbctb85rIhzXIs5Dgvsbnr1Zqm/yfHMD3bH7thFHpnJYfdEUDOqR9WHYRLoWOFsvPIETJhUIfT7q/V0pAdlJtfgryCxqvlqkP2zi/O649YhRpxky68ujHJxS/O69eixyUIQuRA60eqDqRqY6VQn5xrZvblHoZqpeXoWb15z3FFzaQr+Xnxe/2sflxV8Ke3V7MKQXUoGZB6QtJr1riuuOWCgWy7h7JOqhqTFfvVjwlLOocn0O/1+DBrfDd8+MMubqjclOwTrWNG9cus6sNI652/3TWJ1zuUyEFBmuB6Z/rILJxH6x1DcL0jC55ohSp9SQry4/k/3yeNQYk2I/pmcMIK2QRKoT4aZTY3S6yJf6J5eg6RHb5uR81nXWOQ32LwTWNiMnBBlRYNBi2qQX8v/PwFdLzu6RapvHjsscdw3333Vf3/hAkT8Oijj2LWrFmINio1gAShESjTIT3FymWtasjplFxlvlUaVUYkp8ShqMyFtbsKsXZXEcqdXiSnWPlvwWAGRTeonHfzniK8Pqdu0KJ2Jg1VYozp34Gz/8kpJIQHKp0mp1btoEVtNu0pwh/fWsWVGZRRKTR/8KKs1M7N3P5w2zjMefZ8fPHs+Xj3iZmYPbkHtP4AV1rEchmmIESTTNSmvUUot3swvE86ZxypgbSzWdrJcHpzHS3UKHn0kVeWNZoZRTJVf3hzFY4ct7NjJJyYjHr8tE7d+Py07hBnnkY8Wo2irMDqkIMrrrqtFGMEoOHG9GpYvCE/psdEEIS6zrHc/FJWAlAKOSdp3qX5VzUa5c8lSrqjJtJEWrIZF07JwTPvrasTtKgNNa9979sdrDYQ6pjsPVSC4yVOVWOyOdQxCRGq7qCseEq+aGo5SBUpj1w/imUSg+uX6uudp24dW2O9c9GUHGgDst6JBcgHpNdq8OtLm07SId/UI9eP5L6PFH5bv6tQ8edQbIsCeFTZK5w+Or0WC9YeatRvV5vNe49z71qqsI41SB6qqaBFENqOtm8JEhISkJaWVvVq6HfRgHxThSahCDYZAaTFrRSKfpNThowMcrIkJFqwemch7n5+Ie56fiGe+2A9nvtgHW7/64/sONmRV4y4eDMHHsiY6ZyRgPe+2aHos0giZ9GGfHhOSRQJLQ9pqWq0GnyyYI+i7anyYtfBk5xRKTQ/wWZupSV2nDhRgZJiG44fL2d5F7dbskgEIVKg4O3J0krnQrzFgFKVVQyUfUYLNJJwPB20eh0+XrAbJQo+n+bWt77exs3Ewz3PqB0f6q9liIJFKN0HSsa+dhCJekjFagIA2RS1m683hTPGx0QQhJrQV50aW6uF5t1QnhMUFFX6rKbei2eNzj7VV24gr09XblXWH/LLxbksRUWyVGqh8ypW+ewkTpa5wv7spHXJ2IEd8dC1I7hSoqHm2n/+1XhkZ8bDWatPZvX1DlVikDxUSYmNmyzLeid2oPtk/KDK+4T6VzR4n/xyPLIy4rmnJkmuqi20IRtT4lzNA429WhuOqLC7cZpLmohsxG3fvUbVPtQDg/YLN5999hnOPPNMPP300xg+fDh++ctfYtWqVejduzfy839OHqv9O6pqe/311zFt2jQMHjwYF1xwAb788ssWPVbxIgqKy/YundYTSzbmKyrbu2BSd26MRfYQBSTenrsdXy3dV++2u/KK8dQbq1gC4eyxXRFAAGt3FODEKeeOEihbZdrILDiVVvIKp4XOoMP3KiQ8iC8W7cO9Vw0DYrAcMJKQTCNBiGwspkrTi56fpOusFoNeB6cn9AU6JQjQ5/6oIrudpDJogWcOY0k9yVeoHR/a3hcFz0Ay+KmiRA1kT1EWaqxKYNB5mVVe71gfE0EQakJfdZqH1GIJMXGKGgWT/JASVm8vwK2zB3HvnSG90vCvzzYr/hxaW3+9bD/On9hdtexx5bMzhDEx6cIuIUtrlIpyJwb3SMVbj8/A6u3HsGLL0arm3NS0u2/XdrA7PE3KUwaf+/L4jz2C98mQnql4W8F9Qhn7xhAqkclmlLSH5oHl4ENY0xgN9ByKrS+xY/8mIKBSgs/vg+PAZiQMOgPhJi8vD4WFhfjiiy/gdDpx8mTTvZJeeOEFzJ07F7/73e/QvXt3rFmzBk888QTKy8tx9dVXt8hxxlh8S2gpqHKifaIZ9109nLMbGmPaKZ1Jt8sLo8nA1RANBS2q8+ZX2ziIQd/zDSpK/Qhq1CUVF+FDq9GovkYkGUUOO7lGgiC0VbxeHwb1TON5lOQuhvZKV7U/NbGkDFAqpQ8VqoKkTFCbU10AYt3OAt43XNACVe34DOudDvdpBHXCRgAY2TdD1S6DeqTB4/XFbHBaEwDrVKuBemjF8pgIglB3Du2dXdnMWSk03w7ukcb7qiYQUPxcoufQf+ZsYYmbOIuB1z1q2Li7iNdXaqHz6hPCmAwKdUxOE3JSUoUEVUwM7N4et1wwAHddNhQ3ntsPXTPiUVxsh9MR2X2qhDDfJ90av098Ph+sFgOyMiql2pQyun8mNGSQCadPIMDjqQaqmkmON7G6SyzhdztC288V2n7NAVVadOnSBT179mxyW7vdjrfffpt7ZUyZMgVZWVm4+OKLccMNN+CNN95ASyGBC0Ex1OxqWK90PHPnRDbiascvqDk26Vb+8uJBHP0mA85iNuCznxrvgVAdkh4KaCozUdVCgQshfJIOaq9RcHuRdBAEoa1CAQeDToPRAzLx3coDGNU/g6UVlUJJAVQBWR8U0KBqiqb0/ukZTLJDaiFZnnDi9/pw4eQcxdvTafP4eCLfFiBZA5JBSFAhC0KVrLRfrEIyHyRJKmMiCEJDkIOLqvEmD1UuXzxmQAfodaEF/MmpOW1EluJqsOWbj+JkeaXziWTs1EDbh9Kvh8fE78ekIerHhPpOtBbkJyDHNMlBkTQQ/2S5H3EkC7XuE0fj9wn9k5Jsz5nQTfH7dkqLR5/sdnCqTOIR6ofGv3unJPYHKmXWuG6s0BJr33mt0RLafqbQ9msOunbtqnjbvXv3wuVycdPvoUOHVr1IOurw4cNctdESiFSUoBh6qNhtTnRsZ2HNQbvLi9z8EpZlyGxvRef0BDgdHlSUO1iD0mw2IPdwKfILKxR/BjUKC/gDSElQ7sghyPiiktdyl8gQhcuIUONsIyiiHtxXEAShreL1+HD9rH64+4VF3EjwhnP64fn/rW9yv15ZKRg/uCOXz1cPQlDvIJ1ex9JDlH1OUlLkAPF6vLwgq70g8IcwxxKpSZawSjKQJFVSkhVnjcnGdysPNrn9OeO7c5ZreWnrZSwphRxvTrcXN5zTHy9/srHJ7Qd0b4+hvdNZ1ztWCY7J9ef0wz8+2dTk9gNy2mNIr9geE0EQ6uL3+nHVWX2wcusxbjLdGFTpfd2svjzvhvRZoP4RTlw5ozfemru9ye2pv2P7JCtLTKUkmmFzKl8Dc+axzx/ymFw9sw9WbWt6TKxmPa4/J/QxEYRIhJIYpo/Mwrxl+3HwWHmj21J88OYL+sek07y1oGGkgNItFw7E7/69okl/T+f0eJw9Nhv2Jp5X0Yil22BAq2P5J8VodbB0HYTWwmxufF1IVU1Bgt+ZF198kWWiamM0GlvgCKXiQgjxoVRe5oAu4Ef/rimctZGWaOaGwBQRp6AFodNpWMJJ7fufLHNixuhsVftRo69gFo4QBvwBnDkqS9UupEdZYVPftEkQBCHWspKS4oz44+3j8M7c7ejfvT3uuGhQo5mWJBH1h9vGclZ6MEOSmlcnJVuQf9yOlz7aiIse+gqXPPI1Zj/0FZ77YB0OFFQgKdkKY61MUY/Hi4z2VlVZUeT8oSqRcDe/pOy622YP4vmjMWaOycaN5/WHI4rmGJfDjcnDOuGm8/s3KqFIDvrf3zKGM1NjPfBPYzJlWOcmx2RgTip+fzONSWV1ryAIbWsONem13Ji3oQbPBFVv/fGOcTzf0j6hQPPyRz/swvRR2Ry8aCpo8eC1I/H3Dzdw8gA9y9QwfVRWHTWDlhiTp28fh0Rr6GMiCJEI+YFcTg/+/MsJnPnfWLLrvVcNR/9u7UWSrJlxOd3o1SWZE5yp/1hDZGUm8HWiNUVryNW1NPrE9rD2HKFqH9qe9osEDIbKyueKip8D7wcOHKj6NwUr9Ho9jhw5guzs7KrXokWLWCpK20Ld1qXiQggZKrmlBaPVauIHT30B61BUgagBaO/sdpxhuHXfCUX7zJ6S06B8RihYLAYYTzU6i4szwW53KyqnNZn0LNVB0NhQxmhTkXxuZmQyVDmtKPiipPkpbU+fF5Reogf/6eieq8Hl8rDjIKOdFQUn7YqOlRrOkaYqHa9kNwiC0NalFzu0t+Jvd0/G0o2Hue/Fvx6ahm9W7MePaw+htMKNvt3ascOenrW0LT3fy081q6SgRXy8Gf/4v41YsOZQjfemuYeyLulFckT3XT0MgYCrag7jknqHh2WVlGS2E2eM6ML719ahpec5zUNq5y+l0GfaKpz49aWDcd6E7vhi0V7Osg02Nh83sCNmT85Bp/R43i6adHLpOtExU0UJnccXi3OxcN0hlNs9PFdSc9cLJuVgUI9U2EkeoQ3IGagZE5vNFbZG8YIghAdaewV7KdHzgNaX9QUnKZDbLsGE1x89Ez+uzcPcZftxqKAyy7pjajxmjeuKM0dn89qQ5tvT4USZE4/8cyl+f9MYnlPnLd+PRRsOw+bwsBN0WJ8MnDO+G/p3a4cXP9qAFZuP4oFrR/DvPvxht6IqCgo2kD58WVnoFYNNjsn4rpgxKpvXi6c7Js0F2TLUWJmWsrQ2JDunuZMQKXmDPoOgz6B5I5ID3rV9EJQw2lJJIzTu9Fk1fRdUhYCohIJxpPjx/F2TsGbHMew5VJlAS99Try8Aq0mHqSOzYNLr+DsQrecZqdB4klz8YGqq/rsZmLt0H75flcdJybROoCSs8yd156Rnlolz1B88pfuRvreVPqNKH1drytqFQsq4i+DYux4BX9MBYo3eyNtHCr169YLVasW///1v3H333Th48CDeeuutqr8nJCTgiiuuwEsvvYT4+HgMGzYMq1atwrPPPovbbrutxY5LAhdCi0GVFzmdklVPoJ3SE1ji4t6rh+OeFxayA6cxLprSg5sxURXI6ZJA8hlaDffLWL2jAE6XF+2TLBjYI5WzZ0hzmwyI2sdsNhthNOm5nHhX7gk+945pcejROZnLEKlReW1DjAMPZgNPsAePlrFxSe+V0zmZAwIup5eNh9rGFRlfBqOO+4ds338ShcV2duBQ5kBCopHHrvYxNjd0THaHB49cPxIPvbK0Sb3022YP5PPNK6xodEwEQRDaCmS00/N87IBMWCxGkOuf5C9+cd4AlszRQMPNPXfsP4nDRRXcXNQab4KPnPZmA16fs6VO0KI2yzYfgUGvxZ2XDakhqUOLYNLtpuDGmu0Fjb4HVWZQM0RXtXmFFxUmPc9DJAl5uLCCn/EkZ9U+2crPd1pANkeQmhYrdOyZKWb88pLBuP+aESxRSY5smofIMVVWao/KBSjZChVlTphNelw1ozduvXBg1bmR/UFSHtSYMpKdLGEdE8rOc7e9MRGEWIfmQL1Rx8GAzXuO85qL1kJ9u7bjNQPJwNQOTNMc6tF7MXFwR67UpzmI5gF6MgQ18U83m5eeM9mZidiwqwh3/HUBJg7txLrsd1w8mAMSlFVcVGzHtysO4oX/rUdJuYuzvYN/o7n3xQ/XNzo/0Rz98PUjOSB/usH3esekSjGBegSc/pg0B7T2JYlLMnzoetuoEjXeiME90zh4QXPf6TrrKQCgN+jhcHuxYe9xXqump1jRr1vwnvJFxFhU90EEOIIDrN1ZCDuPiYkD9gaTHgGfnxMpm4PK5EcDTGY9jh63Yf+RUr5HsjskogtJfzs99fogogE6dgrGDOudgV5dUthX4vb6WdacHOducoJHePAq6qXlK1wceLhgYnde19C9Rfcc2fN0X5HNHlRoqQ7tozPoWfp2y94iFJe7uOKbngtGs4HXP9FSKWbq2APps+9B4ecvNBq80OgMSL/wbt4+UoiPj+cgxHPPPYdZs2ahT58+eOihh/CrX/2qaptHHnkEKSkpHLwoLCxEhw4d8Jvf/AY333xzix2XJiCpz3UgZ+rJk7Zmez/KHElJiUNxsS2qsgFP99xo7k1OicNdzy9EXhNag0GG9U7HIzeMZI1qi9UIh9uHv767FrvyiuvV6LxsWi/OGm2OTMv4RAtKyp14d94OrNhylBfKQRLjjGwAUpmwz+tHRUWlxjg9hK1xJnbcfPDdTmzNrVkh0qF9HEeWKXuQItDBaDGNW1y8GUs2HsZnC/fWGR9y/lxxZi/OtKWMgKCDnzJbaVyo4fm85Qc4gh2EEl6H983AdWf3RXqKpclMgua4L+ncC4odePb9tfX2MiEjlDS8B/dKw8P/WILCYgc6pMZx9UXtMWlO2up3LtqRc4t80tKUywuFa56NlbENBrNp6nln3g4s2pBfIyhMxjs1JL3unH78vL/y8W8UO+tfe3gaEsy6Gln7tLCzxhnxnzlbOSOqdlYozeGj+mXivquGn+qX4anKkIyLN2H+6jzMWbyPgyrVIacALVR6ZSXz4qWxxWEo144ysCqzM3/WWY1EQju3yvMjInlRHc7vXLjHJFaeJ23t3GLl/CJxjm3JsaWvNq0ljp6w471vdnDfp+qP9dRkMwcKLpzcg6XhGquyClb+qX1ONHZutO5y+QK46Y8/1DguklyinkpOtw9lNM9V+xsFK8aRtKLLy2u9tTuP4d+fb62xZgvSMTUO91w5DF07JDZLAl5taL5OTrZG1HeC1rEurx/vfL0DyzYdZqdykDizHlNHZOGas/twUkJDGdmNXTe6pyxxJhQVO/DuNzuwbkdBjetDPRrPHtsVF0+le8odEZV78Qlm7h1KY7J002FOoKwxJiOzcO3ZfVmqOeiDCBVKPCEbbt3OQnyyYA/25pfU+Hu3jom4ZGpPjO7fgXubtsR901LPE3oG0HfuUGE53v9mJzbsrvk8SUu2cDXWhVN68PeTKjebm1iYh1rDrqVgJgXoPvh2J68vKqp99ykIPH5QB17/WI06/t629hyrFNeRvShe/hnse9bW7Hmh1bE8FFVaRFLQIpKJmsDFF198weUqhw4dQlZWFn7961/j7LPP5r/l5+fjD3/4A9asWcNlLZdccgnuvPNO6HQ1dZ1jzdiLBJo6NzJO1u4qxN8+aLrxKD3TSJszOz2Bs0KCDzGzxYAjx234dsUBnCh1wqjXsqwGaYdy5NbpOe3MfTIY8osq8Niry+FoxIDJ6ZyEv/xqAmc90GRHk+OyLUfx8kcbahhFtZk0tBPuvmIoN1Wlr1x8ggVvfbWNy3gbg7JcyWCn/QwGLSxWE554fSW25B5vcB8an8dvGo2enZMbLQVurvuSro/VYsTuQyVYsCaPK2TMRh2G901nqQc61r9/tLGOwU4OuLtOjUlzfy/a8ncumpFzi3wi0akSK2NLz1KnN4AH/r6Y57qGSEux4JlfT8QPqw/iv9/tUvTeM8d2xQ2z+taZE8ipEQyWfLPiAHIPl/DColNqPM6Z0A3xFgPPscGFPS14ExLNLDFFklaNzee/vHgwP+cpsaAhSzNWrl19yLlFJ3Ju0UssnF8kzrEtObZURUgZ0X96e02jkkpDe6Xx2qYlEp6aOrfEJCue+2AtyxQ2BTnFX390Os97lO1PzmitToN2CWas3n4MK7Yc43VmYpwBU4Z34UB/wQk7EqxG8uo1ezZxuL8TZCMYjJUyxhqtBn6/H5pApcQw2RZmixFlDg8e+seSRhUVOqXF49nfTAR8DY9JQ+dGgbA9+SX4wxuragRF6usf9eQtYzkgFi6p5YZ8ECRH9tA/ljbaWJ2aGT9z50ToNaQ97wrdsZ9gxhcLcznhsjEuOqMHrprRBxXljmZPGmip+zIh0cKVyn95l54ngUb70fz2xtFwOt3NrlIRC/NQuM+NpdYNejz4jyWNJjvTmuTPv5qA1ERTyMGLcAcugnjLTsBxYDP8Lge0Jgs34o6UnhbRQlRIRc2ZMwePPfYYHn30UUycOBFff/017r33XmRmZmLAgAG46aab0LVrV3z44YfIy8vjbakpCJWrCK0LOTzGDuiIi6eW4dMf9zbq5CA5oe4dk9jYCxIsVWwXZ2TJAJLOCCDARlBz6VlTcIQO4Pf/XtFo0ILIzS/lIMz91wzn/Y6dtOPljzc2GrQgFm84zI2Izhnblf9/0fr8JoMWxFtzt7N0VE6HBGj1Ovz7iy2NBi0IMtKefms1Xn9kOmfUtnQzVcqGIVmrLqlW3HhOP/gCAZa92nuoFL/528I62bhBSB+Wyq/PHkt6q9IcSxCEtgtX71mNePDZnxoNWhCURfjkf1bi+bsnceUdSVM0BS3kzOaBdQIX5ACiFwUwzhqdRS3zqv5GAfqy0poZoCQPNXdpZR+OxqBAxaufbuJgf4cUS4vLFwqCIAjRBTmryLH/l3caD1oQG3YX4c2vtuHamX3DrnVODWfvu3o4Hv3nMuw5VDM7vTpUnU+Nr4N9H0mq6K4XFqGoxIGBOe05W/iGc/ux7J3P78fBo+WsSkA/SRLrj3eMj9r+AmTDUFCCpF5ojbt6ewFL+yXGmTBtRBfuS8QNxM2VY9KUDDStHZ9+cxX+eLu6MeF1r69yHdxY0IIglYTXPt+Cm87v32qBC7K96PX4a8sbDVoQpGzAY3LHeGi1VM2q/vNIHoqkuZoKWhCk7pDTKQnDeqZVJZRGMvHxJpTa3Pjre2sbDVoQVG3y9tfbcPXMPoDYpxEhFfjUm6uaVGihKgz6rrzx2Jn1ygdGMhSkSBh0RmsfRlQT8YELyk4n7azrrrsOV199Nf/ujjvuwNq1a7F69WocPnyYO5p//PHHSEpK4mYiJ06cwDPPPIPbb78dRqOxtU+hTcO9EGxOXHlmb9YZ/PSnvdhdS/ZpUM9UXD6tF3qekpWobZxwI9EW1LPTG3T4buUBbv6ohFXbjqLc5mYD9f9+3Ko4C2Hukv245Iye/G8aB6VQGefvbhrNZaNNOYuCkLzIl0v24eIzcgB3eL6n5JiirJFXPtnMElhK+HLpPs7ooABXJMtiCIIgtLQDZ9Oe4/VK7tXHgaNl2JJ7giUMP56/u8ntSS9cp61svlgfwQBGU44J6mkxZ3GuomOkR/r/LdiDu68cJgtDQRAEoQaUkPXF97uadDAH+WF1Hq6f1Y+zfsPpsOKKQ42GK+7/78c9+G7lwRpV5NRnkKoLSSLRpNdyJjA54pZvPsJBC4Lm6wf+vqTBz9hx4CTyC8o5k/h017w6HcmyUL+P0NZVVC1RKbsVqFeHvja0La3/flqXj7fnboOtmiQlQYEMkjB+4JoRSG9nRZnCTGmqxCHJn9QE5WOi02u5mqCp3otBflp3CL84rz8HD1qj+S8lQZI01PESp+Ixofsks50V5eXqJaMo+eSTH5u2GYPQ/U7qCVSZEOkBNeoP8vnCvTVkthqDJFKvndWvUg4uAuTC2ir0HSAp8Y27ixRtT8laC9fnsxyfJL62LSI+cLF//34OTpx33nk1fv/GG2/wzyeeeAL9+/fnoEWQMWPGoKKiAjt27MDgwYPDfsxCTci4JDmgQTntMbJfBj+caNIlw4h0FCkbw+P2wFZOQYvwz4rUAOib5QcUb0+HOHfpPlw2vRcbpUopqXAhr6CcHUgNVSHUx+a9RdxIivT+lE7GxPerDuKas/tyQ9Vw6ULTp6zYomJMyl1Yu6MAA7q1a7aGY4IgCNEGNan8ask+VfuQfOL15/RTFLhISTDDc5pNKGlxsXFPUZMVIdVZue0YS5a0llNAEARBiDw4EG7Ss8SsUsgZ/eO6Q5g0uGPYHVacYOXz4/wJ3XD59F6chBdsHEvVEtQX0e/1VcmXkIP4awWV9dWZs2Qfbj6/f8gSTVRtQM2WaX1N8y6tb+0qkgbIgUvBpHjqQeH28TUiRQQKGjSW3UxyX9+uPMj9shqC1v6PvroMT906Fr+6ZDCe/2/TEtIEJeHddF5/5ZWrFiPLaCqF1tW0Xj5zZJdWsVH0ep3q+4TG5OYLBqj+LLq+J0od2Hmgbt/Qhth/pIyltNvHG2r0SIs0SE7baNBxIEoppLLx09pDmDKskwQuWhOthhNZ1TBv2X5MHdHltHpdCNFHVAQuCLvdzpJQ27dvR+fOnbnqYurUqTh27BhLRlUnPT2dfx49ejTkwAU5YZsLMiaq/4wl1JwbGT30SrLokdK9XY2KjOoZIuGEj1sD7qGhhkOFFZyF0lQpYn2TpNJG5dUDJWRAqt2PSk4dTg87jOrrAdLc9yV9DkmYqB0TMoqohFq+c8qQc4tOYvncQqW5vvOxMLbkYCCJPTXQ9u0TzYq2nTayC0shnM6Yk1OAntdqoDm+4KQdmSnmehMTYuHaNYScW3Qi5xa9xPr5qSWS7Wo6tnK7u052flMcPFoGDO7YKudGcxitY6lpdFZ6PLIzSCs9ALfr516LweMiJ6raOZ2S+qgJrdpzqwxYGDiZ7svF+7DrlLIBBVXOGN4Zs6f0QHK8iSWv6ktko0AH7U+yXXMW7OZEuaAKATUNP29i91N9Jb3c0Lj22s/u9OKNLxsOWlQPEvztv+vw70fO5EbstGZsikONjEnt60Y/7S5PkzJUtaGkQqI57yml0GceKlCezEhQFQrZY2qPl7bPa0TqrCEOHi1FRt8M6PX+iH2e0HegrMLN96IayLdCQcdIflZGEi1xbvRe9OxTQ/C5QAGrSK8EEtpQ4IIqJ4iHHnqIG3Lff//9+O677/DLX/4Sb731FpxOJxITE2vsYzKZ+KfLFXrjImo809wkJloQq0TzufkDAc4oqe/BZzLoMHZgB2S0s/J9Qdk1VFEQcnjlNB6udIzq99E0eW2a89qdVGksMppKg4OyZJqbaL4vm0LOLTqJ5XNr7Xk2mseWnAlqn/H0fFcCyVhMH5UFs1GPOGoAGiK0uAsFOs64ODPi4mLz2jWFnFt0IucWvcT6+cXKWrY0lAbDGg1L/MbHVa71I/m+UTpH/7wDuKG1mutGza8p+HPfS4ux73BpnWQ56oP1zYoDuPn8AZg5tisHVGpDSgArthzFix+ur5N8RrKU1MuRZB//9MvxSE60sMMwiMvtxcff7VTsPCRJJKq0nzmmKwcvmkKjYEyqXzdbCLKUmlNVry1xTyn9fHXb038I6futDcGZQPcxSZ/RK5K/c85q8m2KoftLE/nPykijWa8b9WINcf2TnNz8102IXCI+cGEwGPgnVVvMnj2b/923b1+uvKDAhdlshttd01kaDFhYrdaQHQhlZXY0ZySRvuBlZY56M9+jmVg4t8QkKzqnJ9TIjKH+FZdN68VZqsdLncjNL2GnDTUXu+WCARyhpyivQa9VJd9kNevRo3OyquOjZ7PZqEO3Dj/LoSkhOcHE2TYlJfYGM12b89rR+6WlWFWPCTX+ogym8mbsYxIL92VDyLlFJ7Fybs1l3DfnPBsLY2u2GpGdmYhjJ5SPSVZGQpV+dkOQTPX9Vw9niYviYnWVhfU1dezRWd08pNdpOPBfXu6oV2YiFq5dQ8i5RSdybtFLLJxfJM6xLTG23Bch3owEq0Fxj0Gie8dE+L1+FNtObz5r6fsmLt6MrMwEbgCtlOzMBHg9PtgrlDlgSanAYjXjsVeXNVoNSUvA1+dsRbzFgNH9M7lCJIjRZMCuQyV4/r/ruC9VQxw9YcPDryzFy/edAYfdVTWf0/26aL2yvobVe15cOr2nosBFVkZig2NS+7oFk/VSEkycaKgUqippDhspFKg3SHaHRGzbp/w+ofuKfBJqj5eqY2hftXTrmASbzcVN5yP1O0cVE0lxJr7HqYGzmmtPgh/Nee1jYR4K57kZTAZe/1DTeKXQfUzPIFpbqKUlglRCeIj4wEVGRgb/pKbb1enRowcWLlyIUaNGYffumvrOhYWFNfYNhZZo+kVf8HA2Ewsn0XxuNBHPGtcVr32+hf+fnCx/uG0c8gvL8dQbq7hhWnU6pcXjwsk5bGhceWYvvPvNTkWf0y7RjC4ZCVx0QQ6nYGlqUwzrnc4T8rRRWXhr7jbFTezOGp0Nu8PdpGZnc107eg+9UY8JgztygzalY0LnR8GVlujDEc33ZVPIuUUnsXxuamnucYjmsfV5fCzHsGrbMcX7XDC5e1VggOSYapOWbGEt6X7d2sFWcfo9pPx+Nwb2SEVaikWRxAMxZmAHDp40Vb4fzdeuKeTcohM5t+gl1s8vVtayVBFA1YCfL8xVtH2l9FEX2CqcEX9uJKl03oTuqgIXF0zKYQe60mMwGI1YvCFfsYTjO/N2YPKwznA6KiWjKDGO+h6QzJOSJRjZGXOX7cPZY7Lh9XpPNfBWXzlD28ebKxNTm4LW202NSfXrRuves8Zk48MflDWgNuq1OHN0NlwOd6s8M3xeP84Z301V4ILuE6p5UXu8tH1KshX9u7dX/Hk9uyQjs70VpZwEiWanOX0QOoOeE07nLN6nOJl0yqnvQ6Q/TyKN5jw3nc6H8yd2V9Xn79wJ3bj3TqyOr1A/ES++Ro234+LisGnTphq/p2BFVlYWRo4cydUXQUkpYuXKlbxPnz59WuGIhWiDsv3JcCb9zziLgRuHURnrH96sG7QgqLH2K/+3Ca/830ZcOKUHuneqKVXWmPFFPSfoQXvJtJ6K9iGj8tJpPeFx+RDwB9i4UjoZkxOMdFjDCTWmu2RqT3amKWH2lMoxqR20IEPaYjVywzdrnImzkUlOShAEIRahxoADurfn7C8lUOVery4pSDAb8NrD0/D07eNw5qgsljakhdsTN4/B649NR++sZHbynG7QgqDntMPhwUVTeijanpwal03tFfZ5SBAEQYh8aM1w4eQeXFWuhJljszkZKxqcVW63h6sbyOmrBKro75AaB1e1aogmq/FNBnyloqntyTIn1uwo4OpJwmw2sLyUmh6KJDtlsRh4fg/aFSRHqQba3ulu2i4Y1DOVx4/WzUohe+PcCd15HawEWlfT+ro1GnMTTqcb405JUithcM80ZLaPQ3m5M+SAGjWXVwr5IMg+jYo+Av4AP0+U3o+zxnWD1+eXxtytDI0/JbKO6Kss4Tw12YyJQzo3awWQEB1EfOCCpKBuvvlmvPLKK5g7dy7y8vLw6quvYtmyZbjxxhsxffp0pKWl4e6778bOnTsxf/58PP/88/jFL34Bo7H5tfiE2IMnZH8Af7h9HGZPzsGJUiden7OlyUl6wZpDrB36yPWjoDuVddIQ5FCi6DAZDC6nB+MGdsTFU3s0aZTecdEgdO+YxIYNlfbedH5/DO9T2Xy+IWgB8LubxkCv1XAz1nBCTq3UJAvuvXK4ojGhLJPqjd5MZj2Skq2wuf347w+78ez76/DsB+s4G8uv0SAhySIBDEEQYg4KCtjtbg6cN7WA7ZgahyduGcPbOxxurljL6ZCAG8/th99cNgQ3ndcfvbskoaTYDofd3awLTnpezxidjVljuza6HTk17rliKDJUOh0EQRCEtrP+Mum1+O0vRnNPwcagIMC1Z/fjZLNowOejQL8bT98+np1yTUlEPXbjKM78Vjpfa7Vadrrm5tfsa9EU63YUoCrso9FwIEMNVG1J62SSjKFjpeSzob0aX5fWZmTfDG4w3RiUxPHYDaPYhlEDrXtp/fv7m8Y0GRCj9TStq6tLZ4Ubj8fPPUb+eMe4Ju8TGpNHbxgJryf07wDZY327tsMvzuvf5LZXn9UHQ3uns98iGiA5qziLnu8bqqRpDEryueqsPvCG2U8i1A89+x68dgRympCjpSRjeqbSfRxrMlxC02gCzZGGFwaon8X777+PgoIC5OTk4M477+SgBXHw4EE8+eSTWLt2LZKSknDJJZfw32lSDwX6Ipw82XxadyTzQ3pqpJ8XDVkiSiHHOuklJiVZUVJi48k3molPNHO7K3KUr1Yo10FSHK8/dibyjpbivW92Yt3OghrltmRkUKXFpCGdeEINZnTQPUGVBOt3FuL/ftqLo8crkJJg5kbhlBHTs0sKZ0SQnrjd5qqqSKisRDDhm+X7MXfpftYcDULN0sYNqpyIk+OMrEHa2Le7pe5LcljRMVJlyv++31XvmFClxYTBnfjcgmNipgwenQ5/fW8NNuwqqvu+GmDikE74zeVDeYJrLEMiVr9zhJxbdBIr55aWpl4ft6Xn2VgZW4IyGTU6Hf73/U7MX3OoRqNJ0gKn6sArzuzNWYXOEJpQNgd6vQ5x8SYs33KEg8rVG4LSc5oWulfM6I3sjIQa81d9cwX1ikpMtMbEtWvN+5LGkvS9yaRvCdnF5jg3Or6gtAg1lI3U1UcsPU/a0rnFyvlF4hzbkmNLa0laM5wsd+G/3+3Eyq1HazSIpkA9VZCT/I/d5m6RLNuWvG+oepweyR98vws/rT3E8ljVnXAzRmfh0um9OCCjZk6nY9YbDbjqd9+oOh6S2rr1wv5wO70wmvT4fk0eflxziPsCUEBCCf96aCriTXq+FlS1cfiEHQ+8vETRvpQN/8GTM7kXIvW4IGnh+sbksum9OFGiscSHxq4brbFLbW588N1OLN9M99TPf6cqDqrKoIx7WitHQsY99bogKWj6DtQ/Jtk8Jn6fDxWhNLWv1RvFGmdmVYmP5+/G1lqyURTYoEoLkga1V7haxEHccj4IwBpPcqZ2vvarth7jfiBBOqfH49zx3XDW2K4ckKEEoOYmFuah1jg3epaYzAb834978O2KAzX61FAQkmS9yMdl0GlUBzRbYo4Vwk/UBC7CSbQYe60FnY/BqOcHDN0+dAdRQ2ab3cPOlGgt3aIgjNagx7W//0aR1meQP9w2Fv26tuPeFQ6XD7mHS/geolLOjmnxPB7kaKfsm+rQAt5qNUGj1cBo1FUGfjSVAQhy5pNxYrd76kh8VBqreljNBuw/WsaTM2Uq9cpK4fek0muqfGjN+5JLmM0G6A16Nr5yD5fymFAZNI0JGedURh0cE6qiMJoNuO+lxTWapNcHyak8ddtYVJQ3rHEba9+56si5RSexcm6R6FSJlbENQs9DnUEHk1GPnQdPosLu4aBFn+x2cLq93A+jtedZmmtogUFSFRRAP1JUwYvh7p2SWaKBstioUrA+C5PmBi0F780GuDw+GHRaXliSk6L6vBDttPR9SYEAs1nP86zRoOOsTfpJY+rzkMOH5B0CrX5ufD/rtYizGuH2+NmxoNVoOFOXnHWR9p2NtedJWzm3WDm/SJxjwzG2lWsGHQct9hwq5udYeoqVk53oWUHzQ0tl2Ibj3GhOp/XdroPFHCRIjjfyus3l9sHjpjWRusxvmm8Tk6y49JGvazjlG6Iy8SGbE8eoibHb64NBT+NNQeQAjHod9h8txbxlB7BoQz4fV0P896mzeY6htSqt95JT4vDnd9YoSvqjylAKQpEdo9PreO2988BJTtJISjChd1YKHE4vVxU0Jd/U1HVjSSu9ju2QXQdP8j2VlmxFt46JETn/xMeb2PNOigVk+9kcXiQnGFkWlIIafq+X/QLNZj9YDDw/l5S7cPBYGY8T9eJMTTKzZBkFdFoqEaKlv3OJiWYENBr2rezKK2b7iCqAu2Ym8r+pyqalVCliYR5qrXOj5wHNAxazAbvzivnepH9TMM3rI9vWd9qBRglcRC+iuSKowmIxcobGgjV5nPEfbDCdGGfE9JFZOH9Sd87EpKyYaIuJkSPm2HGbqqAFQdmm5EyfvzqPAwlkmFIJ7bqdhUiKN2LmmG4wW4w1xoQd+xYjPP4A5i7OxXcrD3KlRTAThCSUzhrTFWYL6kSVaaLwet1wOTzISDIjM9kCIACvu2kjL1xw+TAFTxweDsr06VJZ+kcGUEmxrY4ziyapd77e3mTQgqDMkK+XHcC0EZ15HARBEGIJDkq4vXA7PSwBRQFuu92FsjJHxJRGc78Lu5uD8kkWPVK6pvDv6fjKS+tv3E3zImVBFpU48MWivVi04XCVc4QaiJ8/MQejB2RyBly0SBO0FjSvUsYkOXy+WJyLtduPse1CdgxJqlClJzXVpKbsrWUXkGPEGmeEy+vHFwtz8cPqgyitcP+c9TihG6aPJM1672llzwmCEP1wZr3Tw46rXqfkQmjNVFxsj7r1ZHW4Ut5ixJbc4+zYD5zKHqYkhKWbjnCzbArOBALqntUU4CcH7PjBHbFofX6j2w7MSWWJoX1HSvHaZ1u4qoWSBagAblifDMwa1xUDclJ5Ppk1vitn9j/5n5X1rsmo7wQFyMvsldnQdGlonnn42hH4y3trGw1eXDmjN1c6UOIZ2zIuLztCu2UmVFUMlpbamy15oTKJr/o9pYnYe4ruE0oK3bz3ONacuk+oOsVF98nGI5gyvDOyMxOhd5MP4PTndDp/mnfpRUkyfbOSf16nl9gR7ZSd8qlQ8Gpg93Y1zi0cValCaNAzkF60BuicGocuafF8r9ptDSerCm0HCVwIqspdbU4v7npxEQqLazomymxufLZwL75csg/3Xz0Mw3qnn2oIiuhCE8IuGg1+Wp+PVz7dXO/fP1mwl8eE5DPsp8bEEmfC3vxSPP3mqjoNyo6dsOONL7fh0x/3cjUHZT7Ut6inB3k0aIdXZjT4Gq/gMejw49pDit9z3rL9OI96htTT2FsQBCEWoIU9ZRZR4IJ+RkrQojo0nynJfiKHOkkhfPbTXi7fr832/Sf5RRmoNO9RMN7ljM7qzZaG5ksKAD33wVqWwKgOzYcrthzlF5XVk7Qi2WLhDl5QcgYd4+bc43jmvbUsC1Kd/MIK/OuzLSwJ8Kc7xiPBSvKWErwQhLZO0HEVC1A2OyWpPf3WKk5mqw9aN88ck41bZw9CRblDlXOOKuypN2NjgQvKVH78ptH49xdbOMGuxv4BYO2OAn5RwPu+q4fj2ffX8jxMz+UHXl7Ma9LqXDgphytEqhOsAH3k+pHYfbC4Mpi+o4Cf+/EWAyYN7cTBdJJErgpa1EjG87fpe6rqPnmz8fuEeovdfOGARhUHQqG1K3hbEgpeKVGhECILsmWjwcclhJeIb84tRE52n0arxcP/XFonaFEdKjl95v112HOoBGazMeoekqSl2lRT6dpQpkxjlQLBMdmbXzkmlHlDY/jUf1bWCVpUp6TChUdfXQaXx89yELEKGWzUB6O6nmdTkDQJjTk5cARBEITIhhbl3686WG/QojpUGv74ays4WBPshyDUhAICf/9oY52gRW0Wrs/Ha59v5qSTcEO2zoFjZfjLO2vqBC2qc7zEiYdfWYYASDIzdu0cQRDaFhS8jYszceC2IWd0kG9XHsR732yH2WpS9Rnk2KPqNepHUB80hz5wzXC8O297naBFbVZtO4aXPtyA+64ajk9/3IMlmw7jN5cNrbHNtJFZGNIzrd5kBXJ+lxTbkZUeh3uvHIbP/noe5jx7Pv739Cxcd3ZfxBl1KI+gqtFIu0/+quA+mbfiAD74difbU4IgCG0NCVwIiiAdys8X7uVFppIAwJtzt7GmJ03I0QJlY1DQgqQqlEKyTgNy2mPR+sNNj8lX22AiPWqjDm/P3c56lU1Rbvfgwx92sUZnrEIVKycU3Ff1BXZoX0EQBCFyIYkockq//23jQYvqwYs1249xDw2hJpTEcLzEwUEJJVCwiOwIkqEIJ2TrvPnlthpNMRuCZDI//WkPdAZZkgiCEBvQGpj6BlBAQAlfLt7HQV5KFFQKVTzabS5ccWZv/OK8/oirleQ2ql8mb0NV6kpYtvkIjhy3YcrwLvjfdzvRKzsFWRkJLFl02bSe+NUlg2CzuRqsdGf5IYeHAxTHj1ewDv7x4+V8jJHQADtS7xPqLaKkPwgxZ3Eu94GRxD1BENoaskoQmoQyNqgxznerDireJze/FIcKy2EyRZfjgZqLXzatl+JMz9mTe2DV1mNV/SmaGhPajhqQbdjdeFZFdchBodfpWFIpFuEm5SFUlFhMesnIFQRBiHAoaLF4Qz7PfUqZs3ifZODXg1anw+eLchVvT04rcnSEM/mBHDEkL0INMZXyw+o8bvRODWcFQRDa2rOagrxfL9vPiYJqIMkgkg6aMSoL7z05E3ddPpRlAscN6oCrZ/bBtysOqOrdOG/5fu55QQHvpRsP496rhuH9J2fi4jN68ucolVyiIAYFOKJOMjrM0Nz8hYr7hIIWdI2oN6QgCEJbIjY9oUKzQg7zgpN2lJRXNuJSyprtBVHnWKay2w6pcbjr8iFNHjs1lpw4tJPiLFLiRKkTG3cXqTLkSE5q3+ES6GO46mJI73RuEqcUyirq1pEarYlFLAiCEMkENMCGXcqD9cS2fSe4UiPabIiWxmzSY/OeIlX7ULNPaqYaLrQ6Deubq4H6pB0pqoBOF7t2jiAIbQerxaD6Wb1pTxHPe2oh+SWqaigvc2JMvwzceuEA3HnJEHRob8WmvcdVvRcdc1ZmIism0PFktLPCYXNxryRpjtv8WM10n6i7Rhv3FEEbwn0iCIIQzUg6m9AkJMfjDqGpFe0TbW5lCiiQgTZ2QAd0TI1nmab1uwprBBpyOifhoik9MHpABzz26jIcLqqo970S44xITjBxxglVWthPNRp1hlAu64zgpmKnC42PUa/F8L4ZHOxSwtQRWbA5PfIAEwRBiHA00HCvplCcMZVygNFmSbQc5NRye32qbTG1vbtOu2F7SDajHxprixySIAhC2Aiq2KpdO9P2DQXrDQYtz4c+X6DBPhH0e4fDXfX/xmRrCMfg5/lCr9NWPscDlVUdQsvdJ64QrpEkdQiC0NYQv5+gyLGcFK+uYRjRPskMTZSeL2WWZKXH49EbRqHC7sG+I6X8e6rGoL4WHrcPDocXuw7WlEIgQ2JUvwzMGtcNg3umccNp+p1ep2Ht0HiLAWkp6lfm7RLMXHYbi9B5nSx34ZqZfbFl7/FGG5YTKQkmzD6jBzc9D6czRhAEQQjtGU/PbTWYjTquEojVeS9UyAmVkmBW1G8sCCVQNNYgu7nRajRs/6klKcEo11sQhKiHHmO0ZkxJNMPmrD+5raFnNUkBBaF+F0aTobKfAQUQ/H6YDLrKBLhAABUVjSshUCCD5t4DR6HqGFxuL88ZNNfIMzkM90mCif0FSqHtpcm5IAhtDakzE5qE9CzjLAb07dpO8T4GvRaThnZWrIUZaXDGoMvDjhPqk9anSxL6ZScjyaJHaYmdm5PFWfTo0zWlap8EqwF/umM8br1wILbkHsf1T36HK347D5c9+jXufG4hSsvdSG9nxZBeaUiMNyo+ls7p8fxyN+HQj1aoYRsFhKiC4vc3j+F7rSHSki34w23jsPdQMQdzYnVMBEEQYgUNAjhrTLaqfUij22Z3N9gEtK3idnsxbUQXVftMH5kFr8oqjdM9xgmDO7GDTSk9uyQjOd4UtTajIAhCdewON84Yru5ZfeaoLAT8lQ7p+AQz4uLMWL7lKB74+xLMfugrXPrI17yufGfeDpTaPUhIsjTa/9Dn9WP6qCxVx3DG8M5Yfar6/azR2ZULYqFF75OpI0K4T6oFuARBENoCErgQFOF2eXHh5BzF208Y3JFLIGNhEUrn4HB4+EVO9qANR4GNCyf1qMoOffLWcazTfPtfFuCTBXtQUi0ThuSk/vPlVtz25wUoLLbj9zeNUfz554zvBofTE7NZL5Q14nL7sG5HASocHrz+6HT84rz+6JQWz30vqGIlp1MSfn3pYPzzwanYtv8EisucVWNC9xk1A7VajfyifwuCIAiR0zsqOzMR3TtRXyJlXDi5B/y+6LcfmhsPBS5GZcFiUlYwTYkAk4Z2YhsunDZTwB/gz1XKBZNyathXgiAI0YzX4+Mm1yS5pIR2iWaM6pcJl9PDQQuSD/rN8wvx4ocbsDe/pGo7kh2mJt63/Xk+flxzCNY4c4N9MSiIPG5QRyQpTJYj2d7po7Ixb9l+lkXunJHAa12hhe+T8d1U3Scj+mbIdREEoc0hgQtBETRBjuyXgcnDOje5LWXP3zZ7ELzu8C2UWwNaZI/qn4HJQzvhyhm9ubT2mffWwN2IJAP1unjklWXc7OySqT2b/IzhfdJx1piu7KyIZXweL66c0Qcffr8LT7+5Cu2SzHj5/jMw57kLMOfZ8/GXX01gh8aD/1iC1duO4czRXdnYs1iMSE6JQ1GZE6t2FGD1jgKcqHAjIcHCUlKV+uiCIAhCq/aOcrrx0LUjGq2oC3L9rL4sNeQ81RdK+BnSGqfX/VcPb1LjmqQUH75uBNsq4ZaV8Hq8uOWCgVwtqiTRZdygDnCLI0YQhBiBArj0iL77iqFVvQwaUyl45PqRsDs8LAtFgYhH/rkMhwrKG9yHihFf/Wwzr4nMVmPDiWEuLx65flSTjnE61t9cMRT5heU4cLSM52unwy3B5DDcJzoa+8uHKLtPbhgJu9Mj1aiCILQ5pMeFoKLvgwt3XT4EqUlmzF26v04zKZpwh/ZKxwPXDOdMSTKW2sSYXDEUXm8AT76xsoY2aUNQJcYnC3bj6pl9cPS4DSu2HGEDtDpkYE4f2QW3zh4Ih90V843RSPJJq/VwgIKyi57/YB3+rtvAklpUNU2VLASVPN964QC4nG5Y40xYvuUIPv1xLxvZ1aEKjcum9+LAj7/CJVqggiAIrYjT4UGi1YTn75qEZ95bi9zDpXW2IbnFa8/ui6kjsrjPlFA/TrsLA3Pas7TiPz7ZiKJiR51tqBfXby4fipyOSbDbwj+WZP9R4sBzv5mEv32wDmt3FtRxgFF2L/UDu+6cfnyM1HRWEAQhVnDY3RjdPxOPXj+KgwyUvFYbqi6/96ph6JQWB3uFi6stvl91EPmFynpjvP31Nowb3BEuvbbetSIFhEmK7093jMMLH27gdWdtUpPNHGjOykzAa59twfN3T0KCxcDHL7Q8NM5jB3SA+bqR+NfnW+q9TygJ4N4rh6HjqftEEAShraEJxKr+zGlATs6TJ+tO7KFC+pMpKXEoLrZFnAOajs1g1HPUgRoqcgQ/UJmhUV80n7Y3mY3QaDVYsCYPOw+chM8f4AoCWoBSOSpVZ7hiIFNS6XUjeaIyhxe3/nm+4vemrNP3npgJv98Pu8vLZbn5RRV8Dbp3TMLMsV05+4VKhuuT26JMy/h4E+iwKGBEV4oSNXweH8tyNOf5hROTSc+N6BzBMTled0yo+sRsMeL9b3fg84W5VfsmxhlZ93PMgA6Itxrh8fr4Hu6SEY/yMmfMZKdE4nVrLuTcIp+0tISIm2djZWzbwrmRlB89v/MLyvHdqoMoLndyL4ThfTIwflBHON1euBzN29uCMlj11G9Bo6mcL2kYA36u6GhJE7glrx1LJFqMsFgM2LznOJZsPAybw4N4K0lDdcaA7u1ZTrGlMmaVnhvN6SazAeV2D8ubHDth40qQXlkpOHN0No+/uwE7p7WIte9cWzm3WDm/SJxjwzW2tZ/VNA9oAgFe17Skt0LNudH6y2QyVK6btRr46cACAV6b1LcvBXDNFgM/q9ftKOSeFfRspjUL9cDonZ3CfQ4ouK/VAsnJcfj1cz8pDlwQT946Fv2yU1Be7qzx7NXotNBq6aXhZ63JqMOO/Sfx07p8VNjdsJgNGDswk+df+n+q9KDEOVqb+r20nlS2lq8cE/IlaBWNSXMRC9/3hu+TI3A4vXyfUA8MmjOpIofm9Fgglq5dbeTc2sYcK4Qfqbhoo+h0GpgsRuh1OixYm4d1Owu5z0ByvJGz2gfmpNY7QbJMQYUTer0OU4Z2wpShnaHTa+EjJ7HPj7LSupl/sQ4Z19SfQQ3kYDhUUIbUBBO0AeD8id1r/N3janghHxdvgsmox668Yny38iBOlDo5c3Fgj1R27icY9ZxhE40VL3TM9DIa9Th/Uv1jYrEasWLL0aqgBTlBbjyvP84e2xU7DpzENysOVI3JgJz2yEyNgzXezFmq0TrJCoIgxALkgKLkhtREE66e0ZuTIMhZQlWaZWWOZq2Oo/cl5z59BmWwbtpdxFKOpBFNzcL7VHMYRaX8lt3NyQ09OyWiR6ckdnxw3ycEUFJij4hgfXBOJ6fWRdQnrZoUBgWoIilgIQhC68BJcRYjP9e+XXEAW/edgMfrR2qyhW176rfgiIBnNUkyWS0GbNpznJP3Sivc3OOQeg6Qc5meZ7Rurv7spWdy8FndLzsZfbNTajyri4vtVQF0g0EPm9OrKmhBrN9ZgN5dkmsEi8vsbny1aC8OHi1DAAF0SU/gXkIUKOnaIZG3peOgtRIFLeYs3of9R0o56EBVIOdN6I7UZCucTjr2hteTNMdWjkkRFqw9VDUmJC9NgZn6xkSo35dA14PGKS3Fwn4BsmFo3UoSUTx38jbSL10QhLaJBC7aIDQRUinqvOX78d/vdnF2e3UWbTjMFRQPXTcCHdvHwW6rW5Lo9fr4RcZmfFwcituwU5gMCGcIi2+S2iIjhRtsKUygiE8042SpE396eynyammfrtlRgPe/2YELp/Tgnhv8GVEYvAg2lKtvTIKNuP/vxz38/5TZ8/D1I/l+vfuFRXX0YGlMPvh2J2ZP6YHLz+yFinJnm71PBUEQImbOPFUZyDYEZ281r6Qfv2+CmecKkhOsLW3507pDLL3wyA2j0C7BBEc9dk40QE4ORxQEXqLVFhEEoWWhKgtKyHr/2534ask+DlhUhwIE5Gh/9IZRSLAaW02+iI4xr7ACz763FoW15PlWbTuGN7/ahutm9cWMUdmoqCDpO7/qZzWtaVzeUNaTlZ9lMuu5GuT5/67Hiq1Hazi4N+wqwpdL9rGE7kPXjuSqQ0o8fPGjDVi68XANyWLaliShB/dM4zWW2aypt5rfGm/CoYIKPPP+2jqShTQmb3y5jXtWUXVdRTklJojHvT5YRSHBjCUbj+A/X27l5MbaUN8vkhTr0SmZpRUleCEIQltDmnO3Qag3wKc/7WGDonbQIkjBSTse/sdSHD1h59JFoXHSki2q90mJN6vKQCGjubjMhfteWlwnaBGEskk/nr8b//58C1cmNNW8M9ogg5yCE8GeFlef1Qcd2sfhkVeWNtjEjsbko/m7+X6PizdLw25BEIQYhh7x1jgz3p67nZMzagctglBW6/0vLea+U2LnCIIghBdao9Ca9J+fbsZnP+2tE7QIQjb/fS8tgs3l4+SlcENVBRS0ePSfy+oELYLQevq1z7fgy6W5fE6hQI79eIv6tVsKVe9rNTCbjXjs1eUsR9WQY5sUFl75v03QG/T4/b9XYPGGmkGL6lAVxQN/Xwy9Uc+V8LXHhIIW1ES8vj5LwTGhng0UkKI5Wagful+oWuWljzbUG7QgSEngd6+twF/MHiUAAGxaSURBVJ78Eh57QRCEtoYELtoYVEJKTZ9oMd8U5PClJppWkloQZ2+j1QHUV8FC+p4KoebRVALt8SjPQqQS4uf/t57LiJuC5JL2HCrhPhixBBnmVPZMUCnyuRO64eWPNyoaE9LX3ne4FGazFJoJgiDEKuTYIilGyi5tCnKsPPf+Onb4iJkjCIIQ3jUpSbzOX53X5LbUJ+fFD9ezDFLYgysWA6+HGwqsVOfdeTtQZnNX9nwIpdocAYzql6l4H5q3ZozOZtnczxfuZRnhphg9IBNzl+5jSa6moAD/23O3VfYeqWdMvAoqJd+Ztx3l9tDGJNYxGnVwef0c9GoK6in67Ptr2cYhyW9BEIS2hAQu2hg6vQ5fLPq5oXFTHD1hw/b9J8XZ2wjc98PrwxnDOyve57yJ3eF0KW82l5Bg5mux62DTBmmQOYtyEYhBT0zwlKYM64wjRTZFRnqQzxft5e+AIAiCEJto9Tp8rsLOyT1cys3CueGqIAiCEBYo61/NmnRr7glOvgunA5w+iyoPGqoqqA2t6+YszuV5KCQCAVxI/YAUMrRXOjdwJtknSlpTUp0xZkAmy0UrhZp5c+N06rVwakw27i5CUUmYxiSGoTXp3CX7FCswUA+RlVuP1qmAEQRBiHUkcNGGIIdvnNWIxRvyVe03f01eTDrAmxOvx4cbz+2P7MyEJrcdO7ADJg3tDLcKzWdfIKAoI6m2vihl4JCxGSuQZmz3jkn872F9MrB4o7p7edXWY2x4U58XQRAEIbagTFCTQYflm4+q2u+HNXk/R8UFQRCEFiXoBKfG0mqgtZBGG0YbXqPF/DWHVO1C8kvx1tCq+CoqXOjZJZmbMzdFu0Qz7r5iKAL+APbklbCcUFMM6pnGwfpjJ+yKj4kqE9fuKPjZWa7VYv5adWvSRacxJrEM+WUWqfTL/LjmEDS62FnbC4IgKEG8d20Iknvy+f2KZHWqU1rhglYsjSbLe+n17G8mcSZLfcNl1Gu50uKBa0ZwYy01jUgpW6VMZfNQKil1uHwx1eeCxjgzNY6N+niLgTNPQhkTuZ0FQRBiD5rvnG6fIvmK2nYOZF4QBEEI25rU7vQ02F+hsWd1IMxzSqnK9Vdw+1Bklinz3ulw44Zz++O6s/vC2oDiQf/u7fHCPZNZNtfj8XGvJiXEWQwoU7l2Io6XOqrOh8ZE7XvwHBvimMQqNBQ0HmrXsnStRSpKEIS2htSZtTF0Wi30Og28PuVmn8mog1+pplEbxuX0cIThvquHc3OtecsO4MiJCug0GvTokswapIStwslGplpMIZSFUrDE5VX/WZEK3YYupxeXTesFp9vLBrtajAYt7OrWIIIgCEKUzBGGU5m8aqC5RMwcQRCE8BAIBEKSu6G1UDhdtrT+Nas8Tqr6C55jKLhcXt6X+vhdMDkHP607xDJZ1GOD+iOePa4r0lOoT6IPFeVO7nlgUXiMLreP1/VqsZoNVedDwRW17xEcw1DHJBYJDgXZH1TVomYslUpLCYIgxAoSuGhDcBaHy8t6mGt2KC/NpSZhEtdXbmzSi4zx2ZO7V2UF0fi5nZ6QAhaEXqvBqL4ZmLdMuSZpr6wU6HValHOzt9jB5fJgaO807D1UgqG90zFvedOarkF6Z6WwfJaaahdBEAQhOgg+2/t1a8f9uZQyun8HaMOaxysIgtC2n9UJRj26dkjEgaNlivfjqvZwPqv9AYzom47V244p3mVY73Q4nMr7GNaH2+3jF/WTmDSkE8YP6siLSQ00PFeVFP8s9UR9Fnt3TeFgAgUmGiM3vwS3zx6IOLNesQIDFe4P75POPR2ZQAAj+2ZgzXblvgRat53umMQidocHw/qkY4EKOTK6H/2yjhUEoY0hUlFtDK/Hy9kbSqGS0klDO6nqxyBUSho57G44T73o36EGLQiHw40hvdORlmLhJmzUSyMrM4HlkhrivInd2JiNxQCcrcKFnC7JGNE3A2nJFsX7nj+pO1dsCIIgCLEJ2SvnT1Ru55BO+PC+6Zx0IAiCILQ85MB2Oj0soauUDqlx6Nu1HZxhtOM9Hi+mjciCRUVDcGqu7Wum9RfNS1RV4bC54KhwwV7h5D4Y1aGAAgWCJg/t3OT7UZBo/9EyTB2ZpfgYhvfN4IoOWtsSHrcXU1WPSY9mG5NYgsbkwknK7RWqKJ05tiv31hQEQWhLSOCijUEGEOliUjaIEq4/py9nb0iGeutCRqnH68NffjUB7z4xE3/99UQ8e+dEvP/kTDx6wygM6ZVWo28DVRZMGNyJFwWxCN2PtnInZyPdcuEART0raEzGDepYZXgLgiAIsYfb7cHoAZns4FLCzecPgMPhEekFQRCEMEL2+BnDOyOnc5KirP9bLxzAfTHCKTcUXH9de3ZfRduP7JeBnlkpYQ2uEH6vH1fP7IOkeGOT2/6w6iCumN6Lg/ZNQTJGN57bnwM41cfE6/PhmrP7KDq2Uf0zuTdhuMckWlQEOqXHY/LQToq2v3x6L/55OsmQgiAI0YgELtoYtDC321x49MZRjQYvyBFMhsrU4V3gcqhv4iU0H3QtrHEmeDx+/Lj2EG56+ntc8dt5uPyxebjlz/NxqKAc9141jAMYpKvaOzsFT902lhcEsWzYBO/lIb3ScdflQ1kCqiH6dK0cE7vdJUE4QRCEGMbnq5wbnrx1LCdqNAQ1GP31pYPZ0cQ9qgRBEISwQfa40+HBH28fz47thqDejPddNRz9u7VvlTUpVc6fNSYb181qPHhB8kkPXzeSq8LD3cuBEtWMOg3+/MsJjQYkqGr/nAnduN8fJcNRJX9jqgt/uH0c2iWY+DpVh67DzDFdcW0TwQuaXx++dkSrjEk0QENC9spdVwzDhMEdG9320mk9cdEZPfh+FARBaGtoAjKL1GtInTxpa7b30+u1SEmJQ3Gx7Wd9yFaGNDPJGb7zwEnMWZyLDbuK4PL4kBxvwuRhnXDBpBwkWI2w25zsBGiucyNHQVyciX8Gx5qcyf7IGJaIvG50nQ4cK8eT/1nZYPMukox6/KbRyGhnRXKCiaUyapcSR+r5nS50L1msJm5CPnfJPixYewgny5zc32NgTioumNQdg3um8X0WC9k+sXLd6kPOLfJJS0uIuHk2Vsa2uc6NeizRfgSZeBTEbmwej6bzMxh0/KKAPtkNlAXa0H5k55C9sXnvcbZz6KfX50dKgpmzfM+flFPZFNNGNkjzj4/cl9GJnFv0EgvnF4lzbEuPLTWXtlqNWL+rEHMW78P2/Sf4Wd0+yYzpI7Nw7oTuMOi07OBtCbeFknPT6bS8HiutcPExLtqQjzKbm/tKDO+dzvJQVGlBDvrmruyuPaeTekJDc5bFauTtF67Px9fL9uPg0TLuCNI5PR6zxnXl8aSkNpIwtliMMJkNWLIxH3OX7se+w6W8bcfUOG4APmNUNvwBqnB3tdiYqJnTY/H7HsRo1CEuzox9R0rxxaJcrNl+DE63DwlWAyso0FjS94HGMhYS8GLp2tVGzq1tzLFC+JHARZQbe6eDRqOByayHwaCH2aRnY4h+V2F3w+/1KdJ7VnpuBoMWJrMRRoMOuYdLcfBYGTes7tklhUskyYhyOtwRNT6RcN0sFgOKbR7c8+KiJhuukdbo3++bgkSLHjabOyrOrzkhQ11n0CHe+nOZtIuqTtyVDdNjRQYk1q5bdeTcIp9IdKrEytie7rnRfKE36DnAvXlvES9601OsGNgjlbMxSRM50qrwlJ4fObZ0eh00Wg027Cpk5whJYgztlQ6f3w+fp36bhQLbJpMBBqMOJuPPetwVVH3n8beodKDcl9GJnFv0EgvnF4lzbDjGtvJZrYfBaGDHd5AKm4v7AJA0bEuh5tzoGLX6yrVGcN1Mc67P4+XkqOZ0q9CcbjDqUW73YGvucbi9fk5QG9C9PTe69rh99fYypPOh/WjepCQuguZJkkSkNVH1c6Tgg9FEfgBDVXCEtj163IbCk3Z0TItHSqIZHhedn7ve5tr1jonTw9etoTHhOd2g4/fbsLsQNoeHkyeH9k5nO8WnwA8RC9/36lDwJmjrWMyGqrG0kV/GVzmWsUKsXbvqyLlFNhK4iF6Ud1USYg6aEKn0k14VGg1PmPS75g5lkdPAYjXgp3WH8PnCXOQXVtT4e4/Oybhsek8M65PBmY+R5lhpTXQGPd77ZnOTQQuCDOcPvt2JOy4ehLYIO6DcXjjtLuj1OiQnWzk7K1onVkEQBCXQ3G2JM6Go2IF3523Eup0FqB6nJQf/WaOzcfmZvdnx4IqyxS9lhXoDAbwxZyuWbMhn500QcnCRNvT15/Tj7Ry1ZEQoYE2/czgqkzVays4RBEEQQqfyWe3hV/BZHYkJR+xMJye+3cXHSXNJc+eA0vtSJUN+UQXe+2YHNu0pqjFnkRQUVU+QbBBVTtR28HMPCq+b/0bVDLQeKit11LseogCXz+tHwBTAvGX7MH/tIRw4UgZPtW0pUEL9LLp3TOJ1Ve3ronZMqCrE6fHj7TmbsGzzUa6uqfqbSc8VkTSnU6JCbYmqWIaGjO5/wAOX043k5DiUlNhYKloQBKGtIz0uBIYMDDJEmnsxT5UWFLR4/YutePnjTXWCFsTe/BL86e01+HJRLjtftFq5LYNlo26PD6u2HVO8z7LNR/gakqHaVmmJRYQgCEKkQlJ5e/NLcd9Li7FmR82gBVFa4cbHC/bg0VeXwUyVj9UqDyIds8UAm9uHu55fhAVr8moELQgK6n+/Kg93P78ILp+fsxXDbecIgiAIzUfwWR3J0DxSOZ8oO06qbCCHPa1z4xLM/JOC7UHp5OpY44zYnHscD/1jCTburhm0IEgO9/1vd+LJ/6zi92xszdfU8VGiFwVJ/vLuWrz62RbsySupEbQgtu47gUdfXc7rUbI3TmdM6JyLK9y46/mFWLThcI2gRTAJb97yA7j7hUUInFKGaIsEh1DsFUEQhErEQyy0KCQPtWDNIXyz4kCT2777zQ5syz2BuLifpX7aMjqdDtv2nVBlvJOxuTuvmA1kQRAEIfYD3F5/AE+/uaqOU782uw4W4x+fbGRZiGiAHDqke/6715azo6Yxikoc+N2/V/D2lPEpCIIgCBExj8WZkJBoxsptBXjxww3441ur8Y9PNmHrgZNcDUHBh+C0RbJLFQ4vnnlvLbxN9KaiSow3vtwGg6nhgH1TGEx6/O+7nVjdRJIcrUXp2E+UORtNEGgMWpvSvo+/tpzlHhuDpKr+8OYqWC2mqrERBEEQ2i7i3RRaDKqcIKcKNZlSyqc/7YFWnO4MGWpOBX1GauN0e8VxIwiC0AYgLeS5S/dxPwslLN5wGB5fgOfmSIccONTP4shxZTrtecfKsW3/CZjbaIamIAiC0LJBCHK+00vJMou2j08wY/nWo7j299/ipY82cNXC5r3HuUKeAhi/ePoH7D1cCmu8md+T5vTPF+2tU/XQEPNX50Gn1XDlhFroPEhucZ6C5ELC5w/wOp2OMRQoaWLppsM4Udp4IkKQnQeKkVdQxpLTgiAIQttGPMRCi0GVE1RyeriorjxUQ5AxR1kYlDXZ1qFS29Rki+r92idZRCpJEAQhxmEdbKsR3608qHgfcjx8u+IAtDpdVPR4mrt0v6p9vlqyn5uECoIgCEJzBdFJ2imlXRxXT1AwghrUUqVEsKF1fdC2C9Yewt8/2ghbA72lqJrw96+v5IpIej/6rB/XHlJ8bC6Pj7c3hJCMQJ+1fPMRboytlCUbDkOno0CJNqTP+3q5ujn9yyX7oZGERkEQhDaPpKUJLQYZNvuPlqneL7+wHH2yUtDWoWZn/bu3R0qCCcXlLkX7pKdYkNM5CSXF9hY/PkEQBKH1oGxOt9uneH4IcqigHIiCojyTQVdvX6zGoEQJo0EHZTUagiAIgtBYk2wjHG4f5izYzdUN5fZKJ3/n9HicM74bzhyVBY/bB4fDXbdPodeP1z7f0uTnkAzTcx+swzu/P4uDCPYGghwNcbCgPKReCKREfOBouap96Jwo2GI1qA8mGPQ65BdUqPYJ6CVwIQiC0OaRmUBoUULxjYjM0c+GrMPpwcyxXRXvM2tcNzgcnohvaicIgiC0DjzFxugUwacWo+cmCIIghG+etMabsGF3EW7+43x8vjC3KmhBUFCdghK3/3UByhwerpaoT8ZR6XqM1AZWbD4CQwiVDKczpYe25A59na7282h7mdIFQRAECVwILYbPF0CPLsmq9tFqgKzMBPh8yvS6Yx2vx4dLp/ZE367tmtx2UI9UnD+pOzxu9X0xBEEQhOiCHCJUXZCmUlKwW8ekqGh26XJ70bVDoqp9sjokwO2ROVAQBEEIHbPFiNz8Ujzz/jp4fQ33mzhe4sQj/1yGADQwGn8WsiAZx0UbDqv6TJKV0mo0SIxTJ5fcvVMSr5/VQvvkdEpStY/FpEf7JDOv8dXi9viQrXJO75qZCF8j4y8IgiC0DSRwIbQYNpuTnQ5qHA9De6fDajbAXi2rpS3j8VSWHz99+zicMbwLN2CrjV6nwYzRWXji5jFw2N3wKmzoJgiCIEQv1MvI7nCrqsqjbM4Zo7M5KB7p+Lw+nD+xu6p9LpiYA7/MgYIgCEKIUGCf+jG8NXeboooJkk76bOFe6E5VS9D+FIAoq1An41ha4YZGq8H0kVmqAglThnUOKWnN5fJg9IAOSIpXHiiZTJ/l8YUUTHC7vKrn9PMn5SAggQtBEIQ2jwQuhBbD7690vF8yraei7cknf9n0XpWim0KNXhcUkLjj4kF494mZuGZmH0we2omNx+tn9cV7T8zEzecPgN3u4m0FQRCEtgEFIGaN64p4i0HR9uQQIacKzc3R0uepW0dlyQ+9slK4ypOcMYIgCIIQCiaTAUeKbNhzqETxPj+sPgiz2cD9HYNyhaZqFRhKMBt1HCi5cHIOBySUQH02aD4PJWmNqiacLi8H/JVg1GtxyRk94A9RFYHm5lH9MtEhNU7R9kN7pSGzvRVOp8zpgiAIbR0JXAgtitPhxtgBHXA5BSQagRwpt180mEtWKyocYTu+aMHt9qKizIGA14tzxnXFbbMH4rYLB+CsMdnw0t/KndykVRAEQWg7VAYgAnjq1rGwmht3dAzrnY5bLhwAd5Q4AciBY7e78dSt49ChfeOODmqUGqw6lB4XgiAIQqhotRqs3Vmgulri6HEbdDod/7/T7cWwPumq3iO4PQUIHr9pNEzGyvdqiHEDO+Cqs3pzJUOoeFweXDglB1NHdGl0O2qQ/fD1IxFvNcCpsnl4jTnd4cYfbx+H1GRzo9tSwgJ9Hs3pgiAIgqAuFUAQVEIZIGR0UCVFz6wUfPbTHmzff7JGwGJor3T+e4/OSbDbXFyp0ZAhSS9ySoRD79J4ymDU63URI7/EwQkJUAiCIAincNjc6Jgah5fvOwP//X4nlmw4DHe1OYuyG88d3w1nj+sGh90VFdUWQSjT0mIx4MV7J+OjH3Zj/po8bmIahCQuzhyVzTaE1+NtNDNTp9OyzUHOE6UNUwVBEITw0trP6sCpfgxqoX00Fj0fu9mo52qI+avzFMs4UjIaSQI77R7kdEzES/dMxn+/34X1uwqRkmDmbcpsLlhMBpw3oRumj8ridbPXG/qcTutbW4ULv750MPdK/GJRLg4cLav6Ox3P6AGZuHJGb6QnW/jzGkLJOt15qpH5S/eegQ9/2IUf1+TBVi0Q0i7RzONw8dSenGQhSgKCIAgCIYELISzVAn6/H4Nz2nPG54lSB/ILy6HRaNCtQxJnb/h9flSUO+oNWlDprVavZUONMlgo64O0Q50uD2eZNGcQw2TSwWQ2QqutLEayOz2wxplgMOq5l0RZmR3SN1wQBEGIJMiZYDEbcOsFA3Hb7EHYk1cMp8eH1CQzsjMT4XB6eI6NlCC8GhwOD4zGAC6d1hPXnt0Xuw8Vo8LuQYLVwAkRFKxwO931Vh2SA8xo0rP0B/UEoSar5FByuDzcC0MkKARBEFofvV4Lg0HPaz5/9We108PSRKFm+YcCSRe3T7Ko3i85wcSBFnLc00+qFKT+EwvX5ze5L81vtL6ll8li5J+Z7eNw52VD+N8k6+TzV45JZVAlgPIyZ7OsgSmZobzMgdF9M1iGmCpHCk7YOHGPGn8b9Br4PD4OcNSGgzS8TtexNJbL7eUAC40BrdFJHqp28IkSGqmHyFUzeuPGc/thd14xbA4vJyKQ3CPN+Q5bdCVZCIIgCC2LBC6EsEDOkvJyJ/87wWrEwO7tqzIySkvs9e5DOqHWODMHOj5flItF6/PhPOWYyOmchPMmdMekoZ1Zjqo5nA+JiWbo9Dqs3HoUXy7ehx0HKitDyACbMLgjLpzcg+Uo3C4PG1WCIAiCEClUzoMeGAw6dMtMqMpYLS62s9M+2hMg4PZyBmaX1Dg+NzqlslJHg44bcqZQZueSjYfx1ZJ9VXrlJL8xaUgnzJ7SA2mnMkjDUcUpCIIg1P+sNlsM7OCnZ/X+I5UZ/9TngRzpsyfncMVBZVV+y89lFASfOKQTXvtsc43qxcbo0zWF17fBNS1JIm3YXYRfXzaE599FGw43GrS4+Iye+HjBbnyxMBcuj4+D9BdM6o7FGw5j7tKaY0LBkNlTcpAcb2q2MaHAiIPX024kWfRIyUquXKd7vKiw+xoMNsXFm5F3rIzX6cs3H+WAE0H9qej4R/bL5GOsXTnB/++iOV2LrLT4qjm9pNguFZGCIAhCHSRwIYQd0qxuCio1JWPomxUH8OZX2+poVufml+LFDzfgs4V78ac7xrPBS+WnoZKUZIYvoMFjryzFroPFNf7m8frx07p8fl08tQeuPqsvG6HhzP4RBEEQBCVQlmKsZipSgEFJkIEcYdBqce+Li6ocPkFcbh9+WJ3Hr+tn9cV5E7tznyhxlgiCIIQXWr9RbOA3f1uI/MKKGn9zuLz4dsUBfL/yAG65cCBLI9nC8Kym+dNoCmDSsM6KpZ6owTUH2E/h9fgwsn8m60796tIhmDW+G+Yt24/V2wtYPYCCHMGkOKoefODlJdh3uJT3vf6cfhxcv/uFRfWOCa2Nv1t5ALdeOBDTmnlMaL2tRJ6JqhnjE8x4e+52fLlkX52/b9t3gl8UwHjiljEcmKhv3ax0ThdaHvK9UCVMdbkvkeoSBCFSiKrm3Pv378fQoUPx2WefVf1ux44duOaaazBkyBBMnToV7777bqseo9A8mMwGLNl0BG98WTdoUZ28Y+V49J/L2ElBmR+h9rKgZmq/+/fyOkGL2nz6417MWbQXeqMhpM8SBEEQBKHlIIeK2WLEo68uqxO0qM0783ZwUgJJcwiCIAjhg9ZtRpMBj/xzWR0HfXXIJ//a51uwausxXh+GA+qZRIEBqrRvCqoKoT4QrmrV/9R3giSe/vruGtz4h++xbNMRXDGjDz7+0zn48rkL8MFTZ+Oqs/qg4KQN1z/5XVXQond2CmaN64rf/XtFk2Pyr8+3YM228I1JdcxWI/7vxz31Bi2qQ8GLJ/+zElariR3iQuRBkmBUnZqcbMXeI2VYvOkoVu0ogNMbQGKShfuMUeBJEAShNYmaiguPx4P7778fdvvPskLFxcW48cYbOWDx5JNPYuPGjfwzLi4OF198caserxA6ZNiQVvd783Yo2j6voBw/rc3HuIGZ8HqbruaojcVixNqdhdh5oPGgRZCPF+zB+ZNyeCIXyShBEARBiByMRj2Wbjxco8FoY7z/7Q7O5CUZKsn8FARBCA/UP3D+qoM4XNSwg74678zbjglDpnOAoKWrLijTXKPV4G93TcLz/12P1duP1UmkI9nBc8d3w9Uz+3D/h+rHRAl1+4+UYs2OAv5/cvDTK85igMWkY+mrP/9qAp59f10NOSpq6E3VgErH5K2vt2Pc4PCMSRCSo6Q+lf+3YI+i7bfmnsDWfSeQ0yFB1s0RBlVYUNCCEjOpkudkWaWsd5BBPVNx7cy+yMpIYMmvaJcdFQQheomawMXLL7+M+PiaWQ8ff/wxDAYDnnrqKej1euTk5ODgwYP497//LYGLKJ9EydCrPXk2xldL92HqyC7c76K+OZWMLP0pQ4sMUTbu/KdKIDUafLkkV/FnUZnugjV5OGN4F0AMMEEQBEGIGExmfZNZoNUprXBjxZajGNqjPRwOCVwIgiC0NJTBTUlqc5ftV7xPUbEDm3YXoVfnpLA4wEmC2GQK4P5rhsPm8GDesgM4dtIGnVaL3tnJmDYyC36fn6UGqZdjdahZ9ReL6q4t6X3oNXtyDw6wl9l+TrgjyajxgzqybJaqMdlzHL060ZioT94LBVpPf7fyoOL+H8ScRbl48NoRsm6OIMg3QkGLJ/+zCpv2FNW7zeY9x/Fw7lK+dkN6ptbboF0QBCEcREXgYs2aNfjoo4/wxRdfYMqUKVW/X7t2LUaNGsVBiyBjxozBa6+9huPHjyM1NTXkzwxVdqgh2YLqP2OJlji3gEaD9TsLVe1DmZVu0iQ16mtkTNJxUUYPWcjfrzyIDbsL4fb40S7RhBmjs1l7k2IYSqstgmzcXcSNwZvzPgk3cl9GJ3Ju0Uksn1uoNNfzM5bHNpbPrSXOL6jNvDe/shG3UtbvKuRFudh+ypBzi05i+dzawvmpJZKfZ/Q+Nqe3UTmk+li3sxC9uiSH7dxoTemwuWAy6DB7SncKuXDWuVajqVGlV/t4rGYDNu893uBnZndIxI9rD9X4Xce0eA5kKK22CLJuRwEHc+obk5b4TlAC4Mbd6tbpm3OPw2zSw2nQNioBrYZY/r6H49yMZgNLcjcUtAji8we4MuhfD01FvNVYo5dLqMi1i05i+dyEyCfiAxdlZWV48MEH8dvf/hYdOnSo8bdjx46hV69eNX6Xnp7OP48ePRpy4IIWvikpcWhuEhMtiFWa89yoosHtVd9Y1OsL1DkOyoAhDc5PFuyukxmyaMNhdGgfh0dvGInHfzGaNTi9CmUiXB4fZwu1xH0SbuS+jE7k3KKTWD631p5nY3lsY/ncmvv87NV0xpVCiQ96nQ4JKSY0N7F87eTcopNYPre2cH6xspYtVlFZX/1ZrdPrEB8X+c9qavLdEEaDrs5a16iv+7vmGpPmPDenywuPimqL6mORnBzZ92Sk0ZLnRk3i569R1nye/COfLcrFjef2Q0ozfvfk2kUnsXxuQuQS8YGLJ554ghtyn3feeXX+5nQ6YTTWbKhoMlU+TF2u0EvZSEaorOznXhqnC0Ul6QteVuaIOf3kljg3g8mAdolmVftQAzSLSY/SUnuVxmdcvBnvztuOOYsblow4esKGB15egj/9cjx+cX5//PvzLYo+r32SmTNGiottiFbkvoxO5Nyik1g5t+ZyhDTnPBsrY9vWzq0lzo+cdfEJFs6OpQQDpZDN4fP5UFzcfDIIsXzt5Nyik1g+t1g5v0icY1tibOn9rGYjdFoNZ3QrpV2SGf4oeFYnJVmRkmiGzVl/9USF3Y12CTXXuhUON5LiTM06Ji1xbtRQnc5NDcHtm3PdHAvf99Y6N5PJgIUbD8PlVm4n/bT2EG45f0ANX0uoyLWLTmLh3GIh6bitEtGBC5KGIjmor776qt6/m81muN019RyDAQur1Xpan11bq7I5oC94S7xvJNCc56bT+XDW6Gx8orDpFzF+UAfO5nCfmoCpcXZ+YXmjQYsgTrcPL324AX+7ezL+991OlNubztYkmSmTQQt7RfRfT7kvoxM5t+gkls9NLc09DrE8trF8bs19ftS7asKQTtyLSikzx2Qj4A+I7acSObfoJJbPrS2cn1Ii+XlG70FSvqP7Z2L5lqOK9qFKd1p/+bwtc32b876xO9yYNqIL3pm3o96/r9p2DGeP7VqjH9PBo2Uc0BjVP5P7LqkZE6+n8WNvznMzGPy8Tl+0Pl/xPlOHd+Fzi/TrFmm01LnpDAEcKihXrYhRZndDG2i+Z4tcu+gkls9NiFwiWqDs008/xYkTJ7ivBVVd0Iv4/e9/j5tvvhmZmZkoLKypsRj8/4yMjFY5ZqF5nA6UmTGop3Kprwun9OBsk6aaojXEwWPl2JNXzI3WmiI7MwE9Oic3ayZTKOh0Gg7QxMUZYbUaub+HIAiCILRlfF4fZk/JUbx9v27tkJZihTMEiSlBEAThdJ7VPRRvP6x3OuItBl4nRjpejw9nj+sGQwO9OMjp3yE1Dr2zU6p+R0ns3648iHPGd1M1JnEWQ7P0HVCK0+nlebNjapziSsjzJnaHT0UVpNDyaKAJYR9BEITWIaIDF8899xzmzZvHlRfBF/Gb3/wGf/zjHzFy5EisW7eOy/uDrFy5Et26dUP79u1b8ciF04UcCPddOQwpCU3rKF4+vRe6pMdXOR3IQDIb9Vi66Yiqz1y84TAbgI0RZ9bjketHwuP1odptF1YMBh0scSYkJlmxO78UizYeweodBfAEgMQkCwczBEEQBKEt4nJ5kJFixdUz+zS5bWKcEfdfPVyCFoIgCGGGHODdOibiIgXBC5Lzu/uKoXBHQdDi554OAdxz5TCuiqiv2n/O4lz+O81DQb5fdRBZmQm4cHKOItniu68YBk+Yx4Sak9sdHjx6wyiWaW6KX148CGajLqzBFaFxtBqge+ckVfvQfUqvaJUIEgQhuonowAVVTWRnZ9d4ERSUoL9dfPHFqKiowGOPPYa9e/fis88+w9tvv43bbruttQ9dOE1cTg+MOi1euGcy+nevPwhFWTc3XzAAl03vBVuFi3tOEBqNhpubqW0cVmpzoUtGApIbCJbkdE5iOan2SRaUh9BQrjkwmfSIizPh84W5uOGp7/D711fin59uxvP/24BfPP09/vjWahwtdiAu3lSvoSwIgiAIsQzZAnabC7Mn98AdFw2q4RSqTp+uKXjxnsmwGHVscwiCIAhhdoDbXBxkpqa/VDlQHwNzUvlZrdNooirI7LC5MaJPOn77i9FIS67bzPZ/3+/C4cIKvHD35KrKizKbG0/9ZxUn5V1/Tj9OmGtoTGg/naYy2S/cOB1upCaZ8dxvJnLwqaFg0wPXDMfkoZ35OguRg8ftxeShnWBt4P6qj+kjs1gu6nT7WwiCIIRCVGvLUADjP//5D1dfzJ49G2lpaXjwwQf530JkYjYbOMxPzX3IuRDw++H3+est+3U43DCZDXjq1rE8UdKLSm6pYZnX50c6STu4vKgopwZBgRqGsEGnPiZHVRqUOfL24zNYe3TNjgJuWkWBjDNHZaFLegK8Ph/KyxxoDUgKymwx4revLcf2/Sfr/J3Gc8PuImzJPYHHbhyJvtntxFAUBEEQIgqqiqTGkGQL0L9pbqdmnxqN91SW6ulDGYFkG0wa2on1v5dvPoL1u4u4WjIlwYyzxmQjo12lPJTDXrNXmiAIghAeSCe9otzJPRNIToiq37fkHufkM0oUmzW2KzefdjrdcDo8YV936fRaaLQaToqj9Sr1QqKqvmCyXGPQepQS6/plp+D1x6Zj4+4iLN98lOe8hDgjpg7vjJzOyTzv/fmX43HshB3frTyIk2VOfLYwF+eM74oLJuVg8Yb8qjFJTbZwbwwKClDwINxjUh1aY6bEG/H8XZNx8FgZ5q/JQ2mFm6srqHfJiL4ZcDg9sFU425yzu9LO0dM/uNk6nT/dDxQwiITeAHQM5OM4d3w3fKygpyj5R+heFLkvQRBai6gLXOzatavG/w8aNAgfffRRqx2PoAwKQJCEUcFJO75asg/5RRWsrUhZGudP6s4SR5TxWDuAQVUDNOFTAynS/TxR6oBRr8PAHu1x9thu/DcyJqkcNwgZB15fgHtkbN5zXPExjhmQCb1Ow0ERyoyZNa4r9Dot/79OS4Yr4HG2nrFhNOnx6meb6w1aVIeO9y/vrMVrj0xjo1tKcwVBEIRIgILvVosBm/cexw+r81Bc7oTJoMPQXumYMSYbRlOAnTHNIUVAtoDD5oLb6cGwXmkY0isNVeZCIIDSktbtUyUIgiBUBprJCe5yajG6bwZG9s2oelZTglu4n9W0djJZDLA7vPhiYS725pfwfJLZPg7nTeiGTunxcDg8iir1yFlNwXHatnfnJPTqnFzZKCBAPwIoKbZVBUGSrQZcPr3nz8dh0MHr9XHiXHZmIjvDaY1Hx8LrX9L7aWUocELnlpFsxlVn9uZzo/Oh9MGSEnubC1hU2TlWA9btKMSPaw+xogMlR47sl4FpI7I4CdLFdk7rjo3H5cEVM3rjyAkblm5sWF7bZNTh8ZtGw2TQSkKkIAitRtQFLoTorLLQ6LR44vWV7KyozqY9RazxOXZAB9x71XD+XTB4YbEaUVzhxoOvLEN+YUWN/dbvKsQH3+7CBZO6c4kxZbRUz9T0uD24YGKO4sAFVVWM6pfJjpT/fLmVsxBqk5ZiwcPXjUSntDjYK1xh72tBlSYL1+Ur2t7l8eHLxftw6bSegAQuBEEQhFbGGmfCsZN2/PmlxZzEUJ11Owvx7rztuHR6L1w8pQcqKpzNlpVITjGq4BQEQRAil0h4VlOWPDmeX/54I1c6VPe70xqWelCQzOBjN4zm7SjQrjiQ3kR1RFDyidZ8JPn7ztfb8fWy/ZyMV5usjAQ8duMoJFqNrV41SIGKps5NCRSs0lKioKZyvKIx6EHXbf/RMjz7/jqcKK0pK712RwHe+mobrj27L2aO7cqVRq3ZL4JsLApE3HvlME4eIX9M3rHyqr9T8ub4QR1w5Yw+SE4wciKIIAhCayGBC6Hly2wNOtz30uI6wYfqBs/yLUdx8rVl+NMd4zkDQW/QotTmxv1/Xwy7s37HO2WdfPrTXlTYPbh19kCUlTo4syUY/BjWJ501QKm8tiluuWAADhdV4JX/29TgNkXFDjzyylL85VcTkEkSE2E0rvUGHQdV6JyV8sPqg7junH6c1RGNxp8gCIIQG5ip4rLYjof+sZQD6/Xh9vrxwbc74XB6cdVZfVBeZlckxyEIgiAIpwvJGFusJjz1xkqWdWqInQeKcd9Li/DiPVM40FGf3HGoUFUFOb9f/ngTflp3qMHt8grKeW1NvSCpN0hrSkadLnq9FgaSazYbeJ1LfgCzSc8yUz6vr1nHtyUxW40ctPjtv5bXG2wKNmV/fc5WtoPOm9C91eSng7jdPvh8Tozrn4mpI7rgSFEFCosdMBq0yOmUXBlE8vrCnrApCIIQVc25heiHHO7vzNvRYNCitiFIVQIGo46rNF7434YGgxbV+W7VQew5VAxTtQZT5KinLILf3zwag3umNWog/vrSwVxt8fhrK5r8LHKsPPP+Wpa6oH3DBTlvSC5LDeV2Dxt94TxOQRAEQagOyTlaLUbOQGwoaFGdzxbuxdHjFZV9MARBEAQhDOj0Osxfc7DRoEUQcu6+PmcL9IbmzQGleW9r7olGgxZBKhwevPThhqieK1lWKc6MxZuO4M6/LcQlj3yNy387D1c+Pg/vfbsTdo8f8QnmiF/L0vFZzQa2cxoKWlTnvW92cCN27oMRIZVOJFtGcmV9uiShW0YCS0nZyp3NUk0jCIJwukjgQmjZDAqDDj+tbdr4CjJv+X7uhVF40o5decWK9/tiUW4d45EyNEh388lbxnDTM2oURs2lyLhon2TGpVN74u3fzcDkYZ3x0fxd3AxNCdQ8bdu+E2E1NsgEYr1XtUS2nScIgiDEOGazHrvzihUlMAT5fFEuO5EEQRAEIRzQum7ukv2Kt1+66Qivs2it21zojTpe0ypl674TLEkUCQ5wtVgsRjjcPvzq2R/x6qebayToUeIiyWTd9pcFWLLpCKzx5lM9LSMTGv91uwrryEM1lpBI0kzaCLJz6JjId0KBCpItqy7BLQiC0NpE3ywnRJVM1LqdBXCoKPGkDJaDR8uRX6iuumD19gJuVEZlvtX1ImkCpjLIrhnxuP/q4Vx6GqTC5oLf5+eGWV8vO6Dq8xasPYRu5/dHOCOM3TslqdqnXaIZVpMBxa2sfSoIgiC0XQIaDeavUZ7AQCzdeBh3XzEUDrtGpA4FQRCEFqeo2M4STErxeP1YtvkIxg/IbBYnLyX8kfN4w+5CVfvNX5OHCyd2RzRBwR6dXotHXlzEa/+GoPn/H59sRFKcEf27tWv1fh4NotXiR5V2zuKNh3HLhQOld4QgCIICpOJCaDEoM+JkmfrJuKTCpdpRwU3PXN56szGo7wVlD5CO5PHj5ThxogJFReVs/Hi9pO3oVxVcIUorXNCGMfPD4/Fi2ogsmIzKMzPOGpMNu/S3EARBEFoRmpdJEkENJMvo9vgjOsNSEARBiB3UzlNEcZmr2Xox0Xxnd3pUv19ZhYsr86NNSvqrpfsbDVoEofF4a+527oERqTYBqTmovX/ougX3FQRBEBpHAhdCi0EBA2u1vhNKsZhCK5s0GnRVzbkbPqbKIEf1/6cqDb1OndFAVRrhjAd4vX4+7pljshVtT43azp3QnZuaCYIgCEJrQfOyWUXQnSDfhIGzT6PNHSMIgiCEE5LpocbIcfFmflmsRu6VqBZa26nex6QLTcq3Hmi+o7WsWkxGfdQoA3MvCKuR195ThnfGKw9MxX1XD0O/bu0a3e9wUQV2HSxm6clIhNboau0cum6E2DmCIAhNE5lPfyEmoGqGYb3T2UhRmvUfZ9ajR+dk1dUMvbJSOPhQXSZKCXRcTpcXQ3unY832AsX7Ub8MTZjzW9wuD64/pz8KTtqxcuuxBrejPh7U14NiMXa3BC4EQRCE1kMTCPCcuXB9vuJ9hvRMg8frk4pBQRAEoeGAhcWI4jInvvxxLw4cK+OmgJ0zEnD+xO5IS7bC6XTD5VRWVd85PR7JCSaUlCtTC6Cl6tgBHTi5rDmgNWyCUY9uHROx/0iZ4v3GDuwQ9jVpyI24LQZs3FOE+avzeJxJSWBwzzQ8/ovRXH3xtw/WNSjXtW5nIbpkRKgklj+Akf0ysGaHcl/C8L7pcIRQYSMIgtAWkcCF0GJQb4mERCM7LFZsOapon6kjs3g/Cl5ktLOyk14JF0zq3qBhqtNpuLSUDIP6AhtejxcXTs5RHLhIsBowcUgnlJU1Xd7anJB+qt3mwoPXjmCDj0psqzcyM+q1mDi0E644szcSLAbeVhAEQRBaE7fbizEDOyAp3ojSCmVSCjQne9zqJBwFQRCEtoHJbOBein99by1Wb6uZzLV573HMW7YfQ3ql4eHrRsJs1nCz4aagRLazRmfjo/m7FR3DoB5pSIwzoqy0edaDtE6l46Sgy0sfbVS0T6e0ePTJTkFxsbL1cmthjTPh8HEb/vLuGhTVkoeigMQH3+7EpdN64q+/noBHX11Wb+DGTSoCEerkJ0nnqSOyWNJKqfz07Mk9RBlBEARBISIVJbQoFBS48dx+iiSjqJn0FdN78SROGQjUsEpJ4UWfrikYN7AjO0eCUKDCYjEgIdGCxCQrDGb6txmJSRb+fXU9SWrg3a9bewzvk67onG44tz9cbq/q6o7mgM6xvMyJiYM74uX7puAf95+BJ24egz/9cjzee3Imbr1gIOKMOglaCIIgCBGBzxdgZ8zN5w9QtD05mwb1TOO5WRAEQRBqN3YmKShycNcOWlRn4+4iPPjyEhiMeg5yNEXA78dFZ/TgxLmmMBl0uPn8/jXWns0Bvd/kYZ05ga8paCl76+yBp/piBCK40sKAI8dteOSVpXWCFkFcHh/e/3YnPv1pL35/85h6ZZfITxChLS646sbr8+G6WX0VV8l075ikKKAmCIIgSOBCaGGoKXai1Yg/3TGes1IaIj3FwlkWZISRs8Lp8GBQTnvcd9XwRvtPkCbmU7eOg8PhqgokkEGblGzB/mMVePaDdbj44bm48rff8M+n31qNnYdKkJRk5RJjgqQoyNH/6A2jMLJvRuMG4oUDMHloJzgd6hu4NRfcTNzu5uyalDgDendJQtf0eLgcHtgqnGIECYIgCBGFy+nhqotfXjyY59KGGNorDb+9cTTPySITJQiCINTX2Pmzn/Ziz6GSJrcl2aH3v90BnYLeEVTZ7vP6eT1KlQyNyRo/detYpCVbeL3a3Gs8es+nbx+H3lkpDW6n12m5Ar9vdgpcrbgmbQpKJLRajLwedyuQ1Pq/H/ewhBQFb6qj02owbWRWRFcoOO1uzBiVjevP6ddogIWCFg9cMxw2W/M1dhcEQYh1RCoqhtDrdTAadadkkQJsgNGrpSDHPwUJgv/2+z31OhrIAZGRYsGbv52BpZsO42SZkw0QbpQdADLbWzB2QEd2uJNDnqDjp/1G9k3H2787C3OX7cOPaw7hRKmTG5f1796e5aEG5qTyxB/MzKTjocZsL324Hos2HK5xHPR5lH1DL6quoEAF/Y6yW4L7P3rjKDaEv1i0Fxt2FXEGSHK8CVOGdcb5k7rDatKjotwZEQ4VqhrRarX8k8aLJLG8EZigSvcGNWEjI47GjcY6EsYv3NB3k76jwe8n3XfNpYsrCIJwOtDz2WSqrEZsiWc1vY+t3IkpwzphzIBMfLlkH35ad4gdFDSnk8b1hZO7o3d2O577pdpCEARBqA3NURazAd+sOKB4n/lrDnGPQLfTU6Nant6L1ih6fWUeJ1Vl2O1urhD4xwNnYOXWo/hqyT7k5pfC5w+gQ2ocZo7Jxpmjs+H3+Vusup3WwyYzOICyaU8R5izeh+37T8Dj9SM12YLpI7Mwa3w36LSArSKynd/UTHv7/pM4etymeJ95yw9g1viu+G7lwarfjRnQAQadBhX2yA1ckJ1TUeHEueO7cZLj0k1H4PX5OchEP6l/54CcVOR0SmLfRXNX6wiCIMQyEriIAdgxbNBBp9Vi7c4C1pCOtxgwom8GjGYDfB5fs2Xhk9OVynNNZj33n9ixoxBeX4AbmvXr3o4rLDz1OGS9Hh90ei2mDO/MgYEDR8rYOUJNtbtkJPD2pA9Zx9FR4WKH7wUTuuOqGX3484M6pCRDVVJir+FYsViN+PcXW+oELWpDeprPvr8OD147nD+XjD5ylFB/jS6pVtx9xVBYTIaq7Svsbh5HClq0NhSc0Rt1MJsMHISh68DNzXqkshQWjT9dh9akxn1ywo4dB06y0VZ5n7Rv8D6JRWgBpDfo4fb4sHpnIexOL9onmjCsTwYHFum7IcarIAitATtu6FltMuBwUQV25xWztFN2ZgJ6Z6ewbKPb1TzSiLyoL3eyc+jiKTmclRikak4vtke05IUgCILQetD8QetISoJTis3h4QBAny5JcDj8HKgg+SiSDt6ae4LnPoNei/7d2iM12Qq3y4OyUjuG5LTHqH6ZHFwnKHjhcLg5s97bwpn/VKVI66RenZPw6A0jYToldUXzo40+3+Pl5LpIJ6DRYMHaPFX7LNl4GHdeNoQTB0sqXMhsb8WvLx0cFX2v2FYKBBBvNeKc8d2wflchJ12mJJgwtHc6S2AFAn5Z9wmCIKhEAhdRjsViZKPgjS+3YfHGw3C5fzZiKMI/blAH3Hhuf3boB6sZTsfBQc21dh4s5iZau/KKa/ydSmbPndAN503sDrvNXTUpkwPbbDFi/uqD+HxRbp2si24dE3HZtF4Y1T8TDjtlINQ0xPj/3T4+/mB1QX1+DTJmKxwefL9SWRYOZdIcLqxA+wRTVWCH3pud/g4PXAY3kpPjUFxsixgHOwWp6Jp/+MMufLvyIMpsP19TiulQ1irpa3ZKjYfd5myVLBy+T+LNHKz4bwP3Cd0jdK9QtlLt6x1L0PelxObG259sxurtx2oG2Ux6TB3RhZ13Wp2m2cvNBUEQGoMq4egZRQ6d//2wi7NKq0POggsm5eCsMdmcRNBcFZxsG7jBczoF4pOTrTz3R8o8KwiCIEQmtNYprVBf6VBc5oRGk8xrRZr3qLL+62X72alcnb5d2+GamX3Qs0syr1FoTRhMmgt3UJ3WDPT5lcdQmRQWbRXrdMxlFer8D9TcmoIy8VYDcjonsWw09R+JhkrMxEQLyJJ55+vt+HHtoRqNuml9TIEw6v3ZLtGC8rLmaeouCILQFpDARZRncrv9Adz/90X1NruiDPfFGw5zVv4zv57AvSZC7c1ABhMZelTJ8M9PN9XrEC8qceCtudux40Ax6276/f7KzHuLEf/6bDO+X/VzyWd19h8pw1/fW4urzuqNi8/oCZ/P2WB2Z2MGG1V0fP7TXpafUsoXi3NxywX1NwyNtKRPMrZpLB/713IOCtQmKIVF2UOUnUP9P+whGPenQ/A+WbjuEF79bHOD98mbX23DzgMncf81w+H3O2PSYUXBwiMnbHjs1eU1DNcg9DtaNJHT8NnfTILJHIDLGflGuSAI0Q/rTseZMG/5fp636+PYCTte+3wLdueV4M7LBqO8rOG5OVSkukIQBEFQCk0ZlPijFqulUgqR5r0/v70aa3YU1Lsdra8ef2057rx8KMYP7MC9AyNhnqJDiITjUAsds8nUdH+R6pCcNDU/f/q2cRy8oOqT6AhamOFlv8xi5BdW1OvDoKRJWvf96Y5x6JyeIMELQRAEhUhz7igl2Ozqyf+srDdoUR3Kyn/8tRVstFEfhFCgqokjx214tYGgRXVoUv5kwW4YTAaWqqJKi4aCFtX573e7sHnvcVitDTfxbqpZG+2vBtqetFKjAaNJj39+urneoEXtgNVf3lkDp9tX1YA8XNB9crjIxoGqpu6T5VuOchM2KteONbgM3aDDE6+vrDdoUR0ybul6mc2h3feCIAih6E6T3EZDQYvqUC8K0pymOUgQBEEQWguSaKJeSGqCF6RAQHK6lF313+92Nhi0CEIJcC9/vBGFxQ6WURRCRxMARvfLVLXPsN7pcLm9MGiBslJHVAQtCK1Ohz+9s7reoEV1aF34+9dXVvpyrHJ/CYIgKEECF1HsdCAt6n2Ha0o7NARlua/ceoyz9kNBp9exk1lpNQNlkptNeu69QPJQSvn0pz1cOREK1PSK+gioweOpbJYV6ZATnLRVF63PV7S92+vHnMW50OrVZbmcLiHdJ+bQA2qRCgVj5q/OqyHl1RiUfXO8xMHfa0EQhHA8oz75cbfi7Wk+sZzKWBUEQRCE1oAqtCl4MXlYZ8X7kGwyZfFTUpHSpt6UHV+5Jg3vOirWIGnICYM7IUGFg/6CyTnczyJaAhZEcrIFBSdt2LxHWQIlrQ/nrzkInV7WfYIgCEqQwEWUotFp8dXS/ar2mbtsHwxG9ZF9MvTIEU2VFEqhCTnvWBn25JXU6WnRGCRzRI24Qqm6oEqDdklmVfvQ9rRfpEPN139YnafqWMlxTtUk4XI06fU61fcJNZJfve1YzGU0kYNvnsLFUZAvl+wjAdQWOyZBEATCaNTB7vSytKBSqLKT5udwV/EJgiAIQnV8Xh+uPqs3khNMTW4bZzHg+ln9OElt+eYj3KhbKUs3HeEedLQOFkKD5CWdbi9+cV79ssy1Gd4nHf27t4+qoAXh8QVU+2W+WX4ABiorEQRBEJpEnpZRikGvw+GixksRa0ONqKkCQi1arRbHSx3w+tRpazpcPhw4Wqb68/ILKrhpqFr8Xh/OHJWtap/pI7OqGnNHNAHgUEG5ql3K7R7YnZ6wBS6oaqKoxM6VIWo4eKyMTi9moPHWabX8fVMDfZ8lm1kQhJaG5vRjJ2yq+zgdOFIGjTyjBEEQhFaEnNp6rQZ//dUEpCVbGtwuOd6Ev/xyPKxmPdxeWpOqW0d5vH6cLHWKbX6auBxuTBzSEbfPHojGhpKCFo/eMIqbokdjE/JQ1n20XtTppKpHEAShKSR1Lkohh4MmhEk1VELbM8DNmtUSqoFI5ahjB3ZgQ5WqNpqCgjjTR2XBaQ+tYXk4IfMtlLEMpwpW5T2p/gNP576MRILOQLWnFWPDIAhChMINPkOcT+QxJQiCILQ2DrsbiRYjXntkOpZuPIyvlu7DwaOViVBdMhIwa1xXnDG8C68NHTYXzBZjxK+jYhUKQlSUOzF1RBeMHdQRXy7OxcL1+Sgpd/FafEivNFw4uQd6dkmGrcLF1ywa7Sr1677gDtEVpBEEQWgNJHARpZC+Z9eOichV2OOC6NYxEc4QSi/9fj/S21lhMujgUtFDIt5iRM8uKao+i2IW2ZmJ8PnU9aogfL4AHE4PZ2s89q9lnCnT4OdoNXjgmuHw+yq1UiMdqj/p3ilJ1T7tEs2wmgw4qbDPwulC90lGeyuMei332FAKGaqxtC4g45U0eLt2SMLe/BLF+9H20ZZhJAhC9EHPmc7pCaz5raZCrldWijyjBEEQhIjA4XCzk3tkn3RMGNIJhlOSTiRPROtBW4WT7XFCc2q9oQZqAN4+ycJOd6F5ghfUa/OSqT1ww7n9q/7mcHng8/hQUmyvTKyIUrp2SFQlwUnbkwQ03a+CIAhC44hUVJRCDvcLJuWo2uf8id3h9agPXJDRR5PqxKGdFO/TPsmMzhnxyMpM4IlZKcP7ZLChaLeHJt9E1RNZmfH4y68mICsjod5tMttb8eQtYzAwJxUOe9OVGZGAx+PFtBFZqqS+Zo7tCrvDHTYjkO4Tvy+g6j6hEu8hPdOiQ65LBU6XB+dN7KZ4e0q6oe9nQIxXQRBaGI/HxzIbo/tnKt6nc3o8O32czujLhBQEQRBiEw5SONwoKbbh+PEKfp08aeOKjGDQgnC7PRjVL1NRX4wgU4Z15vlSHMvNR2UFjBtFReU4cYKuVzkqypxwODxRHbTQaTQ4f1KOqqqLcyd0i4o+m4IgCJGABC6iFJfLgy7pCex8VwIFEAb3TAu52ZXf68elU3tWZbM0xcVn9GAjhAy+y6f3Ulxtcdn0Xgj4T28St1e40KGdFS/dNwXP3jkRs8Z3w+ShndiR//Tt4/Cvh6Yhp1MS7BVO1RrfrQUHj/x+nD2mq6LtqRndueO7cQO7cEKfd8nUntAr7FFyEd0nTk/MZfG6XV5MHNIZaSkNa+9WZ9zAjoi3GqKuGZ0gCNEJPatpvqWqCyVcOq0XP6uj2bEgCIIgxC40PzU0RwWr8mdPVpb0RyoDtJYN9zqqLUFrv1gxKcrKHEiKM7JktRJofThpaGd4XLGVuCcIgtBSSOAiSqGJ3uFw4be/GNVkRQNVGDx92zjOvg/VQUwZ8cnxRjx03cgmndKkKzpzTFd23jodbozqn4mrzurd6D7kO/n1ZUNY/spmO/2SXOep7JvOqVZcM6M3bps9ENfN7IOcDgkoKbFzZUa0GUselxfXndMPYwY0bhRRE7qnbh3LWR9ud3gNbrpP2iWY8PB1I5q8TyiwMmN0Nt8nsQZlZ7mcHvzx9vEs2dUY/bq1wz1XDoM7xqpOBEGIXOhZ3SE1DvdcObTJvlKXTuuJ8YM68jNNEARBEKIRWm+cN7E7ZozOanQ7StJ75IaRklAkqCLgD+C+q4ajb9d2jW5H60JaH1K1hVSxCoIgKEN6XEQxNNmZocFzv5mIT3/ai+9WHsTJsp+d/olxRpw5KoszJQM+H1dAnA52mxsDu7fDC/dMwoff78bKrUdr6GOTjMTsyT0wekAmKipcVaW1JMd08Rk9ud/Fpz/twdbcE1X7kL+E5KEund6Le3BQA7XTLLioFdyJHUcLVa/YbS48eO0ILFiTh6+W7ENeQXmN7CDSeL1yRi/Emw28bWvA90lOKp6/exI+/GEXVm09VuM+IZ302VNyuGSb9GdjtQSbStcTrEb8/b4pPA4/rj0EezUDNaOdFWeP7YrzJ3XnknZZHAmCEC54frS5+Dn83J0T8dH83Vizo6BGcgMFVS86oyeG9EyF3eaMuco4QRAEoe1A6w1q/nzb7EEY1CMNny/ai9z8n3tF6nUajB3YEVec2Yslj2mOFARVVRdJZvzxjnGYsygX36w4gMJiR9Xf48x6TB2RhcvP7MVr9vLSn/8mCIIgNI4mIHX/9Ro2pI/ZXOj1WqSkxKG42FZDb7O5MBh00Bt0sJgN2HekFOU2N0sF5XSu1KOmMlfSlGwuLBYDdHodvP4ADh4tg9cXQEY7C1KTLXA5vSxjVdvBodNpYbUaodNrUVLuQn5hBWd5UiNu6mlB8lBUadFcQYtouG6hQmNpNOlhNhtwpKgCJ0qdMBq06N4pmbM96Hor6RnR0udXdZ/4AjhwrIy/Vxnt4pCabG7wPonFa2cy6aHV67g/yd5DJXC4vEiKN3GlFJWte9xeVccYSefW3Mi5RT5pafX3DmrNeTZWxrY1zo0q82gu0Rv0cHl8yDtWzoHmDqlWpCSYOUO1rTyrmxs5t+hEzi16iYXzi8Q5NlbGNgitP00mA0xmPYqKHSgstnOVONnlJJ9I66hYSXyLpesWLedG/g5a99Ha/MCRMvZ7kK+jZ1YyPF4/98OgIEc0nltzEcvnJ+fWNuZYIfxIxUWMZOLTi2QcMpLM6JBiYY3PslJHi2SzVxpzHg6YdMtMQFycCRUVTpSW2BuUX6LjKC93Vk3ofbNTTv3eh7JSe7MfY8w3orO7WQ4r2WpASpyRf++0uyJqEql+n3RNj+ffkfOrpLhtXW+upHB54XZq0Tk1jh2FPA4ldslgFgShVamqTHScelZn/PyspjldEARBEGIJmt+oKtrpdCPepEdy5yRYrSaUlztQYZPqZ+H0sNvd/JNsqi7p8cjOTGC/jNPhUZRYKAiCINRFAhcxZoiFU26GgiU0EVPgovLf6iZ04fSg8Y4GeaFgYK2tQwGnWJXFEgQh+pFntSAIgtDW1lE+H6kCmCIq+UuIfsieKhU5KEEQhGZBmnMLgiAIgiAIgiAIgiAIgiAIghAxSOBCEARBEARBEARBEARBEARBEISIQQIXgiAIgiAIgiAIgiAIgiAIgiBEDBK4EARBEARBEARBEARBEARBEAQhYpDm3IIgCIIgCIIgCIIgCBGATqeFRlPZRNznk8bhgiAIQttFAheCIAiCIAiCIAiCIAithFargcmkh8Fo4KCFy+2DyaiDPxCA1+2Dy+WB3x9o7cMUBEEQhLAigQtBEARBEARBEARBEIRWgAIWVqsJG3YXYs7ifdi0p4h/r9UAQ3un48LJOejfPRV2mxNut6+1D1cQBEEQwoYELgRBEARBEARBEARBEMKM0aiH2WLE02+twrqdhTX+RgUW9Dt6TRjSEfdeORyBgBMejwQvBEEQhLaBNOcWBEEQBEEQBEEQBEEIIyQJZY0z4m8frKsTtKjN0o1H8Oqnm2CxGsN2fIIgCILQ2kjgQhAEQRAEQRAEQRAEIYyYTAYcOW7D8i1HFW0/f00eyu0elpYSBEEQhLaAzHiCEEWYzQZotFrodBpQaza/LwC/j5q1eVv70ARBEIRmQqfTwmjS8/OemnMazQYYfAG43V74fP7WPryowmIxQKvXUV4ra4VTk1OdRgO73QWvV8ZSEARBaD20ei2+WJSrePtAAJizOBeXT+vZosclCIIgCJGCBC4EIQowmfWwWIw4dsKOr5bsw6GCcvLBIDszERdM6o72yVY4HW4JYAiCIEQxWq2Gda6NRh0WrT+MZZuPwObwIN5iwIQhnTBxSCe43F447W4EyHshNAhlo1LAx+cLYO7S/di89zg8Xh/aJZpx5uhsDO6ZynOmrcLV2ocqCIIgtFEsJgO27D2uap8tucdxzcw+cLTYUQmCIAhC5CCBC0GIgioLyhZ94j8rsXlPTcN2a+4JfL1sP4b3ScdD142ERqOB0+lptWMVBEEQQg9axMWbsXLrUfzrs82wOWsGotfsKMDrX2zBry4ZjBF9M2CrcMJPXTuFeqU3rFYj3v92B+Ys3gdvrSqVpZuOIKOdFY/eMAodUq2oKHO22rEKgiAIbXvu96is/vN4/NBqRfFbEARBaBtExYxXUlKC3/3ud5g0aRKGDRuGK6+8EmvXrq36+4oVK3DRRRdh8ODBmDlzJr7++utWPV5BaC4o69Zg1OPBl5fUCVpUh5q5PfzK0ko5EQNJYgiCIAjRhMVq4gqLv/13fZ2gRZAKhwfPvL8Wq7Ydg1mac9YL+XIsVgNe+2ILPv1pb52gRZCCk3Y89I8lKDjpQFy8KezHKQiCIAhUCdg+yaxqn3ZJZnh9vhY7JkEQBEGIJKIicHHvvfdiw4YNeP755/Hpp5+ib9++uOmmm7Bv3z7k5ubitttuw8SJE/HZZ5/h0ksvxYMPPsjBDEGIdvQGPT74bifySBqqCfYdLsUn83dDL4ELQRCEqIIDzhrgn/+3qcltSSHq5U82ch8MvT4qzLiwEhdnRm5+Kb5dcaDJbZ1uH/72wToYjXoOeAiCIAhCOCHJwmkju6jaZ8aoLPikR5MgCILQRoj4ZdrBgwexbNkyPPHEExgxYgS6deuGxx9/HOnp6fjqq6/wzjvvoHfv3rjnnnuQk5PDAQ2quvjPf/7T2ocuCKcFOaVMRj3mr85TvM93qw7CQtJS1IFUEARBiAoo4PzdyoNwK3REUMPuBavzuCJPqIVWw41LlXLgaBkOHClDfLy6jFdBEARBOF08bi+mj8yCxaRsPk+ON2HsoI5wS19DQRAEoY0Q8YGLlJQU/Pvf/8bAgQOrfkc6/vQqKytjyaixY8fW2GfMmDFYt26dNK4Uol4mavPeIpYGUUpJuQu78oo5e1QQBEGInkbSizbkq9rnp/X5Ig1YC4NBC4Ney31C1LBgbR680i9EEARBCDNer597XDx07Qjomkg8o/ntkRtGcj9DXwMyiIIgCIIQa0S8dzMxMRGTJ0+u8bvvvvuOKzEeffRRfP7558jMzKzxd6rGcDj+v707AY+yOhc4/maZbOw7ShAVRHYhUhZBNpFyBTe01bLUSlFsa3tFaAtaq9QroijgUsBea6sXfNp7EbRWFFG0LhVBEbBsAgIiImEJJCSZ/bvPe+zEhHUCM5nvzPx/z5OHZOYb/d45yXnPN+855yuXoqIiadiw4Wn9f2O5/YLOnK/8bzIhtvj+/7UQUV2HS3xybrM6p/wdTnR88URsdiK21BKrPJsM760nM0OKS/3Veo0er++hzdtFxbrtMjMzzGqUYMip9nupc10Y+0WH2OyUzLGlQnzVRX9mT2xBf0A6nNdQfje+t/z+/9bKV/tLjznmnOZ15D9v6Cb5TWuLr/yb/G9DbPFCbPZK5viIDUjRwsXRVq9eLVOmTJEhQ4bIgAEDxOv1SlZW1RtURn72+6v3IUCEbrPToEEtibW6dXMlWRFbfOTlek7rNXl5WeYrGrSdnYjNTskcW6LzrM3vrd5AOqeaK+V0W4lw2InLeKWmxbLtdOZqdel7ryt5GftVD7HZKZljS4X4osG1rJ2xtT+3ocz59SDZtKNI3lmzW8q9AamdmyUDLs6X1i3qSdhxzESHvByPdbHFC7HZK5njIzYghQsXb7zxhkyaNEkKCgrkkUceMY9lZ2cfU6CI/Jybe3p/VPpBQHFxmcSKViX1D7y4uDzplnUSW/zoTJrOrRubZcHRfhCTk5Uh7Vo1jOqcEx1fPBGbnYjN/WL1QUgs82wyvLdZOR7p3r6p7NpbEvVrurdvJn5/SI6UeMVW8Wi72nVypFPrRvKvbQeifk2vTs1FJ68WFR07yzWVfy9PhNjslMyxJUt8bsyxyfLe2hJbWprIec1ryznfvVAiG0fpDlIlJeVmZaDNscUSsdkrmeMjNndLhsleqcqawsX8+fPlgQceMDfefuihhypWVZx11llSWFhY5Vj9OS8vT+rUqXNG+03Gmv6Bx+O/6wbEFnv6/6xVJ1P6dDlb3l4d3d7nAwryJRgKia8aN2yj7exEbHZK5tiqK9bvg83vbUYgJFf3ay0v/mNbVB9M6GzaK/ueJ8FAyNqY49V2+t+66tLzoy5cNK6fIwXtmknx4TLGftVEbHZK5thSIb5o0Z/ZG1sgcHq7RtgQW6wRm72SOT5iA2LLig3Knn/+ebn//vtl1KhRMnPmzCpbQ3Xv3l1WrlxZ5fgVK1aYVRnp6VaEB5xQKBCSm4Z1kLq1Tr3tU/062TLyu+3MawAA9tBic+1cj/nAPRojBrQx2xv5/dEXqVNFeZlfenRoblYsRjOz9dZrOovPH+QiDAAAAABcxvWf7G/fvl2mTZsml19+uYwfP172798v+/btM18lJSUyZswYWbdundk6atu2bfLMM8/Ia6+9JuPGjUv0qQNnzOsNSI4nXR78WV9pWDfnhMc1aZArD/2sr3gy0qq12gIA4A5lpT5TqB7e97yTHndN/9Yy8rsXSnmZr8bOzSZagNCCzr3jeknXtk1OeFxmRprccWM3KbiwqZRX88boAAAAAID4c/1WUUuXLpVAICDLli0zX5Vde+21Mn36dJkzZ47MmDFDnn32WcnPzzff9+7dO2HnDEQjOzvT3MdCJM3sRevzBcy/x5s92rBWljx99+Xyzidfyivvbzf7oOuNRM9pVsd8yNX3ohbi9frNsQAAOz9w1/tV3Dyso1zZ93xZ/I9tsuLTPVLqDUitXI9c0vksU7TQIrYexwqBEztyxCe1a2fLfeN6yaadRfLSO9tk3db9EgiEpEHdHLnsOy1leJ/zzT2kSo/4JBzmvQQAuPt60XH0ejFo7f7yNtKtObOzPeZfEce8914vkwQBoCa5vnBx2223ma+T6devn/kC3E63pcjJyZLsnEzZe6BMPt12QAKhkLRoUlu6XtBEyr0BCfh1z/Kq2z2Vl/vNDNKeHZpJ/275/x7AigSC39zPwuabJAEAvqHFiMOHy6ROjkd+NKy9/Oz6iyqeKy3zSygYkuLD5Qk9R5uKF+npAWnToq7cObLAbK2l9IOfcl9QnFBISopZtQIAcOf1YlZ2puw/XC7r1u8VfzAkzRvVMqsEvb6ABP0hU4xHfGRmZognK0NyczyyZss+2b3viHgyMqRz60bSrFGe+LxBszOCjikAACleuACShc7UyKuVLZu/KJL5r24y/x59j4orLjlXrh/U1mwBcvSWT1qY0BUV+qUDWsVYCQCSj14MK783IA0a1JKiolJWWJwGXUlRXOw135eaen86qysAAK6lK+rzamfL9q+K5bklG2TD9oNVntf7Hg7t1UpuHKJbRvrZIjhOq1xy87Jl4fLPZMk/d8ihkqqTHC48p4GM/o925l/d5vN4OyYAAFLoHhdAstCixfvr9si9f/jgmKKF0kHR80s3y/3PrJDcvCzxeDJO+N/SggVFCwAAoqP1CooWAAC3Xy+u3lQod819/5iihSou9cv/vrlF7nnqA8nJzZKsrBNfL6L69Ppbr8P/65kPzXX50UULpdfxej3/3tqvTHtFJhQCAOKDwgVQA3JyPLLvULk88X9r5FSTMj7ZvE+eW7JRPP/e1gIAAAAAkNwz/YvL/PLo8x+fchb/+s8PyH+/+Kl4sjw1dn6pQK+//+fVjbJ6c+FJj9PmeXLhWiksKjf3wAAAxA+FC6AGZGRmyMLlW6NeSvr6hzvNjI/IvSwAAAAAAMl7vbj47a0SDEV3vbj8o116z+6TrtJH9PS6W9/LpSt2RnW8Xte/8NZWyeD9B4C44lNRoAYGQRkZafL+2t1Rv6bMG5R31uxm1QUAAAAAJDG9VszOypS3Pv4y6tf4g2F5c9UuyeSD85jQ6+531+w21+HRem/tbnMfSyYbAkD80MMCcaaDmYPFPjO4rI5de0u4jwUAAAAAJLH09HQpKfNLeTVvtv1lYckptyFGdPS6+8vCI9V6TSAYlqJir7neBwDEB4ULoAaczlgmnTt9AQAAAEDSSzuNaz8+MI+t07n85podAOKLwgUQZ6GQIw3r5UpeTvW2fbqgZX3dthQAAAAAkKRCobDUqeWRerWzqvW6Nvn1+UAnRtL+ff1dHXp9r9f5er0PAIgP8hxQAwNRvz8og7q3jPo19WtnS8+OzcXvD8T13AAAAAAAiaM3ei73BmVIj1ZRv6ZWTqb069bCXGfizOl1d48OzaV+neyoX6PX9/r+6/U+ACA+KFwANSAUDMmIAW0kJyu6m6ddO6C1GbwyewMAAAAAklsoEJKr+rc2BYloXHnp+eL3h/jQPEb0urvcGzDX7NHIzsowx+p1PgAgfihcADXA5wtKXnam/GZsT8n2nLx48d1erb4ZiPpYbQEAAAAAyU5n7nvS0+S+W3pLbvbJixf9C/Ll+4Mv5Hoxxvy+oAzve54M7XXylS96PX/P2J7m+l6v8wEA8VO9TfeB06T3rMrISK9YCqtfqaa8zCdtWtSTxycOkL8s2yzvrf1KAsFvZ8i0PaeBXNOvtfTs1FxKj/iYPQMAAAAAKaKs1Cctm9aWJybp9eJn8u4nu8UX+HZGf+sW9eSqfufLpV1bSOkRrwQrXUvizOn1t16H33JNZ7nogiay+B/b5LMviiqe92SmS9+LzpYbBrc1Wzvr9T0AIL4oXCCuPJ4MyfRkSG6OR7y6lDXsSJ2cTPH5gxIOhsXrTZ1ZIo7zzWC0To5HbhvRxXzt3FMswZAjTRrkSqN6OeLzBqWkuDwlCzsAAAAAkMr0ejEvxyO3XNVJbr2ms+zcc1j8gbA0rp8rTRrkic8XMNeLbCkcH4FAyLy/Xds0NhMKDxz2yr6icsnMSJNWZ9U1x4SDIdNOAID4o3CBuMnNzTJFi9dW7JQl72+XPQdKK/aD7N8t39zHoVHdHJP0U+mDelOs8QZMUSe/cZ6uRzHxHz5UZoobAAAAAIDU9M3kvoBkZqZLi0aVrxdLuV6sqZull/vF6/VLridTzm1W2zzu9wZMYQMAUHMoXCAucvOy5Ig3KHfN+ofsO1Re5TmfPySvf7hT3li5U8aP6CKDLm4pR0q84qTYKEwHPYHUWXACAAAAAIiSbgXFdlCJox9P6L1HAACJw825EXO6kiAtPV2mzHnvmKJFZbrIYu4L62T15kLJyfXU6DkCAAAAAAAAANyJwgViLtOTKS+/+7nsP+SN6vg/v7LB3AMjTe/gDQAAAAAAAABIaRQuEFPp6WmSm5Mpr63YEfVr9uwvlY07DkpODjuXAQAAAAAAAECqo3CBmMrISJeDxV45cDi61RYRn2zeJ8KKCwAAAAAAAABIeRQuEFNaewicxg3E/MGQufkVAAAAAAAAACC1UbhATIXDjtSrnS3p1Vw80bh+brVfAwAAAAAAAABIPhQuEFPBYFgy0tOkoF2zqF+TmZEml3VvKYFAKK7nBgAAAAAAAABwPwoXiLlgICjX9m8d9fGXdDnbFDsoXAAAAAAAAAAAKFwg5rzeoFzYqqFc3e/8Ux57duNa8tPrLpKAP1gj5wYAAAAAAAAAcLfMRJ8Ako/jOFJW6pUfXtFBGtbNkYXLt0hJWaDKMXo/ix4dm8sdNxZIOBQSn4/CBQAAAAAAAACAwgXieK+LIyVeGdKzlVx1aWt5b+1uWb/9oARDYWlaP1eG9j5XcrMzxe8LULQAAAAAAAAAAFSgcIG4CYXCUl7qE783IN0vbCoFFzaVNH0iTSQcDEtJcXmiTxEAAAAAAAAA4DIULlAzBYxyf6JPAwAAAAAAAABgAW7ODQAAAAAAAAAAXIPCBQAAAAAAAAAAcA0KFwAAAAAAAAAAwDUoXAAAAAAAAAAAANegcAEAAAAAAAAAAFyDwgUAAAAAAAAAAHANChcAAAAAAAAAAMA1KFwAAAAAAAAAAADXSHMcx0n0SbiNviXhcGzfloyMdAmFwpKMiM1eyRwfsdmJ2NwfgxvzbDK8t6kYW7LHR2x2IjZ72R6fW3NsMry3J0NsdiI2eyVzfMSW/DkWNY/CBQAAAAAAAAAAcA1KTgAAAAAAAAAAwDUoXAAAAAAAAAAAANegcAEAAAAAAAAAAFyDwgUAAAAAAAAAAHANChcAAAAAAAAAAMA1KFwAAAAAAAAAAADXoHABAAAAAAAAAABcg8IFAAAAAAAAAABwDQoXAAAAAAAAAADANShcAAAAAAAAAAAA16BwAQAAAAAAAAAAXIPCBQAAAAAAAAAAcA0KFwAAAAAAAAAAwDUoXMTQoUOH5Le//a3069dPCgoK5Ac/+IF89NFHFc9/8MEHMmLECLnoootk6NCh8sorr4iNtm/fLt26dZNFixZVPLZx40YZPXq0dO3aVQYNGiTPPfec2OTFF1+UK664Qjp37izDhg2TV199teK5L7/8UsaPH2/atG/fvjJ79mwJhUJii2AwKI899pgMHDjQtNuoUaNkzZo11rfdU089JWPGjKny2KliCYfD8vjjj8ull15qjrnllltk165dYkNsy5cvl+uuu860ocb20EMPidfrrXje5/PJ1KlTpXfv3uaYiRMnysGDB8WG2Cr7zW9+Y+JLlnYrLCyUO++8U7p37y49e/Y8brssWLBALrvsMunSpYuMHDlSNmzYUMNnbgdyrH39dCrkWXJscvTV5Fj3t5siz8YXeda+vjqCHGtXuyVzjlXkWTvzLDkWruUgZm6++WZn+PDhzqpVq5zPP//cmTp1qtOlSxdn27ZtztatW53OnTs7M2fONN8//fTTTocOHZx//vOfjk38fr8zYsQIp23bts4LL7xgHjt48KDTs2dPZ8qUKSa2hQsXmlj1Xxu8+OKLpi3mz5/v7Ny505kzZ47Trl07Z/Xq1SbeIUOGOLfeequzefNmZ9myZU6PHj2cxx57zLHF448/7vTp08d59913nR07djh33323c/HFFzt79+61tu20rbSNRo8eXfFYNLE88cQT5pi33nrL2bhxozN27FjTvj6fz3FzbNqntG/f3pk7d66zfft25+2333b69evnTJ48ueIY/X7w4MHm2LVr1zrXXHONM2rUKMdNjhdbZfr3pX3LwIEDqzxua7vp+Q0bNsy54YYbnPXr1ztr1qxxrrjiCmfcuHEVxyxatMjkiZdeesnZsmWL88tf/tL0MQcOHEhQJO5FjrWrn06VPEuOJce6RTLnWEWejT/yrF19dQQ51q52S+Ycq8izduZZcizcjMJFjGgi1U7qo48+qngsHA6bznf27NnOPffc41x//fVVXnPnnXeaTssmjz76qPPDH/6wymBv3rx5Tt++fZ1AIFDlOO2M3U7bSBPL9OnTqzyu7aJxvfzyy06nTp2cQ4cOVTz3l7/8xSkoKHBVojmZq666ynnwwQcrfi4pKTHtt3TpUuva7uuvv3bGjx/vdO3a1Rk6dGiVxHqqWLS9unXr5ixYsKDi+cOHD5tEq+3s5tgmTpzo/OhHP6py/OLFi52OHTuauPS1OtDQQWCEXnBqO+tFi5tji9ALkF69epnnKg/2bG437SP18X379lU89s477ziXXXaZ+TtU+vv58MMPVzyvv7/9+/c3v8/4FjnWnn461fIsOZYcm2jJnGMVebZmkGft6asrI8fa027JnGMVedbOPEuOhQ3YKipGGjRoIH/4wx/M8syItLQ081VcXGyW2eqyt8p69eolH3/8sRaPxAarVq2Sv/71rzJ9+vQqj2tsPXr0kMzMzCqx7dixQ/bv3y9uXyq8e/duufLKK6s8/sc//tEsqdXYOnbsKPXq1asS25EjR8xyThs0atRI3nrrLbNMWJcFaxtmZWVJu3btrGu79evXi8fjkb/97W9mmXplp4pl06ZNUlpaWuXvsG7dutKhQwfzu+3m2MaOHSu//vWvqzyWnp4ugUDA/C5qPxKJN+K8886TZs2auT42pX3g5MmT5eqrrzZtWJnN7fbee++ZNmncuHHFY7pE+I033pDatWvLgQMHzO9n5dj091eX4rohNjchx9rTT6daniXHkmMTLZlzrCLP1gzyrD19dWXkWHvaLZlzrCLP2plnybGwAYWLGNHOp3///iaRRixdulR27txp/ri//vprad68eZXXNG3aVMrLy6WoqEjcTgesv/rVr8yefWeddVaV504Um9qzZ4+4fbCnysrK5Mc//rHpdL/3ve+ZPRhtjy3i7rvvNslI9x3Ui5FZs2aZPRbPOecc6+LT/SKfeOIJadmy5THPnSoWfV4d/furx0Sec2tsOrDRAXqEDvL+/Oc/S6dOnaRhw4ayd+9ec8GZnZ1tXWxKY9m3b5/ZP/NoNreb9i/5+fny+9//Xi6//HKzP+8999xj+lMbYnMTcqw9/XSq5VlyLDk20ZI5xyrybM0gz9rTV1dGjrUntmTOsYo8a2eeJcfCBhQu4mT16tUyZcoUGTJkiAwYMMDceKjyQFBFfvb7/eJ29913n7lJ0tGzOdTxYoskHb3JkptphV/pDIDhw4fLM888I3369JGf/vSn5gZ0NscWsXXrVqlTp45JODpLRW+qN2nSJDPLJhniizhVLHphpY53jE2x6k3q9MJry5Ytcu+995rHNLaj47IlNp2F8uSTT8qMGTOOG4PN7ab9i94scfPmzfLoo4/K7373OzOjSPsXnZljc2yJRo61p59O9jxLjiXHulky51hFno0f8qwdfTU51t7YUjHHKvKsPbGRY+EW365FQ8zo0ilNqAUFBfLII49U/PEePaiL/Jybmytupp2VLl98+eWXj/t8Tk7OMbFFOqq8vDxxM53BoXSGyrXXXmu+b9++vWzYsEH+9Kc/WR1bZIbGxIkTzSwAXbKndLaKDgK1sm57fJWdKhZ9Xukxke8jx7j9b7Dy4OGOO+6QlStXmgFSly5dThi7DbHp+Wlf+ZOf/KTKLJzKbG43XSqrv3s60Iv0NbpUX2fCffrpp1Viq8yG2BKJHGtXP53MeZYcS451c2zJnmMVeTY+yLP29NXkWDtjS8Ucq8izdrUdORZuwYqLGJs/f778/Oc/N8uo5s2bV1Ep1+VThYWFVY7Vn7Uj0FkEbvbCCy+Y/et0to3OVNEvpRXycePGmWWNx4tN6b6EbhY5v7Zt21Z5vE2bNmYvTZtjU2vXrjVLMSvvV6t0/0Jd+m17fJWdKpbIEsbjHWNDrHqeo0aNkjVr1ph9a3U5f+XYDx06dMygwe2x6e+nzrbRgWukb3nqqafkq6++Mt/rRabN7abtovuzRgZ66oILLjD/av9ic2yJQo61r59O5jxLjiXHujm2ZM+xijwbe+RZu/pqcqydsaVajlXkWfvajhwLt6BwEUPPP/+83H///aZDnjlzZpUlUzpLQCvLla1YscLMZNEbE7mZzrRZsmSJma0S+VK/+MUv5IEHHpDvfOc7ZsmY3jCrcmzayekNtdxMb1ZWq1Ytk3Qq++yzz8zemRqbzliJLMONxKavOVFV3U0ie2Xq8r6j4zv33HOtbrujnSoWbS+9idSHH35Y8bzuz6jtq691s8OHD8tNN90kBw8elAULFhxzvhdffLGEw+GKG5tF9qTU/ULdHJvOsnn99dflpZdequhbbrzxRrMvpn6v+57a3G56frp8WJd/V/7bU61atTK/l/r7WTk2XT6tg1y3x5YI5Fg7++lkzrPkWHKsm2NL9hyryLOxRZ61r68mx9rZbqmUYxV51s62I8fCLdw9yrCIdqzTpk0zN60ZP3687N+/39ygR79KSkpkzJgxsm7dOjNw2rZtm9l/8rXXXjOzPNxOq6XaMVX+UtpR6XPXXXedGQzpzbN06eaiRYvMkk59H9xOl7dpG+i+mX//+9/liy++kLlz58r7778vN998swwePFiaNGliljRqp61Lp3UgP3bs2OPuYejGZKoDAd33VAc/O3bskNmzZ5s9T2+99Var2+5op4pF22v06NHmb/DNN9807TlhwgQzKNb9e93swQcflF27dpm9M/UGZpG+Rb90gKt/h8OGDTM3HNSBg/Y1enOwHj16SNeuXcXNf39H9y26/FSXper3+rzN7aYD14yMDLPMXWfj6GBc26hnz57mQlNpX6JL+RcvXmx+b++66y4zOLz++usTffquQo61t59O5jxLjiXHkmMTizwbO+RZO/tqcqyd7ZZKOVaRZ+1sO3Is3IJ7XMTI0qVLzVLGZcuWma/KdL/J6dOny5w5c0xn/eyzz0p+fr75vnfv3mI7HfQ9/fTTZsaKxqqDI73hUmSfTbfTmwvpHnyzZs0yVf3WrVubfTO1Q1Ya29SpU+X73/++SUQjR440r7GBzoDSwasO8vQGezrbQZcS60BIl9kqm9uuur+HOrNKZwFowtWEqjMBdKlq5eWPbqODOZ0lpv2LzlQ5mg6AtD/RGXJ6wXn77bebx/v162fiTAY2tpvSgbnOKtLBuu4FqgNXvYCcPHlyxTHar+gHAvo3qkukdWaODv70tfgWOdbufjpZ8yw5lhybDGxstwjybOyQZ+3tq8mxdrZbKuRYRZ61t+3IsXCLNEdvBw8AAAAAAAAAAOACbBUFAAAAAAAAAABcg8IFAAAAAAAAAABwDQoXAAAAAAAAAADANShcAAAAAAAAAAAA16BwAQAAAAAAAAAAXIPCBQAAAAAAAAAAcA0KFwAAAAAAAAAAwDUoXAAAAAAAAAAAANegcAEgoQYNGiSTJ09O9GkAAJB0yLEAAMQHORYA4o/CBQAAAAAAAAAAcA0KFwAAAAAAAAAAwDUoXABIuEAgIA8//LD06dNHunbtKmPHjpWdO3ea53T57ZgxY2ThwoUycOBA6datm9x0002yadOmRJ82AACuR44FACA+yLEAEF8ULgAk3JIlS2TLli0yffp0uffee+Vf//qXTJgwoeL5jRs3yqxZs+T222+XGTNmSFFRkYwePVoKCwsTet4AALgdORYAgPggxwJAfGXG+b8PAKfUrFkzmTNnjng8HvOzzlKZO3euHDlyxPxcUlIi8+bNk+7du5ufu3TpIoMHD5bnnntOJk2alNBzBwDAzcixAADEBzkWAOKLFRcAEk4HcJHBnsrPzzf/FhcXV/wcGeyppk2bmqW2q1atSsDZAgBgD3IsAADxQY4FgPiicAEg4fLy8qr8nJ7+TdcUDocrZrIcrVGjRnLo0KEaOkMAAOxEjgUAID7IsQAQXxQuALie7gV6tP3795tBHwAAOH3kWAAA4oMcCwBnhsIFANfbsWOHbNu2reLnvXv3yieffCK9e/dO6HkBAGA7ciwAAPFBjgWAM8PNuQG4nuM4ctttt8mECRMkIyNDnnzySalXr56MGTMm0acGAIDVyLEAAMQHORYAzgyFCwCud/bZZ8vYsWNl2rRpUl5eLpdcconMnTtX6tevn+hTAwDAauRYAADigxwLAGcmzdESMAC41OTJk2XlypWyfPnyRJ8KAABJhRwLAEB8kGMB4MxxjwsAAAAAAAAAAOAaFC4AAAAAAAAAAIBrsFUUAAAAAAAAAABwDVZcAAAAAAAAAAAA16BwAQAAAAAAAAAAXIPCBQAAAAAAAAAAcA0KFwAAAAAAAAAAwDUoXAAAAAAAAAAAANegcAEAAAAAAAAAAFyDwgUAAAAAAAAAAHANChcAAAAAAAAAAEDc4v8Bk0Sq7GvSXRgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "favorite_types = pokemon[pokemon.type.isin([\"Fire\", \"Water\", \"Grass\"])]\n", + "sns.relplot(data=favorite_types, x=\"hp\", y=\"speed\", hue=\"legendary\", col=\"type\", s=100)" + ] + }, + { + "cell_type": "markdown", + "id": "c6a20904-416d-44be-a4f3-2107200fb3c2", + "metadata": {}, + "source": [ + "#### Your turn\n", + "\n", + "**1.5.0.** Plot a histogram of peoples' heights." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "3b268a30-42ff-4ab8-b2cd-c58a76121f9c", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'histplot' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[35], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mhistplot\u001b[49m(data\u001b[38;5;241m=\u001b[39mpeople, x\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mheight\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "\u001b[0;31mNameError\u001b[0m: name 'histplot' is not defined" + ] + } + ], + "source": [ + "histplot(data=people, x=\"height\")" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "f145ae04-2796-4420-8d98-ce74d5bd4c83", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAALm1JREFUeJzt3Ql4VOW9x/H/LCEhQCARArRehYtl0bLJIli1aJELKq2orRcQK4iitooLRdHWjQfqgogXlUJRLCK4VeWiLVTqQuWKgAu9lYBFESsSwhKIELbMnPv8X5i5MyGQSXImM+ed7+d55pnkzOTN+86Zc+Y373nPeX2O4zgCAABgAX+qKwAAAOAWgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYI2gZCC92HI4XP0Fl/1+X0LPswltzgy0OTPQ5syQKW32+33i8/mqfV5GBht9A+zcufe4zwkG/ZKf30jKysqloiIsmYA202Zb0WbabKtManNBQSMJBKoPNhyKAgAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1CDYAAMAaBBsAAGANgg0AALBGMNUVAJC+/H6fubktHHbMDQDcRrABUCUNNM3ycyXgd79jNxQOy67ScsINANcRbAAcM9hoqJm/uEhKdpa7Vm5hQa4MG9jJlE+wAeA2gg2A49JQs3nbnlRXAwASwuBhAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDWCqa4AgLrx+33mlqhAwB93X93zAMBLCDaAh2mgaZafKwF/zUNIXl7DpNQJAFKJYAN4PNhoqJm/uEhKdpYn9Dc+n8/0xoRCYXEc55jP69CmQAad2dY8HwC8gmADWEBDzeZtexJ6rgaVYDAgFRWh4wabFvn06ADwHoINUIfxKjURDjvmBgBIHoIN4MJ4lUSEwmHZVVpOuAGAJCLYAHUYr5KowoJcGTawk/kfBBsASB6CDVCH8SoAgPTChSoAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANbgOjbI6KkPdDLI2HsAgLcRbOA5yZj6IC+PCR8BwAYEG2T01Ac607X21oRCYWl/cr4MOrOtWQYA8CaCDTJ66gMNMcFgQCoqQtK8WY5rdQMApAYDCwAAgDUINgAAwBoEGwAAYA2CDQAAsAbBBgAAWINgAwAArEGwAQAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgjZQHm4qKCnnsscfk3HPPle7du8vw4cPlk08+iT5eVFQkV1xxhXTr1k3OO+88mTt3bkrrCwAA0lfKg82MGTPkpZdekokTJ8prr70mbdu2ldGjR0tJSYmUlpbKyJEj5aSTTpI//vGP8otf/EKmTJlifgYAAEi72b2XLl0qF110kZx11lnm9zvuuMMEHe212bhxo2RlZcn9998vwWBQ2rVrJ5s2bZJZs2bJpZdemuqqAwCANJPyHpsTTjhB3n77bfn6668lFArJCy+8IA0aNJCOHTvK6tWrpXfv3ibURPTp00e+/PJL2b59e0rrDQAA0k/Ke2zuuusuGTt2rPzoRz+SQCAgfr9fpk+fbg4/FRcXS/v27eOeX1hYaO63bNkizZs3r/X/DQaPn+kCAX/cfSbwSpsj9fP5fOZWJ5E/9x0u76ifXRIpz+3XtlavRWybo79U8bQkvR7Jei1seG+7iTZnhkxsc9oHmw0bNkiTJk3kiSeekJYtW5rDUOPGjZN58+bJ/v37Te9NrOzsbHN/4MCBWv9Pv98n+fmNEnpuXl5DyTReabNuyMFgwJWygoGABPxHdhB+98qNiOx0kvXa1ua10DYft8wkvR7Jfi1seG+7iTZnhkxsc1oGG+11ue222+SZZ56Rnj17mmWdO3c2YUd7bXJycuTgwYNxfxMJNLm5ubX+v+GwI2Vl5dXufPWNUla2T0KhsGQCr7Q5Uk+tY0VFqG6F+Q5/wFeEQhIKH26z3te53Eoir6fbr22tXouYNotz7Kcl6/VI1mthw3vbTbSZNttG25lIz1RKg82aNWvk0KFDJszE6tq1qyxbtky+853vmLOjYkV+196duqioSOwNcPgDw+43i1fb7DiOudVF9FCMc7i8o352SaS8ZL22NXktqmzzMcpM5Hnp9lrY8N52E23ODJnY5mNJ6UG5Vq1amfv169fHLf/ss8+kTZs20qtXL/nwww/NoOKIFStWmFPCddAxAABA2gSbLl26SI8ePeT22283gUXPdpo2bZq8//77cu2115pTuvfs2WMGGOvhqVdeecUcthozZkwqqw0AANJUSg9F6RlQeoE+DTMTJkyQ3bt3m7OgNLzo4Sg1e/ZsmTRpkgwZMkRatGgh48ePNz8DAACk3VlRTZs2lXvuucfcjtWro9e2AQAAqA4nvgMAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsAbBBgAAWINgAwAArEGwAQAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFgjmOoKAJkkEPCndXn1KVl1D4cdcwOQmQg2QD1okptlPmzz8hpKpkv2axEKh2VXaTnhBshQBBugHuRkB8Xv98mCJetk6469rpXboU2BDDqzrfh8Psn010IVFuTKsIGdTPkEGyAzEWyAelSys1w2b9vjWnkt8r3bA+T2awEAyrsH6AEAACoh2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsAbBBgAAWINgAwAArEGwAQAA1iDYAAAAaxBsAACANZgrCoB1AgF/lb9XXl4TOqkmE2sC6Y9gA8AaTXKzTPjIy6t6ctBjLU9EKByWXaXlhBsgzRFsAFgjJzsofr9PFixZJ1t37I0u9/l8prcmFAqL49Q8mBQW5MqwgZ1M2QQbIL0RbABYp2RnuWzeticu2ASDAamoCNUq2ADwDgYPAwAAaxBsAACANQg2AADAGgQbAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsEZaBJvXXntNLrjgAuncubNceOGF8uc//zn62Ndffy1jxoyR008/Xc466yyZNm2ahEKhlNYXAACkp5QHm4ULF8pdd90lw4cPlzfeeEMuuugiufXWW+Xjjz+WQ4cOydVXX22e9/zzz8u9994rCxYskCeeeCLV1QYAAGkomMp/7jiOPPbYY3LllVeaYKOuv/56Wb16taxcuVI2b94s33zzjbz44ovStGlTad++vezYsUMeeughue6666RBgwaprD4AAEgzKe2x2bhxowkvgwcPjlv+1FNPmcNPGnBOO+00E2oi+vTpI3v27JGioqIU1BgAAKSzlAcbVV5ebg459e3bV37605/KW2+9ZZYXFxdLq1at4v6msLDQ3G/ZsiUFNQYAAOkspYeitOdF3X777fLLX/5Sxo0bJ0uWLJEbbrhB5syZI/v375e8vLy4v8nOzjb3Bw4cqNP/DgaPn+kCAX/cfSbwSpsj9fP5fOZWJ5E/9x0u76ifXZKssmtVbmybo7+4VHYi/z4Vr3OCba6u3HTfNry4PbuJNiPlwSYrK8vca2/NkCFDzM+dOnWStWvXmmCTk5MjBw8ejPubSKDJzc2t9f/1+32Sn98ooefm5TWUTOOVNuuGHAwGXCkrGAhIwH9kB+F3r9yIZJVdl3K1zckqOxXlJlJ2dW0+ZrlHPjS8sm3E8mKd64o2Z7aUBpuWLVuaex0UHOuUU06Rd955R3r37i2fffZZ3GMlJSVxf1sb4bAjZWXl1e7I9I1SVrZPQqGwZAKvtDlST61jRUUdT/33Hf6wqwiFJBQ+3Ga9r3O5lSSr7FqVG9NmcVwuOwEpeZ0TbPMxyz2yPaT7tuHF7dlNtNnuNms7E+mZSmmw0YHBjRo1kjVr1kjPnj2jyzXMnHTSSdKrVy9zjRs9ZNW4cWPz2IoVK8zfdOzYsU7/u6IisTfA4Q9Pu98sXm2znlWnt7qIHpZwDpd31M8uSVbZtSm3yja7VHYiUvE6J9rm6sr1yrYRy4t1rivanNlSelBODzWNHj3aXJfm9ddfl6+++kpmzJghy5cvl5EjR0r//v2lRYsWcvPNN8u6detk6dKlMnXqVBk1ahSnegMAgPTqsVE6ULhhw4by6KOPytatW6Vdu3Yyffp0OeOMM8zjs2fPlvvuu09+9rOfmdO+hw0bZv4GAAAg7YKN0t4ZvVXl5JNPlqeffrre6wQAALyH88MAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsAbBBgAAWCMpwaa4uDgZxQIAALgfbDp16iR///vfq3xs9erVMmjQoNoUCwAAUCfBRJ/49NNPS3l5ufnZcRx56aWXZNmyZUc97+OPP5YGDRrUrVYAAADJDDYHDhyQxx9/3Pzs8/lMsKnM7/dLkyZN5Prrr69NXQAAAOon2GhYiQSWjh07yosvvihdunSp238HAABIRbCJtW7dOjfrAAAAkLpgo5YvXy5vv/227Nu3T8LhcNxjeqhq8uTJbtQPAAAgucFGBxI/9NBDkp2dLQUFBSbIxKr8OwAAQNoGm3nz5sngwYNl0qRJnAEFAAC8fR2b7du3y2WXXUaoAQAA3g82p556qvzzn/90vzYAAAD1fSjqzjvvlJtvvllyc3Ola9eu0rBhw6Oe853vfKcu9QIAAKifYDN06FBzJpQGnGMNFC4qKqpN0QAAAPUbbCZOnMiZTwAAIO3UKthccskl7tcEAAAgFcFm1apV1T6nV69etSkaAACgfoPNiBEjzKEoneU7ovKhKcbYAAAATwSbuXPnHrWsvLxcVq9eLQsXLpTp06e7UTcAAIDkB5vevXtXubxfv37mFPAZM2bIzJkza1M0AABA/V6g73h69uwpK1eudLtYAACA+g82b731ljRq1MjtYgEAAJJzKOrKK688aplesK+4uFg2b94s11xzTW2KBQAAqP9gE3s2VITf75f27dvLmDFj5NJLL61brQAAAOor2Dz77LO1+TMAAID0CzYRy5YtMwOFy8rKpKCgQHr06CFnn322e7UDAABIdrA5ePCg3HDDDfLee+9JIBCQ/Px8KS0tNad49+nTx9w3aNCgNkUDAADU71lRegG+Dz/8UB566CH5+9//bgLOmjVr5Le//a188skn5jo2AAAAngg2r7/+uvzyl7+UH//4x6bHRgWDQbn44ovN8kWLFrldTwAAgOQEm507d8qpp55a5WO6fOvWrbUpFgAAoP6DzUknnWQORR1r5u/WrVvXrVYAAAD1NXj4P//zP+WBBx6QnJwcufDCC6V58+ayfft2c4jq97//vTkcBQAA4IlgM3ToUFm7dq1MmTJFHnnkkbgL9w0ZMkSuvfZaN+sIAACQ3NO9J02aJKNGjTLXsdm9e7f4fD7p37+/tGvXrjZFAgAA1O8Ym/Xr15vpEubMmWN+1xCjvTfDhg2Txx57TG699VbZuHFj3WsFAACQzGDz9ddfm8kvdSxN27Zt4x7LysqS8ePHy65du0zI4awoAACQ1sFm1qxZ0qxZM3n11Vdl4MCBcY81bNhQrrrqKnn55ZclOzvbXHkYAAAgbYPN+++/L6NHjzZzQh1LixYtzLib5cuXu1U/AAAA94NNSUmJtGnTptrntW/fXoqLixOvAQAAQH0HG+2p0XBTHZ0Ms2nTpnWtFwAAQPKCTa9eveSVV16p9nmvvfbaMadbAAAcze/3STDod/UWCBzeveulOIBMkvB1bEaMGGFO7dYrDt9yyy1mkHDla9tMmzZNli1bZgYaAwASCzXN8nMl4K/VDDfVapKXI7tKyyUcdpJSPuDZYNO5c2eZMGGCTJ48WRYuXCh9+/aVE088UUKhkHzzzTfywQcfmMNQY8eOlbPPPju5tQYAi4KNhpr5i4ukZGe5a+VqT02r5o3l8vPbm/9BsEGmqNGVh4cPHy4dO3aUp556Sv7617/KgQMHzPJGjRrJWWedZc6I6tq1a7LqCgDW0lCzedseV4NN5HAUkElqPKVCjx49zE3t3LlTgsGg5OXlJaNuAAAAyZ8rKuJ417QBAACob/RTAgAAaxBsAACANQg2AADAGgQbAABgDYINAACwRloFm40bN0r37t3jpm4oKiqSK664Qrp16ybnnXeezJ07N6V1BAAAlp7u7aZDhw7JuHHjpLz8/6+8qVcyHjlypAk09913n3zyySfmXi8IeOmll6a0vqieXu1Ub27jomMAgLQPNtOnT5fGjRvHLXvxxRclKytL7r//fnMhwHbt2smmTZvMXFQEm8ye/wYAgLQNNqtWrZIXXnjBzAzer1+/6PLVq1dL7969TaiJ6NOnj8ycOVO2b98uzZs3T1GNkar5b1SHNgUy6My2zFoMAEi/YFNWVibjx4+XX//619K6deu4x4qLi6V9+/ZxywoLC839li1b6hRsgkF/Qoc7Mumwh5ttjpSxrXSffLN9r7ipsCD38A++w/Ph1Enkz2PLcqPcyv8mSWXXqtzYNkd/cansRP59Kl7nBNtcXbnJ2B9EytT/4errEVNUpuzH2G8jLYLNvffeawYMDx48+KjH9u/fLw0aNIhblp2dbe4jE3DWtjchP79RQs/Ny2somcbNNuvGFgwGXCvPlHnk8Jbeu1V2MBBISrkRySq7LuVqm5NVdirKTaTs6tp8zHKPfGgkc3+QjG0lU/djmdbeTG1zWgYbPfSkh5sWLVpU5eM5OTly8ODBuGWRQJObe+Rbey2Ew46UlZVXu5PRN0pZ2T4JhcKSCdxsc6QsLaeiIiRuCoXD0fs6l+07/GFXEQq5W24lySq7VuXGtFkcl8tOQEpe5wTbfMxyj2wPydgfJG1biemxyZT9GPttu9us7UykZyqlweaPf/yj7NixI25cjbrnnnvkT3/6k7Rq1UpKSkriHov83rJlyzr974qKxN4Ah3c2dr9Zktlmx3HMzU3R8pyYn2speljCcbfcypJVdm3KrbLNLpWdiFS8zom2ubpyk7k/cHtbiT3klmn7sUxrb6a2OS2DzZQpU8zhplgDBgyQm266SX784x/LwoUL5fnnn5dQKCSBI13IK1askLZt28oJJ5yQoloDAIB0ldLRRtrrcvLJJ8fdlIYWfUxP6d6zZ4/cddddsmHDBnPhvmeeeUbGjBmTymoDAIA0ldbDqDXgzJ4921yReMiQIfL444+bM6j0ZwAAgLQ7K6qy9evXx/3epUsXc40bAAAAT/fYAAAA1ATBBgAAWINgAwAArEGwAQAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKwRTHUFAMArAgG/J8oEMhnBBgCq0SQ3S8JhR/LyGqa6KgCqQbABgGrkZAfF7/fJgiXrZOuOva6W3aFNgQw6s634fD5XywUyFcEGABJUsrNcNm/b42qZLfLpBQLcxMFdAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1uI4NzIXH9Ba5tLsbl3jnMvEAgFQg2GQ4DTTN8nMl4P//IMJl4wEAXkWwyXCmp8bvl/mLi2Rb6T7T0xIKhcVxnDqVy2XiAQCpQLBB9FLx32zfK8FgQCoqQnUONlwmHgCQCgyEAAAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgDYINAACwBsEGAABYg2ADAACsQbABAADWINgAAABrEGwAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsAbBBgAAWINgAwAArEGwAQAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgjZQHm127dsndd98t55xzjpx++ukydOhQWb16dfTx999/Xy655BLp2rWrDBw4UN54442U1hcAAKSvYKorcOutt8q2bdtk6tSpcsIJJ8izzz4rV199tbz66qviOI6MGTNGRo4cKQ8//LC88847Mn78eCkoKJC+ffumuuoA4AmBgPvfYcNhx9yAdJPSYLNp0yZZvny5zJ8/X3r06GGW/eY3v5G//e1vsmjRItmxY4d06NBBbrnlFvNYu3btZO3atTJ79myCDQBUo3FulgkfeXkNXS87FA7LrtJywg3STkqDTX5+vsyaNUs6d+4cXebz+cytrKzMHJLq379/3N/06dNHJk2aZHpz9HkAgKo1bBAUv98nC5ask6079rpWbmFBrgwb2MmUTbBBuklpsMnLy5Mf/vCHccuWLFlienLuvPNOcziqVatWcY8XFhbKvn37pLS01BySqq1g0J9Q120yunDTSaR9JiRGcqL5sW6hMRo6tSyXA6irZce22St1rmu5Ca7ntKpzXcuu43vbi++N2GaWlJbLN9vdCzaReqbb/jFT9tuZ3ua0H2MT66OPPpIJEybIgAEDpF+/frJ//35p0KBB3HMivx88eLDW/0e/ZeTnN0roucnowk1HulEEAwHzc+S+TuX5j2xsfr8Eg3UvL9lla5u9Vue6llvdek7HOte17Nq+t7343qj8P1xdh0c+RNN1/5iu9UqmTGxz2gebpUuXyrhx48yZUVOmTDHLsrOzjwowkd8bNqz9StSu07Ky8mo3XH2jlJXtk1AoLLaKtFPbWBEKmR2/3otT9+PvkfuKipA7lU1G2T6Jttkzda5ruTFtPt56Tqs617XsBNtc43JdkLSyY3psXF+HR/aJ6bZ/zJT9dqa2OS+vYUI9U2kRbObNm2fGzejp3A8++GC0V6Z169ZSUlIS91z9PTc3V5o0aVKn/1lRkdgbwHzgJ/hcL9MxS9EdvnPk97qW51JZySw7eljC8U6d61pulW12qexEpOJ1TrTNNS3XDckqO+6QW5LWYbruH9O1XsmUiW0+lpQflNMzoiZOnCjDhw83p3zHHnrq2bOnrFy5Mu75K1asML06/iPdtwAAAGnRY7Nx40aZPHmynH/++eZ6Ndu3b48+lpOTIyNGjJAhQ4aYQ1N6/+6778rixYvN6d4AAABpFWz0DKhDhw7Jm2++aW6xNMg88MAD8uSTT5qL8/3hD3+QE0880fzMNWwAAEDaBZvrrrvO3I5Hp1rQGwAAQHUYqAIAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsEZazBUFAECE3+8zt5qKTJB4rIkSdQJkvcFuBBsAQNrQQNMsP1cCdZgPUGeBrorOcr6rtJxwYzmCDQAgrYKNhpr5i4ukZGd5jf7W5/OZ3hqd6brybOaFBbkybGAnUz7Bxm4EGwBA2tFQs3nbnhoHm2AwIBUVoaOCDTIHg4cBAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGtwgT4AQK0ca06mdCsTmYVgAwCokSa5WWZagmPNyQSkEsEGAFAjOdlBM+fSgiXrZOuOva6W3aFNgQw6s62ZHgGoDYINAKDe5nOqTot8eoFQNxzMBAAA1iDYAAAAaxBsAACANRhj4xE6UE9vbuPUSgCATQg2HqCBpll+rgT8hBAAAI6HYOORYKOhZv7iInMWgps4tRIAYBOCjYdwaiUAAMfHsQ0AAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAsAbBBgAAWIO5ogAAGSMQSM73+XDYMTekHsEGAGC9JrlZJnjk5SVn4t9QOCy7SssJN2mAYAMAsF5OdlD8fp8sWLJOtu7Y62rZhQW5MmxgJ1M+wSb1CDYAgIxRsrNcNm/bk+pqIIkINgAApOn4Hcbu1BzBBgCANB2/w9idmiPYAACQhuN3GLtTOwQbAABcwPid9ECwcZGmar155boLAADYhmDjEg00zfJzJeAnhAAAkCoEGxeDjYaa+YuLTHekmzq0KZBBZ7YVn8/93iAAAGxCsPHAMdYW+cm5UiYAALbhuAkAALAGwQYAAFiDYAMAAKzBGBsAANLY8S75EXmsNpcFCVs6XQPBBgAAj0/VUJvpHEKWTtdAsAEAwKNTNehlQLS3JhQKi+MkHlBsnq6BYAMAgEcvI6LBJhgMSEVFqEbBxmYEGwAAMlQgCVP2pHrsDsEGAIAM06QG43e8NnaHYAMAQIbJSWD8Tm2kw9gdTwSbcDgsjz/+uLz00kvy7bffSq9eveTuu++Wf/u3f0t11QAA8KySJEwDlGqeuEDfk08+KfPnz5eJEyfK888/b4LO6NGj5eDBg6muGgAASCNpH2w0vDz99NNy0003Sb9+/aRjx47y6KOPSnFxsfzlL39JdfUAAEAaSftgs27dOtm7d6/07ds3uiwvL09OPfVUWbVqVUrrBgAA0ovPSfMT37VX5sYbb5Q1a9ZITk5OdPnYsWNl//79MnPmzBqXqU2ublCTzyfi9/vNYa9EXqHI8/eUH5SQywOmsoJ+yc3J8lTZ1Ll+yqbO9VO2F+uczLKpc/2U7cU6B/w+aZzbIOHPzprQAcl63R7PDx7et2+fuW/QoEHc8uzsbNm9e3etyjx8pcbqXxylYaUmdIUmixfLps71UzZ1rp+yvVjnZJZNneunbC/W2V/Dz05X/7ekuUgvTeWBwgcOHJCGDd0//x4AAHhX2geb1q1bm/uSkpK45fp7y5YtU1QrAACQjtI+2OhZUI0bN5YPPvgguqysrEzWrl1rrmcDAADgmTE2OrbmiiuukClTpkhBQYF897vflYcfflhatWolAwYMSHX1AABAGkn7YKP0GjYVFRXy61//2pwJpT01Tz31lGRlZaW6agAAII2k/eneAAAA1oyxAQAASBTBBgAAWINgAwAArEGwAQAA1iDYAAAAaxBsAACANQg2AADAGgSbKuh06//1X/8lZ599tnTr1k2uueYa+de//iW22LVrl9x9991yzjnnyOmnny5Dhw6V1atXRx8fOXKkdOjQIe42YsQI8bKtW7ce1Sa9vfLKK+bxoqIic4VrXd/nnXeezJ07V7xMpyCpqr16+9GPfmSeM2PGjCof96qZM2ce9T6tbr16fVuvqs1vvfWWXHrppdK9e3fT5gcffNBc2DTiww8/rHK9x05b47U268VbK7dH227retafj7V9v/baa+Y5oVBIunTpctTj06dPF+vpBfoQb/r06c4ZZ5zhvP32205RUZEzatQoZ8CAAc6BAwccG4wcOdK56KKLnFWrVjlffPGFc9999zldunRxPv/8c/N43759nfnz5zslJSXRW2lpqeNl77zzjtO5c2dn69atce3at2+fs3PnTrO+J0yY4GzYsMF5+eWXzXP13qv0vRrbTr395S9/cTp06BBt19ixY51f/epXRz3Pi+bNm+d07NjRueKKK6LLElmvXt7Wq2qzbtOdOnVyZsyY4WzcuNG878855xznjjvuiD7nueeec/r373/Uevdqm9Vll13mTJ06Na49O3bssHY96/44tq26Xxs2bJhz4YUXOnv27DHP0fd8+/btTXtjnxt53GYEm0r0jd69e3ez8Ufs3r3bfPAvWrTI8bovv/zSvNlXr14dXRYOh82Obtq0ac727dvN459++qljk1mzZjmDBw+u8rHf/e53zllnneUcOnQouuyRRx4xOz5b7N271zn33HPjPuAGDRrkzJkzx/Gy4uJiZ8yYMU63bt2cgQMHxu38q1uvXt3Wj9fm2267zbnqqqvinv/qq686p512WvRD/J577nGuu+46x0uO12bdf+lyDe5VsXE9V/bss8863//+96NfTtUbb7zhnH766U4m4lBUJevWrZO9e/dK3759o8vy8vLk1FNPlVWrVonX5efny6xZs6Rz587RZT6fz9x01vT169ebn9u2bSs20Xa1a9euysf0MFzv3r0lGPz/qdP69OkjX375pWzfvl1s8Lvf/U727dsnt99+u/n94MGDpn3//u//Ll726aefmjnj/vu//1u6du1ao/Xq1W39eG0eNWpUdB1H+P1+OXTokOzZs6fabcGLbf7qq6+kvLz8mO9lG9dzrJ07d8q0adPk+uuvj3sN1ntwPWfUJJj1qbi42Ny3bt06bnlhYWH0MS/TDfqHP/xh3LIlS5bIpk2b5M4775TPPvtMmjRpIvfff78sX75ccnNzZeDAgXLDDTeYmda9StuloW748OGyceNGOfnkk82OQMcZ6Xpt3779UetbbdmyRZo3by5epju+Z555Rm677TZp1qyZWbZhwwZzDF7X/aRJk+TAgQNmctlf/epX0bZ7gY6jiB1LEau69erVbf14bdYP61gaaHTdf//735eCggKz7J///KfZFi655BIz9kxfo1tuucWMx/Bim3XbVs8++6wsW7bMBDndrrVNui+zcT3H+v3vfy85OTly9dVXH/W6VFRUmOUa7lq2bCk///nP5Sc/+YnYjh6bSvRbrar8IZ6dnW12/rb56KOPZMKECTJgwADp16+f2Ri0nbqTmz17tvnwf+mll8zgPK/SjfuLL76Q3bt3y4033mh6rHQA4bXXXivvv/++GVhZ1fpWNqzz+fPnmx385ZdfftSHQcOGDeWxxx4z4UZfoyuvvDJuoKmXVbdebd/W9X0/fvx4E2TuueeeaKD79ttvTQ+HbtNPPvmkCe46wFrDrhfpe1nDjAYV7Zm844475L333jNfxnTQsM3rWXvhXnzxRRNeIu/tCF3veqKIDjR+6qmn5D/+4z/Mvv7ll18W29FjU4km30hXfeRnpRuAfgjYZOnSpTJu3DhzZtSUKVPMMu2p0a7spk2bmt/125x2h+q3H91JerH3Qg9F6BkfgUAguk71G6xu+LrB6zJd37EiOzztsfI6PUvi4osvjns/6+/6rTbyLV5973vfM8v0rJoLLrhAvK669Wrztq4feDfffLOsXLlSHn/88WhvjPZa6OEXbZ9u10oPS69du9b0eNx3333iNfrla9iwYaYXKrLPatGihfzsZz+T//3f/7V6Pes+XNulZ8FV9vrrr5te2UaNGpnfO3bsKN98843Z51122WViM3psKol0V5aUlMQt19+1K88W8+bNM70X5557rvmWE0n7GgIioSb2A0+lc7dtdXTjjt2pRdqlXfGtWrWqcn0rr69z7YLW01oHDx581GOxoUbpN149VOXl9RyruvVq67au9ddDrp988on5EKt86FkPR0dCjdLeDh2LoduCF2n9I6Gmqn2Wres5Emx0/eo6rSwnJycaaiI09NmyfR8PwaYSTbWNGzeOu6aDDqrVbzQ6BsEGemhi4sSJZuc3derUuC5a7bbU7spY+q1Hd4Rt2rQRL9KeGe2Vqnydjn/84x9yyimnmPWq1/bQbzcRK1asMAOoTzjhBPEyHUCrbdD3daxHH33UdE3rmZERX3/9tZSWlprXxAbVrVcbt3U93KrjKHRc1XPPPXdUO3QMil7fJvYaLnrISgOwV9e79iRfddVVR+2zlLbJxvUcu33HDoqObV/v3r2j1+mKfV0ioc9mBJtK9ENejzfroZm//vWvZoPXwzD67U/HoXidDpydPHmynH/++TJmzBhzdsi2bdvMTY+964fdwoULZcGCBWbn96c//UkeeughcwxXdw5epN9G9WwBPcymO4LPP/9cfvvb35pvtNqNrd242nV/1113mXEGujPQAZf6+nid7ryruuierv/NmzfLvffea94TenhCe/A0AOpFzGxQ3Xq1cVvX97Vutw8//LDpkYts23rTgKfrV3s39HCzBns9c0Z/1rEYlcOBV+g+S8fK6SE3PUPq3XffNSdCXHTRRWbbt3E9R8ZL6ReRyl9alPbg6BmA+gVGXw89E1DHFuoZVrqd244xNlW46aabzLcYHVynAxA11WuXbmz3rVfpWTB6psSbb75pbrGGDBkiDzzwgDndW4+3awDSY9W6w9OBtl6lXdV6uO2RRx4x4w7024yePTJnzpzoWTM6UFoH0OproG3Wb4H6s9fpB1rkTKhYOsZIz6bQgcN6dozu/PWKxPohp+vfBtorU916tWlb1+CiX0R0+9Zem8r0Q/3EE0804U4/5PXLio4z6dGjhzk07cXxc0rft3q6s35w63taB8rroVfd1m1cz7Hbtqpq+1a6/9arDOvA8R07dpiQF7n6su18ejGbVFcCAADADRyKAgAA1iDYAAAAaxBsAACANQg2AADAGgQbAABgDYINAACwBsEGQFqr6ooUXKUCwLEQbACk9XQYQ4cOjVums80/+OCDrv+v8847z8wMDcDbCDYA0tbixYvl448/jls2Y8YMMwUAAFSFYAMAAKxBsAGQMjpvj87hpZMR6vxVOknjyJEjpaioyMxzoxMbKp3IU3/Xw0U6eeerr75qlumM5Eon8dS5j3QOIC1Hn6fPD4fD0f+lE2LqrPY6V063bt3MJJnvvPPOMev28ssvmwkGn3jiiXp4JQC4hUkwAaSMTkqpM67feuutctJJJ8mmTZvMxJy33XabmaSwuLjYBIwXXnjBzMasEx7qhKw6iekNN9wghYWFZrZmnah14MCBZjZjHVi8aNEiE4p0VvcLL7zQTBA5atQoM8uxToioyzUc/eIXv5A//OEP0rNnz7h66WSSv/nNb8z/0OcA8A6CDYCUOHjwoOzdu9fMuHzBBReYZb179zY9KzrLfDAYNGFGaQ+L0t91JvKCgoLoMg02Z555pjz88MNmJnf1gx/8QN566y354IMPTLBZtmyZrFmzxvS+9O/f3zynT58+8q9//UtWrFgRF2zefvttE7g0QGkIAuAtBBsAKaEBRXtl1NatW2Xjxo2mR0WDRST4JOLiiy82twMHDpgytNdHD2VpL82hQ4fMcz788EPJysoyh6giNAQ9//zzcWV9+umnprdGe4LGjh3rYmsB1BeCDYCU+dvf/iaTJ0+WL774Qho1amTGtOTm5tboWjU6TkfHzixcuFAqKirkxBNPlO7du5sen0gZehZVs2bNoj06x/LZZ59Jv379zNib5557TkaMGOFCKwHUJwYPA0iJr776yoxf6dSpk7z55pumV2X+/Ply7rnn1qicSZMmyZIlS2TatGny0UcfydKlS81hKQ02EU2aNDHhpnJYWrt2remlidCBxTNnzjSHxqZOnSpbtmxxoaUA6hPBBkBK/OMf/zCHj3Qsiw4c9vl80V4cpSGkqh6Wyss0EJ1xxhlm7Eykt0fL3rlzZ/SsKB1Do4eldKxNhJY/YcIEE2Qimjdvbu51eSAQkHvvvTcpbQeQPAQbAClx2mmnmV4V7V1Zvny5GVtz4403Rk/BLi8vl7y8PPPz66+/bgb6Kl2mPS0rV640h6G6dOki7733nixYsMAsmzt3rlxzzTUmKO3bt8/8jR5e0sNTemVhPcPqf/7nf8zPn3/+uYwePfqouukYm1tuucXURf83AO/wOUy6AiCFVxbW07L1sFTTpk3NmU5XXnmlGduip1trL4wertIzny677DLTg6JBQ8flfPvttzJnzhw55ZRTzBgbDTc64FjH2Pz0pz+VDRs2mDOj3n33XdP7os+fMmWKOeylgUevg6OnmeuZWEoHFuvPekaW0t6eyy+/3FwrRwcU5+fnp/jVApAIgg0AALAGh6IAAIA1CDYAAMAaBBsAAGANgg0AALAGwQYAAFiDYAMAAKxBsAEAANYg2AAAAGsQbAAAgDUINgAAwBoEGwAAYA2CDQAAEFv8Hw3bARsCmCz+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.histplot(data=pokemon, x=\"attack\")" + ] + }, + { + "cell_type": "markdown", + "id": "9b0c9120-fff4-42b2-8ab6-3aa2eba47806", + "metadata": {}, + "source": [ + "**1.5.1.** Plot a bar chart showing peoples' average hours of sleep by age. " + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "ee30c851-14b1-4901-9182-4304d54d53a6", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "15d94323-2d65-4100-9916-101516f6ccf1", + "metadata": {}, + "source": [ + "**1.5.2.** Plot a bar chart showing peoples' likelihood of getting exercise by income. " + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "13eeecd8-2518-4ed9-aac5-727a96b5bf80", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "b2705fef-470d-494c-86c1-8b3bd34b3660", + "metadata": {}, + "source": [ + "**1.5.3.** Plot a bar chart showing average reported health by age. For each age, show average health for those who get exercise and those who don't." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "4ee2eb69-2f9a-42e7-b5d3-9499631bfd06", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "84b1e240-4f75-4c86-8c1f-1026aa223717", + "metadata": {}, + "source": [ + "**1.5.4.** Create a plot showing the number of people at each income level, for each education level. " + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "d7e02da8-beab-40e7-95d0-74a5c2bc838e", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "ac717580-4157-402c-9262-b2b50dfe606f", + "metadata": {}, + "source": [ + "**1.5.5.** Plot side-by-side scatter plots showing the relationship between height and weight for males and females. (There are so many overlapping dots that the plot will be more informative if you lower the opacity of each dot. Try using `alpha=0.1` and `edgecolor=None`.)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "b00dd7d6-226b-469c-86d8-b71b328aa576", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here" + ] + }, + { + "cell_type": "markdown", + "id": "e9ff7225-5d08-428b-90e8-ee60f4a4049a", + "metadata": {}, + "source": [ + "## 2. Crafting a data argument\n", + "\n", + "Everything up to here are just tools, worthless without a clear research question and a convincing argument. Choose a research question that interests you which might be answerable using the `people` dataset. Then do your best to find the answer in the space below. This answer should include data analysis (code cells) as well as written argument (text cells) explaining what the data means and why you believe it answers your question. \n", + "\n", + "Examples of research questions might include:\n", + "\n", + "- Do older people tend to have higher incomes?\n", + "- Do people who sleep at least 6 hours a night tend to report better health? \n", + "- Is it more common for males to be bisexual than females?\n", + "\n", + "**A note of caution:** this lab has given you tools for exploring associations--patterns that tend to co-occur. These tools *do not* equip you to argue that one variable causes another to change. For example: Plot 1.5.4 showed that people who are taller also tend to be heaver, with a lot of individual variation. But are people heavier *because* they are taller? Are they taller because they are heavier? Or maybe neither variable causes the other--perhaps they're both caused by something else. If you want to be able to answer questions like these, take a course on statistics." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "6f934273-b829-4bc2-a7f4-a27a3fc44a99", + "metadata": {}, + "outputs": [], + "source": [ + "# Your code here. Feel free to add new text cells and code cells as necessary." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8b4b852b-402c-45d4-b3bb-840e47b249ed", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/proposal.md b/proposal.md index 5a8632d..10ee5c6 100644 --- a/proposal.md +++ b/proposal.md @@ -4,62 +4,74 @@ This planning document will also form the introduction of your argument. ## Overarching Question +DO PEOPLE WHO EXIBIT RISKY BEHAVIORS (SMOKING, GAMBLING, DRINKING) ORDER THEIR STEAK IN THE SAME RISKY MANNER AS THEIR BEAHVIORS (RARE). IS THERE A RELATIONSHIP BETWEEN THE TWO. ### What central question are you interested in exploring? Why are you interested in exploring this question? -**A sleep study using males and females using bedtimes/wakeup times and hours of sleep for the weekday, for kids ages 11-14, to see how much sleep students are getting during the week and if there is a difference between ages and males and females. Also does their attendance percentage in school correlate with more sleep. -I am interested in this becasue I teach 11-14 year olds +THE CENTRAL QUESTION WOULD ASK DO PEOPLE WHO HAVE AN AFFINITY FOR RISKY BEHAVIORS, SPECIFICALLY (SMOKING, DRINKING, GAMBLING) ALSO HAVE A RISKY BEHAVIOR WHEN IT COMES TO EATING THEIR FOOD. SPECIFICALLY IN THIS STUDY, IT IS ABOUT ORDERING STEAK. +I AM INTERESTED IN THIS QUESTION BECASUE IT IS INTERESTING TO SEE IF FOOD RISK BEHAVIORS ARE ASSOCIATED WITH ACTIVITY RISK BEHAVIORS. I ALSO AM INTERESTED TO SEE IN THIS STUDY HOW INCOME LEVELS EFFECT THESE DECISIONS AS WELL AS EDUCATION LEVELS, WHICH IS ALSO IN THE STUDY. -*This should be the big picture question that you ask; use at least 5 -sentences to describe why you are interested in it.* - -Does a high attendance percentage >95%, have a relationship with high sleep hours per night (>7hrs. per night) as well as age and gender. Does this relationship differ between males and females and ages. Overall does age, gender, and sleep hours have a relationship with high attendance, >95%? ### What specific research questions will you investigate? *List 2-4 specific research questions. Each should be answerable using your data set.* -Average sleep for females -Average sleep for males -Average wakeup time for females -Average wakeup time for males -Average attendance % for males -Average attendance % for females -Average sleep for 11,12,13,and 14 year olds -Average sleep for 11.12.13.14 year old males/females +1. DO MORE MALES THAN FEMALES ORDER RARE STEAK? +2. DO PEOPLE WITH A BACHELORS DEGREE GAMBLE MORE THAN PEOPLE WITH A GRADUATE DEGREE? +3. DO PEOPLE WHO ORDER RARE STEAK ALSO DRINK? +4. DO ALL FEMALES WHO ORDER RARE STEAK ALSO SMOKE? +5. DO ALL MALES WHO ORDER RARE STEAK ALSO DRINK +6. Are males more likely to order their steak rare than females + + + ## Data source - +538 WEBSITE ### What data set will you use to answer your overarching question? *Give the title of your data set and provide a link to your data.* -Sleep, age and gender as it relates to attendance - -https://docs.google.com/spreadsheets/d/1hB269WnLnm71C6WXjyBM9blWSF8X1Zf-nNqvftU6E94/edit?usp=sharing - +TITLE OF STUDY IS: STEAK-RISK-SURVEY +WEBSITES: +https://github.com/fivethirtyeight/data/tree/master/steak-survey +https://fivethirtyeight.com/features/how-americans-like-their-steak/ +https://docs.google.com/spreadsheets/d/125buas5LwUrDXEgQh0DPniGkA6-fWeupBgaXgUqXoOI/edit?gid=1253281910#gid=1253281910 ### Where is this data from? *Describe the source of the data set--not just where you downloaded it, but the person or organization who gathered the data. Explain why you trust them.* -Changing school start times: impact on sleep in primary and secondary school students Open Access -Lisa J Meltzer, Kyla L Wahlstrom, Amy E Plog, Matthew J Strand +May 16, 2014, at 5:08 PM + +How Americans Like Their Steak +By Walt Hickey +Filed under FiveThirtyAte +DATA LAB +https://github.com/fivethirtyeight/data/tree/master/steak-survey +https://fivethirtyeight.com/features/how-americans-like-their-steak/ + ### What is this data about? *Describe the nature of the data in the dataset, including the number of rows and some of the columns which will be important to you.* -number of rows=50 -gender -attendance_percent -hrs_sleep +number of rows= 433 +COLUMNS= 8 +COLUMNS WHIC HARE IMPORTANT ARE: +1.gender +2.how do you like steak +3.income level +4. degree +5. gamble +6. drink +7. smoke ## Methods @@ -67,3 +79,10 @@ hrs_sleep *For each research question, explain what you will do with the data set to answer the question, and how you will present your answer (e.g. a chart or a table).* + +1. DO MORE MALES THAN FEMALES ORDER RARE STEAK? table +2. DO PEOPLE WITH A BACHELORS DEGREE GAMBLE MORE THAN PEOPLE WITH A GRADUATE DEGREE? chart +3. DO PEOPLE WHO ORDER RARE STEAK ALSO DRINK? +4. DO ALL FEMALES WHO ORDER RARE STEAK ALSO SMOKE? +5. DO ALL MALES WHO ORDER RARE STEAK ALSO DRINK +6. Are males more likely to order their steak rare than females \ No newline at end of file diff --git a/r.jpg b/r.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4f032ed40a7793127f44bacaedd606e7ee2c6e7e GIT binary patch literal 10096 zcmZv>1yEek(k{A(!F{mcOz_|u+;wo*kl^m_8VC?1K+xbC+?@p1;1FbR3$7u!T+XTg z-uvFG*Sos*TC2NucdhEG{`%X`3(xBSu7WH~765?&0QB+z&r85Z01X)h4(zol=wwRpd`evC@Dx@{dYqFWrPw_&{2>Qzvg^R|Av{3jg6R!o1dGNkCBy)6@-qC zj*W#)hKozeOh-k>`Xan9$E@uCS^Zc3vts|h+y6QJKdS^vC85C2p}*R0gQx*goX-2dT~a80N~e%c$`QQ)aoY4 z_%0y{C|r591T>PS-GmyNu2a(+XXo5np@~WPbv>_$Xr;}}U%o>M0>Cdp{@+nRFJWG6 zY!Cq9zd;a@!T;m%5(JF*niEk%9p8l7C83spOCu!jj9YSp<{1uPzIeUZA%GaLKhCK< z^ZU=#2NHh6249<4bb}%mbjCQIR^*;&#xi2U4c=qw9hNL+MA}9lnKwFl9cew4)8F&k z@QNhE3DgZhGSvG*N^Z!aoY7II>|n$<>G5A6RQL>H=tNtxq*1e4oSu6qy}|=DS07DX zHgbx@jDLE`6{4Q>j$Q!|ht}k8jN+zb2t&iEH;U$C=u;FXUzag26j9F-7@FzT$`I(v z=gAPLf&Tv$UmS_>&&K;XJ*596@}48(Dte#-5wU1W#x(jJQaHg}@l`jcz`rLTr{~)v zuUl9MLl|Yi!@05)BdlCLNx5Akp%9#T`}aN9w926wZnW~_+fB@FDmczri8d3~^oEbm zb%emsvOvgA-)4-uo$D9nA8C8jJUArj*{URiTQ^!G<=U;UgjJbaVj%Qny(qs(h`Ilk z-f6v-Jqe`i#Lp<;qYhX&CeR8{sd$ZmmJnY}1rwvuQ{Z%Uk0Q|eFr!<;aCRgw#?Mnc z$6nfZzDIV!+c0*yvz{PBpo31Z(yOAOZ<%P*So0dyO=Vj9jg|yYGw;ids~D@x5CH#A zjj)yRU7k;#pkE?E5`4qd(B|(_Icg$9psj??m>-OO)<_3W(D-_2ZY$|%`;}Pun6;aq zm^038kZ1bf=nsmiYVbN%*U11^p~OXzQ621y@v#MEQnMIiHR~S0XznfM4!d7#oH!;K z53IXcxzJ|uX!m-&qL?{=)Fgqg<;lVLkZ$6V{ci>qI+iiD>8D+gvwq!s#bc~2!aUED zt=3TL?Qlimy4FVs|TKI`HiA&ROP`NCuGzP4sHHNi^%Ha$qW)m9>Y!2ox1u%?P^y z1!pu84pet6HG63Zd%X_U9$1+!jGN{jV-=|t)Kxd>*6^1PTKoc{$2r1>(6o-u1X481 z+h>U;+hj$5Im+k5WkB$|^L=1qmpMrJ_g3SvbYVS#8XHZ6W-^o^3|?r<>KHGpb4T)> zS0#On^he)2JH_#CWNz{VT7T0J&)KdwwC6F|IOF-vD&92ST;}AZ8d8eJe>ZPTi?A41 ziH+sJc$VgayzPXx7?0m*wH##gl5<%iNiLF*1H~V<#tWwu6j&MBUSs(mhe!S8@-_>( znD{!~sdAwo=XT#-5HBgp12^apv)fvm35#FUd1F>o%YwX3>eB?vGc2LQ8y{HsGh_oa&7jA~Hma_LmD5pKOXpYUi@TI^CmM z@&tVbNPW|1oW`F4`N-Ru-!b}bH7~`5PM|IW{BQM^0m=BuSU}MktI;aKaON&Mc-Kp5 zH6SZX9|&I7wWsaYh0^`R6E8LRweLW>m8ON5bXKK1*EX}-)^u&pry3aylRj!mS~m8% zo%&SlmRjqtHa~$}`J=+pIYrHpo-6KrV}&*nf&cq6@Tgx-ZqRfO!-|lixy^^s%rW!M z3Lcl!B~Hlz!H66TiF!jM>sAvPpUez+#Tv8=dgMg)?sRRt30f9T9)y|00wzV8o4yZoE>4 zpv#y-y7t^ z6^?Z;=hL3$;;=A*hC$;wQTG$87@g4rbW3*f8S+dRj>);cx zdn8H-6og5O3mU}FXw3h(r)NI1P%UV+oNf)RM;HK|c}qj?r?_sEY_Gt2Ry6r0&sYAEaNy~QAGA&coQ@!c~ zZ^*pUE2IG(X;cLcHHrc14SbqOuggl5CE3ynTOPidw3b%2UM%}E8E?C5RD~_0dQ|j+|9$jfssOT1hPvL|8`D%;Ht-B{-#Hd?LHauEbn0;-c~&l zzr8CC=n$+ z?7ur;735}m7kwq$h2yz^f{Bxm7Pp2o&?Xu_zD{Giq@jpE%nbTyzI9RMbo3eN_dB}o zFX?!#EM4mlGVaQ3MSLrG7+w0pn64;z44uga?=o+aixWv4j+^9#Lc*!M!`g6CtIsQN z4B8yvEkeV6&cctb%x_TptD~KE9S7uqvWb>@VtN!~ zRVvV7bY_Xd5Tm0NS-!ACdfZX@gNuCYbf~G)-<~H4Wm{efZ8Gad>+UXE(BI>me%*hp zlQ8r^xqaFiF@>*|Yjos{`Lla2;~Q(Zfoj};qgU<;XDb)?=Q6eiW2dB~Q`jaWg`R;* zx09lBZOu)5a)q4B;>T3EcCR&~7UgfujZ)@po1;toz$l(ipJ#U}Ws9S%%j`6}?{Vln z*5u?)b1Gs4MKH3682`VPz4uFXZyHOA7 z_9J4ai{1n94788u9=PMUdU3{KqUK2YL|r}+{Huyd`uvMl9EBT>CLB0#23gG@UT;TV zPc@~hZgea#g*>iI3h?2P$4BFex)`M{2G;RrC<=ZF7daT#TnN?9y~e|&++^O3w>t&~ zdvQHcUw``4W${TEbVdk&8s;51RjQ}Ps=N9rr1vH8qknhFp^Jp6W{l0^u45g4z1a)s z`>Mv69}WC(eS_W5#!RY&97?LEpiNMQ_JZuxY`Wgi?IV?s#MF7ejnlt+sJByCRdo)~ zRz0h7n|4aYpz^Ww^91lo_>(TGa;^?KAG5-C0!5qF?wQm4UVqna>oulJByvM`mAldi9v;coC&{8ZpaDnpK77V_Q&<1>vGje!|*93g+RJL zjNjS0dLdv78&{C`0Wi^e?P1qHi3h_Pp0PvHF&D852?zm!gzva+tp8aN?C0}OQB*Jt z6gmPC05N_Gu>h}4?r*N|*TFS<|8N;l&c2rxzcNBN*71zna5dXwa@xy2br*p1S(>Zj ziC~fNGtSKp2TmL~G*#fC+;d1dq($IAsxR$~IaaNH@Lq>965x4{Zz0B)%x}G`FIutl zE$1T=(gHyW3N(rv6S;IF<7`w zl^)FyzLDv;dx$07Z?_2f(;77u$w7Z%Go1W=fpWHY>@Z9CbvoNeP0;wdzn+kINZhs# zf4h`IBowkmuWGVS&qb5*`%-lptFjs9;vzwhevANB<<7{Qsf?0vH8^0$b7YFJ4qJfU z42K4}2l8r`O-7JaeMNMg%v1eUb2~df3y}RYhrtz4MdD`M(z$3uA_vX1uctg?%g{nX zt(qOr&%uqd!pU}K0>9tG!|GRZsHv@*Z;?Cp;i<~p9JCFJo9#H$)p=h=Hs!i5BxkKMIQAvZ{)5V{{Vd(Gc&zAN5MI9(Ii1^fqLz$wlq5 z+QlOm{yM#q!(oA>Hwd(v_xawrkWC=QEujyBui_qHCt3@oBE7HA;gW~`;X;{9mnaYH z8G%h-%TDpiM`|y6QSm)ip@PFT$6bKU^iBu%98>@ogC~JM3c(U>GPrNO^ zQWzo<^n~7RXsd?yuNqJ4>Qdc}+((!!u7SB^A8somHm#ew!Zp*?LiyDI{Ig;WMSIie zItMMsxLerTrk%?bTKPA@a>Jj;eF3!t|DfroLj0HiDi|6^lp7s}TwnEAnvHW{`vsBy zehjX;&giE0ghRccuM$NN<8Q+a1%IY|SlvxeeHc3WsxISg_A-Wuzsy|!Rq`)~cWd_- zLDP+oBZ_vu^Y=H;K#ARb@~GI?>SsXd88E=n=zL^;v^x;N6w3>M^txTR7teWAUq1u) ztj~aJhKOAi`!kSMvgJ7S3{2Z)J_C%aPsvXW*ad!fx_481CXX0(|ucI#1BbwM6!G=y2^gM zr(fGwc7qs6#Kbx`5zb15Vs zTEr=x4+h#B3W^Ms$L6=qtIQhM*=iqizu~GN!!z#^h2Yil{<&^tl6b)ZF=#jDB)7j$ zb>^0vx`VsaF|G^Tn3?!o(OE7m4ab?N!uFafJrOsFKZjZBg1=Ct?&GM}6E@8{tA_b1}=; zcEi>=INTJ2R0f$Vg>LKGZ?!y_{lY?=tHH!Hbdivyp4J;3nsTyoS9tqLY>{7A5_qC> z%dp4G5Hl6`*cgcK;4q^H())bI%-af=e`DPYa`q7~iyHqa4YTAks1hQ@{#GRo?<*x1 zbH~GU#oz&pbn$x3u={PSYcc7dS@P+q?7eo$M9V}i8$&uSR&F#I3Z{D`wFGTV@On+L zvGrUd)eWUMZ zi~2$^1jO!hzP_|-4_yRqy05tMlsDZjTmY6RF6TgyU__fIroo0~3nB>doFvrLipvu1 zSX2E($IxD=L_g^dHX5QT(3icMEK@0U%4TRK&< zX8?#3>bLS3(bctYL44QT0Pf4Ly0c*%S@tP2I}$hg7twe@8K_K$ro{M>J3-@ z?IWj+(wJxom>|||=}hhM63Oi21*v*fhc4-D&f^P_ma?oMl~!kfFgKZ=wu`yhy+J+& zJeMJqG4J~Hc$i9&qLvIGY(1__!NZ;g~^pGG>U3#DO(P>n-`qXaGqjonq6zSg5! zXee0$#uB@ZZR3nu!(_cBHp@g?_9HUx~yE&zkfT4mCHZ`6-sQ>>*}FPEmZM zV)HNey0SS6Qk#BHT3^fuIZ6iUgU$(zU00Jo9o`w^w*JB+zb*hz; zAlq!M4Pcc#{rp z+YY+-mk*WCfM3#&hI9g13cywBR<8G@MmCVM9`IAG>Ajuj(ocORW60i z(|u*_GjIgWxzz|Ft`t+AUXi$48aSj{K`&V63L;$}izf)8t-jyR|GoU}1;}u8zc5!Q zzt|@mjbSs(R1m5xZnu)v4;{h&`f`74*S_0^UwE<&2mds40&vad3ij?i|16zk4M8I` zh$jTdGp{o4Jd(YH`x8f!ELxWKhr|Z58uQ#JLbf^{IsZjB+bNW3;f=Lmb&=o5Q48D- zmKH5d6P*1Ri2NOiyR`8k13%NCUA!NLxb_GtElQ315~+= zxYHi&m1a~hH+Y0OseDj)B=;FGO{X~V-3){PU27)Zu2BwE9G|a0ur~_$ux3{~6gVK&7^nRJE1(X?J&9H}cy&b+aQrK8w z8}e!*p!zA$1to#ro*R`P>uTxBH}wTJt!oP75@w6$1~4bzi#@Fcef(_JlI_ork|V&o z=k7Wa{f4_%Ikjl3kE41O}%q&gdrY`F^rbv~1;+|F%#( zC%uT(glTt$yTb;3dE#(oW*K@n$c*vfN+bf8gCj*Yzu%M0n{c6}B_fXc;}8s#C~fMq zr65LX07=U^kjO#GWEf%@Q~1H`H~SLD-yWiP?U)e$ZMU$v-_CPsdZyaZVNF_zh;nZH z#APDNpBgR321rH$%v-AtH_EJXlcSY>KQ$W1E&K_Lq?o9OGOiD3W6|1QCKhJu4Z$uT zy~n9d8-CmXWy?lacx74P5t%9N6BX(FKMaKummv5T0`YF^B>F(Yq$vbmr1ad>E!s$Y z4uL4}`LXuEmHld|^N%rAC8G;H2XwAc#CTZxhqUq!7J~j{gR71j3z#4d2K?9N-mS=G z4XGj<5fLI$oFePDQRB8tC3_?*QQC_%-u8c6Fs032X6B1f$m)a#eCzYuZ>t;u72>be zEIu}~#($#!(Nvji#?Ys-5vK}{98-3n)_2!Z%Qq3fF9;Sw<>-uM*ZKafq~GP^AS8!- zaG-e62G_ntxr3RLBk(T|8Z9;~{=&P$t0AUr?wUEC7|P8}o_!xLa6!I~KIcK$F4R#mcwR2G&16 z>n@5(>}2gmS593_u_W+5K$SX($SGk;8(0Tj6e$zvPNe>qA^s0b{Gy`oM`dj4$C<*)f@8vcAUPwb*jb?k z$9HELJU9Ws;l@HLhO<4Kb zWQrO#LCi z!6B~+L%$7;M59pR=IUmQ*6{Q4b(`?nFvjP#&d~}eNiTx4F&NrSLxVCDZ6{}<-ED2Y z9XlC_a(1V^^T{vNaZzK{bD8?3od^kJ+Y&V!SxzGhdg!3^a_HSv1Y?qqX%7!iQ@zzH zuvgVSz&Lro_(B5{BMDECX9qAFO?n`#lv|gzClknSBuXd6;qX`4R3Cb!p_ri)D?Dz6 z3CAItavKDu{w|UN)5WJ@&TOdRILg?cx5&`@oQ;tuIlMCXfoj2yuE&#Ne_;u+1U&=X z@EW5Jz28}Mf!k|J^?lx&-wOWVuqL!FAWTL0X($sqhm41$m#qiW^OqZ{#~=gb)t>`9=k|mkhH}Rt%3?k|X{TL>gK3vR-E4YWnfHVEUiMS09RF-zN44w|g3@$(=%4cV}zO{#H3% zy(*e{YTI}A;39ZKEh#Sa)zy56p#ev5#Usb=a?U}d+l6?^+RhEzU*@%3W~f|l6=f%F zo$5^V`fjLND=dSF8Lj$WW2&Tmk!|ey%ZmL;zXZ8ndhAv5V zD4w)O={lkbyz=gKUp@5d#)#X5j0lGW8Q{Oq%rs3LgXuEnLuS3`l*)sa3|AA5n?9+d zH-|TKuD9PcP1vvJgz&Tq+Na&hn4LRYf6tE&DH$2Fy~FC-6op>z<}g*wEHTgqqj1Nk zmR7QB66u2-7uLO#JEU(3L`qt!bxW)tr|Xx0C4>(X3-E{R?0%3VpKbmi?K2haXCOn( z+7ljpRs&ZuLz&;n@H}aF6~!4m;1ijovsJ=u@F=w`1PkxV;gX}(*7;Uc$6+PQVab8A zWl;3WA*M!g_kz7~-r+v4QA^e3I^NsqxQr{Vi;N2~JuOC#@b#s1;$&A+y0MI06PqDN z*%QGoKZFVw%3hDFFxNJLnWzk>^OF5T* zm;i9j%V}mjgvJKyv}lo$FmWX_w`Se`FpUq^A3IO9a`~LqJcP5A#d4mT{>B=i;75A5 zB+`|XFagb0iu2Pp`o`DI7DF()aiO&P!?7`NWbN8d90>-{&q1U5f_U!k=Cgzr_o?m2 zO+A}bQ~ai7J^XM!fj>7lpO~%ARqZX0LDE;60zc7rOz-hZ%D2#TG=#0SKr?mKD90BU zz^|d(4k3da;@Mk=?jA1)x~h}zSxk?=UXeq%x^w0sac_P-;wuT8NZwHlCW@bp zVxtxXNLRt1koAlUWEnKByYRj7Q-PPo%H?eqe&oBZEiZcli!GK9p03{$Bqey~^sQSLe( zNhaOEx{Lo6PgWE0TnVTYln6D){&Y5<@F5;`=C2fc`FZ()Ol0*}_s7sUabq`z(3V@B zjQQFUmZeaf)ub-51gdZWCn?wNZ|puW+)7%7zYTKssyv6x>vB=9G4Hc~?GqiBr}QF| zy={6whXZanISmC0itOOi)O5*~nh3awiwWtJ>|f`8sUF>W*)=NzmEY@Kx7MZ|UYR*wGJ|ycKwL1ffes^`BK?0fB?*oP z6?lbAk$?k04xy;u)oe5(aSZu+-0h%pN@B`AjK8b&k1g|CvVE46w5uLAKLX=F)@!6# zIvKh8z;UwT!=*ZrGbbMh#l}tyr80KRd~6t%H&{)ic((4{Tlg=(`7n?70Z{Q?2!4xy zIV^uKW30a-RqEmVb-_>*t-mc_gNW!An{9d(kL=$BU>!`^8Ea;%%s0ZoLUh!dov(1; z)PN9?6ed#RtaM8`yR%vw00*~x;EcGtP~9~k6I9-&a`$|pnjTM6lbLThL9v}5&PojY zG4|A9e&rG2kEYZ(Xo;gZUlPSBiwmvWV)L9im&aNNP2VPq>XAH@!LMZ{1J`q)Oi0HF z@`j$>BENL_CCUl{xCS-nFGII5QmXuh7>^JrmLeoV)OmfCMa$;yS)Q(@9V|G1zKVd0 zUb?8CTryBHh!e(}?P`h09xir}plR^aOegXODJ~na;b^k@>NXgxFfLi??R7{KeMn3P z9vI8ScKqsK(4?ejrfLMgmg@XBhjPom4@I(c@F>!*P0gRQ->tAt5`IV!%knVEZESek zO=~s3)30kZ!|+$e^)5avUoVdaV;aq{>>80ExX7h_!X;*IM%jbSlS;7sz*p--Tdx0` z)uetq*a;g?ULF0R`el)WO`TQl~-<0<)=JW+dP+SFE4jVj#}tM@QKa4u{cuxd3kQ#UOA94`n=sa;gJiZ6R1C-Re! zfnmXXJ~VVt<^WsADI6mNz(eNX96*`WE}F1B<#rTYT92n+!ZYuNkd)pDeHxvf`|A|7 znXK?$+3}v5Ep@Rg7$+bgnBs(r@$W@HzdJw@F{)I1WFCO!_q|1eM0h?thAP%9=>qYP z=>EhhVPfuw-#T9V595ZrF)aax#K1;_I7L^Vytkz4)wLCf-Iii{1=e-m&dSueJbm_%0o5QpNj)P zPKB~h-rO>yepVEvWssotSUsg6&-|>F$5_Es{kE%Z^R1$)IYmrgwn-E}Wcae*Oz>yh z7J?!LUvmN=9i5`J*9Kc3uZwBwsf*-F{} zbWMf@s-0@XbYnEuKPQg%!$y|8;?Y%WaHpok0+RfNbqt zoRq|c2sJdd2qCwCfPt`pK!K=$xD1V*9Rw8=Wd7s+f5*$pKli^_r2EfU|8LL#SA{k) zbvFL@_wHZQH+FDx`B&3_a>2Q~IQ)k-{xPc4zoP!J&41YZzd7JPZ1mrp@?RbmCELxw6oXyY{vTJHPkjyihmVJ+{FnZ3fEqyf=luiQ zd-x0fe&5)pdA|Sdv*S0;H=z8Rg1>I@z1aWNbIAYuEdN;^pl6x?$y#CZ>vFhgGr!ak zO`vY>=TOJ5>{z_W`|~^gXY9?MsE_TZ2SD&y*N^c4I0anv@b>uvhQ2?4>LOpI0B8Wn zZ^(Yghue$%>%L*X2mhuE(0SNt{qH`3SOMM^fa9m;yWrK~3;zqjm;dT#_)qc=4M6@w zZ_Q5owDtE3&e4Ii_>cVofa^`gv$~UWz~+YWr}|I6tUlm7|Lf<+_tX2W z=Q{p$cL^}_)e68nyUnkw^hfzA`&oVW|KY#&yYM#v^nIs?=?4M`0OFqnuRB8kv2WNf z`v<_e|Al|r_sIL^E93)UQGb>{9kBV+^g8t2Hm-l%w+z_vkNBPf2!4h?R(<9kX`O!8 z3C;QX^8lp389wGd^-ugge*yvG0Qpb-9YA!S9v~c0^f>l|uqOWqxbc7BpYpp0L<0bT zwg>&s-A{i0?;8GKK>Ew(9>r(;yZ@*E5n$7A+m{y50_ghg`}E)J`{(`1_z4BT0@Ocl zUkO_OO9%&W{9FP!zT`jjzX50d0Km)V8sPKi^MK)29RS$XPqW{w0|4%(Lo8}zml=gY z$e!{TG+O%ZoupaGc)w-uR#fKa8?mrSmO`C=8$YiYHK7O?+pU1}eNqt1>*mMXBrCE` zXC3KZ3`cTa07n(7c`KA_K!dY7+9vU10g<6c9kH$f(Xyff{FRx+r!CWQ7xjvgVs%3` zGBy>sl37SWBCBOn)(jx};M(2Rq@)}~~`Q`6-h-&ZbMeQ z9jn6u1}6hdF6-Y?lo@CpgJWaCpj9L&LG=lUh>;m@XhnTt9?H|F zmVLe(f}%BzAWGuIM0KuF#e>IPmxYDdfrz8!8};mT>5|%PtL10YA7`&W;nTZ7F#1DF z&N=67Z(sKYROlPKGE$siVr6{83T}XoqaJ;QiFAn8<#0M8BI9_qf6k-!vL$wMyJVq} zkySOoemd=p#!b>#KYK_Pd6jGpCZ{)Ro#+6JT?k!l0@CRU^9Qgx;Q=*C&nd~=k4#^%kNcbaf)mG&;KC6_CBUJvj z0}8zlHO6OW-42+5ho;_g-4Dx=?6<0TQ47vw#(g(kU2DV46I+?z3JnXN^xN2=v3B#s z0z7}HTKmd0lK7s1@z2A(<^+xV<^de*-F|GQFjLp^;`Pq`pK0hg$?MI}?`x0aJbh)* z`X`lXkQ%CRx6120X7%$Q1`iZ00#{c4#OSqq>aBPyc3Z2=2@9Q$m1jnR7fU$Te&hT+ zbc>&H-!jxSg^yqhaY5F|F5ofovg0Y<8(72e@Ss!5alai)@}((U%3L#QKb!sLZC(U2 z(*CS4iWaN2wGg#RbDvdN!~G2;#Yv+Sd}Fnx2yIg6hPhE#o*`vYYk33)O&qY(M#txN zBapytqk9fVU4K&A3?TK6WvCN51=5>PIHW(G##rzRBq0wsiFoz#)m}^J0^kc-%&x@r zh_WT;ULA?ZBKCBHzs4bnxAWy|o)nJ^p1rklZy}xQ7qw`>h~@{zXb158P&e}1?8@4X z;LDOh61gQkj|Nly17AY#n2udak+8kixobO zVB>D(R_Q{F;{BFi05}VF$iy;c44td|_BmHcC)YF2I*U(L(I)CQdWqSmaP|n>4L}k8MRr!7IpHl#KHo>I!9k zqwjeNYMP!SB3@6wzf|mB>xV1GvhRsrGo6xR6|uqMVmbZ(3r1fyedt=`o7+w4GAQRg zl{uMpl9C~wuGBk7jD=AwPg2qIt(!d*42^AP)=WPcj??NDs^J#&Yw zxpLEe8hw}V>ao*4ehK>^ zBea^#ULwpOS(&visQ-A^Zlioqg74&qk{0x|>x2e&F!tQz$dwKs0)w-!m-2i28vT29 ztAdYo(8tb7SBzMFNT8d!%c`zPpkWE1L)OW**fOiQ)dd!ms-V0F8?fy7*g7~YVk?I` zQjY(5vh4F?*xI`AqCq*g#{z@>&a?Je`^+N<9R*NS(%J5lojX56*9>+d+^M4LQJ?Au z2;rDH7Y0GggYvm?xhuF|V)-UFX0e0g+3)oFP-vMRJhbLxo!MnJ8_sZPHDaWiN`8&n zD~0jZ20bPY9&c}VHGXD9mqd{{8hzE;+5r0nXP3h5v~3f)}~vHk#;f)}R76 zZPV{kg7Ozzya-u7a+B#wnS=iTbNP`U({APuDH0d28+wVdcFm@Vv>%v*{xZl;F4vHd zvM9KLM*{D_#{qd4-BxJd3)}bZ9_z0Y)VMoEk3;ikMaPEoM@EUxoGIg=dX}({t`>jPdc|A-fe|;mN>?i#j-rJ;+-*cjE2eyt5XY~1WRhc3s$f$ zkZ`96>biY|Xxt4NDmz-~aRf^7Xi{pwiu~jI7Sg{<&jfIJU*~lzt1WjxKp#X}^V*y*OUTifiglTk3dXHgT(DjrH;9(6@BWEzBe&2sb(gV`plW;5DSAd2$>MyD zP8d-~s;AisW3-uy+s)Q6SY?XbUGl2#7b*s>Ql3&6$bbSH0cF3VtbkTBbYT!~f$R67 z&nOs#!^IYo7#Yj8?J)MJs@qg&UE}e0oQ)fXS`e7RWA}nQ7D5~jI`E|Cu2IB2I z)2&S9BX;zF3_OqHY@AQ796I!q0DfAHuM|3nZn5afumaGg-E7{{f>%s7C$N&A_!gXGGCd|8ivIzy#6 z?Q?7h5YGE@LPkiuhUr(WF`B@M%fQ_67OmI;p9-p$vTrmC6jI zg9e?mC9v8oC#NbCec-HCVz`lQI@8wqBg;q$ke1|?FGiN;5iwy_2QQ$k1w3vc?O1g1 zCpYy+mMfA|V+{kd1vMU2e-kwoPa&H8n%<9gpMGp+UMrTH45wf8{4+;|IDN-48r~xY z)UYSu0r^2eCNKG8e*}sEm|?o?fKJ0AoiDzF;e>|~S`V4eG_h*m zOp=L;IF?H(wnz&Ffyd*jg=0hu>L#!6GJ1T5J(5!5#sVPYHtat3n?E#$gRomJ#iX39 zbE08AuKXAGU@k(oCtv70^j-^i1`-dY9z|}zasAw_AVhTjRxFQz?K~q1ZzE4?ZD;2TK{|dqM{hF; zEc9)DfmJW3g0EE1RMh7F9Qw5{uBhqyk3zu@l|4)K1LN}Dok*F^hu=6}5FtpseN%!9 zQv`z@FsmpK_z-|XP|&mId;Y?YWP|#S5tmbgKAUj{vj7cP6^ zG4swu8918I)pdGrudi;X&drI^(Q!Srnpakq!R}Gg(mGm-7B{cnLtx;sm=*bpqIk>0 zX)0JQ!hvV^%psF<<3~;A3%$D)G@J|Zg3GvI`DxA~SbAtMAM(iJ=78=_H@5drC_}OO zjWes#Wxph`i_rsRvIy)!cO;m8=PZEgNDN$jZhdJ{?jzLI= ze!uoqq1CFPH!H6?oij?^y$TWpak8p`j%gYbC6VDEwWT+I9A~KPq_HG7YWrX7;z!kU zWPUzxw-q*VjZ2!iY`-C9vYlz$p|EQU)9<7VTyYDvZs?)0o7J27)PJXJ8pAduycz_G zT^F&%W8#V7{R*DFc~X)t$F8@=AG|Ltu2a6fNrvr@HAkf8?Z^Z{u@BYUd9-q6YJ?a( zB62^K9a&P!_uV?Ziw~8ub!m>!Y~k=bt~vom{0@-#u5>u# zcb6|TE}X(l=hYM=i8tboQB+OAXv*pxR)p4>VlI5kyX7ZW@4!GY*0G-`oi{Q*nv!td z3<0>aEh)+Vc8SOmnuf$nKams|XKF(MjCGH2Xb*iU%eT!}aDbANhq?QyAGLg6s(HY% zZ7kCg((43-;5HryArQNMyDSE-$uy0Z7`o*$$wGf!fhwDQD3O>$I3v_*-(9i>v5L8^ z_dw%sg4jt{=M1D**PZsS4x5*@ob-m5m4KKRAj9?uz&Lmx+5REa-1-oT8x7@(^hY9p z5-QWjT7Meiy+)E#^V>o4S>(9r=uVg2JCG~?W`S1+^Ug>!P^6ada5q1$uIrdtH;{Sj z#WwjnE1v*M(wog$C*U;Zjf^eQGA5nhW%n497G}S|Z~qkFePknG0=+M!eVc3rXQP*i z{&X{VEk2F;zGp8>@&a+={>7?2k%177ausDOcM86-9ZLHcZH>xFJAY@xnR%thZ6dON zO<(7G%N~#flHvUd{R5`PW-)qDx$x1C8HugWbzt4^QNukb5; zo{Ld8GT&jGZ0we465|2CWw8~hK28R*}9nBiE< zw0o}sr`%~eE6pVx>|c<;+GLpu>~SSy3vcaz5Ol&6w(7Nc7HOan8MGgvL!reVkL#C- zr9Pls0TsZR@OH@z4^=F+PCE$ItA4rYjuPySNVL`InyawX%_q|w*?-mbpDIm3MMp~G zoV5ombNNSpaBF;rlh`7O01v!aXKaMS!FO6VGt?om)t<1yoN8kyct6* z92+@qJ7MygzlvnJtLXH{a%Lwkz9ZfB>|pT;=B@^RwI>)`QEGvbdP|2hwKCpN3M5RG zK+k_nddqQBeD+ZeZ4Wi3lj@wIOJ>Lnpy3b}t#^e%>MkdA#}z)GB_&nZZLUreRu5D$ zgVJvych_R9?LoCY*e)<k8JI!j^0Au**vQs>71N|_Du zz-|ZLnCPq^$<4CR|A;u8h(oUGy_2Nx^V}Jz=~*Z|$`}}Q^isff=IN3PZ>Cx^+})J; zwHE=VE{Wcz)N4l+Kh|qb_`v}yi@JwJ_*4G^E=w;URHTyMUYLT`i(Q4ba z{s*0t6V|4-VU25-YIT*NlMRX0UTM7E5pSHfRNcQC4?!_j-UaxNCBknZjvNgKIgU+S z(+b&1hfGCyz5eojlAcVl0z3m_NQwQ+H>!NbNetFDZY1jY^|}+6p9UoKp-v6P!_~$g z`V{C?aAOoDWbrBt%X|!jb9z}Nh?$$Qm93;?_UwEymXPAD0YUeyf~R@DE~_&xu&|SuKBn+%nL*{xJ4R#-D(DFNX-)hO^?j*vn1sZJLJsFU&wdiVU1B@D&}vdGe7U z9tiIUhN}q^#`8o`2yXOdU^;JdfMa%Y)cvSFa5BsR0vT>8oc0Hea@sb9gdaJrKCWI=N$yZkc|GV3atX)M$)|I9ttxxx#DGs*(`TmW09H$ zZNYC|u%Z|EM;K%IRF}ajl_EEeQki*r0!|?qMsTlkF#bCe4vK?5so-R$3tE4o#bO6k z`k1LDtWk9x@6sW)I>tLVd1~JPH#jX|3-=5h?;(&2Zj?#gI|aDuLm5|_m!QjEr=-D= zWB`+6L5&@-vlqc0!mMF$=(Ebe;cc(JU8+?Eg?lARgu*N}_xl7y3rcOs1iM;-k57rq zO-W9kwOUkPkAz>ok`bbIBu|_!PA1v|MRte$W}jt$COA71q9BHAfFU zQT*9dc+@3bQNB=`0OGk(y%W2R#e8-WE=UH373FF~R$3A8{O+NVj|KlHt|Z&U+F=PS zaWD!jFa|~pyPGV1_P)wc%KYJc_kyR6e^}G7UopH6HG^|Elwn`TFb7{8YrlM&O823jm@S zbu8Zxdliv~XN>eSdx5fhiQ(_oZX9rFB%q9cK2ptX~~n>|ui6h`}ONuu8xR`U?=#YezbWuawijN5ZLw-D*f=ZBYWN=%b92&$$cS`vp{!gP`vi> zM>k08mN~GwC()}Bip$|tk(6PzY>o@|+f)khdF1rl$gs<%+MBTQkF)mLkfR=N|5s8h zosr}m%Y$eiM<&Ab3(FUCA(m2OHsT{*r*-Iaxa@77%_`JEI6o$KXfEr5`%`|8y8aok zdI~g2BQn}q4rW^W*L>o{e)8(olP1X9rq0a|CMPo9#uaZ_)UJYv1=%&j@g16b(XjIV zY-06@Y?P9mh7l(whO$zJe7v5j9}**D^_d@XmYGO9b_a#+om#=%YTAU!q97&@j?FI^ z!<3eIkjIL3#P->=dI`G>wDusaa2-iOQk`8y6u8yqa)QxeGowm@xej@R8LA8ZB~iE9 zRfUH4)dKE-A?zGkI|;WT*<1mH=Gl+5wg<XJkZxjDb#Okrf1<)P&9b3vSl6 zxog@_)vY}1l~jhV8TPL97Wqe`^V4AP+oUfga%IzBtFV!0bD+jIJa9f2ucm#~kM8ZK z^?O9I9lDecUcFjM{M1Vy=#Zjxu837+`KpvO73O}U)-P&Bo!PKl59Cf}28+M+hgkkw z9^2W+GoxXuj8tgWuXR_%tMCz^U%Xw9SfyPbXnH=w8Ty7IJMWUpq>k7yhK8V0j!Y+| zE*3^F>osafh(S)fhSX#Mw{(evCQ>0?6P0u>fu;PCT}cepsiTX2JCqVP`t7%)eqpyt zW*$s(B)gim^&6gEcb}S3V(;S447+3||Be(eheaB16xAmnG7R7OCPs+Gms!7)r)upm zX{kZq*5SIs41MI%_se3?jdcGV1m)&EuS}yLk{S-Czsan2R)gU+c4iuR@SE`aQw#QR z?X4~yUFT)>Fh!LL9<3O>9XRH5x2xgQ?Q7PimV^J+2gY{ceo zR#g5g<7eBBoIUd-U6&guJ&mnFg|_gs;&?;8X|$&wXZAQnHJ({)*;&Ufj(!sgmgM4k znkRDMu}BC3H^^vjYWl6NFQlPDpX+#ux3D##{)cL=&`!PyvC7O)XOQY1rzu5gFP6nG zGD!p&u`J@En&$7cCnny4_D_fpJ#=s;_bw&S>$+J`_Ml%M>1N!*TD|kIG@7&(kDke( z#7ml2Rezf128y@2>u0Eiu63cB)OZ6>Q4Jv)`~pJeZA)swp) z)iR1|Y!u(WF0LprfPK-i@z1MKC0d7V?&?MS0d%%zVRv>uVlC2?;8NzOnkV>yK(+OU zoqRVEPSCx7w-K|`+AaACi@&*3urkr@NfYaW z1h8EDWr0cz&EJNGRhjRggzcp8Hnl2BeQK1Ov6tfVk1V1=TIZX+;j?j@os$LFpt!uO zwEUpjTXgNYn(6Y^5#`1^dW1a3Df*we$paBGMTMB$)AO@0f*`O=d5zVT{MxtzG0*;u zNfK3nL-DPPnB#1EHlxmGIaHmvR&Vo7EqLel9d>+}S^xHd^7Hi_V{;2{`j7CfP#xzlSz%X)=4HYB`J4Rb zA{*TGvXy^tA%K~!TKQx5K?GLH<_@Hc5%}3%F{Rj>Yl9APvZDgWOf3meD@|A5=c5iT z29UpTEEC9&%h&CiV=zJpi4O+uztN^+d9x37jCUD|-Sy;zyO#*&Q_T|mxm6RauDCD< zq1X_$dn0yOwY{`}dpWcm-Q=LH!P1G{eOf=_W-C928~N)Ps(E7dr(r5v!(Rb$0UvVB zQSTnx5UC0};(9vrkFKN#EDFjAB}Aq*703?Xg4+qH*48iM(@OCqk+mZ1 zn03%u5`Qt1ffqjU@W*yMIZ=Nf>__DM7~9=S@}7{J0lB#xSs;k3x{ezYnuJ=R_Pglv z1fCE4|LU|7(J8Afb$Goi;ijanA$*KzXD@&^R4u}dGJZL`Gil!~;;lDpCXC`!+o!VXo5S5reczH8Jfpb7b+)(KGCHt8FwPBWwdrz5 zRq>S*=3Lu9CuO(fOjwMM7gYYl+aeFrc$Zk0f0`Z|WlV|x@_{aD(3aTKr4?^Zl~q1a zWWNpAHTr0;-z;wyA1_es;3dx5YTD3jO@aDN`x)-iC3d}=a^UCaS-=P1Gp$==>xVL6 z*mPJm<>d?MzFC${mD~rUg7nzz3bwm~>P_N%p(BrQ5A@ij)!~7~XT|FZ#CvMX~pe)|Q+lyXZS-$rexF zo4z)kwKeq&M^PkjZuC?f+1+?j{6h%+F#TNC+yZa4+PU$%RpLx9t%GL-Iyuz?=uA~b zQM)J&oeTk{Q)u`MFYz(78x*9Y*WE=*?a4y0SY3muMI!4u!~;hbmgllbeB$)B3GyL` z$FbghjjBOexY!Xl$RlUY3GSAoRevY!=HprQdN}MdMHzP}!|)~Czgs0PZvGp8WZ2S3 z7y#o!-4hSSvK$m3&fA(Q5aiVs%iya4@QXQ7Ld>C)f`|k>m1z6}LI;z#; z5HRRL8604y*B*zZTh&y%0L$#fhTd<|!FU+Y)6c<#mDcBEVteSLmX<{kz(@Ry!D>8Y%;>|LnWv;_&1>HUTzo6`097~3b8C?uVF zfru3%lS6wCZy{GaK2KvC?@&WW8Dl_}oY)zNUC)QCI-t*cyjcMWHj!n zD9!HNRqX~(u{MG2jWl{KEYvIWHIMt0#4LpAH`RvNg--fRFCT4DqP_?nQVc+oE-_U? zTSl8<)KAb_*`b!|NNwboxfKV_VxE5LpAde*k8Ks7AIapq#maChMv@?{MkoK2OSb$a zBhm*)hoK1IEc)o3kgL;yd{H}|(EgKWKj}=}(4M@@$wh`-=*BTI`DYOGK<}id5@G6QBcR2<8^tTa<3(Y($ope>=wMC)y1#l8h0a zk>0oZVd2qvi6c7q;f75m^raXB=gIY5cPQq!w=>VTR)K%Y@trOdF z%1CHrKS@zYA`NU^ftyBLq8G+Y;OG$d_jzI~D<=_(Gh=&N!nyIJK#o+OuIT)df$ah@ ziDI*Wdn>cikHJ)?B$2;lRb1Wk4E8zrhJ)Y^{wFiz9Hk;pW#2_HqMl;-tJbwnj9Hj& z6p!wU&kj&QK|qMuoS*V!5A-Y&Y~?Qj*vZa*#yrBOq>XD`p-c4Bqk>uaOM%{#K>XcC zShur)a-yib%1{v@LgmHA90egs0&wkuCYyGrq9jSN`j+SR)Yj}dL(7ME5-jLR5L?-) zC~zgDUu`;ENH~mKsTpH%$GOm^!fxXpRf!k&^SnLG+MrGn2l6PI_7KIaJLR_QxQX)+ z;f3EWz-mIl<_)uUF3%w#&lEY<3MnVxVmN(!Av`qcGHt9BZMK zgD#8S;@7Fzt)(b!6d%5#j_}sLOr0of^a~{uHhnmrmoTS*E+Xa5_`IpfD%CD2oG*$>Kt;pA6OheHgJ!@Xc{1|A)pxDI7#Z9sYxq zjl`wRz|I+K&fG`!^Pc>h-UYFVy2lq( zA>kF=Q}R@6jcG2$HCs6as_T+-lTchdm#X9pBANgXvki!&ydqUAyz1GFV()P5W+pj^Ro`RgW=J+IrH$ zO>|5`;86jpOlDK;G`vHGHPR;Znr{YyADMKjFuxcRwv#X(O`leif5oXnyVx~217e;w9;}8kLMq)omhpE1M`c>NZK|{2YnV_B z{b@v;GDy`BCM+AfN`5!yT`WrXj}? zmKnWdPpnApk)_SmSd(xt{xCz!3ZNK6O!2eX$*f*wdE_)S??qIu-B$Vk`Q&btH(wBt zE3kNqWwbAUfoTlIZ+6!}s1v5hm}z37j$2USy{oI#0LuZa_|76PHH(;Du|EX$ShU85T@Ac(^ zhZ_WHyGks?bi3d8yM}7hcPDxt$#^;c$C6G|f9r(_awh;~B9VCPz+8TQ8CW^txSIJ~ z@+R~;2UDmx>JA+Uct+d-hp`)@Qp&~OmjehGoz5y%TY)2Zu%+T;m-M~IB zkeg~Q8h_-10lH)-R3KUb=f*e3zFfOZ6_GV7-G1Tu=AqxhtrnLg#V2hvA+(d9D6fn!wO*c zlN`XNF;$$+qW2hznw2qCrOK&5U{fDFDJ$nlQ_J!5yk5}Qge5smdCrXB1r`I%uL+PxI7Tg1;eir~=CQEB;6K=c|!$;QZo;BrGg zyB*nI&$MMPPG~oDKQ%Snn#k5#V(v$v!RbY^#^k0=0dvYk9?CxSvOy*&2zB8eJHW%WxqJEdjN>i&=-ZVbU0Hi&IzZ6ZUWRP8*ew z@Yj65B)4n+&uc9LG9XXq0yzKC3Xukr->B0bJw$`>Gyu}pBlHnBgDhjjGezhYQO3q9 z%2zn*tVVv9HVmnB9VBGY=gzrPo1CiDZq)IDEc@_mh&3Ot$)+qmCF!CdeGt)OE!2&3 zLNL(#Jp3Eza}}X#zaG)AXbk;?ZEXPdK>%CiVFQ@s!<26XKA=w9w@Fv5ZLt;PND?RP?S4=50n^AQK1=l6DETGL9ZuMOYJx^swPdVsn7y*yY!x*pJctjj!vy8$bFBf6+zXo6Gt%VI6=mEbv*V$@W~_3 zLf-j@q#%{+4fbU829kT>_eQix zwW+dm)qUcwYMHwF#~1yGLdtT<rig)}- zK_S%L^8_?+Usr@Hm(gkZz%HXDOGM7Gi_cDw4x?78`*hSQ?SSGmFHBhQ^-*j4SmH1O z1i6JgbPNrFIadz;B8dq4<;1WxaP3Z?1Z-qr>9`h04BUnS{hYy^?u};hF-a z$)4}<;7}U^+{5D%#;M@Ow-jW@w$MoT$uv zpJz)R*DM8m$)I?Rm`Y^1$n-kM+9sevTpzQ(6XJJOrt#S*C-Il&)VgAJwDdQyNKQv8 zSa!Vdj*slKphx7(@z}Th<_gvd;$tY1k87eQ_7>0wOwCm@JEOF``TcP~&qxl?v4{~a zZd!zBQnnAqVsYo=R>XDKslQfMCjxhj$w{r1a^gM2uNli#4tU_ak4v+Fk!1lz zpH5|sL*E5I>pF%(J}T*PTQzwt@|dVAG|Kn6?N-6@i9woo68`t zK%aINLpCRQCI%cpAFziuMyo8c?m`S^N$zC1TT-VU$!@z4T&+nG9*4A>S2h8ypR}Kn zPWQjxOphA0sBj~2GVrgV&NoEFea(s8R2FM$XI=#IbI+HIE_TSn9OB70JOUhK3f?z9 znZ~n=1V%hzrZcvmG7WIyiH9>w?z6(+K(KNzN}E%0gZc!}QD-R!n*SziP*9<-%WsNu za=N`mztt8&5ztZ{Skqk@kGt~VZ_&K>;^pbK=|?(IqGqyC4N3CdwSDeXktqJ?)R3S} zX}Gf@MJqsfy_Y)Iu)$|1$58rY`g>U12vwA`LjLj$Ro=#6A6)fWzNC1zTB!(BrQArS zA@^2$XRVj$s*U2jd20b!q>ElS9B@F=wGwd+)9Aq)pu~x}F+0(S^C} zJ!Pknna37BYjw{jqFz*F$Y(}=e9C%63YMOf_(P>qD+ctsyKMOKxM79z*S1FM(rN~a6daU^#td`YG+=caF6x3c&_^%V(&%I&&v^VfsNVU3lP(JIKEQTlc z?KT70t+|{+6vs`XxkV2zd;3oLJEz*bQ;y!T*zP3IBk3S;0B4Dwf(O;=+!hQW*XUWu z%EvoM--csQI0_ysX(%9mNy|%hBnj4v#zN2{H#JF0o|ETNqVH}=YyvS;Rz7vM`d*ws z7F-S;2ZV&vY~8ZlH|@%_gq4#;-`ZX|mL8! zQOZOCignU77qr;#cLWe8B@N|_VEOk}Mr^VAp4DimkaSbZi^~l?I_W7}@3b=p2B_575Ueh9lufJF zybk`-$aL_Bp^?i;3Mr1ESd^MX4~wjvE9FFdGgk;g?BfR14|vz+Y7a})rmivi72K>;9Yte6UNi;LPd!H6c1s>vL0 zcEp-EUG-lE8!OH_qd@K`71h$#>ex;@bSH0&`ApW#X;GMB%!M}ltfBn%#3*vZtsE%T z>Pok>tASlj;wqmv@=~jep-3ZtNv?y1?x#CMMc@x;Z}f_CJe?H-Lai4_tME7p-HAoga7j8(u9b?dxE`H z{JW!*n|xy8W1T@0s)y7JP7G(~-)%eg65ZBn!m;NT;ptd&;L&rVBBFu3pC%P|N7 zKM>MbmvJ`Bb0?aFnWyn8a1zAL4{4~cU|OK4NEr=W1CPAAjW^!$m*;h#KZB`ars+^> z2iL8G>c?b7pG25nQtQZD#T15(G>iUm(s+8R*gWQ2JTAJ;IQT@YqDG022X!zoC0kbx z^TZ@tp4X!+NHZj*x^b((*j0O~%1zNN12D^Ku9FA*B*t;6Jo>yxza$_-=}I*&5e&wa z>e0!To!_pk$+l|cYYm$V!T;lriRRK;W}4V0he*%e9LZmQk|`g4|JzvPkv-Xv`4F!B zd=wDDbB6< zE)+@r5C@LrXr~kqeWW+iz}#WF)$@l#8Z#<;=DnEz0dKG;1qYP*_5>BdI5}~YzHM$W z6kkTR6w&{J;@5)(DmRu@%9DNw)Qs*yV{4zr)o>3IuwLQs)Xqr$^{ygpsy2Ga-JEUT z(3dWAbr{mZhrPvAff>x{?~W5YOPIP=FF)IfNp)u`V6dvy7Eq^9jF;;#Ccc162aXTK>+sZug*?R7~JCHS9F0VOe$lXDi0U{7jED8s7G=h43Btx-_=CU>{(*#yKV z#B|{aH-0i*hK24WrW%KOV ze`>PhYN8Bkv_>y3?b}O>aMgBYv`mp@G$Pm|l&0IoqFoD&4#Ox|f?SbFGH*>kjJ?eWN2&^w(3MSP4PEwolz@8pmzwikHrRC9@lLRPTazp)a!IUGZJ3Iux}} z0M~@Re$sm|MB$KXPDUfNr*A_VrllF+c}HvjC?;PM{zIh;8V#vVkp*if{_{0!s1SSXS>1A?X`$eu!!z0{jqq?*CWe_s~*o_e|#2q5uOPVCK@ax$da*K1=ke4 z*&QlW6Vob2X=p}Cla|H?wj^~HdS%1`zpJ< zmFJ1$(HnS@-Q{%&DLi$mzEGTWNEn342I$Gm8XiL=9wK&lOf1jMn5s7PZ!RsBgpIbm zo+qpp`Y{9~NgbEVD`7=MR25z~z-;3H|Af-w7=`Jc=VtagQZu13eCy92)|_n;PDq+& z%8lH>$DX++<#J-oZWSAZ47|4ukyZlatov&%>P=G`jJw6`9I#SCE`~H~HkdkBrkoCP zo0dD);0vaB*|Y&tk%4JtLx~K%rNejE{{<;P*1r_CwLeaxuHk!My1)P;H#EBE_<;BQ zGcEROw?*7(NV!FK_3-z}>fR(`2!M8vRhN>Ylw5ztbL`ROU)$iti?mD|c!L&*52^tV zn$5s0Gf?5xS|qBOb4Gk*}N zNTLl#EQ7%MfPw?c_TTj;Yv24RM~Co-unb117!RwA3Xm!bUC8uH4VZGO#jmz3me7q& z=O~(9qs6rmR0?yj5oH_gYv2U4yU_w{uUj;6l$>iES+VG`|1xR~Mj72(YCgq_UlIg5z5B(L_Luv5IMoKS`NF;2-s+GO zjh+)Spjgx29)c;Ad-F>;ro|7jF}Sl$`2Ugzia)L=M4T=~ztJJ2XP*YL66d9X!c#)R zHm%jQP#DNB9D&tk&wfhh7EHnxeM4_(D5v9~QPu4v)%LKR>)+Jba`JF@lr&L_+W)y| zdcsC@`Q|#7x{N(xCeS7Aut{(KX>sNBR{^G#zDRBkv-!OJqx~j>D7wW~iV%#}N(a1w z&d+_4G&Py#S$zfd`XQ-++2ydnYfG4slCQUb22*n1r9H7nUPMA zN#RD+9(0ZRsCgpj494etmdZl3lxMd@%#;|_xg#f66gXU=#z`LtTEY;z*vi14<2ASJ zG3$roQ;I0fQ0`=IZETCGA@6nW^gX6q!ls& z+-r6fnOO4XN)@%kBR~US=Z4kG3O@(dp<3rL{O}AN3K;cc$=c zdpinOXDH+}gbY)Z>1DoI3Nr3EQmSfI*B$5e0$9k)R(lwN1hEZ|i>has=I;(xV0B?s zrHz-$=6Y`Tp8X2}bmMOQSFp;VP9tcIRV=gJ%i6hA9Ox(^H-P77vzEhmaisEEC-CfJ zG!#tQi2Zi2H!^z6pX{Wn(TieAM64bfu^^F24||#4#l(itAW0TMj^%uQ;2T8E49LM& zAYK`cP!%k+oZ^fPsW0Zo?|793fT51dyNI&eBR+()-YI zGKRblNksE6!=s4B$sX}hiKDrwOIeA~bqUVyg&Ip7g|XmrA0V7kQ+RORK3*{lE(&rtO5-t9xVs?kb+y12zxiy5$jVe z?9ONi7=p|PM@IH~YUBi87UTv=I#|M$TDNS}H}>D8J%)82dH=e4C)S~S{@wMW&Ag9& zni8MIk6OF;%O`p^YSaB+soh!#J{2|4Ab}kb1o{Ml*RZREr>GY)Yf(A8s0aMuKXGsk zr%Sz!%R=dyuRZ!m#cmiW>N>+r`B-qTdDhy5UDFtQLFaJ{w`(zCAA){K4`g*~ZkoI` z#lX$wHj9B3aRn!|_l%fPz=?fQg73l|=L>k&nH`-s~hrm=H=V=d(83LroJw#-aZWs8sW>o zvx3A6v=W#DTtuB%pG!-uO;S+9N9%mywn`q&QZT||k`_QP@ z5NGd`QT;grjN>3ClHNZU?8@$_>PI7AsQ_vQ z>}TgTUqXmXUwC1S=Z@U|@XEo~5?Bb0GA-?~_q~-|s=|D7E$KK=OecE2BuWald1nD4y2nuYFiR@+&bO*9|54~tQb1mfQ*tjdU*UiNwcGg+Or>|f6ki?qTGR_!(SPC?#ayTCU?*gPHXSRB)de2~cy%JpOu zTu%jl(e(P?s#(tCt36Onls`N?`#XZKIYl&%w@_@K^#Q~+h07>67SvUPkLy40q-})i zX9T8A9Ykn&lp^jtK(4@9K7X2?B&I|}X~+`FtLrP8HmEx-p>4^KL>#^;Q{^gX>{^UK zK=7-_fF0KJd=(bh^v2ff?6spqFUie^M#SqgKyNdF&fgtXiXE(vY*|pP!+dF-n$wKf z0+C&clScRswy(!ktr4=XzaBKULXp?w!4A|iNL}a$ufts|BCu_-$_BZSjvrrNBdXsU zCiKKKehftXR8`dJ5ynp?Uq8^^T8m2>bFYXFpO-2~f~s6pO715ck!$Ca(&*be%~v3Y z&(Z4y76nSWkyKymC#lHNh}{BvjhtCa z9mN#TtBDCHs7cgUi%j~Q3~_f%+043z5YQ~7K%VfMw>iuPx>@qXq!BcOHP25j#t!cJ zq(Q6LCVZ%o2)d9hH?j4*5w*N)n_un998<~Eo&~*P zAu#kdeWxg&9nEq!E{jdU9c&)e%`gC+=2Xh>lR5f+MfdfmTmBUn)fixZS-62gqA*=H z2xh8ND2Q{0Ff>b`mWvzWjWCH}dSZvQ5!yt5$5y%Ja9W9aEe6plZGwegv0)9iXI~f> zocoN%5z+xI^)}8hZGRZyX3MSw(V8knl$JV4BA3fbJ!LNW^Hr2TwMHOAK!ffBoIiyd z0!sy7#Qb>)!|yjjTsecV3Z9AvR>?Nhzp%+93agNRuCD?c-UCl2MiA87^p>#^4o}hE!^i^DpgI-r_5`tyyM3m zav0s{82{zaS`kuJsF9|hns;>-A0xV7a9GBJxcm9_p^kR%eYB)EG{<`;JC}KD2dryK zMqVYTGhyRg^t+Bj22q%f&mjqgzwC*Czkv1)jv7Ks@IUQh0RFm~82%|1d ztcWn|%p%NnG-uqR*GH#&4Cs4Q>Nw~A}Q_P2& zA%+svy7cd-4(b=Y_5@wr!Nj!RXri&42JLk(z&k^uJ9ShyTxO|6Zuw!9nmJ^Uk{XQM z2h$dLC1IJ9Qdb|vuXt{XNqd$cIffsF1;#pN${!KGAmz7td~&J6t#!&Lb1Yk_IS4-& zIfKt@!|+K>IMzb2`g+^UU^}xp>Fut$4p~b0NAy=A4FVu*w3>X}L3)!&<)x&wP8g_k$cKLqu zQlz|bnYDW1_!$XS{9k2Y-l(z=EyeXx>Et=HFUk>d=8xc!-ElMkeeCDxb?8muL> z1avw{!LXBOM$PK0>JNHmr+BL>?uL-GRZxbm3>P^tsol9^$9Yx*K7v+p1Rpl6yOpSV z6yizNIdCoShYdfH`hLE%(Duq^SS>nC2Q%P$`B9ksFH{R#m7M~0FPOQofEU}Im%|cB z?U;JZIHm7wc~uX#;*CV(yGuJBmnf!BWpw2ICpXE7X0f;gk{D>~jw@?^Rn^k&kSE}O zzff5f-lICry>h08N9(oNRvF|s$ z6NyaN&^pZ_oCa|ZjSjM?Q}SJm>$(?~@8BN8#izWysEN;CX9ZVtI1{tz1Gj$MC)+=a zD1tsQL8=#QamsI&8L0h?V)*$lML}cgNFqu8;KDtWS1I{dNTg$EIpT%jFlBKwluwbb z2fD+LbMqSkZ1v1Y`ofQ0g`G+n3}8IfQ}1|s-zwiwz=O>i%=zn?1t-P{g$^ zQAxAlEez0e1Txh#OoE^+;pDQ-idjfwTMo5*YVj0H`ujO(Q9;_vSJ6S7JAl?e~oMDYS{VXW-<*k&B<>*G1APUw3KDEUktN>bU z@0G=-3LubiB4(<^-(`k#V9o3PY=*oEC%A`?GHi+IJ$+8q(c_`9@{?{ZwBWQ7 z)a*FJNPw8?>#%X~ci|&6yzE%ydi+OQMMW@79y^DjvTJTFLI7ubj#l*)eY#4xPtB*kX#>CrYa^1>JN^oEkie&Wl@D#Zi zyD^=X3|YPUBXV1dI!&w^l_geGXO*tkW!A)wEB&o(66T?LKJ=C73uFC>PonUwXnL(i zT7CTl6W)<_rFG*oskD7~6y~$0eVKgp$V0h>bXub=g0^1+2LIOB3w%qBOY6o=nfVBx z0d*m)(CwVxZQiDfr*_od$EH}12YrM@T#V6Ys3x0FE+t<5Vvt7Cd7*kz_j;0jc4{|4 z=zHJJKKO$4wuH+3VAuLBsG+RBjt2o5e6+R%;GLJ}(zg`FXW>sdA{FQIXR}nF2rHjJ zJwxS2``}-RS)AL2c;41KXcB7haBQxo8l9_#W#x?6(=sQ%7cGK_VTUy;kjXSRzP91{ z3&>YLFh9Req(|{O-vYwQ`EnTR*XSsJWwB6n-lGKT1MW(2!`F2_knN!I;Hs#0dX~j_;#RNb$H2Ys z(KarPD@-W!!Od`)5H0tAVYl%&Ic>&E-9yYzT|y=Bv$5A61oB&-tte1v5;w~bjOT{J-18O2A z^CXvbD+tUm^$V9UlyMjOrVYXRc!58V&Os5O^zZ4t zb$#v6Uni~=JGVLHPPCNlp4?;_4i?KMUP5>vUD(>!m2uT=Y+$(3lkBSeiY4P(TRzlY z-Dp7{45hCNJ2>p`dj2j|?igI-{bVDwVKX)AqeSbl5ue(PWQ^ zbG!ZmFNs&Mpk61S8qAw$N0Mj6)7t9kQ#J z19!i&e|M>TiyN@PdWTpUaxy5IBe4 z*w$}Ez?P}F*cUK%%%8A=D&;V2Ja-KajmIMy)H$nBPnyTp-v`pw=rQkhtg-B57fi|& zAu~j0iwL(~?pcVUvF&;`gXnw4l5$a@gbfFuYlYReVq*~un`tC;U7OlG{Pic=z9EUYj%9Um>!3Oa2Itdz*j8XS~A^I)B4%$VfPW%JlEIA2TtTmDPSgMHxUj;y%`ZclLd9{Zy&JsBUsi&aq$Q3fIKZUY1(&|lG zoHA??(ab7T%2qS2PIyl}N_#JRJ+vcDjcHGjpe- z@L|?8@UBtRn{T%>HXw6R#riU>qLMBqvgX6y;_Q2M%!fv!TiwLcH1)MT2PbdryJipz za3kK+xm&Sd)I%+V-8wwo|M)B%g8`TY)nJwgBvQYwXB$);MiL^EOar zZghAhj(M4C-A#<{ZUS1W!`UIB%3K2=C#u}^f$8a7+<}<@xOt}Yay}A3_Xr|aUj{5L z!4+rVBp zU{da!Af!3P2sZ8c_#YZZF2OtfwXeluR?W|}ZAbSy$c1Uv;t+L2&9lqot@ioAbNh!5t4uTs7A8W45+;x;y82@;vr@^0ULMw83c3#;No*Iqv1rn0G zm7vn*vsFFiGtsYfU6)wA`&;^&246{udZv*`dc^dYm1PWdo z-^>7c^F?CU(wm|j^L|i>U+T@SqLk6OAD#i?4pV1NLKx-ET){6gM1?HTLtF#K)qP;w zAkY56p=^1Y828L!(H~&dueA{_FVvDU4I{h{*VhaK_4@w+xgWI@DpTDVJvq34FxnSe zm}l+W5OsuTEI+ZVhCVd?;Ce@{R3AKH0%_@w)-0X^063A>(aDVpt7FGS%!LG20Ci%! z;LnN?Dm&|`ttL^Jczy)fFiLyRxZg>S5>O`~FXjBLV`hyh8rzn>*gR}DC);wLZbT>N-qqIA0=a4M*&NZ3lFsYi_KKE%0 zXTR&rESR&To?dtCz|?MUj6?2Mi^t^`Qxkado8ZnBMkmM@VHlJt8|F3gdjGPkD_@Xd zGIf2lPO2b7Rsg5fkuR*h_WWG7*1Tj-cK2c+2+$gM(!bdR4~t$owH9e(V4RqbO^r@U3jk~f}EsR{Yu z@eE(-ylU7{+P2v=z(&X(U?%!D8oQg;p6gXQ@_f2=T>Eo9?edOrWG6qKPqGz&?{M!8 z>!@p5x+TA?=vaFXi0h!Ngucj1R)1SU$f^%-a%kOmj-1Yh%NjTx(CtfDEH)!N9LkW*PZq)AYOu!PwYVJsIA=1j!s&FTzrg0Y3CV$ns zTJ1F19CT{X~B5`T8w4Jiy0A9>FxSA z?mhKa9><6*yg@3QN{E&6v5@lO?Xh=I7?`e*1(#O?Adk|cx-5+>+66C>{vOaH7Kls% zWe~LBuzNfw{$)Myl9I~lO~?58oNLYiOo1Fi^u8PBu#ME267d2x`e>{d@B zuhHpkZK_fP6Jc*HiEdZngD%sR{IK;FA<7@vngjf@&=LBLjw8r!`IZ*69^3}?VWwy0 zRH?<(=m^o6IjIJ+*DR@`@UCJpKdhD!sqd=u-27+n4!U(@#1S2zn-~_N9K7Bb4gQ5L z#QE+KM8IMXrf2wqXfVOc6KE3gi=z3<_}?iR<{!}Ru)5Rbs|5O{VYWTf!bO{KW_Xt5M7ZtZ*o2eIYsx0AzP49c-fQeuundT7c<4GNAgTjf?!B> z?N@R^@Cw35rtF(yVzMw(On=|0@u(1yhbgO?pO-OzzQ1v%PqjDSK|s(--UBeCbep@e z!5C2g?~%;B9sQ$5V;OAP?mlv8b|7ikTxhBUJ{A)r$?ttx%Js)Vj8->jP8P!LXn+ea zzeuq?q4#so;Zf-jqM;XMqKC{qw>NwP>BDG)b6O635xD;o{pOvbg#2Fp5eXe$TD7$R zi^GG{d(W&_(4b>AN8Lj6&)@O{{`1qR&3SPgLiuYt1w~E0(=d=(!tn7XC6{R?cWE$;y37kcH~Ml^$hKvr@u#G(IfnP|vJ0BcxW~q3NDb0z(#+DzB_^E3z)!I!ou0 ze|9glw_zW9bxFFQo6PRu-4`bP<$xmR7PAUXI`W3!BqxftGH%)$6`?GcRKhHb%_GtnI5CzO$l8O*)6eHLZjct5FG>g(5T zv89l+i_(s5pb`tl_rTz`tmK-;QY=nwDLaJ=&X-sGN~)gy#Vpz^w~8vcCUpmMC^wd{ z23mPsyYg;^fqPn1P;NeR7G=s_(K7eH&N?7h)Gha%y#%CIXv+g}sHHf=_cA1T%y&ZL z5Hv7t!X+6~`9bmPt#7y7w>#tj;Z@bpPrmkZ2nQ+bP<9JTN=XcZ(+G2G!8={B^1@XW zKJ@AAp_>~B^$1OG1|-$)27k(-h~e!ltJ0A&v2jA5tkNi3GZx&3b=k4=lsa)b8s8iW zAPX;UDYx^2N*GHYan=#ZCS>MPNUMpm15DMQ!12+(&lG-XJq)7_Rsnql8Wt23ANOs2Kr zLaiu59Gl;Fss1t+9FCqF|3V0kW$Woc;tgkVd1#47APAu@_xndvIYSyYE6ea?T>vGa zPqKw{(@dwCoA?5NKyOfa%Duj5b{3I$zAHdTE^+Z_kCFQ&%j%?^WW7i+;m2Q^44z3I z7i#l=Ezk5^+`?Nf#*WxHkUjx1e6nGR_>rR_>k>Ip;?LBQKz|`ySfXL2t*k##R{`x| zI()C_;=wSCN zA>5+|4<r>$tfb&dp|1B(Vzjbeq@W68?CH7@MOt9uaghU&|c=NDM$-+U_I)AqOXCaQeu$ zP-4Ksbe!%$BM{)(du{G^g>BA&{H$qhMH7>`do}6q{eu~3S1-PLKE@4hS7;LVDq$>a zjEW^meJ)$4O#!Ll8ZjP7LI{X)+Jjme9on+T|IZEo5~DXkH(VqXYPRg8D`=RmNVUKuhe4Mtc|!GU zyvRt%zotuTfS$8I!T;J!5?pD3INL`AvM#(+&!wQ0$9>a@pw%b>DPQ7-UKX<}Bm~wHtX9$z7hr-2O{Eq?8u~aWe7SAZb-4dU8 zN7Y}>@88S4O#xP;4PnKuTiYNB{XG!8O{Nw*! ztQ$`DITXS-dQj6)45wjXAL#zRX* zYegRMoKs83<|@-DTnnx;rl=t4t3wZioUgv8h2u#9c5Iv&VBe z)8$>2&6Dki-L&Ae+@U}kT&R`6obNhUsPJ;twAconP2MpkP5g58T~MBt4&sa+eb`TN z9S-B7(!4xFse7b8!vru&87-8)^#zN$H#@E1mUba7HZ3#LU9t35LtN|)3o+%lpgq+c3S zl*Cu(427ukj2Df)LH_(GJ>*4Om=f`51x9=Ru|5x(HpzWmOfh7)pp$PR%4!{QiP%^C#Drw!$QE5nw&;1EPY6E^G(#4L}{U^W=@;g^Mrrp4;^G zT76_u;jf_m>PPYxzvR76^(?OaA|0k6Oq6a}?9#a$_J(?C;352hS@Uh3 zDI7}Om9cb4TK89#+E4VuVh9SIl+&$5R$jC*!~}*6nce z7o9^f+>#`zoyBgrA#RtG3UUn&4ykjp5J8h^>u$QAv@S2jYbQB&Uf&vGv6U_~@h*QE zpigW0hFF7>${5AMfmCQXBDG-*n%??Iawqp=2Q2YdJ{}k?!D}0?FuC|S84o%BiAw3T zaAr7dlcbc0?u@IkM)dG2W0(UD2N1P%Ob;1(!D}}ET>~fK8VOEkaq7fjlq`9@iL##+ zi7J#6kCLvS576cTicH2f4;!jH31!^W>_y2T3L2|TRKWZheFL!N#!uYjU9GtJ#w&cP zJxmJ})NJSz8jgG50^2ZNdmo54FZ(#m5NPp_G4E7^18LzaBcs(Bp?9683>D^4+Y*8; z>nS8dyK_h<#V)ZOhzICZL)9RR^Q7Luk?H|XPt3dj7+r%`m;Ny<|K((aoe<~rRj|kL zZg@-s&i}ZvPLY8gK!Tv#__+fj94+sP5~GO@#k4p%aTiDS%~En#5!WxXq@MWsb?Me% z$+OZ_rh%cQYB;xBf(`PIZr1%9QW>A+hV%=2i9@}qU7URgjd_yEJ^@&GId{y~YnT@N zWB6zc4W{52z)Rw^s$!UfrQ}{o%=2!yZW%$l)zDRz+-ik9)x`$-gUz#$h9L5L_^=RL zERs}^^(kj!O)G;3tt+*2A=n!xCt+DYl(7xw;gpV>e}X2br73g zl3Dy|_>T)$d$&@SsXnO6bIa44VZXrd1k$T6_JRbsl}asE`2l82m#j*IG?)a&{<#Wh z=G!hKh0q`rHhM@K{!}1GBZ6#DBj+Y(ejkUwR8{O_Q&(}f35p{ncagH9m zlTy7nbA&jPYdY=eZ7DOQ4fGy!YVfR21oLHTjSLMfJR zPmJ|~=bTDgO4a?`uOdM@i{RLO0KrNA<=?&RQDnmJ*HA5;H*#%gELA&$gL6~?=r#Y- z72Wmb39@@?GwTgX`u=_Jvy+qHW4yW3HHJnY)2_gu|BchKP-*X>-zoQI@*1022cm^g zjYCqA?p7}D46$0UVUhnkr}xbd8u*_#S6acAua1KbL$LWiAKIaQjf>(1Lf?9Vj!8zg zAMADgV;YPaa-t(bVUzO(_hcj-jNZfCTDu2na353dyMM9xd26r_vpr+c64T$3{URMd z)>uZ{OmUoHibLHfqOm1nIe67{egF?ju#<;n&MSQ{b0@8QKH!q!A#}i6P-S|Mphg~R z8u|YIhgEmlnRURtj8-I*{=|h0OfL3AGCM6{Exfop6IC^6*PFT)m&nb;i-$OStjY_A zq|xVh?CTLph)(Za4z`K$;k|cV3saU=XiB$nCH3)WAEhV{gQBLVh3PYniX1Q_95u4% z7Z=YOLtL@V4d;zUi}dA^VGxsB_&FybJ+>u^kzeG-V9RL#-T~D)I6LEuLTyv*)g#O8 z*2C{Gu|0;EviU0@L=wNtJ6d$vs3TNHh|C&_q1Ky+^|cODQ4pdWoqT_sBS)SHo9y2% zC#T5)3*;{lv+=#p)Œ{GTBC(l^h>F#>i_FGT$B`b_C+wHyp*+cjy85t2l9TR3#d z%qXO-Kd=TKXyKPRH*6?6^}O#Sd`s;igQ`nU^&bLWpmj>b3h4-2#3Rl#*eeR-R*MLH z+v}TBR}I>LYE^7Wba(ZTcx{X0AUM{qZ4Q-7Yf|U*(MEE9j-CB`V#&wKn-}%KMVGOW z&qaOX{X2KWdp|e+=qF(nQ|x^0uRYBmUUTb8(TKSqb25(gD?4o2IaR(s(AZa9hW(;& zw4@{Wt`bZWXXjqr`bN<4UBwbP-_Wf;8VFcJ1ELpr(Qe31XMp2ZN?viz- zV@j%4=~^SoZ{pak^bbN0d$C&es6<`pj{%oq_1gakGUg=(7br5T&3udXbBrAkgCiL# zBUpXN&al&lJlPEYxoP@|L(JtfH)8ti1BC%_u$L7QCppXP9*K>lW5`Dq&yNCZx^@dF zdBGyap-fO+ta*e+%S;6Bj9~eJh+81Dl@O7s15U&~vnsi(pg6dZ3?boOQ~%oao9^i3 z&@$?QsdGW%m)f|^ZAdYGqy(vP!y6Jf6zJn_XV_b#bo#t&~joL#|;7F%@0%= z5tyFWSbYB_t=+VdS0YGxPT}bv9Jp-vggQ{~wiRhE%$WpM!f;%?l6D9U{0$9q@_ZJ+ z_ikK7yv>6cA#b#(=VL@sN-9DMU8C)Oy4yEX@?)c3(Vtuax?xNM_UCliz~%E(B^pmk zsVRxwspd_OTQ=cqDj9;JCAcRSV|@k|Ghx+y66sD%-TZqhH=v@!{XM zXcFJso6r~;5W1Fu_yGG9bx^#e?%IK#;dwqwsR>_E_!{uVkZ$$r$|&TvbH~h>X)6Bk z5e@+4^rqhQCjpe2a&P(*tEDi{L3!3*Ia}H5H5*>YV|PCDIkVKW1}~@aug0{~#0b?F zO*@5O^&=#fG)^lE&z!hbRNc9)^kIz(wdEBH{WoT@P7Y7$vcx(ontZiD5~fB)DLKD{ zT6Zu%+;FwR&vCB>t0wZ{(RG%34{nFSR1<1+>MHKZ1l^^}rJ(Itj8Bn6nJO5UlE)QJ zWCwyhjxJWB4o&4KF6jTPY_!~Z$o`Zt&#@4f`|n68{I--FGI>fQe<8^>--m5^Xx!+> z{74c{F2bDb9F6s&ov? z@<~lo&<2CFdEm6?q7>XO?M;18fN;Scycy@ zs@Wx%r>r1Qz($js)>;0KObhM<|GoImtZZMY&p7v#+q92oj?7WFuO-0rbi`ed_MP}X ztwWr?qOP}AieS5;eC36ArAfQfp(|B#y+VPhjLq&HkBA|e4GFQ?)?Np)D1^XeU2BQ- zzMMSa*YaPKjR~~H3n##{o+B2rt2yNpG8{P7AEEyq854zF#;qhg)Qpwt@Dv_YM5ti| z^>RRJd~h6c*4Hd0RXNUkOwRcH&B7TS+RZ`YIRf?R&({;9=XX0D9V0ap9GtMCn!`C8 zx&{>3F8zTLSH0KBoBS;mMbnbAH9*&a+2x-;>a8P_`q*~!1!Wd5{~N(yViaPk{wy*4 zmoohtx{zw&yOo%Ikfc6CijIw^e%oyn^4XWwq(5EjSo-#5+i_FJD4Mu9ApW;Yi1q}As3nXeSztSvVI__4#Ia&4O%r`LVvZ%)Kruy0MX zdxU*&X52A%w?z9Ij}1vWdHFe!q_}`%o*nCGC}lmw;5naSsEdMj*7S@hj9Rk`;Ggo) z!^QPG2m4g}ofoMHU;X8q%jt9N`H0<7B=1NyLQ$TR+F9)X{Dd#2hToA7Kp>tmt}RbX zxl(5WM*1%bF2i?!^RrUDZ+EYVk)B)X>4-O07AMIH@mmLAbw4?5zTew-9*_P&TKw$O z_G=T8YH=wAI{YyZDw&bR>*BvUHAlL@a-obfcLNU^QVC+^sd4e_NOBwfx6=`O|QzwqX) zveFO0ru@<4Z2egs;F2}uNpcH_5}h7k3TX9Eyj95P1VwF|Xv>s{C+I7yd=>uPe(e>$ z5gfCP-pNJLE_DHu5cT^fyQxW%;I9_&xq6dGIA+oXag*Y;6Pgf?alKTQi_(qq#Te3G z;v2*2YBCM5pn=J4;XoWZY5baCFMN6(*~8x^?ti0{BA>1{<7;bcN644A z&Bv8*5bD0g?oMSxz3Q*n7Sy*m!@2!gXAFFsIorR_MAuiY3)L3r`l*4Oy5izI?jVHX zue~9BGjuhVy*MXx{H~=ee0Re_EmNQW-dZ0qc3)yvw`Y=L#zqU{*b5h0tFZ)?Zr&i^ zZ{>gme=w50;h(gBl>#q2-ErJ@TNZeY@j;^4G|j*ObTM@ z;^nbzI;~;42G@&?B(mxo)6Iiglr&S76wp|$mpF!_4o$6^PjHmSpJ=t&?$#YP#Oow7 zRgmAhp8;QHMgnIP;}>ox%7Ey$QMDRgrGpcpVaBz_Xikd7&^k0G8JFN|6gPNj zK+zvHu2qUCqKX|g$3!wnsKqMWq<$pI=gg18*`f}3SfVB9Uf5yG8Z3S!Ao!%pHF;k$ znlP&p&(l%?I^Bh{7GVp{B8P$Gd==-~)f?v*Td6`!G#rHK&o34xfmQ$evYNKTCpb~+ zs(zU0X6pd^+S4HHep~F5PUO3oG9@H!88uVAiIbeqPjZCB^?zl1UUDlr+7yLL zaFo>1uP3nvOGp`y$`#S-4Lp2fgrL~<`E7=-&2w;pZwN+g=-zOkk~JchkN|!M$7fFa zFYZCV?g0!YoSb3$HbKeYL*qvd>fX2>?Y))}j0zJ6wJ)k`y9~jOz{N^9*SKY8juk}% zuzYxG@OdJ!HP-0Mh<8{p(in3|2mPwQ+yuW(SAb5)jesLwP4D@^dB?LAC`#l{zziSf<=}8LMs=6&p77fzT%bMKYQRKq-Gw0WvD!PVf_2z%^uDwKEm=e z4QI~?x~SXmBZ#B3{1kAw@tTvy{^$u4E+MTTNGn7hh$nUjtuB>c<84~9we6sM&=e$8 zk}6sWs6o`u6+C5uoR02)lm$zn>1(p)sg#bkdDom38h_Bt$T&*aUW@D~>d1j8G>B4_g#u0nCJ=CHcVr)`HphX0 zNZ~n6>B=rCXU7#9KSK^_l3Kl^1+5LbmV56kDq}3pf)JB&vO5r8kb2EiuS0sgwwGFc zl=H~rsDozJOsTikUYJ)~lQJUhL%P+-ErTi*hUN*ULlH$#9wtZy=y-@Cw zSXr#2dQiXi3hGBn`+b1Jh@3KS28n@76L#AvJ!$0OA~M(apIPz049{4`anyjgO)&mE z>+AM!e!%@&K)mNeftNoj1@u4qRn06o* z-DmzQHpoz<7r_x=t_*9c;7j%@!!+DT8eao~16^mH^Q4eD@YTz!Yp4LQWU)mss>HB4 zBEUxNDSbmi&cWx6H~Tkqc8EgnArpF$ek%nbsZuHvZ1bOn(|t-mRxt16{Mj>V+&LEk$Zo#-JYz5DXC4B-Pb79?h(& z@Uam&zfXBUmfdcsEv8m2>hqv#YL{&kVNT|AFPW1+u_faEHgCgfAdE&a5sC*oT_23I z%;?UJXQ|mI3B-@jQE^pK4Lqki(^%EQJ{$wBp%mRN zUBLb$xTJ$Jy5Rfpxl!JqxZv1euSE3}6NZMzrtfdpLjfv|Op%+>6ADH^Csa5iN9|+I4G|H#iK&aS~X9U%y*3u%j?>6kV>SkJZT>M8*gSg?O}a_zWCWw;>JF^{`U@dV5B^a z0u+|gc9^Krnmt3LbLMfkoU|dQM(51{CqUT0`3xC#QQ=RNk) zcXv8{PPg&06W8~xlXI@U2;Jtzd!?Jd`#moo=!2*EqIKmRA!TS6bKNx(k|6hYcz&Eo zjNW26b!;)`qj;5*q}sbbyyW)WO3e?IrB`>vFd^Fb^1w25UN|W|h`2v!OnJi#`yG9& zB23p!95ynrA%hi^g`a#4V@mQ&W>40I5a3iGVJnnQ{;MTdO;ctvf=8q09QO7(BlTSD z%lJS*r)}gJ|IjV&I_Zk%Y&ajMTgJ<9mF(_Jk>HcXr3q+`>BD$dU*3Q56-s{6NOJq! zm@4T*6p~i>1)w38KB;>vLsn1DM#7tYY)@U@44`x37<@>kG6;eIsO0kth{XRLB-hK$ zDvx;mn%hJ>!>RqKJ(oFje(dQWqP7UTxMD&6_2uJujyg4YmB6;1AZ(>0Z44}RsI99a zE%cOak^U#K&Fe%*LcWWiAE6n|wD=&MVx+G0_{qJJL!5E}Sx>tt#r+CKol#d#-6F`) z{b^`S5S5E;XtWo6?36U(fKBZXolUqCN5~1uH?q`c-{=cJa@dn(r-ym&R8ny6&lTiQ z{Gv8MEvp;23*9&(F=fWTK|ExPwrX>v$ePo>-k@WE6G_8R{hzoZva7?m0!9UqRA#|v z?FElpc#37Rhlvp%Xiz2DKMX&XIX$S3u)rmorYVyJG-RfzxG*%RhVgubRc~2x*ue7m z;kUb#4(uLaqv=tNf*5svH)!ctxZ{8NZm}wWP(pw|S^Pv_{6j63k*&<%wZ0V4w3!;b z3~Ed^w#axoQlLGR@b@UiYv<%0o854T%GPfKLLwF+2VS>R`GT+J^~78F;!@>a7!@{;}qlnNrGR z7L=9Er#2UKOSl(_L8(N{i%+0nbLkt$A><{|F-{-vYmDgI9OJ!9QLO7 z-gzNGDvJz;C&ALC9|A$}wcb>uk9(J2^^G^Xql2MH-|Wng?r+S3vrIiNOskx{`+@1Zg7sfy*FB^;W%0&{zLDoRle{DZXc0djvCquhA9Q4f`Pu+S4=v zOURVkrF4v~hP_QKhM^dm)l$G$uk6XgpdEt)kJf20L5#&u$lqvhxn%W z<7@G(^)|x?CV+@W+*`EF#9pSZ(C9U6=c_gWGS7xcIObA&?U#JaBU%Ks{6?U8 z!u+_`Pf8qXVVKBz9>qzYDBy>j7YDe%-b(u2qU}F_Isq3f_@vXyo^kKZ?Gb2ZWi3H7L~+er$$%^ee{UDT zT!|MuYkBC4P$E7X*1#ZNIKY99Ve^?S<+%Uro+6HQGbj|tvq%Ray36C*#z(Xh@6Zh8 z1|)!8?CJU{*awVu2Q*rIS>DUEU;;=}*>t9$qNU`xP3hnEJM?EKzX!`hpfVuR1Ab^K zH?SNDW96q%;Rl?K9@MI=?ELPS-J~^y8$ zmJ^*lBhW-OL|UnaEy^NzK8LUobnD4D@cyMOoL%fv=DRv2YB!A6r3j8V_66W zKysf|5Zw*dJ(THJ`sLCONkHdq%y@0(_IDMYGcC)YI)&v2K`~6|U=33uv4RFe zLi5%7rgT#J{e}P)ikk06~!CvgRkYqrbt40Ym-SeSp$A58y4DL<6pHzk!gKPN75?U?;JDpS{j;D8z- z>^R6`j{T1!!4Ym$skwmWNjx~YG8FQ-%|`l4!cX9e^9RHR9f!_3E~}BBS`b@*Xi!$K z*qHu1&s)nI)&_SXl=TYqNGmu78v_nW-8|H8vRV0CQ7Gu22wlV8{1w|WpG3+Ceu~Oa zF@u~Sc$?2ba>{wQ)xGozx7ytOuAhA}?!5y=>SsB8pqfA*A}H;TkqvkCkFh8y@YpWX zXiMCuq!nTsGo58BRI+lPh-k*becTcAe^?^o{t16c@X7Ftt0*&{JJ#~E@m>;CQ2eTK zhz62kKNRaKan{!Z;1-j9rHR`xPR(6cNyRFxNhJY_B?3yOY=OP2@^I?1*om9@s$k4U z&yWcg#a;FQw^tL>%cBTvHIb4`#9k|p-_!bkmfV5jD9vT+aU%!XnVfG;?&pg`mxTCE zeYwggTdT}Cv>ip%+mBCgUdhef{zkg3EaMCXos@C72fP{OK5Qu)bPOZCQSN^R)bzCT za9k49{rv*EnF!RXZ)NzT_fM>idMSYPWfT#KdE_7v-_=ufb7~&S(Th+Ie9+Dx9&VOO z$W@i-Gemjrofz27!bLi13f33Y9$-NF8Az+B!?bs7l?8O3ezYSI&jLtC!6p&j_m2AK z$1}hz-IL)_)U(%lVHHU~NAWgzK$iEIh4Yhnh}V){Kb6umI~(B1nB!`CGfrla!x>yt zPGlOx#GsI<&ux$%j~FW9^oR_%?+Rz;onkW;WU4W^tEuCrs_>z`>A==Z;ms`OrK=D4 z>_h=emB3(+n%M}o+op51bu?>}L0m9Cu^hOpfn^x@vhp{OGkqzEl>bN7N!+O28q#d* zBWPR-!!{ILfO^5Aw=AEaX^j{XHdH5xqKvO2 zd2=K{tQGM~=CPjBDU(9p+q%95H4$nevyF|Nqrqj1p~YN`(F$6>4`0y;UAzjEz=YWU z;)HpJGi3f|z#XX&+|#Hb7jj^&>r288AqT?YQ%R6y?=hT}T0|Dj{d3fASGmeixFl7B zjy-simIb+x>C02z@vU=w+1i0PBL;0v8$-3`r%*zf(>M6Ul>l(3D3DDw&7`pmu7L|l zQ?J7=r)i{#DZH_&!bH2A!1pTCoXyB(hCbugv@0V93|$HzMsK@1ZD_#UM5(N_%RXA_ z`5UV_|7@jVNNayJOLs4fkNTv{B*`X%t2&HR5_wb~$1TcDjU_7DH>Tp|E)ATFk5@X> z5Ul{4SHV3!YIQDbJWa%6${qlstDAzfb40>HxQ@ip-iX+$GZWgYBJ zFGBN%Klzw~?~O-1-9EnKEoyimT{oj0VydqSfxul&;~<8bmsixESO0GTczEL%r~|#&mMn9I&1$8ZuTsq1 zNgR?0i`Pq={q4_`0VuT3r)Kg$>&p#ZQ(>8xwDLL7A(tt0+p- z+F)9lB>ezW``Df8=C}?F+`>Dhvc ziwx5W!}sRCet=m;m6)66HK_!!;T%T3kw7xaF-R1LEuHY&NkYa6^N%8bU|XFn<041O zk9QqU8FX8Q7<5}J>2H_!l~%E-(^>arbp(wrZ_g4@+9;Ka1j5EY{f~O&_MG&@o6MC; zp-U}^ynL~f4wxRR$71Q-!qzeC=6k_6HImxMX8RPUko=Hr5?hCEkurz-gLoz2yGT!? ztRX{7{0?>=upiUX#T4E+G~WtN&HP{}e|7QbiPwC`{4cU8*ht?)s@BrDn?e`Xzr2OW zQuydqGYi*zp@h=)vD)?MgK}=&vKFHgt&GX-jkOQa%%QTW`zwJZDk&c2+}3yEutW{D zj_ETH(cH@b6*EqwmW)1gcz?28Gcw8{ZyoP$*=VDT7f;?{me@1$Uj)xCGoV;P<@hq= zZwt7{_U78+m31Yj*TnRYU7alr1p_Lx@-mbh=H-(}$<}HMi zF3dP){wCK286PL?#U-{0Yk1KTR&T7Ildug1%)TQMsJ~J`9a0^<^!m_q+2x!GEHc0Z zz3I)F|B<>;3|^eKzfErRXf#MyR9n2=NU1MuCLYJlj*-}LV73GQjh+qpq>?#Ctg&R& zbQ0dCKFfsWCakzSEbz4rOLp%fO#WN>7kJRbN$(4qmSjye0>m2kxEOn%sb8WZTBD59haXf5-r-#N-YRmmq+H$u-@ST0G9EsXyac`$Au zX@3)J%&W*^`u6168FdO|&%6>dNu!SMtK@~sjS3pe}S~T#`p$lCSCe##^$9=YF94qI>q=sE}6x!8&Mg_7DCiIdZ|wO z*Vb)oy=t~E(wWj(^R`@3;K<-K8W)ck``UPt4&!>?V7hOuV{yTAJvD4scJ)%t z%Kc0e4xH!P`bekIjFTb`z4t^UrQG-w5zLk^EBK+q)t6T<4B8>;V%Ee{6K>FjR(k7r zbRsW9Bp+i5<;Gpc@yS#1AAJVu9}25wjwq@y6BeaN+pPm}f!>LsDI`1YN|Qw%)R(?t zsPV&IB}uD(JR-&YTp*7h{T<(rY{;20jOy;#nz zA~a=sGg>Ua7#|_I;LHpl9CNS|l?6@-E}BMH*wvL>frv;ZV7H`)o4Kk|`a!a_;1EH9 z%a9+Km!L)7DX7+I=den9sfpyi6PgFMh&XLv2!bkEA?)aOUEY?Kx2zq5c~HwwWD2NO z&dBJ&dLvekmpAJPqW{l%EZb5WcJrK4VJ6Nl8I~A<`)G}yN}mktiy6{V@%E8=uvs^% z7e)?v{Qv8#>pX<)>k|v^wnbgSz5-b1VaSmht$GcbeG^pji>E(zm4`{t2?{Xv&rY!l zxk49#hp99V!7>@nvqv&Kjq_q~o;PNse!rD0n=)G_7OhFaN;@J57K!=A$3>nT;B$re zkipXW4bu|HnJH%#F@#}W(y-)XzB{o)1LTI!&LxhR|I}qvo@0an>bkUeeB$+%Tn=p6t(bkjgU;_%hE9$akf zh3YxNr*#!I2Es)_n(5uw*@7YT_gK4N2M)$4dwjxMxR|Cvbn*K>3A;MmGSN%`ArTm&%}=$j4hypKFDpJO2F)3n`Vg7D2nqSNxif*>oWlZt|?}T0XfUF9_H>N z)xEGDAAC@BrCbA7G1>Z~7d%t5+$Zo;+}3E%81X${wmBne<5fm(&|DJ0&=cS+wSGd{8k%ZU%l0FT)g ze9LE`z#7Tx#T+r3AG{ok+$5T1HLA0LlijjO@$!}wMX!hWqLVqAI0iEp#DIXbM-bkXs5TLDF?NUneH)9>h**dD~J zBziI&LDvpC<_tWXx8s`mOaGc}le**ONHqXxc#pL+MNkI_;y8IS{5^^;Tf0vUad)FQ znj(R~MFDMwu403b3Cft+Ia6k7OXfHDku__0j6zR^GRggjTZmA1Hl(%dL zrtFy>OvT+pgGJ4&%D{+a{JL+!)iAr@(^;zGG2@lnYeQ%T+L~G-fwW@u4qEz)43B2& z94Ia1P`D=^^i?mEE729^ok`}k{2aQi7InGQdocjJ;pms@g7l;#jNetmL&G~%u5No~ zdE8zhhXFP^eCKA4>65DhMXjWOH2vbZGs~YVou5dV!_RSyr?3On(GR2d=~j+}ffp^jq36oTy*1ge!uv{CdS!U4w3%GWl*FH-(!2xIJ~!167Hr!JSR)?y7FDrdQYItcRv8K7X_HzFD=mKpY`*TFG{uoIEc8~y7r}S*V z00WE)=c&Ya0Ch4{hjTj+)bfVhtZ@ZgMau<}Bz&L{snuDzlfTfmB&>{_bJ2PrkI`Y! za>7}9Bx_j*EoU;v!6UM24Rd$L%COs#96K{CQK<~7f8x+v_}}Fc$20SFkLGqd+_N)l z0r(v9w=SZ7qAK%9fHpI87v^}dPKom*y6Qjd7Q>6%$6;#oP^qB(@5JEqTK7+(PDn7YIvvQ3ct3O%ws z@oyDX((o#(Q0X>8bF1E9QkP2uT5HfI9Nk8mrjg}Iol$=)R1PKO^Mr7aD}v@Nue)fC z@;r#P3x%|5`+dS@7*d1q&)!O9u9w+ruu1^xT``t!&6bKc8wt&@lErtMU_jaEXfV>3 z0lU239|6*17{~0i*>k0-Vf~m*Y(}{j-?5)D#F_o=15HDEO**``Kt#eN3$DdMD78yT z-k7k~ApiOe9BcAa0<)v>AT*t&F|0_BxKxFeA4P0D=%0(C+${|?*TPI$LwUgQ)!@so zSAvqZKdiK5W#hAoi5dE_!priOhkff8tYPu8@k#{vTw-Hfy{-4W;PJl zl$l-ieVasL#ESsiM3CHAH3c~(ghs@vasu( zwM08CECFCX}_L=%5cJ{gRfUAp!FS4|hNYX>xTOc_0!Q=P;r+wsH zx*W&uUaZkzq6AYBCohf`vhLRy4iMH6UjG>~8>^I<)E|X}ipNs);5*HJC_HxM;jp;z zQwiE>0hCK8Khpxl1d@M)lY93!wQH1*nLZ#tLNIry@tH3o43UfS4mSm52a{RGY(NlAQJ6dsuX`H#*1IU&Qi<)-@Vm_}NPl@@;Lc8T>iE^0im*SQTQVU;K zrN0yD*9Q}br~cM``BbTUkNG)&pjU8h#R4&QIrv=X59Y;d=x$@};z+zdT!`#Yq1y>B zQMSV-s7`A-fW>V=vxh=<-v(>rXgB^Us1?+~mOG(Q5P%$4tBSM(#l~x+8yODfJN>#w zEt7dDal4tnF;!dj04c!qHxG*%BNdOFTTP(?H8j{wm2BQb2mf=KXGN7e(E3QnLT7sC zk06z4Q%tNgGPzwWJKdew`9MqKC-)x{kr3*YO;WeMH4hFPNA?}-7aG)U1mTkL`Tu0Y z&{@*b9;2QgMDX3F*ePOs=@gt;Qv1DN;lik9TtfAeJhxph6MGlv!|*uGAgC&nqS;~U zv5ti-kDuq<=@(p4wHMeX)@|IKbzkQlP`V|0!CnGQt&?U=Un#c?EoY;7G+Cu1#MH{5 zf;RsIRcf_xNG)&cd+dh5`I>}1&p|Q*XHbSiq*+X zNcT6`kz0V6gq?MrXknju@LSBA@}Z58knUZmZJ=hL`6)zVV94vOVi<)qBK#7BFh4U# z#dmfpu5kud&(eGME3&SDElc2K1ex;MWGHPNgGGbFz<}_cO;b$8^b)8cAdJxp*$$TL zWmj6~lkn1ZZ?)5t(G*+qSriZA3%HEkjw@6ZI)!c7%FOsG27LBu@3103ZA>7OI>3tu zQ&(Bumc__+?*4gsAO04(_07cM?KjuS{mW_Ch9H)>$k-WBa@I7*J3KR8a)7O_K_yyr zYg(ynWoaA6kp=L(PWLx<0d7jw_vRMo4G<0#@}&~asTQRIGZ|p!q2I`{53`W_*+Xus zft?8SXhlfCm)+tVq&?- z#!6u*t%6=;^0)tc9I_-oa9CZlN5J zb%EeoqT>?9#d$avkp+fGR3<3YqRWLJGTHbTi8)O*RZd4bllzW1cZLmtuHRm zjK7Oqy2r~9nWb`gH4r3J+l>Hzi#PCUtZd2+$b2#41M?VZZ_$%LxW54xyeu|YOR^Yf z#>8e;crQ4n8sF+**c6qN{A!#s_36(*NKbnICs#<|3Lz5|88UtZGdtc>G|ULZo5`q08BMi?v5kP;}9 zqljpruXy+nGFN$IH}H(Ck34?lms~}~;95G~`K!TuoMEw0%_z~c?cuc{yq8NI?~?p-X78|@iL2E*Q@-ZjKQ&II&yIPcc{4l3KgU-5JN!zpWlX=%}Yuvko4 z`8lHtaRX@bEzwg0IsYB~!21kZeO^+|&1t*l!oCzL5lWp=C(N^=ogS$+356u#l8%+PINH{ z1WyIo@g)_T=2ytytMP~pW{~~!)jxzAo{q+-5_J~MMFb?82;G$AoOXg#z0CaoX*k)0 z4U_OCDzW2n3>u#adms~skMe=#(}3be%}-*7CzCOO%0h@3vG(&+4?nT_I)dLa?~~y` zZ9}N2VHcbqLHr-7t65Y4mlN8RI8ZZaq!lN){lIpKbcq0`Sv{xM9!K&DEr>Pf&-ETS zRoF1L4&$>)F404;`&Zj@nmtjr<8bsq>|WEPAbI|)R^Iu`_F&$^2LaT>;3x2?s@PnIurV zLo>)Z*O{12k;@MOsYyQaDDc)EHAV@N#71~Du7pc*%fZK0>~Ae7wGNd& zB{Zf_>eW}6VAXaQ*U*Q6IG$6uHm@9{zsA{|K;_wl0t zRU=D#d$tvM*JP$pKru@_@q6C#{UFzhFmXU*?P2+8o>ARSm{l$P4)E^pO|&w`|EYZZ zy3OB-r6<%jnVs74dWo%{`@a#gb#XHxNHCXUaHq8lAp9Pu?;6f8kM!s8rGD?jpD6DM zBkorP3zx+*@f*F1aJGS*(XJC8ccFNs+5sHz;O2zoj`HQ4><`8f?5VR6wVW5db**

Mx<@%Gf>{B(Jr@{h^>*;*&`G!*FA^>uJcgkwlq^9H_I zcmaalm_xwYta{k2%+gj3o9z4PwvIlK_19;|1?~NQZ~oTftj&$q|9ZInhcf{ zqdO2H6$U5`T`sDst8qVYD|;s+y&NuMM<%DgFx{gH)SM`NJQHE%(NHShyx1Z4*=>(P zBpSBa-^DmHUr(8ECz>}mFlB`jR9YMQO$a)_A^B2Nvq_Ny^Y`^>WTZ;NKF6D0410qg z@)X*QZlT|5gxPvG*E~;1lmF`_m|h0M_jwA5bu5KnJYV;jxUsi&nt+ebVbW$Cxuw3l z!lKsAGqZ=@s%>nOhf3Y9#;B=k5T?bY7S$O;*q2M5uqj+8ab*h!^yGe}k&hq;2?O&6we396w;6rO+!?vpdxM>(ri zei|@r@F`LPcyPwY-zMMC5WYtwErN7?{(QY5se^A1BpR?#l{4>I;xkU9(rUzYKvuuB zk?|BVXIWoY9HG7SKSjk@lfRMU7~55=Kz!u$6(@{8rNj@-sZYZ!*lj?cn_rwZI)OMj?h`%y=Z zorsE^i|b|( zynRx+)~jim?ovGJG|KFY-S+SYv|}xt1Ax^7Jc~>kyi`*YDvrd2=wb$0QUH^yMw%p* z8qGv#9UVHG-~ZO^vQv}CQS71m{tp{*pfNRRxAs~Sd^k9M7Wqcl(51}}Ne7%YXR1Po zfvR_#T#-c03fI;M zCNQ-2vyvBx4JtM1w#GGL;|T8h31AZ^WyrH+wMX0MOWNy)u#)KzLaNR1$(_FGP1nZ{ z2@Ag{PnTwW(h4o$p^<;FVg8T0NOtS8kpH6-k4eWx+@Yfz@@%9wnls6F2};$utfo2Z z+on?>{J>KtyPZoc6(9hcosTJ|q)(8Qxf#AVl4MFsIz#;zU$n}}Mgenl4|!`L_O;2Kdd&!T|EgECD1p=UXpCK$92CQ~ z3t zov4!in@{94g8>!Y>VPLrz0qjRr$alb_3!aoKn%gAN=y%kv-k@edGm=i3!arxL;>h` zjnfL373_T zdtl)uzmWv4VX3$f7hVQZ7au|9OfljQPq{fYcXxwI#+By43Y(47W}LA(dyS>LA`@oI zOH+5bYMCupy1T&eqgVI7aqQ16fLX-eN9F_T1#o8)p2al6iGuq$HbNS(KKU3ph z4Ms)L>h0*CKwFf)9|x>I*u*N~7Bx||PB~FWvOu}gz>#xdPD%zTz8;Z;$e?DfLCDUcUCvGjUos5VnT+rWVyTeFje}u&^jT`_fN9^;tg?I36^la z_zria+`)~B6!A-rfwE`JC|#2q=}nWg84a>0GML-`;&A==Reom51qtGp4_#bkrf!K5 zD4$I_)VB!V>TFWnTJ~DX)9ivf0(i>)C2N07nT|U~(oFkrcpF!5Y4prPj8Q1fnQLhc zM1ov|;%Fd>P&Mde`%7+_mwvn-1u5mz2!VoVlc%Rusct4B%^c#ulCGBvJmER9Fp4}p zWVf{Evrx#Wln9DR^}~x_m{eGg;Hn-?OUs+8Jo;Qzh(-= z-{S|7?5PBhlg3$;_g=gVpK;rHhH7>NfRxIaYRl^Fg|J>6UZ24eHVBEBzrTESVYvlpzW7K1r!Nf?JIH|!Pdfo3c+N@c}| z7cSe3_zJR}f!1pF4qbwg2y|K13y~&h*9Y3uogcI#rTFb1&Kt824QkKHkt->vd}qj? zenfCQB$qq7z^$6c{{J0k6ekuv%SqrR7@{a9s00k)9uO#hh^hTV;b={j>q2%wvE%_$ zJO}{k>sIkQ#UlySVe&UFZnY za$q0i1vH<~cIC^#=;+-$#imaR>;h@NW;oWt7F?Z2j#OVJj7Crg=5xyy31y|?e?ZnN z+!~1WW4<;_J8`J1eTdT#fLyaB_1S5-@sw9T0Mq4}=A&$^7RRKIXP!Hk9n6?i(`hh| z52&O&E56J}b^xRMg(Aqk>^GV7ocGWWwv>bEKX)tHQwuw=&z>JzytIVCh=lh9aHsQj ziwtD#8<(PqZqtoQ*)SH_B6jvXmnp9aWbJIj6D-*6VLK*vAN7b{zr@C*cm;o)Z>-g> zWXxeNt3`w?u_atgHU)1rlhgnSms+{>_a3jhTODLm)2bao;n@236PxCMfupUpyLoEF z$iC)L6#)OMmMClJqEUVdsY%?p5gDX?Nw54K$zR8{N`^nz=s;q>S|kR3UhYVOU5ToZ zRJjydOHte4zC;;sT|QyRyrNTfsYt=cNG-lhP8{xGf2gk27+woTcxEL7 zhneB@R{JD0jki;#=UZZ1$&m_)vT<0FN}7{^;um>0(~5L*Gmj!Y#^#r=Zk>dEy4+Sw z*8C+RM0p^UcI0~!=+!lr6{D4`5aH~2iA^}JPUS$l;qJh2Q+?B9*gG?Gv)0#|*T?@O zHy$<2(g>@KpHjaJ3^iL>X~~#JNw0rS=?ofw+(^AzaZkGw+620%M9OZoW>gSlAitHV zlE#xysqG07(?wnIc^t_Q&|CJH`yLNWv0>uHw$OeKa34%$@)D&{OFpz($c(~3G{=CY z6oHr2S~^RGI|$rLG`tw#e@{n#(FLF~+=aM`))oF_+x+>ZvL4kE&Hi7AiBwK+(K0a*n` zHr)wXxk=`vq@EP~%d}>6)Y^ODbG6KnKy=DqJ4gp-k9{wD z?-4WcCg#y<=l2Fi2K4)mZu9JyJXuxj^1&i~3VsM*)Ku%#rt&?x;CS61gHR@%+pTkW zpG04(Ko%qCjP}V|ur<27N8?C+^rug`!^t>lJ}EDI3bXvi9@PIN)iqI&K+#g6!0{I} zM$4T&y8&7q4dt6$U9Ie38;@p515hAxGm`S6AHy5N;J>BcY2Z?|<{v=!{6Ym|bTV)3UHTm4`Cdh?$0s~$bb_at6fdCZ*Bb92902sbP@}K5f}tHDN<1s}^*^$KKDU-Rpl_@)2sRPiA!}1$0gLu$utUk zlZw`2=~dc)4eMZZx~q%G_>H-ki5|Qr^Q11;2RrfIN*)qIhF5gZ(#e5q9Cm`}%mDH@ zqSJ(RPxPHman@|OK+)^kCJ>$C!DkR>hoM6wLb)pYJx{2|MyTgIh+Og7gub_^9(e@R zUN4Z-9nq7hi)jl&((vE{g1&#&1=#FYFMW(t_?gC}q;}5sGdUA!EV_sp+c)N9=d9)B z%zG{Qmlh>7yVoSaSKm|mQDJ=aB+qF!t{E0>2qEv``U;IL>Wo@@FMk09~aI7waMnn^74;n9;WT{@nEI-#Z zu>A(XpcT8^Tb71a1=}pw9!bI3cbT`PFc;8ui_OJzLyf-!zi1K%vD&;oh&wZCk8!jer$QOBte}rKkl<7)rt^LhSMO%?JpYyJcu+~7&R434! zW&ehKy%p^#u=^ap*AN>F%e9QzTOGA{nUkZuRj`L^IZe(#RZ}M0O5yyd;p8~f1VN(q z827-^ZbOmW=sr&D2hRZk&`ZI7a7G?FX9quwT$7qf=Vqu*fgDKHaBFH2tAp>VBz%B8 zCL#sOHnNp|_~L?q(c0C`V$;imUf@|vV=o=ocff_sz|gkx4rXypz%f&W-4$t|{&KYJ zN{VekBS`y|1N|QWW4W0YM20TG)KW(szX~H^x0u#UsNR?zlv#ChCVM^{JTjB;VTi4i z9A!bMd+`fc`B|xAk$Tr`dF$I0#ZpQO6N!a=#eXoLq&(A>zB?Nw){`F=Xri_75$dC- zfw&{${T=)aepEw}(>OxEoJJgbxB$psI|>LP;DDFcKxEP|kEfGDhN;`_x(mNXSR{hv zO+1X~txzqUj0g$RH_O`mUQFqgRvVFFG6lc>1OD~096shjUa`FMy6?ezo9A8-+O6J86JW8USe8rs`on-mj7v5VT*eEwR$*i? zr5WNNnSPCS9K@|e{ISFAM=wo!ynq{{J<7Blr?8^BfnoU0{+>Dq+<1x|S#nFQiiEDK zhdc1~6h8ONelEp891&e%K~Y~!bqj|{g-A``?n6$mdqu~VWcA89k^eq_p`?C^ zU>(MZWVY*nTqYHoi;wcB^#l=rLAS6u7PlLF!)~0J0z2=x_ZvLrkA81hq~ZPdyIET< zcgM3X>9ndX_k{0Q%_>si2^@{s5d*9B&l?)D!F{R{?$0p5rjy5N6b99dyCGgCu4j5% zUdpz?q9{CbY;JAaWq9(?Gk)3MiFflb2p3h#(PPmqKfhzc+;ZxN-xWISFKis%05=K_2uN4~FlHeC*)lO2S8X?IR zvGmfer}*Ca4gdHB5+ABKH1ZlM4npf%c(8pQ6Vq_3x+r>f7X=$a2~6LW z589zdqxtNk1z7lG0P4?1BN)1)3f-kF*7qNZX6ekUoI#Bmk=#T9__J{0E}%1^lGO0> z;x~1#Cg?|B{>Qh77)s?##(M5eU?ylR+hGMxr8QZB=Wd;a~Uq#aG)zvaGdb5l1y8AehYM1$=#skZ8a0X%o1qWiu z&~^*rdOj1($SlZEuOKMzyP19!Jb0}owhjKP1&&FeMBs>J%EvGSmX_J<7II-nM5ZKZ zv6N37*=!+AJ2-w*nM*`8-VS%aO>3kyM3!bu<+4-J@(>8nD5l#UB~1L3{TPwoTa?Cl zTRir795r(PneP%P$2|5Z^8fZcQ>>c^XtB5zu#!HfA{A|rhB1Zf$+@{Vk6O8ya(-{t z#DUoDaHOcQ*v_9a#UhL}4{D{e`4Z30Y=)f3STE+%%zeq1Q&bg$&gbP79R0R`KWD(eA8w4FJ!i2pcft;H9g4(xd20*UPTbXHT)C~W#eaKyHEjUS$O& zKm(Lw&`^wkH)xl-8TlZj@5&YU|KyT6RIYrUK`=DCutvsc?{z*&9?TxGpZ95iq9DC8 z*=edXvPnBUe>~9~2zr1O4T=gZuN{DS6Wc(F0V3k7!C3#J3;+Ik|0RI(+7 z*?{@t_%D81AwUZScgoiJYxb*NT5UrG7g+VvvsBH-K{v38)t#$!SgLQ6fyGgfA}r<% z(|!hCB2%8P+zDhHCUsv*H^?XF-FCdx)BUH@_xp?rv8VAW_wiJCFr92ypt+4$YDDYyo z0SXUOlOwDnoEEd)3a~wmHh9cm+@+K=6GPoilq&8{6yh>oScoslb5PnP-5k+YI6_8R zrNpVBkZY=PbyzZuCMZ#AU(Zn1J6tCQpOU}GYRTff;SI)cjCo?W?9Os5L}`@MZ!W72 zp!l8JReZChEF&?cP}w(^C`n;8e|WXVl5_n(a$m-3>pWeaq5)6kfF{>vc&gSKx_{60 zxLK+iT#X+QFR*OJX|QkU;>XMBLf3Q$9R%$mc^Zs4-(K1(Gu@)PuV57N)gP*uihv(t zY8Sxt{Ja=c%Won-1_xV3&7dMQ$Q8MzKaqBD$9jeHAmFn9f;24nj(JcBw;jWL5jPY+ z*#}g-i;A2^+KL1$#}NBRUgKVf1MJj^rGH7oKxDEIz`}`nh3M=94%*l%oygN?AazuS zdVS;P=zAW^ZXfG;PtYvJj;V_PM?kp0OaI#;9nxhxyl)<4ENZ`iX>dwOR&3S@)CWIN z<6Pv9GPQ=t*=YXe%`y-UJ(%8=DC7%kato8L@&e)FrPWINWNvP+K28P=#%tJz%G zVwpPX+rs|REjGF-mmFKhB@%xwZ=aqR&~21aLI2UXg~mqr%|$7T!oNku210SBJ;6JY zO;m&VE)f~jrUy+ozmJ|MhfBdyl2Z#Qbw>HtGZV_g3Dmh^ky{(MK-j(7{ECLLF&C=0 zs~q(E`S2tZsPu$WAR{*=!d17t(s=}$)f#UpmKrkH)D!Vn8^V%J{BPx0Sg%9v(K>A_ zek{K_52DKFvyIwoFn|! zeqw9LV8K2cQT&>CN7#KtuC;1|r!A$}B#v>1;Im^FRYE-Pw1oYe>E9^l7SY8uM{9pj z88b5GK=9LLRS~I9;nABQJ89+CH-ZCqYP7{wIG|nBCW&QSif8GTFo6<3~{s*)E81wCYHyGgsB(3w7Ky=%K46o}|M&Y!f8hr)y^JL=ipk zSnhlfaVO)DI4@2oyr;ZOSmSDAeDXcEhmcy-!*E5(t+q;agY&%8z#=C+!Xk~wjhrD zX@R%d8Zk5b&ui4=7?&d!5I$4LCj90vg`MlQjJ3vvF9Fn|SFQKT2vWUVq1e=Z*-UEt zX{UCewgzh~lb0_C{d52oD)a`E1BCbXht&iRI~rVE$l`>MzoHP8lLja4uGO|z?_sfv z07*T&)jr0>s{`m136=Z&PHI+TlszTYdJcXfA4U|GnG$tJKN-V;f!oGT zf2Iw3(ky4%Er(Wzt2|&kR)vtG>H1*&J~vV);JZ+){uHPEVsQ3HFp|J^AMegW6?PAy zh`M}X#f?G8S6UinsYjDb)Fcl&#Ds=S*-r|D4JTPiU!8Cn2xGZfaD&(; zPvb+cJH`F)tKLzm;mAagEx1=Df(92?9>+N7xef`EenCGUIiES-6rNJs_`6r36}>FmSYq9Tm-k%mU}KaAuhXK`{MIa?;Q_@DeU$QqG;_- zP)_ghn4lv4v~j%G1pEW*+>S}^cDWpbxsvArQjXHe#EfAX2=fX2|G z0?MYkDZTpFrLSFe)jI9DKPCZQiXCZB%@WPDrjqwEw(IihM5DW5it0$KBog($Y#qX{ z37V%`!gNEi>5wuUGwB*%~3r39l*G2Q&p$NB-hi!@bLVz9@k2E=PJ1sa zic{D0#BB>zI8c}2AhIAL-viZN#GDk?9Zj)nFO(FCGP9k>%xmoYa>H7i1K9GGE(7x) z1%_m${=^wQO-~oO^8BDoI4wrLz5-#_Ko_cZ%E^49Kd$$+mgpjg3Am&$lTHYo=}7{e z?T@&rUz>SN?VGxWPmf;hnR~*^Iy{DU)@?x0^ty-Tj@1w&gGpQYhu`KjFMm=Z0)u#gzvJCOR$*g0*CT7ZkXQ>M-!3-mM_ zU<*t`*j&|effVUavOysqVl=&%`XQbBlX&cSJ%=83`J0|;BI%LGY6;=rtKEG1`2*9E z(~pxE;4&q3k@Ak6Qsl!{BzNMFRG{G9&-KTW=hNhnVmH? zYwPx+Aaeo^KFi!mZ!u6??8=BHAu^ct!9>4`a0@_$Uw!j`co)h?u?k3-NxkbURUr&U z^vXi?t*D0}7GhHRp6E+FUs^BR#Y|;dr?(Y=+c8VrUCd34$GtTX>Cm?ElD+GhC8e<9 zNvK3FN0q1tqJy zSqxz;8n(R7`#}y#Uj)6s2I@0P-VGNCowGn|YcaeN{2JPej_`jttMey#LMQYq1b}Ht zUx7V z@0ocb@%G$Xv(W+ri~*PKBF^kpH{TQw&6Ti3IsotV{IL1QoUvZ{P{XT zI z+n;v%;)o7n)&zXURXkJn5s~~Ju)ZUo7~?CahT+3fAOHXW1)$HfFbBi^()&#X!P_we zr$6GOSMb_Bpfe2t7!P(2>!$&U3ec@B5Ww37A6A%rm?>)6H9!vh>AF{MV0U+8`};GB zrBppn8eS$EkbL&0v#qra3i*m3xT&&Z1?_1GmX41?C4;X#ZkGjpGeO5ptJ6g>>+Qt` zq7QsyRE4jB2O`=?N|Q$pZC<`xoQyLp9GE)UOP^_PBz5C_`yB0Pzx2|0uC9>!Lk#`Z zZm2?Q6l?z*)N#3elZod#>seGfiD98Vo#}~kA+}0tC3P~(-cYcBj28}8 zi9@!Hj9a2O0TX1H3)tZ2>u1UM&{Y|i4ELwE;`QYvaua5<;DhfciU|T#ZPa?Q$7@0s zzix92W#rTEeb<9zK9QZA)sc~ZBGCr>!&yI@N(noMt~oXNoMPLU!w z3;E0Tk_HvrqxpIJt}1ys!c%39f4&-_^BG{3*r&K~T?>O6leR|yr>?>u$BHtelZ^Fn z++Vh8ph%;EK3^8Mgis^vXsK~Gdp`Q4uiNr!Cqm( z=s`9CjTuH5+9|v3#gn3e>ZEz$Jl`-NlTXq|yyyjX9c7lJ=o3?;m@n4((o`FPG`dIQ z2IxQ_u?SU)E%mT?v?t{LdwAus_nWJulrljK799II?8<2(5W&eMKxWKe_27f!5zp#` zgiw?uC_HJY=XAHVMZ5mox!z6wa~sGkP32w`sCi??!(uUKQnJ4XK? zS@aOX3%AWk;fEn1C7Hnjb?Ry)z@TfC8b`jom;YG-Gmcg=DjbRO108Z8BJt!7wr(>W zSjP;GZDrN8fwGv7sZ$doR>k}MR^bZVPQ?MKgw=$hviN`)7>8U-E@c{9;LE$xW(r{qT{V~ z#eg_?Pr{fM;y&D8i+3l z9lHboc~Y$x5n6}7ppPsM@Ca=`_ZoTY352}+U^rN%YkIir7JX&R(5*#@FbV0qG5Vc6 zqC3m$@StX&Gm}Qk?a#oK_wFXP^33?O1`n;o=xtD=LCB13z1Bn$&1hXlF{NHQ+=UW* z;ZwfX+`4tqqW{ZosoSs%6gqv)ICT^aCOVw!Uzd%1pN-&gCF zC03|^kt!g7v{KADV=Ac0Wh@F-vI|alrn7+pbwP^(wv=dyqo1dGytkBzH8q^rNO!2r zW5SG#RV5q!rRCZ`!^dhUI@eKZ6L;={I!F!7P z*G~o>ERr7vy!sZ<3^@xK!fS6x^}${V80P=6~FcHy?Zw-b1Xt{kXn|0SIX!$bDh zG9_CZNMsot2R~hL>w5E-Vrm+}#8(w(YyQUOnqvmf-I|Rv9HRgB7z__*ni+bB-dS61 zAYB%6Utsz-bCc4vRoG%+nDSS4iV5N-KZg+n>EUtNBmGX^%w_N>ZvvTSch;tel7!43 zku*Aug`x>xL$}yk-r(h-sSrkWl(5IzB1;~5zj`I-;Og}-{9I$@DZ}MGZXCLZ00000 z1|xnxe~MY>6={*%2NMc$T({b(0dHG(I%Z%ZYcD2$k1I}7Db;r+7HbdDzkZ8F;{2x{ z*@1~--uiW$q({_Nl4N?jyLucpUZgbh3_0VQo?bSLQ{z!2_d72J{Kw;jvz3^DJPa;< zY|dqv&?dicj!D0jL#Q{<#X0LcZC2KR%blZOYlI7%=>as-=e85{*ixY{Fwn{ zIp3Gm2O&u5pB+3%#&uGuy7-%11YxB82_&fOTb>wA(+D__5p3H<3=@1yY^x;@KEI{@ z?dwb)Gtl{CjQdWN-{FVP!&}s|H7@h^d+$aY|2@I2w;# zNxFnYJ8+Dc$OV_6m2V^Hx{FvT+6wls@3L6IO+LyQ`L$B^nRn}FPr4UXks=-@XB3)Hrfq+jXZ#}`U1wVpJ*n}C2(bQm#c{Y}A(<8$ zy6WG)!6h1<2mp&tpSdO>g81Gah)Z`R%Th(y0T&5q`s)RJlT7j744B&DPRph(p65gn zw@E#{L5>>lY#Q#G6f(^yYh0Ebj74ki|fPhn#Q`-m_q1cv{1>$``VA+{^Oo^fgm&G0c0K zD)}PLyS6Gf6kadH^H1r=QA$p7GkQQ$E*)p?b%m3^03g*g72c-P?m@-3#0j_`7s>cx zvQ1^%5>2%sdb(=LWDVaHB_;=Zue`^a)1+_acODC~BNqyzM%x96Xd7#}YAHfpyMTs> z#w}=Jf;jK#4OOpZOo3Yt8xmSSn-EYct5rI30=;0rq!7l_D9ir5?z=!nbwA&*-EftC zIRGmof|4?L^5L{67y8P|fvU!4jkmct9#RN2s8nsfx zFaP^W8i|B@_wc3BJp3CIJqKPFa;;3?;yGf_P*4x^SvZi2#04^${r(0{Sa_RhC51wY>qWprnlh?E3N4gcNWG_Ts0ay5`># z4Oob*SUlGl(Ok6Kff1Q!DYjVGdsGeiMZbW%AvO5TkeeCvIgWLIWJaE<;b6V}*>!KO z^H5;?w@YNXwmwyhxq!*6qx_9LrF*1B=|81!1=4rxIR9vV@92bKqc?C?yWDPVRSDGS;wr8))b>ZFM zD`D|JkT99X0w!A8s4HZ4V2l_5gVCH$?gpHrM2PKn2bmzkdI)@Lpk|x~VLH(anpzuK zz+*@g;U9+dh6}oj%5-T?Jv!u^>3um*m(X!}S`+WxX3C|UtXtzi+9LTWScZw5=dD5& zB*Jo+Aizn!ffeS%e!cukeT(%g7_6F4_@!0d10G`og*9*kpM0mI^zN)?L-{{C_Bw-r zWNl0PK-H6613%*r1?bbfDm9Ql>vJJUqSO{Cemb&vcPEpz;fGP`D9*$#f3xC$-_5Ni zk{O!pTBYA8-i!gZ{?f=oPzv$nm{0^#v;OK5@5KAn8w&slwqEuKZcsA?WL}T}000>2 zY9{j9k5F$8UujkA|3bBu#ok#AzV+5y1v#mIDGk;YX@5r9EOgmAE={~f{3^uKOV1{` z9`_4ZFhJi2Z(p`ZrcT=O75N{5AoT6|?dP?8Xx-k@u*h_PxszMfBNaWO_uHbhOW+j~ zMUqVsLMRF~hqk}G`~NpQestk-4VJXJ^w5eFSlzd9In`ZIKt3Fr;XBQ4{;GWR|Zc(~p zT?@n{XaULgRM={mdZD{>ZvztJP!+9#p&&2Yx}R`!hz)tM+jLjSWO()ae`_eOqB6&{ z$l}&k!6H6b?fgxSxpJ=eR^wPL)p~ zMAQ6WR3Y)|i|~QpypYLDTQO9E6#xJOFaiqTHW?okX8WQIaYi;Sztm@q?C^hT%2h6O zvXe2nOrgoH|30jqyF0V@*^!XqLwXm$cQ*5i|Jmg>qY#KaYqDmg?BZ6jLmcU0v-K{F zO2kfvE&fbBLC5qjN{8Tli?{SIfp2^%=<~-YnTa(DHpu7`!B6w|%O_5_nrt0Mmw*xjJ zBs~K)^axV`2{_U=;293gxKcn>OYPKf<>z0N8|K%?hhQoYA9-H7(kNpzch^}=g(9G& z?`gaIkDbeHNa3@+VWIFUyp#E;#QF!xoiY44dAm$SNt`0;L4g87o=dYGTPAy*!j4MJN=aFqDoj)IC-vOK>C^>(f1)3wOONres~(T4Vf$@ zQSx8T-x=Q%uQM|PMW#96u947V;~QRe*6&jNc?j891mC0dm+YwD2H>?JMsQKY>O>Oh zT|hN-@ZhjrKG!!&GrkLo$3w1e2lgy3NU)k0W8ZRwD7h9!c#QuuAgwLaeuNqMz#x6A z(mo(o0`1PMa_Rk-qbAlKT2MrP2Y<4pz82qsis$7&&DKM(Z8_&3pD)KVv zu4lMJ@uJR?8TAB5^6` zU%N^ppRAn%zZYLx@>O_S83U~aNL^>p0g5I;c2q70LATRMMu2UxX{<^hYv_ z26u^CGuBhJ|6{qg5?Jnk8v({)Y*=L}CIl$`7|U~ecJT@o4c5ES*aQGgHs!^p^DHI{;PjdnI@&r885z)+MilS7W5 zwJQO?U=zbENEli5>BW+C+IHl-s@Yl%LWQ`1?==*=hiTsNBzlX~;E-BK&Z6cT0tX6-& z-xK7brWO~7;JxJj(QFkad}+g%zr}S??~b4zfFp--xrMhgG8IEF7ukO5C)B#OLQ-E} z+`+Sp9|Q3ABkt5lt~fw+$Z;u|UQWfbxt2;)b>?3XQ2_Lgfvka?MObd65EU5j)GJb& zN$_W)D4`1s9&2X#8ul;>GkKH{SJhq&NTKp5O0YHgH;KgC$9QpNRNoTiR(o+}da>rN z@*Z4e-rqqO*GPYy6|nC21MlCSIjz{Aq1FH1P=IYn-YdxNQoIfSRFw9&5CDQt`WtiS z)lVt+nkX3ORaLa#5<=?1We>K~Y1=bIJQsS~x^TZJ2-vuzEPHyVpXdAd7Lw2tT^^Z| zYN#&_c2rjuC(t6PA+&h|HwIEjm55m&CVOh|-EWd!tz2~a%9BdCnK$L~8Sgku>OsZ> zB7t?S3o}EIQw|P|B1cm+do$=scL4F4s2XF(nfy{m=ii@J8(6l*OZ_n?6yWWT_;V-! zGQY8CDyCZR#p)yQ^~BA$ox{`&id~e(z8@q`4HHeu)bH zH1M(b)&G_1d2R}b-?w(zjw#AUkPn_1hhe$@^HI7scd7tC%`Y1dK!tJC?-1*fTib5L z1Y=L@e1#K=rC~VozG<+%g5&0QN8I$)nGQ!$8HfRXyFJzjgbqyV_QC$(68#>BJl|3q z8MeB8t+buz$o?KZ0WyWPKu`ijOf_4*9)<35(XKmAE76cKlvdTAa2QY#-st&qapB7y zIruGy^~{y;_`m<}lbS7yv9(}>8GbW+=|qx)yhZ0FS6$XDcS1Fp(1ol7)tQ;PR|1?& zRn#r&3@_ukq5+&QCZKLXtaq_^b!a3hAf@cYd=L=_z|fU`C#g$^GJ{X0L)|??GMCQx zr>ld~ddQ5$27q!uOx^$j$s1d~xlNEx_X-x-+fRI>m*56o|J#k3`R4)I$Pig-A0(24 z@+>pk73?0Wn)16t#WcBbsB7tX)`FU|Z!|>B7Q9VqDNk);GL<0440`lYJ{hW-cp?;| z#lcv~Zqd|wzG9?9a%!22u&MBE-h<;Pm-8-6u$L>cQJ-B&(e7xBO#mcztvJe+_+|_nYXy13 zZd7=+J_SEL1Ugd{BXGw|E+-+Iz%!B;f=G*bnj?^SUx!D9{+J%cE_wZvrP20^@NbSi zEK%IN4m-swi8RWJz;O4u9@wY<=5l?1>5?1dTj>|4zjo(zfmuqhjzP^uaQj?SS}Y)r z+9nj|7USo*5cpR7A3Je$P)Ab|z5LieX5cf@RR}4o>$A#_1&2NIZMD{LPU&VHM6o$V zI@C>MVWW$@?q~VKFyFJPk)1!IkBr@oh{ZEBV_oWpsa7TCo+hKD3S9Q{phK7H9sy6dCdtrpCn%VzFA0xW6;m-7fO{p$y(g=I zov%bQyKLi}@R56sF5YJTu;%>)=nO{OxNq;FrKww`SXx=WOhY7XGR1D>rXt>>)kDl1 z?<7hQyi?)Ccl4yn_uLxf-JoGat|kDoT_pUR?_%&lYU6WSJ;W8sW3#a2r0gkr*xpEI zz}4s0)Xb{CzyLj+M?K?%pr(94L4p+VM!0@cd9#rKezLgV00fzQ2ULxRJZ@b zO?Y7m$tTObahw)nTpPf>aET&C{JZ~}j%8LE{wt3%CZNhAAhdk1yZtnoFrU!PF3cx8 z+hW0}ijB&Z5m^#CTw5drQ6D^b4qilfA!0--n$2}4;sz~_Shm=hVsC49k2O3s-SI>t zFjV&GUKR$da4MgzZG8cc6LmLqvx@WNO~_~W)$hGP9owF)BeJc`)=+lksdRPZUBhhp zH$740_UK#sz{^S^mA+K^=W>`5?Q_CL@HdQAGJSS3N}9-?86ChY1t8bXp{yG_4qn?XB9mEAUF1%06sK<@s#;E*BACopP0`>!r>ogocxS zOu$DC_WABB3lZeoK)T+Kvt{b0C_-l_>R*Uhf?emzk>sfvxuVun`i=AeXwSv*?>(B1 zk}f^gK>=Zd+#~UeJGzJrY1SqqmPF1>?15xs6)#qf709&Y=jCx#HvD9FGocAx*DNdu zZyYhDIn92!a0HITsZ!_pZOHOU32jd^s{C+?%JRF!A!N$$L7y1aN-^0!J~6dME=BjQ zv!iSC{T72GNImaMc=8)Uc0fwv0yQA|U&?Vh)Q9MVIlh)TBr!aorNBMX1{v0eFSOY-qb?*<0lvI#>l*IgQ4A$H zHYF8=>{(SVOf-inKGLv4N^;~-s)*BOf1|SHR6hRCYYmxs_pW@puD{d&tZhqXaok!F zYbpi@?!iL~Zx^B}0cv@E2@AoiJiu?k@QKn+du_l$LuJ;fGXNHs=qZjR5ZV%$tV7J< zpgJ?LG%02@tZsh1qckz@3IvF#!S+gQumM~7bF6tK3Fns%iItt1&iKAyJLq`=my`|L zYZFlWX%@IA@{k<2v1Pa|YHVJl00>MFXd~OHVo3lfBEuNs^kfy=uLU*&c36C8DsvnL zZz=+?$~Qv_JLyXP%94*snSHj!l9gj7j9;T@E&Nl+8F#N{s z5WcKYu-VxxN+ejz%tLQ#gcRU55N=@})|)*YRH$}3msU^Z4s`txRiSW2=0_r&D; znv6`e2eQPNY!_Z@4wwCm}5|`n?y^rxnSRU`yr& zMy_Nogqx4qk6vtu?4fQndD0Iysx|PeD0eOCPQF^+)#@zYSD{(3*bNBw$U$>l-(;_K zY0EZ7qlRP<+IB)1d|u*nm2-+xytDy)4hk3eA-1?vZyH*WBfMK8l|6L!-uap1_`csk zemH6IlZS5wcG(*jUsneQ5}zoZsaSCBwfXZ%G>GYd3wTJcTlzP-R^55{Fk$BTr0xHzE{{$aQ8n?Ap8@Fy?;76)JSk*eo{2NHkIyC^%>ctfL7ltOm>D30L2l zvX6RFC{J`e^S)nn{Qv_UEkiwSIvY6RbrPH#+9?Oo_bY~&&dfe~lC;#aJe(4eTX^wo z%54LgG_iR=jeEOlvkU;Y&BK_Q%15<^7m$zHEjP3)japLl=XJ10 zOI;yU+qE0Rms5X*s?X|Z3D1umcd_s@C&!giMw?~g^zb+>AGS0X1-3#{eLT{uKQsKIi->hp$a4NgRhz{lfF1k>BV&FC{qTXfV1 z7@?gMdDfm(uFPFFqw=_D2Liz%7F8y z?|(fFqoAo)TrW;h(i;G!A&sLOY@{IcwJd!wGnJ3cm}gbI=y8BR2Q}+X6GzPgrT-<= z1YYa7J$BmsU*~_)kJ;mOJ48RL_a|oZtI6T?Jm>f`UAU;&wlDpZ1Y;|EU8deKg>Z1< z@Im$>X)Mb0V6t7w7L0_ed3x`?4?8T6y4lgS9N}bE17QVdsfZJ}+G*&7N`g_PC%~G; zrws9>-o$Gwk=OLeg0G?z_o^4!1HtnfBRbkfn?Mx)+pp~|z&0wWEkX6-7)*5omTg%< zn`WBrnNcig`f6xMIQ`)ty5QuivTB7{2lGxhz9u^* z7ar!DJ#VU4DEH4qJYa8Y=hFCQkB(6Rho2bUXV)T6danmT$Xw>qNbWlQvoNca&WhFb zX zSV4lEZDbqoM0aiVu~AU!fuo8jl0D)Mc&1TZV2l%tMyRrNxW7MfO(L1(!s!Y|nha(H zCZdv(4)dFR8HZ`M8f`*dLTC1!&~Zb+z|()6eQd(c}Y2VxFf%@V+L6?wS2Elr^uM6chHSgGk|07|ua zq%139WXK64y}AK=P&&J&Lmb`avx**l9_7J1od-*2dL9hG|1SuhO()NS7X45u?G=To z^RVfC){6&-4QLA2f55D@K{=raRRbOp;-;J#NK(w$m8F#P_(>cx&X1bVRo|((ogOUE z&2amhbYTXEnjwwiloY2%Z}bHS+~lA&0)ybt`;bEhfclRS0fA?Ee(3!zrkuOSQupL4 zl{i33GldGnwy{JRy)w^+HJma{3o>3?>s=Em1^@?-@0#91Ab*D4#%?8SXs04|6$*XF z!JZX=DmsEILt%Ov7CO9j^KZA3Jn6@Q1nW<&jH>Opb1sJ_U{s9$3eD%#zT<*BOisyV zKJU#X+{JjunKX@vA0^p8Wk|6YC8KdGMw$GohZydBhBm31m22(h9<79Z2;s&49t49( zS3tosEgW@CAsEO%1-u)QESOsfXt(!-{9Z;FgM<#c3Sw-dAURNcG*xohvo8QkzJ7&s zM+PF8%aMZCt)Gk}y!_?w;HefeFYMS>GHARS2ZMgL#T!olP5-z?-qpd>z|cpdW?x}G ziJ&eFa6A3Uq>lkGuD;pTi|E+XER*&n3PNRC6DwyXfJ<2)vzy9P9r;m`Y_^ZvB&Q&% zHX$q0$xsan)cp7q)W5fXR*Pk!fD$`1&0ZM2LW6Im3{%&z#e=@$m7g&gCl&lxm1&OV z%Srq;{u7Q(KPV3Kc!pjuh>jQA^hGP&6Fm zIfH8uv&AcPc6Oe_`~S=tY3o#x5s+D&R#X*aWAS%s`C#ZXQh$PuB|pj^X;+e0H@ypX z!Y?q|=3CXSJ!cT^T0oD%Zipr|)VxH#(awhoxz(uX^OAi4skvO|SQ)wgJ$KGEpFP#( z89V!mHPgrFVnfa4yb_+y$_2M`B!Y9p7<=0+FtU3Y^|z=T_T28;eXpK-wxI6aUF-4!Dgh2x^w+ zc4F@;XGpiq9i2bK$pI zkRyG2a(d?F#F7hpWNzUeJutRjuom``)J%C z6E65Bs(Rd*CQ*w*qh=|lxP#XC?6C!*F^|Y5m;A#vzr#Iyc7w!Al?YhR_2T_rI0cHX z2Tx5kzT?Dk*NG%DfTSg!ZYAKLUqg_cC6AQ&q!`%#10;AE!>Z99=+93Yy9s~8@?m{t z>#~aLW&#V#$K z+ItZaEi9tZvm&dXJ5KjP zj%CkMOqftI3CfNyUuNM^mh*E{`i0lROo`rR2>yZn&>4gGQjn-N~_Gmr4AI z+pzyZ23W>N+n?6sK%K?lvR5CQcK;9F zErm*;AqXFe(K?EFBi;YP{P~T$%{ocQXo>tIt|`~79~V8ud`}=~wR&3V@{h^+K~SG| z405EB3Paucbh`yKAsIOi-o#&iPrH54p{Ow&deWQAvT-?teWfw^GoJ;TG7Q+}2;TY- z7)Jb`oF1`7?N@>E{>NI6m(L&jM&*<6*%hIIM!y=L{Bn>KmIZry#@DOR6a~21oFHaX zNd-J;g!+HUCEwTa=H1!|vCYvWc#V3FK zmzVA3(^u!w6kSMG(Qd>jX@UmfZAZg4VPw`$GEuQBg9hO6Z-n1CZMuqOfqGs|0!9EF zG{ZI%U^@x5m&`U(ph-iq%XAJfb-@H7_4#mWqH>J0MIAf2Gr-@VyfF#le4{Yv)uYG- zZr%B%shd3Jhl1x<(}zm}Jz4iWQz=pg44MnnE~UlLI}+g+h|)6d+?U0GxAi2 zeXy8WTpZy_2U)2=bKYX%5PQd?jkh(&Oq1&y-p8U-B_!go&j$^!H{ zDyfd@fQ`;jTjv|@<{SVM7z7tk23S*gDosZL2v(|jNVav1E5IHR2xwh&Yy1G6F>hn= zc^|g~_h4j1ML?(ty^bM}^86Q#%vE*;ERtNblO?pwIOhAcPs@8XeWpHrC0H9k!QC0D zfFt5Nc*E>uVKtqC)(1R2`wZeQhaRUiEejyIKvVseVU{$hpa7KMfEK>mk=-c)qK^(i%(fVSqy=S*x^_^7?;(_Mp=B6~FbWYfj zDRf_rKL$gA)lhKt4S^&sG0qrl5w4FOY6vL_8d73oXG1S>K`lZw^MAXb?(^;>zr8^; zz{7Z>gHeFsFIn%;6TOuh#W5(hBAuGEcE!mOkLM98l0fEK7~9#Oq=r{N76EjuPUw8S zw}LADYxx#vxQ)`8TN~qbg1zo?(EiaK(_CXO9Vs&{A!#!%>VGDWDlaa5bUDIPs3CHQ z1l`I8hZu#8DI4_`bUqmC8=>W?Rd?YOu=&XhXH*^g%Mv^R5UUr9sz8qP<{od@H#sAO z40vmaCrEC$UbT3(z!y6Q%4v)B=DR6QUlcj_VqQj#o8V`9RN73{oFUq6UtvMAVLLyz zC@?H({vYfzS28wu+854q#eFN!yF6wefvUBGiwK~*)g_Wo ze{In7&n~89hOD1FxGKac#pWqNG}WXA50hc`0_f%jo0mSWDC}>D9!Z%7#TL0=eCGh| zZ$f*P?>98#?0pChr3}#pHz~7afZ)_LyQ}g}v5Lgzy5Jm_TDxhH5KokY|p`BX^;xl zA{p~bW00Tv;GonKsRPA$D^`EedM`envX2`F;5}m=b)jKO--aC7s zoHtsp(GLEwv_9Z2!zN&)RX-dyKNJ@55F1Pg3hcp9V;HVt@*PE0TY}bv(l{Kxig_45 z@s=vhKg5O?e)vVa=98mwRNBIt2cLr+cnqQPU)1@1Ecj1FpFvueY0Gs8SbY;OIBSmenoN@`iJJY23lu5kL2F;B3sFE#f zOJXJcTMEAps)cy?Bt}iRON}Z@nUz{C!c8D(5Bw!AMNv*gn9Dn)gDnLcXJjonDUR2P zEPWHkc)rW2q;ju#C7F(z6vf8|BA|xN9nhSS&20LOCDasuA}u0ywpF=W+eV7mzkpT{ zP<1MTm|*_#Oz{a<_#I>C#rl6_`#ZE!esVMuwlEhUKbZR~tOtB?@Dl&cZv5`S!k-=v zw7uQnP;)Dk%t^Bdz~SuqS6=-Xnp(t>(qNn%;eANO3s5sSV~hFo!vsylO9Ym=^wFQP z+`6j|pq1f(VN0{3`@D<(V4$DmW@o*`M`<38-!`DKfqsI(?^K8-Ir5u9DZZDd+9Jh( zdevR_Q&W%L26{5e`7t@ip`0^XNtpR!0Q*o}>#Kasx+l5uiXAUszHGgy$7utGeJijI(DdOz zWB^PtMP&+Zlc{>zOX1MxM``)5*vV`?M+ebXRRv0+IlgVx2e=Uzx-&ynD{?#l8?t6# zV;4vNJM-hkCW)VfWvX!aX?EnC;1=<#8L$AC$D%wf!u$T!M6Wve0T;@~uo{8@Xh4_0 z@r5IwjBRDVwFo<}*r!F!9zKxlJnm6~>E|okNzYzJ?*zg@X+Se^vzze=@hs%-^6C-z zMc5Ck?!g{Tt^2FXH8+B3)L-z4?XiTvpm2O{!r_P90M-Bbc%3Ap&>!y4{oG#JHWcyt60~P1`GB^eFFlKD zLZV>ZO<_-dGWu}N&{y`dhcdpkO_5xHRd@Fh!sv8<1m-MElOsTEFM&b#%A$Yx$%eca z10>QOg_!R6%iAovdZlsZGXZz}MhsPWD6$xzfVQ+3Y0n32T6+P)rRKdF4dGFDeHL6R z_s0`k$vtS^R{2s7vK@gIyf6FPNV3WSSKgjZL-s)^j<@`517W7J)CMxOq&f0Yza-%YEf+e()ezrb+Tq@T zgiYV}3i&U@@VrV}i@32|+OhINwkNNADZ!_IfTjxUy)Kj);R*_sZ-cs3gn!L7`l}U( z0BG3wz zZ!=QfHOrYk>^u5yeo$WJjmeu^G~7lCpM4>@zyJUM7?$-~eZn&*Rgc~c=J4-aZ3pOn z3mMH=A6WXP*nueIe`+n+2Irv@)`N+0v1w*HSMMr@!0G)Bx`Ez{AbNgfM3pG1@ zLw!LzNZgDjvP7&3a?)keeR~nT{S?W25umbf2w?9;>)K1?otc$P(6@k;tfg%>goLaR zi&gT9QGLuVH*mJm0CK5$9{LOk|D2=0h5)jB59aMuv7?cP>Re?wrJws`BlVujd-Z%*;rb~@^Y5T#^>j;VQ7j$tY2fXAL-x-6iCqk$ z-|=~4$Qkx4UIY^u=kPCX>BVDxU|xQ+WAkC}vv!N0vD+|g_Gono$5JL)YBz#$0RU2v zg@qn9*Zhp{Xhk`qZ%>r3#H6hRBmi<9-McyOx1Y|YM)=AQ2Q~vEbH7!PjbzK~VkI=B zm4R5xS>dXph?O--u^!Op6GZf>2cmV>7w!7)4{syE86(QY9RM3~Fqqm{=-dql50iF= zs9fN05w1H4X;XcOn;Sd$7hF0rFU7+s26%PaiJQW4-y>vcoKTPiIu^RE0??XV*fC(k zu#Kc{<%fh9%RcAm$@AJLMr1pFB*B#j#Rf~K@>~R$!1;!m%dDaC#pME}Zn~KTDVU)Z zd=#9*fZ>KAjad8oC*{njRRS7pb^8ar2b3Y#9x5uD7bkZ30)jiXWDm)Uzr_0-8`+=9 zRxK@s93G=@6K=TeD;H}GRBmHRrUOi(+)9b&jePU{@llAkEUI*YY-TAG;e>-tO^ky= zsRgyW4tPr~lbLFYg&6m&pDx44arCjE?(v0i7Z5Bm!C!c-W0si@;OIL6xOyv=RpxA3 zk!1`m9QM{)agdz#4a_!Jso%t&-b{(+>j#nWVkv~|WuWqX%@(NmPh8%M_1s>)KP2VT z>$u&k+fQ38uC-)|-m$lP!pqWbClekG>Yk6(`bW0j7A5T<5q;xKeQUk?TVu5i6^win z)hV>XMuNg;saQuZ3UlV^8QFrwmRwV-2``SqQ>$*3Pj9dsSc+I z_Alf_F3RUj2vE4$_d*paU-sy1Q==dd`9uwTy3&Lp)14gje{lY1o@}`6jxF824(aw; z<}=!yv~@!FzOIjRyFJFmAZM?@8!bg<@B z=-nb_)LCZh3KXgS@nLA%D13#-T?P(N^Tr1RMptkkV>|i+h@-n_93TO2;{Jq z{h3rhLJ;hJ=>q!(xw5Q0? z7`e0;>N6Q2)w)?Aq~TPUmg?eXHFiy+AgJEWbG4LH4Y$gAO72lFji4SqPsW1e-F4%ZmA%~d*Ifmd?;XX zvOnCZ*<0(LU&HHA7?j^P^2z7nQ6Z591pc(Z+L@=^5S$p9WiQ^jvnHfkb2|`u5*^vW zkxRAkx}a0^GERHz(|yg4=rPe8P-BW{g<38VE-Ieb{k?6mJTmZ{TNq>QQStOV%D!I7 z)@t}arWoph_#yYtL^3YejV2#7AY1Eug_=#kjQn+-KZ;5+g4Di1AqCF1X=$=b#Hz*G zqsdxD@$Ai8?zsQ}&(_3EHu;<)NbZrVZJ&~0{Ow&6A6V`cSZI!#Q&l4PfHpE3e|2YL zk^SgR)b1-(PPB2r?^;g zV`}a)xk*h*Xsg2a;*sc{@G5 z6CU*h`Bx-26>dihQ$E7Iha@l5cf&50ID=N0cG5suC5X^Rq?Rli0}|)F+>k7Fc5R!^ z-qkGytK=sBG9v|Q{o#B1ufGKaj4lJ@84QbD4`mEd*ieQ_{-j`8s9F*Rds7VLx_%J=<5<0{3qRv$WmNUz=|_oS34bmxFRqM@ z*Yg*ZoK&mH_ZokMLjSxWK|${>=S`LZE!F9^@jKJ%6Pg(`h7G0|u%#KaL))ATp?EI_ciE3;pr6QI?7L*JCMjG#pRpWT3T~^L18fj z*ai%Moons+9Q991V5xxC0izz*lMuibE(7Xhia(#H5Y5|B`Wm1E?W1EMbn^Q}a{F|MC8kWZq-=XJAV zknNxA$?0d!*FpZx%a=NujRa#yoz_o4eh&e*Y%)nnw}sXVT=$kNs~Cq-hQOmka9#`d zCs#M|M|@&lNzlBk9al`sv$7Ej=CGod#a(aQCWOFs7Qa4UcxybbSDczV>5Q|N@J&=y zS=pH+8k;^-wU(bbO+;>$cE%pr{#j;h+;D?BD~uB`_FqN&a`qOr1#qH+=D5t|{_7$9 za18JXCF;eb)GWiS>$hCHde;9Hgw|(+!TGi*bLP_zXpU&TzyAyL$fiQz`{3`| zC|^qVn~V(Tcg?W42{f&Kz`AUmk_3>rtsZdRTr!Y08fQC}0IC2u#MGNJ$&ZU6uRO>AUcn;JJeF}7$uB_O{y z+G|!I**`b7EkNJk`ciKd?1t}IJ43+-Hzl~2Afl1T7~({^HF?|WX)z`V701W1IG|rb zdV@Q9L-4|57pLGYQOomUI4jYJmuP}#^QKc{BF%Xrk_5WzE#4?G2QOycXvP+c7!H9$ zV%nd-O=pIJ-i_)R%`n~4Txrk9VB zdiY{+>;E<5`fNZACnnX3$@ROBg`qTr_y>p8DZ+50E%0qaT76~u$|5xewa%18a5N5y zA43r6ou`v3r5^-QY@ou1{D;#8?a+Z3V-*a9TJKF_c$vU>Vp^eoQC&818}xi55xO(V zy~abn<3XGF(z#t`KMglk6IU1W9wz$VRjrfFw5K7!oqQ1y!fgwh`wXqfdfY23BzQ8k zezuLtVI?bQARiQg;69-pH6bY&I1Q~mAQe(9G6BQ-Sk$OrGcHlLSvQ{gzV=ik+yyNEKB6LsGq0 zfiv!X*XmJk;1JmMl3-K>c$Lw#lC_v#M$7YAz9we*j>7uOvdyG$kG}CGGBq#T6=gAM zZ!oIaN%7pyN@HS8XO~FiW%k5S*F)wRXx~> zUuSKr`vwR5rLzyZig6x|jZEIVG3 zR=mg+smTG&S9RZux^OY`SO;-rD-!%@F ziJ+3MjE!{<$f?2`#TJJQHXeXG#gQo|^-Y!)hRcZt)#IQw#mruU7L&y*05259=^J#{ulg;)WFWDG?t22!efBg=~~rcF0dIoXl`z} zQ9YL}a0qbc>5ZAZc}?(VpC>}MEQazx?l`a~ungF|%uZs2(0{;`(OUtKzp4pKItQzGt!VJ^5hgSiXs@Rexid(*eLFi8&1GhPKXwa|!Ac|4L5>}>x~83+K- z2QK-*xv@=SpC$P&!so6?t%=LkN)6WT2SB}zGi)F-CC=%xIH=Rahc1oo>J@KsAKqKE zJ=Kcu7&S{!lb$Xr*7<`RmOY${IJx-wa5HpC;5zje#>-{ zG7x4QZws3C=V1e`U`<~&@Qy!h*a-SNxPAyU) za!lNSIIvQZHe8@O8h8)JjZ z>&(XpTK*V!nAjYfmA@*ok|H~66Gi&dB*-EwQU7Z`5q+tkldvTzmXmi+*Rio5Z?%(L$K3Zy&tV*=Y>?EK02svWJ9vm9_qL?TFHB739%(J$rGcs#KCc;Ar4hjI zPyhf1T6x6=PamgM<+ahoYUNgK)&S8t9N=)=M9e1I^>yOszxI>KvGj~&sE+eypXP+; ziWyn|mzm=@KZeRPk%ULhI!)ofU|ONkj49vXHTS|?FXjVe@$eY1W`|3V*K3yxJ!O3B z*Qa;l)+m>MM#<&HlmNf7^fwjpgXTkm4ODxQ_nUaftj>y(im`Q4Eogq0@COW#G#!-C zHYS-)>q?sI%J2bQfw52(rZ`u#w52AzrZ*?%9NR=i06{(8R~%UnjuIPJ=(%6*W zv_GJ?rdfdn>^!Uh;3WGWIUHuwpMHPx^mpW;19u`Lmno3E5e+ix-0T^&8o&Xds~qfz#dm_o}()-Ow;(o)p&{I9_(NfkGCq`^8I zbXna0_#_Hw`9fvvVdrsp>x*wzMz^I2su{zf?YVs8kOLd2an<&@K+wb54rL)0YFIf| z?9Rv@2y;D;toJBcvW_`ZV^=5Q~5e;Cbe3)#8BUzL2yOVzv^xl1Sd5kjChH;{(| zJ1&$7G=1Qf}5^0>TV%WQprQpayzzGVN?#mFVL$Y1SIZHc968dPGfAc(T;_W?H zENI84?pAGQL893&CphH5#OJL1ntAMZKkuUv|2|kSUV-OKFe6{i+7TI<_C!!6uipN# zxb_}`_Ev}rMn80cCJ-OD;g!wtS0kb*#x+dol@-j0%og9Uj@^|Ve*eyQM_@Fp_ZXMC zAJdSGH?-XvmzdQMt7sTlrV-3AG*6F&$M*SUIx2Zr#CCi)1s0Tl?`Wy=VfincUS*d!s&2`pM3$ma<> zd~KI#5q=tDewIsAw8lvujDp4d5nrt~Cru7WL6F@_uUpHM$kQbRieq573t`*i4?L4fFU@0}BG)@OECK9^Ub zC^PQApDa;Z9y;W^U%Dt*+wCc11Q4B80ozOVmaZJjq9^0Xr_ApPklz`5j%1akdt4a7 z->jyxQ@bJU0bxdzc`gKB4T}zp7ugB6S7@0o4HQhk5ri2NPdLn-br9WJ)xQuJC$170 zqPZ=8c$NMKuMA^{iDv3!ss~>PAi1i|T$S_!0n)qZJ?p5aV^=)u#*yFhxQg}abeKmJ zi8_?@+%vK*uY&{Av+_F(AE0KQtq&{Pv}VzT0#e1+MnBDOKi3WV3X@GFGI8uiCmT!I zNZH(RL1xo{!<0mLPsqx@PY;eXp0ce{&M-SDcPZge%2bZ^-JIjjKimfc$nqAa;P~k^ zl*<7GV3l`c8ctHPO#QH4fsCUMIfY** zqdQ{@`J+XolLYE+$T`M%cbAm-cEwpv5!fTI1`sGY<2b0ayj&DVzPg&`o+mNB(lg|) z6Ryr{vFNN{4-(Aj4w(Y%y+5O3Mk53e!R_G%>$I00>i-XSaiR1#3~yb(*C*zcB2C8F zKFRgqtR&P)_l6tAM!e%AxelZ?Xct56u?$WA=>j`a8x}}Bju#spOQ==?;uD~8MCrFe zo&&EDpOuCUh;UV*D}s3vI7oy))EQTaEG|G>Wcr;Jh3t;m#1lycgb$c#P7<;KG#0}@ zuJ*I$AevSGZ$!=rsCMa7t1|Tuwe83UnLgi~r+FpjUY1hP@LU%68R$|vN$_5o8{OpB zYEvY>5#WmDT0zRw>67W}4-xrC%e_MD8e7YoJdRvr!6DhnFz|&a1Pp|Gx)~}!jmWaZ zCH*pXlJ}``IvV7Wy2?!(={{{xXSTi}&szAk#*$C1fRlFjgL8aSU9bW7*)%NMGnLPN z4Sgg;NDa=y&l49Y#7^oBVA+lAwRt;qupisWw2r2_O+eS+(KsH=VWF?=jCtqk(VaDb zIO1G~J?FxwSR}V-%?L2;ctn2QqrVd%TY|`9k--yLxD2-CmW{!|c#iX^+bW z5}TX`;^F{2pjYd{p=s04Id>6SGen{W?Cuc}2q(X>O>SsZ@;ewErBIXNXcaXq?D(dr zba<=C@RD<(DiFo&Ztn&*BH(l+cQ*tHdD7oh`$x8;WI}));P>7hg~TWJ-VU~I-`G@0 zd-w03R94#yc8mP(T8qW2>h4lxuP+^SX&(UT$zu zsBcvR^!#nl$aEthQ=(GZFt5*?Cd@hpBSlJzI?+o^x{)hfQJPIp3;boOWYWdF$ze6{yw za?U{2(a@_f4SHZu+Rm%9{$W=FT~sPTp0^wt{KRN8xD(rX)HU_z_4?053_8{Gp&#?d z7J)QOnrS_A00OM}XaE2J10Bau^Abypz3nM~4!N9PpTjp8Ud`A&BcST8iYb|%XW<`a z{BRojjL7R1pDV3N1QCH_TU1Z_8s}uCXY~n&4)?nW2G^p_Xiv?A+LOdbW5LSLo#Wn4 z$D}HsvIWT{eIWb6U|C zRtLClA|Yk!D%4gGZzSRh>@@9=W#eEds2I^9?pDS~TZrE~w#vO7a&&=ZiMg!Z zw^)t7Tp(nei!t4Ez9O_MHtS#0ngd`g-^&n_!M>zK>LVN-`(Iv;*3DLH9(Qctj07>o zYD-FQy)YKU*tS5;ym-9BeE7&gi=OQpx|qMU`#W zO4bB!DML(4^6N3NsP>8DRMIP`r-vU&>K?CRFZ{5))fqz4_VR@WTvI0P>=|`*PFwcN zTYC!G{>^7*`7AXv@QK3g7N)sa{Pq}j{j~$7q+BDNC!spx8t_NTs2UwSy7xzXUG9D> z)DZOpL?A`d{nI$wE^rzzBDUMA@>-!N(Tz&?7WsQ9rzrg515_zbr8yhK$Z15^g3)aj zDV$eiuHa#(*={a~*(zAC*@wr$=w2B;o5TuEFy&(;+Tt}gr3ApbV*4U|Fx*fAq_v}A zI(}hCid4ulPE);JEV0J^9IktcO)I*c;=qH!)>_sRd|+OncR&rE{YNufp)V^+?=Ob z(!?=_J4gvTiV8hd&8=mn8eegAi$Ae>3pa*_z^tZ^1I41@*1#H(?)CY zPu_1eU%xCSsm!>KyfpZ+ZjuS(<*phOqiT8_;FhCMNd+W?`jk^E+E%Ami72fE{$4T| z)0~Xcqtgrn3{fw;@<|F!`ozXE-tkX?%o$W9jl@}FhA$5gUs-=JzpNs`$)=GwPE-%C zOz6Yh6%sVS|zNn(sWO(e!sc>Zg~yN|ZrJqNubpHcQvKm5YA=UxkHpb7Ih;*)S@+ z2Yx!1&?x8KsPJ_(f$fnMcve`hICZ9@U3dX8SGQQr>{ry%f43bas;Rg{r+zG6MFW3I@g01CY%Up)iGJw+=D#!?MUp8A~roMcL zfvduRHyE#^U{@p}nFD5Frq&PMd(dkNZ%+|YfXiY9hQ7fGV!=Th!M@O~qDyNes(dyZ z#wji>hF`47yVUq*ayXsX$l8kH%Gt5rdT~im#v{bf2h-5%D66%j!AigjfH#^$R@NTd z%f!vu9r0V-WKCrYwp@X$$1XeT&l1$X6hqF-EEClzoX27GN8R(L**{7?mdd~P1e|6i zrwRAqy5Mm*72#0G2Gxc617T)X;1~A_^~>FrZpA?`YB#|K2jn zxOhedRwRD;lkBkshG~2a^3XM5 z6{Qj@rJC|ldJfx)%IaUbaju(P7$+o7UnLL+YboDq5FsmunJWbjV$1;;-1=iRC%-Z; z^?YsWPCFT~NK`zM)Vg+^WRkEhY{L_9@qx*h$e+ijW(6KPP#bWKG<~h5Y1t=bb;pzN zxs?;N5@kcXn6T3qu<|$%Z=l9tj;gvA2XTE27<8q*k;z>D>{+DR@`P08kx=SVa=lc@ zj5%!?GHfY@q{yn%ewGI|nyC%POV&Hq; z&a_~T|2Q^4djE%DYu+`MA7fhBLt6hgNJXQww21aJ_Ahi@&zK3Rv!PnS6@XQs3vX6D zs`L42zPoZQNxIFLyZ8!qS=*wO-p73+*_s4#%#C5NrOjMX^95^hk2a__qaT%#eh7CK8tBkoX9TvKCBs0Dx z?0d=X@Ii{KTW#34P7rg5CHolH9w*>ZhZD(z#V+KNuMPvSS*42(OXhslIyv9SDTz^s zi-GpOe%>rzkqqDA@<#}h`}MQqn=OB0I++%xy=`9~>=Ph0)cpK1ql)oq7h7Ds=hhj# z1%g#Sy#ICIu?PG}gS$PdGfy3^+|$=tjoLx7nZJ}{-|`cb-b*VYy9{|WU4Me7-6**x zY4|19!7sRI;|_m&!ny9JK~-Huc=Hx64HxrN{Q5D~)Z*>GLNfrVr2ZOX=z05xm=oHt zG-2sa&JE6^e=roN04nDH);WalO<>G6t z@uMCKcVDAF#++$mW1C%7Vl_Eo5nH8KKr#@Txq7;8be8xP0Ecm0<8Uuc^6QPQW%(7N zeG`D!)TYg=C-Lh)LNuldu^8Jh^XTu1!}>q{DE0U4XiNtl$}2M=i0~wfXe$a+UICLy zT6lNn%>;0O00002j^}mw*hKl2O5&wYN}82J&}8_1zkYAvp8&}PKcfwz9Gbz2E+u=S zcwDP92mv#m-H~*%XBhMuWd$~L>(*Dncqbh6cTlB;He=K8U#=u=m5ghiPB_qlgXUPZ zBkKCwO?BUt3X_%W_ip|>63GPwvs=#0V(h#_hr3H>wTT#0HIh0w+Ewyb64xL)@jIm0 ziT3iit1)tXwsc5>*4=p*iJNncx)?? z*cZq@agy>tb47UOkPN6ImJEh%#UM9i1BR5GpXgJhY*33?C3TOz>i$FltJwnAiG@^H zjO=tLj$!L?^)Tjl?GjLaK8FG*72K0G>8@8>9~h0KYZQ}-rGLPwtyy`=E+iXEyp&k2 z^VF4ob8zqsquZP*VV5MpMOXr;7eKX(HU$wnfv3+)@}8ph2GUO>>Co|AtJIgWp~N^U zeL5 zMB}v1_0Pie-AoC4h0x8{62SIbVSo&dC(gY)k;?T(PUlTquhDkaT`s?wmA`_0eZqCI zN-YM|K4BMl-|4*ttY`YF6meE?r2YP?KA!I4SQW*;!#|dxNMEWGslQK_`=*Vn%no^` z7_{Vi(GoXT@IN&njoY$~7A=vA9*4!B!v8c%wEOKQp$ntUj_lfGB7HR3AGB2Sfh-IDizP{bBRk|4ET145gigAeTuN(z?O`9H#3Z-yXyPXb@zbCC9^4; z;>?MT)ORZM`CFOP{yO$vw5iraN}+{EU?li`_{tNt%h5uL3>pr%6GIRNyZ!A)T3Flq zqya1&EerFAxqZdsn}gNWx4^iUSO9I%!R2Q(ma&c$Jew4hsUX$)8TTBeYC*#R`bZS>{Kwu+p3?go?X$3Cwq7L~LiNcNI zl*^!Jyc#tY%ZRKkl@oZ=NZ^TkoD+q$3wXmF(!M>FF^irP6FKWzC%F2;p#~Y~A)h<5 zZo(h3z^eWh-F5)SK(J=sf`W+(b2)apueg8=GK+nuu*gxFF!P zwh>de_~CBib9{i|R zzxrLIW|I+P#ok}rKp7yal!Gr{8R|x89==Q&x{N}bY)z8EXMK5o5!g3q&zT_OsJ6xRKPbc1qoqaW!_DUY0s>$44f%y^(600 zcW`NVf8Q#K1L;`i>WKraSg!ji!%J?)&jMwY_Lesd$r*KBwJ8Jv(XeQ(?waPEKAW$& zP)RIsxglH!6R}TeexsX2M=wrew1@znZ;1KZ0~+hhS#osi&l!#5^xf zU{j)S8F*d87gm@AX*5%VG`(lL_Z_vdK-3zvZdWExIa-HIgWi1+iy8{D2G@zO!kf4y z4~051b5Qon$5pH3l#Qzw7v4rbc#D}db5u7jT0vfrRGvWW^~w*=6F!N)!)8tuB}w<+ z_A=X{eFKl|Nk}F^Dw4Pb)G7@CEB157XkQu+$He67mQ}BMDPVBI(QWzR-SKg~;*|0( zcbA`PYI12K#$E{cB~U{bnu6XbClH??^aNE%#%B#2mY^a0*ko+oPXYMDQ=Nv;Rg=o% zBywffio3+~$I{}u)J+_QpgoKDF;V^!Q+)WtMaPR3J)uzYr|whL0J<&hjEV}=snyHv zjk1;Mc$(5%-|+RsXi{{^$d=`v5|;|yH5i?-(u<-9$DIlGY4-U@UNwL5yd=)G<*6CQ zz34mW*GFVy>vPxZ<;(B&YKWv=h*B|vg;S|AfyCD=U0EqUoK{@K-lb_8_b+IV2^KmC zq6X_!r*ziyz~A;KLro#Y!YBkKp#LHGktRa#d7|pcs9n|UvK>Y#q--ARpZX20f;TaN z{VC`$2_Z}`UBBu(24h2mK1sv9GA9ug2~iGKJAe$Wme?l5TRsP>lP;`<>gQnYF;eKV zX3yn+oZdz?aghWH!bV7fCl{N0MT;#`tgrHASm`YrCA)3WlPh%IBGSyr<*a0fYSZYQAIB%0oj>QcjiWML32!tNn!7JaU5owaZj*B4k z+vWNS=|Ilh6D;nt6Ba0j;@900@S#vZxuUDYlmO3qsX8O4uL#iMRTMtpr%-Lq@x2hv zmciM#)1|i^0tEYQ;3qrM(;wv79X&rnLKZ+mzyJUM006sS$xCVDdR1xA3dInGSK;=z z>ncWOjNyYzpSpJr1Q&|nhbFn(`bMFich)5h${6OrTw2X*X!)p#<%>QtEjj>*EH&ONM0= z0J3pU=n!s$QVC5?7vpoP;fYK>+>I?|1KyV5QZH}wBaapI39&JXCV4yLELpsY&h%v; z*h{(jlQ>K&Jxm=c}xS+4>+x=Y;~C0c@s|aqjYMnDog0{MFj#xrBZqJ{7gv5dG?0qo0s1 ztgd(Pf-8#WmN|C4q?R#ZoZeItb>!3jT^0&LJk}@Ue6wGWJ^95nZAIvydB~UQ=KNr+=$< z?8@T!`0sScX|xQ_gvr}0irrhKrV+$aBx_3QcnV}tMFaq7SW)|N$9YC%nzC`sbo=ua8~d)DQGzTU zI>-;C_UqqSgtmHapwYDrtN8iK@15NO$?X~1qQTXN(xHzA4jyfzBX3h=EYdPM%Q!EJ zVl1?p(i>}@SLCYukaJ^yNgfylaJXS_BENT>$uGIE>!3ar_@RXFpNjZ2AI*Osu5pnw z2SqG%d1wD-SANdS#b2I%$o=Vfvt4x6W5V<$&VOZ~CVB&60rirFG;t-e~iEBu>=q@Ofaum!mb zr=P@PJih?%I}4V!Iq^)`ov}WgRyR5J9rP z%{qhjPG6;3kNa6j)%Da8YvblDk7)5H6w?^~kF@-LNAb~vR8OZKg&XR;XRZBDjsc{p zmP)_>2d(I!ccr~Yz6`maDX`yYVswok=beZyD1>>!_{8MtIKlVfH}#=as3m#Ze!3%I)|DF7lRL zV6m!BX#*vqVxuhshOa9*`6kD!HS$pr$Mk-G7=b*l%s{>$8YZY~agIqd@UH}1ENcwd z6fd3AX(s%4O?(Tc-a2DoDxGUD?w+{BZ$gb|US>21UYT}Yd&GsM6Z8d8FzfCbQTM!BgDa8PJ*DtKF|^B*6^7aED6rYolv~)3lUzo@3Aex@6F| zGCPn0n02{*(#tB{ZUOjDon@QkK>ho zeGQa6f7bWU`Z-3-1D`}ap^}BY9`?5C5V-$>$5+26XPpnuDR$bLR|?fKpzzvCRfQJ0 z8cnLvh#;{2VU=l)rr*X8|2C92Q$^6JmnMPOep6Z;X=g2JwRWLFgc{Bn%v z;kmVI6B%kuO3>S5jnYcg8a{H};RcUy!Ry-&oF(K4@7K0F8;RCnf$+x>nT|0xb9shW zZ{l;;VX0tAvLJSTK69Btv~>jB(mM4lnyoo98CfSfTDvm)u5msFhBP(vZD~nzdrQ?N z_NMh%v=Rl-(cETG^o!Cflr6i-J!++j0xuPs3VO<$I4YU=kd24yAg%Uw+#l@L$A4n< z(EN_opF8+Ml@p_(*;?nHu^vEBI8qXd;l)t{`f?s=~X z@6W^8#R(HdQ;va5TVM6efBatuK5uNcSUWIK(0Zfc44j;@a?Q|@Is*U%wqnR>&Vev8#a!S^6P2p3!eQK|{nV8j7) ze*GDt8(uStK>-?Uha(P{FgH^D>}*+ca(>{v^)I8j{cU(?&Yn77S_ViYzn?o?T&f3H z2NL3LvY!Z;*04Q4yEZ*pZ{PU%^>Q{}RMT%?hea)S4jif@D$?*g9iF^!!ZZ$~r=q>V zm}3`d<#U4ezLYvC5sTqtn^?2s0>%#G8)Z7P#HY=E{&lIKUX{5-N%G-RiCp=b4nzU9 zU0R|Ci|Ykv#U+bXYB9{yd_Q2O?$Xh3tXd%eG7NlIJ>Gvjk4M0;AOXY5^#rs z8)I?7EHgBnvX{NZscu5ix^cQ<$cWS53v zsNhsuUhIJ@_1hneKLud*L$KdFj1`sQ2Ey`)_j_XGNjs%L!H1yWtbSzNZz%Fz#gb` z<`hZ+N^N8+AGEVcES?BhO=>%czNkD^SLZK?PX%YHCHlXyEI(pkOBOWKUv!L-(dxJeaS0V|IY z`UB{UXC6cN4j|HmkR#Ts;s-6WK1i929)4=u#lxa)-)8N1e1ms!Y!`1g2NXKVZ=rZ-eLGZ6P zI`1B;wOGRH1J$wWeuON(lNp|Q$?z-vtiHlhE~#XaU&I2fq$-UjfT#$&{EDJGTp0I3 z?nX8XrBUgMVJX&Uv^NsESvz=>7svqT4PqFk$wHgg&B-61%p(VyMN;beQz2xj$X7z#(> zq{XT@2zrF3ltitvg{IgiKF>)Qyn}H+bC6cZFTDgM-1ZkMz`?glRzNe{ex4Q>Y`FMf zv%B-6x?5O~g;z-Cu916pARtc<#E?vyQ{D2{zm#DNG)-{2CPAf=@ws8wseQxty7Oiq&KfuA z_Sjy9%F+1RZBjPB=Hc4R<%@F~^Unl3roi7;)AXLTt>_jQjRr5DR{FtH7OUZX9Bcjv z$HL(?LDm+0f+vc#T!ve+47L1jkr6JO^5iUtbHbnti~z&~t9B}xEA9dzO7 zmRi_>h#o#`g&nlRF}R=P@Rwz{->@;b4#;)U;@)33PLAT;T4^`R?CdVCnVG2+^ppUs zL)+1hW|*d*z|rboXfAFk@7TIx8EVqBRYPG&#OKS?@}ubL>d_ZQqj^J58Aok#ve}u- zAz8*qrgBcLwoxB~_-e78qG;-2)J3196qW_{zzs5$uHO&aPkyd_pa7aL+Hr5 z`1=ILP?_ubP>9_Z+SB!RHv%`p(!&DXsHq^vscJb=a$k<12llw{;6z|~EesD@=Q;&+ zo5;T$mi?swZK)y6)suiKb6;u009bCRR8dLg^iFW44sEo>r;%ba11JvUL!zqAC9i>& zN2$vYmVvIxQszvEGf0Sexa?%%{r*WFdd~Z~%~3j>V%8_F+M@1T{2Mk{s_UlG{lhzU zjpvGh`UEahe>e~%hrFJQ;@5SOaV2;wTRQ~9d<{Hx#~y&4U>PHOmBDhL3^>jMynVW* zwPaHy@3i!qttUEDPuyxOWk zr8p?#?#Iw^v9Y7XEt0ca$n($DX_J|g*(3oC)5RY|^0N9@Ykto0z#sH)A-;kz&g7O{ z&@y5{raT9p9b<>pZNlTGufQ|~Ch75m;Hp&HAgN6*4MUODL!D;a!r1lO9hW^F1ft_v z#3z%e08v1$zg;IeqFrkLw|W`1n;;vV^NrSS4Bu5}Iu4lo@3+V2JBn*qsE^ zx)(DYji2evL zd}Ei2U zs3-*F4U8Q3y{S*8yxqn_SbUgW`!Ms_Lu5Fu3g4aER0Uy`ToOR>=XYJG$KSn2Vo(J9 zgw1)wb6??aCmf&EDc_&(RwLKts-Q{VfIV{Vn^;TiH^5%HwoNSS+<+lC`HU7nZJ+=E z00045{%c@JKQZ7FjJAVpDR^NF-q%caI$r)AsHm3`as5KI7AL9z!@lJV;7n}1E`F&{ zk6WD4dM1hi)NKL40000003Z9qIN4uw=ei1SI?qYRO31~be6NOtCi=jn75=cWQQR3N z24LP-kPF{C?kqN^-a$$g%EHI*%68m}3nxX(kkIlRITCSI5x7_&50?g^ziMc`Ci#f# zK{K$jSeMcODItCa!pjyQ7(`+nvV_Q+QgtxPh(wECiwrzv5Z&)xCk&y6<_0l0Tk;nR z*~qY6Y#RafJa1&Qj^XIe-|nvT!c+`zAE=v(#n>(w1%yG%OSNTP1$(tRjS9G0=ZK2rA8l`czHb~Patg@m{yHOIehPO5 zID#%GiJ$T6W^32MR4qq>`7H0_##Lmp%1Ya#oQHEk{PlXU2I+iMlRPu(yc_s?(9j%z zwF;J?QcLtBSqi$~zAVV5G-%JbtUK*5%m$Q_TILQlmqPRiX1hZ$8`a|U0cO5jTWe-< z?!wWslcmPz%QX8;zi{tduQFoJxe~z6ZXq4p}z8oSU6UMHzxSz=I9W14A>NO{7 zU>pPVbX5T}?`0Vay#L?j){fwgV~m7R*RsWVLuAds&Sh;zB>*C&4Qx$8m5H~46WhtC zYM=<}<~IHe{3Nj!&v$_I1ySFUDt?)O#;yC9@u;;eV)r}lY~ea97&Q{ni>A&BdheaU zsM)@~Rm87%<0_qmmW|euRPzCBm*_Unm3zj^=i}Il zcTLrppRe$?y#7Evv8For&jR?EDgG;Sk%mk$Ygy$>6E>N1=(^r&N=SdfSxlZ1bIlB57bg zOwuH9?#)dke|HraBy70H!V_7JkefIKfKQa|lD~d}3oYmc#lh?DY=T!dZ0N)U^X`+3VonhET;1qH&ZkKs|Cb!`TDNCI)V0I5#p@d;{H99Fsn< zv`rvLKa6R-u+RSuCF<--o~EaKyhh(2jtEQ5Bh%5h9VG<)TcL2`8&lkdR=@X?z zbGG0yCdYDmWK(cEUUBs96XXQX_%J2>ATD4!4m2#A?RIx#+(`yeOdtM9kN^5Ff+s{e zQEH=12K3tLjWI<5snig5O&lM%b5JO92+oI%X@O!*GI}XLQNp%u%E*E7ZJ{J24QTf; z<;*6HM|a6OV~<(mlmNCcWd2qVhllN*nlmL3?tMLDq}f3-U10%dCCqgcp_bL&y>Xmf zVotH@g!QfFQOb>qG0DK4xbPFKHKbTnpC;uaWiDR5nnT@xBQAlGW(}`kc4dCZeBw6&_j% zr=Ueu*^1|ywZPXi;#jESi#}#dbm^dQOrtwa{bbdGX~uu`?ev568=N%br;=$n2R zjzG=58(~_WhvmWcI{~D_$bYye`W9XmpvHS$aje3sl$3Ud{VM9iP>ojA8y&wQw_Rsj z0bq|5wkzV1{o?uPbOHC44f4%Oa>Vxg!8a(s9r=J==2+zL5RoOR0b zapmO76pN}$4|Q#u>1-_R-sK97=QW3z5c6wosVDsQq2tH}yayp_S(}rxC#ozplP5El z3|wHvg|g-{A);!VO?I*T)S!T*C95at+r(SaFFOYU2nRrE&hG$c9dmGOYPHV~)`fK% ztG|*e#cUE1!BdRNBJ6xEY%qqS`X z=y^fIP-hcW<97JK`-Gw}pr;5eeNcYz*oZ`l&U8!Nud$Mu*+n?{0>3RVTUt`XC7#oU zZeR5*=wk1ml%OUug!}1_UNY5cKF{jETLX6H6mBZ73(&&}%2kx2 z-!6eYY`z8rlAPj&`aD})7so56^_}e>*;Rbbfdj2@N`Cp`fzL&VWh=ws@MA~OWcimx zSCsSi34a87MLd0%$$AiU2(TPkCTeg6B6x%kgO0f(|Lq}XNk#+|_;~NwSW10X<$_B< z?#4?=xPu)oz*`MAbxq@CD1LxAAg)StI-(@=f!v2*`)wjKkUlp}Zn3obYjHo(UHC6V z^E^Q|<-|Z-tH*l$@XDa1nqUFearX#5Yq-5{G8o|`Kx~)hkq-)m!GSQMO9>O9ww1Sp z7<+|IHpYe;JAfAm;orVYqZ(q(2PHsSmX5tA22>(n)$V{^w4kT{j; z%dLdPKv=_}*d{J3l{C2odNBb?m#i!KM=g~&ku;#$f~d&#EQ@2@e!|y;XAdaE$Bo9! zej{@4w?Cuei_Qudtf*|89z)N+eSvR-iAOd}1>q40{Fu1^Q3r&wK)a6Ox7^{i0X|#@ zbUbY_@2)`c!pqFt2REpjxE+a-PSyWSMa=0;27MP!)NFEWzln_1Jd3@HU3zM1MnY0r z?zKU5(-SaMTnx}YH%k;SEKD9IRn}CLo(SFH1ThR0Lo>3FXBfGu$0PtSf1zlq2gx_l z&qCwzOBzC@dLp*j)202>U9!x5@?PUXq<>Z6!j;#`Je0#UqF!fziI6Jp(cG5As~j)_ zs;ZA%c9ly)%ECgLv>0}7QJdk(P zf$=eaK!C)xRbv?toh-V7ZSnEZA!r>}%7;2jw1{q-zoH~@V5w(p|Cb%LuQ~3vQO(9@ zzC!Hs=|yKi-vzv6XtAYP`sT`<3WkYIy1gFytT-nkhw%4hoX1ezlJxuU%$}DLsFqVw zoTX42jr;<~DC&DkQFj(>TuEk-&wY z89v@H42oQKkha-xVRKuT;hphif6)4E8F1`pZDjHvh>TFE`?yot5m!uox2IADTC$30 z$GRHqFp_1cu5XPb8USr-s*laR>S8%ERf@!hA&3!~jIl?L6_FS=rbwl-C~5-qw;4|t z&&>vs-T7sHQeY7@`G<7dq~~)wLJ@1yes{_!wZ*l7vRf^U8V}OS+w2@rCrVCOZz_^2 zW7zzzy~@h3T;A@>528#5a)ZEWUZuw39YQgkIDx#osv*_pZD?XuPKM_>WN}zJb#e14 z-|4fcgn=cR1Zy}!1Ae_)j_;1dp5>w5d>G`ijfr2oNPd^L>3g4C!>}6iZB?Db+_93G z;YBlLkpaF3_zw0WBZ&jFEGA)lGC5nNi~6gkGi9HT4{ zX_0+%`zBUP?CMtrMy@H+Ibh3-p~6(8o+_d$f2%x;8`FDT3Jsu3e2XiJ6)>n* zYrkQwwVd@pusp5@xSywzOBmWcoEC|2$@MM$5UdnjDb*CFcII%PMmME#2bgdldKB|V z>zrSWkNKn?uxhjWesOUv1B zek4$sn-JpZKPkP{y**1TS4T8M-~r1}qjGQcfk>b6i=)#2+HV7kw0>@hcK9>z{{0&T zHLSb=5w4K+m&MN;B+q3Flj!+5()?hvu3LJuAMJsRZ~r_|_PurTbMwvW-$v*i1z-X%tfG6E-YSp$214_eWglf1na&2MUols*ewRL{as zVdRB9L9~FIf*k(S>+J?iKx9f^azOu$+#LX%xPzM8qh zf~J<^p%UBcoZ(A?Uob@mVNgzzRTKkFhs^Z9a`kFj0Z;wP@9mdDbFbN=oanrTk7g9o z6baJVh==E^aYznk+4KMMXzJlvi}{#*^%gX{0kYlEqz$R0IyV{$`YP-8^#v6?`CYJh z^k=9p@k77fJu}HmE#WFQFUFO)DsYUAE^VPxfn0&V$hq6#!?f!b8W$%Vf8uV`hf#8Q zscMD99yg-ESsyHdoMm4MwWIgpB1fpf;KIl11Z8yzwKJ8V>9CQPgy;pJ?H`=MrtvsT>bm6$BUL+};jpPPyzkW@Nn?U7rw$;zE|xJHS8q z^j{hTjP3F?o3{=hx3`L)=RUS=C?#0~4s4B6nha|su+083%^p61is)2~#4xw0H|y01 z`CN@0w@Ss}Y;l{gXl+D%=#@^@!xv=@DFNBQpMwO9)T?vNN|ZVx_#TOAgJ)W$CGk&j}Ml^&~Mi^ZF;KgDrb4zt-aQ)`cH8-ua-23_d<_ zoVaC`f9*FIq@la_?X5?Cvsn>GcX|X+d;Bi{zx)DE?|qo6c9sVwS5?~6minWUkr3Hg z61JG}YVZp#xLWkznzLuxOTRyLcl25*0Ui=Vi9C^8HPSH&>8kST?vq+xfNg^T__SP2 zf182FCi;wNM(>ZcoH_^pNYwEqG_~4)!sA1q(js2mAuT#&RTWZGrke|I%jlRU$J$ix zwA6cVcx&~I$iuS@)u}AB^c6Nj!=Ha+0i7=K56rF?ENg>}uN`xz_{#d>i*213J_qTL zy**8JflB9xoluJWEaJ>YjcswT=gV})dko8b{4xFkyMR2zZWMgY?< ze4f3?a4}H`PjMn$)9Dj4hOUxuTpvCjUcPmb5@}O}Dn?v3ZtqEuw{bY>S1`Ggzr_7l0P3`WdJMgV;&M=*!d)W;{G07|wyd3Y-i+%tn1HaUBtP0~ddWfeO7o&Hs0i*FE zCKov9)TDvEi&kNTZu*4h#1Ouo1`^{HvFqsYI64-0oytKf0JY(;QZ)nq;@$!>GHr{dxATFMyD zxV2QO+;!;qGr|Sbf{w8FMf<0(*V9(+WdvXT)QzYU;ZVr9xY+eCOTuqNZ9UJ- z$~UC#c;tPWvp-+xya(GPi-qr^ppED`&2UO#;C#|KnC4@TX}I#srS!d-!sf zAcMdJSf}H+sDHA$`1BrGFzus+3`97RdpfeQR3tWtHq~->vw(iaP;F^Mn@j`;SG{ zV}wHO4kBKuK@bWDeIG&p6n~XH5oC#o*Nr@Hs^kCiSl@D$P1O(1IS7(*6ZVp?J1KLH zfX>azO7Qqcoh<80;CHki7kD51_?@!TPti4B^x4Nqx$zsX@j>D!rey@^Je30iUYLyj z5{JjV=r3L`tdoai>?*xk4~vJ3C44e$UzICNSNWXHYWvG;`e2H4VoZtC>65`*>Y%@g>=u z<&8-B2aCfDvHkQ~R$~}JZww{Q`(u^z5Oay=F*fo!4e#$zYj$0zqDN)iO>}SKDXoUD zIik4=h1Bl|R>L{}Um zaj>nw5bkw;l=Bz5w|62s zRYnL_I>C_0x!&nq)jNN|)+xX2>yeW!=AA1=3qWGs^Dj1*_YmPA@*Fj zK2B$Q9F_HKpcvqfH;)$~ojz5(S0V}4zx{JmaQo+lm#5YElAIb#;&`^LON{2xYF#78wP=zZ4IQ@B`ntkFY!=SpNM3|} z6;KIrjCCp|#DOw7h$ihO#9#c=v*2Z^;>|5cJsTNanObxqZhN%JT{XJH=wxc$Efnt& zhbvs1(hPT6TDX|jsomD4q3(q}f$jQu_jwyzCdN9Vu>@91Tz!&Vq7OEJ?Xc5ma0kS| zL)D%Lh_^~7m4%UIJ5hp*A!-@91DDcC`dLn55dUro^Vb7A!x2-R!b!Lb%pHN(?@%>o z?3<>-l+7WN9dCeoILq9AUekeU3GnaveeV4etS3Q(H~r*ZU9ArN3;OXkN|FU4xp1#q zbdmaeiU*T0-SDwKqkEPYbDFPN$ky1^Pd+VFt2SmUFu@*QaeIt-?~RLKUr@h6N)dUb zs|hoeR9qB6>pfKSd-7tJU2h=4?-N43>XGLk&*22g(wN)_0ecL`1x;V|wUDJ@>1Of& zNbqetlI<_~(~sslWQFy4W7C$HA8dDA)aoxwSoNZHw5S)Aqb#_WGvh#)!#aw53%pIApeyl(?x`TMcYSvX9Gc?UW+d? zQrbE&CdXA@7)rw6LOz`_WVPekj1pPrag_vnr%1-4oCixEN?&&AQ|6*{PaH z2N|~yn1)oiwgY$5VN2I<)3dAjj{G>rfZO};M1mTmW|0K-U@_nLqb|C+)IO*~vo2x~ z4)rSsIq1kfy>2#V8{Q-rE6~WS^!73-0Lv0!D>@Y=8Lm?F_e-odCIzpyzB%j1fFGo| z!3~!2(bK8CoGk7^Wj-2>aOf#}^4;b>Y<{V>I}D@EF^_+@C|@W^sA;fAgc(3Q+6vFX zbZ3mN!W=;_tZi-D0uBBz8hh}yy6*!V#qwlEJ!csaFclX`GC&Z51DIJCS5Cf(^H~7N zg)o@j?jLqEQGa-5R)R|sec%1?8@gBqd!v_r@9@m3N^T`Y;^9G?L3gP4^wm=TH`uBi z3h?YYgU~wNU{~Lm@=|)U{H3R)QUpnePnDz=WY8(2vPCod11_PrL3rZZb;Zr3Zl#FX zTPlB4=CF=SClH|UG*!}N`pe=U>cT;@Hnv#{BgGN%o71%K;&Fxz`9-Nna{_tz(?f4{ zhiXoX<0K@9F`H2E5Cu-X@k|X@E8wq;pm&w+-8x*8+|cRN)fL+Zb^^i${wru)z}&{;+X>f5%7Ak2w(4RcTU z)0MOgi#&F%+UnA+R(t&WdC&$}H21Iar2Dw|o2$^L{h{orH05_yPl#2CqITdee;7%C zF)!y}NS3FW76M`4bLKAf_+r-Y= z7Wfk$Xw_CwTz}l64}j9$Ef4_-9D(gEM;ZD!_tnoN$bmAT@zXeI|>*8`LJ#|Nd2fM&*$^*pLdG!0=QlsENv#k+eU z*9!4FK?0{ZOq6^!h^yU%buM#JB(P6*%So4z12cKAGkxtws{u&8Wm*4mFxt8N*j*=T z%^K*%mpz<4+?QODYnOC>@C+nNPys%4**p^Kt#>QZ3RRIoairSGrY1X6BwH;jtg zNidjxRv4CE_Q*eRM(T|vP*#vIa7>11_}a<7$37g$2NEImWY%4Y63XDQ8>+T-Ns*@P z=)GmlQ6dsf(2A{j4B9gQ+D3v0$BWfEdBmQ+3S#7WP9+P7tPKG2?(d(>vbF*3zw(?# zc%Kua~%tZ}$2^b+H3y zZOEIE!mkA5A=B%Gx{2bybJ>~-ths6?>dRq-Wf|Mzh`pgugS+LR+IUU%i)lC5vs-tA`Vmbcyx|4;wF|$aL%E1aeO{M^#ZF1oy0lsJLaN|a z9n{)No7~(ABvLDDf#&@}4%EGBtGvm=2U4w{-R@wqdZjzlp7Ck5u|o;v>QST}zE+QX z?@imd81jYIxL7CtAH38wB&XZY;JldkiL_b%r$JtAZ`=bcWsPYX0Nj0s!sL@Y(GQO8 z_DoQf1=rEuvwXl}cQ5jj~!J9}hG%ug=PKE$W3cxE4&mP`d+`QO}8x@&5G2SK?58iX&>n zAPthvx(aC4*C1ZFX0}F3^A`Dti=JDj&lvtWznwLd_VjW5DDt78TbfLBkL=h5Dunl( z9kkPYxP9=3uvP2Pe4(iJ7a@!mI|v)ti8@8ub0MuLQKf7SHa&9id8Kxpk3v2+toQxT5( znhlt$zKL&RqOg9h;hz0jh+8;(Xx=sJ4(b(;tID$6jHwCw@Wv@;WQ(5ZjMkUNr`6pj zcqs`wiCyCF84N9OOZ}i}|JyVQ3xwU2q@N{ug;&rx9k&`yqjdPm!<)zB-D@@hXe0=t z@rVYUi0+eK!?InjkkeTLP{#ACP2Wqt)5-YYw`YtSQTT8P#6s}+w`nD+eiz)rmJnoJ zYZwx{ov09{X$sBK_NLlg+pY9WTqv^ntz(nZv>KnJy>%4M4 zB$I<<0%5F;7zHvhIKPlfsa zSC7grl(vUv$LwHw*%|ad{X|eWazyioHl4N;r?}pp`&`59#X*fYV&YFIdAq)yXcjoZ zLkRBfgXQb_Z_mky&CmOxHi<6Rh`ii^42UbdQNuu9b@)6kk*$xN%#326BO$6=N6=_k z!~hGfxeEC$>6I8_>TyWFElc?>BRzr-lQS-MLl^T0G2VX==w9Tq_FjzDbApGZP5%AO zh6}h&Kw54KE2Ctac+vy?>^$hO?_!4NZB>1+C!k71yTLEk&$T*Cs0@Bn4CK3K$HuLB zD15;k;)7a|?l*;;{T0gSerq+DKY@>D>!!OvYB;#zDnVI}5r)yiBm#^uosF3ArkI8r zv}-3%<C<2P~9A&XXzXVMSWfbY`Em;jE0O0qe#fhVVwr#M@ixbHa0xM77pEf5ASSCVf zpbf%X5@ao4=pR{_BaJv2+>jHKbsn|33DVoGG-|t`^h9FYtsFUGeUycSYTHcW$8e}a ztExQjplQcVy`GhY2kJvFBatRSid@f#P6Hq_RLk@GY_Ce4x|ZvWjbPB8o) zZ`7S1y**BmpJ0BB0^1v@QXE#a%qgi~?GWfq6-*VTsmr}R_4%Opl~iRC`Yak7Amrk? ze%WaP$fhPcO)=zUh$zK< z*TDx@M`eR?H@y%eNOnAb@b+v1gch;LmyyXL>4&W(h;DgFxajZZ2>Nw5x--iAruTg3 z?-vEq(}-0Gv&aWAQ6{HVIO=&9rQpcVOnwX=v6H4g%~{29X-K)4F(?F079}25JxvQZ zEqS4WH8v1bN2)-;ipeSZc@S{U3p9R&C@NiT*}7MtyG~8|&~=w~gRPCp#QDBn7gZeN zl6!?RdmBHRk+}1Dir@N#cs=`GZ?h#c6CZfj=X8pFX>v>W}h* zR;K)yN~b;K8znCaKh)~Lj8#JrYXKDqN@q`03K7~SNW!Fs{WOPF zb9gboOJyLUDozc)3@9(aQjz|ZTe60vj7!JhoR75#rAEV6ccnp(_rz@w`3@Nj&RbV+ z!J!i?TTdL-JkrH+7Q_(_Y`cBd*VL_7?5P{l?dgH; z0#w6&Vv*8Z@$d`T_RVbUwh~cPd~RTZTx5Tz9aJ7Q84^eCza3pYM0GGX7AbhlzE2s~ z--wR@`K2`KKGK5KT{P=*KiF2T4-Ee^`ts6G7N~{zHl1+ub(tutRbk9!K0k)>kw6*Q z{>a+o;!VZGIdF6fBW+>nb(Rh(`W;w&9LO2+7qf2_8Al)bgpZL}MkT9lEb(YGG?s{aL6;mkVIZ(gl{dX-pE*5`*6R(W~7{a*h^& zeu8csuwd%4(QjsIM5L=-FT>-QnNh$1eV-mB=WdjPL`wkiVD;swcA{h_p{3FYi;Iwj4A?I4uC7*L14QZZ$? z^OG6;K{#XP(~#-Qtu-Qe)MuoYRH)8dPOrGKWaaJ$5+n zSxr(pio9}SE(0buTTz1hGXMsJ)oP8~p~1NZNrFt!-IbhsfD?v#xCevrZ57XI(E;Yi zFJ5%r6p2=LB&h~)^V3NB6NePQH65q30tHD)(Z{y`YlRj@-LL~zS$tykoiQ)d7a}lI zICe_dHmjX#hU7f%>S|qDd5=xv&G9D`ql?e1=VF!|S<^(#)s<=!^hdVbTsN8D6ML`dG%HEe6lh7W01 zI!PiJ-5j-S7q4e%<7+Mr2I3EKhThi(gh+kDEDMRu9$dSf&}rU0jTfZ){<89bVvX`Q zXtxEuEW4?5td8D>6x?&U@XMjc`X-yX@6>Gc9r= zs&&YyVoE7dL~z`;b61we1tFN%(~eTPzH}mr8oaW_%Yki{uRPeNab>KxVL(t5~N7Rd&S~ zaS1Xmn&}%6kkE`HlCUNk1$zYN-^?eoskxDoJxqiVM&dM^ix$}yKp!6>+M6N~P5-|w zi1Zf_4^^0F*{$bZg1rl0-RHt411!zGPZiNQVZVGRRr4$S5+fpsla_$@Y4<^Hxqsu; zt}#qFf_76{vR+m=kU|Zh*d!hR8Qu_SpPF_=8=4-fJVUitpB&2CqyS@GH2l(KfYxLT zE3=uo0}jv^J5!rpX3pRJgS#LPy72dtrVqOv7>> z+_Rt;IQW{(%*^Wo0_KktqYlio2jU9Wxed(^Ur0mK4PM;zLoY(Fsxw(S6~WCz#<3~c z%N!#`ALW8M6(+NwGx9p&t>V5BY6AuHJe8Wn`!)C_b&#HB2!;cXmIu(^qI2yw%thu{ zhmR5XH+lsiq&ki#Ng55?EstAvHl3;?@cs-3#}XRc=BPu1G~1l{dbpJqaJ67dJ^j0e zMzwhS!y5LbLc=El)|5q|G{hX7+hW4$2UXm}PZXh6-`_OGmc#1@`j2F5ULMOXM?0E5 z_od5y4Z(O^25fj$mosw6)`;VRYH$MyuKDh`hAdO}*;f(^H?||)Gx37v9vpxe+wLtx4npP_kyTm*`P}) zPPK+cnI_O>?OzE2f5&Xm?kMmJgy$*#U1rcT3JLJuF*D>epKrz^vYp9US&@vdRj|lk zPMYmhIqmfjdl^)D0? zT6wODPl=dv^!B%aZHT1i8l@cHscMk2yVsXix}MIZLQSF$r7tj?BuS)Cfl*ZZ_+TU`%!@smn|I4VMph9!daGX&`b7J?Ahme?AMOY>62dAFI0wAY`1hCrRKyNuIj-7ca8*OP+hw)K}nT}xe6^#$Os+|RP zmQ%oBV&xSOcC~;S5+5FSh=tfpAWrA;8D7tg`AFLCl#uknqxIi9W31wJrT*$jAB%!( zaS=mE;%F6=b&`wV!~X{JXk_@owE0%LZ`!Kyg(%hP>aRf-s-~6WE5WL-2{Hf0q zWlY(MV?*CjfwveyHZU6y*h#T5eyamJru=ISA*h5)6UbEZ)+!|x-_Qi@-Ms}EKa38g zoz`egfxHDcD;{$JIdlhTMJEfsOQHCQuf|v5ra(RUdgsi9J3}eu^nvO(U5Zzz&@Xud zE997lwR+Y@m9oaXZphDGt$SC7@)2kM&sk+)%vy3C9cPEd|ALnA{qKb=hsTzjs>Ve+ zn?Xly>s6NUI`SOK@-D-k2guV#nt?_-D_VuW9e#XLI&@T!Q>-{^>+nv&)UFqcFYGSM z#Xc`AupG%9DaM3Efs_o_OWYkkt(DuXM15shz-S9=S}7zyW_gt+I{TF~Y-6aDs{p#K zwEbv-R99KVltP3#hL^7bjBgtLbTnVf#-TD(CT|8(GAs+B% zITkOg5G&)NSvKUbe>}ZG?e??7uS^BRoJf9nIT+nL$N_cHmh8ICvh2_((L+j?(C$E3 zRGsSflmA%v67k_Xi&BT`Erf=OJ5*h0u!~}cZWyb?4W-M(_VMqlg&=V}Ewup|*c7wp zO%=|jFUdX;Aa3chnC2#F*dhPH?cpe8$6Ci|5bA`T=NH0ZQjvWgD@|@~OnAOIv7UQS z{7k9Fb-}v_1{?-RTYu@uNT2f+yf`!D9-LqxzllSDUkzl}t5I!H-;JxcVEB4G!B$`) zXf^BH{Ec;DRI}Kb-RLworNKT@|10wCz)>Vmf?X6i6|eegrOvdAplrphA|04aY?SjO z=6nvm2NR5$ofK=o+$Hbl@l}$01}1zRMN#Anyh=3) zCPKZ~YJ~9rZ{<`oV*SUd%ONjnXC<}=^NHMSrC~}@U+Ei7KpW%4sr&;_x!RYjzXDaP zu4qE{?$J%Q#Z25QpDpy(MUs7LV!Si`+3CYW`1-;r%SQDG>Qd=F+kAv&xBIMuFOv(( zYDz&~%U0g&D?OWWm9Ry{%0A-Q#KJ8*6kZZr2k*jJZ=>IP{9FCJm#<@Q!S##f!=YW; z*yzU+zhXX#05igt^0z?9(tYjf8h+hNt~w8O7O3ui75zrm zjCcM_67@iQr-J`1@;l01DCS#qRMYBL-Ne>b8&6!Kj!_-uwg#X6UsIBy&+kPkAZ0hu1I)o4eI|8);59!AP1oCW=aG-GMaqW#u5#pZVTc9e zxK}^e22RPEW^FnA0kG$y3=v8F&n*fK3R`{Ef0dRy=C&ot z6*XNKQqK6zs%*VYByHw;9B+TfWqNh~t!*KgjPG=aslO|z%xDBvtjGw)9DJy|WBttB zBQp-Q{vHYtpU#tbO341GP2Mn*O-VZ@w5CtF z{G?6QxwW&iJ+cOB2t{r_R!2a=T!({zB~?RNC`6mU?mlpU1791)=`VR-IP192EhC`+ z|3LMT4#`dpzfV{QrR!)%_X&)+7T zvyBB*G-DH@BHXa#hZ=zs$?yTYzBIOPt?l%3%YY%h0_ny}%VtJ5uzrmPlR1}(CQ6{X zrUVB(qCZ(^#ZjsXKy8jx1)wwA7AuI$r6qUDF8rfcT%tad-_@_z-o&fhaJ36Ot8hc| z@tK^ewq1)DeK&REP^um`HPNQV)HVvc= zQw?fM>_X;ao?%E)no=p*4>8{}9;TNc+#lbNzw^8$P{dxv1b=7{$kv?`zH?ovRHb6 zArqkw<~3pbf6lVA0EUT?B1dv6$szDZn?c2=IN{M!R#=sU;-cc|ne!9bEROopz`yT`ysk^gfpCX2i6!-u|WUD3`>slqSTw6RHa82NQ zy+43zp{&$NXg&h=vCT3-!T-xo{~ZRZ%asId)@4_t{`0rQ?O<SA!jiV#0YH88Ez1#*6HP1a*niH7$dweT4}0Hzw+ZSSW7 zJ7Ls@=Iq%Hxf;y)Dk*~)jxVJg-kbki4h3~qBTg8!Pn1VKn_)rCVw;ha5 z4y&O@pIILJaoKF&L5%IABvqWRo6bV--R$heS95tQR@h~L>O=HQhc*PY#Clmo@?&Wv6oixoQgr#crTJ8!k%u@qsmnXu{ z)E!b!^D~N!E4?ei+2O`WkbLaz6;Qm(pVeB(HuwZOHiRm-J$IGSb?z&Nz=Rz+?Ke@| z&bPC&KgM%*3SFyCbxm*lW%-ew4%?=zibLs&Y408Hv%U%=R#Ib-Sdebt=BF!M9%VyO z{qEGaWQP4viC`d_5=#JP8-cJt)vt#(X4xKh3IwK+-zwPX)s!Z|G9h<{SojLUMXstK z<`V@;d0_^6B0lDmg5Xk1vZ|qK#FGX4f+%8$2pFkfc~zt*X!YsdN=yJpK)Ao)CQpC6 zRE`RDpX9^{x>WT;b>$;46}3AsaSY-WI0gY9Iu|l{ds@VNUQRAklpX6yVKcCf4cH}* zP8SIW(m$#0F8m<#*=J#}G#bmTTAWI^I>m*cZv&;Ou^y)HZOw64^0BqII!#YEzDqf+YFMW_U1(Jb#S8?_ zQVftkq89y(G`=}hTogXeTkc`TEQ0s?;A@)>ekK9i|5zgSgCt1AmC7{hjL7EIeE(jX zRz_7y*1Nvdi26}cl698a8kyCa>4Z~@NIkBms&KAl{z5%&IX0RdCk;b5$#eZ@rn%M} zKGpl6w3fePBFBKx=Eez}Re(${+_-%LH+?~rctVIy99S0*B9R2i9h$0GSc!4~KO?SC zl*{-Cue`Tk?~z_Q|e@!eV|G5~ie6i#0igEAZfe=H1>(a;u?|! z(pWHOZIoS*SMcMV_vy{;oLu&cqqOYP`@e5B;^lYi&dBoD&uqDUU)y(cp^-2D;D(wD zIWrj5*T#3J4e1nz?t`A}^xwdxpIOd3yk9_6x)PLV27n6nYq>x@I#^BAWn_qYy1AE-ADLJIBgJT%|x_*+b^%6r%J$9Wv0Hc3graMbqq%XNL7 zJj-@0(FS=n!*J}p{(%{}poM^&MVd}!;O_xBgT}21%gq@KC@|?V=xMrx>+3MvE;SKIZ|CY+Zh2N6RMo3j0cb<(Fj7`rxVY z5}UA+EQ1`O*(+LNNHIKPDClp$8T?;9f^4eI57FIh?d7G!G;>56Dsfte`?WYSF}QOD zf>gr`kz<a>Wl#tDmmnjw0KY(*WkASnJ`5f>q9))C+UeoE;%+{oOJja{qGbj zj*Q+vrWSK|tbj$WO_DMt=-G8}Ncj3b31C-P4#Ws@!LcS6k@<9#%&aaCEui7b4E-9WRA&n{;q z4WarHBA8z^>Jj~j+gMl&=5#463#6p?GtwJf)#9g9F5$4*lG3Tc^#Jjg9Tjafip)2i!z+^pr?AqFYPUV6izSt_1l6^b55uj!Mpo#cqe}q>hz1 zE9gutZ0uS7uuAm_--Z&y91H;AFYCFVYvel8=3_!DInqsv=$OQX9w#r8Qnrnaz%^q5 z1hBU30mTa>q18CsfI{cV14k2Vy(50WU+yuBST^k52=NSGtmZ$O4pHp_7rP1<0iwW&d0dB1M)g(c3evZ8i8$AK_E2mVqfZ+3y)eMn*_n$vMZ27KRx$@CA;aGQvdBAbwW}9eUz3+|mUtAb)n3LC*#> zzqoe(Nluh1>M4A6r;-N!WV`(3+Hm<2L7-DqV#6XsTBYdi486owv!f*1G8k19!wZKe zVDvuq=zp$>Jzn%DnwPMR7^H{Hd!zkDsDH!Jf=b;?j7v40LVg`0+{q#MmSjR=zpG7^ z{F_gQzfqYS=lIRMCd0W!0oQ6S>sR#2{sD1Gk5^`w}!GR8{SQ;(BS-n{7 zPE_-)`*E&_=|Po9#W7DNTwA{}t7}EzmhaZn#7=^3d^ZY;AC8>RmpG}HlT!YzX`u-O z* z;KfVRF)Z2shz#*kz>4w9o`fwImSWAzBZ8qt$DAR1>F!T}>0}Gwfh}e=Hg1qDs zZM-II2A+7p^+D9@U^AB8yar;<9GXk5WFCr~?H?DuxJpr~d^b`H%^uZniT4}%Q_{Go z;fY%|gRB0Moh+@P9)cPi#d&f2J}Zo8xp4dW0KM4CXWGw>wV&yZnrs6X+%fC*SN_zK zZleB+HJVOI*|t5mTy>YoN;|o>{y=1tSx*Ev(MCZu0nh_DZfophgAe?oY;Mw`FiXC! zL_xlIxLTjoqlpT%kCUwv4)DNQmir=y!bTbE8V7OZ$mro<wbo02zVr>m!CC4((X0R>!Nj^M)!5u8g#(mqecdur00<) z8YaoOlKOgQsB>-Y*i!&ibYtm&<#m|xjfq@G7vA9D5RH;(a1&|0LQctW6b#RmeC!Xh z#2r1Mz{S*$F}cVvFlic4VM>Uy6;hNZvfcMe7SIGMl%s~1&RU&3YMX$I_Ge0>HR4Xx zi!J+U>-XTB7dVAjoRI6*Vr`#vuPdYe-x?Z>_rMclL5)92xWTOnPGNQ)V(i3v{^19=YYUL{B`D4EU8c)Rvf|bTQ{L);$-|^F;}4 zzqw5slE2}+l5OM?b_e1$fRf8SVd|$A$;12zW(42VD>CO=VeZt6 zkB!odkx=^+8FGQ5e8;D! zVuPMvaJ%@bI4D$EP40oO(-nOVN|aJ-R)LEBu}=#E5_JieVQiUI;hBYW;z}6Vy)A7> zD*Hj-4hwo3a^k>O(_X`>*>W7~ZPJKupLry#$iic-@%7ozWvy{lDxYKC$(rFU;hEO0 z?Lm`!*bX<({*S_5lXP6K)R^JxQR#*#$=w!d@x`#Gpj>%0y?h zoXt2Kf`tnO)o{MKEhoT=VqstH9kEYcO-gSsiC8A2i2|WJ<-x%3i}7vX$0ZE2%L!@} zA7ZW7jT1R|h6@s@h1cz!}LV^BY)& zTz?fUeKAvC#MZkxA1$Vez6|c{*$&D`R;J_Q@g6rb{BeBah;%tGvUzTzWq*Eo551}pntzjpXbNnqqMS2l0!ptanORVESHR?Qx;7U9IY zZ1f(HB(h+F4FyV2uU{7C9&*yGdz*KpE4FhW1$nL|&@NfFga27ggci&b@^m?|;$x{G zurmi3Elzt+eGx+&D00D{E?~2(``RAgp84!!#;P(C+4B|@tl(V3W(ao%YJTIGy$Ee0 ztACl>M7(HO6P&31{%P&eIfR>O)a(q4p0TfnKRU>uzOx(Ebt_*7!cKpvK%H2VCU-aR zQVA8^jVrynMX zkmB^fWJ1crT@%KYGX*4)zZL>RP7f?oOB$6ac!MIIR-s5M{&EhUq#on{Tc3B9fi-Mv z6+ru-)cX}Pim_Q(e@#x^15n2d{*XfRjmUtxv47+bbf>HwAozd$hdkzX?*{hpT{kY`9ONYJjzSRnyPWuy*CF3q>TL z$=%wW)c)`eJ6?(W*gZCp4Dbh&Dh(6_aLpaeML(QChBdue>GC;iFeA0y!j_4oFZ$hY z4N!}{?5xT$^zCwF8wKZt`w3m&)Q1+tBHNK{Y?3o+89Z83EN%^ zu0kv#=D6qG`^NG%{nc(U-GOiZ(=yKojsoA#bbUPLlHXAQJo@5G(dnSS>ljVymh@uC zW?v?eFZ-TtQfzFWJ zYvkT`289;qK(&kWWg;_svU#zPnLyx$z8WX*_yEoUl93wEA>G}r%SN3-Y_s2H!eGQ5 zjPFAkon2Qc-nd~-bk`50)g?9RcmM@#?;XYE8QT&Tk+9g>WLo90v0@s?)bEB*;J_Ib@U!x?cP&qsayMeH z_9>pYbOvTW->-|_7T!Eqhb50HR%$={#~T~EBS#N29x%<}r!u5}pev24f0C#Zro74v z)3aaVs*O=i;|8?>xp?gcF5ipK1~HA%?K<~i5(W~D*$G+}yA3N(=tt`8SgOg#=i{g5 z)NB9?MiimP#02Uv{(|dznHS@Z-+TLSu8XSXY9N?SzrP=hOV1^T%+Nc?Yg zFG^yg5tCrv4JaB(PDEHiPg|dD_Y+*;&dAzlh`x)k9mcc`2R_3pz zs)L~<_p1bP&+pD>Kng`*br0yrQ+{%x>jZNSAXaBWq-)|-`(ivICl{1%0XB{Xn5Gx9 z$AG1j2SX=E&YlG)JADlSj<>*za62PK}jHNOLnvC1U^@Ac$i(EPT%7WGCm2(vB z@o!zxVKMZxYvh`7vMA2MdhTJRjeP}uO%o?Jo~Oa&hb{SG_h1^z^Q;euAk|(oIF#Jh zJ!y9E(V}0Gq0m%F*2j}sqqQL7G+N7Ws#GTj`&nlXptO6MZqTo6eceWEJX7E|5?{0v zJ2LeBYcS)-adxii6-F${I(lF?l~_maNei&oaR=S8|LCyYA0eQu{gu9Z#Gjlvdyx-6 zxmB8|n;0u4ggw94a`s)I353VxME^MsbV!U23Qs3?WkJ*N0=Ze1Il}7EKd%L>g-)9= z<_J z56;VDyR^5p%5w-9bR%>ndU}&fKG4w5zE=GXfdyTPphj=6z@v zyK)-;EA;*!zI9%Pnt=>R6*o7?2WV|7XgHNAls^18fKYM$pb%2$5lRq- z7e7zRS7m`&TgTp&&$qEy*lSJege^a6F^~<0S~$T^8{4+(-JFSOpJA}-3><({<{l5f z4%4nMcQ*40XB{lcyPZJ3BNj{${`~s?Q~WeF&TrofDiVZhxy^{e;>z08r!a9eZ5K;K zfKT>T0zq^dFoY4)lqO4`@uwjWK~*08u)#3|7~|MS-*?~1ZVQi zHM_Kev_n@$;9EK8TrT$0SP0950!%&BI4mzGwZkFPdL`udNX`}GVc!>8TmAQp7x{X- z#%GdvMVZJ?Xv49XJNN<`rvG_fWfbG|Rxs;ku!!tkXGVX-Vb{`rB+40yW;pwfC|60q zf`=x8Fz~_W11a+7Ebmn5#w!`>44w!m{Qv!h>KYrx9>42v%|=l1p{=51uSox?GZ1P4 zZ((2Mfnu$5(g0T!R`_$GsvHJmStvi`$|vP4E+hhVJLY&Uh~VfO-%hN=Q7VBXnuo8o}G&KLQF2Otq>aK z#(a|0*|tKt=$Di1h3V9 zWV6SCg-CDF4QeUq8KoXlj_45$08h{Mg5*Buf%m&KDRLR-fGxmoFHjY!FLBGYJXks9 za}G9MP$Ctw)xQ)MdH}7TY&s_W`qn{fN7=Sq94s=gqJMS86)V}%dF?2y;#=PH4V_#e zhFnP?ZBo3#(q8*XY{xHwXy`!+m#X@ks|bDXfwUWll%U0pdgLT~S1l@L0hl-*Hd&R4 zlxzmVkFI{0O#;=i^FI=HFALvgDE_sZX!Lb9FNWLzqVt2a)!XuVo7sxxpmu3s-)qkb zSh&JX?b!&yhxB3VOSh&Z``nYY>0wRM`;@GIRfyF+*`Q4LxF3 zLqb2nPF}&ZyIJ4RF=U=)3Fz5t1h1BVAv|n_O68eQ!#WBOfy z`HQ(80@4Za$>)^x`LXeDc3A3bzsTiLudN(DB%Y7)F>ul#z!eGSqT_mcP+;c{R+6R{ zq#UqwP9cku{>YPyW4HCAEsCeb!t3+*3Z_!+`{vfD^2Q%KDrqc#URc-x}VxRW}d=UGt1$uej)X%IsVy(hL~P1u^kh zEE;8di};;Yneog`EFu;2DC&Tooaof^GWdjorOkrrlPD`bkhu}&=(n?VAB_Qw!-ABZ z-|BJK)byr9t0vwr1WaTCO4pjxz*$t(vCt0T5f8X+xz5YG$Y?!+F^!&| zjsBWwPXfdPW@A3&h5IY?4MeZ5RbYp?4*S<>7dO4Y&0Cq$CDxTU)t%3?u37yzFAZcGP(g`-FUElK5K%DFas^D*&c{8{J*)<<_FEG!*p{NC?(pGorj@QgM)fwsnT^*mj{KJDIrh_mw zlKbq?*A=rQ$pPZhF+U;GPPs~ZMmYjgj;_`_iY>P2NvcVJx=&v%{!eU1!Vx{oxsT0M zN-65wCal6;UOZq_Zq|Pr^R14za>Aj}Gk&YOiy3`G11Q0;DR^#XJT&HRPmO3>p?85o zJp({IRVUAP<^^L&i;_+FBQvPCpz`RYX3x)@D`*a+p_XO`T@Eyb?z(=Kr~)aPq59we zD^^nZ?B|=93yUjmo1xegwc2*-xZ`Z-0@`p2iy?Wxv7^mw)y876gb(^@bSu0kAsL96 zwrP-e5GTyU2@6vuHQ2pPEeIs9BD;;Y zOZP>Jg{K=6Tt?+)2G2vv*tmTm(v?K}94eMxG-Hsw-PMDU_07q`p`-q8!@v zheTy^5~_4p)Im(b&t)C##vg`C5yr-6Ct^T=?a2#GiM)e%^$mLnFKXeD;sR&5j`rOs zh8I-8GJ>ZM+?dO8sUHc~Z3zeq^;=`iUIzp90r6i8tP8*uvYqn__nr7J)TW1Kyz-^v zU?~)Lv`YM$#CcNTZ>HJ+=TO*f5syu_Tm^YR{P zhMCsq@+rxX@g>n)aG*%9j9V*|?|fL7jZdb2VgWeLALYfl4l@lZOQXpCLApWHVg8uu zhX&7tz9G~7PGtKprQ9EDi3Zx5IQKT^0Ot8<+7qE6xGaT;0q_Syl??`Fp>=Z!B6-xL zUqdu81WDLY6!XW!8rkEAcZ7i)SHYWYL1GdG$6RdKwZ`K3fws^md~io4k~-~G(t&|} zVpxF%mQ9$ck9XXN&|NOPb9g3-uz7)u6bf?-No&jM(!IsxL97Fzf$l-G1sn}_k#{Nr zeif5}HYB^RPb!w_+=;Q)%|cDL***vCkoU0Jl0DKAdkD<+oT#7Hl>}}aZ&7g-wpA@O zBeT(G%O1?9pb$5YVruNZyo1*^;^RxtY|5^Ol-A=_th27FF!}GKH!teOZmm?#R4>@H z@y#YSAV^%QA2(v`K$P#Ma)`h}0SsmMbPGPEORlit&Q6-V+xNLvAwQ+NAK&cCxE^OM z%uVn&IDe;&q3nnlw~tODe9DqfurTZF$1(I89Y&w5?MIz8DWDV~0 zlnfDMJa-jcx>GIl?ACb<;1Tga7yXv+DReL&LiX!|sAv%%v4*yT6b!c**qrPI37|WI zk}YSDajV1%dg44E)(9fNW1AjwY#lk3SAH#1RVvuG{a_7}hY8&t+--LJH4O8Lg0r8o zkKp}xx;t%EHvWQA(e7(3!?E9XPT3ry+3?}h^>r53)p0wxoCC2}JauPyKY@Z9k20d# zUvz|fZW`tngrV+>>{~PW3SKB#GQ{i*>Kz2r5DD8b|Kkf~8fO)a!EXl89zhZ?`uCN0s*XP?Qk#=mh+*cXdW&TtkFV z8yQVa)FB8cQ<}q!ZQ}E>b);iBJY}ce2aiLgeet$f(G~afG0fVNzKGdao{TYn1#gYs z!Gv~z^KKh~z!{PN7R~e%pbLjfOc-MVim^FN@$+eAcu%ANO{_7sEOq^_E|{*#)K9SW1Gys~BNxF|r4H4b}a6L75VA#Ng`Jg$me<ON=I^ zptFq@Qx_?C==B5@l{DlQeLe$aWz!rFxc+;3REwxY*WoUn?3t!Yf1{P}O+H`t7Z;e| z5gN>}WOaruQiG$->p@2A#CJY&S6BuxT!awt?j#%lC1 z0oDL4bOr7+azhx(%<(9$KunAY+%86N3fK~ErZ@&O!0uzbf&apjMwe6aYz61B)|06j zMgXdZ50>6jyh=!?X_8fqOJ+!YEX%f0Dk=GrB)}u*Hkb-7w7-%XZ39#uhlwrOQT?DI z+}ZY4ZQlC{Nu?Kd2D41D+t!Ko{%|WsuS?Eszz%gA3AOy!UxX6Rw3V94knmGin!@5o zHdj)^l2E8f8Be&vm+Pl@E4FcN)p{{b{ey##+sZ|oej%NX09GJelxx%a(OTWq=x`wD z)89wJb7x)_d}?}^FwCo*9&VilHywt5vAs5|bUK!aZUT>@7m#pQyt_`}%S5|FBVBr` zTkvN8sp2KcWW4MdBXE3m&+XP41ZFxkVEm1D@V1B94u&t|6DR&JU@VBP>tx8Qs z?JWQ|4gl0MO=Uu;r=IaPO2XS!u1=8NKqy5!Cmy0)U?^jscQJB~k`d5D-f;!wwET)* zPxt%&f?!4Y@=?eYSuKRFjv6i<{IW#DLyE~98wI!ne5wU5(-Fwb`Io+-(occ(3=-Xq zMIx47wA&b$2*W|e<6Qd`mjgSa0Ch^9x*WfaoIJFAVOnD88MbwBu_T@5MBf-jnl%}_mO5`oS zXVNyrgQZ<#YGz6EACJ-&cCE28d#ajs_YcD|;XL(JdI@g8H5i93`$ z^W$u`%ji~i!0={?`xEq3bTGQ1FTvw(S6R;iIej+@{#7&pJgzpl#0qXd$O|TgZc+Q?NpNek&ML_|c-aVzY^uL&)LCpmsDA z!7=kD1kMWJTvWU;y%nu40Mqq(R=AiP+w&#ephO4#QkIS*6jDq2xD6o0V?a;v#wj*~ zrb}-Is`0^;TR=>(3R#BP@5KhMXA-Mtr=C_BcE4Tf-BmjPO10SCEbM+}VkH4QulF>nZ;K{2nNNxCd?CYvpAsI@M4w?~ zxAEBM8cLM*s`;m9nq6ANf-}wHMYC5(iXy#ko+Pnb2@LYs*L%xkU+b$h(8Epu+m2Ohda-T6lYnRt3cBPyTrMAV#=lSa%Z5#+ zF$5*te6ZM!4BTV7k0LE*DUu-mNUtOB_RU@;M^6qm*1k6Za!$k`T4;7{o1qtlDM3{} zJeOu_=WYVw$jn0Kj#3fS&PPG*{KzdO2U^rZLY&+ zSyi!<-y~H}{;RD#Gsj*4wr@LHKMD+B>W+O@EBGAdp>uBn`+7(Eb(;#XSD;SZS7@Xx z+8Wb#z&w-oqa(^99)&F9Npgc85ihb~3`-%&@w9DV?w+-hU-I9q@^7SowCB+4Cht5c zpMwP;o^H%^jMEJi8tRnQA6Kde>IDbfhKy3;SVz6mO6%rHK|SJ0?<+%KUJTy9 zzD-`SE|CQZ!N_?r&;Yh7IMn3Qc!V%6JIe9(Wmy{XeW_o|4 z%*o}5aRzGOeSM4Szq**UKlyPn4MX7aJS#{)7Vw;`n@VPg1#Jw3og*sI7m27I@pdMi z5elY*ZM+cP{_4$Y%c~5WyY+Vnsdv21^9^9-wCL!_smckS_!;dbsag@XFrGj|avPok z&dknzr_(65ue2d^Oe4g1=>_}aJN;)UB2dMJQq*I z+6<*KYLjin3I?8{3Go>4-o(>W8x__Q1l>yLpd253V~rRh^N34?0Su=3=WgU1r@Bho zq5j~s=2VEi5_ir^wP622C!rWZE_8J}&~PEoSSm1^2#k?Zg+r&F z1#`HIUbA|bT6c!GaNm8?TsL+LLvC;{gV5pBk#4db+jLWE<|MwXv363c3q#n*W|p2~ zQtI(H%sQ)Y?{Q61SVkeaNgc904z3x`E_qHE@x5)jDe1Z8?y+Ynz{9DhZWuu$X=O2rJkYi#q%m)S$`<8b-P+g zx_UQjspxrb>C>X|29<)6uT`Row>DNKM>ilb#=3PGZ*k5#0FatV2wVyFci*|JCQxNb z{S14Libt7kjQCJ1(%CTDT`#fXdS)WJij!%D-+Saew$4;A!QV2y2|gnWb`i^cq4*(^ z_HsttSofuE&bRV>oC0fOQH;{8P55?`ozB+qK^48TOOBGpA%d7{gsR&#WtqAu$}ZUX z?D>}@vT^%+Nq@H@q4_zF zJL&I_aZ2uX&6h7Jx^Eb4s0heFS#ev4F;W@{IGns;jW9M9ats`rpBZ}Hr@P~TKv_gq zvO3=z%IVEjm+k9?!1UD;tEh9rL*X;LlG&X+cFIPDhvDChJPgvwAuq)Ztn|sFt6te1 zIBI1g70eJuzUR<&9dT}GiQdL+`T2sFLrPYu4FUKG)$}CmD#;!tkgzR&qb<$f3iymE zYL$ND!J;;Z>cNQdvk0dv;o-P0*K{j}w0dj^NaS9iqiZ{uLrYbNcvNBy=2_D>lAJP@ z3EM60??q%0m|=AWeJmODG!qcv#`o@LyXBw&dm8mNP(hcUoA@@vGa=V{Y5(`rz?0y8 zAn!{Qo36dGa$AhAZ2$iya%ydUJx$jX&&@pR_L(x7ehI6civVja>KsaBnLKn8LL9$mjx)5Q6*YZ3FmP~#D zASEcKi#IvG+Q!JLVJn-rg<{;$0Y%WHs_$x#1B4nD$HN-`u1Z@fbvj6ow`v8BIt`>W z+R&F$V{f;5>WAeBu!LY$LzSI2E`@J=C#3<83#m=rO<+FpBKfA~+AK4AgX#WzRmO~y zA+aPJ%vIGM^GnP7mk-UsLy8VfziM8VLazh)hsb@+e~27=(mv zeN67Aet7q05fpIvF#BF#ID=|$=CWxGNkONoTJrwp@eGLVm3&we0beP}O`9mtd zro!N~B)7aMpws6vV`W?@6Mg1;^6lhpKvjC5S%PAI>od6XQdh&B4EoDVfYR_N{(74Y zLD&27zqG{)eOf+eBzZE6HFxTQ3QK$zQKtl+8#zAJpQpj_VzZ=rcCKinqL4yKG31YT zv7lGNEkDJQTu=*0o6le7zztX{UYF==`LYVSiby#p&rmk1xbL&fhlfJ@28LCw6^+}o zYc&a!AS;d%yAa0LD4r$;qslSo_w6ZoJH~%qkerRD>iVgOy6PD=B>#}S(zx zUThe*8@uz-0QQ$>S9TRDiZ;&u5+fUQmj323954a>hC$0Oi499*1p!ilP1IPbDL~5I zZ0ZBazOZ95+@mw)^Ph*pXu>Ymn56b*SwMqz%(6beT zfcXDLCyTJ38fBm%fu#Sz*OPi7BynSN&;@*{TV$6za^)JS1;HZ05c@4fcQ=)2(CDzA zVqw+Ha}A-+q_OQSX`F4J7knral27EF z?160Y>m01y7x5LzT1BC)$bHtkENNFUz)!pfH`XOxO|HRSSVApntT7F{qGt6G{FStE z5@$-|H;`=DGT7G!?oqK>fwYX2Ujk&l^O5t6fwMDyCz@K5%~UFpQg_CupWd=hZDn<| zUTzOpNmI_vuH3nb_Hb|93FcQb&2E$WL6wUb;~dLXFanSqg6s7}`N6wcv4!8VpJNam z1E*cf`?nY+(`nne?`HusAUv1EkMvY|40Sy}hfy@C=-gs|4klSH_nmnTv);s}h}A>( zQ**ODyxQR45O7%wFY#7?Ic(risW?;+NCM>QE05NcEP1T2;a0g1eY7h3135_M)ojHT zBz+Z8sK2jZ{Hsc-&LGhZrIkWj1}(OkJyO#+ak6`B(>&$W(7QC3Fu!r=i~z44SlGZP zUWQG`6np!#s~U6Tv%pGQaUOXOk5mj@;P8ZXF5GIDcSd0E9)ZegT3ux9K9uxT%(pH} zJcs~}l!^!)I{R%(W)+tJLl2K4S3a%&OeiUG?-jQ#FFj#B7moMyS}rLBozq{GuDv*l zUY~e)6+p%d>0CLnty%x;d{2y;Gg)`*X>cyBpo#S&ygGs^50lDJGj%VvGYzI31+A5( zHPO|myD)?US~&c=il;QtNY5?fhj+mviMN=6>RzXr zxENX742U{Hk@gXSxsp!d4JyION-P42d-=v(qwr#P_#lM(1A&#JjV<~7>DRyC8jgjq75D1 zQu~v(%5JJ?wxoQ`(>=YkJghQPYo2@Dkyws%AmY!&!H`WoSaO!8yLVcOHa}3KK{Fra z(jeEqZB4xsiK(c?da$)-L+byvwQYq!1NOFqIEsre_(RV$A@o4LwN5-ar*_G{e#tfA z7M(%19C5SteJVExR)jjHv!s5yuJ!WQrm2do2@$UWA>vwEI7dH+Gqht~)MdKT@4;^8 z2`+ZrWuSEqKc2rhU0cvvV{J@4-}8hIt-24rS(Ya0?W{#5j6gTaTDTz1d#KH)_aoi* zn?O;!hrzQdn!R+>tULMCC;?%5t2|L-$&wczDf>01)W(dp)oNL%(u=365yWfE+|jCj zr&ZC$^|yIWNHb!ZSBQDuBoufv*W2pEQDEu2eHWap%eg_**|)h>b#&t>Jt@t9Sovep z9n3c%t$R-m#xxlRP2kfb>dLIa%_7Hn9pUEGL09pKry+Ljb2G< ztgN0(V|Mmq;Gw_POGM3}D&);cwB(Nqdm;FiQybV^;gOIxnZPqyKJ0f>U^akZPRV##~bsgv&|9pw)qro56m8 zlHe20<1SswT<0w6WDOE~SC)N3oxV$!OwisXA`lk}hdfd;~i*x(fu)DbV!h7MsgEUf$uLt2iS zz$(I=a&x4vYsFL~O@hS^9LAW^P0OyyGX`vJsaV~`Raxe*FKo%d6E{t3B*uAhvcW^*dDv*i9lDn5wMJPiM zI(=!uQ_#d$?}s6G%-P_%m7(M3%GKFp=u_5D)LH~Sm3X>|N4Vpie;;!SK3;u5V}j{8 zS$eY*#^Sg|>UeqD$mvQ}J)DbYl1&4+8Bf$%`B14ZGRKd2w(8s~0FqXhzoPi*A)RG0nm} z=pzapf*8e@zuE>~QZzsg5H;>^SL@^ZZJE$S-NFLftaVK)yEg%f1v)jxKa1H6$IUfw!;_nP_g!Fq~s~kW#+35A%BJk3;rX-SmlGjn_m$|{t zDti(1X!EzQ58tMP1irx`yzp4orw(RfzkpGn%+A_K9DW$0;z5*T)Ynd{CieH^dFfrv zN?HW8-g?uYy!-P(pcKx~)sZiQzzw{QIH~yXYW=hJWD_FV)5vGz_n7SOvMz0lHk-q& zALy|8MKTwM(6lgLDWim31e0ts`KC3Dw`7A-8T`XjY}Mgj z&{RFJ3Up_oHfxQSTvNe);AK-LhTtk--DCE|$pD*G5LK(sSGZ+^Ank;yBdgNsh(Qlk z=!B4-wmohZ=%%IWhu4)DDTQmz$N(hTf;ng%-fCn2gZcjD9A*{1mmL;0-XOsPx&KuB zHv?wxWo!;gs?nzELkNG<=au;MCj+kM$5##SZFm_Q8FMbKhdwq6d&p^sgQ#Lf-(nwh zy>%rd#?U!)0vbsYIpV7Zs79<$z+nR7{-147-K!_CKzLh;FIT)f>MB0 zOYSL7YZG@*sf-^&z-eGtyVTb$&6{Y*;cFKx!ni-snEzI9CBw%zGWJD(Mf@XgaErf& z-YDPOf^M(*4uweO*?g(8pkxNL(T^q55qgt5G{AOP7ypy~%sD)Y+p@d+8=)as35Mc? z5aBxONbIDBI`VjcR@aclA4)tLq2{!*)|u?IYWhP9&>MN0f=*v5rT{_>a!cY9fTl34>lt zv!~1c@9`T|zf$_MLiaZ>B4HSZPjdn)VJPAZWYNmGUgVo|O0V5$;78sq?e2DVRNSaU z`F6p>;>5%xN5njz##>2E*JpUY{zG^vIPaLxqowNOyIb1rZ&cTm|Dyz2R}Nkp-gW@G z4^CbFrY_Q>o^Z72OVpO#u&by~VUMcFkO8TT5Um>5RaHApF5 zY1e$KM!Q}IWY^=2Yv;1kT||vD@+i^UZT~V+z2f8wo9m4h;XY`*z%0b-G9(e1vN*B9 zHYL^xiR@4SP=yU&rGD}QAcfF)xqeU7hnD+K4tsgm?h+*zw@tZ4ne<)Y)BX769c5P> zc9ij3{IZd(xo{7=3$@~h#<9!fBp2F<+$()a)_Vei6nGd`@e5#F{Qh)sbwcJ3D8cbt zfUlg(r!=ngUqpBCA9fbX0DjBu_|W=Gh>`b@N5L=885&w|rDI#RFegnL^w&r}Fz3_y zAm`OYr!SMCk+aXas-ZwV?ha5 zT(1nHboCT{j*&uPN!1Asw2RBBE}37bo#k8N%0k|@UMS*5b^6_1qVdpmtwcVe z%7LL3Zh`4p4`6EfC9r=9(8~eq-JB5IBv)vJ-;d|#^NmAf4Zx-1+dGIe$c31?2F4&_Y01%w{TL!cKbLFUo1=tA!sCeOh+v2q5^7$d z=&h)b56NgrT{lU3jak*V#?=DsmOOrg!@LC65mk z_4j1_+XKXXI3W|9403?SW)(2I={=hZN`1pbD}aa*bqBW(S=x}IoZ6lB=*b1iavE== zb@-!lu!bP0lfzSoNnkcVXErCEK&&~yiKMaI6xX}KPm--tiRB`0I^je3 zz#3Ww`WA{4ScH&WoqIe=X>@>#_K_e>9~hXuLq$Qlyh|vl?*R@LLd^2 zqYL3`c=|p1{Ip_b)KJDWwX}(sFvYDEfhwCQkuCkGD(VW`-d-MJYN=l|NnmKyNPCT? zL_g^-e8q^PRs9UB9%X za*e7X-lbAJVoj$Otktammu!SnX3cSBk1IeVRo)LhSs?lI*s*-1aK%* zLr*2SlXCXr|CkfAU`d0^FLpVY6bH$x=2Yf43G&c59yq`L2d>etU-vW4gzX}v93U=0#T zLjQ|4lz!7(`B_Zx{42s8mPr4OVrBa!I*zwOHAw6}b zh$X7+7P;!wSIxJc9zu0e_^<;;bJX!95Ye!5e#NwRP4E7jb!pO$^oAmz#eV9c3cTAA zYBIKvxiq}Y0i)I25dnY04qYX(cB6UZimOXqb@=Kf=rCCM99DBD;!yRy#&r6kItCaf zr=zE1C49O`N5;J7{GdT)S5=HfP(fXR`Sh#q-sm8hG<&QO1kE7mqYoD z(+r7Myj|&8I%o2`>uo~w*U?6!nUslxM-I^h`ll6MC#|NJ60is@9B7&hrn zr{I?AXC{PpRaL6MAF?JU=G1n_-tBeSbzV4Y6BXDr#CLKDuvmcl;%s!G$yJz03IMUv zZM#VoJW6$b(GCpV)pFoAX{_QV!@K?f#V!AGFrUz~t-}SBZ>Za0B52Y^LW3b8s2rvy z_Td~whwiHP`d|)j(@_uk0B>}jC9lOu&NAo5sgSDzOKC7&Z!~Sj7D1!+R}$Y6{I7|D zNSwBU+j&UfXCy22gwTpXDHaawW7<}FS?YHw#$>;~Qvg>b;+Zd% zw#k4n)3VJln-2u&2{9tZg;tbvlfCm+_SHi5sKjWAUuD?bZQ?;Vurt@3_-Jxc`yZ-~ z2G6YP;;u}5(|(XCX0*mEI(*+iu%XqH=}>&QOZY=^iSs!?ElJd;yJ5gfN-4F6##0dTcAw*E}sJk_+=8 z(TxhYS6Pqz#SrHoHNC|WVu3HrhMn3!@iaf%LMi-hn^O3Q8r3Xc2`P#)V zF(kPN6hS1$lzcz*KoS;{71L$Myl+gkDk?)^Vmk>iTYy`YCObtUGGs=9mX zRN9nuBVxa$#q-;sS8Enmuc__0kNnjP5~+BOAVkfF1C;@h!EVAWxn&~m6pdp{kl2gC ztyR?S&09&4U>11-d;S}OG15(}2 z1xaLn{25U1avdRoO;0m$d*+I^@cM?b4g7?4lYn~28zs^?6{BybozFGE>;iSi2B-DS z?<+4{MfCLBx`-Buf{#3^72TWyNWjsfwcb`iqxA0*Ks|f#tu=N!qeB{!$UQUwd#vY|k0>@+71{NyLM zUS)nxR6l}^2eBpCXaRLOg^jEi9#nTrsK{ zPV_(*^9?TIMlVhi!)`fhp&#!$w+z%#uKXH-<(K6<=cW%X++2npwy?j05rC^UYZ5_s zZyEyNs}-&hxATR@e!m8PU-;D}q5A_jwNowWoh;-d-7u@Fk)hul7EW2lXGY#Gp%ZnH zpee;*>#IGF+ZIo~EMDFr4&)yYo6*mJV{@4qBRBgbF|J8w0!JhOIpVCGlyAlpS&?iy zGz+4}LyNIM5DR2fFt|&zG?LdFjEGrP+#B2D&vQ3Q@cIliDJXfoX|xa0>OZZempxVQ z$PE8L4;QT3egpTzDCd*gx}}Z1U4MklG>u#}FO7PM8gt*aJa{L}U*PTr+n(5m%}uD) zEtImMw5$1vyv~1A^4jgQ9t!BPAC3w2z~NunneC^+N_*_C+JI2Aw}ga!bvQK)1C$Ln zS!%B}ZGhSk%W*urdFyW3A7SIP&OB_nJL(v||1ebtYje9!h*8+4GNheH4+eE^TH2avdG76hQQp*-%A?>gnp@69q5GYRioB^9@uhaH+Ik%-$)JKho(>)RF zxya7`ukIJTN1dWGsW&)?)lg`b{ z7m(L#r1)rd#6F`y3s>Y$()C+U{kcDh{@mizmS1oZoYN<6%}U%>OKx zJRA45xPb&;a06u{3C{D6G4&}J+ps^5UzPO_Tb)9M$7G7)`Nf?u|LK^sI12xUvM#U` z6nZRT$Y^b-6YT6Z|3>~qt@IEQ%P!RwRfTG0uF_d1;XW$7ZNsxMhUE1z1x82LDcy$L zXg7xvsFXvy+HlKhOd1M~iD({%2NAwdG31Mn&udG+8&N|I({cI_XtuSuz7#k#Z9d?< zL4#~!q@x!sqMV}tN%-I?k8jU-;4M6%Hs0zUG$!;}$1h8>P`ZmL0FqQGP6kYQHE4^CnA?L$+Mp znr)e(xs0^h&38>I6Hm>V-8vv5kpOGrTm(cE(Dq^hz&}qu8u%&z=TfRiZAooEv9spU z8d0&hqueIHjKs7eT<9=p6wQ+vucYtSBS5G?x~yef7(4f%HBvHF*GyiYnsD}Vz*-CF znC|Ngy1qm1o_$+Y8HbEUsv*jj=gRhKq8Mb2MUrpVfE?0Lx3Uv7#{~6SD@BusHjiqN3UMPRnf8eU_RFeq^CBoUbqPLw{w8VR! z01z61tYT+rhJZi-w{IRu89H1obqi=$IKjW5CpZhM*cWdDo82cUKtohCsu+mWDWyp> z0ch&(|H2$96Wn#I<{37LZCqG)Zsc!9?MWsBJJAw1Pli0+{I>QUvM0x{1-=-8GDAvr z-=|cl$=slmoN=n2l_G(W9IvXhZ~8)?cYA0p)n_*4&V)I?!xWlz`$3w2SKuN7i=3@C z$878jnsXEn#s=&6a&=?E{MP3-JLT><=L0@C3h>{u@M%c6X?9)bxD+k;t z-gSW+B7j+~O=#cYk1L&CeMm6^J;4yuJpY9P;;KY9vd(U0%pnOho0-6${bh(~rQi*)*BK;2@_$yYLM z$QpQ~iK;~SYv97n)Bt!n7nCG*<*yg0)urgd9MbluK%?jUs9$ixwn3g!Chn|Kokwdy zgFza!P$5|u;@8stUH~s}&lBf>q47k|iSKkBqj4c^0;1d{K{6Dcsac}OX<4Esi74Dm zF`NUiOyfAd{v4jaS7%pdufY{-tg(o8Tn^>zy5JQbGX(UyA!PQ>HgTmz>oeDk*4~*^ zFpK{n5fAL+WXQ}_m*_xYWQZN3aL8IbMyOTrDzB`gFczM8%4qa=x_6ZlV-Yw1l)1+l z28U6E-Y~mE^%SqY)Qxu`HHUj==<#Bw$U=eynL_dFIX9zzpT-UI#HgdT@JL-)hdf0J zY5se__Jc4Mv31w?@ZeyBnWc^`l-Qi6cEe(AS_(kv_rYw#cdTv41?2b*w zN$bw`v$Cb-d7ayvfPQP5`*v4)%YRIK*B{G$x!z!rTK@F382R;<>M_Xuq`IC1$T`&` zXz3cvthvaaU-Wf(i!FxKktc+K({TId{c{pV{34apr$cQ1&DlJ6 z4w~@~dK!A^UWl8uVPDwn3#Lw+c#zDCyVahn*}Q(#M+lN*4+2>V4M zH##ZX^!;bUWzJaW0&_AOrB+G=q-VMn#{o$1704KQUUiYYe&(&)NCW_EttQvr{ICh3z2lqR7E=woNEhIQ2myUlOdN)T%+K@`(zK3X*5rf5-8 zdOMva@}S(pm6a?PN$KNIlKYDrjL&x3U>a&0rbt#1)1k_{&;*A?c%S6Ryq6Uf(E4tfh?>C+Pxn)2vj>RbGXv!htzNOvhC ze60R!A9IFCM@@-+%SSBgp@pB+PR;u(Y1CFLoQ%@Qmu#m}w<4DfFc`V$3RdKfvm=N* z@fi`~)mFR*vC#HDVs3r!XTa?BEQ^!{N*48Jf-wYp*}dx6kC`s36YVlPKH}(kQp)C` zt2KYEU)6iM<idCD_OpT@rJ?o!_9Q+B^%dvk~#z+E2_F@2GN55kbk zyVZDqGOoJ4WzT9fQ?i*us@UWqUm)7XpR+r~wq=YGQ;tu>MDcsyUC6Txq+hh_YK`my z$v%6Jg*^hF$04ql4A~X>o4=iH6q_N69tRJ`3|r+?)V9p~2AAd;dKBd$>%qnloazPR zPTHX@*+u|afRG{DBX6y9`DF-t1Z06h2T;5zdCM+A^U-Wegtf?S_n^5y+Cug=@LsI( z^yTzF$1G`>%?{cUT|1B#92mC3jg39tx8_8GVRTwvz=Brj8*U)~7p`O$EI}(jCzbI+ zI?w-eD;L#pYL%n683go??yFqIeC48rSsAXuHg<`+G{j>V< zIsn#uOxGL^$m>Z+r?qE#?Fj607EQXy^7H@QTD}U0Y6*H1l~g*R`=IjLbO}vduw#lz z$gWvS+D9dGnDyy$m?aX59q+OIEu-|SqLXXiEXt@@kPESaA`znJYe|mL5CY{R@f2<( zvQlcV_->*0<~j;s@QgB%*;AQYMOyBVF$2T3;@JB3$H=*hsUkP&&+S3AxkCU1RUv%u zZ%CQep5))~K6`ltz}fXK8AKlW?xC(QAc-S~9#<)bUG)k9SXz3Tj5a_KltRIW%UtKn zG{5F9^I7y7*}goW!&_UzA596^m<>2O%0!h))b&;n;icQU#ZlQ+ zzcO!sybRFwp!$N{h>+I6#`nYsp6*ZW`99>SXv@GGvNsw<(9;`B1K zxqRvhg7m#^bLGbh*{FeSA*yf9s0(Yp8zS^na|T(b`k&|)*rTT^CT=6WuZW8==M^gg zf{qfdms7_@OYB=7;sVmEPWx%rGIaHD*-;HO?4n0?O_@d3Q=1#|`R9^*M5eHP&Ho|u zgAE?q^lU#RMYI~)6(~|~oD=Z7`HR)C*KODjgb3DjD&cd|upIWWlA<(%i|q{=!lQV4 zLD5$h@6govvso7-qk(-G+>vQM2nSNI|4w496GtEyW#BTe%Z&5Hi@1Vukam&;`UZlM z11djn2|8}6S?6|GXa^H$;CcJGXQN1Pg)J_9O4J(W8~#0{uRd z8-(%*WHyqSet_n(TImf^h2ywilfnqVa1y+C4ck15Kwl6g_nEo3S)rj|b(gvb z7>*0-?(BLe@hjq?$*@(0P~pM|PlEBPCWY@*srTEF5(F9T9n{NV#C8U$M?j$t69aFs zWA_bLpcXmiglD7oep7&XQEjDCOReg8F8_Lo#Y3ILW5$6JXg!6nsutJc*;|TOXyA+0i0!K5$pOAqX?zG6TezqKOC~=J_-2myxt>lg8Fx%=>HEPs`mWO> zb2*t8JdtXnM^+hQ+4Du_1XWkrB7_j%Pg4DBXA6aCAs3wlj(p3|TTBE`Ievs0qYT)v z4uVorWcK%OO{EB+8_6_*o6$AM0EFf>VG5Z02a}O`_X8 zBtPS};z}?ZKBc~TRRVQ}vyWkv1dW_g>LShqUEr^=xA}g`eq*)WmFP-1jaCrD3HVvf zmo+vUj4QcZx`Eo)IWaufaZab?D^>jGw*f15Ug+<1X@Cn-gqZN|2<+;o^3)Gh6D6_s z)=vxXNt*xFMEuO|AuPKpPsP2W-ziLKLQeZogGl#vTScFALF4F+D_U)j(>-1{m*I!v zSo!b{+SPb5Yah!Y8|;_~0^~lJ9*EO2!dm$NLQMGYxNU^ddF{?Je+OZ zYPu4DTQ(5dEL>%L_5}x%9E8(RVep>&oR7C_|2y~W$Si6PgqRv+MNT|yUS~Pza!?9uDgj3}X?WH) zt}IK?wkiFjWG(S9MQJ4$af23~w5xp`?QqmoeH}!`RwT`WDa_DM?YsRzN6#!VJnafqAO@I%}#qCz9 zjCP%_J)e;4;f-c_ew0i>oPIDqmw$u-gk*apsw^%?a5bG*r)WVKEof}oU3|MWr^5%D zy?L&33}uSYqlNL0Zy|B@drmTE!j;hB{umq^akn1Lv!D2`B9JpFLr#3_UP)>V&k9y1w_|gHI_dTDPM&Ta%BGV?m&Y7_yz(h!qE3vkf%a&#+ch>G(+po%A+<&W2 zcUHx-p+ndE_Joj9$<^A6SJcr!>&_CA1F3sXE!*4G=!k5HZ--G+I33g6#b`0$SiZ25 zENa9%obk8v(CESz!MbRwiLIL-b)Q&X6R65|h@p{tzZNS?Kiit4MIQ zhG4`;x7nJ&|CoZhED?TWWBP3sQ#P9Y5&HJ6d5wz^;*o$ct%^Vm8BP#q;uVpws<#+o z$6mAM&fRXF9}V%)eB)Fz{^hMV!g;+3N%31pTaeP4CN4lbV{IfxeE2+|TMb<^I}>~(?>|(Z?rQiC0b)n0TH-#*E7U;Ds_R^$*q+A6A&ZNHTXMq$H0?E zW)PJGQZ@fFF*FsX#Kids21S=vL$0BUVW}hP*tM(}#XfxNicZa?IH`fc){` z&koiNmY7Ja4I8J>(|Mo&ON9y|kOXXInIL0QIO(?~)kUWEqL58M4_eQq$RLeiRDVp_ z^&vo}9%d$`c5!%xC2^!h3ojIg0>(44#_a|+Kp}F+vplHW4pD2<16TDj2Mi_+E+B7A zsi%u`PkYa>HjeHa(`#SPeNV@}PM+XtgU>leJHfUt7Kl@%tao%)DfWaBGGFf!jr91#YE7zQ_qF>m5ApijkBC%l@I|m z^#LrZtu|2XzMj5$4{g@FF1~*T#Fq6)N|8MBu%%FeWH$*QfuimP-wEPCEK?pH4@5F9 zpGi5zlFv#Tb;a_v`L}w34o*APrrQi)Iid6u5yAKunR|Dtd?F;7OzlCcXBHc($Jmc% zoc65rzj6c4s~2Y>ZVz)jDUv2;QJCKz@#XdZ|Ea+p6aK`-Bxxx_Qe8?L1iEwVW?5=b zmA)K(j+%miQEQ(aHsdIz`6Q3Ysi0CA?{c)252FND><)g9rzP-VeNQ5;u8HLThDK>a zz7&I74M7@TM;+(Rjb5)s0k4WYf9ENtUT-goMJ}q#KoC@Q%Xz&icDdvyB^IMxl-HX4 zjNrO~@P07vJ|}jSHu+QGe_cq>4)R|Ow?T7VVjGt&2{0g@-FO^&pDm`~oAr$UwfQ6_ zuC<%OCePnW<@p4=^#CV5jieLu^r(Ttq{+VEUB&zdAB4juo~6w3eA#>jCQg_^a#?XXOglbQKqdFIuWVQMnC)u(bjlOv1TrakzA)sX8rx8 z6Ko#}VZFaEKs!|7+mi!-8$iK9Z52 z7Mv-74H}A1>?JKT+R9t`mfpJ^iKL*h0w>hJgTHS_&* zu$=8_XP|)|r$zBr6E-2CBB%i>=Z9M?%~-<25#W0%_EY@=xF$1@TKvpaA1G?K{?Nzv zrxlDZ6oAzdqfI0T_7^?YCOTpD@*`S&$F?8Ol=1omiODf7isGl^OL0Fg(gSPH$853YSt=RP=ff0N8g7sxaTWP zGzDSmymQ*x`&qq>N$VT@9_YE5_X2AKC=G<{^SR<)$cD#5vbXZY3s3@m7{`26eK+(s3t7r!a_B#8sWJH0V`rE8nEBDlr`XD;W`&(fVn) zs1&y{8n<*FiRHX&IqGYA9$wc~Kbn}d!;VpXb6rn-gDw->uz#OnLDm+Xtu3 zCgJ5QJmDry^7U!asbXuYJgA+VaCQvyN^D3ko&$A|eopGtse<>NwX+DR{u7Qy?xnE$ z=le;+sMAFqTRs01oUIheqP`Tz9*}X1=6!JY=2O-U+n#5MrW}Ax#eW#3CHUYQ=P~}K zR!>m4TSETxr@Vv=5m%h0K!SHw@%hktK}VBec)0g~K#fAL7q)B6=P>_{I0-xX?9R6| zD2NM|zUl_oJ_GJsmYEQ%y!P!!NYRF!tYF1?`(8vhY%jvcAWp^DI2+nntrw2anUx;* z2$*U_Z?)>dxx^HOWhr#enyn;{+&!cLYfl-#6cHtsF^*U{ix4PppceP2C%m@ zx10WAe)POUiQn`PqTBK4StE_Z84}TYSOYo=%ka4W(!3775_ui;stmYm4e13~@qN563cuRG^>r~pnp&l3kWlI)6T zLev*E&pIiNj9}M#U!cF6aL6?{Q)4LctJ|mdB)kztlP2X7SRAt}`$R(2&vOi;=Lfv_ z%f)_>?-eZg)UYT%)Cx33UAF>28p)^LBtX6o{QNcuOvpaWH7^%sfS>Hyb!2cgH=Nk| zf--rkSC|7QD;PK!FNE$-U0|`AfZ*FiX{Hq{FXM2WwHOEp4`|)@-h7<(@%3xAz0cs> z)HxF~^a2g?6ilEG+hC`N-W3Zl93QiL-9CGvbFW6yHW1kAltLVWc_sF4p- zfl5gS1k<6qIw>=Nzd#;bO_5QY5Snf3Z*1M|D;tV;nXyh8+;0 zDhCO(ie!e=voz6X;X#I9viZ4RuE{0gi8M)syPfcZ0NDaZRDEy=HG|tCq15MK++Bk6 z;06!>v~o{=Dt=UyQ2^7say8;LiI6sHV$)!f^M_9d;1w+$&=R%cPO|wak~sO zC?Vo*vFvBF4cBxS-z*$-FqZUaLT>DLRf&2H{vV zw247NWHd(NCu-xtz3bJ57HW zaB{D50TU6R7sYVq8mYa#Tm0CM54Rir^$TMU>`8xoRN88EiJmsJOs_#_>!xRVCcMAa`$*8Emv|<7=yY0b zfXrAgVg~CDx=n*BPEjqM5uZ&Nv9+jL=!O$LC7e-U2*mJ!xI%@6VUX|dM4$gqy0iA0 zv5IFX6_Hekf9}y{1X=4auZur#*#fL)=*D>xdw*aZ6q+rQ>l52M^|n8|6T$71)quXE zcp8>>tG4zDsEMWf{+TTqSdJ^+xBStET|}91QL%YPF5#fJ?e9{*6CeE2t#`VSu#4N` zpOy3v+{-NWwjO5RK0few4Q$dy=Vzug;Rkaw4Ts7UmDPf32f|N91xVzx+Iig?wn;#! zh*y;u4GMY7VmCwEZ)=F|w-bM!9~9`sYo*{sbXX1(HcG1Xml-L$0tSkD*hnu zz61tqw54#O0R8DUyd{cea{Latu3S2s(hSa{;ULN3r@;fex-%gi;hul~ z9i%D$V}=^$)91=d=mI#~Z7?M{6}wCf{n1F4Vh|}U@KU{yLPti8FNBqYN&1baoGj*h zCXiV$2#*yFj3d8y)x~@=u6Cvq_nWfKf6|Ml0YiU%;Tac_s{@c1+n^$IzS1{u>oFYY z9gol-y*MVq8Evdw$8eSrmj7l=o+M+v*#J+NB7Sn3k(-ix%p0wvmNk&I!H9jSa^_!) zA$FuWu4fD(zQ|j>T_+s!X9UtzDtT$Yk1@@)&i8v8a7B~&$eDUdK3BexaG?%t=+--N z`q7`q;arihEUWe=i}_7j^_|PnJA}f~7M{EP#_N{ryxkDrXNwByK!aP2dM0 zNm`OmcNBDRC3&h<|4aF{Sa&)eY*6-1T0rMG_XL37*JKoKX~ZHFNB~0{pq5hcjPV=O z*fmw<-rvcuvvKcnP#Q6&S^jc zJ)01QfLOXDy${0?WElhjg%?3`l$edt|Je7Kjf1-ZNCxg zzg~}`7J=lM8@@VRF>mOQ^OZGOM;)m{C$#>yKdepq$3$apB>{oM1OBQyt|i(ijapyj zZ11KEaPOiC?0a$kG47b1v~vypqOD8E-{c3=Gv&4>y8BrGGgbfXw#DU6Tc5@ae*CSh zQF@aIYmDz*`=e>BHO@}v(_8WcN0-Ejqi^Taa2;&m#5mCm2mY!7822{w9huG%n9@MjgG3Ni;hJkbp zwVk)IyXzkfe_T*F!WUYjCUNLC#mVtkQ{N%!&JxL(pBdA+N!yBTjUCJZ0?tBQj*X%S zE;JI_zzSZO(b^4?X1T!sM#snyB6WxtEz=y#N1z&sOdgn&1HnM(b`Xv$+^zhy?)U1O zkl0poC#9g`1)8^j+BFQ%FCln1gC%IT;(W6jy zpP3x&;G|3bHvIi|ttnSyB#P+db%c0&s?6@!KKDiX%tVRCs6}P`*MH@MTiNy6iOOj3 z33$wHJFbto+C5%>sAsGZtg+TAv4O#wevh@83cwSG9<%aN;Kld9`0yRN7}n-XFYDO?)?z<3 zpB5nmK<~#4(Rz!Z?W1}?C_f3c2d|EPW+Im$4(@;ZtPA*bT?PcZZh+|cT@cWkS8ZRo ztUcxv4f$Hvf(MQXs3sLqFhA#5d1Q8S!q@-_we8%;xvai(|EtCZA)u@WWxXBGB@=2| z*vc~ULb|a|y5@4M9f)tths;)^lhBXkNgTzJkIpse`U2i>fbSDxHLya8QT!ARPiAiU zPU-kLjw+Au4uksM@Eab;3Whm9lqQNN8y<~u6NjIwj>C}Y`RRs!NP=&lvcbIJEBFHgj}Go6^`wRH z4I~~x-jl`M&Nfxqn{^+xeRGZv*!WNinZcrmwnTV1y!%_Pu0%6V+R!i&NW|kPRhm?r zp`Tsf=9M2aJ#df(uo2x>qg(d{{+!MhJs>-!Vm_mE zx(pRg&Q`f{ggLIP3w&}PhLA9n^%YdJ#SLfn}n*Ht(nLt zHhDZE3zy&BAsTdL+!pO>@u3lf?>>0?fOpTu@LnbwBcJY-Kr9$xE^dvO59ky+XsXBk z;DIQ6sKop_aV%V`v!ChS}u1NT~|K7dX3jn8wZ(*Hm{jpTr z!=$)}ln|)>&CkR=!b}TG7sL@n;pUOfX;epc*XJJfpcEt}D(fWCWp1^H`n^Wsm}Seh zrlPJ}pu@$_Hs0SjDeuqQAPJFucBldXiT&8+3Y@UP7sBcazIoKKgKu=k2uGwuOBBykLP5X~FRhV|0mC_>Rcj;W7p zUd5}W9rc8*;!%g`d^a5$Bpy93M+K~Ny;nqVSGTt)$HPQ9X&vtjsNIF=iBudFOB;r1 zrgo)8sOYrfjb|)`SG!jl|g{))toLF?Yo1OB-?uunLu0a2U04Ln3fqs^ z`xy-&_5%URcYQp23A9(goP@5{OLP(X3#aydh2`>uYse4IQRkE5oBvfl?1ejMq{@pm zT^9inqRN{>v3u%)`v2#BcMwu?%M!cD<}3!VY$mGZqVWF_V|2c`GQ-;%fd*1yj>Gr7 z#mL}lMpR)o&odfBJbnOlYg8yQypb#ODL_UFj?_qu`U>u>ZWZIZiMWZ0> zFEa-?^4b=~i;t4uq|8r#Q_FgT2wRGx#f}k1o$xjp78bvySITD1?+ubWD2Rrw3CuA9cg{YA5cymtJ zOKDzVy`5U{qqH7}K19-%_&DZfN@>??o3$ke?CMov#9hJ{@!jDGn&P!mZrRrI)>gyT z;fUQ>ocy=8gW8)cMdkjdGshxfZM4KqKfHgO^3??3j|g$K_5#l9VwqGoS^+_8l%{Fn zwU7Fm52dFxhmHvTLVF4uubhn^tQm>jp#C(zzw2(iahU95{p3ci4M<$S)zLmin(@D% zI&__jP}p%)hq~BKcb{*U^mh$~8}$#L01ePD7d3^jg}dLaT!VtvK7ViO$pO5s*N)k` znlq^~;Z5>8_o98$mcl2tYiiSPeI9AY? z(4U<1dZ=W5j1_4xE`e`NOj4v?LcGer$Ay1QMwVsYL)<7!P9uDuF6x)QOHaD6|89&v6%01~pp-fySNrU2$$Moges z7+KiYHBwW#LD|^C#uBxXAE7NN{kORU-)fH58$7^jj_v8xO1#AyQs2zr$1r>$!;wB1 zZ-yRThH|Lr6}pqu8jejf>Q`A5kdUyHrH>opb21Cct;Te-tOky#2LZ*l))=D!py&r3ZEKq2r!R!UXR0O<{rwv^izO$R2XpptWb)hu*nDZOzcDjbM~kHRA}2x zOTwHT%hQg5M^F}hEQfdmLxMqyx(=DvoJ6`dT z4%x#OJ#QL{JGg91}(DF#idP~NtQ1J%W`Ex-D zpg%BnK$^#PN%)rekze#28i^mK_Puo*B0F>BNTcRQ)~JI{ zv81A7b8vgx7}k}iP|4nD*Er@=bd(@It>#~_HhoLgI|1=kAXb-9FqG6Htvtw05$3Zr z$TFs}ah)ny_R|@X(xitj#SIoAFuzlhJJ!;wi$3fIF?@mwqt5p-$wDc_Q?0f8o9x0W z(Z|wg)p}2wv+c!-R+zv%h;!I|(#q+V3-FotL)fsp7d~vs&&qEPa78uqX0U2eJd~3T zdoqPsc%BUasHHbZHe#2_sF=2{CJf z62?T~PRNzdZphU-6Ek3xOVkvyDt?nIB*N0w5_rf^F#lbQu^)cH`4fvwf70Fm2gK1S z#lA=-z8@^M^~G9tnNThcs))3I{})SkDt)2H<6r{eJg|pa0Om^^SdPzf2C2lqg6mxO;rM$?(`loDlXCNvcQl_Gw+B0Sbmyj!9> zw(yX^7<+vS$Jd^AP+e_T#V~zb=x#xwni|qq6XE4lV z$990dMLk6FDz=k3&p0k!OF((e?nW8ECSbx3Q7bWLM%@(|-jI3DNJP5^23+A0HN}F& zmGF}XVm`$zINdY0=Du>pG;{vNyt0hljuoF6+$YtlFA0c7Ztqm`r55ktH=Z9qg9u?8 zL#VxMgLvxJqEKWDUy}eEJ)OBYK&^Zw1<97|R@*!A_?1#L!z}DcAR3~;O!fJaUP#{4 z>xeP}dU3v#=g{ylcGbX7El;;QS$#ASz!&gv7{A4i|G;VCVLCqn?(OU(!aw{_=2!_v z_?&rVL%@=|_=J@qCR0KP4}Tt-856%xDb+xn4vKKdje7?MaQVi1(1F;gl>#!{U*zWf zxpoj~ww82=JW^fFZZH^KsR06a*cxx~kDtAxwNT$2dy4X++54E|ZOu-OU-Ug#V-N@`daOWvoYcFST z4I^i%iUZhX5ov>L&3MJ>{FzG*21nVv1lgj&=ly)8{5!Fcnc9!!R)b5vuT6~J350t{ z@5Xh@^G20M09Pf%Uc*S_buwg+U!VBpOoZrzeTH=fq1oqs(rBvf|>YIHN^DJkDnX9xCJN2e-<1fs+$;g+^fn-w1&5gZqF zJAW9p+Vl`f-25dw*Z|Gh20*AQ=?13T-TuO(O0VogGj#IM9A(+!{v7vLwvs4Be%X}C zlSE`m-t~tisgU;AGUg5tIl+j_<)H7KyMfC?+3oto-_E|RHJv+q6lHQC;xJdgqI_6N>j`OO^Qxbny_hsTts%4o%=bW?spwB|z34b&lh=$#vnRYx z${-YOpxWY+>aS_#T#SbUur~D{u-w@|)L&_>mFzt7SN+*>DLHVGhjbq4c*!q; zaqN$Wc2qQR7@&R9S6Zm~Sxbb(#&PQK8@;IcF<~iV6&{!YBpK+aEvp86fEf^p&W(%? zXD-eMU7B@ufZf+sA)`7uJU~<_L_Q}Q{`)e@qx!Q{K5>e_LwBsQwEXW8vfyXjup8kE zs@#(8^H}=3QhSh@RXg_XOrEiXYiZw1Ybwaee={|S4p--a!VpI7CuAj-;Q2i;2(lgX zr48(A7j@Nlv4V+E_ybZwv;_g_e=S-#r3g2Ls#USrJ63Z>Obf9z)2{sGEKR7X|DzV= z5v9mGX_umEHTeo4-j;fP*zdg%g<<@P( zpn+D6Q1m_-S7gjjOhR?uU2Q~cb^&%&m+b)W$mCUsNST9skhf8PW_qW(<**^MJO{Ru znxC6IIE4nkl6oQfXbq+BJM3?Kn|9?a_daxP6Me_SptfedksRyrJ8Re!cRQ}M@ z_yp8ukH2`Bv>mo2?EvDodlb=5VPi-vPdR$GtruZg8U^_>tLp1$r*ij zyy9gq{eY3+&prVh)`17RFyF2qZPXWc;o1dBQk7!8ZmmNXt35{f6tTmfHi6NjTyhdt z+)m#*sNnup<$r<+n`st32KJ*dZyRw6(|&XO4>iMaLR-g#FFbACtkkVziNutBW&|lF z#)!8e#c@-E8Y+uZ0IK=NO?MU$wNTfE|H;DfQ$>AFDHi zUc3$7g(7(H&EQk4%}&SNE1_uokJy&$M%xr3T&I`U-qc4505SSD@ZyEN-C5tPK&U_L z%KV--+oD!-H5u%+pF&`H@^i);XMQR7PuClL0})yN-{#IEp@=eIQ^F<4ex+@FSRwf+ zi{(W{+8o)RWX(fiqimpLD87_)$?)8F&l+do|3*n#pfgRt5fS|bqut_-#ox5vg+*Y3 zjj)z=9jWW0oefE`@3ZWkMaZ_442hMIvXb?b2nzA-yh3o*+3k3apjFY-WoBABj1 zykpIAvpcZjNH>^OAUNL!pI4gOR3CG5K;0^u?)eJcH4?+3faM37JZiT|+J+6F0B!CS zJN{akcZWCdAwp)G&&xsq(QtK)G3ymZ_O7tK|DISR6pf-N`Y9-CmneUzg;u22Bm2d2 zr`BME@=-nRnQoU*91u_2mD;o_Xk%tRBQRE4j-49Jsq00|M9q+a;~EZ$rU>z=h5nnV zVQ?_g+H&I~yPI~mI_ag)EnUIOAvvWd+LUz9_w5M!lLVJ*xNgLZs2TvS7+Q#*$!M8`3M>(s6A(okwx^?6MiRpXFf*Du=#8nCM`zwmYaU6gSQFsR$kcxa ze>cXg=L0PzCpdfMx=v&Tvj&T& zBB^r_pW2=NHq4EagtCPQeUh6ip<0r98Jo%Jq+(O&(!|3*zRaG&fN@>xLj;!T(m;_D zoap!Mp+{X0)QrXz7%xQI-o0i%`iki!Pfm`N9A&Uz@ZmtWhbtQTMIA0FF@$eW;Utk& zz|WF;Q_Ol6mywEMX5w*}9Aq7oxd&!Je3snG}u_6s#N64C?WR(lQ|gr0b=^^H6`|iU2w`E(e5LJUc=6ELY4Qz8$L2 z(&9v@9|C2Y4H?=*TvC)fm6QH=Op-noMvUxgL0HbZU>-u?=1>&L)#Cat7X$~bj2c54 z3({Y#1fYvikCmlAu3Gye(+Cl^_G_g{n-Pq~-An~N_GKeO~Qliwu z1c$|uvPvj)P1dA5kiy{X8?x?_zL1Iq8n`(zrD2x%JFBQvqsE}N zwoHSy89x}?h1vHH%TUq!0oeAYfe&#kuCp-|$#mZ~kY@-#&~YpL%=a7OAD??`zjr!| z*wz#$rZD_-Myz9UxheF{S690DWL-g+Q~g4Jc(0R4fSA(sIO@l9hvhJjJ?M{)IY@K*d>ZT4kI7U7r;Q5d!j(VwY zc0%z5;6yRO*<9T=-gw?P3H*coEN~%x^?Q2rewj)D>+~tFvTQt`t0W<{4X%i*$7N>+ z+3!2?+6y+YhSyT_o(>2Hf5@zI@)J@OjF;M0(`0%|-nQPSG>Ru4ok-p&7lYJ~iY-Rr ztn(H8%7uA@qB7gv)@J!B2B6Wg7-HpwXX$196&=9JrcU^yCO?=< z#Z(jY2;QQnHCcL?QTh0m=H6y^>e=n09LhN;u@EY9>?K0aJVxe1?gJUttJw;Y;oEn& z6*lCmxZiq(BgPNPl!6oY1W=0<{;ewk|14_dsxQ19$#y{n3KCh6U$4EY>qxS) z{_hk$dk7MYD{?50ypHmo`gaPBq=u-~Vgh%4OcV^b&A!pk$iaP-fMied>VZsr%q@Oc zRN$d~ETLzjj+kV=wCH_xxr%u)CVpyerf`1l4I5g2kcXdsrA8qVOV`uu&%~B z?dgct_C}3Xa0m5^1wEPJ;AaNQfFZb)5q0f26I-&osp6OfN8BM?mm5xw<`XT9IMG! zl;VHc`Im;qNhCJ}V54u;^vb%LQD-4A!bF<0O4 z<=#QGWn%%sF%A!?C35!5g(NjaWp5#T!rJ3k-~AWLVwk{siV{OwhNl%Vxhu5LtIQ_M z8$+4GwoYgVnZ+zc1s%+Gn}vIb z%oMsbA3tpq=+NfTr6%Zx4Byj9I&JjVRd1}^?uGFC+dFk-ee8bn70@ThcP2Wp&qsn^ z?H{bZz*d&{5L%mL0#4%ctC{QDcYo3!)RZqjCf%)Ue+n2S><8YGu5kJEbUNjJCI?ns zf21`-Cx1?o8B5_*rIF{u%R&T}g- zPy02;DFOh%CIrrfG>5adDbi;d2Kk1z6MFk1Oega#nDv#15V^^CfSeAsAE6}X8JM`; zB*E+EKt*4PG}WXLwnPPSJ*=$kaQWn8YJ;qx9=>Mo{Sat}fWFSf{@@LF=1@Y)U3-C& zWfnz6_TDbSwIL{4!b9ppm#O@k{Dw+tNYzSz;grZ*ZVJc+4+#dZ{X?i4j)`hJ%w+S5 zNa#=RA}(m5PJl=@~7{1G!;RNs>drY zHIf$KWB;Rd%6ZJCh;=8>f zRI*qA0W*HrPt)@82(HYvfFChHHo8HU&26Z~6S0sN+3`;%Gmx*G&XyOcVbg&suNz$K zDXyTm7DJ-P(-`=XSy{$U>+I}2FRZW!MOtP{3>N}^feokxuW_7>x}UqHorsY4^ciJd z!qYHg%w)Yo_dk~~{;yH|c_uH{KM0F|`=-NgjMUIw_$O`iT;Mbkg?QiTZSFxGA5Ebk zpdJ-js)GA(2iQoz!ooXBNSGSz;?ARaU(ykcQ#q{vfG+BW6Y7vvz;_r}8+Fw=#dQap;;he)~qDevLp!!8eT zgy#Pit1dK42B$gqgB{!ce^T0Vi1%`8g^+@V*Bw4?>-7z5dDbt^LqA`5ezb{a@Vzvv z!Dx^aTlmv$wntR5TgA9!Z6LRLQYYru+!UwL7@PYryi< z8&;LeW~jQ$re{xz(`IFFS@Tb@R}j5e(5uQGda-4%VVQruubtkkYlbbfSPZ4IN_u;* zs+t_W8&EaDg4Y_WCs3~cOZ*`vO`Ij8*mFpS8EQ4=r49`W4#g;gZj}IO5SZ={AXAqp+WwU}`>sRo-t=QrTo}CBzV#o0d)GR=dbU zw2bAM!mzAo{J!S#0+uei7_|VU5s>00{m@M$ywTbst{mLu2Nrn@ zw!^4V!-o4z^WAdc8*_q~vGJf<;kzE{Qv?H?Czb?;H>rzhH~R5hbM-9Y;Nsa%l8q+0 zFhrJZt-W5Lly&ziOe{a`(DjRMqY7yD` zfyDbTKc566|5QeX!n>q_#xgJ4e_1Jf7!BO2FGBqss>#jvAM>!vL4tN={Rz}(dAQj= z6ottu9AHl`3l+uF>U*dN%@qSA$w@mZ_=JXIK?9;+-)7IlPR3qbL=qO@L`-{?aEUQt zG+)!v((PL!QR*F-VR!73k7S?qyZlwF5qP5Y|&b#WtL5tYrP$r!qOG8z|S|( z%&`24B-}@l7n8uxOUSJioSF1Oof^elk87v|Yf25+COJ_kr^ysC%}4IXN}F*e=n zQsj0GwV-EBY~u5#FxurmL(I_+7oB!Aho6iw$IN&DtkGW&OJ77^Kq0Z(T>Dm^db zH^Wl=A`ZyQ3veZJ+qeIWfjhA&`5ot}tJ;@c6SJs(JET8!4`1QoQR;^g9c{kK7z6Ls z8=VCI(P6+6rpO@&l}{GsLEuHa+OrB3Vl_cqDi(vn8Q8d6e$Gsd!T8hh>7RnCc2R~W zeRvOgXa_5?t*4NGVM!%lDhu2*dR7a@BP@HRLfDkq@+Yh|(@eo6ZBaVr56vXN*_BO< znXf|LbD>q$zMf2N*ee(9O9aY|I3B12x-XvDk@p?&#M7;|o;ylJ#aVbXhZYdvsQ|6j zf^S&~A{Lw0h(4S2*nra6@Fu#`WeyvXvL|RFwa=J-eF9(C_%H>0*hTm@nlHDx%T~k& zk1dESL_e(-Nl5Rk?zz<0!TNgOmr+x~1ZdQmJLIKYoT_sZ z3XX@d7vY8FU<_q!cBdt*lfEswoRm*M3fj}S>C>0x*Y9e+NZ;UbB1~c05N7>{=VRBX z%v>C+Wb!Eqc>QTA4?C#~xWjD5v&-WqM$Xx$ zKDOw4uciweK#>HWjmm+`8(3qSr{>7|TxR@qqXw$V9cnB)*y0J9pPBD;+jUqv^& zA~htbA}Z%D3G}I&KDLms9}nTPU=K3>Vy}^-N|`h@401}d zvh{pd{Iq>BlF((2!8>TEg4#_3AHS{5`6#5}=H1+0(Qxud#WxMwt@#2YXdZ&KeyHRkO@l;NrkPlwv)-h z%fD*Lr!I8t=pSYWLsne>yQSAbESOU_ex0V(U|$#uJZIK6&w`u4Qo=)4#J??eGl`oE zOVArY#2-JEP>p)-`QaANsV}LleykIA4+{#=(XmH2^>YMe)%|T|n=m)NXnKwwQ;r-d*IQ96HBjN=>LtO04 z*y-jo5IHq38Sq}_OclU)<(%4bDnoEt$SVqdM}4b}8k`CGYQv`Da-c9F+Vw-~JE*)C z!eF{y(eFKUZIT(fhLV>al)cTL8izcw_Un4>)1rEW_%h7n^!_Jes2OEvEWVQK`uSy3L+Zo#uV1hRDllrOQMCb0^2xTn`++E#^h}QZw@u-0{ z1%egXNP;Rs6t8^J`wQBg-y?&Q6*87aUV+i5l;o0Y!c0(KS>jLu8vcyLacMLL3;}Tm z;HiN&tRPGh9Yvkn`G&nf)ENUdYnK{r`ZbNdA;rd*Wx6R4o2C6!> zW^Uob)t+%68gAScym~F9G@V!WQDUHsE1wn<%wub_Fnm)xWVLj^dtT5dBCN;+t!yj@ zjL|@6c0!35^nZj`a>zK(yn8 zrh^1tqJv<3nIpzHkZO`~x(o{-WI`f*DT&CWwRG5ZNSX2>v7vJ(n4&{gQIOs~)1!7T zo7p|kzK1OwbN92yeP25bXj4obXBCd=hg4QIpuBoGcFBFeZF`ofke`~al4FQuN<`!b zI;rf-W=A&FtXe3naN-yJ_}^TZG{7Vs%Fm6OAd*{jOAq}l41m-+fQv8au!yJaZB%6O zPRHFB=Q~=}QfC~w^h>Y92EYp`lVW10_PFc~=6wOtY5rl1L!FO4&E~`%0VH13f~&kJ z(#c^Ww`nZreyL-us{myT*lb-42U!-~5s>cuHrm+jeepTy(NXBk9hm|LZfz=4nz>n+ z{Yh3O$bUU3SuA9x2kR=KW9yLDlb7b&2MvA%l>E*!E&CAb%%U~C(4>IUO-E8 zC31nns_Pa%(ay3?2*|R@3_jm(2pCFu03gqSXa$E7ZG*?v9YLOtClit}=Mt&>uS>!o z_DzSSJXxsc%G0Uo#0NL6j{FM#MwN1Ys?1Oy#i3fQ*sW>*6(ShPR47IhM1%w*S{UkW zs>d$>U{tb#ZHkN+TN4##r!{e?9t`l9?^O)8zZBX)3a2~2+-%L&+WFECH7Z;J9t8a0 zBJ75>$aW)&XG%SK=I*a5pBR4FT5dPt5a|Lo?a+J(Xv$XSTxeOmJ@*J7BLhWycEep^ z(=xrZ_6>~_)%mABTMz~*LH#x@G8AJJ1)kdUX$EA`pgBoE00*gup+cR9vhpolB4FKj zm~*N}#x7yU%Hp3;L5dOMWj^1iy1e@e*w50|QH3`w6OfLn>6k<8=c69Eautp$w!)fS zAUpiHEC-Zy#gZf_&DYv^{~?uKpnRSvF*hYi1nc=s1T!`G6y(TX5?dObm6GuO{@K53 zzBm6Vqy_?&^r^Mt7i*B_iz?=cR(rKLq5mD5WN!lFQNAnlt$PnqRh`ADyrOfayZ8kR zW1n3{K09yWo2d51}Y*Myi z*S>D4ueT2@=Kxn&l)bm=!(NNAL+FvmgDd5;?OJ5@-)T6?j)a;Qb;g?u;;T0r80Pc6 zd*CFPA&?U+18f(UvcWIuTF}SJCTgSi#$(l+;>LBWZ4; z%i3&#-OxyJ1&)xk?Sej!7uWtRD(?2(*&ngb?gAFnGV;OB?4SCc`S*^Z>pccnt}gux zFpat0|HWMFyT7C&=?XDzm-;l5E0k~+keq|C(MitG)GqSgcg5pemA1R-VO+~90O@dy zBYzlKo>r`6EFuE+RXc^CX6+%bzu*!E9O+ZVjz>_4>WdiU@MhNzAd}-yVE(Lvl8dRK=9TuX(qu|LXd~q|X@V#Da#VA2HQEW70EG(!)eGk6wu3!;$m# zP$b#? zYJ&GGkKd(HZ#KjYiR#}Fby^DLQRz$#z)zAX&4Jdnjw2+fgV(k;ai(9M0$v>Wuyf}v zb*u`agmR?(NV|o67g4Jd({7gX8Bl@NIn2l_#iH{HIG5YZNzD*F*G9{VWjBo)w+riN z^||XzonQz0*CO%W;4_Ha*3qQzUO|m#2|Ob_8076@lNzL-%9w>ucC&{^dIv?O7ABbC z=GuLjsVQpm=_vJZ&-?eT(e99_F&D1Lp~UZ$nVVwm6Gr?_jP^t|@#eInHibKfs0p70Ew(UI*z?gO#S*WszZLKA z&&qt#^J5}Dd1%$m98DOP{TOh_;m+(BEMdq}`P_VW7{dtrvzpXSBgA%xsmUaX(otYO z70tA{(JuAc5>#iFsaFD5a-z>TLK4xfbf1VYNQj1fyz|ZGI@{Zq%Vf$~W6!G2 z-g62?QO=x=2vnKJ8l#_U)6yUB=&qJ24uch02$R<7epzbcRl)kPDP2aE_KG)h8IsB1 zZ)<9BrNB5`9keqmjM}t_i+k)v0nV|41mNdb-WV3(jy>KBu{#Ec(J1JbKd=D$D&l7C zXSbaAIOE-z7-$apST?<27iR@23rcB4tpbw>crL_v)hakaNz|>QE10~ z6K=aHR|O??*a*QsuyM%VjkpYIWP?rd6WKWxWejS0JnDSr4djUC<%*;lszRP zkba^*UL6TCp$gX-d13nt=yZN@ZGQ7M`CQE?@#Nb4LJ73U&XRmB({ZaacG~JVKpdoN zR{i!GLq$YIwFP!AbBLaPUa^Ty)BvM@GMiiNF=Oot;%NA7F=XB2uy}5(xRX-MM+e6n z%SNv2F}8~6!hHNi&Qd(s<5gamt_=YtOQOMk#2$oo#S2X1V7D@@icZ ze$4zT!U*vQW~*QWGU7H4Fu>L-+WpH9uecsCMFD;i=9BN$&)w9kG_{Q)!WjxOCm9=j zAQc;D5M0C6s4a?__>JY>*yh9EY}cwD!$=&XP{Zaj{LaIC9!}5qTyC$RjNkOC+}7ZZ ztSI~*SAKAZGJr)BUd`=NrRE}rEX#Q|b(UV*RbBVgTuZsCx*2k@7uO6l_~!&&1X9aM zL0NH>x`g{XKidmUC~0cLS9M>0o1jS3mpE@$alV!l^jMAo5x>*AZ@S-aQ(hwrFoqRN zai1jNJa^AvSSak7z=2^cV)%#Mh-<{-4vbg!3Ds}EG7QW9?ON5}5xoMw!!uK_nrBCo}e-nPc+a`+`y z9Ssbx1w?DHz0=qc*)z)7^vyjw#7N#ZC!-Pb5HT(NWWpTNRFUJT9*1_*48j8wG!jEH z7uM&V(aaXD&#Hen@Xr^LKL_YULo|I?&OEKLpL_Q8y zvCXu53{%Thxc>l!!8j&sdwF`ma(O!MEn&L?TC$hTh2TLdqK?SeOiBr`D_s7;TSGe# z;=#G!dCyf!kk57qvKMu8cE@>)CV)ox=uyUCi(L7VP%3QZ4slELew$Ok{$w?s0T8w? ztjGoz1-6bP0&{i-B2(DF%dF(>&utDYE&p2N8*P=(&mV=0u7ZAx(;d8DNf`(;%TXZ) z0kTSD4&eOM$lk8c{Rg%?4QI<{L3#$FV?lk`SG3V zc)UsHkhoZY9;zvcf^(pvW@{9IE=YHALF33`8_A&gE6-$2A_v{3`#hB8&A3ST58Jni zTiTtUL;Nuq1w*en?N>?io_)tlMp4jt+W%j8l%NCY#$Tb4}gtE9R=_&;huag9o3K98qft4yUo zhqMYuggkp}YvG4P#={$I^2No-WZ@J|fVCD;+K}-9&H-|IWY-Qp)>3-<0IIQd#%jUp zMBFcDY%^8;Eoj@^?lGK%bwyHieWPh|veM3Fh=}L^iPHK>1M*+ecu=pT-Xae(UdRm3 za`{n`2NI?NS)ldJR07)a0!XU-hc^4{mAl*}W)cpWHv;$JSq^R8izg^k>OK{?NK z6+CUVec0Ar9%)_T1Kb$7o>^)N>6B-)EPLeF78BC`} zx_WfZ61xOnZD0*l&?2UVuJsU;UMhVZKeUt)bq&@`3gPvmsz4b6c>0NABctp`UxT+s zPZ_DTh4ZdP1vIemlBODTLDQB6ZSg$4-!|$v<>ORL6*PvBE3x{2|J&FwTLcXj%-D~S z#FyAE{#X#mx}yA)X$)!P{zy-V^N_-s+qf}`2#Pl#J~WO<9aMp7*Gt{9!i8KXB&Y>f3=FnNm-PTkgjoV7L$uJv6@$Agn!Q%MIv#6=L` ztWBymO}F8s$hc5_=-$KfDOrGbQrk6>5x6GTc_@-&?lfHZ9n@!lMdX2zlrCcGRK7@< z{2l#*y2+NpiiLpFz8N%bp=-~Vka%F+cW^rxeF1Ic=3BSM*rwH=y}*HtcJ$jE1!2?} zN7KZiDtqCg+bK!wqlKXYcez7e)sd3mRP+cC(_i$Hp<@>*|3WN)+2(Yc*5P}ZiE1Yf zP_>UP5N~L=rUdf?YzYqKiP3XiH!HI@M<&8I{DaSU$-B;>j{Nf6ZC zk2v%mSi%D8>%3Tbt`l-ZXhAae9=r{LrUlG|Lt+FkyCwkM0AFnAWl$ZOtZT-~TmMjW;wIn2v)P=T~Qrj(uHCLtVnJ z72Bbh465qM#hUP4>Y((DPOK$%QHr_;tw-hW8+ob})+75?!fd3=w@FSF%%@#IecmXp zz2RoWx?qoZz6X0@-$qwUvFYS(c&)kf=u&h@KA-@a_b}WF^cUX^&WVZhs$j4RhFWlo zd&EmBHg3o2gCoct^dH3yhfb7a2373)une6b*;Z*Tb*!6i-mvZ13U8diFR#ng*8l;B zIxHhBHee>^YcPI13ZS(KltUeu$|qi+3IhG{^P^3j{I>&>F79SLd^~%k!z|_`alaV0ZwNTmEO}-rwykd?A&TitZfr{Kq8H*7uxyc&JPkJoH$%3UnSGtQ{TUQm5NP z-`~gF##e+$^pV+i$rQnQY7E5J39PT5nkIAw@+{bhBGysf-Lys;ZrvI)W(@LU9MMyE ze_H#kczrmH0n*237jxJ(=z8D%^Qcn47wN=TRdp$?-Q!D9t2x_7vX85*0xh8me(hpNXZiG)D9S>k{D9g*O~P&PZz{r#$JV&)Z_$&8efJvWZiNf z(f6(^0fkHb6YJU~G~YN97y@DxY{k$WF^Iw|WFa;aMwT{S=UH6n#1-<9p;6Wwp)P$5(rNnSX`aOoyo}h0X_5$+FdF{$zKN%P+A0;Lnh-5c#e6HoiY9rp2GwC zZ#0cZGhwkj&X--}Q*YKTR?{rg4x&BXH~u7H<=1XTY>@k=c0TKmeHHC}sYc7oHRUFS z8c$#hU`qw>6-Q}}6Z8~$f_ayfkQ-njWJ3!%SOSEp|1P!YtwGfDN69aW}fDOAImLb}SGzuTfv zXrvg*jLFcE2C=!JhFs-|@;*Ky+;SkB=xYf3b@6 z-*QccFL+8?Ls@&8o^2r@U^4dvA5Y(zK3%4 z)zKu>7sj$vZIZ5h^JEKJ5)zBh-JbV;v)oaN-(&(68^C|~Jt5{Vu*Y^l=|-Yd%k?mg z7=ZkRUhe=EV83E%Hx%X}=zwWO4d}`$NK(Jzk_&2=A0wh;rFM|sANIAQGs&uplFY(U z<3J^}f-VYY<{n#tsWCvFD#RNg+Qr(!eNiiX_s7ch(1a1GxgyA?-XtN}8q1ePs$u@m zPQnLC*dh3Jv+KlS4TA?2KwejsM3)9*eT|bNabzuxXg~O&;uK2mL{EBY*^++`tSZN7`=t!C^!2DIdc|m&Mf!v2594j{s5z<{HT* zg*)u;%xp>INqecnhO^Iw!^UIXPQ_`S4?CZXC=LIKIsqtN{aeuK`Quxl3m4%&-BfU` z*IX7aHm%53B2}*@Jcii?+_d6gp;XzR$`}j#_jK4gIU8}YB}F;Kc+`HgJzzR7Yyj7w z?{C_%*d71Px_&oa`H;;Ph-so_CQ6^ZcUtXSNf$2TfdOmRqFt6xRoY1r4sK%kZ#QWD zE-=uZ-(sOBpMth;zl|6d>E7LdcGzW1Fwl7x&y1?)f z*DeM9#>Eff#aW`Zhb6>157c`DCVJc8h>oviQA6<_@Y=lFX>N_79gM6<#}%gLW6lGG z)1)GdvkkLQ@{5sO(sVYOdyuS7*GG@}q*GWi9K5n>8kqE2kA@MHYog}Q$ScL^IaL5Mr% z-C_$0Ysk)0$yC7^%C%O!_lAM={AoOs55vNe5>_A2KE3mvn1!P~wrO2+!wi6Bh4+9^ zQ$Pn4MR1!{==fbF_(W!X-aORIiygnnf$Y;>pLPXt7lu*GeCI_1o%%L&KNHY%p?S&K zL*-_@r#L+0^!y)EQbxt{P|)>a;4{CkG&=t{zai=|ESOWy=h7D*(9Zf`(pdD$JjC?Y ziNA^~m;~5$Zs&YuT7PO4_0G-9d$c4=W+~{NwxSDD!-(`*@5yz#k!=M6s(mLD>`~)B zA;&J#D`c!X+JMq!sDx#}c_JG~BocsveiH#W6S!6)^vo}Rou#}83s+3k>t}9qy=R@z z*s9gB);nr+G^On3ZA65bhcSkM*t%s;sY(S6Iajolz_>g|^BRtJDK+zN)L@kA<@nI{ zr?`EHaQ{^bPlNJVy)OGLM1(`b#vgRv6&4~US005F;j-lO%?{WTv*s93-0!UoE6}22 zLFFmLS5}6yll87g>R9|gcr1v1iPs)OAhe8lAKm(79u^~9y&6^0*x9AR*{DOK1xVml zazWIKpHIa-KYV@DItNv6MgJzj8uad;(Cexur0rHDV@N089|mfCrHzysjpn2rb)0zM zcKT&JenUD=O@cB8bU}(;bR1uM**)<<7~dh4VwJJ{q>C*9|5~K6l4IBCQYzivg*8e0 zt$E*(yh`eZ-FaA|d+Q6%1n2~aV=ZmB_cf-eU@_`>W%jczk7`gcHKYJhlplVVLgIHM~7ToW75Y>!mnM;I?A9v@|=co5| z%WhZoO|{_kRo}_hzsm=)dBA)1h7P*32{PTFK^vTA8lSUyy@Ql$x~#(u_s&1lQq{*4 zqw3~Hb8&k~cl{_kpVu~$Bv8p_7u1htR837H%xJwKhJvQzv{GHvfDcod+$TW$FKNf- z-*Z2+ljQcV;$4v9349>G9cU@EcBh`IaPMCuu+N=W;a}0)mr`Q#X_B$m{j`cNM?$8T z=>6p!?1z;limzTc@Hp;=sgwK`)oEfdR;(wt>QE8sLQZ=W4kB-=8x?P~5j{VxK>0-5 zM5ah#il=$F`%l6w;DajI;aLTDF!2PxILVs3+X7?ypH?fO4%bEz>b!yefE@Kr0t-)I zv0fAVG%3>=2um1=CwxcaldHh35i#7OetVD3=JxOjTfK4^Eh2e)Gv#Ho zg~vC;^Vz`HQ+j8KC^{UyGJ1wxhsqH<;h}PB83e&Knj@mKZ8OK-nwqyE!Hj zmy7nVON~St0h(X=kYtk)J1r?N;2iD^sf=xSXhy9n<6O|- z`@qyhZ&r@!Y0`2#?tR(UUHJcO_JC&?ym-kZBu>GQU!8hbq8~F)OS$UH-1_PctMzWf ziY#IEbWEo__)6*@OlC=RXD?3V%Ww?cfGCU)iuZoM*+77@n;&x)Q|CJ)IthVji%OHY zpQ+&YwtuO1aFz3n)EQL!CUsg1(7=oATuGUnZ(v&imoR-m^@Qw2aX8d^gt3Zq%_+l7 z`5z@MgK@YHH)zIiB0OE&QKi%-FXNeSofN(Z-5y4nr#k(~)K0c-3dtSmiNsGMD<&7B z0fiysfIFJ2%QM>#piCS5&$enCX6^CLhOESPCN`TY{7TpUX#d{0BZ-o?Gv6P#iAClk zi~nrg{^+7xe1{t8yS573Btp^(?ABp%bn70r;1`bX3Sr2tVtuD=M) zKcjir7EBMn3jmfgF2kBW{cL|sf~_&i_1!Vyc;>VnL@szs)yF0ls-)wlX5wyXfC`91 zMmCYv01B9gWjx=j1#5vg+7y654@%|U-?J85FE(Ume$2-CKV=@95@+?Q@i|JOhE%K- zgKp0dvL+raeaGjNTCEjPi2I$M%U{+~f5cjW$wcp+H_H$)_4Ie=;(F`FG)vSp3s~tL z7O&E3Cx?o1>%QFkNF|%f0auCXiJ~0y~#BEGayIq!v*PdJYe9{8c5s*6$pr0vRTZlkX zd0b6}`u53|teApoDTnDQW(Fw_y-Ej_6i7y#o zTC%SD*m&a_w%IgU-sET5hX~0RA{vaMc-=?t=9K_E z>rr-NEI|BU%8I=zzz6yts!r0v$b>m2Zp0sVK@j+&UxuRc0voTEQhy6kEQIgBc z<^tqnmQ;Yn$}mwhIzrL*nU?ov(un^)Ax9hk4A?Z4YT^TRs_HB?A;;&PKd-Cgg)>Jw zYqBUlN=p($ff)a^h5ed2qySOsw@ZKB_(^FKAhDj<@6pYLH3JHu{cD6H?XC}nPK0_t zHRiazEE>ClN;y{%FnJ$BEXzogeT?(B(}~f|CJK#M*aLz?g2n>%i7Cq7_j))XQFy7_ zk4jHFBYD9HHiHZ42M6e4(qonvXsm2XN`PP@~@WlCef99fa)-<>=j?V@16|l)M^;#b$yt4 zZW}#xgwJQ2Dj^DVu*4@4)XqAzGzopy%zd54#Q2(cZeJA?@OQyEG|2Ja%-(Z(fKaJ> ztK6iEzV3cv!EXG02!ZZZS?nLYL$iw>#yRsd&S3$CkgU(#iU+DPCRQ<9xa6x zbg+jK2D4ft@15I`WIevjhQ)uHn&mT^wF}|6lCb15pNbdRWykmKM zGRFR7WQuLCsc)N{{tv3{PSax-E!e8)N@_}CbKrhva-aUEc2Q(hrxve7t@|ZwOn=y* zC8W5-;NpAp=OrZ71Uk}dqJnsS2&uwXOyV;M&TN?yv(iOqYoQcRK?N)-42+#jH#aNW z7%t%q=l)6|Hk6xcyPIW#E2FwhwOQ`f89ki~0yHT*&k2hyV{ka4XvZJTKX%YIxH6nE zEO9H`67{J->(!Es&p-;MDf@oktt3KF^PdhM-(t%rRulhOr~ z#N=otdi$-2W1Dmc_ICXZzAZ|yn0~DmZU&OfP4Eseu~OYgHUubwK@>hQ=NYhXmDa)7G40AkFzILaS5W`$IDFym9bWL#L`9?Bu># ze4a-gl{}drjd)ch?W$KF5fiF=#lZLpi*PGoTgYIoHbbi{1^QR6TsH(3UW8j;irVr> zirf_~E2Kk$BQ3z{Qna*;R`Jvm^?#F6&f{+VVf8mYO3t_|mLPnvCS7cc7kb@VSnJYz8qfizZk%0ByUy1DO!LDXNp;@nSZ4G{l0($2>& z$boSEjI;IMX>ZAEI`$calLeDb1*v0`YCC?|_4$(FYlPae1=qPyGsjw`V59(x_90c6+(xlbQCukm6@0vbj+VOLt!;L{s6)R7O(R zf`H0=EkcxrX?1ZNY@#&HPzSs+Cy!Y?did)}2m!S$P*BYTsdT_=r`i%1$Nrc`8$+@nEm6CQnHm z%|z>Px-+YR1~eSeUpN!jyG5n9i4kx}y36t&yV3AvBm(TaKxpKBH6@=~cxhR*fFIXJ zJ7dEJJf%6C+YWegT!smqAW|R4e7)FT$d^eM_vc5d?!@}Sr+y~o(_z2`Xp?WJY?zHc zvQd6x+II6p{%}W!6tzM6z^k}Nc0=w}2IH_8kXJ|ZwZj5RU9P~pTcdqK@?xotPRKJ9 zgH_c$FowNJ`lTI%a?+r1dGOmuZbAg3p+4Fl2RzHl5qzg>n+~kllaN^Do^9@g>I%2) zbqHA4ClsYi*0U{*bM4-M9)y8OQ32ci2}}HsIvL>Ge6z2 z?KMJoZA??rL#P7I){B^(NU1`(M{Kry6i(0sdfl8azCY}gZvp|61Ve6*y!5w##LX6b zEgE-OaPbfy@}Qst(uIp%aEv%qKXYMP;a)U*7df2XiboFMr5uQ^g^8&bHapIr{jB6< zCQrW2azNn7<9Y}7#3_A6PqZJ48{R!R=E*XNdi`{`uv6LcMDZ`f4SS@@X!Q}^@KWjn z9m?L%A>CkKhcni4dMX{FArWI}HRmGQ%(t8Vi?MFbVBOFL5`bQC<`2}$H)RUALD0mBszWvBc66ldGNRPbXEL-caCn6Hc?tqW(JBb_6XEMice;W%HeUq&w zlOl(}LN((SiK;c+FA@=lM-N-I`;}|+I}F>%4^&dmb%e0M9@_pTROa^UxR~+h8Oy>T zs&EU2nGdWeP!kU;zNfy3yxsQmtk1ybujP#sy2&(*-bt95DU;F?+n8(|+D{>#dN;Z;DTEqCqEodsr)dfMn4y&-jcyLR>C{6 zq`l;W2$p1fV1P0b90Gzu1-1C4gg>=CRB{42YvB&e2DqpsJ`4cKbe(FuOJUB2u|Qxl z3a3X|$Z)meK3HZT4^7WQ?n6tNTtzmVy`%7Z7-Z^|(43ST z&e6zGQZ^7}h4b?(D#>2V_#5-e#V6j7sli#KC`@cUXGvsO@5!L%KRb3%;e3sXomDI9W}! zhoOY{l(5{2)$Y@tQ#C5+lwJ1X5#FtpJYZX%p&+T@re}3`E zv!8wvDKIK=;lxapgGDuduB$9HL zbH;X&Lz7WpOyNdPmS@6wBvqRG{jDfs{@f!dBU1)e!Vr1VKj9@0C=Cj3mPCaW{@H9K zXtiheqmzb*?(SRDRem?}kI#>Sz=HBym zLQ`D*^%nsFq;TIq5Yn>PmqT&xjL&oMjE9w+89`XZw}n?c{JBplH6V5R4|Q?N6q|ne z@jXu@a_K~4{(0MJcn5&lIKyI1VK?Lzk+fdCp6D`Z?Kxtx<*?Rcq@a$6Ke(tvTwseH zx@^%L2b{f7&Q51jeuOV`q;w`Tx9uD7a5my8YMYq z(TQLI=gil2)Kx0a*&T!P$^w{f(HaU|?=MS)ncCe7GP(={Kuip1kFgwG0K8pFfYThV z$P=>ePliuBAbQD$v+En`@bedLt=EWl5WLbZCg1-nh7030=dUshQgz{zu0Rk?fRg=f z4Y#kOy~P9;P=z7gd5l;QTavz~cwo>s*9%7~#N?br&2_TUJ+@PE+s{e@c9R-56Adi&SgqW}KYtadP6vA`m zVosfQDn{Qggmb`%9f0t?)2U7qt|-a?(IalpPap*5W&J+3UNHW>L!n1p z7C)|4TIK}mkZ0rr=ntYUISe$E*}LK?=J^)_nI3-3G{t&a%bd@h`A}6DBKjY_hCn2* zHTs3J)w#D7t=Vrv7%{w&Ruf1=Q>P^+xsaJeL6Mf?70+3Zk<<&`P|6U^L>noNB={vQ z0!Ew0l3y3hy<8MR-zC3qlUIyWvH@7MHiC=8o0QJucO}|i)nwjaMLF$l9yuo?b}O?z z0F%KAgK(-k(>p4kx=P$=Z-k2#H^pZ6F9@bKezeSQX~Cfyko6OW49D2#bosjqy94pJ zOY(83tCHI7e8;hgRMi^Rz;_`nf~PC`&4u3~MOn*7Hl+N(Fdv@&CplLZ{2^r0K%YnN z{^D{h>0Ay){}bHgO5*p(yp!rr*5wE(MnzLAr zqLUaed?_)m>^r&+s{|zJKpU=I-(^}N#3CxIByBP6y+9fC4S1Z7{6?R4q~#lY$^L~$ z%oYQ+ z>1H_AC<=G3a%ivZr|VhjTYZjIZkrO(*x&??dI-CrSxuIy2tm%;yOvW87BdyTK5vk_ z$psC=x14f3p8%b{PqhZ+l)`syZt(LiT`7#jkh!~5BkE*o)sg;1uq#;mA2%qdk6@d> z)X5vg0L0wM39M5c54L_S0QkoFh&Z}F$}{;%RkzeV00Q`=EaF@W?BZ3NQqeZJX+B%UgMyx3A~? zFufp}Yzg20kbne)ckqP#CKA%Sk`qr`k*f;FEpBmH0*;SMxQ5Pq^UbCmvrJK62(3{c zn$8Q1m0sf~NEaN#truIQYryroI~dkFvHL$d>m{`V1dCX@ZlhhfqftrJGZ9--My2eZ zEUVscdkFuH&^3y0^D4OrID_*M(Ll!V0Y?u`mzxKXYWhXI59k^Q1q<(DVu5BLAMy6M z-MT+MDk~i4YWIUVMg9p@Pn2DGKyTM+ddL?KK$se&W zbSH^aB2j+E?6SZhSP7NSS%La=yOw@2W&2-sOgC?}GDM@^_Qb>@aGvln&%Gff`30=7FtVj~-;%@{)m&yx^^Ggt1o#1=uWRTTJviPVj{(&xA3A zPfTe3%y2#MBI3IB#pjHym5xi__J_oe3&tF&WaznJEQ4`(P1%ye zheQo%Z=Q;_6;1sO(}nEW>~MEMEgX#wxzwc?a~97;0-iwe6$5aS^`LYddVzIbNWfb> z0AP+QgXAA5?KDNWAV7whEo3noT{#g^LOJaV5=?jD?jJGvFN*Ne5j~;a109d4IAMGv z5NF7gDJ5Nw*Wd>_JAktJ$j<@mw(|H{aW6!2-fZjgZf2kqMD8~0qhcHszMhS9UZ6>9 zxQ!}1NI_L7xx$2+=hBl7>v>(=oRZNrv9P0q6F%k*QVb*JP9Qr~-o7$0hRr2J-B_H- zaNPkrywVmH+&IVO;Ph6wXf*#hk#z@@x$Kv>6jT_#-^a`uq4>l|Zo}Ok7Tu11jhp>! zP5QDo_{3X?2P{5|HVSpGKWiBx-?t0N+UwK-jUOr%sv~ZnsNWm1dUxa7e}h$Ov*%^& zc2uWqFyp*JA9(@Xwr4p)H(B#)zss~5&^gZy?OiD6KDWJ8U-}n!c={wm0V<7a)imrY z1(6QxDk91{xuRm#c@$OxutEheL491i-p)2>+)60cN{Q-Rdaf-=vgPWK1NRbtvT_GN z-CdnJ6cHj3P0=D0Ww);sn>1EGc;t8X8sEJ;-sG8*x&{&}F5XsWE$0HT=fy2<*7oFL z*e$fQ?T48S6xWth^0*H0t^g9cF{H*4TYGiu9D>hY<15_Y85OKazYly~zryZeHD7@kUm=beuFz1tanP*FJ9hKU=Bpcd$UG z-%&$by&& z{@=F*-evjiI3<~ZsJIl#I^~5dz8c_qL#(_HM*DY$8aS6D@qb;7sWv^1hUJO>A1kw^ zChWt=t-F2kz<-KL7Ts<%%Y@C7*x)>Wc64u*-x?i#-p@9*+t!HXL+d2|a^WkNz%A_d zCI(JgZi1Tm5K~@zggTkrW%*+FVHKDw)$!GQn7yCt%{d6^K--TWg2H0pK!h55U9YLCo{{k--8$0N-eJQ7v*j(N10N=OL8D&^j5eJTU&n1ePOo@j zE|Y@~jfZ6W#d?ZV0-8rtjspiZY$g8dbgH7K^%##$$bV!%^DCnG(BP%4&E@|pPR*YCv#j{>XnyJMa|K)>06aQ@mpZo(!lWhf{u_ zYo^E*VM8~|oJW4WtAIaAkY+O> zSEty6MfWBEVx%vsz03WFcgd@H^HYvnOF#tz5!B$@6z^P%|1n3b>x|_pGIv+^W2{e> z`#u;W8jd#qpQCgYgjDkAPgjgqvj`PXI7@gor<`wT2lH7ardG4>IOUgu)D23q8G-4P zq3%Om*w-P2x0Uoq+e)|rCp=QBHVvjhypy48-R+e#mRW29v>v{3b8|7#ln%=>e%t9W>>C@Hp zQwWft#z-=?U_{aO>w{y61vpf48N#O7d{ULe`&NoXoQl;(FqPeU3PqS?^jZq9ht+`S zNM@NI^i;P9$5^MOjx02WxK#F_rC%1dNTl4`_8i~Z#0uW#kD3H4GFYy{fvwp{c9^h~ z9xM7=v6*iMy5E&Zk`|!Z0Po?-Qo8BV+H#E?y}I%qmDwyP6%8p-rRe?eK+d4($O@Mv z9q_sHrp`(rJO_Gg4Ft5r8nMW3a|SVK*}e~oIK2rWIC3hQ{GuePNKb4{RZNc#ZY)y; z?)pz$-`p`lm(UZ=ts74+lKttB^U{#QV`(x!V6aBYW0}-4{h!S)+2Mfx3Z3(D)=R2d zC%TG_4s_l&0EQf+hZ)R__v4@=icvjEAX#NW%)BlO6g6q?@;!OtIXII?{eD*K*S_Lq zm>dZXnr4X90FS$RPY!a=1jfYCr;t(hHs1&jPUyuacaoG~+|CPm@)hJN@3>bhz-WB@ zGS6yhv0zl;;9=Ak6VGTjgffXMG%8W(sg8^qXVss7xK#XX0t!4PGa|P4U(&5if3B%^{Ihv#pY^1AEgX`qF1*5K<_4hWQhoDn2Z^qChQz*iTa__iKD&aR zSZS2*WoZ0)t$5}Gk=A7?>gV5LudkDAsI4v1vkcfCJ-re9Qsfki_hQUvp3%t}k1Y5K z@a@qS-m>XNjhwL(qafZ2B#%0Eua(2VR}*lU3GoLGTYl_*>PEQaquWwqeCwK31@1B$ zNx1%7AjGpkO=?1mB>P~-V3-~xuE+~gpR*3P6ohnV8=*z05r?slzFX$|Q0d&`?SW|0#u=Y_V{UBRnU)SmRbkm6AR_Y*kQ(5=M$Sh{X7S|DjmEoSLrVQlt zKOGAA3bCAhja9ZFOT0yUHuG3ZmW7PYf;M@&LJ6R;8_sOT1Bj6T^^gs7#Wc_oM>y#f zAL`JaE5?*&T*|*J#cF3+%M_`2biL%_)^{ZthSVf_LPp*_MVGcp1!6RK;x_%DI*y>? zW%HU0Y_FsCWAd*tY6FKAH>1UZj9ety8wPsw5NIuf1(!sdk8tF0O2=|Kl8e=>rWPIS z%@b_W7M~X7RPQF_}9cW|i7flKhNRkwEkTy~Nr^pQsdu zCN1?X9_@*&xbOEeAp#VH_f%MiX6=BA+OGvqq&^Egi3Co1jls-}ZHFBn?0|>Tk@sZz z4M7U34D0-DF{`XqY;P#1NVu$=`im^=1s4MP7VduXbt`mPA>ds=Z~?-8_$lzGUrM!{ zXr%9>uN1Vu{Pbegb_iv=yU|wwfbETF)IX2%>}}%;!ZE_py1NK6@VK~yV4|3(gRgPv zx{me9t}bYGSC_@H_34Hpw{kUNKZ@^Y)BiX9Dv^6hYJglxQH>|kt#nib;Lzo=MkAA9-X zr_0%;#8DQvs}Yy}DJed^Qj7Hn_m`buPX*socbl4TU@ffI zLbdxmq*CxxM2Y$TQX6_c`DePjb%`t(O|$((^`>tj1of?0c1=s&Nn*%5AMA*7)67>( zeF#<Q#H6s6Gfvca! zAZ^;ZWSGPyE5OYrZhz40$R%ehCXK?DdNny)Q`gXtOe_Oha^!90>%vfZU3tANzZBUh z)8*`J-~-zWn4n~utKq6($LZLeRk5+1`|yqZ&{>7MT*wl;w;dD&oW`M)R|tiDr1?mb zC(M};vBTu&G&uVlyT*9)oL-pRh))5PPdH=nQ=3KC%&#elK;6K%8}P(j@7jl*TYu@X zAl5WE_5vABt;rNSRjKN|OV2e+ts^fO;!YZ&?fu3;gY@n%1hFD+gg)67#a+*xwwfQ% z+byD`V>z%v=t#4dJ1A|{kdjIF8GLJvneW2NjZ}yd5QAOkmuHMAOZ$*9@~`2`!0HAJ zbHqe?uVfF5>Iq`@%50&Ozx{4EI>rP4D_7nZv9S2B{J1T=m><5azGl?G4yP# zX^?KH93As6Tt-(=iy*F8F!`2D$8xZh@ZVaU)}bRuxkGiztv3Ptj<_7@EyhFy$xzXg z=Y;XbZ_)8hzSQgCrN~|nEc;Q9;7O3$9#x&Ro8Y%k4(ok=3uk_b^~0UG#;x+!T+r@b zclq^$sS1^;G1w7J%(j65lGWjO2`|m;7vu`d1x8SLYS0koz+{2aFHyUtN}a=j2a!E9 z*5&yRx%7C`oes&g8a96Qbvw-v@hl7(EpYjXyG^>MdK?!TS5^&^RJwI)d_bl23+pTg zQi$Z%f>W%%TwNHj+2aE!<1#?*ml_1JNN-shY$1cC%5;}Z=7`0ShK3}txp^P8xp)=y z#B-^T>)@XzQKXXHIXIgKjJ26&T?dafbAs>>u_7GY129!_9X<5S_9gaczSj2tUB%4N z0Guj%g~6)6H42=7TJGwuC0@4X)UPZ@(pS?1EQ}JFtBDj&C(~;3uqc}!@n9^L+IQN| zbLxCeOqm(JlERw2c4FNo=z=!Tu}-KLnUs&lWyv7bl0J+gxTCUfLL|G^6#X9pzmr!} z|81%w-5de}JL@F%d>P5{pV$Kt~-Z25RP_GU@ zyMP!ZV?koIxfb@?5ftlIc)-Imd~al=f}=vQx~w~SHdVqNz7Bo%_~%Ftu0cdMh3W=9wrWtRJ&5 z!6t+PNUbqJ$bKCISRt=&t!{X_+Fn|v5!!3cLfw$n(1*}2aO%_xS!qVqP^V?A10-N& z7Tr3=Wi=lL6+iaLZVC0EfxSr$#J2eUx)bkijbU)EqiNLrUwbt#Lx|IaSdm581K629 ziOsP>PZ8;t*7hgh>&>8Ii|Jfp1=Ph|`2sqXfrI6{bMbnh7$s%4s>C!5#(k9!&JC@) z@#WDh7BUSwvSZ!of$;k=?k3z?x2Wsh>`M<`P7#$f2Rk)KwdPYg>{GXO7xHQ|>}hqg z?QrYGgEg`IKTY{XOI8(_LmJ{SGV||+t7b)R2D&Gb6lGvFtr0khU?4@ZRkOIu;+GK6 zR&&_6BU$$d9aLy`6@V?w2>RWzVmqCWp5;wb!Un2$kZP$lq)upz{HpGm*=eohSW|u0 z#TtcJsksOMoC#0(#Nt{AO!LUKu4UGKBeTlx!4uTXp8Z0^)yA#szyJcA#y*U?xG!`= zb+tE^$vmkbuFHM)sV>jQR<0v)@*-Hb9=91;t+hW0Os_A?G5j%*=xl>eZ#btyze%<45#eZ4-Ad$-bb5{xzZwf%nkdmXjT$C7E+)ny6Hk~Ne&svf>c+Polj)%@`SWJ~^Tn0==T|6KM)uD8MazRHy{@gD| z==csXBUY|Hz0s6r=Zdyedat!aA_Wsz4tlJBKKW*q}+@a$=RC6nnuPNJq@_9wt4utX1D@f?UtDP zfDfIlLmGb3^c$$M-`?uY3C1TH%`%CwIMz2x1n%pEnzp@k0VwjqIyPn3AnDChKlgM_FWX)p80RB&plb*3*n{$Vs=Y8R&ZFeqQtolv)X~Szt`iOa47&5bYGw+GYj1U@9@hPSf zCvuccqk3j?tc=yTI)%r3qkj!u&x8UF-7HZ~-iklwcg)1DHFw<8zln?nRF9Wa zm4X}Y);0GvUnP)r{;Y<{xn-oA*4RCAx7je$iSXk39A&tskfUgeI_uWO1yD#f>R|tMB4eS4@hqk8T2bb@4JDK{?+*v(5 z7PYz^Q-zmV18Ayz-&BW8`IX}qob08CCVdm%WfS3;@39Mm8dlw@w(dKA{i`hwUUe@a z^H{*(LgjS&Iw0{*gF&YCLq7kuD6bKo`rf9_NnZw$}R zx&MM{CNl&G;@?o#QbRBkx52++<02r%5%iDxkqQLFOSNfS%GTT#o=2^$?uPw|hf4hL zOS6W+g4;5o3qa_GK#Wr}My3#Vkl&czLbwV5C3_H+kO!ukO6zZ7V{_i9b%a+A=gjI+ zN|C_r6~0u#odF6@8vx2yAwhY^!HipB4SZa3$ z z4(t|coO0H3ZZQCJl#F7Q>p;;W#*PmeIra0b_1z-CaH6~Ej0u6~XCXM%t*G+f?PDlo%jevCNli5NTf@~`0iyjy^s(0I9F*`tS^ zlZPR`$haXco+%?1;p4OQ@*_3y=l+u}J}^r;ZPR-GkZo;Kd-t${{4h0YSeN?lz{)o_bXX1M3j7?hk=O# zw|BM`8|R;z%()TqO+Jy4VVq4sk2p1*S2&DjuN6oYRQ*Hr4r3$1VZeUUI?;ok8s?J2 zO=}XaXWv>j1>}hKqAc13U#~P`C7Gy4wGo=5{)8+KgU+_uerr{X|6eBJu+-{6i@%Gl8FYqIYOThB?8FPju3&(m^XNH``t5I~EHX!!$WQddk6 ze1ANnHLCX1Km)u=*MN7gFh*lQWZ3Q3*rEYJTO!ihaK0-q&<1qSVB~7fk*#m0vVu1< z#`uT80D?Or2wr{O)C=7_DHQJ}a5HWeGV?VdWSrWmQdZ?scVCY%Jd;sVJcR#;=34$2 z-f$q>U?DaB3;2#xP(^{5yHWMinM7sz7hN&*5c& zG`0QhM;3fr+rJZXpYJsZKIoYe@$pVO%k=zxwhAlDcajaVXmWT{6wP&`tAJ^dzkZA zDkgLam@)X2t}X05)9n)!peF~o5as~SrN+pLEEKkTDvggt`r`?CDL;|!`+24C>saOt zq(qnqsT=a}jRiWA);x(9)Nu^v%@V2ORwGl&5=m-xPsf-=zTlDoznR9F$b}GA-|~A5J8{8Df$Wq>ubn|Fy76j83=P9n-n|XZulF)X4yO-uYvEehQur3 zrBrx8+XV0!DyWxd^sR;?=(XN+nxbg3OxaW#S`nmKOhxY#bAgGWD8UmLCwDWhliE!P zL@BzR11(PMK*lhBTp59#>Y$_3KCaDt6!*q65?TvG)BgY&3H1o-_4`c8@Ihc!Ws(y* z@K>{@rjC#yr?+-W<2DatzQ20z6`ia$NicJ1No`uM)&Pth42)fotbf^e(~2n-Pb9AG z`pM*3UYr_j1H4^?;d#PHaO(w%h6pO=Tec;TY{6myUyAbJ!PE*6BsrBuC0)OcL6suk z3e30!kosq5znp{5J&h#n<@Yvf1;u|ENMtP0{b|roMJ!|8NT2_4A zQCi7^jc)5PNmyS9lm26$E-ro~ipUBeXZ*`peg4VVIQZ@vSA6GiJQfgBu@(#bMIWRJ zG}6+nzEftQT9YzFfP4#sZ&RD|@0vHBx@W89l&=l6a-);-szA340C>S#ZRgTfU*EUd zXbO1YB|243%mG&534BG(FTsY*m~3JVEjQ*JDS?yK7C$qwEZ~RRZj#I-!PnGLEIr)j zMZOl#&^154sWLM+a?&kJxxrK9@E$H-yCLHe^+(z6Q!iH2s(g;sU@@N26Qzxh@% zuhXUoW4jBsA;C-ly_aKNcnCK)TOQrc@h!7H)`~f1$d2ZE>$NznNu1)lM^-Me;tah(X*Y&c;hOiB#Zu29{&1`^Z(?ckn_yIi%J7GIa=r-J*+aM zg|7>)2BQJn!A=vE5i63=NEOzNzVyjWdA(d5V{nVZ@?o^G>?>7E5DuH20vpPcGYI^% zVYp%8RBPVepZ{W|$Ns)0NH?B3k6kx`QBhPfYzH zf!tlyVP8JY^rLIL9Biab>E!%g*Bj!a(#R;bGVnX%+&${y+i08jNCS=wXl#M0zO9SW zbHIshw~JnYn=!Z4OIw{G?Z3v{9|RoNZa%ctU9uqWSqp5Yr!uQ|_H}79>-gT9!t!|S zU145a-)I8_8C_T};xy%T*V%MqdXV=ba_|30E=Z(I0y2(rJb*_EQYBdc;@qM!+x&ha zu;53n^wzK`t1iBr=7+|0zqpjRGZ8-&i0!TlC`?!1%(q$IvhT~%F@CmJUC)8qc&cn+ zMRHHO==nkE@47YE_vW>S{w)c8GvXQD95`z6udQGqd-uRh0$%gtKgB6yo38>5)on!l zq%+ZXs_`mr0>K9`OEiy(Sbio>VbYeah&pd;Lp0Dh54f33dC*BhOT%s=;a`G zM-My$47wc;(ndChSYaFF_h)%dYA0y%O9}jrRJ#;!4W7qC=)4{1*f@p7GYcsn+oVY{ zS4ykb>J%I#oi%u*zRF%0nRo9>`M0@1AV8ID24x_NYMW2b5rxSB0C{k2h4MvrnRSun28C5#{8@;WLK2sl+EC z05tB|v)Pm?1gb~!Q;ndW+Rt9(6#8K0FcsRQj^Fp*&m)$m(+^}wj1W9WAt8gk7LZ^e zz`t0(2dq6<34To9-{@lfl3u^_q?X#kgX=S|_%E)9``B|i{QT5w6eTW7LE_Q$Onnfh z)>Uhk_p7um^;cr%^rChQCZC|NCZ-F6$EYPi!=E*?5NhG{#AWcD57M4!u>S;u5Vx*R zmcx#p=gdcIfDpHi?YZmJ{ZpdOi%Sq={&rsJuNOoI@v;5TK{G3+6bZ@HSl7F;GIn&jKi%Tb(bjp_3_;^GR*F237csq$CBI@l899; zClhg#*;BiZ1j2hl^O>o!<$i7`3H~C036tKKsmX0jjyhe#zB@WhZXqcLBK-XQYokE= zmuxn^ZXoL!#`v{+03pyXG5ed{7sni^4xxzOOTC;EGb5jZ8cRw)l>hF$PhmeuV!B82BxcD&f&_m9zIE3e2Aif_H;JtKK@*N zDhUhE(L%sUSwoj_57{f^llAGc3?n`6)!*g%RtywxB0l3xxpWSn{3-kSwEfrg=`(1b zsprTvb4j%@X-tOG$^G+@b$OO?6OT64D)Gr8|d+EOf@s@LXRX#|o;MTC;e#0|+jJkk8a-S{@dB=}=9{=fr`B@QE5@T%j z?O}cD+V|L?nOt!hl-uuu`k8TU_&LwwR>UZ{hI-Ks(YVtXGzCZy6A97H)LIv}Z(_X=PHyHCBHwa^P zr%y?4dx!fj)T~~-;(v7ttST0ZJe{2Q7)fP`Wc2S%`S@yyE+7_=7mf788#!Txq1mZt z?!klA+iSjm4`Mq5jGNionGwm+fw?rE1z>XDGED6m(~8Uv|Bdwjw^Q0)AmM&=1L}Xr z|G?35AWC}6U+aDX8R`@YmurBRFp4Ns!Q~L&eqghZ(1B=c-f}-!lDRD|kw7PAl&G{M ztvF+r>^3F)`W%X~1g3P(B!l9U<#yNO7L{->PZ^D?PiOV;r)UP$YFx!3b6tOia5!@D>oX$1p+H7i5&f#bt%k8+TRM`D)6GWy8iXnU?UWTA1C>?; zEupw>`+y18OqbQa&ZYqn_hg=;%4gRc-&oTrk~mT$Z(l=@`(M1~uFg=2fl=k{N zuYu#igg>6sDe}M}CKz@(-qR)*o%7f`s6In%MBKP!?qi!?=izV!Apm;X_uTzRumd@$ zP6~ghvnV1mL((Z{)#@Lnv7ed#skIHb!8{J7lI7AK&y_s;a+a?-D5|j;p;T@-u#8oD=874J*F$H`EEqW2 zo0Iwo*2&QHMwc*7IDAW`^GpZ@0B-Xp%M(2(PfG;CM}M%_0fDGmnU7ayKIt8R@!SbMP=dUK`rMw^!zac?{-xC3*2y68)yWrRM!_AHHI%waaw1k+~(pm<^){RKur8Uir(HTKhZ!<99#^adQzgUIi1CL zQa`tb1)$?Oj~}?Gc*boNqWc)G?AS;Dy1J;{mKRSQg0i2;b6a-w-s~F}cUo??cp}0rVI@ zQPbzW$rF(L+x#s{gr$#)4ds z0~wH5WrEj{gs@o7IH76&DuQGJ|8d10CmvY_q9JJ%1!}gQ@6>Mn zsr$X-$gh&2ZG#RMQr~r6hYH2L!_JE8gk`Sdko00w@x3w{CFET1>!HmO)0fL#ziCjJ za6&riryo$Gky^--gFnIFGV9t!OSn?os{pobmxdrFB%$e0K4wBC3&e=_HCRF1RI*(y zzaZ<~*aOFX$vZk7DZb3Iz}>uR7}}4408i6Fr&)D~&C=_Xsn(jhO`R^WI8zwE$04O7 zTzq?KK*aXvN+Aprm4a|+A)2$YY^n%}?G?vVRSiMuV}9R2ucN6OquFS!LyCp=i-M}o zm7!H1CsbS%ESr+m`@UWuUzKjzC_x7Iu!{RSl@^UmhMjq{ zZhIWv00r%J_k16*f%G??+pgbw+`CRQ$toQn&?kIu=NgE(`xThEqTgKSX$|IeS0sK6 zf5h6gB? z>zAx8H7ueEWsWWK0n5QCmynai(*yB?o@RB(y9{#9BRkAt-Jjv!InI+^@T*?n1oBR+ zjkX*?t>T$;x#);s%E=9>d6-8Z8N?xe$<;%??odQUQnxI^J%_#muA)>~RG#$|1#7-) z^EA1@iA$8z>ohuTpPzrG>-r2?VD=ug3oi0Cf1sh2pKZ5QB@H!{)0Gv66e^RT)Ye%>%YPSB18M&kU>|wQzIR)X8Nyl~wVyd;R7&@fJ{N|O0|7A0iz_PgPUp3;V zHI{Snt&voFuRF6BfDck&@8u!oTjN-rRe1crdQ<$k%avTu^_d(QBZQATNo|sR6Bkq$ z$w(5UUZ*Sl!qHXd7+CBZ=Yv8NnL#wt-RM~)N5Wu$g@?d<3Ew|vt-_x>U9%VR3 zhT!Dmo}E?&J}MOEaZs8f!9zbY`M@ls66_;wj8F!$pGUr>gWR;Z@{yigQ7aYgz4 zby!)N3)cBL0tqf>fNcn1qM-|m}+#R38;5L0so*oT*pd2Xtz1vs6oU-99;>7)3tB%^Zo$eplMAf&t9Tj*vD++4IJ&ZqfMiSia8{A^G1LR& zTtA1N6niX4R^kf}v}<2Khl&XRZh~vX){F(e94E*xbc~B?&Tx--?2>SCUIy+yuBbrS zIi5hFEXa?cb%B3sDQ8S_m}hwxex*u5!FxXTJM0Z+`m6qoJq6EQT?tdz(M5Cc57f;+ zAdq$$1Ejrlzp}+`5>mt{Z6G+82_Oh^Uf*#F`U}V8l&X>^r3{C4)=w*WGmfjOhpQ0N zzCIF<)+oLLjyCd~$Ywe!o6@ZTEc&E>V3;l5oz`S|PNVTjo&VOevK1B9bkPuE<5RXN z$GlIBZOwy_2YkPOH~*7r3dHBzIvPG2+<)${496=waBg02)>jjk>uSB;EgB z&0dnz0LNBOy9pm-e8~F$V#2&FhYuX-7ki^6&qtoUZ$0CgF>E7sV4tR;^3~0^ep>j= z7}bao&MW4kQ*q_Wv7!}QvV1pagKv13gVJNzOeOS453Trctb3*?^nn=17GchL$IAum z{GO9CskZNx)q8)37Mw3Ac0*^|ZA1MePGyLiz-PbpCITgEqD!NK!S)dR!2tYKVD?C- z>CoN~h-X(of_zFUg=tkyDn92`(>dRqSe@Rp9FNYNltc|Xk-kVIIb0vmx1_QQyVp0& zh13`9+!V>cjri<6aBs#q$zCCt0;5@W0y*X{e0I2wtndb)A>L&MMEbXN@BP1Z~y7aN!U_g0Ku@Km8_ zMamVrq2P%RPon=BCpGgk*_?GlaU(ytd#BeXWH#<|ls=U~>QZ<*jO%OTA=qH{fWAuI z5?Ddosf*nP?pHq~=x`fqR-x?cO9Xo$31vUN5Uf_hr4+7(dlsUitt9LFHh3(JXuQ`+)G`AZ9(nhmX7bs+EDp+S-YREO+~VSO4S3{ zGsdB};P}MnBsBjTLtVpzm#!c-pz}9!a44I*2nYf9p=B-_tQi7-nO|-3+g7L15I!!H zGd$0c6X4owi)&?WVYM$lo!M*`veEp@v~c0P0B9ao}+ z2l6)XPg#ZNq@oYpg|zewRWz30UphQ>w1Q3yt z9qpZJ4{o~$a#iE1KVHCP9C#VsDZ-gwI zsPl6L?DtIpRjNG8AIxuk{>U+;Jy5*N9ihKz<{%p(3a<~7h*q78-qC69(w|%PZN&t% zJD089MZ7O07o;U$9z2IS_09CsWy^@ye_M@-7ZepQQ!7a5pFvkfTHt@%(cSx!jj%Pu zNQ)s6E6^pBpB5iQI=4?~KsYPPi<^CKR&nglN(%~;FkdnGLYNdla9utKYVaVG54rnk zg_;?5c*q()T=~H}m{L`mgtJC#mC^8+2%(1qRlwnXxc5QS5>CVYAQ)uh(iJR8_XVyP zZa6I|Re&SxQjHqOhIxD-tqOLesBT^~<>*8P^MIUJpFKDW^oJ|!WBo?GFfFI-3LbXP?VO#5N4IHb6j0G{-J|Cara)s>tmwY!jPlZ>tYw;|>ir z-eZahwSNjY#@KM#17eHkvMrQkJ3*osE*UOpy`Ug4N3JX9UIzKeel1-a2_1XXTEx(q zi|st9phuid$yGji`>vy7pgx~KXNwx@q( z)~b>Iug;dgS9_G4Wo?Nqy~jZfdYWro&dO>F_67!VF9j=v>9TC|S}{5tl!oD_-}nl- zxL3x-Uko`UUto8Wp80)D30kx$DAyru_1A(zX5#6!!U_z8i&V5-w{XR|p5Zk!V6^d= zQlq*M^PQ>C*MuqX9%0)q41Y$OK+EEAkB;^TvveHb@3V1a zsbG{8KxN0auxleS1?KVGh-Aqv(e?)ek8Wf$egy9IoL2M@6lyf0n1YvmQf+Ewby!lv@Rq0x?`X<$h{*27B-G1RZBxJXXEDC zuQm13A^ul%+xR&hm3u%|E5d|gPHA#lJHNnpvIuuUxUjx343(r###<<@64jXowvCys zytwm*q1ne}^fofIXsZ$fWYUAdrkF{@WfoxLhTef^TUX967mS#d5oxi#kh| z7i2oPq#JK7kL|}k{#|0VIo9%5Gx~!(WOf#MX!eghLXkC(orF<;7oK`<-$1i#GOKQ{G&eVxkmNPjGfwmbNfBl4ed5UgcL`TadN@+m!)?ws{sfslXVQ0laA|` z7hqK2q8hc3S-;Nh6aR+j1i9jgQ)Ft86bi>_0bbJy;!FNlN19sF%yiy2db6zWdmF`5 z{v=?I2?fZ<+;h7K3eM=UjGX~X5dHW!Jgjjo!^Gf-9h1JIjTmf9C-*5!fxQ|I6WS=c zbjOR4`QoHyp3-JfC>1Ki@>$}y#*OJ;(uM=+k2_V`_pu(u4jcz{?I_P^_s)mjcWcW> zWDaY47}q0HDFHsdN#tNzCwez+jZ=YbC3#VWq^=1iL87c&;qma1VSUD>Y=wj0C-U-l zl;e(bY~VU3Fhymq|77M*F+R_IiNTS)m~+E}aT@Wyp&}BBX-6-Ry(DQqK4_}`Eh@*s zYbZ(U*k-@66cD!3Dl}_8H~U5Ca9z8b(u4#!JFpBcD%X$hd_0c*&6=MFkrdU^3vr{j z0PjR^5ZR2PA?!F5KTiEJz-IKOy31!Q9hR2L=@i?_uereoq+=cmx#BZ3;Nhg%{AEiP z<6^o8T_&z8ZdlS-pOqBY`eCBsDGL;DBC)(ZuIGI=RpPXd&7ski+?%%Dv5OmJJ`@ET zmOjH}Y5#z^c7R^rRCO>Ei^MDa)|DV@4%#=TQC6Zj&tEJQ8>V@CZBABr_;V$xC4=|T#vhbyJC|07(q5Z zw*lto^)29JI~WIVFXfK8=;Wq6e*oaksy?&9+O#d)vFEP0c6WWAVKl2`HtGEB!p zri?A{nW+BZm3_O*#hF=*j1=S`zJS_om(8{dilbxpp5!b^x;}-W6pmn=lLSnR)srK{ zTv$CeK{0fzY|*ii1?|f1vZu^NeA{w`KD|4KFL!ht&@)ov4UR0{khpiU!}G}W8u{PeOLJ%9 zi)lJ(+BtVJ)7Vk%S}*JIV#jAt915l^`>Yh*;?O&ibQvehl`S4+o*4t3pndcuT`6Z| zd^+=-X*HZNvb>*9x_*<||GVNw0AUS&zm86}&MCs5q-Yf;^u~eJ2fpHAKFGMYmI4R* zVEO%o6dPSU%fm2KEAP!w{+ZJ86frY>H4I=3u+c_ms?GIgQ{UfDsQ!-P&(OHrw&rEF zLj7eCjz9d((&4MPBa}Qrv2_83P$uec6z@}f80c2~zHsE9b|&`d*DR!6fo7Vd=Sl+q)p!y2+oGr~R31+H08~IUShy z8K#-ZWM)VbkR2T+*SeXiz8y@g_e=|Ef4h_Z4Y)S&x;#VYa})X8TWhB-dc3bYFp@S#ZXfEYy0Oc*4LcK|0>I-G7?(V9mJGm;cuZSOSm4lTHRxmJ^ZDhqp zPr_FoB9a)$a|fM=V{b$-f0>YF`X?3GK}EFZ9PCt}W4^>Xi)#yzQ{~oYb(IAEqX@BT z?mLoxoeG|UZ<6PWrkBxYO-Qdc3%j>E=t)h~WG%7$#(MDGuAxtuicNHD$prY&!QzkymVGE7L9$%EqU zeHpwW6V^vkpUitpDc=xB_$jLUX2doeq9w5rX8aI*e*|j2j8hScE3Q>u1W19N`)h}r zZ48EWpD4@3oh3+JdTWCiMqXeAmnDHBv8tiCv#Sk1LP>K@c(^~u_w*4dIl|@KQzE6*!WE zLiZ>TK;6G-U^H0!*{2kZeY^E%mtoTKdP7RUjDAWTbG`D%G5wY4;aahE6!Il_68Xz# z&q7WoDAVYCgUsG!5!jfhu|N;?vkF1MWHD%8y=%3|#yMKXfUSMWW7aQH{0}Vn`H0~; z&Ke*B4ps9%3c~Unpk4I&8=1lR>oe6+&w7~FM`nl8_=Mf?%n>!#zADC&qeBEJpLZg8 z4RxTt(&Vl14L^_SMF()3v?9OS8o&X3s2k_Pva_7-t%5lpiL1*}36o()4}h0`xo5O{J8^C}EapSjAg`$ICRf z*UxpIQY!rYd=@@rQ|CV1wv6CcbUhsX^J`m6Qi&JXv?L@$OGwaAcnmEEd=QcFO9wa@ z9@Z^~MFr=cKrC8GUvS?=K<&2047~n|?AmH>@}-Dc{qp8Nh3i`H-5BL7H@&v>ZtAGk zQQ5yr-*;Z{xbZ3>13)CR=~*woW=+Fi5ntZcXv0egdV=B48Ykju%1F>@Dhf^<%6Ydt&Qtc09WMAR=Yl7H&&+`g2b9rQhsUq4*m03^Z`3+M z(p{N7?=eKAXQNpFqiukyt`G=JF<8w<_-1i5lb?VS5AF8HYT}me=*B33pkEBnphZFu zee9So*Z-Gd@t1QHC5O-|hN2jZYG7wn^HtQQ6%s3xG^EC9Q$j>j&1Jz|6+RSryF})K ze@u>mhn8bQYz_Ct!X1H}fZQuBsSH4I+mc*X$SBs1+JIf@-#Z)zfQ=b97KJiDqN zUGik3m@GA#w)X0jmhk`5|Q~$n5S*8Jf$F11bpuJ6mRlGYFh@1fB32CN$&lc zS*v)9CYL1yy(#p;m%nK~`PVDF_NMq6!KvC^w$<~(eKPhve~5jmbhxYW=1Y0xuZ;70 zHRBrf8Ynb88E)`O&TtrU$3AS_Te%-%SLx{!@`#H&X#K`O>&1h;RR#3x zzbukIbJb~wLGt3x(0?F?)P^bt5(MfeX^wLc7@h{D7HkJV^DJUX(gXx3Dyvqe&zY^GTs)-*Ee49EZdaei9Cp zIoe{T;{H&Cmz07pq#X(IaY3BV0(s7rpBd=1*s$P|de6eWT7F|9H&!bhisuHKmVZ7X z$T&oHAs=u@9GCTKNcMIKQ}ot%>v7AK9}sJ0{d8!8J#21?Z#W|RyN5Nm&hBf(4oL0tw0iq zs*bT&!@_`@V0Lq~v$`R+9<5OvtoduMk5MsW@JL^Ze}yk%J+UaSbswv9-QA|Ksyr7a z_2vi~o}Kqr0}$Axpn9Q0uzvYW+xnL5OejDo*YE(Ps2cMr}g2`qjdJBRL14LmrYeG|D+|Uz)>;SegONvBv zrXmJlg_l7k=_2)I!ziH@Qc?iucYr^Aw9M?_{KAipdPfk>HJu0Gp>Dg!mlxK!nhEY5 z>#8w|*jPfbx*g+XxT+jW{VAw>B=yyU(38jUJ-90eYl&-)%EysoZn zfea`mU+J`uL@d5b;Cun1tC&^~Bnl-t^~s`W$DKj<7S?~IA-?Y2*)CPGWUaA-}7 zo8Y?3+fvJA>{z~RtPeP1wCv;4{a3eWAP2D(HpD%m(_Aj(!w`Jqx?~#7S}qJ!6;{+3 zrikvph%w{!vl)o9G4=b3B7}q=$h2yB2pD8Jp_5zEFts8};sHAC$bDpc>1UbtX1bUDGo1vJz6=rwy2-eUJgDup; z#y{1%%!FLO`p?+s-;nEWy%9jC3xpN_clXvFQDWC9bmJVF5v=(2xL?Wzu7}iT}TxV_6IFa&rp>$J6Z!ZdGq^ zD~hJaERIH77g)~h(_V8QPOw$gn|fURL91I&iM#N(wMmW|`}nxi7AJoc&M8zk4t86k z&luRQF$&$4Dx(nWy)H7)7`^6oO!7>5Tp{>}9#>(bZKDMaPSHatx3W-xx7WLKP65-L zRY_uOq7w9-4h@ zOL_+KtsDQ8BJGVu!9LVF=qPnX-ex+QCS0ixNrPUVOr5*81dFbUDxq!@7N%7La~Yp~ z(Wu)CbqI!xn3Fd=BYM^$=b3|7@#aEo(6u|W>aj?EiW+0)e0u1>2#)V>sg!cBZF36( zX1Htuz|A@!x_ytIfv^G?(Vdab&K<_h3m3D}Mtj)a*9Qt)-SrMN%Iz(^iXi4CV7CQbP zrS+7;M36(yfGyY2*gHz#dC9~k{_IPFRJ6OYP+vJ56n4*h%r!-tqLH$>cjumahh#Kw zXD0OU%I*{6j`xV+t>|9QH<^Pbyz7Z)TJ< zcsxD7mW3}th{sp{p>4M8`G}}1Qi-Nd9Yxp1EATNJ_vvFFt%&%;ApN$8! zhByNjf_dH|GnDUhUyQA`+%;#O!oJX<5OHWL76{zUpA_WBnkMhVhK5SLV<|;z|9!)d zQ_2LWbSsyERv$UTu3DkAj~Ua32?XhX+9lT}k}f_|;V`I&JVfBz$fY$i$KB_qhAsr0 zLk6SlDFJRu15q~H4d!Ir@Rja>&9S!{^tDL}U4d$u_M3mFR62OgJJ zFid*opLAubF*7jhpD!~8)qNG2Uw!s8PB{1LSvq6>yCOw80{j>+$62FE-EvK@1}Wy^ zib?$`!7-=fL&DQ{q#OshDStG=$!1|zDjt{-DqFL{sjK#fShoNRe^yp5$DU0F(5knU^v>+>qSmk&(Gy zTeEI0L#*;OwqD9j*LKE;c30~gR!IU|9y0MDsGBN{8sNTk#)|45^v0)4T29*J9f&Kq zQi?H~)nEB(Pf5^^VA4~27SRV9j1#2+cTY6Ux=-&|G=!4<7RQ#^f?yb8BSJbE)IQ8o?Zb{cd<6dB>A4*{Go}N?+_747iD4q}6%sk$N`f@hTZoG$4IK18Yz)vnkG%52!llPLTDak6e3q_G&HOYp2@=v0J@LK8A}>WPnrLm&CpYQbC9V~mN5fm z-2eNLV%HtoD$hSG&3vP=tf}|R_l7Fxzovjkz`!ZP^(LWL+P6*^TSwmoI^jJrS#*XohyUeg4|hy}GNUsD?T)8&<$38=YPXeSEDReLpj685vjn0^leg=wNFM#XSoWSu-Nva#66ClRckOY=ulnQw}>c4IypaVWI zSK79ppaWB{pMhNkqdo7)CjV*UT7=$Lrsa$d;e6aOKoU#Dh&YNX=nxNr(OpxvdgDB^ z(e0Qoy&{JL@!b22+1H>Hq;m?$(haQ^sLqraVF>Qu`W4F-iHgbeU|X>WR~btL$c8P% zWjwUQnUR*fLWC{T6OtRz9^+oDfD+stXT?pIG~Q7rizfBiKnvW+5Yv_FH?y2>sz#t5 z8+L7uj0HA8y;s=U_eDnI01;B~JicMo^?1p(_9eTGdvR6_H_isu3464x{%CuAoy{R; zphwSIYm!#%?+Gwx3Y(ro*BWK&0Bjsi;QOa;-3=|;B;?_mmXc3rW@=Q#bxug;0YlUk zH3N)yneow%o)h7^;yH?3b5i%r4gL*bE*jh-x2Z6!K^zMTA_I0A0|P|CIPa{KFwW#F zdT&_DWX)5s4J)Io$kTqz*VZC&G$HZd?LsM9=1XxI>prP7(M)C9X0OsDdxzzRD#oC} zQHG|L`$HzyEE4oyHj)T>S44SYZsf56RX^q~M&7l4rWbwk&57^>UVU`V zoq2QCDq8atVf{D1{VA&U_R~@X-UP(?a1 zd{I5d(K8BB%)_?oO`B#T*)*D2QYJfCN+re3k6btWM`pK6^KY~3v|5z}+&ALyBgy&6 zK>LL!HrYVvl6J{DG}~9i*-uV7XG2=}`Nbrlp{OZir>So*n3WXjpB5EvS@i<2<+{)o z{X0O|-^-?YlFU3Gu%7BCIN%uy-AtHv05q~G8EC)|_AoF7Q!*UpTQ5C8aQa?)cd?G>a^|ynlkXNgF^`})U-aLs=r;{Hriww&sS;lPh$HwrFW{ z;7-E!WEQteR_Qh-i_0E}I7{#q8}q7j?r za+)>up=~goRZju~;)y;QXLmFBD0-VZVz-cMFh;e6$Cwy}+qub(^Zvd0@Sn9iO1)Q`c`RO0KQRn-$t;fmDk6F%vdopC}~oAfa^ zUh(UvUM9bs>-#3t7}P>idJx-zB=8EFLHXfp?Y?jBu)d=0E| z!zWQL)Cl*%=*~YTErd(%Dj8t?5b@Z9Vu8xX{FDpOT zXD+^;j7S&@b+%@1{8IhX=bCYq)+OX26|ql;%(e)A<`!UZNTX2IGqVa^^xyRxDK&Hx z2oH`V6WuZa(=g$!9@P1iTTt?VKOW6tt_b712U9N!cVayj7ppM-%6=V5Tzk8MzWBO6 zS)#jNTWK<|48<>VQq2By=4CwR-wuO2ZT?XJp{YC-t3xrsTc?Tpk%`MZe=Vj6B0M3W zKBo!fL#dN;6i3>F74{H)a=-tOqwC*0+9vI7TZzLHNBdReoCXy$1BVE<=q&N^g&YVgGY3N%=P58^SBSwfF?fawohNu*V)hRuiDD03##lxsTrjRP& ztlvk;-l7@&>+AX#SZAiluI{%IyXNiFNRP3bk3kw!ohW7gNTsxSrAq!28*V^CAQ23u znl2Wi)t=h3OUhH1mw6M(z7%)_FyuW)z3dOYa wKp;pntIM+#d8Y(E-4Mh8&*n_$ z7Y}3g3b!>}Km2xFe4_PX9dHw+~`>;^Hg?1Qai4`v50ji>Ijv75rO{22c&b!Ru z`jKsr{~mhHZh`2c5Z>e4e}WRya6)w{aGNG9;>i~ADV74EAhNklH78^&rP4QeWdN`r zpXb$e?8km8Tza!;U}d2H+)Hs}1%^FVIU>DwCWFUSmKrBmY_ps^uR1spBJA@#5 zwup>`pbQis=p2|67Y31c8Kw@i=M1v_+`5V<)SqnLg z0~e5&GlapDXr=Y-BLp}tCD%C??=alQ#Kzd)M<(;EmdnWH$dyL@V_|OF2ex%#(P*e! zvWd{#@_ba?68=h0ArkHLGCz|0j!qspj%N*ofBV zXgu-D0NfE+wtN)9#`iiq%MzM$aXN&*h4PzHhqTex0Y%^+{4MX8ET%-**??Zj4( z#iAji)|VvHkO}o{p-XcL$yPIe)xI)otv5k>viQ$zJ51BFQ@Z`h=ujMPwNwwvlPfQ{ zbRRUiwt3_%s6O@?_xJOB+v{Pjw#SuX^e4Dy9dVN=PH)}h3Okh<1nl2@;E@#l30b>e zzYCMWZd>uVaM^9FBZTuWC4+HKd;*#|hb|KMu%J~PAIf}RvfsF%y1OVQpy**a+k>Q6 z114{hQ;}h($_IoA2*w4bo85aQ=!81T6VM#G#pvFv%UOJ;tNf}}3J!-csxPe#W44@T z@|2N)CSEzs;V?tqyR+w!!91`WF*MUXlr>`^cE%OSTcnk3^?viokQ|de1kldgcOGG{ zu7_n5gmvWVqoMjluFI_`S?Cr$zaiNsnyGFk1=hp~f2aSSH}MO5UD_bTX0!!phq0iD zvkuchgn%_(G1jkv`wdurffe6K*=i!e7v`=@W znPt8+-5SAk8D+V*N%@43HSl{hru1|YeZiz!}`1={5 zoW1q=qb5{lL~iuM%rkJ&fg+Wg5BqG9DS9R1!$L8S0!-t&53C3_@&fL$RV+!HdoL8Y)yCNEgJ(C(y|fTsNQhG(&d3apJ*It7{@RAl_nn5+rM7>_O+cm> zCOQzxS)TRH6Pvt>9Zt&c|(CdJN&H=T=PAb`SwUDbMvNr4W}VgAxR-aFj-&1SkD9dWNR zOHr$eEFGJ~NW}pQpK$$6SKP0YHkT|=*xDSss+Qiog|6DVGf>+|H^ff17QX#IAUl86=9tA*y?H({S>IMJseG&Wdo_ih8t?V zhomhBcFt-&Net++xHXcERINKv4`D5pO`h88J=kRh7x}FQnS%KdRe}ib$Tp`a2ZCw| z5INod-D9>U+@V}0b(^oc)*WPSy-g&N2?O%HBz{zh7KSl_6%ZY&v>4-cXv^P*BIsge zaY^O*le)L0=R+p-^?p-GD1v0Ic$y7;Q?Oj5%C!W<=&dDb`%1I4(v3bb$;MJm+D6Um zKoRcqI|ZKSO43^mP`P}m)*K`8x8ER{b@Aiq_O#tWZR5*-bW(%~CW|AN<_C}k3`gYO zdD+2`O5J#cA=f@8Uxi(u8NKK_X8$|&dlHXSJ|k>zUBQ;6qf6%hA_J}B<(_Y~BDxz6 zG3+Sw z?l$7ere104xWc-8%0T8vFW_F1jA3?%_xcfz#IG$6*ZBRr|BlS^j%09HUAHf+pmsf( zpsjcp%(nWgVa_-DVkXht$6w@ySLedT&*T_D_GuXJ4c%Oey!y&g@0mc~(`NB0X4k*Z zwp@q|;7J`uPOW;PFb)4f>=)ZhVbAPiB#Zo^Kv1y*uIuhO!L8!HfYINZ4R&pV8qxaCNr%{x^;fmkLJJfjs)Y|3LZ2W&A2~E&3MJm>^08V3zhbEJ zR-&J?3mcO2+pkK0V{jnmrqgeNwG5q8Unx;zG%|-BJ{Py)QI6AT0lYb}S5T&&2pi6H z=QYoS@}UUW5ttwA9gA-r(QWWObCK1D08hKfP;Il2jSIH{<1GI^2vyguQ$_87Wdo1L{iRkUs|-Npn%xrGvN_nd(9A@dZjsJaeW)V z>fbu2;NtQ`%WDZTQ4v%?}mPmtv9{u^%1@qb9&o(~9gXne3ZJpE_@0no=7nV!D?b!&O zt+8d*L9gsAz9xdp9zOiMP=L92gh_HI8!gnHP{+5dGlY<%H*k3(uesE*XLLv*qM&!k zg{~(C`&^#3p$udi+3qnN<|aBq1meuslD7n^cvZxXPWV@JBX%yC5Llor3{Gj5165_U;F@or)AW*|_|`2cXi@=Y0_yUk+QN3cIc9x<_ie@TLgwg@7YPsm2`3dkHK zMmzb?T!K4mF|}-p6}B$eqR_#>jYAK`IpJbGy~uP|Tm=AH#15u*a4vtlv0MXmjSJ4V zujljoEXS<=X@a(WoQIpW7jWyecJpF;ITR+!CRulZy)r8l`Sqcpl<0^-(>1^t{Q{ON zHS*$Ks7d12+mmgI;km`L%!c?_$Ehrk@6gsJ&=*>@)lpl|#p#R`FmFh4;$5&MP-=F0 zA*W4aLD=OhPdUZ-KI`SiV3nF2^e4;6(Hh~0fZO~d!#Us8-TI=|194^Uz(Ww*9xJDu zH${J8Yy`Sv^_zRSK+W}3j-CoNTR3bHBQRJgyZi1E>UbwZi$E`-`=+LFpN>Sm6|r+}sU)i*$E-u@wVLW^4I0|4H`an>7F|71vG_Z{7p-^taLSUxxj z&(}Dpow{H}2&w(`>TKRJP1bhhOW|=|T1yC=3fRSg*gH^4m~u=9lg%H5`m2`5!XkCw z-1m}*(PkA`fi`!`jmdq}IJrNq6rG(XFEV-WqVnIGGQ%*_zCrahNFp2o@;Ul9jCnAI z5RyO%R?9H{cHNVZD}LFicX95BvTG_4c4+?zHX8`F9|cIH|E8JSzekjc;(0OVJd~1K zBmhf6C#i`CEUAwK4@6C+v)`Xh17iq_g?FczRJ}+1%9bN|DZw!#eUuDO^Twe4i~dM0 z1B()eF1|hX$BHsZPl8+V36yZ3GwDDrq3EK*s@?k1uMho!Rt$>)Inb|HoOGi=^>FG% zAV^5`IK@7@lbU9xdwuW2WEV$ma*9}6^w?O#Z>GOFUTdafSP#49sCht3r8~rp6P(x% z`K-On{_%cPqeFn>`k^KR-f~3l!Sbdcmf_gF9DnzlHMEj5TPl6iE`_Us8G?DU!PvLY z(tFcLs3}H$LEY%wg3e%}JN97k%eGw-xEJ8Bobk~?1KG~uQl1yFwFz-#hE3<@IToan z>qAPH~bCOPq~odbA))9(8De<5K4B0Z-@qTHV!lwKu)J_UV3FR z<*-q&3T6dpEOt*%WzgWl#on+_q6{>G->p(gno6k2=i^}sA+Yvb=J zXtcpmqJts{AzCQUU>d@|n%i*tbP>_*Q+3U&s}hM5&L`_AfI}3j>%9X=@KgbQ9{TOS zAM-#&c8{!S#kHsRb8;-h8S9$g}8j)Qjnan!WP*i#>W3ab|JimiV2?re{wZ`wA(H~;F z*-F@Hy5`$RxW^DAqJ~IXX9myiy zkF5aJvA;lA{lZRpWcmJm4~t7ww+GK?8~7>{L%Cfj$o+Q69qrAz7`bDc!A#`YlO4s0 zA|$(4KG$15CrmVDcm7=$y)QPU?5_%*GorO&U-EmZ@A0NSuL|-z#1^g z(s0k+kG#m!CR`2uJtB#vh+gpj5vs_IKy;U}1xWUlX}moxR@@t~Ak5<7tn_vlO2mk7 z%Btv-s##>u^t8=n%i}z8H(ZYpYNw#lJ>i*y!O6i{5W3Ui?*2IKI~=7^yyPP zRa|VH-e-WVWXa#_BhuSl$6u(v*{PzCtf3h;!%wQwCRo#g8Oz<)JOY7}536ergYpY8 ztFjEM@E7p+AqwXhy751|n=_oo(eDaHI zrrVpWUmOSdBgbqAm##i`hY6MJjreH!G_o?ohr6N%@<~?GLmw|Y6AjjUMRZQCd@X#AgB2l4IF};3S zvL*q@o$oR!xoz+rk)yfzw$_TQ?j-OJk<;Jv(a_JenYt9r-pwwU=YVirXG=n^QYmOQyVu)Y^Z-CrJs=qFh}QNjNG*pKca5&_7nR z9SPd}|NT^{+|Lki^g2yQCHgxIF{UKy`JkQe(wTk@=5J@l6xHZzf~m@nx-1~N`+NCp zqy(2YXo1tAmH4%&T0EwJ-D2C5NBgAIC^F3QU0WYl=@W#D=VNUw7=%1Tx_(L8T|#DA z^0_zx^HA|kg7H#D#tGHBDk$QBr3wpS|2qL=%HIZJUiwCW! zAy`C-x+Ly1zY&~*zPcFlc3K(#NFaOLI(4RH+|ZDq)S{O|RJUM&oXSjdjcUo4MoEFX zX^~mHeTqv3YjRvY|052iG#NnSkyUD2wW*6+Tu#7Wb`3MfCXtA5BDWxnvC6bwV%ma@ zldxI--yQ^4hhW)?W@at{+uWd)pwHZefRc`ynnbTC_bOE`FncJhZc72u%#Wr&aoU`p zH0j&2vulmEa{{pirjNQG-Pn&R#UsodRV_X@VO+E(BHI6Gp&>X(-H4Cw!8?Dlrcbt$ zeqLQ2s?=+wxM2m}Ox(d(riDHV1S-OCf8c{5a0?%SACtdYA%l?|HQrkA&$tm#Miz2d zMOziSPf4(`h4s6<74GHxGSmE{8$Ip9qgFXdHf6C!ty5qRBPkfA>{e?sAiN05s=xQg zuM{EK+ai5yHe{wCl@6v1ri1NS4-s+`U=ga}n=%SI+Ap&RaS~CDW;g&J3^a`3lqc7p%s{tW8xydpIyzWTcy9NppB_?p`zL`rCYzR1kf3 z$PDj_TKNn3gKDKML_pU#Ps-om#|sOS@^H-nRhMv{ZC7NL?QT3zI{l?n!af)i+X&-6 z)9?Q3GpCSye!2$^=M~p~Kt!^SO`QEt@JA_t0at{3 z2vHOWU{t~IbfupDF$1Z9=pEM|0p+Xwe+{wu21Y#LcF>>@UTWS`y=CjZq}eljPP>=;-{@i< z$x#e)c8rE^Ase~Fw4zK}_Hoxb=)hBsH(SCf@BPLoqcsbB6gU=Wg@E~-bI)h{a}&OB zRYhnjak!=&JsRz!Qp2>YO$-DxHj#USl9|? zwY9KZT?XImCOz$cck5%WpojeZbPm8Nv9>$Mc7snYlT9Dk{hfJH+-8ADu_0QTbgWpJ zthJMFO+=PViJk12Ir6DbW^_KFY7TdjB2=g?Z;GC;6@h=Z&1K=|(5ls((!FgFM>rO! zz=u8nOoi0N<{Erl&@2!*ZGQ%=rxc02$0Nk7GAC89&fBst*~Wr>qLx1IXHbNv<6!Qj zf3n-U2z^7tYxh7q3$K;kW2{jS+eEx4N5@(Ym|PGICUO?ob3go+O@3u zSJ3)R=~dERjIj$GH9OL)(kE=qEQ-d23VR<%JjdBxUOtRRo;s3mT>VWWpNbCJ05;P? z&)nwyjsKG%)TYj)Pim!cW~SDzpcX0tV+uZbR{EmEglRh;d6&H(Dm(^)(L_J&qZ!)KX4Jk)>Y{4#h;;lafCxPdu%_ z6+Eh5o2-&+rl*yO7J^2&9*xW0DkAuY1+OmgZ!5V9{QJ8Q#Tr)nkXHhSeE1=;NE-m1 zgr$HE4TRn%i#yazBwBYA=%8-K`^g8^e6=R1e8F8tiY=>nE_l^?;9+CX{xgbPc^gK? z4&4PEm88j)N&oQe;ENQ^04o6aOwDaAdn zKXI-sj~#ajt+KQ!bgNjSMn-@9W>B$Qa~v`BKwUxV2zHaG7Rt+AG8|&h!aoa2_S!;T zIi~_iuubRC%ld;Vejk&pCCQh#vR>9(#$eo*Ox+*|hJL{_O@Be6JW)xOcU1+P+NI7> zfBtl|UZ;yQJJMFpZ3{|0$cggNdwWiSv$RU!`)iXh#_!_tEQZua9#4-T5}r9q4vImA zsTPTA@S!T^@IgTcnxlhEv!R%_psj?0WL--qg`Zkx79}x~x>!h1M8SUNeGUdRFe4eQ zF9VaxpgpgFdkOfBEYRYmK(gJ40xz&yND1FHrch|aql=F z5*R+^x;}MaDa>v96{_kIs^se>o0}Z`C(Wx}L0NvG&0eRCI&LnN;|!n%GkU&^}%Y1)8l(T5cq8&A#B~Mf!JqhgQ+r4Q<}BF-t=k$ za$v(F&v4D}iNdN1ktR~aFafRfTdXm-Ji+Y4?$7@4cI7V|qp^L#Y?fAN(H=##g@hTk zx=tsDku7%)Fe1a=dZ5YBK5|liEJx}n{09*{VL-#q7P1KGl<)SF*m2sV62WbEEKC== z?DF9-jxnC}#;}H-vKcTzXOYLK)HBX@D+6Qi4am-`B$2c0WQOt3Edt7kBX*x1^Sr@; zvmknAn#*GlAj!iRv4cFFBib+%*DRExCF3?XH+DPcUaA0tj`5^$hrCPMb>_L!v~VP5 zw8cW-E(Sj@nErw30(8BwAz+ z2eTSIu-MT6d$D}Dukhh!DLV(}{A~Z289TC@=d-_lVem7yAne?m_;c@@Gk3F$;u>vF zwy3^%k;e6I_oE7}rJ0w2`1UUl>};>$?2qn?oA0oK6RcCFh`ori(1-(OqlYU`o}c{^DR4zPk4;+++OX>sm2$1NujVIS(v;_;aKGFW2bzg(k&zk$8R~lmim?CR z+cEehcmm@oQu^~c_XAatwr~S-m{7_iX{T$D<(IV`xYrWU6p$G^B!QZmvFmtbT;b@k zCD)^g2(Hm7sP%oc+Y#ekfdx_=baJDyNFN6N*=y-? zRO+h)p>nM=kyNce(`?u%y2O-She?b;gAYVGa-9+E&L2k_Q*TI#P?at9!{jL$5q%mrpb= zdPu+~Vd#iCWyCiJO&V2@XR1_=d#3GCAjiS9)Ni6Y0|GkVXmev0T8tYh=je5NRJtMu zSALj<7Tk*toTR2}fyRc!%nT^w<7r!LogV!g04cG1LgVHAjbHQn%62Xu(Fv~OFX+oI ze7=hz9Rj#5rOJ#D_6bB9y@r0jxQWX;xqGNjy6e$?F~i|&F_bVFgd8#TXXUwFKa!fp zI`EE!-{1wP6M=%2%P|3=jEXC)ju(A82|#( zOXV?5y;mv69&(AXwVp>_NzgmA-{&g=rbz9T!v{3z_W8bF=malL_?Opzdy4HvaTetm zsPpfFF=$eamZfX^p0ifzekOcaT;iSSnW0ipM$C373A1C{%*D3)*Ej}3xdQJ|7w8lp z*hPiJA%ct-0ehcgLtl`JaE&iNSu?&gU35j@2bz;v& zWn|Y~@phPWb6?u$l8@m*IKlVP&-6XeP;dIRiMxJxJDCNAoNAoU1^=u%F)uO&`M9e2 zNwEmWK4V2Do5GhPRv8>SHU;l?Q435>bxJcuVEl3YG2Tz}`Z<-CeFQm(Zf!_yQ-> z9E$15ywad}r2pu+0K@4I=oab5u~X!7t!`i>lpN5p&=JejT4nUGl4VF657Jl*FClf9 z9zJxQAC`xR8~&Cwdhk=SIpx1Gd~lgzA|=M2NDJKH*>|d&A6~;*dq<(2Awf8|Reb%*xvQ&=s$6T9$*7en8qN20+oUAzN z$(^nPOv!~pTBgG5x8Uy7S^R4nLDZ|yw6>WfZ#*+^<5|JhbJjgyYw+f$2-pjU3|rRS z%GYCij3w4t1X|+uI->Ztc4u^KgUbjVo?6rmtD9XXE$atN%=n-@7KVM9}73q;xj47aEHgGd7D!_L`` ztk&ySZXiSk;>_}JUQjM$1t-ir^pfkes+p6(jJ*E^;;FSL+olEQTP`qH{m)m38V*%( zIP;O`Fwbo_$13Q5G^`otd2cF{*%D_|udp{_&wzE3@s(S(4G`ROL3(l@1X!2IlMGCc zjah{2dozkypf=iqKjcS&=xtxpHb9*Io%wc^8V~!yKU<&W7&`Gg#PP=0w+k&@{%wJl z=eyy8a#F0zLRRv!?et?xPEo&S{nm2Z%tU-(%NdB9vw#4>l|wowDn0mm`n> zXd7|1&xJ@z7Yj6nJtjqCq(8~#yebk{f7?HJ-Vyq(&SLCG)=IM9%G1iWe43*wRgha4 zc=c@0tHS|mh-q_mk(s>yRp-#zzqrD$3kAJa&ww|dXp?fU(K z;t@pyidUJ%rw|fkQOc=y&05ixKqif5Oa_K-COxHih!V>2GcuU3mL;pcDS>5MyV`j- zC9!SLZ=S`dm%s;`lVC6XEP_gP#D&)UK`vX3D`#1)G#{9y-x%t=j5hWN<(3G%Ct{{P zC*yI-+99A>;-kK+VRLQ+*WevzUJ$6O$}@75>lzdyAWPGnyFhdLu9y_2W z=kV?<+$Q!Ku??E7nu+gNS9Hf3Edr!p;hPE=Yj$9^0p+x#!H2N0yGi$%8dG2JCEDM+ zOhpqcb)d%3H%wb)P*nQ(tu>1V?GS1?akR3#<>OdNLNdbII|WbC0OnfD3EBojdi(J(O<7CWN?sE$XGd-E z5b+kN3T#t|AvKJNKs$!r)l4NKP)Best1j7bzWoc=0{{vOVSg{i5zWxnGTA+|xn92hfdm_#N;Lt?q)bs(r5x333bjnR>*ZD$PV1f7(ks z5Rik^Uk2dZLBT3}4bT_m1<+{Bb2zAx$QYQOQBDud%-JNFYAp((PBnf?RS)n|G7^^` z_rOZ9Md85XdFIkK@yFOHuqP}K^cZxPxGbn9zWaxy=8SB- z9Xr1LD}s(=?&7M!E$d$^duA!G#zxfnW&nkxm@@G2l@wpoe#4T0kbD7UqzVy(MnDL^t&6IcmPN{a;B{(hAz8)3W_mmWKJf+m6W z?&%|3yNlLxDuJxL#uezt!+-7ah#FDG*o% zN=S$OML-3yrR*?indKr6UDuZ5G;^2{K0Ft?O~cl+*Q*Qsw;jR^W{6SQ&b(JLw5HL{ zXY#m+q8QkkztGK_JZ-pD=!%djN8R+g&{PEIEYq;jvDSN|se0_gd2G*1wy=E*b2g7@ zz5U^{b30NV#}H7Q1$STkW8Nz!3i4I%W-r*{6h6Swa1!8mzjf>BmM$a7F*{8kD!WERnfA4a}X zQ*8fTg7@O)hN~&d{9;3&#FPugT~OU}W0LsTSbx1Am%2s*6M!zF^v{`Vj692#t}4cI z<4!tScWBF;alsXvvh1g*4CD&w8+v+&i}yG?Fd*vip#EU8Zv z^tTL>&iRU{i*3tJ43HMxJnP5v5>a+1L+y0AHWdGvzuujlR6PJpnnpWb-zW7W{hNu( zzOh1>`wB!Vgni{gGqdo)V>C3sHQyZbGsz|qs`lD95Cy*v#*eh??4xN-Tvc>L>Ah?0DDF|J{1Kn+aecVY-5ER8 z_{)0kgEXc7*eAol)n-rr#0NJM8G8}=;+jR@RHoW_>_yfuhwkCeWo5AN^UH@CSn{2V zApZ*LzEJ+6q~i&KBut&^5MQw#Ov#u z)RMn34Q9dp7ir1o5pOhNMUdG*3>YBp#wZuWt)goH!f_eut}___uW4Zx6BHVg=>(GW z$lbr~2dx?JP+x5P77jf%I&ltpS|5G&dspJ$tnTtDK~S zK)(Z*@*Tr^ACJ$_tj;HH2V_l-WX1=LSs)nGqfb0mU|z>$oHmooben8rcH8jvq*(o9%dPk`e`(SXmmfZykgt6SmicYtdOQT#X95TL;iRk!PqK|%KX0f+ z9!%@vs>s$D)C*|@8}3LL7d?r~xk8LNgVlx`@IZ0~b2oFgnn^ztg)ZT@$;|$Xp}Hd6 zWnWJ&oRnl711*3K%ol= zp*I}Kbm!-jfOyhC&eA&wq6Q&sezD9ZdBF)cj|#QVk$>`B*>eIwE6x@V6UA?sguZO}nZn?vb!j<*wG*CmM0r+naWdek$No=P^n2Rc;$$66{bQtXt={ya5l(^gOgu zn4T-CYe}kXpNudi$G;&ziU?Vg;YmTxA?fM!_dCU83J|K-`Sa} z>L#5wOOUHv=bBG>)(2C@jT?(fPLyX`2Z;N%Sd(S+_kKm-c8?9!k@;Nm!2))&Y1wHb+ITC*=$@$#!3yx)WtqG;1T`NavQ1D0$7GwTT z7K-KA|b)Re2fr zgazjx-gD;ZilcrQoEartxi~q=TdUy(cNR<=1ywa$IlZ`NzTrhZFt=fCmiX6vgqQD^ zDY%j-tCDT6ueadZxRPhT$-l*%J!d$P_c-Lldt=WV1Ct$U5K1VqJfAJNbTItF0T&}# z#^FA$Okk2t-~09o`>Hi8R)!dXK5c&4Or=rN_kYC;x;S4_J+VBrHPf1P?-UY%=eufg z)II@+2%3UaCI296(2-X56R8^MSl|zjv4!#{B>-|Z{JF`%!M3*i7EJ9@Zp@jxxfD{D zo?2aJY2x|8r-|wNLMGTg5^lp;>W9VaLTx?3yG z``}dU->|y}C_<|JB78-I@V#<6)>fDlMN)^8UV@dc4ZRLjJ5EL9{zhoBP2?*leLFle z7wSwP-k48LES!bgMBcQ2Ihsu;SUaCZ!=#LuR&9sBE7Zh)`U-qL$JL^!q1 zLLAQIiB_fcv4NL12Dl`MO|w%WJ_(RKE$t}|p~X@)yVC}60uT3ywO4K~TR}mA{k8EB zJQmu}>94i|wAqZ=%k55FzGG^?yw2tw<+S!Fp9MA933kQkE9PNCWVR>TFl7a9#*@+36MeF2XU9J-o}r4%uA zfuwpDYk!#3R#mUg1I897&1R~{NEU&?1e~MeFgCo}V(IVxmQgccv(m4SCQg30j_rjI zR`tW*2Q+m8ehv`N4CFR}f>mEHO0Rc;BKZ0c$~ymA`eF4M%QTeO?T=~#ycchv@fA5B z2iPggCno&6J6xER&ebZ=RKQ=su^*Au?0pkb5$9+t|}Q}}Ro=~oJJ#f!c6@Ol#b?wxd{ z>G!q-R)wKLxu|izrz39T#1+0cy62QMd@y`!1e7KzKzftb1ufK!Q`L7~qj>i=cAeiXjLYzV8GYL20|&I&eQF zApo{mBvNoj@@aH$Wpk-|EBdBx{qj8iE1r|i-gVz+nS9<&kqC8a_TbU(Gv)- zx_6ZBA0L4vJ#GrD-qWmLSBk;^>QdJ&ZX|qOOkGYi2g5j4W@i_JU^TYots%WPjkShUS~o4ML4RlZN?#IT60A} z3x^o#bj!9n;y+@u*KsN%7%CpK(;gd)qb=IwTy*cc+?h!>fP=sjfse8M{tx9$Z^5Q6 zw@6x4!_q-}aS)M4LpGzDqyNTY4$JU$fAdhBL-F|NdFf}QYz)9vvdm%rf{($FVf6F(q?Ir!?f#3>C-2`IKLejY& zkMjm=AS<||Q@xWx72m@yOH%x&Ml?N75Idt4PV<#>*8#aFbU52rwvPc@8;_W~l4gME zHD4J&$;e{Df7pTB4ro@JS~U=$1{jc*!sO7aT(B<=p_N5&Hga4gvK+3J$kv^~mWHEb z5Dw}%Ulsa6UU~IzXwq=p7bIj+I;iKWW&HVPR!FU#9Ol9psC}w59*wuxPNeKk;j^w| zo=dAkS&TRsVUwyrJ5>Vt+Y2F&$QOb!YEG`a(UEhMbhg`P=C(yxB^W`611=_BYGI8aT{-4X&UdvAU4#!8>K{(-6+zkb5FLI!|x_ z7Qx;;b^XiZLAeH{;l^BAn{H#qkTfAS#+GYq&Nz7XC`W1VE=-3l1D#kj52HNO$(V^( zYpV=dYa;}1sxV2)0|NPaWH?*WzawV0RTY>LN6Jt-^42t;NMBA9gs#Y=%%FQ5+JhBD za#61EDlMO=WNXPVUm<{peNC(I>wd9U7Z>!gTo-G=;n<&0MWvYhx}c5JEDdM~f@xi? z+5GS$U>QhstNAb^Z4{m@y0R$B0e@olzC?gAgSv~;x*M~Xq6|z<2=JI+-tund*0Vo# z;wVk5wx#&cmz$*~?|Hm-2f*gI$${ATTxuo6#Fxgig|WWv1V-nBGy!}+-P z-KA;r`Evz*W5h*U05p)t6M5u<#~XRz5v6IK=ugCU`T%$fhyWL5;zDAwSj}Sfeqa_C z`wHnP{e0JdL}?{_XRSq5HvT`429i0PW5)rzC5QOq1m8LzD@B{7nQrn+(f#Q3&})SGLnb&*Tmq`SK^8)%UC0Y>V5yV zKVAA$DICF1Osc{uLVU_OwaSXHc;^mp);T0i*&KmheUu0|hJ zJ#T`^?TG;-aB+EK$=?p$AXfrL8i1#gSSDx&LKavCZII|E*szAZy%b$Ajk4yk>9?RZ zeFq=O|GJIbrC++2)fS6cd&YiB`?&Hr28l z%y^&7u8k+9oeUbKuEVxEfyFJOE-;G1^RkYSqLdA+`l+B-aoVFyK;*`mGnzzo@U>l)xm48#D1O_T zg5%_;UTzGZe}0sfv*K=$Uv`Av*eJxr7LURY9Hc5$7YFl2253oV@(dgBQ$kD7nUUFi zN=Fqga`R4n*!|nk8!YXZe2o)d->ZZ>N3FtzaZbhsS9w-)OX5+_o;X`%YW|7#363!D)0m(IeA9az)MOOH;8Bx6(MRy9r6 z4kb<-(E~M`yeCSR8z#8uBA;Q%F-LLoVfjrqSIq&$Vi$dxa)iqZ=PJ-2j>7cLsBQtK zQ_&rK|Jg*`Qch1++p)PxG1g8)&cAw`2NB3S50-n7Bl3il_#Zx<<9uZinu{f`+Rk>z z)w7s*dE$;Vcanj%taR&?v9=Sb+ienH>MN!uq-_lDlCjJi2sxe6{@uFVo#v`p)Pv^2#T#Z$jk;JN8)qk;<{S z)}ec*XJDAO{DRpVznPANoWmuo4EQb{1wS{aH4;o%u{e8|Lz6L^f#K8QC@_{lARy(N zkoqQT#<=I*&VnWY^NK)O!tqUK=2Dj{z4RP>R`z7B(s4%tlc`b=ia$PZ+<`f0!hR{RTktct%a@h@%FBC=|5~hh%n=qTBLesyO20tn;n`DUmYqK@*i@eG zKTj1|R)ZnlNu>YMvCt~2a5)Cun$hQNMoVpA&?uKL5^P_@u!-BY0))C143hBCXsD~Z zme5WrYFrCH!vNJe5BJrZ^`T#BB-ls{adl&kN&hacB$%Gi}zQ6}Jc`VlSUt z1wlvrDmz1~Ng*bKB$WY2;)GJ@)*Cp*n&5lnWkt1G#)-G(ZWvk_D0kD^H@iWmuS2dFyHzf=B>2v;9-6 zTul)cRDYMEWgBG^oQne6`A#dPp;AP{erMuX=kS zm#iW`Ip&ft!se{svWz*X?YV^2+~uV|6fcDB=jOO*CQFb3d%vYM!Fo{DsocvKH~{iA z529b`%xx@)JNCdfjg(r^LwUqI5y5HTJSZqognw3>vB2B&<%z8zF)I=VU5!GY&;=i2 z`^Gdn#G!jS8P3nf=v4}+NDMs@%4 z2i0Ez=rIRLpjW~mvQMi%=v1LmqSFcZzT6sZPcpbE(Os7=+iz(4eoC;LXVc%nC)G*( z4zQtv>GO=&&iy|TV8!}ngk|sA^CKvvTnf##JgC~=pF|}sWwz&J@Cb#?)UA2eOPL1= zGRWHdUxb>{g^2PAkkSsYnWI0Nh*}F^HXx#X_>l*f|C`UF)MJPCl!O!c=Y7!b#{U_1F{en=o-7) z%Ng7=&1CU}^5R3@zpU+dh*(5+7l4vp@*}%Y0L|LrfbBhG16VGV2;xVj9x^CVGw2)w zWXsbm9*rdyWK3OQW+koRa}**W8$Jk%#BLayPNx@n^E7-lVBPb-zDs1@9ZN*^KzVyK zc<l3_n`7ee93Wc7!EdfkU~~(?zUzL&R`@5Hf*D!AD8-sA_XLA`JZ2ieNf+fCtntiK z1jluscwkdbn?}Z(d)i1K2Y!wWR2guCLy-%;sFe)Bxx``Y@^bS~) zlM?G`J8CHzuBR4|uv+oOwLPbTg;JxQkSc5f3b#K0_GSM^oCfh$yT_zfToeVo>8X&- zqE!8i%a3)u4m9ABlNkwf@9D1?fqq)xH~k8)8)5{h$rsD;DGpq$sYyRwU%YxStvRI_ zS&skSCKX^&r0-%zW0YzVo)n9Z_JPH1C;AWx`CLcWvHdJoQGl~#C50`hk}Wfl*ANfydN3Gr3#nxBM`J6g;9ey1P2%MgQqT&J2QHF$;;8%~OAh7=MZ=5s&q z0rEOl$_qtfVTZak)Sdjtze)DZ#R{IgRB5*!l+Qv()jJEUjLtEn{fQAp zdMvImWVP~JA4igBOF9~f;&!u*Y7yNNSsUljAk3ywBg4O)kjXGt-YWH-c1pF?O08Ic zEO2V7A#g$T#Fs;bQmost8Ky89Xpd87=Gvcu7u-Pe$!GV3oegJk(n)VwO4YKp3Ra({nS?_&F{>j?VLQw zW!t%dVXG9e!R6y2vHulTUxwQk7d=hrmYd~=ewMs_eH!`1cls)u*Sdk2!%GqcLSUyp z^tFb#Q-c*UeKG~YY);`R#P#y*b31=!^s`@08R|UQssFgF7xvZ5YP9S>pLYIlRnbrb z-#G^5-Iv*xr-DmvXrS_6&*JsTi3SOu6RU>HvY6X*>{0h3E&uFY}q`a<-eC=dy zK^J6;l={>s)DaF4!y{B$p6o<^mIoFwuL?m3RDQ{^&R8PUy(T^$Qn`Ma zP)k;hC*TE{s%{R=oMm&-N8mDX0q^nmq#wpRQDYLStbcx9z8`JE-Zjm=biZcgHVEx- z3BXAmcdGa`Mj~C<0AUM<>eOK{g&)A;+oz&Wnu02e8@a|KP7e#4wm>s5NDhhh+f`n% zZB}w693;&DbBweLoY$1dt6T!~ld^v^dn=8+`L4Lp>T-!!H<}+PzzTk!@KvrK{ov^@ zG!SUH2}Sa6h$eX^ztpHZR2jeaN{s;Rq|{OGj?KY&ulki>k?WPV<6CE2>Q}YEhIKhi z!m^;4GxcPtt=0Ypmc|ttSsd+!vCDu{(q*FB|3moElvlS?=aP6hDdq>HOX$`&L}82f zx~^p|Wi8V2%w{iBUDmP$2|){rz45;i`lbKM2aU(ftivUcvL#0|6hrZGq82Y+u;yTJHOgvHz3-S@j=WJLg&(g?%&Rn%3WM>vUFA zAQs?wv=B4gt`;v`yqNm1m?n4?JH@*e5vLKBJzJTD_w_2SS4e}J7m!?~k@H!;| z7xmI7(D4DFDD3GDDlWF@sWw;$-FKQe6J0M2Sa1IytNdKVZK-66cP?D3eAh9h<;w5U@x(hCyUOV%EY{_c}@tM z9TiuyXlBc+DWiR1x@Qr`414x+&l7R`D57OcN9Ecfy=Ak;P$;rSIZiQ@w;9>xl5xqU z?B)s@N)Q<9^D#rk188h#LTCF+IYY zyoRdd=b2Sg5IN4u)e%qw)1-$j+ELU5I|l<)(w%#&)AxY>Ab;LI%4X!#_o&Z%_Bn`e z%r(Q=B7~!GBoQXOW5DBp`Obi8O#X)I0mi`?JV@Xq6j?6U@1bbgaWX6Mi26pg_c6Z! z!z0U@A0OO3ZvXCKEcJb}tL;0T>w#}*YxE9^9v5rNpCrR3uZqjV>Wm}ZWzgRf);+H4 zmF)K0Xi_00csVANgjL&#fq*_6i_9_keuUTSb`z01Tb560^@OB|Ftn_dO9ptug#Q6s z7MkXeNOzrBS`kzRuG?T_HVoj-5HKb+->O`%eZszhKfR=FfU8_3<@w3Is+HO8z4^Vg zOvHnwHlCRL*^C?JC7#iDpHeVMQzdRs(?HB@P)&Mofv|FFNuJT&RTu*2!-RDapG717gE#u7#`A@%s>XVBQP084`@V7a$$XkmVf zCMJ%sORbB1*#2O0bu8n{dSCbUnu>k}>0vH)TGwgr8_|d1k|KCViHH)0BM{ukXRP2v zx!%j|x8LfoW71^?2(a(j?U$2I6A0)h=UwdW6iUUI@`}B;r@AJt+!fogVt#;GHMv@9 z$yRb*s5wF89SRKp>Hsl7&c8JUcoa4veD{uIo^0Z&k>G(1&isOS)E>PEvKniHMCRBj zDz;y7rmAW1kObmnf0Us=>@d~jX$LuM3nNS4J48(+PU;Qr`)^r8|WBOR%oJ(|BjwfuF!9;YM zX2UAIMr~V#6LM=sXMe zr;0J_wuET@Y7P7zyQya**5ZEAsWMr4&EA z%=AlO?0>JSQc6F214x#7R%Q|~<^(?(H(ggMQMxCSsP4~@LDR1Pkg;6Gf<7k%+JJHh zZ=U(oEAUru$!PYi9UcO)+L$h)MDrv}m$@5T#E(^5fwe#pj~U?3qeTb3Rj;v$} zJyZ9QJ$W6`#TMHJ?0%=LL}5NDoh~PaQ3$ulq_=2fUJBIYqoUw0@X)&H*!{g7EkZiI zZ|S;2&|MAiun2d1MS-U)OOk$I9WI)Tdn*l;*eNjy1TZ}LL1#)5w@Qq-Gw>&aW0=h9 zdrHgI&_8erL^m{osTzi?LdCWm&XGpw9&J`p3ERXuAYBH{Q{Mp@dR%eF81o8-rP zX~V)it(VG}@lmX1X~-ioZfu9^aE7m}xZh@i9{MLtJs!3FL*5J)5rji&4Jn;z%R7A5 z!BMmeZ1c)`Sg!>0A%!={0!#u=u7aqUXsc@iUqw^<`&J3J-G^6e%bXEYh_2f$X&31( zy|_|rLRyvre$C;=dH$AT>qI(4l%o&1JIHZS?^eUI8=$_3P*3`J_?UQ5#rJI04*-C| zo<~6z1w*G0|9$+P`g*^nehP&r(JIAI*ZQr4EgGD?+Me*g4GQrjUQ!TsUx?vbJe(Id zcKt;Z>;c(}wrVQPLM9@E3{W3EKt>CWjZot?z>xD)g)m!SIz!tB(-G5lfDxC=H=UT; zWNv!!Rnc+-)V~57t`MGXW^K5+lro$a9L)>{*3}F2*CV7!KL#j`(t@{A2Z`Q1wo+2S z)uj!_IS1&{#%DOfK!Wl|B`T-pbK1Qs=5{B-egMKeuY!M~bO^1xc0Nm+{_lG7+%884 z_V^I9O(w{`w0t9Xwr&jzX=cAdY<~5zY8!SQ8Y{>2lZR*vAP+JrP`(XK*z%=N;lBND z95Dn*Wn#NZ`^x*L-t%ZXyu==SfxA#O%l};#8-KHMGBvpgay%*QiYh3BHKG6`QF)rz z-hE&{?LlTtfg~_`NhB;1Z`>HjkNvD+Ltas)sf8re*RQ8t4v%mBaiVs0v;{5!Ty$B5 z%cipX()P>Ok-&s}nqPh?>sPpTcUnw8wcbh&*!c|CgdAGugzZP#0hL$?Q zB4U@Ojclau{>de+3yjheH5jl=sHqh5gX=>ch$=ft(+idyT}cr<2VZ?kn|a>aAcjvn zTmN=K-y#)5Ch$H+oqjt&X9JNS47Z%sNS`G~;+z^e$D8 zjtvq6@;Y~4-mt*|cCSF`KH!v}#+qD%<TO zG9L#fmXT+a3RARH9(q(dpw4ct1BELt7ZGa9QEn}j6npHedbej@vId|w2$xON#7L4m zC**tWuL>_Z*naW0!T^MI-9`Z}7hfx5m8ZOsyJy-C#AE3ZoDh=7L_{Y<4j7*Fn-N7>>(A}uvpJ@V zdr;)%Lp7UN+7t})T%J}8t5E?7e+COuFbAGJS5%30ckqTd&{xq|1XGLBCc}9uu2lc_ zqIJkKv?&C9R33SDh^oz33fs}9C`QX%y8-MVhh3eBJeLeJ^a#_GJweFp$f(9fW_!k` z7Q&*<9k9Eu=A>iAptq!cHt0obq8sfuEr!WdKRFPo3DVCBkelmNdOR!F+$2cYkefy& z-{S^hTe#XE5tVge>onixdMykdXO!C)BZBKPaO?t_*3z((l*7J$Ai+6aWgRtqu+tpD zV?@Wr4^l&((_K}~0$}4cX+uns4u5Dt-To(c`|(SyLm{Oix~iJ;3%S`pm@-@AdD9Q_ zYNMF8dG1vK_XZk9O+9wo`o z2!tf$Cab{!?_185*d@*cuZIrTaQJ~qR@`7-sTZjMnExU7DU0a504FjQXuYC|E%@rX z?;+udHEn;0aL+nrOFE!GXT^N~Xty_qO1>@q9Da31+M-WlxY+Z7=y&d!7#&Vuxb9S< zblWQ@?5BUlEOrt<$rhoQN`O?AZt;|Mv8XcoqyE};mv{SczFn<-4gmpR*i#=RkvmnqBXk6&KyZ)MV582D z;c_E^YU*ho{7Tk!x$k=_l%G?L2z;7K`*^7%e+~1oL>}&u1s1J1FZ6pYlBC`E9)<2P z7%tR1xdQ;zK@rUQI8_!)>HShHaACQR0X2SIO*|^z+8J6ABHGDy9}=#mfvl1h&zBec zlA~Ofm4&t*782Ma50NYUI<|O7CyUvjQhXONMQS>=@wEbb)fo+?x#XT5iZ>XrC}39Y z3oed4RLle}FrUQhs{~5QDtW-|q&Np|8`IH(50Cc{a&h4F_ke_%$+p2Pe+;R zXg3Qbo_OTN03=_#<1NHoFbQxVuV}dmfaP(ot%IipT)&(#k{ioI)81j#AL#1@sT1kW zg~JdPgO)m`#r}OsC`$cb#zAE0TD_09VJnWa{rb~sxXCULcicugR54&dD^#D zWhLhBc^&#cC(?hXN&bu^q}*=l>G6_Umh~7u)KnfV=T}_t_4knYr0Vpd{2+Sfs5z#} zSP&~DIPqAGtd^KEwgM*&B!-qE*ZuHP{+Fab;P7C_sky#wtmPP`)OlP^Br3|!`7zc* zbp{yk$rI84u!LVlh!Ik|%0JL(R_rg>^?NkQ>*@ZcJ)Qp1QcoB^BouL4quR(kOK}AX z-PFva6(J~S*(;vEZ2Ng#FsPQ|p@4}{?AF%uaK_>*-7(^g$-K%-ZsvS%JEnylNZ~IMj9W&A&`^^4284Oo8&LH# zr*LJnbn|6Q_gk)vTpFnj*Acx~Rk1WM7^_bK*QB>?vc^ozA0OwCZ_4$GeGyF8mbrJ3 z3u<$eSO#<*mI0v!#rHDNOvXIWZJc&%PANog!P))H$3)qp#bwo1Bmg;P)oj&p(=fro z_Xc^;G2TS$NmD|>@Jn3&*M*1e<=Da|%ypN@0OS$@1!~$JoSTX2Ke?LR4_IoN5mAT~ zKWELk1gfNet*2?t{%ND&e((m#eV9a7dl4`K$@y;)#%k2xnEda`$*5E_pI=vm#LrFU zA!~T+^8Z9BPAC6rKqA+@-w9^TJ1$@RyWKc$+B7pE=Z##PkraLBd{#U}$e&~{JSxdT z?ujYQ6BE1Wx6xI>KBX~xWbH}pBiICaHJR&dgYGErZ%rVvQ9D1^#jx46rY*`KsUzy%sCpS-!KyWX`@xsgbN`+A zM9>U2P1)LD0r)4FFS8zbg5qeR#E*#RYt`8HfdW+vjf*xqs32hLbP3%Y1DOaB<`pl_lk1pQ&a38I$#fnbB8`LvkcN^!uyEfg$}`s|&g6erM^&xO6=oXUM4+&>K9V zJ76y|m9Dm3nnCO!#H}FX(nI3csrYO+RH9F6umeB@mY7%A_Jy$?*d3m!SwqbY#;gO* z_Gl{{is-DF5_zfn=iH{x+GQ{4c~JF2Vvps5eKcLQA&Z-1t} z9P!3^$`AlR=9q1$Q&&tzhsEQ46jgZB)m-*4+@%zw zS7kTK?Dp>bzU&XzU#tex?n)Vc5!XgW5iZD4U^a%+JS=s>Ze{@1YYRV^u5aLQ#~*=c zBc|Ij2?z-SB?Iilsb@j_>VEFq=Jf$fSR*qna7~7?5?-mo!aR{9lI#U1d|g^Kct8;6 zE|4!-b2(7HR)kDpmDbp9Ue^c8^KgJv z@v(OAqXtbcCQRw6fwHRl#W*R4k6`sSwN#r})w7dIC{3rJR+86@y%UW`5)LL99gEM5 zNfKE2?2v@a?R>@lX|wc)eSQqgqUpbgp-2l(q@*kp`~J@};t!`hn?#aug2=D!Q*vAv z$ITJufaty$%>iS(wthLv9tZFZGu2GLnVb&-nZ9<$-Fmjt54od3T1mC3`+~2%!Zb)$ zvcuLI7+v21>~Lf#Cl!Vjt|Ro9ChQw&aFDrSW&)d1T6dam$tv?^%tqWu<@awDT87$K zkoh;rbZ6PErOrVWrLXrT7Q~jbj#LBAZ!{h)XLUFYSJM+u(N<%$W6wbT)T%n12?MpU zoi)E1M)LK`#NA-MG6UR?1Imr1JP8et%zJQwDbJYPVj~bRW zdD2E`nGNY$8aDT>bBrL?4DZEvdyk5)29O&PJI&atXB=aDq{S(bcq1#6Cwg)=0K65dIb zQ{*V2fmxJanU)g`CYduc$Dxs6doJ>N|Cd5IL7INdE((N+-Roj-;4~)^=un*aK4!cv z6mVP5G3p(}WWj!7nWrgU*QNcjPc2OvLc2v1TrpciRr(lm0He&D7>zLHWK{rIs^IGp z5vT~hpPQpfMR@9HN``xeV@T$^S>XIEDSPsJU%j}oOSkTaffKB^cZJBaFq*0iAzZz< zJEp)&=#qvI4IInB#8I2F^OAuj8timj4i*0{eJ{Wpr>U1xL^hty_c-1DQNbzo z&y#GeFqvZnbg{#@b95ZFhwlOW%lP295Bm&f9cvt^ghYr#DdcKt*nCR6ya&TwRERqzM^NFp-Jz>2vr?0&lC2YOJe?Lm` z-nk=tOA|Di8GS4=xGqy`fR{4n|T*?EbkXeyS6LAl8I~zjVMoW z9s5kG1Wt(-M33`Arwu|>hu^%_wvm+HWrVB~b_I3iQPP+Z$QYu@fOALBr{cnAURsI; zf8%|{UPRNcsexxJ&iXFg8*{@&va6(uE{TUgUyp^^tjZQ-8yX#3nPY?rQ@cU{7mWdc zMb=^jdtYKROM%vF5%n3|1v8DmmSW{2S_nnbu~*rkdPa1H*XuL}S4vZLO(&L5i~%qo z?{}x)1p~;etdpIGySe$UOP(9<8;z}2Wob{#{?!{jsnUi~%QRl*ML*~z)dHSq{MMgP z?+c|}KR~V{?ec*KDWx(8a2?y;&4{-ykCrtW&Ex4cZ3ng>+p) zQE7b^NxRuwy)Rk?1WCL`C0_r6TUdiMOy>1Ek{O)pym(w|euPfXt@2iT1hfnuo>viY zGNK-Hg-8^*BuKl%QxX^t?hq6ch@ex$g(`iM1KVrGpG$XB?fB9IO5>=lB;jGtoNFZb z6On?8y0Tu{_zkHyk{qNQR<;C=;^9*|Ctb@vM&|?>{fi9EOxrHkd2SD76 zUTdY%EbhTYh9{qs+&!Zp*=#frO zBkIRf!yke;Xh3RZ2>Lhy>e{7xg12a`?{F})%?i{0Jm7)KEUsSJ_n(dV&Hu!F*^Tb1 zUWnCbHkVAWJ1(c4hCT6Ijm!D-tOllGznesyvYLy*i!JMXd7A;z(K z1=tWi$U`(&QViDZ6O2QD!)!_!L#o9J1l$_Wz|u!lU5n(Cn4&H;9>qvcZmXGl=e|Q5 zGF42`o_36OzCn#g8@`rXMl5R429bhPL!K%;e;yB(+J9}%bJi8g_s?hrH>NzIEUeqv zgDWtpfs*RA!2@?F33f!xVQL0%zE0a0ww=}|tYoKeqV;OCb4)h&nBGcFrqmxd1=u6d zX6;08EMKQWXU5yBmYW+xd8U7nb@50cAi2^__|RpH!JZ^|q;4_A(3JvZv-NuzCtx(79VY6xS0izGWY-u`)5){0xI*7ja~ zT_k9fa+uOd8QHPT(@)kp@pqAe=Ux721F0gOZZ(U)ui3Ml3%mxjoDWjiDV3{$6i*uc z8MJ~)i!sYu(gyok?v_NrHs}qyIDA((7!Hxm3KS+bvH$fLgfr>9(`#edzh=thzdbs5 zY+&H8?7DscbSv2&O|B!is9D}un#}IMdq7r%$6`{wI??Ws#}jTmd?v8`{B>G==@R@F z>A-l_>^iJ#pQdO%R?}H24W(%6dheB@IJzBR>a*oX*ksoxZ^3S&H~13KCVSQm=__Y8 z(qT&TaQggv^1a59qBBOY^WL5nBCugZz!Alg z{Rb-%iHMggl?qCYV@k(V5;*AX>S;u5@$+?Hge*(b%z_1`k@T2*5qoy|Bfdx2XHYM_ zZqF6QaaWkj+Diuf^hu|KPE8!G9q%Z8k8LxoK9wm!&cLXe>&$6=kNzT6vC3nV0J6lK zbP0x4`X1|W5hg;nz+7OLn&$Z)N=)y`hiX_ycP&Gc!=W@^xS9YIdXlF92`-55u#vV= z0HN$&mX?YP9%Ju_7z+w?=HqL027DcSJq|f}3<xg={OFcIVm-sQBGQH`~TvxRsll5fwe^46t&&0Ni)0-WO zoP~VSJC7JD&T({2GP=S)EYh+{6bc1wO0dknFeGcW%x4oLcgm)o?je@!(8a%F+ZemjCBM-uHDt1;ZQbNp z{l%R(MaDlQst+vKrRsfiFi8~9%&K$@eO)mL2``~jV^u~^Id;s>UqtL*ETW2zP&om{ zpE}^1=yrPF=lEqtq<6^P&|0#=Kv%XvvUiTDyYj{bnlwbuT(E8pX<23>c~$4qv>X_M z1dd>Rf+^P{Rb&>%TU3N@)M*aUx};U^klX3*(zH!%NqT4V338SKuet3C>`e871jceR zNe1s&-6)KqFF1dn1P?%W<-{j04vA%uWjT1n< zc0nK!oAQ%`#7f1G{`YB^n3G?MSP7+}@kx?1;d&-8a6Kf7J@b{NBi6FMxIbLn|SGcJ6YR5PAsXoYvsferp}#Y&K!d+#){+$MZ8~?PSH1-DZ}nT_7)4EU)wp< zJl+aH50{PVX37Qp3-nq3c^44uJGd94UE89TVxxj@IKv3`l0;RE#>)D{5fy*?HQX z`-Cru9RBEpi5hpEdTScyy-a^LaD<5f^d+9O#w7V$Mnzbvz#8k)hbjL_Nfv8yqfbc6 z+apQzW&P3Rd;;4;n8iwW0Qu#>E)ii*15QAveL_Iyz$HFS7C`2`Ts4UT0^PUj@SqOD zGGID^_*|CRJzH-tqRJCniQiS@CY|TNN91?60{ulsoS3)y$)3 z8d#}lC-^Z3AqIw? zE#g&Y55XDo((5#eJ+S^KWitX#n~;jD@MBl{`=+2aMc+{manw}4(42C=9_@ZH)K{EA zM}dtzIoLjDYpw!1qJsrdvanv9`&Pmg1@xSe8AFozo6APkNwkW%meWQ`epCSMa05F^ z-At&RsR5VYazLy7`NTPrJ{W#w88vyDW&eXLRsqx>3n|YF!KrHYT}hA+kPkCxm{h;`*$G!BN1I!*+1SF!5Qa&8g9`>oj+@M;tzt&6t=JxP$mCch;;QQASCW4`RxK zBy0E<_XNMwgElrScyY^9FW%BzfhL=&jHtQzF)Rn*+USdCb&Ntf>bz*Hg~+U#8qZ(X zu^jaH65r-|EI_k*cnZkBy0RH|_|wP6ToX8rl1|^zO?>F{hi~kf6Lb&~qkaQXJc`2PU@$T}2Ir4JPnun`ygSyw`w=@HNc70=T&fL4oR2 zlR~p%hNoqa*+Ic=uO2+>BRf>e7Y7(vWc1Hs%X;kDmlQm}*z#J(QKx!5|9K~QeT%%M z^08bX#xt2VNqIWL`&#I~`x-dz9q+qp0Ym&lJXE3(?|n)Oy)GD1bxkP?TFK*?;u#H9 zvf1MVk^1=bEJXoN$S1>@>BP`R2&N}zfBDGk1F}K!pgHd znJRx5$i56&?CM%e4rxh_pwo@9lxC)p^5!rCgzD;ynS!_L7`DSM@(3^lk2Dx{UmRRU z7=|-=qddZKcmBNlg)z>w90m0d<5atA>K%+INi9+U+qYArj(^g7G=oHX*XYXQ9kA@) zj2;ojs>s|8%&!nIfD-63po`DMSHWkW>ti$;kwO;?=U$jcVRJ6^Y$F zT?lu;PDSrwUKz|@nr^!O**RIZF=Fbm>B~X(2w0_uH_h``aGyHW+cV6aF0RhMpP?oT zWBRxX>dMXqx(aYx^ko=tYURtp?N0odnD^QhsNeV7@wV(ky$<4z-B*MI|IMNU6?}^k z)KIB3UaJ?J0Hjl7G-$HQx9LF3A{%=NztHh9L2w2njv%infed+rJ^_4supIIYq!3y8 ziYM6I2adQC_t6;QU=&rZ${dkIr~HtO1Z#+vewIP+gUcUJY0b)C)W$n|io%TUSC)YC zZD&HBW|+z8^Z`V!0&n44_C@E3>8jcZZUa|DboXcTh>HpWl&knUlwX6-cd|nz5$}S8 z#7m15rAbj2ZP+nHZl{Og$;CC=($d>fFFJX}%Irh& zLMFATw$OTQNtb{%0s}n6WNlQDg{-1jx4jKVxZQ(c2(0N;`M^YW{P4qxSK8gHx{3`H zIk|%^^ZB35txz?A&P!LGsl~9y z(C+flBJ}A`SA{5pQ~^lW4=C+#Gp)&|VM27`ls0ljy6r_8`gnckASTx(rYL*MU^l== zTK#hXreRjJkWQ$dPn`zw!((ActEf3fADjjXR$>FIIMS1O7x7iFj2*=|JH*|OM-a(1 zl3d7*lE+3$)dOEuW&9K*hj)*735T;>k6w=gS=AZo)}kMcifv3Cjo^#X(^tpy2H6B} z%hEGp%?IS8?`Z^pQ|ORCKjVWSq)531Eb2F-eDSAZcL*T_<>Ml^=uIhj2baVo8pY&E z=sqnXx5rt|T45)enYGf9v>$N4069|CU?G;%r8iOjU*C^;k)NSe(VWM>$64pFyGfT% z1>)YInP^e3^c#$$C4`o(pkr761p0CEV|5Gd7kC+8QF^qZ^W!Uf2egx&BWAbtU+P?# zixl<6T6=~SEIB(qiN;4TA4v|xGfuDEN)slB;_(WdU&FcY5wAAlgI9bV(HZ5P zP6&>JeTHFI8ykxf7r}OiF2%RAyjLsgT!%Nmhvy`GoD8%V~6Znm;! z2rABoZf_slZk>nWrT~{R43O3SKKU(B<*&`djiSyCTtM-vvd0T7KQC{<|Cu9`^u*=1 zl^Na%Vm@~!omxw54m!Ky|VIQLd`~8dTyjD`1c`!;;~GLm__P8{w7!Px(A1?IN~~ix(TCt5{qS|991}7H z{+P61@*SG0O@`T`uhl0LkOF673RILt$O31qot)+8A&Pp2qNd6u>%$S1EI$o!&dP>( zjzAc{ozfGIpPEtW9#5h|dv)m;f7tLwkmjQc)1Ps~%aapS$nj1hp)@Un-$hjs0G9Z# zbC*qyzi@rC*a8I(mA~yumq@HU^LLntR*h^|9~2RBWKX0phLh4Np?vg~qP}HsWz3OkQ^IM2_9g=kD{- zkHI6OlY2q2btUYAl?E?oHnirDxjynNC-nRNQRa-x{8F@RJ<=`1epoN{3jJ8^*Q_Ji zdg)9@HA1K|MYc!47-}xil2GK z@mGeYBhY0mnzaVD;ffmE@(QT~e4?4!L~9A1AEG2{mq>7BUr{6c)-1N|u;|3R>1&`E zO$bM2irXyp*>!G4G8*$}MOVQu3gKc3(eBHr!?tLlz$^R|^PR(O%@d+6?*StL z{stD`Z2q1nY0AO+;FYI!CZG{a46GDwwX}_*)P_>(gnTh;M7zieQOYB}KrQ}zykDsT zvwk5+UfJS{&^;(+{LsYegOnSaFF!uuD|l|?b_aDpdwtN|4W${egyM~m#wok!w!TOF zH#QwuRItCu5}AGWOX+}OyJdrULW?HsS;m=*{F7DQQ?^;(2XTw_4)PkSW8OeIJBUv7 z7y0i+H#s1l-K7zZ{;qMxcZgv-vCK7D56mE#@mA7bq7K=y2AvD*<^_V=b=2@#_nZ|y zrE4^a!ZPyZ{Ka-GI$q3fATan7Vt*YX2+F9HHRlK^pp|RsZ+EX{bg#3UBi7MxZ)d1@GSvIDKb?5A15_4 z3s{8j;m-aW45o!G%URYtOtOU97$cUI8ZYHn}RGW*M&4t-kulkjw0JkP0s! zrq1W^{`Z0LwVoer`l1@4?nI%LXxyMTWI{`Ru_E1k7bP6ZPIHsdM02F1#Cq>u#<{5| z#-UE+n`1ff%}S0^T5250h>x#MuCdY@iF?eR;j?aJB+wz|_FezTC3})@TIA<~`h|px zGP%#x8+VQHW&6Gw2zA&OrM(>Uc4dYge{>^IIv?0Ng}fxjuBUAyD^RFAe`_Lug|mY^ zkB>3BlacZI%{jLLP>Dt9j$ZgA<*=bWm*Xq1$}{!SXfaLX9vOz7*3xU+SV1yTkM6b5 z5c~Zu_6TaW9rEaqrd|?;q=y96 z#ReMap0Yr4D%d5XLCj4W!bMmcu5E1RZwHgVQxpeBqm%u&Ig3M0jRp&gMC@DqzwO!kjjAr*hJ%QM?lMy-P@4jgVB6Y3&L2C|AJq)u3eH^) zk4s*?6*@XKSpZQt+rnp|JPeGNpCb)zatQxBzm3187-OtUdqC|&YYon-Atj-?*YVwC zhr%Nc!VJ8@Oo`c~cXxI}fiM+nTYA}|L>}2<5#hqCkE~yacPy5gT#tulM#B{6+hsx{ zj)mOJ_=blsB@G2pkQq!ll#a)<1IFztJ23&D!ExzDg z-dK8wr_j7iWLwX*+pj$&Oc@fN>I47b*f1zhPrQP& zUN(~$S`@YLl+?2VLzGoV&E$HfS+AGE*7^+i(eZ~$JP2X0LtN^%&E7?6S)3)lf*fl6 zLTpvjtZ%+MOO%#RUPm`Y;qR_C zhFTv>o@S%g#br`wLv@tpYuMB;xcedPxC5r0F(0q$r8}i8Z=eHG1npyR zN#hHD=)(MA;WBsy0RsoAZz=6mncykBS^otVVHdxM5Ez0Mm!~rZf?!8{`3IUK7f~h# z^hv_{U5r($QAubcp>V@l9j6&;LIC%abrLs~%vqV)m9p+0NjUN-Mx>~)>M~_v9Kl@2 z50*I?Q0 zvFM;!?vTu$sNZ8rZ~ow$e=@)=7bx(^&^BIc8Rl=G+lSnlw$>3%xmPhOr-e(fjw$&P z*ms-#kq|1sO5*yS7vV>CPZFnl9{5aTg98qpyLRKzNZ<+q4H}8$Z@l^gx1B4(rsm(R zdkeU2--RKJRR`}#AdQpPHae*Xmxt#lCI4uB$fL!hCg_q15OFgP6a*sGoSwno zAGK%Kaf|NH&E#fO%q+{(dl9ghfkzn^UpvnDy+w(!ZN7QzFqsYfF>m*y>~K_E4CL|? zeLS!I*ALrvT&B`Xp+u~?SZU+^IX{^*_kRBvka8eYA5ThtSYEAOx%M~=^Ewm!TVB7$ z_7j)Rv{!%AGTwj~G2JXnnFLaj_RW7lI7PKRVKbXBz8Mle zVC!t2hzi86K3Y#HmX|`k3APSjw)ZV>{%$V4ZoiQnX5fr7a~*Go`!3CcLzYLK&SZ2U zIggTGnfyIR`&#sGGd`!vhZcj%RTIkDvY&7pUecB;i+ISP7(g{w* z^>2qp{b3(VMuF#5Ev^|d+5)a?)rDfpH9*Qo;8NZCEZfj1RH3x{^hsj(8tVokm%Fy1 zWZN#ety8=q;i}6#*NR`{`CM~rbL+obZHx2dSqry8t-e3&6p;^g3KkGsHK6jUkkmJ9 zUUN_Jw@FPAPCI6wa9NJG;=rM~gr)eNhRMfz`>3z9w%bc677kxDtohTrvFl;Pg>mK+ zSIYRv(B`$XMmL!Ad$K71qIao)piB_Y5NrQkI=t3R<37czySg{n9a1*g@XBNM22~oF zYoP?+g{QEIrGv>{0XDjfXrTxY)>RSFNQ|2O!EM`|*a5%;`;$JZch zvux0n7nUh>?W{+ClAMUIv6Zsr!2+6UUP5=x= z81`BAeX;L<{L79uoAwJ-lO1;AbtWTy>e=Sux7h^y^c}WTD=Yn+t6DeB>Wg^UL%9Io zSUu~*`y)%RcQk(NX&StNW9@Clw@s8>wB$LwQ1_Kf(V&Hle-PN*La0nf-4aVLK2{GE zR|-kd_~%3=Ir{uYdba5k5UYh$pEp8dXRoclVn@#1ncCA3uuV&8Ce%;r`+fRtpS!F* z3@UYxPM3V>nP~?Q3!S4dSh#eO@|C`-K4HSw`wRPP0TChA_GykV>uX+?(>VdlExrU=ffZjw9qGs-J z`^c@J6FnP#oKAkJaAgpok&sY%O3XE4NKZL0yg@I`9OBz&=))F(zCa4cO^D0>0pypF zkeqOa@>P6#1|Wn&FjYJo94qd!b9Hvwt$e1tdU=T0klESoXwWR1gFQ{$X_0%aoMSuRHz2zU(~@bT zcAL~zrZYczjXsJq7f>SIFp$eM649rGpg(U$Hj;`hk;TtXHMkav`biX=rOZix=hQS) zRPfJQ${@IFWjLFSidE!ShpDm9NmL?_Mv>w2HowIQ%8w^ZXMoCNz8s;~wHMd{;L+am z>^Q#qkg+gV9ycw&sHznRAt-mt&=6Px8NOt>y#S$6CLU!0TPeJ8L;ZPqMvdw+amgi` zRbkeeu5=}`Wd_gE#RcFlv{iioH9*S0h6x`Et?0Oso1qJwo4TpSC_2RTrK~#8Dc*kT zqiL+d2;>8hL1tHrZ0HUQZ8_Y$qat_Lc5VI7s8C4Rm};50Mt+3fpG-5e?-O_iW+`$L zDU>#wNaYj|e@kZ^V~o!wHpr1TMU9!H_uezJ3HSp+-lPXwE=`8JuDn~eA(q`61dzU6 z232zPfUYt4QvaUJd8om+HH)?AC?wVpraKB)^hJNGh5v3NgKwz2mC(M)X3u?5Xoprk z3{}ncF4f@miC6KBnHJ=F;p1#aud?vXbDWiq3+7h-+5PO!aQxf_{9G4Rti@L)-FnLX z*P8%Gf6KuF=5Wrfm!kFnQ6LB6+Qjs3YJr}n^kWknRt?tQ!4!9n@`H>Y0Odg9T$3?n?d&s< zR~f(9u45o0*1X5F2|Gf>5|b2TYEBpJna6H5WjVCjlY#tw%=?|Zf$Pnye>XrZtFexh zi5>L=Xmi?g0YMbV#={X&9e_>nABF7AIpLXX&o#DBQSC%RRY0tm#B}fvJG&?NFvE`n zuUSW^c)BRtlh6S9T-y`LFFeivCdqy1NmE-UA#x@Qj_@>(cdHaWKaw~G2%F$FObiuV zLV2$50hC^H(&k>F3{2X+Nn6GoW<{}_iJ%P=*V^6QC*s35R1l~pL55BK#Icx9I!!X^^!P4hZM;MRB=rnhu8iP_wvjkQezLv z;gjIuPB}jD!EZUElkZH&Z3!@UaU@&f%mVHstPB4e^94xXRPIk=%k=JddCSOgaL8<);0R zntE)kn3Fb|^mX!P$~sq^Su143+g7kF0u>GIL_EYQ{Zf#Qw5ETWTdXBJR>-dJj4QYf zb+zbCRcO-*)vE;(bzIrq#R9z$y8{$h$O0{GkNyM_V6rYcaVS9cqx>`R`Jg0DsR-u4 z^*_}$IyJPEzn?jrjP~c9q1LRpaznulG#!`Y9ZM@&&M9Gt*QRcSU?su?n$py0stFhR z(+IAs&KxQZ@Z4%Nv>Ipclr}Pn4kmr!YQ3p`z#)nZ`aT}m@rUpytV#{UZXUYa9hCYl zNU#l44-+>pAg`tShfjCX&LwX)CPq2pTkZFAFI;bz6hJ=rXUCfl0N(*oGQ~bMGZ-1A zc6QcC-ri&c{+@G_2`Fbp=~TU)`~^0avZuM%3Zt9|X7JTtZa3p@OEO@(Zwx};O-Sr< z-NHAve98&^H(Np{5Z2elg20#?TATdyrmhsqUC{qDU3Hc4V$j#!^Pko+ejNAjYfous z`;m833i`)bM0I7Kh%_@A;M&ie-@Au|kn|E2`BEEY61`WY5pc$bh>|S5QJVyyPz?Mf zZD^c%7%l)|JD^x5*&4M%ci_HpYad^mYLQXWm}zo zYO`R&rpTfU7(qB9=K@S>DO=aWG?3xpSL19q-(|hB}VIoi+azRVF~9|@uMz5 zdd7az?4;-?Q))B&-Le==0UZq^M1XI;n{ijiGB-YFcsURWb8_yyr)zZ};&~H#=D&mU zdY)hs&<)mT7U8EW-;>tC6RZnnuKCD~h0% zNxgIhqBkpDG9oAtA^RzvM41#_TZed^n0=y6y`}$PehxcAL6xVdaCZnpcMD(Ya;Fc* z%-EZ9^0p`D=-Fw_#5Ws@pdF1vaWxFCi6dQ~L}(Jb=OcW(@w0s~4=Gt9F1>N}-_p4@ zI&?N#D0_H?LEQy#8qpLra`bw9JLB$S1=dA!Y4UdhwP*)?BMU02*CrUFU7K7h>Ij?g z8E-8KZvRM)z*1wShe7dddJmcSjjV0FpAz^J?Otkx_OX*>zBzPEn(F9t%TLIB(E zGl0vJmiFgXTuRqD6@1%77Y)^mlaMq1Doky|I4^oV$;`ezv+HjyiZyA?)o2JhD4l1N zQ9C$Vl^9I99(fb2S>RipyEe&7oM;Gb}{s*n7%>Hn9Fb~J~&i-2agf))~%=jh< z{?Sd<^cvGfvVm$cmS8x9WpTxtR{h3Z5cTInpsY>@f}0<{x{u4n4M~i2O7m4$%9*gR6Jag)7$s@o(jl zC0`!of-{kA5#so3_E~?ly7}8sb8A5fNlEQ!cFPwaeQx8>pUQrt5 z&3l|RO}8>mPctRhk;c&h%6+1>5|nSaE!_cg%>-p;%Ik#I99IYaN2W3O?~x#gjYAU? zQ}k>CCoX`>zpEnbWhVJW0OJD$fg9#>VwS70RHTJ_{-Ak)USBI1ev`gKAT|YC^dDy= zP52IZBJ69fcn|Nm^Ii8@+gA=KaSkc(6t{3=z+fMMcw`x2T*RKf{td&+lHPu?;4x+*C?Ltd;( zh#K%^T?Dwz^Vdm2Y*p^LH5_aN=`v?oX0uV_^Tn>{(YT)$T|)>z-OKU84d53FjULz( zrGOOq9LYI8>yFQY)EB=N<52+oP>`U4Nf_}-hGhhCbW)-(hAqWWI{05w=I}s<_v*zw z4pj}DGAVc?&HtvNcvI%aeh9))l4{>+hNE+|CwCVv2;msGgEp(Qnr3dlbJT?bNH7b` z$}cVaFz7ScwPc4rqmgIK~`?h$PhFfE`~)SIXse)K&>Q1XJugZShc|@ZJr{ zfm0^r9u2@F2T>KiYcSci7#3T7@yRE?PP+zajHwb`C`XVt?2!n4=uICnDXqyjUB^L9 z9&YAEGYW5{b=1NfBYCpoGyZNuTYjW%D5xp3&(((Rwjwr;7-8C|oZR#KbD``f9Er?2 z0W{f`7nWBym^8nv)*1cwE6_R+ioE~&hjO7;)%`xbj-*hApxqf+j}EO5N#U?OJH!gY zhUcCF^Dml2AA)F5yI-KH6~!X;Op~bZB`=lQ2!lsAa22u%jf~|~z025ZoA#2=)f!_M z!=nU&Y!;oo59%zR!mB0xXtjjK)>Mps>UqJnkB1*u=%E56!kg*GIizdhcyW_(3Vuo6zZoX4=Klo{WjX>H$sf3= zXSfZZztk-vD_iy-eA2YB9g@?jA!Urw9~d0{WpV-`qB?OT2P7#JIbM#t1<;`OhXoL8 z@gnSA9>wvU>Pud8H6oyx6L1no)I+7p^07$FzK$;T4Ks&(E>6JgDBNzNPCB-C03~=B zHicquSQ4Q&;yaN|zS^8CLsSV>@~}ZsRzmvRvqC`0o`w~@J0lj82V{vJ;kD*g79eil zXTIj$y9-+5hbdrit-`Hi8INw}^0g8(>A1m_K4FCf$FXt)w>BKXXrbN80?Izn1%0r5 zCsgR=jf@~U%cpLwpX>u8xudnGrvRSPVqI-Ap!rDsw{^S@+>uW#dX+CD4=QwARuXg#-)G(2FIyYs%Iuq=0 z`%YDFK#2{U!`SW?`Dv&5j1BmJu|M+IA$K1bFl-yKY&RKktewGXgA^KaAC;Gd_4auC zR^T7RhjXOLvgVpEOoTE(ujKO_FjOr)+G;H$3_3+Lu_16nYnzbw&b0D6y?kwyq#x!Y zPjOjGihRcoja&zoH(|r8d7EFS02b`o3I24mLeBD zN@u5nCALYUEzXyt>5(jJOZS?e9_xfnG(SE=~eO^UQ) zLYu-F1UPb?(iLNhE%L(=w3^gFxzY-S%lMm`O#IcWOd;!Ft=wyo8WbPzrNz~AQ&7=L z5@c%??&%?PdS8Vmyl4H>f0-b|mIOja?hw;n%isHB?N z-K7GH^aI*ot<&e`D;t_7=owgZT1CD|klSb;^2@=)K-;k?6+n*FgOX~5m38(6b6@!m zjVPuHtt9XCjdH9GmyGymWW7LX3_(}F#9Yi3wSel=V(=D~o@i>AA>ZCGv41HCF z=VgeI{Jc1;)8m}%tWU-DJV7?XvSQl*0Ig;f_yvJ=p>8DUuGp2JC&z1o zWyvXPF3&t2BhpR&6FUAusFoUHDC~n{oiCQ%5&wB8*|WQrNahE01K0@Q?nwb z=W!A5z~>m#lDjAr8qqlT>1jhCNWEmm1k0DEw^26jGDjru2O%CV&`# zG$-R&a{5IGar)w556LW&up+(*T%X-ur7tNtIf<1|s8r7U97UxF?=bn}kFy&Z3cVlePY=s?2VE16<+w0nw_bN|o)sR8lzNM+5v0tF#92 zAGxzAXlN12`)=dS#mw?bl7ZmX7BQPI};P; zb@{!e(aQDPOUO%zoqAL1E=v4rN()D1K_;S?NFHJ_u%R^vCNQd+L5;xMo)&Xwmrk~v z74)mfpThive1xW_r0CI#p4ir@5cj$Fr^Bw|#gMsz7d~(byg?y;Bp`ID|CfBoUd>6A zzB=^H_)y(4c`WY#&c${~!3&F>7V$_+usHtwLyd$*g}qX0Dl#1>?!Vi{Uqx9rp!%IX%Wj zO<~erwYJ{ua{#V^tr{rF;83giKUf;}&Grw^hH_Ul>_ACEqj>#Xa#tMpz7!0g0Kk-3 z{@(PXI(b)n0~1L?^sCBp_H#IUsee@Hbcho-_&-2*Iw!J2s%qkE!=eK;yl+O2J+)6x zM|i*P&5UUrpjn*?4yx+>yPxw~jwMxlMyB&nK9NeVS8YK4m-N#7*y=M5r z9(`!6eYyVQ{t%&2U{Vmm86=%GJG20QD}{t@Lmt-$1n16(o8XRnA>9!YaPDbg#JuY& z+%<2mHh6 zd95~U!wvBY2rq?vw|I!fs@B=-hhbbvW3EHaPG~csQ3tZ(7}~^o5LjXiHF;a^8-H6x zL-;-Hz*)xEN49ac>pSlQ8gicOfC=7kO$AJs9!`ioa2Wv`(<{M8;g4RSJglwALG*a0 z%3t&a5+!MRY*$rFgs9VG!uweHYi||7JjyY920nk~o}F-2x|?mVh`uwowkWP75il%3 zkTq0wM{4zx9^=<|{e^B-fS^J^lXsywb9top7}F&GcxuBsj;pGxWqJ0HwN=tuveK+- zK_rOs8(3?a7Z9zr2XFpl(=B0cD`e@Y-$rq6EiL1OwThB1R}>?T=~yb2K|>EHRkG4| zo;h22B(z9I3MPCb9iH}_Gxw|IKnKH$9r4%x(a`>^jthZ4){!gzRFV_aLMre#0Wqd2XF;^95zS?l9B(QrDo(8zg@f!20XwEg9b)hZcQmPD9kp0@Ao zlJxw<`wwxEPgdIa%JcqvV0+jK=-#ku_3Zy$Ea0C^TEKE)R3>C)o zbs{LFI8$5L{)aZCk9l<*LX4&h_cM%uxwS)5m-uYrO7coz9SAz01Jfex;C|EO>l;_J zIGwn?+{C45*!pKLn@aZ@A0%~-*@bPkpo_$!82 zcqx;S`U0Qpo;c$rNNuxGnaxvD9f3`U$YU9gWf$bGI z?DidPM;(mfeF?ieOjZ5*RbQ0-1K$9WCJIr`wwhYP8fGinUg{U!Qm?7lVE;nd1n&CX zeFKO|(9j^_=bW+eOQ(X-6x%AzX6?~hWsoM(MAy!(nU|k;)pzXc4B6+EH_{tW_Ysi2 zDU0&UJTvRLR%B?T{SCiyLD4L0)*FlJR{xFuXb zYx9s*O{(U$?xm%oxBMh(!()8Y@-`gV-APYR+gnb1PC&P_6KM+4o^dAY%4>e~WmIL} zh$O{s6>wxZBIK;o;`uZnMYz11Co@f2`Mm@uoGjcTfvHxdgzZ;qUuL+t4?9#{bz9`R zsf|?GY^jyo&PpQ6I-UzW=AJUfFfz07WXfd=!1|i&x6H6>EK!X#wdL8PCNLsPs(Zh@ zMtR^YI*>b;aZ;l+`4bZ@GH`yxFqXD^0sw=g^}Mb>ChO)vW?>h&P1&cJ2oR?Fpg(^@ zF?(*p`2{2Wk-o>O@m;{)_BC~?bA{_swnW1ar`6?8qYVST@0O3f8$~<``A{g9tymv) zA;~Ki0PjnJ9XFF_aJOzL#=Fnyn-1|{#z)9BF`7QSX~oZU^8kvy zB9%?Kt4YlLm0Qwmaf)xNJ=)b;j?*#mdu@GA+BxN_)k@)P#;Kwy(mVd9c?I_wme`am zZJqm#>gW_EbVhv4wS_?}a7$~{w}r%2wioDuSw=t7YgF0*#VuKacD%e)?n4uh6QK@rk%S|v_bmdz zL`yU-YnVN|A7Get;Bm6~YBIDV;lfGtz>6qUxON6;Dr~#M^Qf8>F@gnEYeYJ~{6zG` zLc`Wk6zvcQm11%ZjTMIlT1BEA?g89H$ZXp80H;Cd0O>Xyj;oY=(aQ{o63w;mj8+Q+ z%&AiZ(jMucM1dD`0|kEhoiH*fC5A&{rguuvxpPV#atV#D5+QUca*H|k?9yu9Nb9F} z4=jIAo4myJf7Ja>Q0}J`tBj!LX;lzB{mR*OskpfgNIy{d-=!+@MP89$qp|}aLgG!1 z&m712%Me(jfalQ&fDdGlSwk;9qqh|kC>N52p9JAX&rteE3X!DOL+NuXAdA_xS@Sgv zAZh&ezP*uLTq%~gKYe-YXqu%c?=0WNbzJ^B^zzk|U*l+&#VvdQ&m_4a%WhlL5{oPN zh3axG(G+pmdh5eC9La*&CddP-Z)pEjS+zg;#_1+=8J+nJ2jaISKf6E#NV7~YcTAmE z7J7_?5e{|Bw7?G(z6EJeR!Z%91wH$AC~K`Cm&lW08sG%aE*N9`g;euBlF{sMl`|#L zRZRVG!jl0IwJ|_0Z=sWP>RlL~v-KHOx83x#TC3mDl*j5@!Rp%bIY| z5Ig1y4nul0hGDL`Hu;321UnZDW>wMK_#rTNi}!Fph&<{r`ohOW(4AfzHiicy3L*_> zp8|dd?iLpIKjs+mF`7iRLt)w>rLL3P2!#FMp;(%@?q)jd7hQ;e;mFEYF~%E3iL^<; zVH_*mI=oyi#CVf|Z}T{-U>R(Y0_f&`KVN+aGq)mY3s*f#;b7HaWS>&4m@kba2r7T8 z1hkr07i)s>@b9l~rOcv+Vb9m) z5e#2K)jSiTbg2W7!$dVO^@}s;z~BMA5B-GiJSn2fkiysso;vz%cVM@`yfT+Y+`gG? zx!qiz7mxgb;||KZ3{H8jPGV9DOw&hb*bD*>e$Qw;b%+F8jj0bWCOp#&&7LZ&357iL z^?m8&4rXT}N6}V!Uy%%VVqOR0zI5EJEmt-B4uKQMo5c1v$)((8CML60Soco%-gRuQ zv%yLR3!Z1+lGlw|2ra`k;lV$93Pu;2WnN%oP=-fgXVeytR?^s_c5GbXVy7Cd2^kr1 zxefe;qf39=3gzMQI?2EfEdZYDG<=NVY@c3g29Hn5yS?Daff{3Q+Jw44*&t&=)*h=K zhm9UBV-x0=_8*i{E!dxvkCZYoV}^uEOI`WbS7qz)GP>a|`K@6gmw#UJ3o4Ru%_XQS zkR?wuT{ce&E%B+NPH=|6e^P;r*e?lX+hV|54{ zZLxd-dI#(x5Gqu^sUzEDIq}DzIh;2u=w|1ovzUntVLMsmqBH!b=Mr{Bk3e^Y zv^^n!VS&Hy9BoD-apTsbD*24-ZJvy^mozG+!XdBZ%@iH zE++xF#=*xL12H?(4Ng2BaV3CG{l11g>|2i7L*l}m07AcFJeI&jK7SDZHz3o%mxHH0 zcTBz*@(O|$)+WBZ_A;fWyZL>1NGKp?IR=O2o&i$oH<*Vs#Z`KD_~u;q9u>Szzd9zK zd4nxcipe%Gbk1_`lzVa0#FJ?BGQ~J3Gc5V*%(SRmj4+M&59mC-&36FJw^cW8Q~T!I&$!Hage22O zBlKpHlS->FBO{_yH#OWT=+#4?2I}Fh8ILcf*pq=z{?SKdqB^h5J(Mhl=7_1MFIMx? zYG71o7i29#2^lS{cE_o_cU*&Y+UbCk!Mkfnpe?=e7)@~^a0=v%Ls zGb7SA5Y`@_8yUUwR==~macjYfE7HzJ^;;e~#ClOBCuwARMv5z$1ISTqLS=Sqi`gXo zYx9Td%1-q$jHmXu`os`-f=TzqRy`30-@K0b9RkPs><}%LuUeIbfhdSH61k0~pNsVD`_41^3=9*-<}{?3(7INHWW$ z9^n=>h9c3K{1ENA1`_*-X|srm%^(eKr7Ox!y3wci#E>x~WkkEr1$oEC+me-bF`cQp z1cv46N=zIg`zSTtn(w`uTY!NmsLCwp-ApRB;!f=y_^iE-X3BU)q`5`9i>P*MD+>#s zELA`|VQYzJU5*ky5^C1-^Sf?lZRhMD?#r+O6vRzf#)ST0QA31TyqUHUs-2a3Ro;g( z+>H2ae$ZD2fe-(a1~MFwC(o_Tcs0z{t6(gUG_Qjx*2{K1_)ipakCAwk^`G2&WLYZs zDN}?y#-J;v*$7;pm}wD~P2N2F)#t(Jk{I9Z{x&1-)n-U>yYU+kqik}LSu)db@HPiF zp-Kdwzt)<;?aoJ*m!1nL$_zEXbG&{1@emNwjMFdwFMFXQiK9BLp*zJ?-|nT^pxw!^ zw~hw!qw(JuAY*i}o};)ACtyVmx@g;cvAK3QjqBQgicqKWx!ciF-xb{Fo50Wtuqnq~ zUj+!Hd4~>gEcjmwj4V>h@!VEv*W%#F`-aAq6%eIQ9T#MsFT-q0Cu8}XV-|Oge9JRe zV<|Kh>T1kW=}yKw=XwTR1NiWo2@;0yxT{XB2rKq5`epQvp(VVK6@s{;N~>r+!c7#wpV^+_efj7$M@7kOIXISTRGypGUk zZBA3!Q{A3Rr-jDmcoz2UoVp((EXF)K!ZkAVRzsVO0OiB5H2>!P80C2a9@Bv6l5Rkr zsp%W8fa$N2$9zzt;eAjFd(`v5i#i+j4dTtYj@TvNEI zcT5AK5ZIypWWrXH%E2c#ghaHnhx%@>vy%H4QqR@cYA#^y`Ig)rvR}o*0@ZqueUteY zT1F_^>2{o$V<{m9?;iFk6J}WtR8>;RRK*jV60EwG(5))=V^!k?82E6nP_EQ(E@`42 zu~(zcXyZ9EuWok=xC@DX66S^Kwml~`%a)TpaF4!Yu5Xcj`A0&D+#s+V*a&PM)SBrz zWL;Y5mm)8(I&}oNpcA08rAam^kF;+!5dF7(Hx10*$GTaA61%lt^AWAXd>g;7h<+U# z9J+E1#gEnPXxa&qomIv(*dM6S{wiE&>0XI_%ww)BC@qb*jl(e571rC9RdhB8@5)29 z)-DbXFCUOS#08@iP+2jf--FQGqqmP^Nn|5|DUZgp&d9~A5GxvPLMLR&rR|; zoUF9d$oFD0ENG%CB*^qwjMiI{?vZ}4ydd8H`Qdp^J0TiLK-@B%o;M(}EqfF+uwdKp z(Z~dd$?k)&jl=@U^F2CyHC;ZCTR1!Al{-(dirt9z`9n~Yog*sG4k}ps1v9v$F)xR~ zndone_ORxbAVk9nxBm`AYk1v&_jDOKcb%hzUu0bdv?YtfGz0Pdy*58ao0L8n2eIyt zJZ(^vI3sZY@%II0yG>wWs|#|9Dw4l@9ijAulpS6{cAt&QTFWJ+hekY+KKe{BQ*{*u zrUwXcv`?RTb@FVuu)yu_>MGfDfg3~XWiG41T~5NKgAJ1e@<7fAg3@ooXMEUy5(ZiT z2-`Ub$(Z7OE~7)_pnu(S68U&lKVz@g&^uJsy^O}o#HaT!wKP-}cC zuIQ3&lXG`fd{h(dOZ{!ie9H6GGP@@IGx~m7Wq8P}5 zf!(zHk@K88TlnxWEL-Q|C)@W^jE4}QPj1BQ)o@b%s{>IBRsF6DCopK661@M7^+PG11Uab&Ud1x%WWWsxMdi(qA+^Rs}>V5Z*R-akxLLVN9 z+OJ7bU%1AhLKH^Haqp2&87!JNja<0LeZZer#g#PK$qfe@?mkhgMyd>5zUmqVsZbJW zCo)kqk)ATIjz_S0B_a-GcM;sGcm3pRNP;31wk}JW!VEi_FLjJr8+o8i`TX^lF06TY z*?+thVkf#QPFE0LDc>?X2wG{7#$_nz~vp=|hz+nu(AU49~bRLFYGcEVh@Z&6v z!9Hpu^91SkJ-uNY#xMI1T@y6N?dit4Ptm>Fr7)pdw9EOU`JI?_h?dBdgqaOMh-i6; z)?jk(V#2v_YtVT3oQ_|7S4*H*d+OpT1sPXmvSA1K;gm1Hsb?}=&Z8U1&*Q3i8O*+ z;nb=lngRx7$6I3FT&nF9wZGo&$s95Q)n0Ao+NR8OeVL(~Hkay}_Jhue8N3I7av{=K zrJUi$QC5`B$-0@Gj;e}3__c)Vbuy46ZJ8P;kYOkQ^qD}&uQ@f}HE1S+TTU5M-pr+# zvLf+<^=^`o#(_q74prlm?W5jbz{sul10OR${AT4HY!WnQt=q4Vm`qwoQccdV3`ltr z99yL(v^G}zh=Wp;vMu9vb5vFFk)_|)3s!NF+7@z-!AG}z*7E~Z$<$ILRVM`vN7ZCx zte>frDBwiV^=0{Iau9r*Q_CCc+VffUesP?@;xMfByPYKbu|~v9eZ6o+XX8L{yc`8r zo`~aSZ%x;U(We}}X`0rzW>gj z_XFO`>4FNop8Pl{>Ku!$*6d!}Xl%5Ks5GyNk?BofneI1`74n0M$rol<`xm024pL{6 zTOp67VK~eO>BR-1jjqV1RAZk7?apiuG3iQwkNNqbQ_^YL8llRF_G**d9+z`=o!gccArNlVQ8=vV{*UP5|*)nBJD{aqa*Q`i;al)AmPycW($1kpe z;@cTBS&YrLKI$fg1SWK+h7{D~G@Cyehs1ExbF|QVgFG|jC6VcuKEpp`RaZ4|j9cpTnqAIq5*vAgMEeK_UFrm7rdXU0hUm0r0O?ur_-DLEfS~%D@i- zR`e(mKSteec!cloPzWAa@7G8>6TA<{G9q?zY&!DPRQ#o=W?|j{fcCX}D*&U>ujA`H zBMjKN&p$9(NvifkPx%zAKC2qwjEK-!{2;=l98@0NI5`8*r13i`+5hHakhvNq)0<-f zubiQ)woRF*lVN(mxZO3$4VG)2KYfV_t~~a!&^D5q8QUEQPIJ(|JI%`d`8>8z(a`fF zX0+Y6%M9)wLN0a@Lsiu^&u7R!gy`2?{>2QVKygW>>0-|0MH5IgX*JHq!++w3#6+FH zR#V6sJ}B1L@iJZlcAK5xuqTVQ$w|80BSQ-ab$tytT=cInQHr{7PTp3$&m>R5H>abc zPATdeA+XuRCzfpIVZsaSX87A^_Lwlf0N)E~@W{#cQ?k49+NenPyKYO9M@ z0dy`^ST6U-?kYvO?c5RhJ;*nN&r$`Ve0vUY7^b&AdsW*T&VGqaNh>f5BV z$OA*J*3#@nb_tyNCZ8E0HVMLF9J-Jx zyhO*&HyTM@$-Xt%mB4L+hl*xcIUQ0qe&z&+FDnV~=EYU=rp5wS<#{8Um#M!9%3G1{VigyZU=|_0(nhSR zD3Kc`Hk_Ia!@!l)(kJ?8TYowXU2OFkQWu0ae*iVI#IQ&m2H}+MMf`u{S9Ew9XTW`c zw??#gty~6%+c3)8zpeucAW6|4NSY?e*=XFeZAmU)>F=KScy0@^0Jeb4><4-=AcvZE zL~_FPDthC$Ub&h_V%Imk*9*&5g9~J2CgID(t*G^|%Gm&^<70Q-=Xdq z^=TL>Xu212n9ANer!(4{f}L0oe|!`#=5{311GRqZT-+!JE_OZD(gkdnPz$*tpBaOS zD1}<=_^uAt4x%fLb?w6W5BWB-Hl^gNjLY+TbYxBh(1Rc6qIQL-2NVj0>4qN7YybEW z09q2OyrE?SEvSVc^C}lSvS*@s8FwQY1Gzl4`0zMvEPF@^c<%fI3FyDh{09+jv5o2Z zA!rA}4(aZn>{5r_8|0tJxxrv45(W?ixg2Dl9nP3}13O&NEci-oW~E~=Myw^V|EnI* z73JIZR@>L!jN2r0i-`FiK&B4R7vp$DT23`90K+&vZoeGlXc1^y86lGC_{yZPi_5~J z37^w>+LFoL2+YDJTsFpoio+A-A@IN)x%DzNpyCC*v;~JP2jfkgHcVid^Zt@h%Ai5s zD^=)~1j-S#6YdFxn-)O)h|dqcQmZ5GjY^OJ!B99AjE8J6hHcb|kKpx3^PUNfPpb<60N?yS7OJ|So- zzuFf9fReZcyr3YQj$UM+*>~ln?`BOIC{+BYgsRvLb`jw5F!@l{(?;ur*7m-G4!$G@ z84Mpaxr|5MPW=b`%3$fEQdZ8T?l_e&xxfC3o^aBzzYOc_?2N%sn>+4&TZ7>1809Hs zeSM!%KzDpHX_T9%z6i;9VdBhTyZW25h0n{C?y?7cS%Cw}l^{=$xKNN=;1f+=F--o% zeB;nP3lwu^iQ*HH*?Z{=MctGyocE<`jaa1XL!-Nc`mh_dcF8>NUQYSz%*i|yia~^M z(hnALksr+`%T!zl!1X|?jf7l{037W_isf+m$4lp??WHUK(U`I-Sy}MY4V08Soqksr zJkAGY=0mmCSE6qC*1x%z_SffDBtLVqsblxgbS+MPS$^4O-M~A=tu%pvJnC6U52e`N z3Ix?2;H2#KP}_M(8fWth3CxZQdoJN6N7I1KQ|cfW9Q{mp2@tS4qac`MW@^KBk$yFn z_I;;Ue)J(8h*!CDb)ahsR|3#@Rs<@{>YH+TyDpn6&1q$OGStBYdR zY+Co*TZITLb-6`Mq#jyYKP7MG&g-`0%1b1CrF!AtbQO=Od_`(>BQJL*fnGB-H!7B0 z*`)g2q$)9}z?ul;RTdZk&H&4n4_0#i@xE@z)a6N&sB`}f*SG*l-;AcI*w={n@HL}0 zj_w1Tc)`F-+w;yFjvv!> z{&ziL`v+bBZSQ^dUygs|43jo>2KI(XB$_%-0q{Y5;lSPI4D57f-jE0DuT+vZa=N=Q z;8c3jn^Dybh%O=FaZVT#WZhhv3XvxlkrF9z`YkZs6G+NhD>m+fn3fwC2bh*dMomhc z%C!joq6~JQ*Bh?5`mzylVfTt+*7{E|k2Fzw6rsGPw{Q;(0zo`Pp%?K6TrnC?J0Lbj zp?y5&i_<%gAtqpdzH9@_q)xOQ;H|LYKRDL)SVnNoMQ{^p**I#5=nat&WAZWGvC;4^ zeBg70v5rc#FDnWqy&oTS>t*`}jh!40_r|CVV#7{NkFhKL0`JVMeo;mZoLkP-gWZq0 zyU=XiO+tX6)@_7s2zStZ(~_+Ovuzv%Iz9w1vC$#MIN^ctovsfraIXLQ{6BJlU-qU? zqX4!=Jq>aYNV8B+A`Yfdrz;(anFn|@cDz>;1i4zBN>dR{ve!)wk*cVAG!GnAk{!;{ zCm8Jn)-cy%v;jdQ=A(KnJ)vv~CdufS4#dT4N5LP8vEu2Seag7|ehFqwIy0OuOFkdk z>LKLH?C%(UX?27|4q#({oNgb5>0q@XwW-86Uf4i^GI|*8s8fjRs&yGWLfXg_m#O)GaKRT$zkIE`<2JT*3XOTKEh&S~(NRVvYwKE|qp0K!p zy7HaBib(=Ub6=yNY8*zH3@xK@fwKb7ZT8o^(XY22*qqZpxa-RErJ?eKYF(}X$v+Yc zPCHvWJEUHS)+lg%3x}O1;N+Xuk5Dm6{5=Nm+cRU~xdY=bZUARZ2p^v~^vu{WRc4q2 zvEt*xw!Z%xYq|}$r)~CvI1=gqeOA8=WlbAke1NWF)3NTDBjcYWJ_wc6i@vmHGWXP~v?(fw32YK=(R5B9Vy&KAqN$CK(`RK*)qbwWucRf4n4Q`K;jKR$4j}nE^Q^ zdQTrsOvn>;=|P76y=Xsc6*=`7^c&Fmc{zBSHQD+v_7ne(vH69blOER;J3XVDV?Wh| zsHU6vdlLfFz+^;Pa?HU%Xf_1WArjW?KnA8od zCnb162h+g$^GSE2^568>#0_At!Y=H0#FfEUp!Y450anjC2~vhaE_1jlqR3hB>0qFum8T-)5u%yLASrbCfkylc2$t1%8?bcJq zV}YQ#>1q@(Nr2316!*@sOiq_WP$R?-s_M=+#8>o@zIPV<70^Z~@oEs@r?J!s`$)+v zC9VYy{(|h6Y`$OXzjy`$I(fk`gzIn85RvgX$1lBOQfOi-)+XSsrDGZ?tf=Q@1h1#Yw?;2&lW$i&ZQ5-%fg$3V|dZN<=7 zyZsl-=xqbHeINA=Kqe+>d55@X*yHs|4hLx*L9yg4NcvMVlxp@5A=HRl)5KP zLFIAzuJgZBvL!16hxxLd6E%ZwR1>c$tm&=YM8K)P`G!K~d6_5&9g^(4@`sx$@_w4& z8#Gc9t@7Q12ssDfD`ol#;jb!-$J$RzZCpR4aI+lY?P!nYOWoT)u=h;!R(KUWJotw& zv*3?LC8j_==A4(I)_V6x1ITDoG~ZWt43;lq)ckqqiIB9K&dsMu^b$b{G2}_jLME7c z+NJ}aG^vnNGTMEp)*ihUmY~&kQD#ajLTyYcN9$zx6yV`b};YuBU;#2XjK!2FP}0RjAu^B{*}pzUuB(N^lEY=QQ(A?p%gsS z$#xjIG&A8MT?Rv?#8j{&;fF?TMKEup8iL774ei9q`H9=zvgIk zPQjw>P}Qcb*@u8doLtU;7EM@$x(QfF=ItsyzKD4kn%uy(JA}TIwGPSu45Bq2g`W>o z1K!`&1fRS5n#__~vktew)wS}>Q=cWFJFi~| zlOQ6}kD|f7QaHq5LX+x&s<+!zsy>JZYzoL#30v}JkPEqG+EYvagr0KW=qCyYvJ{B; z1{(~$hK}ipB3v^K?IqM5(FRxYH*GPpwozBJX(dR2b0a$7=DG;ed_>5E5D^YZRUI={ zh`pTM4{N5pgKk96z8TUNBZQ?mw{1DKWeWaS#D5cwy`^GJ@v<=hQAQwVUS*WG`Ixc3 zx`*uSH7xz)U}JLcp8|@cUv>|eN0N>A?~eOxdb_+Ky=xbDgv#;eV%xz?AuD|&4}9bP zIhB%LbN8j{$!*t_osw5%`$+|Ep-31UV3-^ylr}~sF4gS~7?3~eS;iKw{GM+l@9?04 ze!*u2j70g{p3b;rc^8sCXLE*`p7{{s<6CqSMxN7E%e&8)7Jme9i%71Xs0$ZpNH>(D z{ZDu%58-?!x{Q#ML;n1tDB}{ZB3o%+c4GSY04F9ka&(&fNqHtsPwP7x`G)SOP`YsKGu-+B@DH;L4EAg%EhxytFYBsme8 zllYEFn(EsV{X8?3rlXEZZKnF0l`E|VB|zeVJ64RGcp6lOIR+lE+6U575G|(}ch2e{ zliA42(I?|l)k&a<^w>$?I_S4}wIFt%>(#N%&M;`&)_=1HlQZT&FQplevE)U4=R%nL zv5-u)A6rPR#Miif4a%(a3Q%dV!8}0EMsGQJFv?LGm;AT8^8!?h9mx2!xU6CP+#r z-jUZ{egV+r`t?@8ir2#3UkwB=$E)0+vqWb%?|srnUave?<@^)L3(arQQzM--7V{$W zCLyrEzq6L9@S@^lX5Y=cLYE2Iea!pcGsul|#GbyrGE8j=tFV;`({IAEf8%noT9o%d z&lg=2m2vTifKnf?@~Xp~^Y*GTmTbV@39R>dReFudhs|t)h9{sBDRFXL=?FmLu;$7h zd^bNnoZHpFF}W4fh6>|<2nyC|I#4rSYD*Ox@EN@rJ7UHhizQYdl*_?iawmCA_}yHN zx9;t48h0#TAiM-Suz$kWnshZwyw3NsAt))(yQ&~Q+6>ED7A2bgvKkXp|E$CR*L3;$ zHdl88cS5Hs*(n>R3idCa-6W;fbE9`vWtKEC>Qv!RNOTVy&QZAGI&MCNZj>&#f=}c~ ztxOqoa3(qPEWKoj3biwswsF=!gB*T}ye!@NIlW5{lf2P-F#5wY=046_wZ9(c^gwm_ zNjzM=noZ+UfItWXaY|+f2i5~H)1o5&Df-LA3q7&oRwXlg341leD8W=J>r*}9r}+p^ zv#%#_)$Poo&)k;?`rl5c@dpNgX#MCr{|my3{#FJ|(^KfX=pE1vNT6 zESOpBkv)_?t_uHg_t$yeOOJ^!xoFeX-=wwj`Zlm{u#4nygf+%UQYaC z^$Pu}_1or{o$BtU=t#C&llU6OEldGvT9T4qDLsJ~YQX5nMXf=@&%KO`CkNnJx8MT~f&39OUP2r#^VxGygJ7ib?*FA2+})n{BTQHZ#-TVqvjk;JHd zP!(hrs$3aqL@$NEs^bT^>NCAGGBTe=>8z)$XP8WoyWIconn-TpCfmDQbDJwHDPh2c zC?Aq&thK5Gd5PIf{+{GKKzFXBRr|DtsLa+`w25(^xi zqozbV?~Y18j_(=YX<6*JKF!7&rtwiyo%;>U2Z8}v{1{*uE+OSXbCIIw=%Wa&nSN-@ z;wxh=N`bDE3pA$Gg(iNjGI2*Hc>rJNB8$!+31te@P;zw@|KN?2`M4k=yIM9kIW zg`!>nhun(b9IPp zKKjMcPhOVs1v=W;Llv#7DwWRxHBX3K0W+?F&}h`9s2RbN=g5|Q@)ka1@86oHe8DO= z#370fr?}OYe|*iZz(Qc;kQ_xM-+;B6LXl$r@iB8Qrk})5LU}<*F(h5KE@yj^NHBPm zdWjVxn7_JL{#OWdaczc<*5QX|ZK(iHsc}ZV{J_?td*W;7g$<4ECz27H*V!;0qHcs( zC8k5lmqNFiL4VF?c-YHx+L;ZNdJ#lZLK~&IciNCIgoxLE(+{;%bE+F_$|{w2*Iyll z0V1&|X@CR{atvRZxsM&MxRkn(B^T@`hq(@o$KtwLU$<;P6ip9{poj^3XN%#Gr@FLY z@f53Y4B8fC*pKmsKM$B>#d z&0@4j$B7a~1xrzwPb$Ke>SfroTp@<+lqu=Y4iAgah~vu3MhG5Y^SCjF37*K6I5jgvjPk?Ra>B$b%AmjQ<( z89@*kbSTjRBFySxyzEgl41}L4q_nXR?-0v*?l#=IxAy)vr_hOHn2BSzaa540Itfg-k$&CNSq|I8 zD>DrR0A($IyYv+OnF2vMsxN2%=8u6yFVxa1uD5+TFZGd>F`B-~lL#TJ$-uc4x9JTX zm}4PIM`*j3k~hYoUty4vWz&D8uD^Rpttk~9#- zNR`ny`uAQnl4qXtwB2*{2#K_t8`IA^AzHFr!avDsjOLeV)fWcBwZ=fa_rZ4gi?Gv9 z;|g)3h)P1aJdx1h#ns;vk%~_9X(LnX;EBi!c#L}}^Moc5MxxZ~3!O8#$EJ&JS^fnw zoU9UKuw%TZJ}&^}ArcN&CkPluGf7Ure%7_DH2LT)4{}O>LlDqmdG{m+94tZqH{lHk z5|Rz;4?~Z_C@e$C6uUZ5;YgcJWt(&k_6-{Z;j@j7TqD-Zr4~dfZ-w$r?&@bEmXi-< z;Q5UGoQ-EU2UDODAoirKPvD6d(ZaG;Yip)d7Jgtd=@xtL5d*XJIyxR|nw`-Ov;-^h zSyp4r<)!R{q&0p(58UaLec(EfhB<+@8EC}dw{4~mGI9RN^`Jn<^o@+xY8)X&FWY{r z!?%+<;WGPviN&BYBN^_m(~!qvUbXgvkPF@{IKsDiO*C2Aw$&U~iOMP!?-*`FTg+fk zsTMXf^jrN9L9hQ2VIr_1{DUyn{!Po zkQ&xNTVFx)o9rN!aC??E`WzSC=95`nqOry@LF3`NPXKG&?cJ#SjtaHBH!@?5E-&=E zYppbD(&rMc;;2hTAM?ICJEIYhUF9|+E$61nu4NqCBFM(S6H3hJy$nE_HNSRDvOXSH zw2uUC<&!3&A2maniUzeUwu((~fVK&vqyGAFP#SoC2Ex)Yg(`vU(tJp%1T_$Up@!hG zJ8&oKxnJl&IxKjriP0%YE+(Sj*4i|gg~o}h{zUf*wW})0+e>DmSB3X@+SMmzXtj^f z7=+37e5vs5CS8-R7fCTqx;qazc`a0RFq`6{sC;`zx$vxy-AAHQv8lBmSuLPJc&#=l zJ5yyY$mQ(b*6Psno@I1rx-&9Qsj0?!_h|#y#NnQF<~atQFX z04j}T()42rWC+~if%s&cHlvQV`^ay5bT9L4QLpO6Nu}|$fcfuCQV#f5L`Q`2zeFMn z3AUOL>5$X%^^yeQ#J66IEM&CHiMFPhDl@`=YW(He%^F`ur`x)OAxX+&@SDc6Vl&Zq zC1<|Vedl+2HwKFI&M{Y`BmbH?#(uLuG*@5>stis1ygJvyNcxMJ1|rrN9TIQ~$ELhm zP{pN@a#L8#WqSV-B-XSxM}<=SyrjTn3*YmTf2nqTzcg}X{fI2QH(P?u9M5;hGOb$V z@G4616p^RHdxwla<#poW;TxQ7cjPH^cE-t#;L7+2kRp)xyd3+-8~;bIR|{ zZXVC-`9N?I9=cN!wv3LjST2(@@`U-fwTdLHVfj4-?b(B@81@+Kxd6YUgFON5=$8hu z?Dhs~I&JTOSrmdTVQLQyfjtmF6M-b#Gw$K`K(=jvPlKLXkd#{Vd0alX+BF60QV z56Zo!8oCvTBy6c*$??XB>d!814RKdfru-OTzm_WSAFLU0eKv?kk? z@1Z$!U-fJ~QB`gmkXl{C125RCzP&1uSW4P`N89i5HE z`Bg(;jHFZQ=+GC4Bp{BJ(1%;v!~yDHTm>_{-zfmbf(GS`O1Mv)IvJ8TyQ(MV6WCA`FJnRT1Qa^}_CA(K4hr;C~d$@B|3ai*d^jPGxm|?^hA4u`d*g8A>vDL0++>+jO zhR~&$#?{~JfgIAX>a64M{YF5GO9Zf=U-Utb{){I}ysqmPukT_Tba-%+h~Ceg^x3K2 z0pc6|x!v*$FndP=^8vy`pKj|)$&dykL{Re#Z?zHXc zfKQCgWdpAmYX-~Oi9stb3zj#%d9Kg@oXU(TPo#5!nPm(BcCF zT(P<|Eu2yr;eh=}a_BY=G^QH}Cx4g@mA_ZbTQ5c5rg8Jn*au43u>g75OHWw%R*p~py8wUesIPzg-~z)q%#2b7>AqM4 zhVhf%%kGB3U4Cw(#oYyFw{ zx9-yuw0R4x*u!H0gn6hyN8)V?Mr*b~QBEmaXI#ak1{=QVLEM32BVyC3P2$sIFgCNq z9>pq(y8&>LOaiUA4uX$MxsPXy)JYv3RnharE9=jNaj0p@eR(fJ=tFwrvb;->O$25^ zaG)9xLa!{=4~iv}Vt8s#vI%yFDW?;P-3h&H%$VM3ba%~(k$jn0whDqc_%pcqd6SXO z+wE=#eYpUqRgu(g@VDlPNt#22=wL)>yQ+3XeAYa4)ZuDmWG=Sn;j7bQ52m7HBOyrw zk=ZHN5FTGEixVT!{=W&%nB@~drahDrEbBpIq2Sf01i&Q81UNbJBZVu5U_;z#DB-yU zO5B9ei}32vAf#6XfD(XWhw=SR=T*WWJQppw|99OurOaM|Ae1~&ug}?1b z&m20|(z!^YuFv>#Kg)H~-&V`h&0#wv?*gJ85apnXWZ;=kJYa~m%@#MC3xON{jO%&s zr(VHIXw2CE_#vq7ePYo@wnoF+dN_o2-WtQ%i%YHPM;nYD@rj|w5*Wk9_gpfJ-3NC5pql8P+8cWv=Q+arPN`yg;g0l zrAt>Cr5~vkw1)Sx(!ara9%Yl|L$G~wz;YBFF%f=WGuQ=K1%y5AWL;=F{l!OizZwfV zL%ltiE$^Lw^sJDg;bTkj>}Q^8@+GIp)n31tjT=svK6al53;Pk5B||yoavg%Cd#8`_ zl4#)!Ff?n2DV%5nl`Ao%8eQK$`ioI)seZ0!OjLNtOi2%v?Ui4PVBa>;HpRMQ;>*{I zd?VXV74M=bys@e+KTD3gf`oxp7=VI1V9tF#RaHmrsBkB;)gY20eelJW@TJeBTF)HF z>o1U7(wDq1<35-)a@<%o1jWR^Fq(t+i@H#~^MP$<`de@>^?C2QCWN|?16+)&{@7{E z--SMls{WfD<~w$(s|7Bgt)xs<5QW4_=cyZexUY;=XFSW>jWiwj1TrT7fOAqi&%f9z zq6)BSidVOV`vUlkEZ(*gtEBx6Zp_j)O&!70xNPU6#HvhG1>oN>!ra^)SfOCBFU}0^ zJfaD5;UU&x5fz{n2qk0Nr5F#-`)Nxu45Vd>m>NeJ0 zu!e#N07aFj4ykQ0lq3z)tb$b4pGjkKBH?iMO??O~E43rp%Qwc^rqVjJln$rgO?o*BJbVb7Lch?@ zh#%R}ABagdE820rjfY$-LNIP)H7@4$ab2d_B007KmOj!BV)FDQJPLLANB}b(g@PHexZ_E zbZNnhK6bzXb9x_FjSJe$-zF${4)x8sz zT;dPcyWQ4n8j|1Ie#^)wWz~rrJK1u&4rAV0o(%T{WrPF?{GJYm@#U<4 zfPJsp%;y!xU!2ct7aE)#V>KQ}k1AX%#b>R&Ov;Zk0=^ZgpqnoszbEsds1sjNXO*xn z8UTUuAwrYTIuzlQ*?k{btP-5be1hgYGqzbO_kJ5q+D)#_F{ce_zY%=A2%;uf5vwA;0Yg&w!u->mxg$}h0l_(&88`r&*W8=y10! z&in3Z46y(ayD)V~o9czE#oLX3rUuWwH--O#T>67-)lOJ;R=SriFXg75(WorB&~yv`ry&{mRnNvsYfo+LUCmE&Qr)EO5GzcwUJwNwQWO-R=Yr9a`I?)e@oPqwry<^MF% zMoK&1(8a?2a+Vq_l_)fGntP;*Sc?vcCc&M4+K48gl^O5y4$84I`czxkMZfCqybzQ( zh2-StPup8gr`aGFYeI2aDE%m#XM9bQPDlwb1OvQ}W9R3}{UJqhYJkQKRLp*xEb7l$ z_mF$$@j`p4BYXY=TJTIlZ^gg<8i1jtG9nh~ zseT5oW8wO6$sP-76zX~w;mw~Q%J9c%&1`<>&kg+(@?VCspZ9;bR*E2+H^aPY~9U}+>XQsV`tfi0P`s7Dk~=u3mwgvD&r zIZr|g2a3TdCuHlg^8l)(|CTYKo3$7Rfd2^wU+wpb`NC_$aTy{G)% zG>siV)$^9fRE;IN$ahD)J;&RRvKqyh>gzRr)DNNaAcNo9!rEg`s@kOOR-PZV9$pBq zH(HhVpb0fKTTGPFvYVarc=#X`yvrI*a0$x_muRxh9NAo7OAF z+?N`Pnhm85_Cdnd#VgwjPar3xZ^tesLqD5>O_JKxIxe;yV1Pklfi8ZmX2T|D6h!(Q z-dSsojgqjxv}5FK#D73*F=RH}jt`&o0sbc!n-#gC+ml=h7IiR+7@u!H`UJ`|lgi8BTIy~z*0(|4~Fe|oZPIOV@0 ziUW4%vQSxmW)kRtd6FNNLJ$#C^c>Asjc!P01oue3?(tzE)D?1%t);gL{(L=>On(Ur zAkkgTswnY(xHAQ=Nq?H{?iJ1xW)=M!A3Xv!&@nlJeIS!^bXD8o5ouTV4V~Hdj})3< zVeH}HhZirOuz)v6kIWv?uVwyxXCD3_@eC!tK(#S&(Uc;%(9$A(E< zk@1{uzX6I|ivOlnWRE9>FA$(8=w!aJ*8uVStU#V-BEVi;&Bo~Qb9JKd2@ZjXL?weJ z0;|6M)h76zlv^KvVRRc--?WH{c%+@B|FGDAUc|V#Gxid=H*G6JO~|Fj4=$yCyT7_W z$iW#Zf?C!D2x|%P?rCi|z}=G5Mz^aW6hm%g8zxpx}00PCx7nI$G!MX z%End)3Qrdex&m|q7O|J<4TcDxkO#4Ua~f?-iF*7a?Pe4qp;37@^&MnSGXaQm@x*U7 zJQX_qGm*CLAyCJ;RsXI|dtVEN0j82ul>S-s>;6_C4mPptt2ukQ?sW2>nQ4p110W{k z$DxGgiu)vAGEeLyXb_!4IfeY77UH!)2uHng1g*+b*$i$)Nx8B~nI`(p*X@nEh#3K> zTR=^g!`9UP_|N+bHmI121`uxqYdCGu%0d|zFcZBg3aaLV7!k7M@W`(J_%^%RQeg;} zA!?8@jf0SX*h-t*XI*j}ChgA-$ojB~Xb_5z?SEADotZs)#XPA5YdB8>xWFOXJBDmJ zE8{_@w$L@d`~)eJLo?9aB}v97pbH%#Vn0V+6fPm13LX&9XW+cbb}7b|(BVfOIvK7= zf*kBYb&fXjkQba#>#lnozAa?dN;d2#8~f)7G1C!g+BM3If~?gc&Y=HnzQkintSHJ? zI453aG=1eD;URQ7%Ah2L8v?UoL1xhCwcU*!Rugfc9p9Q6X+D$WKn%g2jA7yBeqeW~ z#}Za;hYEwa+~TnkX61G(Duoc(Y!e`GlrGN>na(dl0lKP}0YKu3%6cf_8YP1cg5tRu ztVK%~Vh0W@LCOuVu#&`%n0xJhYZeCsuQ!lC6|t+f4D3_ zrsj*>n|>wS#KPtGPsx+8Z<56~^w1B~^E1PS*R0!a5mj@gMeN7zE=v+UYV(k{0_5qQ zH>#;ruP=vtYR!u8r31lf*jkMo%OiS8hSFwo5Ws#jP!pcrX?>+y4}PVR2(y_9dr?aM z8@5?Hw{zx=1HXY6of*uAc~rB-ZhG0*|AcJeCzm+b)VNB%CH%fnPABOg3EkYb@}7)- zoDL|cnbCSlCTp_buvjyHz>>X@aKRc~9xs%km7exP0 z7yTg)0An1dfP;Vovd+YO?X|Aw={)jN*}M{aP=^|EZ<(o+`xKEUe;mWOsjSb;hs@`jwN6a(1i zB?$z20iP?{AR2KlkoCC{8mtG#N*0F7o1RYCZzQ8iyILLld*C5x1 zz>YR-sca6K=ejJ$gR+=T{&rZ*-OEa~)V6)}cCEy*+&~^vk~i{1G;`Uy{FJ$+S;~j@ zqDyIwOXVf4``Cq6BxO>I1hH0K>^1)@nQ*rMx~(@hvtx+1!ZmQ`xXq}Y9!^p6KW#MdNm!Q)0SPF%OFSp6PZPJ5#xvCgGQ{PwyYhPv#6bG2PRYLD)(NwgZX}pX)2eAYI!1&ChM@!zW#j01j4E4*2PA_ z;JF?lnNdS6{6^8r;XAKgEeQhi@zSfefudy)Pfz0b<_J4bJ$G-XJIPT%dm{0`(07DK z1Rp;7boU@HRp`&XJX(dd zF_+>V9ohtnn`Q6m)3$-nV^0Zm7Gi#y5W za$IT+*kN7HZ)#Ac1aj>vHn5B~w1TBrY*ktM>auVQoF6^xg5@9V^=~3BD_)l9%e(o@ zxKH)X@eV5Dd$=V2j6`nxK#?EFs5C$DPB$+-IHA@>3wME>@CigICiP921_^WD-?)zc zqtjL%ILt0YSO%Hn7!B*ydn@9blyDkX94By69^LOJll@(coKZ`r+US?@n{ONMLANaG z+~E^1)b}rJb*Nh=OTG_m0c@TA*L+kUA}|jN?qEPR@UglS2Zg2(uGF5;x1h+XJrCKA zGpMQ(#poTe8aRi@C$`>X7EU6+&qNoz6Gt{GwxnON@53%jN8GnrbTE?j;I}uQ%BvQA z)~v*m4XqsWcH9Dz0XtW*j=lnh7CNThhOfFAc)EX|lZ)%Oz9cbC>wcZeEz4p}4#b%jFyGX`YIQtpMu+->j?Gem&3Gj;P|^3 z>l(uI@!m1sv`r6=v%k)22mq08Ns`5Mj zWUFiYyS_gfWq4`2RXG|Ae8QOtznba&YwWWhCxR9e4)(g_2VC2sHd(&*+s6Gw#4~&)%~l^6Uep5^bl|U z@urF}(Vx3&)T-y4@(K4}*P^0Gg9x{dw^kt_nRD%L)tdU`PzcaJjtjg?@$3p z5DjfY4<+O6IQ!0H$~IChKX-znnA>^dI;#Y&CiCgMWHMp6$!K%mYuL0f1tDduWiGgd zlTl!evG~x4;wUR|FOHg*hn*_Ji`LEW(<_O+N zX~bndY7~*eA^vGAfHA|osfR+C1z(=x^IY|aEVAxUgosM~TF{lb^MOo|3d|0Sxp|+E zMus~#X@tSB{KnTm%T5T^ll!M0#dRgOD4pr4zOzkNq-TOlQ=m;nPu)qK6D}d`- zk5=4Y0((&V*XZ5l548oOOJJCRQUUEE7MeGISNJJdXj{vEv*o9* z+E^x{^OWa<=f}niU#`3ySud!YGG)NO+PD$aKo0-JnamD^D2uxIV`+^p=89aZrUK(> zi7h8__b|WJW$1n{WHYue17}LU$;nyrORWnlMwJLEP7vu)`sj3>6oZT#yP z>8ak2ShN);9d_{^Z>eFK6J<8{JK0P>kt;*2s0isU$=v(k(_lPDu?>eyB>9|{;tbl1 z>Au?$H-P-5K296m$Y{sWNz=;Mppb?oYbSjgz0_g)vvHnk_m+jqN`Dt==g(nJGInr;`NFwv{(_5 zy#`t<4Sl3wU4ziyS3O)<&WGl#0Wj=3XrdiMp+6J&IzW)6egOnI~@1atmLsKE1J5t{BC zqDH*Dto5utwnDWue51qUX|SD>592!Z5-1e|;$--{dH&=w363zy4oHi}th&6{l zIxO$?k1^?ZaLFa3oVcI20UnKa77Xqk(`u_(WW33`mSSUsf<}Y@;0T6MFYpM!hgz$e z>}mtyw67uNLAd=ukK9V)=t^3vXeCoaDRv+mXX+nMW;oF#?-`#tL{sCkab*FEMKh`p z?v$&hdQep0n-fbDM_r&(;U(j?n0@W7FUM#Q#)!>`aQt8PU;tvYUW z4a#mHd;u(VIb*vq3G(=Z^#$Ow-K?M*a`?ix>pBM6zZ)fasGeXxKwFnDElegQ_udHp zEjfy_&6UOE*O(-A0M`cesu7tx4;8#-AQ`xIApZDhlE6-+Xf^i#@ZP5(xW^oc)0Vbxecr`ljBjRrLTmHcXX)hIId$l= zWR)G<(FpiGc|KP00!zF#ApOZ05ebk~<8O(z%dH^fP`zxy4DjrFX-teFxgr;y-&c%O zPKv^i4g(Nav|4E+i3=CZuSK(?DqPo`rtv|#B?H#>mfG6{U%jv1*h^014FHZU3Ed;V zgejQc2pha=-YAa$!Tw5P==)fNmX;_z3r&5|$%IiD_8mFX%%yMh5i4j7rp=g$sV6bf zmJ7h>(pG54Ei(NEoqG?!h?;@@R>isbt2cujw%Zs!zpiya23%Js>4;PmdGj#!&ov)J z15KAnDrqwe6oDRjKbL+O_bEk1NmdxEM=dSjYiDJV(?T6Fr9RyuKV`~TR8e#c%@i?GXL4C3 z53`STmQrrf+eK&mBW_SD*|6+Sj6rhWO3a1O_NAm&Wv;anaXA!Z6Tx^QAQyF>7p+Xx z*n2l49Q>oj9wI2Y&ZFaXXO9g((7Q{-?u50a0}!+J*t%mugPfD^<(vfFJlae-C3ZBH z9Pu9k%1ch0xTBQ6Fk^Hhoq+X$>S6zgTPY*!tNuISwR0`n^R#3DS;q|u;*S)45Yry9 zeMoF7&7k-0F+)EVUw-Vvq=z>FCDF>oON=i>CkxfDoM5mgtM=yxL%cc_!Pyb6Ln(X{ zJ%Bt=Ut5e-W9b0?dl4%=2gfrwnKv1tYGS_&y#Y?>vM*lR<0a|?xP%;mSzW8aTc)MkzJ2`W>p zr;{BTOSvz_`_#kvqVxu5cf9vo>}98|m{_Vv&!SnbX_#vO$3LDU>!Es*_1bWB0XGkB zgIR321eo}wKX)=_R@ir%q=O_{w#=Fza@bTRs02DlEoW~t)qj%M(b~};pbg1EyiAio z!}PSAN35?_VtIdp?ZmLTv@Gjy#%WFel+N@w(hI!46_Kuj=hgBqBbP+#ficDou-utld`Kp?- zmGhjS%cQDOyeZn8un^fG4^E;6XWCVRNGV`IVwFhQB#|Bc-Rj3*=!$q3W8phyeJ{|h zp42spbXRO%^?q2!71H8JvpozQ9jDu&sZc+eb|qajyhJmLj#ty72HbwfwXcBe8Hmct zP6R+KB%?12;bkXZ(#2;nmX%T-nI3 zVpq&NPrTJ%oIshqp4z4V(b68AL4=>1DIg23oZgPItgP%1D?Xr`rmr}rK`K(%2rOc zRgcfW+t-5w0|V&ZT+r5g18!U`Vt?Q$4}2^vAA)lI;9xxBryvvSdLXhTC0U`FRIPq+ zZ^A5xmOhz_gkSIJF&)EdGFw{Etgl~Uo}TO9N3YJ47`eNBtw0&=)jd0Ep;dHjuvQTI z@Z;vy+4sQ08Hshp9#XB6kVCtX6?5BjZdKQ%!KM{6*7=-HvZFp&zgx7=g>p_;SN&r@ zpO_$qkJu`6u$zX4`q80Q)k{QgCpumS*i z_$|E?YVQHb{b$+yS9-sb_9tW7tsEIz{zAjxP{kK63MjvEB%~z_`X%)2IPhUl;V*{x zVY*3JV|)ENjtXF!t!>4uVfv(-m#8Am(H!$6z8d~ddYkPrHP<3mbVzQDU#Q@1jT}(L zKZQ=74Ya^O9^1xO`Tut_e#a2<^?&jC-JuGv(smLf7nk9D=}N zi9zwpf|2=r5&2J%HIZ8(a3KxQY;Od%3c?dBJwPFHEa415#_BI$_>nMXr=Nq%HVdsi z{bXtk9S`6rk@n>CY}xE+?afu7G@kEb(7DJG&10pmOCc`5=K{2Tp$cJxtu_ z_&LCG{jpYYzXFl_{w{zz=USHh{(l<1KE8}4<{A+m%;uMXoIb%$1+U^5URp}aCYA8q za`>2kCz(0NgT!ifmMF{dnUd(?C33dcu_P&#-8d6##5ja&@?TKV|LgQQXd?ZftjU4% zcsL#&RGx;sfc=$UuU$QR;I|sYiY@R+j1pW*KW32%$9LsmH37c45oDg~HVd!G{Y!Uz zi7yI&fbIiutpty))2AtI{%p+RI!edo*57LIAqSg%?Rm1kLkZa7C|jhdNIlg;Iz*6gF`boppuWj|fUmq>PU6pbr8*!v6u6rHAH#EbpqL0Lpo^|pnpnX_*nUCuDO0T`w9X?U`Hdt-@ z!`|5pYNg6Kdt{EjQ{JU?HxctJfDdiM_F~C3PiHH&Wr}lXK{qyiiFnTV-EpI^On&$0 z8I(WY1gr~niF@%TKC%>{>qZi8?oZ~N#e`P9frzScC^h^f2$g_aD@3#TVP;6V+IDP> zkT2>Pi!*Cm&z`m}Lt4x@0viDKC=9gi%%t2Qs$`x1)m5gpD{RW?B~_X?QT+YLELv7E z4y_Ytm&7xP&sq(eW_Rz7q0rxT#a4z9Mi#X_oCcTNF)N{{Z~)vx?&@KZXlbjfZi0!(Z1cl=w@sO?;Ky zZ`MvGV1*mdm4|6_YeYlTLYKe||CqS5pt6S0-=;QBbo9gnagJ=?YUwuboPi^>S!1e$ ziq{d&F<=7mr5~xHYmTp%u5@@BJBk~gx&ia(^8rtSjzcCMkg(p91N>vuXj;KSg~=$W zo+pT95HbMKU9RdE_{JUCl!BtC(UWGcEdBdjKPT2M*!oc z0|cg=CIs?3l1oQ!fM7@8zUte4qZ)F5=|I^70D)ODnu$=Z{tu>3Bv0?cP^VD>!8*{{ zC>!E5NQiZ9dhC^(bEQiwT;e0c6cRD~_72R+r}R~GRt%S>#PYaneZvTU$pUKC8KtU8W4MVmM|x0-(N471_`C)8zt?|SIw@K6HGC9p#w zr$EuU+i05=JhgdY8xl6j2Hv_Qlukf90Kw*OuCw-kqPs4yi}ZoJQD+L{;WH$58J?Tj z3!%H>!j`_*5VWW8>@&n0QSp2!beY~7Nc6nn_4Qx7|(Vr@R8KVD$B=#yu zVxKZ6iSw)+=7s7!WuWM%?Ztu*{WlIdew%2HO^e?qs*SdK-Q5>BN%g#`Mg`&q&ANe2 zt8AF_EwXb43S#AeVaWmD_>6*Ex%<7>7fHcZfk8Djw9}^BTc1pXidqdAulxT2E9?s3 zECso6eZ{iL3Tr<|a=cqrKGv@F#{9472YSOa7MnSxBTW@dsMc=X*!oZ>UDZ?}99=W3 z6afHnHsmd4_#BhY^{JzG!VbM&WSI(r0x?XhFw?=eFORGm;ae@rWA|fN#1y{_v~quU z(RL`{g>L0yV#j3Bpp^%CIfrJ?K;O~(js+@z^8Ygs$v31cOl$4SJb$ST?QK^KY~Z5cp_EO2ql1E)Ol z=S0)WMnuf`bycuRUY;Ux%5Xl#?ZK?J1XTy8SmSN@M&YBqfQo*>}c4$FKa1 zr$qzsj9iI$=LI%OYB~-ZFSKfo` zo@dT*fwWqHvhp?7BU(ZOnQ(x_n@RL0WZvB@y&#(Q7xNNkNc@$z@lj|cV(+!SKivtA zL4)(>7zG@l|NQRqclr>PPx?HN?xQRlCf*^2tAnZtTmmb7(Yx z>O9aM%+$^9nu2=7VIs96TOi3^y#aa2cVqS8MOQ4Z*yZ9`>*)>9*)ny4IcZ zm(~}N!^@&A*x3E)8#z$+B`ga{AiqsL9|$9nFDql>fL&Q(3I7X$wJ`k+QXh zI*ytx*6!2*H5aTD4xI({6>R_9iOe;Es^5qNmhn-%+{maHQqjf^Vx`OBqj%ovuRCW~ zKlZws|2@Of9u;7~C*mHkBl&hdKr_boge7s7L(uGj| z>PG!3`sVn32m~a1dp?CgqserK^M~_DwiECgMYyZ2CQmQ0i~ol6yD=73zW{{DOGB?ag_UlJR-5Q@DQuZe$clMM@JYrxBBjbX7s zbc-at$Yra&?|`%?prvD3#jcB;5UQb{Yxu{8r3lB~{oa9z{H3B-GCH1>@%=zJURuf( zfbnUUc`+1H*%VSd$d+|b8dD(Qn~FFW>RIqzya{XXSL<=#j1iSARlmCa_PW$?jhw=z zmMxy^IT6sdY@!xUd?|V5_Hny(t9cZ{Nx_NVlJr$mB!D*M`x#j<3LJ)5X+Cy-IWmGM zz;ZZJ>8BG&_xP_OIC%9bM)JG|Uh@w4cO_AulOd>!Y`F&c2fgUr< zPub?aC12NO_WreNpA}g(jW3vKaehkK4d?FjfB{KXo`+n`eADaQ(+!H)E>Ae!dc*&Y z`mAS_jxoFtX0qGEEr;=^c#1+jnx02gRZIOrSYXy67BgAM$zlUVQ zs`X)3KS5Z0XTdqW?p;aT*ANgr>P^s{?^DwbF_}?UwNFmyf3No43UHai%Ub2K2UuOi z#ZO(dhfHkuh6?{zAwdqB$IN29ZmN^>=jM&uT~@dUWf!d0RLIM2Z3F{U+-mT#i2@gi zV)?4JJj@_Jh6E#fhm|`R|so@8FOS7s+S!a>CsM zP=Z*lnoa{RKaQWMcd!XlR%IV7hW8Jy<%%9DZZ2u#&tOWNOg77(rw=1vR4zlG=B1uP z-~wkGLLP*hlIJ+cRn;~7TDr~&D9eQ)1Xd}NcSjMr>(vfL6K1-$Hz>wuFxy#D^118w zJP-8KkMp?vIO9Oy`Kc~Kp*vi0DhM8kirx ziQbE?%lo#CY<6-G=NscH*yeW-dqxY`>~2bizX$8R^J`P5pPaFau?AX{a1nA#duk7lGct9~JHLdt?Mr4Jj}C&$^~g6!?)Ie} zTn@x9$63m%3>jFI+=M@Owp_qz=`?8AiT@b`6yZ9QM%o z1D;6}UC-XkDqp1=&VmH2pP&PtOLfvRm3Ki=k z25x?nt(l#BujdfwnHnd)=-2A%{2uBt9ME9@@b@U7K+6cxu>e@~er0<5eVbjj$b>$; z#uR{}SP#%X6w3nQ=he`Ay4~Cnr&=Pzf%1-O?$?XXbU_B}bnfe}zWHJoQui6=7gl9P zeGv`FxiR#G=U0$(g69E|5)q`R(VWmTMkuK0O+TWDBtJh*?m9+<&UtSQv3|9KrAiZs zHD_I$_VDdJRCe*P;NJ6Q6+j>BbYIcEG^r)08K{twOJeq62%|lB-JjwgnluT6!Ty5o zoB^ULvj|;m!j`6ybJC3@7fF&Iq?1m>RrFT||8?HP@)<>tZ}jmVF}YAXQZ%G`1ekhp zz}o|pm;t7$80OoiL!x~oNCDyIHM@~p_c^%l&)+ClHGV$hieqpKAl&K6obS+wj#YIa z+Xl-)C`f9-c~uGMXD}@CLR<`HJr+wvP#ik>Mg2*?yDag^JCQK{>XQ2*MW!s<5@0#t z&&+OMLtgZfvRrSfXx~#MCw!+{^zl{JliE+gcv2Q$_=LlIa$W8Ie~40I5C-?86v&qP zDryTrAX@5sXlH(e#5qNQCg3KV4;f)mEXor}%keh30uzoY{6zmvw*4c9_dF(gWdS|+ zCI*g#;k9;&VliWhGzWq$*BK&iq?Y*pfEH`&QCygjsXTPS*sDs%LwQS9XG z@@5_mwWFlPCgbx6kxcj7T&-EAXij6Aw(KbYn%+P3^EzJ29C#yv>RZaAvkG-Wud3&I z@iI<2w~aKA(Gl=i&F`dk+{xESyyYnW*=8MTrL5M=WtpqDX_T!ePs^Dinf?!poVe9t zf{ph;#Fj=k-SOIMMB9X~%m@4^_~lEP^IcAk+bzj+XREv)H`tMUv7u~A^RX*d*JD2H zWZhUd@gWZT#8`qc^#yl0WV!Tc$oBjwa+dAkkJr4cZ6O#%8gbMM2qw)b*hP~O`^tLH_Xl0l{&}vYJGVCJp7wI=^u`h5J-T9I$WeGI9@^lO60w{s0`ig zIrd;7p)j1u7?m|_XkOH4zw0~qBd0!E#wz>ecEh*4SO-^2lT0$kevAiC%5u(WBPY^< zd8@wfHKrnjVDtOG} z53i*UT>P1o;H%5{?TsJUTE3RtA|{2+#I!k0>y`d?h@h;Cds-V!`KiunGig!5 zPs|*t=>m?jiH9?vv2+l%>j#+I$!i$^bTQXV)eph}bWS@zE=@o!IQe{_kUK^W9lZB` z1V@8D^h;+cbUv*~VhRDK^ z$hxC;MuD3c&zvjI2}H4?o)=!vGY;tmKX@NZWHz8&#ln)HOms*2=#UP3w5g#o99mvu z0lm-Mx)iVR!JPWp+0FZS77wETWPn!F4ArcRoAzT~q7`90-|HU$zPWzn3N=tY<{2qK z^zX?Df3YUTQALF)pMSqKEwE}k^~_0H_^mcDi_!q(RPC8gq>RaSz2|uJvu6BPI}!Yd z++GnqnV#HIbmpka!ZbX?5&>edcn<4RqW}8K@-UWl>dF&RybYhnd^3M!9Nu*jtxog_ zxcC*xLx2|ttMKZvel-8lN&Y-A)G5LVx5hh4L)u?B5&t1FG-wHUbNdPNS#Pxajj;C$ zqp>1M<#XCjzAStUm6T*9`z7V6&$`an2_y+1Gpup{eTzDdRV?R)q8cnk)X%G>EA>aN zP3z7d296{e$YvJzKbO%)5WqsewvqOc8m3tf>VebM4nOvzLNb1uEpzCHeQmo|oG4Wq zSTAJ%t+)v0OD2Qud2x5GyRBV8Kl-M+E25*M5C@ctItOH@!zuL8K#=Dr$?fag7*{G(Di(cHJ`C?ONMHUK;wW z2Kcd6ppt5o>3O+U{q49YH%fgD8tH_|Z)2?leCH85IJ*`n;%52h?y1Y(V?Pwl%S>gK zo#;%W(Sc|ASC^nB&eByJzSpq%w&$1CC>mUvKQ0)rGT7_9ZZ4jbIJASR1+d5!sgEh( zNI98JoU98qkWvD=y3quw*|lXMP6$bq=Y3|(5$ftzwelbxK1?DmN}Xc%7xr+op|9HT z7Y#op>8wXpq5a5ZdkQ*!3k&(?P;NX*)?cxUf^v$q5VRGoj2t!#b#(B8eL##^i4%kI zk0^hvR?(xR_^i~fCHso^lFJu!eqoMp?a&sI%!JI)V6odjuf>2sW!E%&Z}^?XjZ z2$q}p*FT3HZEPodV&KWm(*I}*dzitaRBm_z5M_NDW!K(BtM-%`KQW@S<7O&56P zOdOu!#i?cF@=$Gw#{;NQMy{*`>aAI;Mk#9((JbVXF}%(;;zdl%nz;NO<6~nt{9_5{`wn@TuLTFK)H4t|m!UGyi zjm8P)XWag$9v~Qmvn-gqeA7+wHaPWq3h?nBaJYLu+3>ha;iP8?Or2gp)Iz#7iJ^gt zzVZcol6yAcDY%}6Ta8`%4s%EDOpo|I##^l7`PWA)J`X7n^xVx zuYSQm{y+_bn)5m2#mHMDrr!lteX+!!J13BSLW-mPGnM%~qx z`!*8%7+Nkd2?eK;TQkP>yM9zyE*gsHnWp9AX3NTV=iEaNxm}$|>@|@HGBF`M260Kb5gx-=cJ6vPbr-PO)K^6iRQFbqBF625&{Yq@RJVG$l3sZLTu zKDj1fGFB{5h&QWGhyq(e)t%sBF}3;c$sfCG8DP%&A`rzWqg(^%;3scI1-+Q+%wg9tI8s#mL$(>V=8k z^d?=BtU@s0pKw82Nib~|I3l`bToUDK0wLB8Q|Wv!X9#2LMRps_q&rk-&30j+O9ueR zLdJs@*O$uP2`x^O?m!f1(9v}-*TfwXLDqy|enp_}W{2dh!`}6*T(zXV*mvf75Mb`V zaG9DPE;h3zR58-U*X9bZJ<%(WwdfOJgVcbGcUx-j+%QcwzMx0CrXdUIuhP1H@22_& zz0@a(r$^YUYoHVcB$m0rJ-40rMM;ILF(6ul)17<$eQx}QJ z-|Y-L6`sc>erws45+cL!4w+%lk=KabzgAY1cppL%GNqP3{rTt`fllrWa!8&cATUBJ z9TSJ*SxM~OhT6n^yUMNbn?jqU@&DPN>jSa~sqYfR_M_DLHx>Ak^_a=?|4 zAd4;{;Tpc}R){+vR5}9S^F6O}WE@~^ck8z%=N{<2B>sbEv8s#yLI=PF2}B+D05>t0 zEAl7-$tE2QAizNd911N4s%r=|0KG-@`U*y2z^^eHvZxOkGMkCI1SWysy4%b-l%5=k zbzNZ+7P`kv*T@U!CG`eqh$QrVDWX6IrqOox9Zfx3x6ZJf5a32RDIoPQY}ezyLTcxi zikUm5SKLY$lv?gtLbw~)6BFPK({HE@65#5;sN~mv3hc|ppTjxu|7Rs`^cI_gbas?v zQT{lj_LdW;Yb9yiG~zFM1N^U##gDC%7uIgKUd>>Jo#Zh~Ya>v!M<0#Sxz(srz!X_J z3U12zWOD08jUX9*Dt1P=8UiL^`8Kj1Xy&sj)-Hjg{6UZzOGfvig8YeH4R6rp(C&7{O5~J$uVM3E1@{OF~v1#z>H#S)~;-usQ~@S8V|YDVadXj+e3=S zjsvuT#wD|UI#*dQ5(h_58it$mY+c>-EzJ)jAbx>kiC^t?h_em!^#5-t7N5wu&)5tB zMTfLoNxz3KL_LyXw7b8n-^GMk_n=E{R}m(e;TrNHBbCY`&;{Y+LK|@zCe&WtKLew- zY4btn4SIxBy{qt<$tt@L8t{3~p;FX4!IqU*N^EHCkKEc&!(!+INevey+udg^H{T2@ zv;h%eUNZY^t9+506Pt;Z$>PA7lu_bk2s_h*Iw!Wo);?_65KN!e5bftb>-=K-K=U zo`{qe!oSBpPGMX0;axAwYMoOIdwXF z*xr<0)sd)oAeggil{h&DiC9BP=8UN^M~zY&PgDlX4an^ya#f_ev%8fw(Yr| zBs^QgE+(}yR&(!=3vE-&+30RTSksWar_!boEn4>U@mU2pyl^=3(QVv9AE3_Ifc#XMUNyxQ2B#5wYge++$|(#EHU2 z3#BRC|0cT2Exs9w=*;&JYe2iF^`?zHBpejar$C^^$EJS1Z-q*60&`0uwCpQ6#2{Fb zuL7K!`$T~inhoKPD{}B!gk>A0-)4vRK#^`2CEb zV)dNNubqU$Fo#dXeABlmX9I!+);Sy~=W0<@Zb(y5w4!06JFKWW;J}|No|{xK>P2@V zcau!oRylexg&6|%$IXMxmnXp$G(hS60>7PjB-YEL$ zGOEjvO)34#^Pz*0ZUDFK^$&F~K$$r_28zQF=M$in5Rv9d-okWItCWKjVzP*%yO*#M zN3d?vU#k+j63bp@1DFGPSE*vqGz$rswc1E^njO{xOp>-_Xm4*;@f(X;W@=q=45qt5 zQ|V%e=OzIlH7#I(cAo3!kblu_C}hv2RtgaC=FC)k+lrWxXY>-OCZXkxQ*#Er10wtu z_d##(uEpA+i*i^NR(<+ALg~<&Gb;JxQdUigJEpgA^abJCvg1OEicVtHbP4=)@slNG z0@StdQV_%#%E{QH-p-+h(gw!s)c9?fh~8RShBg3u+|@v4&@$jCu3kFIMgkv|Xf7*nTke z5~=aK3A~v5uP;pmipP6;yf&-$adgW^Vmo0(aifgafB~OmbCF&BR6@WV30t9eoOucm*YMq;J6s$ie&mouqQ?7t|J1sh9CuBUHn7+QJKU(X1iy| z@qK|4dDwl)>>DE8x6}Eq0E@PXu%WO$dPOCadWZyRcwQm;#WiHbJt=xp+`#MGZ|yHE zskg(7S0)HScPFpQL`@(R3jzhJAT=ZwC~i@qP|{EYA5aY zLsvI0(E+@})Zn+=cEn1V8*DJFCz#XKfSmbp;eXTw7G96qNt>JF!69`#%ab+C?-G}V z(E*Y$gtKYG4MR%Y?x59Z5`yD!GVIti4-DPXxkzG59|SeOaEa=&*FN71Cn9ZwYHFQ% z|4^ZuR>!E01Mt&dh38-b;-?~G8<`OK7#XG(bFB^J2KALQ8gxVIN7Nbo2$zu^6Eu;V z4BEwyjuJU=BNtxq_v_~K?(E=(do|S3Xdl$cnc;Yi&@F8%?7p9eC9B;}zT@5?@^QE& z;NU)SG1z>l;=3Jbp0_*D$~R6zZOT+lqWSp+U$Efqym#J>z~~0B@vi$K$U4EkYR$v zAXIl1cL^kX6X)%Z)IZ(OXG#QSx=7r85keets+&{HWu+I_0~Oddrrf!muHeS^@K*QO ziE*V=3^wll4NSq8;2}T!6>o<_emmI6lMYiuiFk4=(?Z#S?b7&I0)h^^J*KD;<)kg9 zAvoq{eAkq2!JBYj;~r$=^EWfBSOc0ZWka0SmdCXN6Y~aQ^i)(fI)eF1kn`q`HLx3`1aOtyK#}Yqv{k(HY4YC|9oMD6_g1#H02HP$w&xF;~>X0w{=A|qrW znFAd?+%8otZlvJsIflAn3~eq{w}j2~*RytL{Wy5`S3bl~9x$p^HRv8yLQPqebIb|P za|FAp7}0c3jF(^~2izt5d#|f`O5Tjy4gD)hq{-tkrE`wIh9=!`JGQ58qUQI+;(aRE z+n~&j8szMD$61IZ+Avpd49|6045xkeh@?wUKWC=yInIeD0accg3+8JP9CEF8nAuuh zJ&k%3){@Xcvnch?JeP`uTjqXoj7iD3STSH9+CmP@_sk*v28mahgor{S4y_9hY~OK{ zj*2_2i8cj_G-W%&ZEtJv0iXNDA9-g~cXMfg!2Aj}4}6EV_1l6+@=6fI{FvLh%aQmY ztlR$%_i0ntwU$Q+RbXYFk<3CeqxIctHO?@+lt*Xu@_u-akWAY6Qf}YRIBBY z*u9r-aTC;5q%Eu9M(y0XRoj~aJew{^iS;1*H|%$k7zNWP0}Tq?4!w;f61ctc!D;y9P` z|Z)qgijF(I?-aN^{+i@Ln<+siowwNEXFO0&m8wu9?$}O1Yh^> zOH(BHk`HWy&K148HNdhozQ#sND6;)iN^?U(C83EiYl7vEGfdTZgSezGow?HbI@mVp zBs)~TcOIN=Jd-n3bY(R4-Hr_Uu-x3&`H!8nW?r^a{OGKN@O#=OV*(+Yy&<22|NLrgu?QwnLxbel1?L#hHCWwvAfLav zW;`3_8%P4l2JC|z2K%Sc9)<$Aa4wJNICQvG5a{Y(V=2X%(-S1IFa%7qN^jk}UmTA` z8B#{x8gbhzwnnBiG98JI7}o3s`|y{+XIbX=O+7#DOnMHDk^)ymDcpy;8gnviaTKp< zWKnc^IEI?k5V>&yZsZXN-(KeQKYikzdr*Yv-|Qzzov1i=D_gNNfV=e(Jq_g2vBm#~ z>?XVGFZ2T1|`?T@>dYty|_TcwK47U{O7mXRvtee9yIR<9Ht4mgBDCO&gW@|Ckvk>HkK)~%h>R~S-?sT(Nx7?>OU336rN$1D`AqiVa-lh?MrD^Xn7wsp+J zYB(VKpt``Sqr6P;=4tqYez_H(*d9O~g=l zTZ8a?^Qf_3Ulgf?R*B1xi^_jGu)*xgVTsqd;m~ zlq=c<;19j_&*-ln7XPR&tNXmxwG27f-7R8` zJx(^OI$%V-pt7#=oiN-Hpi}}7;-*)qA6AC=QMq3Q?wc+guWmY?1`H8M*aS3MM z&m2${+OU06Z8-blgFRX&rfT2(=@O~X7z(AAcVz5A?aZC;(;Tl8`a)d)@Yc%?{UlZS zm;t!6v4|+0=tfZcbxr;LmAhcfZe=7r3=E-e;Q8 z!s}Cx!{@BrZGQn6+pqZo`HuA`5`BR`I~|J__mrbl)h)$K03|*UXiKt(q%But(-{4n zOu|SZ6CfHdyQ|VXJ&6#$ktB1Re7OLr76e7#e33Wcjo0z(bpLO1pO)F=x!>8KtB&v( zgHdvet7}zB!G_lv^RisiCWh?BZ8+EkFC>)@i^^6L$K*e|yo`Nwu8h^9_d1-{dPPTu zmcNTjSW~?4+#S9nUteopSbujZO_x8f{XDtR~bSmko3`K{x4^5Idu$BJi^8uX+1AsqcLa6Jy#5YOeZFFx%L-WJy{j02`*e&~ zWZGvSjBd^)IM5&e#4uOwb@X06cX6H}@rNHGFTutP-dKck2-g)Q2etp>%>=p55RD(s zVE+vbR3cJgQ)*AYQVnC(ua8G?U#g|JYf^YO4;1m9Uo{DU^vq;9szYd*0TB~DPXEiS zZNh$nzYtMm#5!ZUbPImg)+Ebn&!|Uqh9zP1P^Sf;E`-+&>tpe1e4rG7D)!D=hd0s* z&p<#S2U#|E_@a@S)a~}F=NbOS%3cZpWQ+;0M}vgi^t%D?{g+LDv<3|G7qfx&UIB2- z3#0#)t(TKUqf4R$$U7str_n~qua0#@4aNm@a$*Ke zhu}mkpsxj-F*@dtQnQBQ1MbJ3EHcl50VpUx!V`SpZw2sj?{g~zy$W9`9DjSrC#rGhw{Y*#wCDFx=mAm22Rs7IVdj`QWSWE(35qovycW&*m*2>mjUq*kL8 z+K`t1JKhilnE(6S;;+Ew_Z0R!g5gwhR(^ai50D4<|BC+Ng~dY9E`K>fa-;z4Q$1!_ zsB_EV)R42HX6^vfjruOx1S0Xxy?cm-7)DK;(U@XD96Q#>Bby6^Q!K2rLtD)*af%7$tgF1CoWbp*l|_u;_Ke9 z{*QRbVcT^QEOlYcgh+;K?U!xwSC=vHWCSUrY3vAEY%kM)oRNjF4Qd`{-%bNy-MX(f z_LI3i#T2?r62AVxxVww}#Pf1@TQoYCKs4FM4#qG0HT*>WHfsu2HS>zq><84q^oQPi z??a@{;2H7?DWU;Llfk!JF6yJ-r3;}%-$8aZ8Rp$dRK8?+y$S}q>(<8%}i`Uis69cUKU=*Wi!Gx>x2HdLz9y1 z>Z^yIp$EkbBmo3BTArD%KJ~H>S5PING$eAYn0Yi3L@<&i zh2nQQ?1mbj%fAs>THuYU@REMy)PpYyqa&G(+5m0CgRm5pN@KzH`h==D6WbviOf;E( zYO6^P*SbMBGLuAhlj;jxuPw9l}Q))bTC?GeXb?fwxz5%Hpguo|!*i zU)D{6#}StMf;73otSsz$gtD9gq|gZ04qB=^dQG63Hr_oN?3vL4g3) zVei6)3aJfu)ONu3*1!_=Tn%*ek2Wmgl50afaSTtdR#>Bt#sKO9>$7D@SypDe-+^4o zS?8a(l*$2!ETP(dtRJ}n7}I7Gnc^j3N1g_!Xl7|hhKz;HW!GIaqk*B~#jma9;Hjqd zGmN$m_ZqbLVV}fDHsi zB%kCS>dYBZ*s2TfI~PNqSx^}bu;2C(fNfF1o$#Z*glGRo;gaO&FK%usifW}f`X-9L z8V4@jjt06>MaI&lgj^_9_U)bxrsJGt9m*O3V?)hlif+`9VNXJ#a)Lp#aKdFIYC;4OXrQWw_*FcgfiMROQPD8@q1 zWUT1|>)+!O_pP!i7-TIb`te=L4JR*hHtFYvD}8<82QKN+Du(j|ju0{xTjm;DdQ*Y# z(vn|9U_nWy*qCh*aZYnJRM+<-at$M>cj`hK@B>S~3RBurH88~|vj9|)Lby$9VVhP27Q2K6CK0jZ{c$-vF1pjSHO&2rrc+e|% zyj83qrR|(;TReLekd$D`q5Ou|Wy(hhp{4DQXiV3*gbkgwXt6<3B0B0Jm2CXhJnIz? z4nZ452psG6w7*>P{sehVP5XTCGz__nL|4(!leJ!OxI}ld8=?XuoGnW5FheoORLiU2 zj&4aWGB4gQ(a-ETP=wccFyR7V29;@w{vQEqueeH83>h1TY!I^enq^K>5(!gfE=MdV z8X?5y$Tu~(I^Vqqa6WXpw)NM)!lW^jaKb=`>j$(V6Brii&eFOQ8IbbXf2EKJkM=dA zO^Q|X=9fXniCn0;^X>1;1oDn2IwU;avhYeX^dr##CC|5K0>=u9BC*7c;(wMkfrG|BBg*apk%n*xnHM`|EdRj%waYr`$?$9DZJUUdi6G-~`_;zG9n>8k=;h$Bth}<}$o!hB?E}&t zDdHNowQugCqCjD&JE@v@tI*i*nSwX2t)NgprlppBM;sgpSHa<2umQf&pM2Gnmqp?G z??z5*&#uBoI!M9EjjYQrn5&M1k*e;P0|{$T7}xKU|4e-FE-mTO(?6 zTprC!%S6xjb@AG5G}Q|T!S~_g!(h)Z6^0z*{AEFCefzCF`UEac*x@tzqz`giNaez5 zOR`9fsuJ{J^jg-OW1|NzN|O?_OosNT|6!)kQ(V&*2=wZ(p^di_zVuAQ`4xJ+Y1^)%+Qu;&$ zL$WKnm%5^kG%4znF_Y*4uuLTyxTG#8>Ro6mDlpd8q}BlX20g5{zf+Enrt7S|sWTR5 zEbpN&|IV!}6P@KKsoOeiH}~se`Qgk;{{E|I02+cd4gfH|)q)!!R=rnZcm8XUZuO)t zMtU<|GQS8DYjn#oQ^455vW(A@6)-BZujJ_b;v3qXj#RrerHK^6mRaxUQ3&_6Raaw^ zS(KkOfuyb^5bfdmN~49#&qj<(Su`j-kn*)Tv4k>R#*G~F@dDn#_}r&Qxpq2le|AAl z*6Ui@D!10&Qcp5<=29uelq#2owRD7Uj!ljQ3A*3^78gw){MM#o0Nx{Hs$&)4D0S*% zepdS4%tQKbMCLN@Z~h8Tr(}T0R?ah0+<1EbW&7m{6eo;(v+#em1=&+rgrpW%wdLqA zr=U(hO}3#B53az+^6fmC6A4p4t*!q|QX5aXec80oHgOxmB{@cme?78~cZ=S}u>T8t zSAQm^co>9|$%+3{B*`OGfb@Da8Si4vG8teC@31TN_)E(8SFpu(wy~*ga z{XpZRaP7X}X2zXcRQ}9D@2?PC3drL2^0Cf{Z$>QDspqWsmWZUCUvZZ@dbq_+?;)Xh z!v`3okIgB7%&(BrG0LeZ@86_YJo3LcxGu>1o~-ikF638r6EMTFCRON$Q74j5vRmYZnWietJUMkK~UO1rjvli9+~q}Y`+LqPA>WPT)EiEB3WY@=@w z9&m_dH`v1cOcqRI;Z+--L=(Icf1&*Wn}ClK2VrLRW(@&gGc$4%BLk-N#A|iiDM^U4 zdyKkAh9xT>Yq#*zwrMP+2d?U%;?ZWQ^3+)AV0GS9xFn>7j%;vZn88hFlH`;9^t@16 zn6vYp%3N)v^10zb8ZM(a=lUi#pWnoWJ!jAL>=NnY3@)4RC*?MmPR?l_5~l!|!OV#J z2pr~xUqTh1Z|s=;YW4ew1nAPRK6s=^XOIMJ8DMVy8_iXOI8P_+msP~1qnYkDo%_sC1gX|~StQ*l_QJ0Fn zuuUhP7CE2|`r~TUYU)Jdb&i|DzWmKots4v2K0yi2}EOJoyB-~Y_4akF}y25x3p^+MnNygU4S$uLrSc))fKl1k{{;Cmusjm-3 z(}KOqtj4oQgVK-i0knlPpJNJuNQ*>uaS7n~U9Q=>L0VQ2rk{GJ$=E~!?5P{^Z;+jJ z)3*X<3R2GKN*up7wv?P26i9io`s>SDK_aca3FW3T4XoTHQnU|C2Tpa4YhBkn zFqgSI;SG6|^U8noo+wy0eZ$94@;P&F&XJ5fXL!d;gu@&mOEt4+u2_0O7xXC%>(=r4 zzjs8ufH7C)xauxd9qeAgh~!fAOMna!D7u{dfOO?^$_#=NX2woiyX6OOGQ0a(%}$%u z&g6MnZ$>eTS(@n6{=wH{S-knZ>9~eg32K@&RKcDC7RoVnhmS~>rMX3#f)55{xgFJJ zVM!VNB;Coo=*uA2CVSWhVZwJfwN3cdmtU29TRCG1@4$vEXs*?%LPHiW- z&s*4S9G=;ak3r5qPg;BUxTRx>uD+Cvdf%~&cZ`U+Z4TqRXr+vtBPRT5wQHYM%KiL* znq>%2ijJj-ayNi?SeD7j8d6~MP{PnBdTC+frp9EE9S5CAhvEV=la+1dAzo|WWKkAr zhpc1tn%tTS$Bg3^jKhhxK+*mE@Q1#4=c@w%hSQB>Xc&VOqohbxU?@H{jk`8*`^^&h zvq*m~@M*i@x^H)4u|cfJfzw6mKgvjt>FlY(w8}d?{$&XesS!VD7{JT!ZBR^Bv6eGQ$rD zUe9JRRo66t+Pk5B9HD2kwj}Ss-3 zX7-MDnZi?j)YzpHO6l;OrWfU4arb6UhdVdcCV|WoI^yL!C{_y8C?G&@~dkT!UhjL=#IcMpd~P4j#^JX{ubTpoPcQ$a=VH)u9u6 zY9{k`PWzAwd;_%*17y#8gsD>A7{Ex<*(@I0s(dA2MJ@DNA)$Ar zSQO|krMsxy#;lXbLWj`*#ob6(Z0Got)4g|fm-ImF6%W_!r!3H={Ae8Nj^|;G3dqgB z^1ajmuQ8!fzzrYs5x%DYVl*;nqq$<^cZ-n|BD7|$4ONX}EmA0?iilWxIAiaPF*l== z8x?&Y{N!d~>UnBoTNxi0BRF`1OC@Z%nccK$()Ai8rD1$^ZVn$K#caZML^Pveg<(bc zb%UF3q@e!08&KkEnIu*XVI3CCfKZYw4=K6=#~*B+)>)MXYB`L}QyxU9h#;c-JH$kc zt&prG5K2E+U+X`n{5>vK_KY0iATeqOkvHet@{kiRL7NEhq(RSp*BfcwVA2{LUMeqF z2(LsSK}J&}7f27*wo$O6hvmqE+{2D*bR#8oQZ9(`N<t~-FjX-RL zK|+e`PYSW|xDik)w?Uh1rguC*VoldxTk38t^J538bU9J-el$H<=sTW_`vp{=UicHM zzN~)AFstsr!qx>Ow|*US%(#J_tz@^J3gNcnb)W4zg*%CVn8BIp_3`-CiO);f_c z$Y^h=C#U`8mia`wTp^NXn%DfcY(lMH!5NZzC!yi_k^24M(AbJKF)af{S&q1Gf&p2W zRl0F_xqB~!t3OaLCk7JH()<-B?wE`ZmG+Sf#pR|3{4IgrP5jdjH*ZnOKSmAO6(x(~ zf3v_y{=0D6Q!9TUbITpw${u=Pj2xaDSWyFH2e#in^bGaN!(D z9G3>c>*crTcteFdprf|^JxgFJyOpWkEVWYT3z((q_l*Sc_d-F-QCyx3t*V#kn<-AV!{eQ(}&3V*S)jH28Vb z-m4d#jK-p)-k!FwYsQOmnl2ll=HGiAx&WldiQc}yk(b~zq~MQ*m9+DlXQ#r^X`BTz z^i7@d4!cZ~ox_R;CdK-Yq}gSFcY*SAxgF^x^Pl4CPq_Fn?6n4?K|?&*>0^7skU1wB zw%@E`uvOqahVRgae_XVpgr&PS#3o6-WNq(?(uuu`+hWK@y)V-gI;`@aUGw6;fUPG8 zdy>|?WF{u3mMw00w2|hpVJl?rOy87pa=Cu=-27_+3rwPLlpb# zkcaPh%$ZDpl9I{Jd@ehG%p2TJcSaoiJ)Asdy_Cph&NBFc!dIWZbG%ix=UG+LpV`&^&9%l;4j+s^I$bBSk2w zP>3PMW;0{@waXeQ+#ry;&M%a}`BKI8I+%2a#R7_E?X~z*cZHRslZ`a1v8k)*oz|p~ zWGDj^MM>4Ikjx(2TnV4i)8NbN?p{4>L4)hWo14JSlco7;I~F&^oAcCS>&AB5AK&}| zjl-_}=C*DB5>)j6qm1Y_zUN@8cD8BH{ExTYjtbhY84c*Cug0=j309*51EWrQJRV{i zAuKIx?1itUvGyqP==qfOI2~$ugyLswSd?%ldRTG4c>PJ4czYohRVbIw?eNt2G}_OT_;W0{u+%vq}RpLO{v@i=}`R8}A_aU*eLOBUNwwNNLn zGdhK9u1L#KsSA0|vZvjlTXfpMa1_%e(90?w9w;(QUqJ4SyayQYwi*v|?KpD9d~lHc z^Y-J6ZZkS8=k-*foftH{Dt`Xzj|?g@ehzP%Mwd1vyBiy`rpqv!)QG@{0g^4W(7^`M zyqW}W9u~fm8*K`-shK)acMr|8+*baJMNLq@sZ0t@F*WZ5^GsGnjF2=X%<+8cFl!*@ z%#%}uRJy@|FyI^r+ddSsI^FulB`OrUtG{=7;qNEr`tMc=ZRDImn(*n`WxJ*DW);Js zYb|v-YIlfqB$EdfbCA)(GPd|gESX{8Tpd2}VPaO}N$f$JDm~30)eg;f*_IzUP}E%IvXYC~b@v&G>-#Y5G0okgwRC>>d@l^aq&jA3*G9;+QX@}x@p z-dwpdd-xB5$++_vV?wzSix1_1J%No}?7R_+ZW>rRsR`{)MtQZpCquC0(D``RSfZjO}DOX>7`l?wnv zK)k=(#T-EP!dgH}s_Q4;Z|wMo>L|vkwKcTp{-%YHKZjk#yW>X{6T*tjB21!8kV~Iw z?r&&1fDUx>od$B;OT{lTzd@)x=`@oEh=<1X!?Zs~RnL4;?_IP30FgUc9wYWRl)=@;OJA<-ujpi@MyV^Pdk9>MMpSFkQg%0bm2A#Pt?>U8&zhc~&o0O=%> zy#WNeG-nFGrC#D(%oKlrCHSlaFaeeb?6t9j524azIwz7k2TZ<0ux*OJz2FZ(VE7W= zB3s+fA*o1dy;5n{CkTXv;VeeFox*n5SGK!?OHaY`R7?OSIDjPygaH9OQoZX* zmPhU%J{_(|O}G1uo&65yV|tPB(3&s@ro!aBK&(9Xh)~KQ!a@cE&+(2%e zxx6V1hdAX1fe{ba&cL85+Jc1%1BE*Ql(YPIT}vd6r!8L6w&CkaY8le2mLP=N=Zc_T z$4m5VWk&&658`Gd&+y_Arm=UqYw5pgA{cB!96(=%Yp^P9b+H7hgr+Jcztk^<1Z-5r zcvC71UQN8|KJpFK845`A55!v@2Mmsi2Rtzv^Q>JX{&g@uR2rYS+4?Zv6p+98bdK%; z`z^#uNH&RdSeJ8;ejql?PRUrbg(EGmNa~n<%O+=DAGK#7RGf?Drt8>rY@nlYfahDY zOV3UF9WQy=JR~*uY7Bi2-8!9rGRcToq&RD|0=lx}2_|dAh8%bR?MiQb#PrRPlk2i@ z&=^mb1u@}cWe`-L_MWp41_CjirIE|JL4fPVReC2V@(%*ECp}G~d);MSYhF2q=h8~p z-~jM*Yan3^KHA03nxcDlXqdmZyy~=+lJbFi^PmZ6GfT681=mX#Ms!q*6wN8ER& zXeL=Fjqn2tki?uIE4z@CC~X)#?f`+VZ*ANt@C~#>J8cNi3s^AhG&yn-law335~%sd zy^ePN&dnTmon2QG4-4SL}BCa%O%tJokFu}qo zE(0-onsCMnSbmR7a~fZ)pg_E8mZank4a&FVcXieMLEBO#IAz$};lN;{%5vRhd!u;y z?s5kpY!v<6fp0XAb2|8 zj@P@tqiJ*CojUZYqLDoyye3QTqaZAZr84v;7tCa1Ii=nrf;Td7L?aZNL>?7LK}$#i zoMuLvHMNTfz@@67wGu=2R>3vh*#2K;%NiX0$|*&5aa)Me&zp$@S=a$?$327BL^e1a zZ16+}nfGt}{U3y(L&ajFYvrBk@zY}N)ruC`;Hrex1mbsr2>c%tp497CG~5{z79@)8 zBgu5qSFTxVrtTd%le-k{R-0q1H)b{;gWq>PbwJPw6p7bjRq5}Z2+b+*A>t|j&cIG> zOw#0);l*-5KVOe?Moeg>Y**B#pf!RMG2W?E_7*-;r65P7n|W{IU<5Xh<*}zx+v53D zg$Dp9$;bQ1ha36Hzm^$MCt9`ZYku7u)EnZtJ4($>Ggwq<4PG0PZpCTeu|4BLW<8zD z#0?ZOokNXF1cUib(o(4SEQ*$Re=8-9numyFiaTQ4))i~O*~KEui&g(niZ>^r^k>`R zYr$e~KMZ~n^(;iV5WlQPidlhu4;J#WzXNjw-+LzCm=K83-v=~pr13eghrZC)UpB;* zB}zAtqf6K)pGG4CTK;OHMEb8MOOX!3HehTKWWKQvylu1gpW1%9@EnF~Amry@9hFuj zcdHDbJL7YY`qGc6E|wsHqR7?{#mdg@#~?-=AKoh>K2^PV zWeD8V4q+wAQ?UF#+z*w3ol>yc$IBQ((SfxOQGiPQ()3^B6qm-h2;jP;aPo}u#L1eF z;|JY}4h~-3n(uu|zDcbp4n=#BPl>CSWhfwAY&z#XbRLv1Qkr6{t!Ij4t$$;-0%P71 zFIR{KZo(dz4>`{hxft1(>$O{@eNJVwYRBuLiupeWi3sMK;c*9EIm`}|y#U|78y*W! zY8J{^GYeDf-s}q4*JS(Ima>ayJ^Dou(^aK;3qzn9PPXa<{bZVQ%zxl-2u|1A4+?g* z`sahx(ZS{Gn9?c6C?#g2as<@B7_-=`p2q;^Y<8_ni_HMnI~FxVPkn5(s3bD5F0@A* zDcIeDDul57r$hQIm?FTQDB&J{7i7w!y3pSRG%@nN%ya}MbY;EdAE-UA$OW?LbpSgF-71GeH34Qk6Py5^3Vjfxqi80+o1l}`y zyjE!v?Si4~>ndi}_s~hbV|ds4kILDdHxHO?#5O^t1_lIgjQX8vmB%9$vZmkVijzB9 z1gxd$NA1^BEXPDwlkLj zq%v+N2iMMNl@*mloYP9Td2~_(>`HGzn6OZc;)L$i%}6TTP2Cb~QVq9PEk~yB z+aL^HX>E7QC?hwF8$QwSfXG512-Re4%9`&phWxL7$HQl& zi57m_;+Y{k?6kuhoX2lQxd%#JJOKJsAs|f@|LRQSJS&6f@Rx<8iqaOruxD{KKG=ZB^A&` zvxPX+pNeki$Y@ITdz{XSXEv+UXYY2pxmxPW zQK{0ALbks_Bad9K%^Y0eBy(u^Lr!nDu2M|vG=zW(2N&LEr?UVAszxrEVR6q({-{|f zx`YP9qsDebV8kLM3D}}%id%|sec38hafhqqbB`Z&>BKy5u5}Lr2S0i zwziCfw>rNt%Q%4B&*B(hFCx`8OjwVWI@pAi`Gr^JB~sSo3OFKQatQ!^#;-Dw37O%0 zKv#AS>VaLYq)hq@4^*kYvl4c{7U@lY;F56Aq2(BG7_)eKz04BZXbx4`z+JGxpjvl3 zNbzTq-II(^H~*&PVR}EVd4l1tc7aw{ov73Fd#g3rF4}t?p@Y`LygeeORz#Hcre&KH@N0AiPYU%S*VqEchbs z8=ej+M`)0C&OK*?tyv$VS)oBl2WYZHHRlXUG>;AzwhadfZ2&7)uf&I zj9NGm^u&^%=YwGdZ)-qn80A%=2ZZ$}EjLgl^=Fz(s96NX|K`spQ!@?jbm^gSrar)94dXP3PwbpMB+i)kG>$Qm9HcZ&j(@O(d4kFJf z^{XkKG!t^`CM(VW|#WBi#~LQc${az^Gxg}iSe2GtUKLP+m^11QgG{F`%ICqi7c z%ZoI(4a!a<+S5Pxx+T>?YKNbCZUJ;p?0#B@IG<649@*VVTZ!ZXO5VT?yA#ZmXB%gL z>}>^;EpJNJRJEK_q+6KL(*<4M!zr(3GZR2b2s3jHcUQ;^$94*tUIDsfIp+ut&5P^p)UvYfG}GG9{sF zoY25&_IGsEbL>yJG3cet1?kvryfXuNlRqazLX485S9EyK2vai=%%iI{=KDKZ;a=?y z_3r8?dC*7O=o14FOq4k6%@@4SKfvXsZ2B)yFX*Fol+8#Y)zH9jbI>CU!d#O+0I(asGa1LvafEyUnICnL?@y^w?i%f>v=s_f|L{@SvU!Ezi0leJUn2`WRy ztzh+p3a-5=$Ul6`h_&$8Fdk?WezoM%(jMjZ4Viz^__2#g&9AD4&-OnS2pF~-mu31T zU|ZrtX__j*ewobiBNrz6^l9oZj@+P!j^uLU*(;p z`h+l~Sfv+zk55nl=ak!gEHaqY%7sL4mpIwYA$PIst#sIIHM-bkM*A+pjZ7Valujn! zuqRQG37=D-KjCx-jBnbBDt7||Wi;EeivYCo%=~sO7@Z3%hWs*SVZ`sY#NNo)IVG^6 zcFJZYEz7JFjeiSkG>!rfdroEJr`Lby55^Efyn8@SeWTN@Flru18W7d23a>{gXL|F= zWDcsonBe?a4r?G2awXXFZ9RlB5t+p=^y`pXO2R=g(T)O%kp`?Pe3}+v%LAMIotgq* z763$#<>IUAzj$*yQ0|dS;DKDcb{mQp_x=kQ?qrz<|-q!H!w7OE*3=^); z0`X2TP}H10T{vg=x$RL1AQusluHTA&b(K$7y^0s(qf|2Sg2mV{@+giIlD!E*!fn6b zF(n1Lv{33BOvW+x8sd$}<2Ueri+?%XttrxvJQ2`=xwo|pI3p9~=Ry^SDICh|zC+j6dNDpwa;bbsDC1DPM)n@=JSur;wR#34X2YW`}{orm+=f z^?im`PhrluG9q56DqFIGpG)zJxDu0<*RNTr(qE7_?%?l98J*fYE|0?>AV;?j&Y(#g zzeMUkd+4dIHbbh9h zFHMT~hFQVRH*nFtFK_NtEtBnndlrqB2$#ySbPg;3%!ZF}tiEH@$Hs@;W9Q+d1C_uG zjkbk)mp~0BF~f5clyQK^j(l=JB4V|UP8eYo>SEVoQb^!9Zq=Ynh*^H#()oL*s{8`} z`H*b(z>K-RD}LG?#HKL7Ylub~B)CcKq-t()-I4$g_Qcog+&=VgYlR!r3;<(6XCywa zE1V?D;x&W_kLbpffg%l{s-xgINmA?dY^2yZcxgM)8LHF~`1TksEw1KFF2 zDI9P<^FL$pm4EDnr-={}DBV0&ka}yhoF^t2*a-?5OK>O1sERkX0R5If3dNzhD086& zF2untIOxml$Fz3&3iVP@s%s)Ny-Z^Dltx1!J4wZcxknQfZ~j4ScPQU19MnIM`%7k2 ztXk`jbI804XjN<$q%bwjKS<_mo6{ggYf2LC4HPUnT)3V|dSq)4*~h!H6Phv*q5IgN zCQd^IGT*BzR3&_t_}DHvzzI)%;W_+kdbv+~*KeMqrDL zpa*P>Jk4zXtJXsorQzgV zUPwKc33;8;9u*Fs2Bc?bu2G6y9iiDR#S$?;o$8d;NT>p3@pAww)=0FqVz5z%%^X|L z5?P$`Fj_{dJoS6rrzoRyiln6@YNrY=SGc%nN&%$=#)>{iz?;mLltLVU_VHJ7P1*9m zv2NRRa`VpKTf$Fyz2S-&EN93PD)f`(283%8{Ta|`f-SR-(Bm;PETOKx#D#FLorpBd z)+(|5NVZ54Gn-X51ZH=@=HeCfUdPpEm1{=TI6#p{X9`^pq9CK1pB_yOwFQ2kNRqz?ml~WoNVMk0< zQcv0^BR`Hl<%!;^`tMwf1$RnepGQk>TE1<5aZeC_y~^Qh@5S1Qw>3aNxUw;I>#c>t zraNC_B{^wCdBOzoJ23C!SNZ9*p!iV0=lZkK1C{1=;QJ`#Yv1LODEXCmRVBnZnCQZRh%6Vq~-}gJU!YBH7 zvqZ3;xs+X1tZSD+m@(EpdG3E2HB6lUMe=qx$@3yWx5qQRDqb@|Fy|7E zIIpMT_c&+>VSousH2WM^6xvI=6FjGFOFO+ zP(5|?Mc6J-6d}-L`HQ0;0M!=*R9G0L!DO#3WaMm5D!PpucE2ZM1nUbDmYQVdCD3xR z9TvDN6AxM#M)xB}GBgC4TlKt9ErrQf^$hzk<{_^YdM5UG#n`lv`!yi61-m}T$0pCi zIfAXYyFZW!a5bp=mj(77)eat@c@#t7SSHB!@JRt8j0{An?n|hl0qxSOgf%Nbu*c@+ z3_n~Od*gOdG%w+<&{-6k)K>8Sxr>3q7rst5NuRib!L|iWWye${v*mnZJ;q%nWlW0O zuQWKw6Q0RkZ+z;>(S>8iJmy*BF!7#jSbHdOCThGtV&W%4GW+o2Ut+wAEqtsUAoqvw z%zx1Nn=Gi?_b}_T7p<>kPAzt9s{r4prlq7qT^*m9gt6pou{e7 zJ4lj*V4Tewl%vfHRHVX(K1?r!F*R!tsn<1qgOt0t>Az`gv}{_Q2Bkw%dxS0WLh3H- zRD03O>GE=#t&QdY(>(wd~FCYgfMF6Lhuqe;7JA$N1=xmZFJK$$Hb~H>^&O?QD66>mz??d!jiv-nuzYbI zc8z5ZjOhVURjk16CWaw_DY`ntNy)}(>l#j7Sp~dK``p7Q;(@aNivplacQxg3ha)ns zun88(D?m>@SaNe5_5nbWZ z+@)a!yD!&tu*W5i2LocR)b7L#Dqf+MH(YzeG@b3TsQO$(BvS*SCF*+WAf@5B$=xlD zb6xva>2ngldm~N!Vw@2*;Wnm9i}5pkPk7kIb*4U3KiV4eecUAnNT#0^p?1zCUtONa z>I59=CgE}yC$Z7&p=;P!e z5zZ&25l1Hj9}roCo&-J3wX`a`%zIDIq9e0Hyo5SnznvY%$)-$n0mD}WPe=B`@Q9-; z?+YBO1`fsOPmlLiU8KJbWD%%hzhb2q zT(5k&L0Y2m8|j@iHCkLvAvC%WZg(Iz%i63H1pUIEkklXFyYoHUMjfI)g=gzoU_)sb zBLWVGB-Ql2=#z&ViIx5a_qUsfW5DGf_$v-jxwoH*3Wcp;w?EWdyx_c00eRQ$_UT&` zMg#X~In=q&DFr!b4e+6hZC4p2-!fHIF7)?9i@!WSlI$`fams6$f zPTKPo9y-BcgZUw9COaQbme3_LQUresw!bD3H=CED-d!i#4cIWdA?B0hLLUa%nJN9| z9KFOy2L5(ERQh8w`;t&HDEDI=b91dHDYDXYvcFL&Bo+m`(hCsvaG1Y4Nt2Rcrcvx| zDQv&F5DJ4q9-4bB&;( zBTCR=O({6T&7OQOHB*PnOW$ zf%Pf28Bb&St|;JBmsE6{0#oL{!-(kYS+<%!+}dBS``u0`><((PnX#-woqx2zFF%ne z@j(UtuK{r0fqK9nymTQ5CI{@fWBbA=@mQ@yHjehlGHTg;_fQ_J$rR|*j%R$mEFmZ~ zn+t%^l*5Qw_C(RY+v&*3Ao~T9m~c#|;WruO-;hsjChNeY_KF+_{aSDmcgwc_f%dL+ z(l}-^B7?DZ1K)Bi`$LSckN1bhMy+J{5w?f&$d{`H-Zp^ctPd;2-e z^^D^QmN=gD_4c0MoHofxdEntNfo;ZH^J!=dhfWwYdG~y1PjytO1Dln66vVy%$fd(E zmRajZ1mSJ^u_yG@l^ao-AY#G5S5v5>C)ode#*|3b;Gig=rgAz@JR~|7#29siySaZa*!un2g;ye% zzc5hbGjOS&t2Y*#Sji{B-^yb9hmO=j9Bx1QrVqFV(~$;HPLG}(Pt1$mh%9{)k`Lr- z*fNm@NsvWGT=MENej(6(+h;Wd5G%=!Xf&Md@jvw;@?)Vb$a+8@v9ZvzHOG{) zFW({ZTX0%XXU<~~;Ym@JoH5J8vn5j@mH`oUcqV6yllw?XAUAT*1_3{J918`bK-;T9 zlI8C)e&h&Cd-so(bk9FK#T!IFMTpv7SI}IP)^9g=;O2tp=WSzp+%1PuL9fF-jb8%g z6Lnt*HET?vLT54GbeNqMNFt8Kb87D<8^f7#>EGCfHwS>+$hhkZk1*bkK?{`B0{5+u zxnq6g%{4OFA{i{x7jl&PW!Sgcc_jXb$?DWur_J^ok&8>5VgF z;6^`fR~nRYJPTF&w4b`t7o-NDb7@qOM`-5r8ir7nf!6lIPj~j#$yd1Tgx(}ptsfZL z;!tyu8{^ty4PeeyKgv~u0!%QS4A?Y}LubD;-WBA*T(QC&F&uJ>%hS(CE3F$mQ?lFk{@QTV7bckiqkdg~(+F=dKb zXSPNDM#28uFw;P#KfL*h<0U%0xuPW|7d?*me$ae@Rz!Qu<|T@Ps*S^RQ)Z+>HP!=c z**B&WH%LS;7nc; z*3xl7b5@1#lW10o)W>s2H5#IPe>3Xl;>}4DDAa1Aizjz@6cC5jNK^>4gl&+w446m& z5(Za#kJSMIUjgVj_UF4V)R>X|AFj32Lbw~#2)k~|j2yBAXHlfv8>AW5`PZ?1ycp6K zX#8BENK`KKshSNA-J!;{2iP^bPH@jzZ#>-qc*7P8*yv|)XWWUGq3|;c6Q@74TW zE4;xTnhkQG6Leif`yMy%#^zjexClT6sAA%ShaYR^pt0Afi=VAv zOVb{yA}*z@Zp7!w?uW#{_t}j}ROcdlBPsKPkm>4_HeJM$kZCTe7r*92>h5Q~%IiQv zmQo~O9|4VQI?Fwup2GSdP@Tr>OG^G%rmhYK3=?_=iCBXj28u)^M%CcmGT6z?zYI6@Pc9@ zt=p<#93@>msX75=voS!1p`t!f2sDdq2FH{NAvZiJ|JIZZ@kne8FiA`8NaEo)RWE^8D?3sgzSh zAWJfxOr?V&c!;KxNkO2o9k{&c4N`F9CYp|z4Xyt33W!f-Cddexfv|AE#gayn$gykEc zblP=5!pR#AmJ;63g`l<&&s0=s+6|b)~v4-}`&M zA6E?vR-&4cbAo#b7s1@zi?I&PYBzA5%4K~QH5ohK5-V*hgdRjQcUV~*(0tt|5(K86 zE|1d}J`FsCX1&>p=SUy8D^0&Y2%8u4%g{=FOT;5WxW43_)XP*0@Cd7phyF0a_lgSpFRMr5-k%60CiS!%x-U|?pClCNdlNhs;Ll?R#*iTTb1 z9XiJ9Z(oAK>L{LdHPfB$7VP5Adp(@+LcZlnK|oNo&Cg6NZOu~(j5U&KX>#{aCuC!d z>+E^R>rKn;g-?mb5&_{Wb2yp>PkfPE4ookjs)$rLiEIFbPWxxdhb<^+(OQg^?aNA;`BwbpTBiMPH#`YUy(Y>yygMy`1;PGgti= zfM8Z1KmZ`_)im3r>ns|Cb1>KL(Gds_T`~%B7 zcaCz|?2Y%Tbz15=!VLX6CPA?gEGSJWg^k5Rd?ZweT>;K!jn2c2D&U=!0>Cw>!u@MP z>Kw}B!2qm%io@E7T7*l54%$uqpXEwE zC};kr&%1Tc+b?U#xhp>~@pUJyN1n5Dy+*|`u50vyXwX58d=>TE&D)@faaR|9NAEEU zX-#&O?cWUIOM`GxgB#n=ctt-7JBZ>KK{5=DqRSB5{5i1yWZS;eku|NeeiJ-IVYhz> z|AGnajt6y=+Y()*E7{YZ1)cJ=Rz+@!RJ(=Rts1p~i6vdTlnqQz> zY*WDEV?%_YfzN8jHEQH-Chfeem>oM#ea#ot!Q2JJBKF7A?DB~J65cbvm0lTJ#iN1w z{NJ!HogkK6g@?_+aYOdsyKXBsaOk1*U@W-@pm=Qww>&}gwIj|<#TvM(j-BARkR z>$ozI}dKt(()DI3kb2b%>f1S%3{47 zxXB7YA?r&a3L)((2-S?DDLUNqo)mZFUhw(%XYFzh(8pnmV|LJaZ)`2qplZz%HRMyqB&aqbYTF>~1Hsd%VXlfGe?zP*3K(ESv zRf)|ntPHJv4E6&q2fDY35&MQ<`8~zqScAcAPArN_Bbt?hoH2tPNEFh|0gk!XW``f) zPJFDB;*j>g#tQCCXues?d`1j0O4|HH1*Y=pnU0{iF}t|Q{0{T*C+<4lB1eB@Y)RTC zLJiN~)0urga*KB1S_t7fXm~N=Hbsw4^_*jD9GgJUBM(B;R>5)ne#ZTb^<)*HmtRj+ z3D4Ulsqhaf5%sdAm8Z!AifN}wnHj34og4xPAxhsC2{E>a_)3+?ESH#xCmVIlA|`V-D}aTZ(p_R0&{Vq*1Ox|-igW?y!&vWsi_{l+rUNq^^pjO*EyNs8 zinAkTiL;!L>EsvUkSAC&gisa_v)FAU+sWb7-f$D}gue#ASw_d@dtG;2U@QPmdeBDJ zo2+T>>a;UZp3~NB*x3FuDO>%KXe(J(eSgSBm5qn{*N&kp<#Pcwao0#I%2(FL6XEaE^7%Q|fm=BLDuybO1L|KNlG1K#Ed zMsWbBDW%P0=EexR;+A@>0zQ_I&bB)R3*V5rCvUiIjK#h!VWW$(a`VU^KgDjC4}*cL zh&Fpuvc*zj=uU49q@=MUSt33=4eSOSyXn{euqw67>GkxTA@NyouQ8WnwJndYhvnHC zh3I1>M^;-cdUz%9eGV>rz(1L4$<*<{7Wj)WzEp!?yHW}8wHU?lZqBYiG8*ch8A_^h zShb$_l4Pqsvu0Dki_l__yjJRwc2NFeVbN_TIi&-gomcmiAlrpK)MZ_gHqI(#|&SCA!5BdqyN2Xf*xUiZ&)UR=NWE?P{ayrrgyk(-Em78h=rU=tFt2R*P1v_`j@Lr4ku! zs)Pe0@+3ULDMgKAhUg88yM4H25d`T+y+6BE(xR;^g@ur11)yJ@bafov3gte9utF8Z zJ!#CAt&-*hLwwYVM8qXd{$Ehu7(dL%*iQ?l0@so||MH`DuBbX5;4X;uX#w!!8#(sF zY;U>SY9sX2ZQj=BxPWw(PCi9s5XT}bayc%PQ?Q5x@ObxcR^b)9SJi%$XmHC}Iw0FvXU+2WdDKX`tMoSMCvG5x9B~S)6h$;Gj<(qs}|`kF1i(bu7?JGc{Rk+>LLf%&>n6&-t8cy9*d zZHPGqnMpk)Vq`!dbl}{%vIbol-pV@EjT=S81xyF+KLK7I1x=i)9(f{dAhx3KO{sc) znh$^xI)c+egaW%AAoQ;p(g&*xYIwDccPOY&?<0cZDJKA}aW@brp@iQ3C!RBIs;#hF zS|6p!z^{qEA&hvNOn-EJYq)`lmH$rLWItsEq4Tl-hOrNd27cm^&4~Uy?wE2~hWk0E zsu_tdT|sNURK#v5?9G5JnRZ+kj=SKAXmHOT_-~-f0QbK*L81y?6XDwYA)OtucZi_O ziy%$MUQv%5tp)3^`_LrCA^j8$;@K&>$!HrnV!KxExj#}Cw(|pXpo?Zw`#7+g6~iY0 zNco*^hdQJ1!5owgWV6?!bx5Gw_>Md(g5}2Q?F+eQTk3O=2^OgSIkp{wsN!Z!>!rNG zYFKk{y|0nW?;Z>2X|&!4<^Nk*lpQpuvx-d(9MkHjGjF_~!@n?kOB9z5+7uc&(8w75 zoBVsZO1K+*<)|~yKVtC&OM6t*(O8PSH}SEpGChhW)7I2Uigz5-&3ANUgOZAM1*S-Q z%B`3R%X!=$VqLUGTsCWNe}dbj~ zM3e}ESPKR|)DIfN&<>7|?E2)PhiQAOx9mKBU7)nNL3#IX?y=4%ar8HH{^@|=)7KC| z!m0Kw{v9O*&flxu-1iP1sCtoW-WBA$nQ!LoH}Gkzezt(^xk~^7n1;>PMeMD$*rK-9 zyn2o+T)M)|jW=YaR}qAqEX27x&Vp#ggv7g}7aJ01t*3TdK{gVSQ5@)pNh}UOy z24QHKa8u!S_@qMJHa&#yoBWFCFz}MKS@G z2^I%D>r(2*tHK@p$XmowKgMACRP=)6mIFbnkHC2Eae87&mfjrYXB%oUjAhtzLe>5T z4Ue;?E8st{e56GCE9FUsCAHXjSWe7{=6mzGxQig+p*#LP0pR7IE?14qn>#p>&`aMb zuodVSLgZiz6~z8T@oLVa7}7od^4$fr3ZiAke@_foS9Bj%v%+xwz7s ztnYzQjZ-LT7Adi3g-0|&;lGaN`bv#QFTOOjGP+#frMQ~ry%flcjE2Ue)*<_`#AM3Z zP8SdG* z?6?@u2C3XMOq6ei^bl+FOM~}7<_cCe47<&={cpv^__qqu0W^$|4_i;k=f>C#VPLu) zC9|(*Ygpk+YE{neTfjARrBuy=wcOtwttH={aBEmtsQt-N9*`|(&TAJCkxDip$=@2g>Tu+X z1ZtuGe1L|xG^yvw6x6XKuRm`(?iEGAt(IPkG&ry=Tzv|OAJqg)nl6B{d2f1KT_GDR zgd|e;KXO8uEvNZqvCTe+$}%IG1ouDB0-G|2yG#$#|Ll4LS%55$6SUgZX8@~BkSUHa zRUAnBKx`3lnZBTOYbwax0;FtbGeD3&%d8dX*L(}5Z3YOQOu)+r#xJ^<2gf-P3mZbp zIW(C;40)l+qD*Az=Z2cU%UKr~-=y#_YxSL2Lx{6@?7=|0y#B>>3~jpE*@d0UB0k47 zZYe4k=Gq4h1%94EM)1g6QAqaKbO``g17=uEUSuawt+y!Js9{%sep*uC#L(V|)K z9K`=sxQ7e(9$gwJ7Ko|-TCD9owVRKyE$P~TP-}J9%ks@#BVr_m{Q|SNT#A8Wio8!8 z8GY4~t;`h9sK1jMeqxpbX6*2zno({wEbH~;@Q!kRkgMwErNvx15dH>B6e6&kC<`a% zC+R)OGvMgrCd@2NzP*yv^j@4TEC~`_PQ6hyccYeAg3F1H(G;4F?CnR?SIY8O9~(l- z(sG`BB%g4|w?0p)&qM_nY983<970M+Y)aa7eB;Xba{JYLd{)jG{@WAN9qZHwuJ3VG zZ*Tb?cNa~Qn5C{BMDVau412GDO-li5HxZNFr3qj=crNM-{odJS=Bg2 zPy*d|@4#bF5MyORMmJX^?MZGT(UEYCSW37WtA?XR;7$z490P>&>$!=s$RwfJb~$-D zG+?Vb&M|Vkm3+LfXLg9^mLajT@(-km-BusQqLve<5WZ3i?W=6Tcq2SH-TBgo$R^4J zzV!PiXWQh~A$s_he%Z=j9QV%sEV5Z*VOWu)jBw%v=4;KZtI$n{Fl$i=YW(&WWVTdc zH9Y$UixwUpd!N=83|vfr@I822L}~5fX$cYuF%4kwD#`AW>I&*d7Rx@5l#~66JKq+v_CHHyp?I&o-)>o(I7 zDL?bi-tsD^bnM@13sR2v`-1Q3R)bMQJna_*3}_;IlUH=XQ`|%_2nr5Ibns84h1|P< z>jya-J|Eofkl7a^h{H416{8BAedyMcDS;EWS#sNL^sEkEiYO4h$v{0-pGKuCr)Lb8 zqo@gmDtFFJ#Z0rDRsX(U8e2 zy3ux$X6JgRyzJg|vs>e!DfX*yj-^=RuQE%wM>_Qq``GR0=Jn(YJ(g${((5JHZQ^Mc zPYrN}-FaCLOy~$cTMyjg4f<$o0&X>w$Y~0A{P!s-h|pws;OrRuX8*H3Uv)$-xa3}G zoTfnULQMifrDp&$ptJT_c{NI2v?pXi<`>F#A2q`Jc@#GzN8a{(%xkdkK@Z7=wnKe2 zuu@e}GqscvyxNncSH~P74muvZjF!A(xu)EFYW&BvdQ+`C9!DxbO^}K^Akp+2lxr3z zPnE3m6%hwbD31)n^~JYa!L)hq)VyX-2ftChrrOtqv+rW4sv|EaSlGd0T(?V z3nu#bM!6g3MbkFLKliC)W18m>?^L7B_kZC>i}Za+^fGDT&3R#8Bi9qtWmfOTYzJM7 z2p-gKWR}(CqN@(D5mQ?NK|&w(rLf|yBc;IFkcbj+Et^1a2@C z_4cS8#;3)hPg_d=+W^|E7ZDNbQ_yav7Nmg0Ih+PA$E6Bft?LpESSA227)u?#Ua%>y z@vWzXQ9;uWuH;YF(uL&8-gKjHRrtWkMrtiulaX%&!&YrfDT75|37bpBPFH#Az>0L# z^H;Es@e)U&^dVr{KC^_&77A$M%;T(|foW6XJ8%%PE><77)!=98trq97{GfrqC>Zp? z`Po_wJ~DFn>+l}oDN;^V@7TXadTB1emR@y8fGnuKDN_(o7PO_7`VL-kD$l!><^V_G6BBG#X#b8(*Q8vMbJj_0nKyHvvig8%Dn6CV-;cD9{#g;a0( z!oiiRL5i-^k&;LX|GE)g?ZW+iSJeZ+t4F>Eak9!_4e`@S9YW|_Ir4Pv1_P*-Xi1o7$F?bRzB1z=CSHmqKCUV9AdmVpO^izZK#@Ug_&W>n3wG%a^> zLU*JSd(F5$k|GzUVHPp(y^|SrALmW;`H`H31!G&WkF);bMdq3u$N-Dmf68VvaLDZ? z0%f^1=1whv-cVBLi4u)BNJRY~0DBpKLm>m%HX`9)V(1JBuTqyln6!gPc*+4LTix}Q zhBAbKV==2tlwF&UtHJCw)_Iqja8NKNb6Fd$(Z}35l@80Uv{H99SN`)g7?x__+Cw*e z)DUXQaNL!|_(_{SkCk}5SGZr~Dt|oetrTZ!@ex|{-ki(>cT2~P0sfJ%OumDs0hW$h z#oamye-mR%bzJ1J7u2ze(KxL@?Ov*kxrMt)UAv*jvhpT)yB3z^*%9z&^<3+nY+CJN zn}s{`jM65%Nmb@~MAx&M6O9rc0024{;BP8?V49xtDknV%J((s!|C!5ASF!9~lA(kZ z5b}WRzJ_5!XQ`quU_YoPdP*G<9LVo^!Q{{T2%>FLx)=X_ao{4x2qKTajfAiMpAL`I zZheMlH@G)rl3@?&r9V^#CY;djf`_7KWiXGb!jgH*TIvAwb^_`_kzZPrN1q88Dg$!I zUW*S;Y-bd_Xn2Ah_*Rs?`b>=7530I!^>vwYGh&szHf$dqD8&IUe>Xd^=5s-Ubn~|k zk>@!d=H<49=sRD7^W3b{+tIBt`idAlj{Pl&*8r#G>t<&XRkqFYOE+meEpwLBqIjE6#pF42)E8#^wN7K&HRCn?;?sCgkdgAPnR-%u1##>I<*k-vg(_ z!m9%Zd_mYp5Ld|b%~7HiE%x=FKpr&iB{W8qEx!a^?nkyNkj?LU(0s596^%liOED*9 z`ht-fqSWE(BLS{cPW}UBr=?zY?S0T~Ovzc;NNVBQo^Yms1is_`fGa#6j8?0`7#6dQHO5`Ne#U`YXk)cIo;b1t8jwz+Q^u7_he*L-gHrCtZ1Wz zV(D^2-}@k2A1m&aUf4zU&Zk)DJ~PJ}z_8{9Y$J^oA6iT^B*NNnyR`+?@PQ>V>!WWR zT7DR{|HIpf&c+4?^;ZEdjhvfEqHlv5R9B1k6}r!4sk~GU{c;STiA^BlKhY}esdzZ> z=jqZxAT$dY5~_lm^=n&z?v0{Zkpb(*Nao|={?!RpOIO69fC*WM%_qoHELXzpPAV*D z-muJYtC<_oMtpnL!7elSB+%dyB0(6tRZhguA^~X5&QE*yGN_8L9bxG<=NUnQIHlve zUC5zt=*sTlw~&jDC{-7mvt(;0>vDHEE!{Nov03tbo;;Q&sWEMkEc1K_5!{8>27@k$ zaP8NAKZ6n8vIXh-gheA653rTC>?NfA&roN+|LX|J-M-UsblhcdX)VyT(A-c1W-0 zJ4-!flumSY98towHFOQ&vBy2^0_&tp#KS>R#bWsR*h0f-&dWV30>W&F1GL0j)Etlc47-7 zhmn{y@*WN8Besj#pr^^yc14>B=1ms-CuP_t9n$Iz{u(9;$M{@&;B#-FtB$uh%z`;$ zuksRKLIgyTkuWm??)}!u9LHH;J?5~UIm(E>`E@r@sZXS=(?YWObUeFF|uvVe+FIAiGMeYYxe_%0Lnklz-sp`N~mYt zJTv7i2t|FzZyWzu%nO&G=z*o)R&ppj>>mqv!pfPBY zj^A)#J*@QFBa)iMIfVaa7~n1w6JBPORkH?6SDU3-szEHpz2ICUOHPd_2k7Zwk%s0S zJPEq`(}yv`AqICok1dsDgNu;U8UCvFE#VHwQg^a;$y6qK3$o^5cUP7YfW6npeItYv7mfu>b#yh<>npm* zx?Y%mwxD&;fW41W(yG)y!sGFp_>H_ic-d<#dF>yRmroWa3nrYHo)Ib%sU*fVy+MJ) zL-hsuGem}%+&X90eGHgxNi%g{yj&T{!az%{wq`1+4DUINd2J{6pG7Phpdj$ZgXBUY zGhyN`fus0n%}h6W&>iz?NtmTTN$IDox;T#UC-WHcjpBq!`uz~rh8*B+7m>?M^xe%{ zX}h1J?!oc+nma*9TWDzm7RwF)wXaEeAJhAN=C4<)V*jvGad64QX#-BfuWSQzMU#iZ)#CZc-2}1KXKa7GHB|Q4w9)&wojBDpjtu z+!&Xp;SfCAC}aBpbp=m}GyS0$cU9?iw$8WVFdJtfXH-oANusGD`D)zX|L+rERAL8( zQtFUgXt7w(;Pr8CtlJMe^KT$#^8{U|DvS@uI@9}U{Xz?YJMS?ZUR|0H%A`A%Z+L+< zf%fdaxIQ7tlnV{@&F6Vg6BOPJyo6c@37tzMawDp39776v8Ad~Jy};kfWW@xw*W(XS zK3m$?=HxvNNfw2b&ov;uR$0fVi@{fj2%^I1>4$a`;xlrNmDBJy_Yei@v<+ckl{nbm z%i%0MXm5Yd;@o(tVnV-ae{K#suV94RE%h=ORUej7a( z$o^Z3-k8!)8Rw%<(qC^nG`tANI?WhLE70@vH6Et4D;wJM<}}P8j%1bcbwWgxToNMV z?&wyycLCmrXvyl^%sJ{qbWA{>$4d))U4SY9g&miynrMYxDoDLNA&eQv9}(CgmePcz zV^^@NX~t6gjkq!cY6~V#O4qxGWnG^yND-(a3m($f#KZPRD0X*}R17`id;jR$OIsbP ztAkjz87V-?c!4dg)lxoiS%@$BZfQ)irHSU`9ao1F#rth zz;R!RFNS=h1ZX{#(n?EG!b?@&UTa-Ds$$qvdVh9kc*3}LS=ekn&(R1x+ei67-}DR{ z8o#r7>dh?4J^)t8b&-KdLF5RxZ)c!dg33c00hKkTRmH?~6GEQcEJ_1CI=(=UZQ8Gd zjf{eVUFoF`cjU+T%V-Flxu@75nZodH>cCcV<&aT$XYn(BToO9?5fRrNxJ!!y;H*XZ z5Zg?*o^Z`PyLp39$jXG>G(7UYdX$ex+U+P~tAwFG9{3fK1)Exa^yNK5Gq=UNm73#F zjMT#z>D#`TK(1UG39j2#<^i5_vI9c`qwgh{h0^vzPbX`}?d=bJ(P!*ca_s2+Vm@N} zh1*KNiolPNuQrAD_x&s(G9Lb>muA)#`J2n2Gs&#{qWI;}B{%55AQg?qJZa5e5}Z5gHb%*{2$MWqFKMBHl3xO^Jm2T_rI7`m`_ zcSl2xqcjV(xxfi!-~7AG;McfIcrI5_MLz`FX!NkL;`nueyh1=pR_pM&WpnsOEUQ)=D3*Jq&&I?=O?OX{&-xR8iYbkO_ zwT)xhk7gZ05z;o?O(ar#z+%EBSFp3kZ4u3+;VdfEfHVnrBTSR~lSges_BkZLNrxj3 z?U8m>M$WOa%bZ3;I>AB~7PYm$FCtaki~RthuDd?-fMT+I-# zI<%R_Zav`nK|d@X7Nd*lO-8s4*aqY_4KQ&6kvWo;B%LnEe!qwd>%Sk#kpz`c8_Fs2 z-y`N}cueYTexU*5?>$nh(fqV`f8C;!_^c*{PrXHiz5(q`W{u}gTV`f@Uf7sAkni5x zI7R`bd`S2fOXi?Umtz?Ka_UbaOHt2ShKN51A{&fOxKJ7dnLN^M%BtLBr8oJEmgyj$ zuaPj{Y^fN(mY|hqC3kKqcXkGB|Zb)o>Lf9#|@alLqzxAU$kEEE6 z^e*jmdEQPF_mxbc(UOeVFrJ_1Av9~+EpvBAO=YO#o!(vlzG)0gx#>qX%wPYnsIp6O zyiX&U0-t8sMkPrcypHCuR9fh$^WU#hkHiAkk(m;_oZxU0(}OEuN>pcYF%yM(h(PIz zuhm07-~$D?LLj8FFQ1msO(am@^ogrZ7PNbbVyA!Kwp{yx8lZDxq#E*G5z?+X6C8 zEB$MFIhRZj9clGZZW#NmUea$tf7UHFErJweniNgaH%wVD&>51XpfG>vxt7^?+^LCv zUb%2si=yYG6ls9}+d?L<#Ad*;*i4!&RzijOXl$OBu!W|vvu^b4ogKb;Bk6&Y`VgE; z{{w755<`K&HU$9G8w9SvaA(6}Q{-c4yDoRZ3fpg&=JCR65zHdB9ZU9)FegszC=9!L|AFQwJbIHJGn`b8{=Rcr%&$y@xqa3z`?cFo! zp!bqSt$kT0x&X@-ZLT4I*%NY2-?R!c8z3;=dZO>fWS%^R3(usrSqaz32&3E<_=8X_n6BrPqR(~jmIA2fJuHZfb68QBbK0e#ovdeCDSpgI|~640av%|iwpb^ z!`DC~hqf{l%up_O3Q;F(!=KkN;{JlV67A#i~6p9y)g+5%t5ak2>qyT#Wq&%7C{im*l z`H4>1QpFRJXW;70Ou3QH1FH&(_AcN7Fmq) zsp4%$VnRSly3_*e9q zAs8SENZ1nBrc%7PmwC&w#DV3#KNSG}DD@()<))N6Xx?)f$WBptDv_906L!3>^eFln zq~B(KT+X#$+_)>b!hjft-oCK`t9}m)7mjDb(;?pBUZPN;Twgu z&0bP_OB+GZ))`pEQ9O-sA}T*)X^hcn&flk7GJ!A6)rKiJQa%s>+B0^`^|xs2~avZp`-9M*dt%f$IyOeD9=g_m6xos_~sZWb<8LP_za1 z*+_%h=|=XJX}hFaamHW|SKkB3O*BL_;(h2{4_q>-XHPP5#E9|(s%hlUP8v*fi|Fh~ z7(N1|I@V519($#Y-#*lXBJmLdp# zw!ig(zvVnt*oRSWC%$ekY)@Ph0=A8;o{N-`GTv%OYWivBji->bq zUEke3t--y`1T%XLL74d@O6CHbF+J0ocYY@4MIW9%Mk$Z(W2Dogpd+fJYIekjn41yk zi@<^S@hA+KhrJ~8DDl>CebCy7$enYyKny5)U~U%f$@1L{?IcRx=ve|lz3=={Xwhs2 z>JuhbpNsbdx-m+b8#sR_1+;o=P+jyy6GLMy8X0Dj^@bVe?@~q1>9$Djw8-^mSu9Sb zbEs2q(+{i8$d@s{J6=7j%Yyy{<6W#J#o8WLYFPmlhZ zuBD0MecMy&V`AN_k#10Ec=T_STGIvU0#&J0hdzgKe1Wg`Tmvl`O4^`+PEIUwe9xqX z*5~JYtzB25Fn~t3yt<&q2|Of9&SE8!YFXAJru_>#tMM8ebk=<_mZY$EylYf~b@2 zM+*qrXD*;DH$cJXUNf}nA<)Tlt)>Ela*n z9TU$Rkkfr{yB}hrhCH42%Mn&NF$h)i2$p8XR)sC4U?ZU&*q^2NU$M|$gecMRM>P#X z%|BwHY+VWBO%B>XcfDCG^^UlJDpmtPeQ_(p$42v-$@z3pQ#+bQzI#JxJD}U6 zc%q5}y1KlDM4`#~6zIPctg{NEW%FwLVqCfVD5&X^8}-l*NceVZG5X`0!^J?BEN6^y z9up=^w3l1`wm^6K(dR?m8_{zXG~@S>f}!7$D7RUTf`M8H1<-PRIFohh+Xe*`*md2C$(Kk4Rt1V)N$iMPHqziy5c#>*&^K%PJE5y%V(Jt@qpRyulwxX zrbK~^pe0`QKvOu`OG4K{L!B!Oe3+9rrGoqdkpQC=mMIMUa_s3IHpX8{#%rr1V7JTe zz7pnRdv2E!;W>3tY2|rB&O?FSBS1cMoKn?RIJf>2HYMNhN7AQ8E6AysHuKv^LxrhY zYd`lhwgjgYb-|KId*0{ScNUSM-Cx?WV8GgJ*YN7mAp{5#n(v6A8zK)9vLCcv`u$0h z=!twUtpfL!EKUiDM2Y;@pDOSI@28Iya8j@g+;iuT@=QgyYIhz2bq~Uj1LrWk_dyK@E#Ym(>1L;K0Ap9pY*}k4 zwFo66^*tU)rkenSvgC$JFR}+2aU{bItOvvt$PfbIVT9KTEUk-^?>a6rEtvJeFC@8` z4bD0OG~yLcux4xz@G9|_YXCcjCkT-`(T|dqk$TyYguCdZ1I`Zc~%j6$g84=+v3^G)1WRnONSR{Un)Ai+x3cJK_Y)`ppiP1c1h6%7%NSTTK z@jFcszN-8jWw<8>u#hjCvn#G^e>Km*J>)Xzce( z&4k|MYB65hJn_(2JB}j}hv%c|?pXzaO0HeSQQZN-n*QptkyT<_Z8G6p=QnbNOr^(; zlDP3(FHYM0jO_^nsr|ZGFng6qPb0NY?NaDFx!8O$Z*>Q5# zB!~Z^s}>Tq&Q}rPYC$#RzTvvbgtW#l+)>}|)4O?yC?WPewrO3Jpo1Xs#u&d2MjszW`C{HXrU4W64x$;^k z(46`{T`L@8TYkDU5Rb-mbLqV;8W6p|Wxrlc^QKd)6z!~ZS{(Wv@qG6d6RVy2B?14tb}9WAqtG`jYTgd^dP>_*~8j?BSpRerP&UL zL^F%4xCN_dRR|^x@O)&GZ-y6Y@sHL{@>qg)^ho{i8%tt_4id z5q+sqv{E>^N@-+XZDzLHiZzU*vG;yniRo%qT;8r`pxqPk%*+n5EfQqeAZTkem5BSq$$FA!qp+w%-YL&99k62Te%nefH5K*yJXQL??L%;W7W$3=? zFzA(Xu$_OhDm1#u>hC`IDJ$+X*KMrSy61dS{m7e&jqe6jyyi)M>fpm%d)c_(bVhg~ zdXRdao5(m?^vtu;b?RMB7am|caewC}YpM8t3bC8p&!;!I+lE-PXlJ~$8>}*Hm1eKl z5LP8Xg>Hq`f7O^PB5AABBMrl=zGR|0Z(l|T?6R6rMS2V7XZ6bGNK(eHswb4Bq^;L9 zq$JbtYL=}B^qMD3;ey8KI@XP{4dsv+;~o>epB%ab@8%a|KZH}fYM=tCcR6%u3#;+_ z7K2{##x7P)jJZq!umgj|3n{L!kkUGqDllDkRP#>YK>d;d7AFicyA{5bWOUpkxw86p zx=Z&KP+U_Z_mS^hH?s@vq=H3+~0~Cx71E3ck9P{mXZ?%>Rc+Xij+@+62Y<3QZB>D3{d6Hzj(q42vnjtr>zlx258T&zID8P!n-C0rPI*mvQ}>TkKzZ+a zyaEE}aI)I+XAPL5OFi_{WYpq zgg%kph`mfQLVL866sSVOI6T*tFhU+1Z7(~wng}_QWtjB?*5hkbdSZUR7PBe<^%-X& zb%~8^XcFAnP_-PDKF-XJL0w;8QP!HhJfYyU{m2z+ub^qm?se;fvd7flWLA5MfdB5R zx@Gt2D=k|8X^fhvh}+XIDxqvkGQ7ZZ#Ynq+8dd5ORq`wiuWstFgMgpRJ!{^_g1AFw zs`RT~)P%eB_DfP?FguP{{>G@!E-B{J=V;fy$ctjN5eM@fZ1>osW>xRkchA7+a!H_A zNFJE!MsRg$Y+P)7`#i$vw)j&#aa`!7M@f^n{iVl${JF*cA49gzVyajE8=c>i6D+Qx z?`m+huKw1cd>~GbP#k5NNHIXo%f)c^0|Bj?w!-@Epon*qKG$9aZX*L2renj*Y1e|$ z`E1m}ju}Bg1@lPii5TTZpe-7d?22Jn?QNS-rF9;dc%Ae}*s}({yvOvfm7iQNXFO}D zEL!uO{=O(T)docBvdPw)VrLcwt<_w!b~Si@S3|3=V(&(T2{bjXl2r~$H^e?%wmPs6 z3=aOF&{;%v8i%R@U$r;sL@}?nPaLBpFI)}VuscclR2=pXK}E4jJKPgweINlT+pu}@ z;Uk+=2t=0DSiuX!sXu~uAQy@|Q5G*Ua>}r-IY|oPLsEGbGAlPK8%nKNRY09-Yi%YX z)t9gX+9{MbOy)QcK>U@oz>Cy-E#v2&*R2R<<$GF^2&#qGIcS5drNgx|t*tio-@Qua zWa=+o^&84k^>owB#aE;8tITZZ(4#Ut%_T72!l-)y-LDB_<}uD7P&1!yIRwar0gmzv z%^g-jfCa(C*~XzR7c_XniU`5bj{z6vI-wQX(>xnfuryry9RKPHeJCRpj7DT=}iC+lo2{58fGuM6Xx7WJT??`RQ=aZ*qsk|FKt8 z`O>tRc7E{dd*d_j3(B%CsODE0hF-ucEva8jAwUqGV?P5wKYHlRt?jW-{GYB7nhnLC zz&ks2I^lL%!%9^h;^x=d$HSqHrCB>ub|s9u56BGabfP3Ta$sz_snN@^b1kQR4L*$k zymnL*W9-&`@dI`sW1gW?cx;exXX3_9eCxXQ)v3KHXSYCc=HL)e5dba)3Px&Xb`Zr} zNyb-*-kDQ1TegWxILr|jSU0nD&{Eo&pIfUFB;atfYAr_HcD@bdo11${24&?y0HE`k zjVsL6wOnp>@rku+g2XfDf*lg$-0M(Xlscf2y{m&9ggA#pnlXGhQ}qUxfBo}N&?AqR)muJhrhm@$*!mW*}V zAlF>9>n%_WW-p$X3-L=Ky^`7cBc1l;M5f@ihI&nl+19fX$fMf%{$LE|ar;uhE7;AS zRZ+HrJJ5n~SCFS3Gmd)=?{GyG>$4@q-IYposMCWj_F2~nKi@FRlWWlTT^qnAO~iIL z89zQsM`{D>;4 zw1I)aL~cPlWdACN5oTfOTz~~<#13sm-%QMk85{57_N^fJpCLJ5xcScJu<2j zq;y17@yFsqTMEZOgWTAmBoWge7$^tb}D85couA zs^ft;7h}eo%|nvcwfjqNP`G427F{9pD?p>b=DvH+tE-VeDFzNwV=Vh_`T!@TqH%wm zw9Hq{rtklTp|(CNe@1rv-ZHJlwz@X<3-+OtMmHqW9iqzo-!f1;oa?6!7SDL*2S2Fz zJlVkaV7?ubH+yxjqP0q$+TMwd#Y49g0rZ3)Q2>!ewTOJ4A_G)-vq_vzv=HNgHT{aa z5;t(L<-5D&QCqSd;FC$l4ggUjJg-D{-Ogvb!tMQ9_Jd(z%kT8LGtFoI@5n&EXJFq~ z<-0jPf=xXRxvIHUHm@paIGi6cwojeE@t60ul6C(Fj;&vyxMoAYc18>g=4-_34m|(Z zDa$-8Yf_A~v+M`3Km8CA%rKh)ks{kAy)IG;#3-jf%iXl_@ypGTU#PDRbjrYI+l)@GiagQm z9&z`1TRtR&Zbs-vMbdNM^}{k(v&I`gH`Z!PDyVuw$5-1%PN`{<96oDeVGaV~hZ1T- zSMyU>&>W_n&Y=#mzg~VE`!C$V1D4gtEu%XTyW@Xwf>@lHIm;^1@wvp`$HL12iL7AE*S1~1Bu zcDfS9ZY$RL-T8gDV=|6DI(cJphcYOqTQ9i`lYfWbFO#6&hl?dm|Neu6I3DLlLUOJh z!rul%vkqP`)Cgium%%v5cjs~lM9_rs8t%8Z|2G^dD`5+r5s}!*K&JSsn*ZdlRqZH9JJfNA zp$=U30Vfz_6|Wl8VLI=-O*!3*J%ieEIfK84{S8&kqqcg%E}je=4xvMrVuXU)eyK^B z2uFT%3GnDQz>_&2)9iEM%~4A{yf7*Oi-iWL#93?zulz!!d@7pdx;z{ z3ZKju_?2TRTE_c%mk3)#kR}bw3;sj-4NA-OW=)E$9~~Esg&pNUpaqxiBjeK?-lLFn zv0y*Q1Ua$a>EXyV5G`ME)nB?_vXINcPv-qMW{xrgF?&IO@8rX7+<)L|1r>QX8BMa( zV8)&qpG|1GuP%3w++U|}p*po^%=`E~@<`)YpQzg*x=MrCX$C-u_-bJVG)Spn_CsGbcN7B&fvlt zp*^ZXARSP@PXw(D>f-LkopvGc|^)1c8e!kht@Jv=VR(LhgMbA75-Cb{$p}3q31Q<>kK|N$=2*=rRh9j@N>X9EKpJA2UwWLmfHih7 zlBLNjc^)`Z#e6QyGQpz6jkTkhEs74!Uy{N%DHzHiwhj<~VwOEn4{ji9rMCD$Rm565 zA}9fghHWNxUbT?1y2B99Rb2r>&}pFvznkeR=(h@y@5@j)8eNpkkCs{(DEut!%l#RD z($jq%piG7La_z6E%l?Gq7o2=1bRi|Cl&o-|7@E-mG)}edEANm_Bb)QKJvyn;UZRX` zm`B^xIQT*>dEq2Nw{3c`?Q+VzKn0oe{WX>|$%ucPC+es;xVEfPwDNz))W%9?;5a$| zmKaTTR{OZbeLKPdImC*IZ`_Hj!TbEO`Rl0CFK7Wu8nT+ttEmmO7M5YDN2EZc&MI{18pgpUmk52yKTch zEQNrG(vDHg&+POok*C;{b{ABr$cr`kl!G$*)?kde;HJJ~2GK_{H1z*!f=k@NJFQnUUh$vVs`UV4=x*$!H1*++`8JRlD7jWgQ=yFg#Xb zzspS^0bY2g^cYqEqwpk!%8-$!)KLpIlsYWv53dmUE3e$eS^Cr>jEzmOcD4?1E+OKo zw_i+L3Nj+&1!a?vgDnV$o#5*YURN_6CD}#$8y|dbvP~3vA%6b5e%mt1Zq7m_>RxJ* zO(CVFbr@8-!{9fQ{-wkYB)Ha;13l0$^BTlC$`D-+sC@E~LYpaT-u_F_hJO&Lp=-n}27=`N z`nNmcC-s6eVtNbJH&zK}Cqq!{ZwQ^)<0<{mUb?O|~<~y2P z(ksJgRJqt%RL1p}2b1Ls2;~Ld1rTlA?X(6Ke=bKYG;nukx(1CD z#_2k%M)|_)WhL(pgz`Y&|S<*oUG!O+$`L64M> z*Eyh+HF^WKY@Rwn(P!bT+$rBO8(3}=2iqX0)*go~P`Qpw)?DZVtKN#3EG9e|TO%Cj z*%O{7s zYF6U6O;=&u`a*e<9b)jN#}pffQZVVSmZy38y)5aced5Ewp7zK~J{~%9KR}^&24JVa zG7;uk+Pe-rl^zU9xs1kG`FKyOZkEbNNL~HP4Nc8fwMSCN+PsF<`uG=2Vu%$A5toyt zT@(JnkQAmLduooO$9x;dKnix%HvBhQ7r>b3f`ehpM@OIxOreOv0w&RH@7BNb1hbk) z7oM2-xPBHRu@>a2ftEV*k2~W_#3ATG_x)#LyMF%S5M(Oqh_)ap_Z9zJt&B?P%aZ#l`!f5 z70VaWk#o%Z^RXUDD)NXsbcHiy$$77Vn!qy?%Z;M@@heJ6Iwu?bnVK_S#o48#Nm`_V&u)FCB(<3n<6=~al<=!noPML zdnumyL&ox&;5i#a^JnVQ;x%`>#Bi2(qSK&d{;`rEfSlV#Rs>zsj>ypZ zX(3Utq|;?ck-C4x9)`CTe3-+d40x^JBUPby}F#iaAELcd|oOM_RZ_{x8CtbJ$n68Ynkb`_r-Ol7OukE z{MAR3T9`hpWhv%@KY_^qmub9ClHoo!MWtOy#2#zT~~80^h8SZ z0Bqqo45{@FSx97BD@(0K!}|p}O8jN?0A3c@+ZL|5@nYdp6gb^{@O~hxuYH6NVzaT? zDTDhr%_Yn+q<*vl$#29r&PkT3mz8G9G7UCjvz~0@{pU{J~324NuDn6P$+gw60&jfM57*NgfC&kQ6~~q1;u7P5BBs* zVIKr8eDPqesq8s~otwxEHInazmDMuO;A_( zS%q^R0~_`PpnAUopy$o^Fqn;K7exFFe;k@FHe4a!RuH(Rp-g+6|F3uW!Uj5}G;=C% z$D!~&Y;zhNXjGX#YAur0DK*aKb#3uI&nEx_%SOE;?!jdyzUmD*`c4T-pcsRQTP1up zHFYR~L6GICaa@z~!B)N?nSLI{fE=ruYy#}LQg;j+b>P`Rd&<>;=<6nwj6uaFy|tqd zkat|v1!JqI(d>?#(G%0CwFyPkE;D!G)RHC0@Q4~&bNqM+dxev5Htu{Pyky3et_MRAhQN zK;G$bkcST-QSjXL*tVihzE%WaGqlHf%Fq_v*>UC;x_ua$)X2G7obK3(+)8F?zrmNa z%H&SRRR+2Zc#6)U2?zt4`=w1f84ZWh!; zNm~+dt40;^W5Xv>R31&EKKo<;@t@L8tE#QV+Zh+5C-C2IyH(5;4*B!_eG(mldC)Th z2G!zJQCxlTi;J)rk>G@ziMjUV^@YkZx6mC>s`O+7l$<}@Fca9ny4Z=0*xN%L!fAsQ zTrM=L_so!Szyq52S0?!FrZ0_Yu|F%y*gH?qWj%s1GubDi6D2VV)r-oe_Ov~z!Jc3h z@y4E%eN)(hMx9<-U$xHcV35+xNn|Hg&!b9p2)~)YqXY29H!tn@yWHL4*{yo522(aje0ag7<^Bv%AlhRboHES24NE|e)h$0~+&h#GXaFoGJSJ~BVp)((TxC80wVX~RV#&s6D+XuDd96``D|IJ|CKQrzYa8{I+8?_0gjBmdfqR0#MP)NgUgBn8kVdi?!rJ1EPYGQ&-?`O91j=&L#HK zz481JR)we6jp=S4{JPrE$_zo4S)}T^eL)D*N}4;4R$|CzJA>L78hdIf`_&&t_Gd1p z69cmhfqyI2PWd12Ad<_I3QY5`C=`Ub5K%Oup<~uFE|pw-8eT>`fOSVF2TZ94G*$^T zYq3ZJ4uSI|b0LJff2hQzyjnOZUQ&`z#$Au^w6bwwL%uy>m|uikCcQcrGFmTlwEF$e z69x#zaV5`ApZKt7Ps*X=*ZhD9>uqR7pdAZfFh5bduag@-*F8&QXrpg(WG6qDhW zP8BvF&iJzi{CW(09=S>mBYIJd2Mj|cr6fW=d8m33a)n9OV^66-kDMcjxtxN7UkyBY z>_F6#&d)Vwdeq9%)+Ye^NJ&yOno*AwW}8no%Wie>!Ma(3l2gKhUI=!Tqi$m!7smvc z46|C)PIqxjr8d~HzxjM*rj6q|Dr`4A+w-w%w)kxJMo?U85-$%A!!ssgk+GD2Di*Yg z-VXzmpE>dTSuT~6sbz1A6df2!gLf>=p5uXi%2ED*!s5z864ry{=T%N&Y8GfFLP)~d zW#{i6>}#m?Vi_eQRQ-c&PZ$#p*i%fB9*YOJzEZnhJ~P!m4I zUY}hCde4Ghu)0o&9%l%oB0MP24pX_9W%9c#Pv{TE4jho|Mr(I^=)idq`f%Wxld{4bxca!Eo|3HD9QF5ak6*j%=?n3o2NIa4sz6 z_@+sP&bIx#-L4s1+a=ge)o!vaRoHwnVeElShv(o>#JXP?e6f?{ouFW7I5ya=Ahb(D zyYMMX=l&mk$6CVno?rZ3l71zqB_XA@XxW()&@K}uZ!tw*C2FLE1s^l2kRynU;Rb8? zg%yIBMVmdE^6$-{0Z9^_oujo$>;`Q$2a{*Rxt}3FVt1E(dd91tx;0P$mGp%#BO=j6 zZ7&TuVYaSF!=@6$1vInN74#_?B;1`$+`&HwcVYVnwsatdGt_P>TQ+{n zcuTjN=}sCTIOSy$W3xLGu|Mt_dQ`urk+Pxes9NVR@vnK0GHeLIt zqiU}YfY!@Rre2m*$BKx_@|#tT1D1(0mmcHyOC|#Om%WGrIENSH!sNJEH}rV#dyo%m z5i?B3O|?OBiGLgiAw-8~Lv2?5$I~~jp3lfLfcvWL9Vh%af0yr~V!~k^CjbRqmU8^H zaFu0U<3H|qe1baWSyJZxlmh!tm&>rpcPqNou->fh&g){X>I1>fJHn)KZhmZPK}Vfp zd6{)Ygj9ZC(<><>#(6sVKY(m!W3_lhnZVaLs=J5NM&fSc7dLoI`@!upgssQl^tKU; z7yF_jHp-+8UlV;y>bKIo5^k}1I=?(H(UN?2qmB#5$TWnCsAOc?d;$BXW5MnlIlMmq zuujYq)>rw0l8**1UNC1pR;t}O z_*JaI2^lyG6#a`myhc^GAx_1zW1ZXtdOOe<0t(tl$0$J83f^=S7?_-OcD4f61)6@b zN7E`^rn%Ixcy?WZiIOACFY=Ss-zgT9GiptSur8{Z{!bO`E|S>^R$*hj2+$^qI4#+egAY=)flq^nY2f(lm!;nB^UIstZ9t(?9XekW{@r z{DN*LJRxN-KVI99t~$jn`%%VtJJI7h+;t%wd#9@-PCW$v}q(<4w4EKI32rX8~b>Ejo9s?w@v|s zgR~3mNlQK;Gwh`9C0@-GOnK*7xd16KyLvv%Sy&(;I9YLaprkfUX0~^5bk;!;ptXr5 zbLsFZolsaXck5vj+=7dHWs515(hR8l)*@fRHMyl5dEbT<4O$)Rftd>rUxkwdq9DEf z>!(s$``KCx+kjU$ATR;4%aGFzTbY^pj>mL}z`?CrPksAsiUi0#ak~(QQH4?M%R{@U*GTcu13ikYfo67?6Ka| zujAi%U#e(Uqk_xNu3&(vs*d_aIUPUO1=RWO#xauDd{`1i%G3g^0wsZ#uA~i5EO7X7 z4A|KCh=Q8pGfKq=gmMdqxCu|P;3t4}Z!cgc@*xS}hu9>qFO?-Cjnm_Uo$EpqK>qwR1FG=ot{KNNcQRfc1O}f*_;b|l7 z_6Gil(Q}5x_QYLQxC@iCIL{Hut_Oj`_^91h*b4rinDQjGCzLH0@(0fS+A21!m)qkU`> z(oMdeYs5LZHjS;F4`ma##7!Va+hg=Xd_N8w2~fd$?^GJN{!=Mjub*n^Wu)9znsNAMa2gYxSa>gcV_tesQ zCh{kL6=>{H+m`NMbaE|i+PzV%FOnloH`0eh8x76_SF{g|YB{V%BJkHAt9vrLfw zYCMoo6c+W|mt$?Q&{mtWzA4o*12I|;8^X!=lM`Wmav)?9iD$B1^fX3?70&+k;WEJ{ zU+u&`?p7;=tLj)y0&36VbUs*>GdTW1S6j~MifaSL8Sw@(=rHAnqF?4Z@u=HEJZt;G zATwaefeWgWZKtAhWV2H*ZRi_JWs$xX%DT21@}~GY=3QEw*57xViQg)4)7}!Mh5r2C z(vYoa|3`g8;7+yJD&^r3g@U=RM0pZ` z&RT+ct($qwc4&5o*)X%t7XL!L5o-MN{QIc;=J*@vu7pc7^^xAkMfe&CNSU=B3{qf?j+9K%= z5{=(Q7PHgfW%ipggN~NF|8ul;?appv%`5H$Fy_=uq1%5DC(s%4U39tueXcj7G6jZg z@?%bnG4-|CGQcJf^9%9}SJJ{gheTrie5(}`=*y9?2hPuFWRPGFe*dpF*Tu2ABV8lY z3Ln+J@$O%2gGizImS@KpD9?^wNnpHv2>4STs8HVW? zxlRi7E8YyXcXNDneVaeT05k9Ooet)=n&M)W6^nn6F1D8Bk6M-%f!0`5!+tv6d`j7z zCVUffPV2R0b94t21jE0(jwnRXyNI^RAch7W>N^rLv4&-;vL8O?C(0X=3cO|Nn}-Q^34Bs)$x`-t4iR*&WlwZnpO$zc#Qx=qZGFXX>UTthKD}8C&DB-A_f*r ziu+EDTxjDujk9+4x}2lAoP7Z_PKFmsj&KN}SpizdYq`Nwr>K(eTtP<`@P2j_{s;vd z4$D#QU+&8swYYmgwpj$hDjeP(6(YU^xU>Q2l}K>N|AF=TDCq&l-&1l!t$)F`-FP>4 z<*en{)<@Ps!itD}ljZ;I3b-sbRJr&Yl*{9m6IB6s&r`siTG(f z&mN=T)MYFV{BreXJjIf{Y?yFkelW9mDvlg%J-^PYK3E>txN|Nb(E>3nO2{UXc)0y) zrO?SZrYPny>Pjjym9~MTvWzFid8?~Tc4VMpsCkz5G#z56MkFN<7Vw+AW=M$MSszxnU0rQN&)07lA%t)No|`)Z|wZVp&bfJRa_LM_F}`l>?% z$AALn_(6OVOL)Z3V?J7};7YB7^dF3ZTpjxF>krt7+e5$+f>Nx64b(eNQ`Kf<@1fF1 zXiG|Uet?%@%T;3eYoxs*AVeCIhWH;=*Gm30e>Cg^0)JWMe(S17E-db^t{RC=HG93# zPdn%3X5Kj04=%;)c(^}`JhH>|_wCR*n1j7jc&dq^Zla%t<3h&v+Bk+AIlL7xLv`&J zGc{|tLyl`k>+ahivCR8@qSqMy z#4Bp)!tF{+`%aIku|Y`Ds4lRjGjvlSMHAqHwLRpVoCUfL4KC|%{A(9M_`6$I z%i@$QBnH+B*_$VF8KHUnOoY#^?1TKj1AayNPnzo6IPRNogWUL)nh|h1kgZVOfvhxl z7RCu;aj4JvROJGV|StLZ2pUB z3fmHhU7dGu^EmVwUb{PBKhiouh{03aanpDUyP{Q}%yBc^(Q8f%)1WA?Ou=7zXft;M zcR1t=?SM7Oh#nn?miG+(Z?&>$RPekZK4v04@3jRlj?OT|>f3JnAUAoKk}v~MD$-op zChih`HZBawS|8pSC);gLrBJQY-_yf%Ay3Qpq-+JruyJ^u%18dtIU@6lZ3%tdY?TY& zgu1DI`W1~hc_#-8Rp4%6GjK!K8kIMZbDVT{W$bN9nW8j0aZ?px2z{jl1kspW-R=_S zh)$urW7at;uLs0OYL;%d5)6Y~3J_HS412O`CFLOSsU&RRZk4ODk!XA}q$FNj6tmOg zc^&Gj6AkGWa+v%^NlbyplHO){kr%rvK-i?TTuWA3ve1K0#bny_4&=s3tsNykQ1vYz z*QWP@i+T^h-6K`!oH^J>r8<&3Pdnm z^_P$e3Rq3Ka?1;U78Ia7)P-yl`Ga!BG72@lyR?D`J7fcPV5UTyac?iV0{8GSi5DS_ zEp2bdIunWK+}X#PR#;Hd-PH;YPwJEWSg4V4TcY94jny}FIcR_%mKS|4gYxI}c2v5g zUQSf$v9|Zey3pdP;=qMZFH3EraU8f)wJ#whTz?Z5Kyj`5WST2uUFfnu#I3`3E}2fi zD*JYHysS&<<1bY>UhFRo8p#S7SqOpx^|&CwNPrR$XcNEu^Wu5}GGv0ZNM6Jlk1U~q zQ=9P2TT|fz1k@%mCLW7-sakCk=5;#?AqG2&iW*NG;SSC36kkc z)Tvf)pi$Q9Ksf{B^Delg?ZqGpW~2MN_89;YJxUTtaIu9gdE-2I+#5|@(R6aflXF%@VLprvC(j_whUIPn?hRM>wRv+3ktstLLJvYnLzcZR=J#!KjzNdo zRfrHTj4qO02!kF5JW3NNE=Wjkw^Z0y8gCd13}wPXvMYL4%-?z^%;f>9bs_qO&d}yn z@m`j!R4%4-nr-_&+8Z_;)CaL}R6U-^{J5rPLvKGQJg4}rYI?yZuV}C!l!td^)iv0N zhVWYQJU%>_KA??wU(2Wk5a5{7)pHJ6J+v~^q4srcSj_K+uxU=fAJT3qzc0a$R6ND8=_)9{ z5#^h#f3w)QF0ZAbm?e#g&GhCoKnkW0VYHVBs6HJq@xX=4?# zUHL);2hLbd!9mtT{6jEeqn>tPz6)FA8M#EQo5S zXur0a7Z6pC=`mt(1eyis_52Y8hMq}GrO{}b)X`<*NL)MxR(7>}@KFSbnXbhi^#8s_ z=cCB%#ppFV_+4Arxba4a@dkDG|J6Tz4ts4&>+?O!&B^4bSy^zuN-M2DIkQzBvqXM0 z%S;xlR;&>Okd>goS~{T4-8iB4nKfm_=n?Xj14(icJOKp;@EqtE^qM=Dl;1@`q9VnySB4HNW zsok!`U&4>B%*A6|wDB`*UHJ3RGGiu8}mQ(1|Q5o=p#O(Obq# z8An;!8Rm)WP!Yz*b#bX}B`M!hpAo49ZKt3Xr+P7r-)f2S_qA%6--Ulve2caliDX>R zbyUysE?rAVll086QV#9nX)iD)V5cBkgmr)v z(WjMZv4g1Q{G7D_q_l^Vof)GjFNH$q)!psNvA-%}bbJ0*8|$aCI`u--YgT~HB!oUR1Sw*-8kl0@E))GjO_^j_mazk~lgLi>MkDCLmGR#c z6H>ypep0mhmQhFlcVH5`U$Z6ey)A3sbWCO}%>GQjQuSm?-jwONUs!v=glReb3;mXV z;fIeE$iG{X^U(oCl*k!-vJmvb;&_ViXWBJ(6aRQ^OC%#J@_*`plcC(l37UbOhN8D> z&C;e%?QgG?Xz++XGa5oP&pXf1;2S7d5U-_7Mdl%J-rTouqZqm}0f_nNnw9d%%JB zu0zX?YYT&>Plfe;Y56XuN0sOHKn<5MJ_2HT`w~dV#-w{L+dQz?4cxP>*?|J1JC%c)=`S86s7S`ZC-x6W0}WC z29r1=v?Ahc#&SPiBQ)cz|4Sh|N2B6awBd=N&oJl8l{j`Mg*0i>y5AFH>>j^4nK ztTQ7ydxH7)RNyo%j`zgrhiY5Z=QMh=oR_4obg|`KeF|(RSNaG?6Q7Y!t;3Vr3glJU zIb|%r{zDoKc(!dIn3`Az1D^(AgaUYg!qQjntO#CDEMa9Lm&_V7A3KicqLIFXWfP67 zql(+s;kh;4_%S1rp$3Nx!?52aRh|0}BZcuCVEsZCL-1wpx7~J;egt+SwM*7;wxRpn zpgB=5pl5+2&Wqk|oZSzfuOKuLJi3S-Ip;7plq|FX z&8>iipp&02;!^;?9xxV`B(DCvLeK#~!mlo^@K*bWBG=JW7arva&J!1R_6!L69yzg- zjwF^B!_6rZ+A)BDCWqojSgvMva-dKXrk$O9_F77!kGjd+m&yk9$g}C*w>8otf`MRAT<#4;UpuY zb<;*YxbexuV!3by2uVB=}J*qpA6pkP60+=Ad#Kjho7 ze*+<9GnL&Los)!e9(<0vhu(B{`^jP@C8NR>Fpnm1YDV5a=OY0Iygou1BYeX73uBC) zm39dXq6n*ift)~Mf=BWd5gd;#R5NcBv^tMLACE3k0p3T0p@q!2)_032dI7PNdefpa zE}!oA==aN~^e-C{_tO_B6X<#0!HdMuWlbE-9JfuO>WIp`nA;$T z=S!|N^AAluTOb%$)T@Ohd7N&>S}KxWptZXJ_*Yh|B^2|xp^Eu4Q)rkLS;$K;&Q$Ff zqVC#OQnCJpMO)WziJ}+X%zf-%>6oXpkOJmfG4hac)SV_klyr+@G&gbffL?<-Fy!1i z+aIO+>Pl0f{%4g}CbS+)-4}3PIdbh7Ez%mb;PG+^8+@oj;qt=VFoa;05ct8` z7h3Qt>@zOQOK+`JLr;9 z3z4@TvlL?{On*7S240G9OC+UdKs2QzE+0%=RSO#2qWd~QIu?N%TIf2-1EfwnKLsJO zjlN_klpR5~R zbLa&nF`(Pfz^M8XQw18hiOZ%hLrB7w8jT}3a+JK+1-QR}(n=oi{#-D(ZRV$PAP#Q7 zEt9TyyshdzHgc)_X%?+Oi(*W+2)VODKjQJE(2Q)R9%wpYxO zKn?=yDom;<)5?eov&L&3GfAmInoCQV$1mm|4MkDsG*G}8u_i7L!z8RTi*uJ~l4Dri ztP5#M-z4-(a=0{00~jOG5O0@=y|$-T*g}{P`|)WOcwyx$Zh+<-qe|%$${3WAebg@8 z**q6=YCbZ9B?M%ZewF~>en3rR;W*93Bi_gggw%;41R-AFnfN^NUEjtHVOHX`h`sgA zOVLD~m`Bap$&5!xp^$eTMuFK&!zs1#5UcQyI_hy9GHP*G@<+fWT4`K-*2ADaK`4N{ zxN;i#c5xP(tSvZO002#zFuc;`h&)3W5Ga|k(|AFR?jq|JyKtB~5{;hsUYLui&Ph1n zb~mvvn_(vMN@Oo+hXX;}1@fjTVS@Pg0+zHDBTy^PuRCu4=Ro1#`rleb<_ zsYDoW1QWFu=^(@kKH3tu?!q>M(%d1Z3YZe%pF?H6z3$0TuDFWDdfbsQ5o2l>0+#xG zVbl+)UwgBCD;=XUm*?5!?3x?Hu1HsD(HM2-+cYr|={mC4YkYeAmbH0m0GQH{r7=C) zqiiEz4Tjd`FdLUH37P5E2hdxXWPSWi@^?InbJv!^XXqSha`%T>ncqiO?7purMegf| zU{wkQ&~#mfSKJ-GBe>A=E1F+o$q%5lA{nkYKu5HaPH`7?SK`-gVxuu|rzba!UBn2( z+(xm445CV*|EmK8i zH2W{eCyR`>z~Y??Br0o>@D^n8V@JqFJPfe4Sw)hyq%oeuI&Atp0q&k^aB{ z&-k+o>9~W{@Zc`tw&I=ocQgQ7Ph@3TVE1uqn|!I5-IBxc_Y6*oN-6UbF!jM*2zciB zvr_aVt8x3_fBuZY2ZK7K8yJv*KW8i~+J4>|X!^qRN{hG-tYsh(;K)BtXl9}6@vQZG zX)DxH(gSp#MfDGc(Bax6R%)66$g@@mq5{uUBmSb=D-?hcrlLS<{5^z7RmI!ShYzy$ z+}9M;o0L6d8-c%pzP@^PVL*Fls)2)YilIb3y%AbRIi!9Vb_cs*)=dEGXhOZ)3oW_R z+cM+h4VMrkNkLyQqN+XESSeb9m$2i`?1#37xK#?fAf!t@O?bz2O=DEM z!3(ZGM05WvI1Y|Q8iEBEAsW=e{~(qCmlEqN=>S4{F&KV?b=Z^Q!S&^qUspjc5rK#Z zs6I4f5EX;9?zR~s(z(V9v@+Az4Qp%XpAe8kU~a4e!=RG88x~}uq8NTNKB`vr3Wyfrs#f1=^m9|7k$%HAw=Si~D%Rp8ga6FuM z&r_H36;a;*fd@(Q23F;2@{T(_){)k7xh^rW@H^2oZ1vR6v7wHoBaU$pfPq0&$4K!6 zaQ>@O#df04%LInV2hwdk2q#PDq?qCnVgP}9W3=}hRdZ;lK!WXX_<_8^(mEnsNrwgE z-%)7R3m~O(&{#|moybrUQh6eDTUCuBK(vP->H}uStS|>Sj!8`f?)i`6kC4g5Y~DFw zF9s5>S9zp+V0g|>#-P&eJCk}F7K-Xn>OY^GU?{O37@7mlg97QgOGhd+D( zSm{^^e*$g;p_W$%5F$TV0l6~+^8;vEKTr`^j6}Wo1@Oj@!jp}|ck}5MqBBTab!wHY zbh4O%*V6GVZu`wXzD-+H_@N~}n%VjVgF34>8(2GwzhxFhT);VOx=5jHK53!RP8UN= z%)ZXlVXaq*E>4p~mr8jJDnJxlC7mxuoN7if-upNM`JM5888m0V=(pFkTMCW~PGM*j36UcpOlL82CO-{jvw;Tc(XjZP zq(xugoBk@CMa|IGxKqGt&+8vB`(6f56Oxn+C`AKF=_I+Uj(QCXT&bS$m^hdvkI3z- zSZ4XjPv62#AE->d>S`8E&99bJ)4RVuJlhI?h75L91Pr#4PRR6mM#w0%(>GbulR&A8 z%E7aLNX&MWDG&@5vc;GdZ<38OpmW=QSvMA)eCuI->fX%&6B zX5rd3f%Tc;Hovks>`4c>97&k4lwqyz+V>76Vv|Q0r94n#FM93C^slkFA>6H^y5rR6 zPQllo_%8;^^&9MsZZ(AAAR^TbiNfF~OML&y6HpmfRG^!4*jORZQYp_N41JK*j@n*i z*g=VmaAyr~>0Yo%9vJ+HteV<2167s1*!H^%`s20fF-45DUX^3aejWs|^{#=!;g{$*{bWf6-cZ zz{9BAUFo7;y)o`ht5yyd5Qz>{QM7d5J~i&7$qGPj13325J+gZSr5CG42q!H!$+$wy za671RLM_=Z=OUbBc$5_=-CQGdQwRDu<~KfC^XTk@LPI{L9|d!+Ejwf7@6P<>+*s{g z9fOZ8B1~oxumnF%D&d>sz=|v7V&^PSS_zQXX*7onN>CM)YAAF~X=Y5!eWO0obXtbP zW9h{^V7N*}_m$GTPg|ZLs0wtv@-d|tDP_f-;|sjQm*Y2pFNg{&A-7dWwge|f#lD_q zZ{hO{R`lL>GH8*@ec}}oh6KP4eX!c2RFo;2vUZIQj9ia)LR!?S*L^}$3VkY02{gJ7 z@>a7T1hia(L<&-=CPDZ1dq9h{J@i5KK15mWO}Q>?%MTx^!phREzj)#hy^AcYB2yfu zR*vLZJe2b9Dv^gCZ0an(L1#&_(wpW*ec5>|#7!8{F+Tt|D?}=7M2$WR=p^!b!4IzB z7q&iR0{^$;ROfOh!?1eYe)&7yeh9jCWq^xzRP7b1zynaT@0@9N3-=W^$NZZMDh}W}#1(!yYdUWFdpc%Y-C-InMG7t{NaVp1eMowzz4q4t$CdCQhfL6oR0A=hQ8~{4IlF;21OwYV zw0Ty6n_0O&ts5f*MRfhufv^@4ir z|E$4P$-K4#K2}^dLAAPeMd1?nk*#|pFL6o^4aHWv5;O{_#dvu$F(igFIWvFW%c90h zf}`>I%kr)&FrsYZqd~Dn;jw^6?{s28bjxLQHl{!9d#0Sf>L?tc;(bzT^C5hKG~4^ zriVb{Nl$n*65m-Cef&>*ycL8M+sux25A|#jh^bt*<0`z_*w7@B&UbvqiZZcSzV4tUcLz{h3=3nv@_ja|qA zmZGZ#^u@2*Dw_6prY?M^B$iuBIPYV6GVD&3A2cw-`RL>KeC+0g#7(PUqc?p6^cD?5 z#b7m{pVzH*HP4!Z@oIS1=gP2Z3UlQu>ZriQunnn*5<1jnW}#-x+neU=GEXfP8j7$1Ml1N9D9pFn_D{s*(oKG6qfVET z*q7-8W0)L!2CWyoR;Z~Z(1<FMe`w( zWQYuh`ZTT=6KdFf^K2`cq_CCqlCv+WUb~P%49G@M8C3+2?N?0@{uZpMCO`xL)?BlS zi+WPiybxI5K4YY4I!^yvK`PO}CIw3LKNO&`A{mcP^}zW2)YRP_f?)|+wdhBKB_0ZNg2Y=oP}0jV5wb55^<}*k(w4y5B@Vh%Z73fzbwgUnr3p zWrJo{&8i@h0~qA=A&()$WEB@X6P7I$|3KjgQTua%3VKRWU)7`5M{a0_wXY3daJ)ul zExqbbv)s@FVG{h+&jg0e9U2f$P56=8Re3x36YW(!?#u;iLAOM=68V8QI59|ut5caV zfOW+jDQW37oX{^8qrZ)!avK`RtC5FwU5)yuVK9(`s^@s7?? z-!SF>C{V>LEkj90!qH~~P2rYlK1KfmMdgRe{d8u#L&`0SA~!<~UVB36Q_!({=fRfR zh_xS8&_Wvz$g0$nYPFekmf})qkO)kCeEfch#rf-Yy_=h;tqLcJbNpRo`~l{eFUP$l zS}(ofo;UbJr#ihkh0JKH0@(Ofxjbfk*Ng9lmeH}BwYXyw}_20 zz;FljXm6&rnS7xL#JUnX6*g);%&FFB&Gl_hy(QMN)j*G^yF3}@o$ryz1~mgm-Ah~L zBVk@N3j6SOB(Ne5OJ{J<{Y2x7%n2Iy^WmDQHADbP$9HOa+#Xu5GpV&2GTverbdJat z|Ae~y@@Y-YZdi{ls?DFE8)$O>Ur(*jA@%0V?T4aiuMCGA^QKB3>yoKH1$r>}rS#GV z_R=uuaA#DGZaWD^Dabz8#&$Ur-8?bJ;%gs10DPXgr!q++%&>}uTp7|~tsTDwBu)I*ir`lx3p*?=-gU!R6~gbt}mrgo2qXK2 z3;;chHJxL+6)~V7ei9?8@1*2+XT_ z>m0q33n=|xi8^g-io!7>L*a#Bga&AYx;h}9pBcY~9rSt~9-U=k`t07!d0LR4UHh z{{})NVN9A>QeFiQZIws9Z#5|}(w3c&({2alexA)pxC@Kva2*a&Jm!ha z-5zm{cY9Kq^c}tpK@st#{&-gtGgsoEJ{`T|-0&B7@t_V3*@6fG*RiDKu7i@lqn(o& zm>IkXZqp#q~e;z1Ub_%Yau};o*40Q`9JD z=QpB6RYb=kq(nbBcKtKt8t!BZm)jydXl3k<{cC}z;iF*YaUq{V@F*hW^Fd&s8|lFu z@M)&FBaADW5)f zyYE=mgdwM4G!5+gNk}4dnl+}~PJ@bGTHa&MVI^vj;Le6}JDs0kgf6~6B|-Gnl}4dR z;YzzwS39mj_c@kSJNhd;Jq&YvDT^k_Kl42VKnH#z)vN#%c2!cSO|4N-`A4r*z zkbkHm2*0_{+It0=a1m%&Jae}A(hnPX|B?~L)E7Xy0r+%BvD^IgR+CNql>G~1TsJfi zstw^0dt{2=#sc~Yi4MAyM#I_YhO4c^I*Bg1EzzdQd7p2SNcly{9wJBv*VX);cBGp- zF^S8@PNz|(a26>o!-OVe4PZgTIQPSgZf2)f)!^?GIQI*bhqo7Whc1Z9e2!ZTNEjdTrjiJ=d$U=vo>;Ob+3MiK zjJ=lgIm0w1_KC-0q zYr-cUm~afn30$Xy9_(6!Y=%yqBwPbVdF$?&#YZ6OXYq|)&a*q{4KkW zwZ{b*sg<^Kf*CZWXOHskDdUgo#R zUz9*wjVEg+(&24}^=nEGl{&)0wCUp%yTx{I(6!1-BQK>|92mmt@Xq35^H$cX+0Bp# z#DB@4M1Z&}gX#xhzit1-iG_D*wk7)OTDV(2GeSPHyZ00Lpb z@#fhvy~i^q@pso*j~+UK#qsqx{ueWOJR-4_`ala@#^1rjL<_C?Alg^mK*M7T_51X9 z0IDC^%a!?TylwpGc6uf5{qD9p8cVx8V111*0GpYZyiEzBZ>D|?PdCcNTl7Mw8k0bs z`!24T5*bjT1k3u@fWL*b8N!RGsMVzlO;(UfNL)11ap*EhP7HP(;u}j6ZR33161F4sHaPm<5JR@9%Dy}$%BcL-lzeMz zPgm1y$Y2LBU^a6E^f0^-Tm&;Iu5q^IOquKXS8HFYm^Jy<@B13UDh26aq`mT9AoeJsyTG?@l|*xD-?2TPOXTx}erx8io}g zBUzSI>M|H&L}0sNG>x{unKDNzl;?G@8arb=$--$iUyp!;=&a;^gm}EcJL+IPB=*)w zj@%-ERAO|hj5+o$_lo-G?hzvILwW>IOIry-DIN^$75bbuxqwgk`AWn8;<0=%5hHuq zdvRASR3_ERcDmxPg|Jc0^hW5p`iEYg)anG*o4tMy0<6|S05E&M9k1F*$+aA+vwNp4 z$~0WiQx&pXNOZJ`!TzFF0!QTOWRrGkY8QBCOj@1ExxD*5u}0W|FS926EqI?s5$QdB zo7(QdRpdDENCAA2ipgBC-Y`md_5N1N|EK~u#Onsbyz_Ivr*oPRf+LiDr0O?j%e@Zf z1X&V4Z?lB){9Dt$8bZUHODn2TQ$%()afh!}Me ze3w`eq=T6~NWVlAZnIP>A5ee%ba(kkn>+BBvH}^obbpgRiOh4bP9cquj*l$B?KVJ8 z_xUQSuy_PP8f(tu0&x5@+X22EKg6cOS{|vRq>v$oR|>v%fy`X6&gy>v97LBM!`;Jg zhcFVsIp;jG?9@FQt83tJZSg^?iqG!43$Ah|iZ@qN^S|73MvW8PMsWJS&2?Ab%s+{R zQo)oI48!81lr?pe-IU{h+5Us4d-l#fJMC__N=6mJc5Im8q!S3Isv!wCzbJ3(&~*Kz zS;jL!9MEh#jEwMzfII|}rbo{Wh$z;6rYK@>EcplQQWSP|*TTd2RD^?S27uM4^t8!f z0J5aun8<24a>#|q5^fm<1jpe1gnb{N@6BTuL*M`vE1~$D&o0WLK<5F3aj_`K zs&i2m7blwZ@Mj+1N4(yU?0@adA;Q9)({0MCI`M-sLpaODDGQ$Wp%(_rJA5l7Kxamu z^zRmr7*dK_jbux1*Y|R+U-9cP_Xulyz0{S#sHUDGIYk-Ef+ySJ6Y7y0X1j!w@a16& zhgr)^D5%9+`v;Mz?#xg3u8s^(^uY6Jax_z_j@iU-z+qp#*v66GI`AiHX@fqciiaWu zaR&@Z{ZjX1G0{I56Lga&IMh~LM#?GyIBkL9J{z0?oQszwR|XyC!YTVkFl;MAY_ID` zWgUtHLXoRyBKo@Oq9txwrCf=1NC787GD!kS9XRZ;UkzYX!uH+X1*7$YMxj7NyCx{q2HLhe4&>`wU-N+uoq8(z z8^H-;c#L<~Xsu}GA zLl!}J_ufVRK`^|{Qr+V@m6Tk0yjs~GiQXbVH|Mm)np!a9RF+xIk24#CYx?Gx_pGAx z5qN)rxWL=sqzfcOD7Ef%2U!rIEVR}3WWI{q`Q4B#JsoZVPY8%+CV})7O(SGSQmAW* zr!XiuK-{Yl#1@oX?6bX1Ozq5K>&9_@4TaD-Qq-&F+nCc)G*diV6U~DdJvJT*j`<#v zEaCn}58a)bV?MSMkDd$QzfHMIJYjyY+kbUCIIczr4rH?Dr(&OYv3*}p4Kx~ertef5 z4l9IuQ>I%8_rHXYX-X>FsQLuZI0E4b;-7R5h9IvBJ+cV#KAlc2V$cPBR&qg=vEs6w zIQV$s)dP12JqKZLB|Xr0U^os*nTvXS;b*1_GlJRar(x;K)Ak4iq|8tm1EImMl>21* zR@J*Mr~DCZKsyF9S)t#+;Q%HVR}u;6RUt*)7s1W70!-h|i*UpMQ$&WELQ-!bEAE~} zA6}oWlZBbW(3eM)p?sjDMS@@IA+2I>K4{r9x~KcK2b4E|oIIDoZHrW2UDC;!f@ zG+9JJdl!xL59;hSwR@fYJ3bWVJLYp9M$Upk9dpW8R>mg=Ew zGqZ%f{MJd8rKjryq00+?bD&+Rj5$_CnFaS|fnJg#r@E|wp&!VdwXq}t4iPcEwFU{A zhIs;s_@qT!F&*)~*86idH3tfTo&>MlPdOH6?ssi>U$Nu|`sf4=47s;x$`&{oIPlzp^ zr*A%{yXRD-$wG6zM|P(hUV(Z^&GOB=4-nREdk7BB?S(7-MV(bp9l*A2H?SeNLy(QT zySqEV-QC?Cf(M7-?hxEvgS)%CJHfe}d(W%aRo!cL*Q)v1A1z}oYGUNeVVG^LQjE>D z)BY{WR&1PBo2de-z6_?B8LG%WBh9f2<}SQ5FCj$)Fu(SkcEVF1Tv*IdESc`l&xL7k zOBYBu`KPjx&y=%cjd=Eqoi9WenG6Xd;hJynlI%3n(u{;{ZP>TWgB z!t7&ZW2yC=Jz4jY(zwZC-#p<$=4VLh=_GDp==9!XN=4m*#gI_z+RdN|Q!1EHD*Yv2Xb-nCp!Ny7{-hi7nh=KOCXv-t%-RGpDG8Q&3pSfSt;~JsLM2yb zJSnP8dE|&E!z)O<>~z79iK~Efkydl&f1XfhWq$E!HM!rFD`X7~EYgGLm>=@xn8PN|e}bTmbt5IAv; zC*Wa8dh?x zi*C&@GltbDv|j86P6`oILPY(|=A{3*5jF%92){S8cKDKVyJFKj=u)Hn?=Qbd-y3$c zuw5pRWsmmpRZ9)=<-ZJ@c;er*ynh+~_8X*BPvW76YDv{6jO;{v;4tJq8iAlDmfHLT z;AICsfaLmqL6pvS8<7g7x}LsWt>UpjUq32|oQV2HkZg}xwi6@J#0^Ct_eM`OdK+2t z5~1SUURv2=tyzC$kU=#1X4f3#H0Bua9CVI`S*2U%9jvu)0yLLUs4TW{F5e=rXzMTr-P--j=nv&uzeR@Qra?5F&P_?XNX^Z&_dX6~@9pD=Kz88vbq4~*N=AeFuu{$p)$hnU^* zB{T)S5tP|Vd3|_T#Z>-KVrEl zg>R}#BogObk>M=(;OLXfqrpg{l?uY+>T~wNZz-g))r5ujAlNQx{bMCNiNNB8E&44f z)2z5xCbYaQ*&Aw-z%^8`US|@vMluhu(`raHTY``xhw;NEmrToC)ULp&=X&S9jFE69JBIV?kU z?n=ZSDGQOhc>)e)!?beRhO8voI{Ai&AZOQ<3VelfEBC5&49W!R1J1dq)NDf|UruW& zyIE$8p8|zSpW-1@H<<}DW$4_6t57Zl$b&9>9unzP|C+1W1H>>|`Y8EcsF1Rz$%U-D zqEWip@kdh@<9?b2Ll+!Z6Hu~!P;6`wL?YN>x!2Pk$>wuvTSbAqFD z5TO@Q<^aMSIHD4?3qK;y5{NR6Nk#JDu&cL-G}!-O*UKZO0w%a9r=3uy-tdNQ4znc@ zNz?j&z`OoPyOmS}-y71K5wTW{Q+T*SlG164+Thkdf!T4qPEvn8S-i@NEBgkaSK19k zw_%$Co_hpM6v3rX{=hIaFs6d~p@lb`WZ8^wka1Wkr3>+cOfyVV)8uDgZ_)5gvnOWq zI9!tkgeNrbZ49H~WtQu0?Jz-KK4SW*EMJwGQN%5wi72GIFvZCbIZq%kYg(nnvJPtL z5u!WHrz#3>!$S4olwUmg^Mu8DAgczlsieQozf4h~cTo!*yEb-^jAc{^FhfLgkbJ#!@n%r=LtKb5v6nep7Sj9w1xs2Gtv<_l? z1e}?cr0hcit3t?K>mF-8DPcgVgrlbvoy;U(GuS67d$zsf(o<&rHDXOfCOQ~o#)6v| zfZ-kY>*CF!tCe+VfskHwh3Ab$M|H){%*r@Ne#+L}q?*6K2!}?4hc3x;!hJUII107j=aEW=rxF6LbiUOLYZApjFFeunU#bM1WvZ)>Q+DB7;288GL z3J{R#36nlon5Ua!hy9{hj~<5y+ZwKf{C!)KC$m%Sh#liOSY%6VSPET6s#@+^PLx(p zME6zFAuE=YQFY|C`pz^^DvrBNtO`@)gg~Xy{yR!%i3E}VI9{NTW5D!^fe#D0Jr6pG zDSa?o9F^;6`J`G2t#4^kcJ4o7j43tjPQAe=DQ*8U&3yshI2WA^I1T@1w)QfAO-EKm9+o9r^6l_aUhHe&qL^SIzKiMNl zl$Bs6e5M!>3UiP!zrHFhbPBRAjPqBTj~EUYcQnKU)86`9|K@G|OGkl){1qO~)Z|7* zJ?Rp|(u%^%O!^;&)Jn2o2nDKPU$?W}y~F%*;BIDz_eM|PwyAP8Q32|OST#zEzb5$P zm|Gaab<9rIcY5Yd?{3$Wzk5-{FdiJtB=oc42rrQ%Ydz*?sA-Xr3yYG;HVTx6u_cM? zi7IS}$MPum)^fu#h=<7>^sW52i6&|nu&kz3Z~Dm-rF}B(|3cFpM3kRQ=UlF(abjC% zLn%^+I%i!K`l;HwvHJy4Yn#@z%%b}A*c8deCjCibbkvOvN%O%iUl!{bEBUQ zK^r&GPX!4~c!xw>#28>Nw;J4JE7L5j3bbs%Zx6}&dLG0dT93?rs<-TfAB;~%gLG>eFxp$57Wt z^{oY(PDt0F=aV6u?Gp_V%YDja;^Y_J`C)E}#{1jJ{f8lH>vPPjZ4%xu<8`i21fBL` zOs3JzUHuYJ%)c%P=~|`ak;9|l*gGz1m!79Me2~p~i8(u;F8IgE1Kh~`#;$)yR(bN{ zvNk6;v8R6W7J>%b1v3f(EK*tsoKnwhx!uk4;dWD(y*d}R{B90; zcbGzVxCnnH*>L7kEUH4G&`SU7GuWe$J}gBb0qPy=BPOI>+E(ouEXp0180rC~^{fwb z#7gWP35fV%5_FN!kp&;3t8UFkDl&jUB)Z~rG}FjifGLOci9>8v^hJ~9;hsf-<;aAh zgPI=}&Z+#aT*9O1z%WLCa|USvt@_BJQ#@D^^>d zhETLil7Gc6!qGxI-l~J$3Vwla)1W||k*#AI>RfqIN9q884po?Evc#RPnnsF+1-Q7% zrXmrAB)Nru7{d^a>A~8Wyhyyo2`=r_>ZZNYE#9{*{G!{|dQ`@;h`zdIrVW%LtH(o} z_xdn(9L$oiEH9sBLY|3V4Y6w>tS~_%Z;SMO`ooa#RM((LpV;*+3C;@0amrpS4r`o@ zId{D^kwf;+lgiixNPT>ZA^7Y)q_kq9V!u3yPjZt4ugt!jzLR}80WScS@8F>uR>Mj9!3raR_R4x!@)X4SuwoYW)w}mavPyr^BJE4&Vt(_BU5Z0<#NXz8XcT^)CPeHnkB-Hv=^{6?h&h%7 zLWvknrH>VJ4dH&Pu%fU;HeU+ye5QA^l&(fw$~!7ppZm9}L2hVnWWHz>6wm97Fs>nP zE{k5cfLOuX8H}SAx#g>ZxkDm?Ks)UFygPQckp;a7H41=2Q>NiINmiVque+|%lK)oD zsK_7o&SQh?HiV(TIU-0gl!l8LrDfyVs}%fg>?4}#MHX=|iyl_s8p*^AiPX@sOD^1W z+UL7i@H8haebo<=7r6Hw4GGhg^l<-#d8vcPebxtOUGG;l>m*rAH-kS|wthECua06i zYF4boBSTjZSdu6jBExF;9vtq4pyr*Yfmv1)^{0@@UrwhW4D)V7G8#JdXbLi~o`_P9 zGd%!5MnszMsN*wXQDsm@%7I(|=tx5Ut1kV+m<*6E}U#>?5U0gd?DAb_0O0&G`*^6$}u2-^IyVmY7UagfEOtB+`OcPQ#u1aZVK zGQ9E%GNBbYX*e7aqh~-ts1tW=sE({%=Dmnf zD73vk#%`jnE5_KG4KxFH?B9hN47ZDKOE>$ReD#Y3Od$I{4Tduh)3Tg8@U6w= zr5wl?h^BIzM?7B!Kx{O*k7N>z=7=2VHVBgFRh;9uCaL)G&$4DPdRaegrQb5Ut>|fy zyD+PGxpf_#cg&_eSRlbu2U*yf7XC2bd5J{XP1awl1T;3i|uc^YGb zhOyYl!`WvUf6eSo?9M3@$i-e$bPhjh$}PN=$L#$cymkxH#bB67=RB+Y$7+wN=anif zG{A0uBa-pcI~|O~(_&p{3hW!{K~3H-Wc5ou5EHUU01crvzxOm7FDaFnKa=OhTGxsA z7J6X1$z{)0c#F7L2ZLiH^LN9_hHHI3@=&2+W0^Vna&>w6*A%aT3$s~~*;hZokad+~ z3Ox98A1WkvfoH=n95+XbBuBR)t9nws@f}jpx=xO2^s~MqP^0&m+JJo*47r)dl ziW-&uIme7^F?0QrzKlAGU3S>4Jh+rKG4cgk%FbnWJwiMD_tBWc?jnWSHfDCYcVFpX zvpVC(MmnNqr7Y};vIE>nb1-*xTY!0UKpWK=ijb7fnzfQ_?hbToEA>UR`v7NzmV?=u zJ2)o;86!x~b{{h@|hW!GXOx3f#nFZTdC+czK_-TmrP2_m{K{WhmNO>5Og*lmW{wob;DA7P6Gw>^!&lA@3)#yilvlwXCU9Pvuf z$)^;iq`FX#+@UwZV7t^J=|MBC&bovL_A*QCfg_$Ed{zSMmRs!3D)0~TA?)Rh*Hv+t znhE{|oDdX%kt$Fo$Xh!pVflNiVt&{}GAUmHX~IO33QG9K+=nxCNGdL5nPLUj4DH`; zTgmyht+*Mf&E;DmY`@@zpfT@wzvG6 zxNvH+?-`Z9Yn^gTjECMKFYT?a>QZ#J(30^UX3tkG691m%vWlMkuyI_>;qPM;iEl@$ z1&##sSc!n)&!sNXym$g+Ffn-JdLAyAye#LCXTVR%ak6Gmvx@>g_s?ktud}Sj*Nk81 z*6?kleXXRgC>Mj+q$yj_oPILk0=8!q#V*{s$LU(fFIr?ROC^afDgXS4aY3$_N_CM; zh|B=$cUQ(`6AUA%^vXCR?~5EHoazA2)Kvq25>VFDNR$d&_N0b%OC{!5K#Qt%oz@zy zg3w=xeuBN~gGu3)%Qvqh#7pSOj`w8^<^&=BRlB%?xb$DHb|?e23=V9UaNHq`1m19> zV^Bfk1jx88LXtj8g-L#2{b5kZ7>g##46?MOwB>>)J9!(&Ji}{v-sxeWIm4_WDG!mB zB03F}eSXol2aF#6DwU9`onnUXffqOp2=kSlrk7H{Hg6bCc%BfcMOqq!|3^Zp$5FPY zKrT++I;60c4%VDmJo=O2qo;($$OMUaf8$5{gG%GjNR}vQQ^bEg!^kV!I7#x2xm|9P zw>p^;I#`Av$#ug-cYISQ1SIKfcT{GT>0zJ?y%dUOm!R&!abF8yl7w*GXCfRiJa_?o zzid%=J6?yE*}@eDr3Y0%xz;W}a^{RTk_CmbO8w}E${CTXat3Xr!9=P44GJ0q+nLJP z+l*;xSkV_8`mOU<7OjO13bt@}K5NCYm~>M*aR)cVoh)yJS?+@j4alO~CSoQ%3@cDW zwJZ2cS@^@?cm!~YC(m!Wz_(geF?f8~{?=4ZpaD$&VrVkm)(T8mxNGMhl#Z>)Yro-P zykXf_qiEy?5!4ztKTJBJ_Yf6IAn6oSIw8Ensvmh}4^x1I%4QBo;O(C$h*0*@{f$2} z&3ez?=8a%Ep8N1wHubin->lB}UP+G)w`NbnI4Y(2d>|roy-aJs1xOqB0|wr33xr@E z<3#!g7vAy*`T$6Gv)eK|MNU}U^ zFB(l-WXQ7&6Q>h2h>3j!lW3qGqw<6(t?zvF{{$_VzmQo3Nrtxh_I87@&fdbECA??uy)bK!29cTwH(M(Tp}JN%V$5ij=ssMaS4?FV68Y^9 zH2h;TW&j~V_w|7bg1Pyp$R}k@nZyA5apA^c=%6R^$|H3X4cVlGrjmw_-~!@QjM`in zh@Os3_)?+PFnuL%F@&V1$L`l1Scj71?ltF z3cLw3HFd8NMzWr!Jt*UcL6n>THZPQRe9iuRyj~yskJ-`0y>i^nf8FPhuWxFqR*{b$ zl^?)W-5%$IpAgDCd4BXkZ$7X;awSpZw$?I~6DtSz`Evt!VjFbIDJ@Sk+S5j3ICv1!}&KLuhNoGNo2m~-NgEYc)>HsStq$6o^ zOAF?+_SDatqUd>^T?I7h3TyT-4wble9PwXA@I+wZPmwgnMLfB&pG0Oxs1?A?=UVos ziC?5fGo&11C09A0es(v3=&j+lC^T>He@TZ6sZg1 zzTi0Ayo_)Dzh9<{?2(*)cai>GFg{O*L81cbaqx~>9;!b07`HoKB|xM@OcnJA(b_qi zQQkM(0C9E$m~Tl`-7QIAYvbFFLX9U}qt?#yVN4rprJ6M(PX4M69hqS=|h6G)JzeSSW zwvJx_q(|YIJ@XO^t|vOiwN=n${!7vle`0eEPISeK0;?h0C_vjY=C>@&BfhsuSO0Ph zMH$C;;7H}){%L<47GRTyzTaQX%+3x5A1uSo2!}S~B~w>0J2}UBh1@ zq2+n67jn9FIaGvWGQ;aCW;~E{Nf~8{ES_xiy-crg-%f-ezn6+RFKQOcl8|)YfYT(G zYSTb*ua>Zb<%mp=G-kjQ40VIbmi6Y(8Aad6(i1$NHev_5Fb8#8saKWseichoc(w8{ z&h)nk2uy>>!fdp*+-dUxFQF!z84dWu%hh=DGa#eW$vqP89&Fk#4>$vBn^%b0CxL1~ z2x_Nq+jrEoBv7Ng_cQ}A&h1kvk6>0uJNZU20?>17m{$uVeSW?+%fW;D%!_6dcp%X= zOeuB?rv0kx^^%Lip)KH*9K?FeC~>7$2Z`$s7f9z5A}P~gEXw`m8C+O#>l~j&6Pz74 zyBwftMmXai-orhyQ$-TSG>S+m8>$DD9CS|6U$6puz9-4t{p``jI_kFgoZ$;L^HvVM zu>13Yo^w}!M})yeZ)!jhD06UiEIOg(g?b=siWqLQs3A1-JbrryuDrAqh8zYW&_3k1 zijsRf!D;vz?iVPX65(*DIp8hwTE5aFmm7M1F?551{BvqA97JYNneyD+`1I|Y3mh9i zz!B2`ejEe7tWCsHl#mMxFta)~GWW69`5>l=TI@c$@owW-2qWXzq=Gm`vGtHd&le*a zD;52Zr1;}0XLD{}N+LQr4sqe0YHw<`d(kD?ggf5=)@R?|cDRru1zo;e;m?VgV#`8j zWntpzFcIRZk)aAC)p`Y#lV#8Y9j{Jlo9%Nb9<0$)fRBNXUgp2r%>Ig^u(130%v&AZ znAk>IC_wl|8%zJaxpVQBEV0 z4$x%-H0r3YXy$jHM6pENZpZuG1M#c%8T+-xO7YlQ@c7? zSJcUxt9XAtQBayM#TW1m9y-O-!1;Jb92oxlu1%FPdAg{v?)r8KXQOSKAf;8CWBKsU zCv6rSQacl@Oj$o1-X=`ACT*ZL!jw3e;dEBO*l2% zKe;u|lgYBUbWP`zP6%|6kXP34_P>y#F+TZwxP*x_xG%cq@#szziTc|8346065%j54 z);|lK9L5iOe$ileE3Hbg)iYaFFrN*j=OTlERsO$o!N5Ve&bq$yaBt4h)CL;WIM3Mw;885Odo6wh_ zbLmiFXzIh!Ll;NFR28tTNm%$6C3sRV9THM}s@hI|bsqJ8nGliLZeeEdDDjsISILp^ zJLNzX#}a&UJG-xAOA}DH`4T}zb~I9f>xw&w{U|ruO89#1+WpZ6yYDcQPvJXUAOfVv z!7ZOk1q`=wdv>_mbVNFO?@Th5o_Nx(DnU?$uLwbTHX5inQTJBcA~UqGk+&%tFF5}_ zkm4`K$>Tr%31>N}^{xI9+LlO?C#xXD0~EN0O&Vk8GaMB^F?veNM{nSp$ojEZoe8z3 zqjgc(bCPn!4yR3&fNoWcv^7X}maynX9@jj;pfh2`;-GjJ z=XzngE1G(ueA zR^Dib`aa9$CnJ*u$5vfY9IDiIsUnxpCrpe6rY4T<+0J+@Y$Uz){*cVxhA0`$Py*pl zcAcvKR-;J@;pA(DsTL@c+vUxMMTo31Q2m3E_P!yuMivb4S60H2^W~iI8{upFEg4@R z1&lPG!v2(K`H29Wg1gx_l4w;jbfZWtPDhjCZv7S=Ddq)fd}Ogn66eGtU!g+|crcpU zdEuA7G?bd)mIqc5KI?ER!hM3d0EP^z5qLaN%OQ8DJ+gMkr2X>xwBDAwewD2(bN#^D zO&XVmlzoMQT2NQrLIBqe{zk-nu8b!-zBdh%3FlY8tXEap2U^6 zXE>fIJcWuu+lM?()&d{5*akik-fY>>G_>cI=+<3kZ<+-z3RluVwUs^Sb6T~Rf4nOq zi3OO3!SS92y#zKYUgUNwjJnU=Mp`&y@p<8YL?^%3)v_Sa9)Zne9)XW%{=~xTzwsEI z{00eNTr6&#$|GJGI1fl?-_HMJFrfdw5r9b7ccLFgrKBL%J!3M@Paa7T-|g zybw3A2nO+>)4rvZ&Y0~5eGOjr(Rh0&_GHcTTV9wJ_jf*m86aph(AY)9po3l+`b8v=?f~l z1PNRBG=)2;vZRW5$T7{IbroirfDQEkYcHdl73o&BFpNUh#UqstR&l-_8VUEg$P10d z{qcz`ogCtBplvLIMVUVEHdPFm8V!Lp!L)Nwv%Q_Cp62qokHfXKq4`eaSJPNANKguO ze=i4W_CcGrkz9?kH>w?pWD~*1F*=!e1V8_SayfAD3;>8}NQt)rzM_Yv82}(9MGb)d znn3|j!5{!&U+O;{2MqFmquQ6o{jb*h(v<(r0sqoy;Qv40G7R{?`Co?r+a$ln|M>jB z2n7JdeFFf$Rv4L?7{TKIPlJ6q0CNAk&cw(FmivE>pPv8#c<%o>B0~ZI5dYOkUpD_~ F{{z*UpOOFo literal 0 HcmV?d00001 diff --git a/rare.jpg b/rare.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f26a1202592efbf25d99a185b0f5095c37466010 GIT binary patch literal 6766 zcmb7IXEYp8)85r1x>eU&td>Qxt9KG@^|m^R&JwFjv=GtDVp%O(bfSwI(IYxh5-p-c zCxQr(;LH2|_|Ex$e$V}N=b7`&oSAdaoVhpiH>&_TEp<(G01yZO0RJ7p%@QCIaEpwb zf}HFY1vv#J<*nP)%(T>0RMcP)6CE=bgolR<0)_GliVO4dBL$#P5d{&Xgp{nTEKEpA zRY_V!Tt-$3NJ&XaO-0R4OUo|B2j!Fcf8(YHKu-Zk2donVc>qN8Kw^5}%>V%WFGte< zWct4#1ptYNNyy0mkxFy`A|Npl2{9Q7F)0P{KbL3;YC~a{-Txm`c z9FT!=F4hVc$g!xHF1)psBEd0D7A~MI!7;NH4i*1hR;o-}^-_GHypV)i5mRYEQu$9| zTbZGJToUu|g2ot-!Bz4k;I?`MMEQ0-n>ZDEz5QD1P`7}_C1Qz13gxu}rHpA%xFYqH zdN%L8_k;ABtN8So2vD0<_w)^Srzk*r-avre=#eyIO@|F;% ztnTLy^4`g^!q{qkn={+c3QD<4ld;~zI$Ebk%(v6+<$KMHUYzb*9$r4qf3cUe)u`uld$HWkDi*2b5&n)H#3!t%`=Xt=+9wFEvBV&2tf~ zn-gz*ww0;1a*0p?$Ep1;ss0+;=$VT~7fuev0H`N{=oY2-{q99MK=vK45{NYN)sF;{T1ulv``Z6ap0(KJHMW)#`OH0B-VR^*z) z$@!a>;4*BC+u-OpG7URvWyFEq?{b#27YwH3)YNqC>KVfYal&PRb^~ZRp8+ivwM9bA3Gwt(71FF9PKpeA5s?qD!z38?dY@3azey@X7!K-Rh7y~j zBka?k)Qu?M@f2T4ay`$>G^JDhA5p`cZO7&Tbovi8kf)sK>UwOT$GCe~!_VvSGJ4Px z@KG7DH7^-^_Q7q7XZz93+58|^F zdo7k1KYIh{G2=!DTwMtcAS~4Q8$2P^+b*^xF_SvKet&A)&VZGzP<*>z@FR;zfo4u} zoSA&*857?TS)TNe-U!QZ+f`ZQHA8SS4CdJoEzfx zc;XXb&TBzzn@gYgd~`Q&Z@FSCQg~`RwlPMdJ=IbAlnBLoxCC*HG+6oaV~w3hPBaOa z@_bKS3EsFe=Mb0DUm(OZC~=34D;kV@l*G{(tL^43Kg{ODYh56y(EQ{uXL4ww^tl-1 zOT;_8E~rFD9#@<2yj!=O#y{z4WV8(D?YM7v4wke&s(940!{$=Ptol|DDfjmwb}weC z`m2i2NL^QU3adV1MbkmrO7enD?Ld~}%%XiI%+cX1LXA_~C;-a!;x$Lla8J!iu*cx5 zH;LalR`>lmy<3eslgoY04-ej5T9iDN?-hsf>~4-`%FcK)Hyd4(!2sB7uEf)x#r%WJ zi|0#Wo{k7IcQjrnFwL*`&!N=~U@6#NWPN^ug1xf@dhglXq#6d=nH{N3Skx5_V-ZXJ zn(r>M*{OIY@&>{B$~8xYXB(yPGv4iS+%pNtEa#^man>Jr8?EwWo5YLB!_r2RGDEtpRDBSQD4BVw)5l7-kv(%->H za`*WKWpMUW>89CU5*MBVrbk5YS~eu7M;TLjjX-$OCyA$k?diBbIZtX>1msqGwOaoa z-2k$#Dh*X1YZXYK8$U2)q|Sk`7Pz^I<2uYn%bVPVd$D^l6CY5Q==S$4tXej(v3DKo z}RmMm#D|WTaQgIg@t%gTP$d}V<4Z~JKIRK8GwXu_s@2l*_zfRk1cPBY$$$5ebKnM zm+Nx>l=5}d5`}}&qXB7|*p05Gv+rUjMRa{6_)e`=!dJUVd$FZw&1rIWxP|DwJJ8to za!gLNCAr}SX$`PuHcjsKKp5_R1wSS0IeF`W5U>@uF@Q&>vh)k_uNVQohUsNh_hGqR zO-cjr@er>Y;>pxk&&yJ08{U(P@V2H>mXu&dI!4+DWjxNyKLWzwBp>*prPL3(U3>+f zKv(JqQD2__@jv>USvE+dpn8WSFZR?A>@$DetjU4_KjK+Z0az)by~v)NRdo;W3TLrG z)K>^`M~3x8sN?$ia2i?z-$XP~^o7Ycd$9%pUEtBI@oXud9ctTz4;>9&b&>gvZcFSC zDWk!`FIy+d(ILHWn2$Dsa}VDC zxmeCyai3pGjXL+YR?<7E3e-=u325MHm3Y29b7RyO&3Qo>__TT-G)Z;(6qQ{hSIbbOf#?Xi&3llj z|g2?*}Weljn zFyGd?e*f)CS7$2>G|8=tHL!~v9LReYbhxj4kcUm+eLQ(5L6Fzxe79K#oS=aZgz+!R zNPs5%Y;CV4?!t8a7;>hkmd9(-6$?w>tU9ofLzIFh#r~xCIzSmA4&-)iB%wC|%Fj=u zRc=>Rr-=T}0#*Q9h5wDB*uG7}fx-@=AuErLu!nCdM)?(~R(iaLpXxU=4n)2&mZ5>P z=NBZOy$kxdaUiqQqS(ADFKyilZE>9<7bQ-eO`Cp~{yLT%vVtNsV!(N0GyP(uiA!HFV3SX23Ks(Ck7GQ zGzK_DGh=a|#3T2HtRvJB#Aw}t2pRlx|GH2LIw|(CU-h}~nncFzOZUTMf-QbwE9^Wl zV5X$@F_W9s<41mIZ62c5YDcbYqm#5xEB)=qi0 zBQ(%6FM2NL)3(;VWX`tF+&Y2a?NrulG{ZGC29F{VqjzY;TfEG_)DYV**hG&?ox|~(g@UZ=tkM(6(g5-;UEhBl zGG^T{38et?a#7OO0*FdIy-xVsL*mf~GWq?}33rqgJh>>VswcGR*VEE&0QxnI#taJ? znJ9Z1BHxq30Gbc%dME&qTrL%;Djw_n)xH)y*@vn6h{-`o9OV1r`D|~8Af#^ zBr7MhYcjGSlyCm?y6b1sQmvI~T4i+p{O07(>K}`5a!R7I*?cQW&4>L?)O*NhLq=!cH+B}6F`rs&Z1?63# z^P|$)NylT74T7=A*Yvu*imaJzMmAE+4z^KdbJ>2^n0UwZoz;)OZPMN@_1}=!_L3Mb zy$`@ZV$P<_jQ9&+g2zOiEduIvo}juiHQBO;5&vS-7;9qvxVXnKk%k4DQ3 zo!m1XW5;});cL9xfx&`?g*T1C;fi;cHsr^h+J%25vIrZV?KyAncTbdJJmu>tHXj-` zw&)AfE|x=@SP}l%w)w}HGWKGr*s(PuDTeKoN3oZtfrt0jv(E-DlM!M$VjkF`m(oe; zzTg5KG&TY7n>~wzsz(OU%bmld@L=p@nb$( zhHG1T^CBMl{^`MI(dTZQ(gg2UJzH`CAZ8|dokqm)l3e2S8b>>yaP;kq(dD5vzdd^| z$)fAg;kBW?>Mri-2l<6A{7pj@-wqoT0%z2SVuU+SbLZL@%k0*?f>nQ3mL`uE5)_u~ z!>Xr_0yFMB&k#%|qNu6!K+C*Nk@V7;|^$PxB1JSuv{Fh4A4 z_;XV&Bi;sr=#Cjku!gP`693z}XZQj)g67k#tgWo+-v33QtRjaEaWQO{W}x$?p^eqS z1-Y$ejrUlGxS8GuHHi-OSFZO)Va2W5?y)?+*djg4EZ^_Xvi`cGy?Nkk>elB+-6yq{ zG!kB|2xh}I7}CjjjQ;s#!?j7t@t^wJ6vasi9M9XhHk4o!1wX^MFJCLxA`y_3Tiv|O>&oG@IjawXGbwj?Jed`0m zTNW|B={qjSJb^1%NI{-{q-LP+A!&LmiqBTcE5HW#Cn!fG80njK2x*IAn6*;lt^Y8J zMBV?rM=t*0j#n&XSiaf+GXIUzL-+$@wxv21i~3tf(@*~1F*xG5G%5ouMG=4x`!BqF z&tILy9H=pO=!Om6Kal+-rF#2nMZ%vXr%y~|fW@1hfH3%Fd|I8tl3;DmvuRGgv z;wyI6RR8WlXUA6ie%X2OFm1f5FP)jkbIA1{(__4IC~5Z_SZ-`-T<9v5hGdG^&eDN* ze1oTBo{d)4H=B9UzcSbMk(vY5k&e2@qL)X>mcvTmxWg$`o2}&45j^eW)aAz1Tt$m( zQ$Et;@AO?9S_0Q4+{fD)~}Ts$e1r8AGEw{^<9&3S1@P1f>@HaK|s zRWlLgDaRl7YzfW}V83uFznB3WovyR-FE*L(nrOpFQi# z{AGmKkL$KCc&9y4u%OKZ%;461^{^bOCHYitLvTl<_G=B_no)j`#+CK1aD^xRB%_HuasU;uz-)ZlYhtjVX7b1W3Jejpi+zn9U{6TtmBqp7{HYLb-L3;D z;SQ$3r%Yn-8$kLEK=yS%asCZJOI@siI!BrqB^x`FXp~0!CXoPX5g+;Y(NkW|12=jd z4hewzYDd!I(;{_6VFd7Iy?gO5Hxa^k2c&C^*Hkn=un_lWZq9i<<#{88l{lKk|c%; zbAgGvi;7X5?5c`f$lJBRAR`5R@zr-;JKeg*!yhL=dG_>8LWp&@(oCF$5!N5`W z8n*~p_1{e-Zq?`i8ii=diw5iUx6CPIIMQfQ3&1MJwGfW1rrV1wwPdEklK;3WXQefNSt16l3Gg&kH4!Ct&& z+%>&ulMN^DQq$H6VR={6C7FC=aIPJKZTn#F)*Vc|CjA%w5D|Ksx~svB@^z>2!OJ*& zy#bhrsp06*OWX^3Nm@4(4u6g zuN}Z%)M`+;W6BwinF@dFPTZxdVf0E)YEpt>QLh9B@o`U_Pr%HEEMKlSS(B{BD#Y@eF*#>sxQQm2l8>!5Nf? z_q@%@%-wp1w`kNJ$O%(xfoN8@k1QP;;T;2!j-KVAmGMJ@^WW8F-Cwm@J6eqwi8Ijt zY#$c4E7yL?b`}Bh$lYpF&%68myYB2HJ95GhI9ZCpfkmD8m>$EFAo=@3p7bMs&E>nC zD>x<5?|R_g9UO_LgR>9j4m>=jo&Ah@>m@}JJ(?+~$^tnhxLGqOgF;`I+Q-F@Ev>FV zl(}REmt5TX!>F2c9FtNaWb;kDQt0lJRnhqPA1;Ah<9!epqGbK*|DLmEO-6>=d^S4K zhjrOxaWFvUb#W$%=jUcP{1EgW1Exv_`JD=mTYSGYZu9(%wdU77SFEpJJnKQNDEXS2 z^P1^NYkVYtYyi?7G~71-9kn^0-hMJsKDAZXy7sNhIn(YhPc2>ybQ0bh?h#Aw7CV&5 zh1JMPi+^W-$vnmleOpY?T&?qj%_jL%xwjMVeT%*hUn-4#3kT#7V&@S#7je>u8v4e! zF9x!|+zOO*E!jVjuX5_Ka=ypZ@51FmFmL>3TR%?!jH<~K=wvTRC1%09CY4fuo3pmF z0bLeX)SNG8{^QL(+E`~vUB$NzutDyCozee*`VNATz2*#8a^h^BbAtf#@tAnNh zK1p(T#7Sq;yZ?y*UsWI6RW>mNIOdwlL{I8!rLn{OqgrMG!#$fisTw>i7F5<@AI zs41RAI!U?s`EuW#G6LK+!*s>O9_}pRZj0)LsLxg!(~tg9)iFqa;1%kgN?m5uMnd0( zF{-VGq$wtORb>~Cyx6+^VlmD;*u1*d-pZd#Hd;pJJ=|p4_wJZuF8gZ%Gg)*cd*gfl zn&fAGmFT1Z_f}~y1kwgdg_DY`RQn+7W-^}HWauqN!Sjd>6tj8EZfa`q#p{%}aPI?h zngFL4Q1WN!7yMXI`Ff2ne69^b4L2#;p^1rE9s+SmgWR~-mmAm~pN>nww=)l@!YO;A i)wq0y$|PGht|>z+ca7-YEiPS~-fM=VD;l6T3;zSI+)hOR literal 0 HcmV?d00001 diff --git a/risk.jpg b/risk.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f379ae75b24767b0e359713555cdd9e84da7731b GIT binary patch literal 7731 zcmZvAWmME%^zLsMQaYtUQM$VZMkQWpNhyh;VL*E5!2kpV73q}j8ajrNP7&$u?ryl; zyVhOze)vCU?+<6!*`LnZ`?;UEUjWEdlwKi-26 z7#oCx3*bFCA!Gm+78U@;#eNVRoQDX|!ws7phvEq?rO=Bv7F17NgN46W;IWCk)c!^N z?A32k9m@|tXcXL97a!8;AIf5Z|G&}?`Pf)s9NY(=F!_TI1O{Va<2;!DPYmecW%4H! zLN9PAp9;TmeQ6Q={TCHm#cz=z>Vrev`ze6vAr6ZiOb*BcO;-b9U{OE-pGi&aIXr-s z&W;urmlpGGfei6V_JBzhQ(7Agw`$epfm+gqna6;qe-H;OST1j3$z(i<18A9%$*fP3 zutqZkX=!bd5iGsfQLR|Kt_!Rh2S5T~gp=}@W(}{%w3X_g7=cb5UGO(^TVrHRDeyfX z`Wo3gg;OO;xEWX;%ZjliV0iQaBc%2XGKs8xOWDwhxcbq@hEO_Os6jIPa8?h&uAzNI z3})|Ph-8p>_H=@x0h)wSz)8R|hiUQR;!3enFukPHN3PU>Utzih>A&F@13Um7s}Bv% zMKva$7+Q%g=PZU+R?~k<$po4R=Cwp`yd!nOQqE$InT>|1n&Tu+GNZD4eIxH?Ze;It zrq6AoVo@oOmR7vD#qW__y*GY5w+dyZHa@#5gHr={{fNZdxMi=b(CG`|O_?Kps(ZjE z{dCwY4aJhX11UHZoYdc1w(DIUr87QBG#Gi`zbhhizQ{a)POtF7l8s)mxfnH1@1VS@ zNRhaDUI~vd=p!fzTiNCaTV>FUPu6+zRRO07yBwLUkG)e)(+X^X6~77dA|3t)7vq9} zYG4FYS^@gaiWoB|Fl61zDh{sh%*)25U+@JN3Gx&G30hkv$Kj4%qozeGjx9@=i6Uj-B2l7td?H?Yb!M+HBL^w2@K!To*)N zc3@*^6}%wu>wER7>6S}bzCB!?%1Caw(X{GPR_#9qk?`@GcT9?H<1B0nw~^KAUZlU1 zVEYW^HH5o|20;~?Q^@o~Mj5%Uh*-sXNnkpey~}2I zVQ<(~s)I{unGVz8{#gQSD0*8SWuc@<<5|SPJg8x8a1wJ5{0O_;7P{iNvQLjQKW_^n z%Ly&q3_VL6A2~Uuth&1qLKBWXwUPg+PwW#|d84ML(7sPeEI!9!{}tIM{6eV?)Pn{6 z8;pl+M-VF`R}nj4J>?$Iw=#m91Ju0t&x*}_@ZvF2YYQ) z$jKy4dJlL79=EOyIMuVC9qs5h3zcsd{j6BC|(E8o5>{Vjlf2A`od0t1j zu*EVM#^C#E9G|KhbRq7jIe`J#S~G!l%X!=ve)63r&D$aZBCOfg=x-~`4y!7LvnZS|j@l}hHsWPv)^1Da z=)^Ub34Y13Z4#q{L@w5NO2+;=ElMg0TJq%A8Lie^5@?x^i?A0mZcE>lx8?fX<)7jo zS;+hDjW*$I+eAB%BvSNid}VYs(nn|v*1x-GAV=G!!R}W(FY{b!sHic#aW84MDI;;_ zq(6YVN*R7}&Fuh(ykYsy%b{+PO9s{wTX{)1111LLA25Ce6`H?!6RhXNsvFls`WQMW zC`hxPh1D;c2<&tRGmT+>u0YS*q30cb7`V^7E5Ipc0hr|25EHZQp~}1Sla=Va`GUER+ce!l^rzK>BYL_uv5}BTKlcXVvp{YoQ;jFf%Xc3OC*tdI+R{XTx== zFSEqnIlZ{cQx;{{BVwmBi5{OxFQiikr3_?LYL|N0l*l?yFIpFx1Ul%SnXsnUV;Q-0o%|41f4O4ah4x*@aYCM9J~o z1EB(trSbG^_p4g|?4664G2fK8OR-b3QZ==@r>}9d#98A?0jgj^-Y0w!Aiswni#{5Z zIYDf^Al?*4m8*bTa`cMk9zcNLN1&mYd>k7EY{sxhwn*Lsz?j2X0{@SGQ!d315~zS5 z>B+&!&Ahif=k@JH(ygvGpMBbFi`3yY|7L}!3^p`_8%Yh-d$U000ca9BdiGEG^`YKQ ziIXL$vD;et>wFoGFsxa}|Cl?d-F2nwlW41+(~~w!yBu`V#;@{E%AJwr?6Zc(ORc)` z{PIm+XKjCJ5!NldrfmlZ#l-vTxGL9KZ86X42CsOAj^n+>8)dHg#FUb-&j~*$+Hq)| zE=XU`4=;8U{L^k!n(jKtOMbT8BjZDAeyz|X*Qr_r8Er*7ie2}fkR;Dar;jNYZou^Z ztKph+NR=~lzMk%@+6|>%;szWTCRg*d3r z?~D1;Rh74JgC`=uC2|p7@-pX*hVUL-7-X*dtBq#p{YCPA_YcNN9!{NYw~+Lv zT$v6y!r|syTGH|7o02rcHpQOmw$}S@&6&Cbltfdd!-v74QRj#{#%h6Nqgg7yzPr?% zyDVOVE}v_jEnz>8*~iuhi8dIw{9!TsO~@hp_|^-#>5;Q3>FfBEMps7VDaOc{D)@Cx zWKt^a&d^FD-s`8z|KW3i^*hPlkWpJg@#&Bj8Dt3DXsqxlaAP;~zBxey5V6404(;*- zVrxMu-_bLlCbq)I-ugI}s7}m90m7mCn;z^N)eaBB>F$YU$5y zjPv-Odd>EFU00ni@%7)zD! zev^fjjur+eV;&|aZC0E14}|YP!LhM)kxg4S_dwdk8ka z?ZGU^UC}GkiltIDN@pI(q=TdQX49+s<$!Npe^lsV^L_tSRMQ9UaL%fc=AEUe%NMQ= zTUR^wtM%@wi@A+SETR@9>n1i_E8dd7xm}7-k1F=Pnf0aI{HHT!EN<*q4}(t&`RQJ8 zF3Q`PnDJUi%H0e_E~Vv5y*7~M-H}dZx^QguC4D_?o+{r+y_IlPu;mh1nz%E3R)qT6 z%A2_bx1D?@rB%#lN#&k;N+pQWm*@^;Rh_5x`G_oc zEqnRtv`e%(qbqf5Bt2Pg+LD#qeflBt*h&pT)9ra;=N;pd$NV_4LB#(4e@c{8Y9)_6 z)}Q>m2S&syAn&qhAf_&%&KCV05*>Ev8)?$1YA#PiV(ho>-cfhbO_xN{HQIo6nZFGc zQ&)bq+u}8oY?X3s?Jmpdq!H@R6T0yST$cRSAXfAGHZN_+;;u|jJZ*ZPKg8Grwi&hQC*LMV$;1VL z!)L$ExwxOoT#>|#+rdhY<6u#vH<^qnHOqOMvna~k(g06N0-unKr(@E=l(h68@d<*L z%x$wlD`eQ?VD>r!Rt&`f%^1e85?8UD$PgHf#2Xx)EVGT;G`wWj>mG&&+TzQb;-INKZ5A5)X$QnliAB=bG+=wxhCr^&3)e}2biU!`x?p@3Hm@^0n??Kr8?Ki)31zhar_ zDP2hsjCt^Mk-7f^&X7Ze5rOA9XqLN>!(f2O(RqYMM$gXxY zOS+{dEzyo-o+C7q+Y{4GmXjLpV7(Zhbdjq+=vtgzpD1)nP;V*k_gbN*M(1%epGAH* zEd#&su@3sbkcESjO-Un0k5V)Q?KsF&pLZ=!nXnM>vwyIo82xfQJZzn&rfB$Spv`C3Oik{it08u5)n}iqam=GzR?8rHD!(NAAG*Fm(jFwA zJA)bza=AkdZ&aZoG-;RDT7po?akmDEQA2m8QW-HV6uya@MQ_8$coqlK;B`LITUMVL zZ!#%PO-$>QI5kwavLceMg#`Ct&A-j`0amM#0aEu)N4<)JVY(t665< zV_4ZI;y(-s(2@r`O^;FgK;uhCN?`+Rv&e2K_%Uqxcr-*-G0N94W`D6aZ({KIR>Ner zMs^Mu98<*- zjkqA29e%Z)#|I4`ertxAKa$Xd^>BKgx{(xC6t+eWq4as?IC9JPBqgl&D;t$5n#(Ria;9?JkCJ-W)|f=S7qWWa zSIgx@GZo#6S&Glc?)du0tsQMw2s!4^G<-8K0tzGka#DUt7CSa8?E9Jb`dBabsbSxX zX$@glp)VS>Gp&)H%zTdEvc9gP(^PrYVI@;#NLH+=hNg3qciKQ6Oh(Z4{r0P4qxt6Q zrm3+l&FP>CO|$GW)7!!6oz-`~fwWFe?L4c}A`GeuPta+VTB^|S!#WC4QfC~3s7F^j zYT9EfdIf?{T%QAi*qAO+qQ}8e2wIyNf)eCMa4RVL5zi<7oL}s#@u(PzO#Pj5O!=05 zClg=oRuKOAm4-%(j#2wmpwT@ba$-DenXFpT)}iu-yVz~q=#wHd)Z=FT(_oz29NdL} zl!rQsG|4&!OOxptTC5XcytaNwZg$9JP_KM?Zd1k8!q(d!oqaxKQvEx(i{_a8rmo&` z&&Vt7PjaQKohzeExr@tuIB&_@i%CPX*p^H1FDav4mXn4g+b%}uico?2D0|4%{3LNW ze^0@X-`}vUb`opu{?d%w_KJI8gMDsPz;H4os$yJ7a8ptMrXlB9-+cBxZLKuNj2cz2 z=29>}p}~DM}Ti)PhWmd{CetG z(SK#IwK!wV_^d*|=bK_>oQZCXH0g)$ILGdI}mO?M2aZkCt!r z_s`r=W`)D@8iS>=WuTb;~C&ZGC2UA{AM$(&c^PmXnv>8f_8vd5G4&CZFiU z4z^jnlT4gUDSobO;T8@q;!jOv6Oq=c0O9AOOK;ue95 z@D0Nnt+6*~fNO#f!zmPs``i|Jxa04Xk~6>;9cw)kD^{qeObt*!t=qtR8F<`#6%xar z#bishPu|~^decx>W;A#%)7ao-z}Vf}tGuL5r#VBn&KEv9$HyQrb|};Z!yc{WO#`1& z*nVn_SxA*OEg~<2~?H z7oyuVemNB@gBZ&kMLH_dIaKg5t_z9I=7y)_WwV!?MUuKt`l3UUrt@?oqb$9{+Fp^$ zeGqUYnjT9f_CRo4#N&y=dLq4E<_I*19`x{Q0LF$2qw)Rf}5J)zN{ z$1)zg5K+?T;w@kOnAyI^Eq#o=rFrb5Q!))2?e7(TcNBgeGS6rvU4tzJNo|WF){do0 zE*b;1R@Q2!6%d|vU3u9XgM2E4U!qz~J{5ng=X5jC_{{71PmNf;8uU!v4jD$wCq#g< zQNyY1c`?z0!rIynjxY9wMx8MELO)z}W+e1zc5#nBPw*FlFJ-=feZl_=*0EvZ==79ijU2$&Dx6ZK6LI_2H?X_uJ&{X z^ZKU6o}ONvr7t$r^IX{4J2~zulXZZXE99O&3?;uW$G5s=<*Qb#Pm1X{uDv$XbLxyr zGf(#iC;uM28@5=z2e3{A)^(Uwm2X1}t~G32G)K%+*O~(Sc?}=}>#+z%;c%(Oq_N7K zKP#k(lTkfXt&Ga z({8X8)U#YT=bI$w26XN?+Ijyt*G+s{UUK=Je!0VpmXllZBa#k`)ceh}o*XnB>y)aq zhlm=?*Hxar%?soqfBTs(tzg!$%JH8yC)W|H0wm%=}@@L(GVq?%Z$Vzi{2YgCHkYa|FD0rWhzA2i4;rA#y+no_X zHT<*JtJq+}KM;-5FqPv?KT_J+j>)TZe$sX*>^l#oK|~x5x;vz^4gZSeP>xGKn2ydq znx@N~7j?fB`D#YlIsSV!H{jJh;1Varzj{KXsdJvPGvy?nz7N|>FLoys9Y9>#1~tMy zUqiDcJX6){9{WV-CQZ+p4ey?(^v`{eT?&v8UT`w4Gmm`X#4YYI< zUQW>&wo8a@SSe{_5JMqS11pAwo`|j#32D9HrYgttZ=9=rSf1Na$*Q|LrLxthw~X^H zh?tz$UtZh;VkxcRr%SQ-03`k5^49tuP#GSB@6T5Uol#dCB!p#q#~q^*zJ#iK=!?dd zvEKvv`%Yb3YNtkw?thHEYcJeI%nl5yBu-4%14uoFxh}r zp@X7W#?PD?YyL|*ePqUw>er|zPE zS%;()?_Js2(%wSDFg*apLV`r>Z*qJ5c^&TFXtgVZ{zHlyV{D43%Sok0h&Vk!up_J@&~dM!Lj zQux%3TP{+^SdO;h%45eFU4{CtKo7b<$-3YI)!)e7ub{Er!BT<%hL(^EJoAm_FE%aF z3{eailtEUb@Q9~U^J{jRUxBKnMAQ=oXbj)a-M0m2Np72mE79Q+PNk~KKPN9}6HVP* zhl=lkRLwnS=Joijfc88%yGhW2@kyFR?OaJ+b&wSuBkx!Us$HbGjWw<@VIPun_|a^5|z4c~ml@ehTLl`}5R2c_kXTJY>MkoW@=0uHC?|0ca3tZjwy z^m$KPuSM*}YPABTL1PhO4lN#dGYqRm9I%Cz_%LXKUjU6L5U&`ZfSZ#P{BjzoU!X;N zS>;`eF$9N=H7wrmVR(Hgh}njxX<3lR;~pck>}pORFuMG~p;J{gjR%R4wi_ z@p)*A)`zqW!hLf=Ga=R48_@m&r~y}IgV9^GhtwS-Rs*KkAT~CqtpU?a(1~Ln+MGEM zW(J*qV=&$W>q&q)7}Gg{i@7Nzd+JN(Rb+f2)*}oB(K8iKprf3CSI{{#?~@bBKkYHt zTP-1n>*DNDyD%mOHK|a2_e?MU+-Cyq12j+HlC%}polndpSPjJYydeG#C>{{De2QoZ z-n+w$bvJ)WD~7?m#b%|o!)C_yIR&?FJdo%}%pn=14!bO$X4r{1j_(7G4e~G9 z#oXTy>5q$XYB*8|=1H(?_3~A0EI>{NBzeK=Ucp!miH|yFwp+c_MO45^ z&?u@`>KHg@oR%-6-@9g(jT_b5DD*#z7|Ze3FCF=ixEIWHWFm)T-w79loRI-L_&8d@ zj~2+ffoyyYK@CTy{{vm~0;vxevV!#(3ipQE27vjjuu8jW{{7|BMJ99NV(%+u zy!L$0R*6f2<4M2}zMb8-O;=uhKdI literal 0 HcmV?d00001 diff --git a/steak.csv b/steak.csv new file mode 100644 index 0000000..6227563 --- /dev/null +++ b/steak.csv @@ -0,0 +1,433 @@ +smoke,drink,gamble,cooked,Gender,Age,Household Income,Education +Yes,Yes,Yes,Medium,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Male,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium,Male,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium,Male,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium,Male,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Male,45-60,"$25,000 - $49,999",Bachelor degree +No,Yes,No,Medium,Male,> 60,"$25,000 - $49,999",Graduate degree +No,No,No,Medium,Male,18-29,"$0 - $24,999",Graduate degree +Yes,Yes,No,Medium,Male,45-60,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium,Male,18-29,,Some college or Associate degree +No,No,No,Medium,Male,30-44,"$50,000 - $99,999",Bachelor degree +Yes,Yes,Yes,Medium,Male,30-44,,High school degree +No,Yes,Yes,Medium,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium,Male,> 60,"$100,000 - $149,999",Bachelor degree +Yes,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,45-60,"$150,000+",Bachelor degree +No,Yes,Yes,Medium,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium,Male,> 60,"$100,000 - $149,999",Some college or Associate degree +No,Yes,No,Medium,Male,> 60,,Graduate degree +No,Yes,No,Medium,Male,18-29,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Male,45-60,,Bachelor degree +No,Yes,Yes,Medium,Male,45-60,,Some college or Associate degree +No,Yes,No,Medium,Male,18-29,"$25,000 - $49,999",Graduate degree +No,No,No,Medium,Male,18-29,"$100,000 - $149,999",Some college or Associate degree +No,Yes,No,Medium,Female,> 60,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium,Male,> 60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,> 60,"$25,000 - $49,999",High school degree +No,No,No,Medium,Male,30-44,"$25,000 - $49,999",Some college or Associate degree +No,No,Yes,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium,,,, +No,Yes,No,Medium,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,Yes,Medium,Male,30-44,"$150,000+",Graduate degree +Yes,Yes,Yes,Medium,Male,18-29,"$0 - $24,999",High school degree +Yes,Yes,Yes,Medium,Female,18-29,"$25,000 - $49,999",High school degree +Yes,Yes,Yes,Medium,Male,30-44,"$25,000 - $49,999",Some college or Associate degree +No,No,Yes,Medium,Male,45-60,"$150,000+",Some college or Associate degree +No,No,No,Medium,Male,18-29,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,> 60,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,45-60,"$150,000+",Graduate degree +No,Yes,Yes,Medium,Female,> 60,,Graduate degree +No,No,No,Medium,Female,> 60,"$25,000 - $49,999",Some college or Associate degree +No,No,Yes,Medium,Male,> 60,"$0 - $24,999",Bachelor degree +No,Yes,No,Medium,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium,Female,18-29,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,No,No,Medium,Female,45-60,,Graduate degree +No,Yes,No,Medium,Male,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Female,45-60,"$150,000+",Bachelor degree +No,Yes,No,Medium,Male,> 60,"$50,000 - $99,999",Graduate degree +No,No,No,Medium,Female,45-60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,30-44,"$150,000+",Bachelor degree +No,Yes,No,Medium,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium,Male,18-29,,High school degree +No,Yes,No,Medium,Male,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium,Female,> 60,"$150,000+",Bachelor degree +No,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,30-44,"$100,000 - $149,999",Graduate degree +No,Yes,No,Medium,Female,> 60,"$25,000 - $49,999",High school degree +Yes,Yes,Yes,Medium,Male,18-29,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium,Female,45-60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium,Female,18-29,"$50,000 - $99,999",Bachelor degree +Yes,Yes,Yes,Medium,Male,18-29,"$0 - $24,999",Some college or Associate degree +No,No,No,Medium,Male,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Male,18-29,"$25,000 - $49,999",Bachelor degree +No,Yes,No,Medium,Female,30-44,"$150,000+",Bachelor degree +No,Yes,Yes,Medium,Female,18-29,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium,Female,18-29,"$150,000+",Some college or Associate degree +No,Yes,Yes,Medium,Female,30-44,"$150,000+",Graduate degree +No,Yes,Yes,Medium,Male,45-60,"$150,000+",Graduate degree +No,Yes,No,Medium,,,, +No,Yes,No,Medium,,,, +No,Yes,No,Medium,Female,45-60,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,Yes,Medium,Male,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Male,30-44,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium,Female,18-29,"$100,000 - $149,999",Some college or Associate degree +No,No,Yes,Medium,Male,45-60,,Some college or Associate degree +No,Yes,Yes,Medium,Male,45-60,"$0 - $24,999",High school degree +Yes,Yes,Yes,Medium,Female,> 60,"$25,000 - $49,999",Graduate degree +No,Yes,Yes,Medium,Female,45-60,"$150,000+",Graduate degree +No,Yes,No,Medium,Female,18-29,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,45-60,"$150,000+",Bachelor degree +No,Yes,Yes,Medium,,,, +Yes,Yes,Yes,Medium,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium,Female,45-60,"$100,000 - $149,999",Some college or Associate degree +No,Yes,No,Medium,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,30-44,"$100,000 - $149,999",Graduate degree +No,No,Yes,Medium,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium,Female,30-44,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,> 60,"$150,000+",Some college or Associate degree +No,Yes,Yes,Medium,Female,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium,Female,30-44,"$150,000+",Bachelor degree +No,Yes,Yes,Medium,Female,45-60,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium,Female,> 60,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium,,,, +No,No,No,Medium,Female,18-29,,High school degree +No,Yes,Yes,Medium,Male,45-60,"$150,000+",Graduate degree +No,Yes,Yes,Medium,Female,> 60,,Graduate degree +No,No,Yes,Medium,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,No,Yes,Medium,Female,> 60,"$50,000 - $99,999",High school degree +No,No,No,Medium,Female,45-60,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium,Female,30-44,"$100,000 - $149,999",Graduate degree +No,No,No,Medium,Female,45-60,,Graduate degree +No,Yes,Yes,Medium,Female,30-44,"$50,000 - $99,999",Bachelor degree +,No,Yes,Medium,Female,45-60,,Bachelor degree +No,Yes,No,Medium,Female,18-29,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Medium,Male,30-44,"$100,000 - $149,999",Graduate degree +No,Yes,No,Medium,Male,18-29,"$25,000 - $49,999",Graduate degree +Yes,Yes,No,Medium,Male,18-29,"$0 - $24,999",Some college or Associate degree +Yes,Yes,Yes,Medium,Female,45-60,"$100,000 - $149,999",Some college or Associate degree +No,Yes,No,Medium,Female,18-29,,Some college or Associate degree +No,Yes,No,Medium,Female,18-29,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,45-60,"$0 - $24,999",Bachelor degree +Yes,Yes,No,Medium,Female,45-60,"$150,000+",Bachelor degree +No,Yes,No,Medium,Male,> 60,"$50,000 - $99,999",Graduate degree +No,No,No,Medium,Female,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Female,45-60,"$150,000+",Graduate degree +No,Yes,Yes,Medium,Female,30-44,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,Yes,Medium,Female,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium,Male,> 60,,Graduate degree +Yes,Yes,Yes,Medium,Male,18-29,"$0 - $24,999", +No,Yes,No,Medium rare,Male,> 60,"$50,000 - $99,999",Some college or Associate degree +No,No,No,Medium rare,Male,18-29,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,18-29,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,> 60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium rare,Male,> 60,"$50,000 - $99,999",High school degree +No,No,Yes,Medium rare,Male,18-29,"$100,000 - $149,999",Graduate degree +No,Yes,Yes,Medium rare,Male,18-29,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium rare,Male,30-44,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium rare,Male,18-29,"$25,000 - $49,999",Bachelor degree +No,No,No,Medium rare,Male,> 60,"$25,000 - $49,999",Some college or Associate degree +No,No,No,Medium rare,Male,45-60,"$0 - $24,999",Some college or Associate degree +Yes,Yes,Yes,Medium rare,Male,45-60,"$50,000 - $99,999",Graduate degree +No,No,No,Medium rare,Male,> 60,,Graduate degree +No,Yes,Yes,Medium rare,Male,> 60,"$0 - $24,999",High school degree +No,No,Yes,Medium rare,Male,45-60,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,> 60,"$150,000+",Bachelor degree +No,Yes,No,Medium rare,Male,45-60,,High school degree +No,No,No,Medium rare,Male,18-29,"$100,000 - $149,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium rare,Male,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,45-60,,Some college or Associate degree +No,Yes,No,Medium rare,,,, +Yes,Yes,No,Medium rare,Male,18-29,"$0 - $24,999",Some college or Associate degree +Yes,Yes,Yes,Medium rare,Male,45-60,,Graduate degree +No,Yes,No,Medium rare,Female,> 60,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Male,45-60,,Some college or Associate degree +No,No,Yes,Medium rare,Female,> 60,,Some college or Associate degree +No,Yes,Yes,Medium rare,Male,45-60,"$100,000 - $149,999",Bachelor degree +Yes,Yes,No,Medium rare,Male,18-29,,High school degree +No,Yes,No,Medium rare,Female,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Female,> 60,"$25,000 - $49,999",Graduate degree +No,Yes,No,Medium rare,Female,> 60,"$100,000 - $149,999",Graduate degree +Yes,No,Yes,Medium rare,Female,> 60,"$0 - $24,999",Bachelor degree +No,Yes,No,Medium rare,Male,30-44,,Some college or Associate degree +No,Yes,No,Medium rare,Male,18-29,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,45-60,"$100,000 - $149,999",High school degree +No,No,Yes,Medium rare,Male,18-29,"$50,000 - $99,999",High school degree +No,Yes,No,Medium rare,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,30-44,"$100,000 - $149,999",Graduate degree +No,No,No,Medium rare,Female,> 60,"$25,000 - $49,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,> 60,"$150,000+",Graduate degree +No,Yes,No,Medium rare,Male,45-60,"$50,000 - $99,999",Graduate degree +No,No,No,Medium rare,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium rare,,,, +No,No,No,Medium rare,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,18-29,"$25,000 - $49,999",Some college or Associate degree +Yes,Yes,Yes,Medium rare,Female,18-29,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium rare,Female,18-29,,Graduate degree +No,Yes,No,Medium rare,,,, +No,Yes,No,Medium rare,Female,> 60,,Some college or Associate degree +No,No,No,Medium rare,Male,18-29,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,No,Medium rare,Female,45-60,"$100,000 - $149,999",Graduate degree +No,Yes,Yes,Medium rare,,,, +No,Yes,No,Medium rare,Male,30-44,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium rare,Female,18-29,"$150,000+",Graduate degree +No,Yes,Yes,Medium rare,Male,> 60,,Bachelor degree +No,Yes,No,Medium rare,Male,30-44,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Female,18-29,"$150,000+",Bachelor degree +No,Yes,No,Medium rare,Male,> 60,,Graduate degree +No,Yes,Yes,Medium rare,Male,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium rare,Female,30-44,"$100,000 - $149,999",Graduate degree +No,Yes,Yes,Medium rare,Female,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,30-44,"$25,000 - $49,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium rare,Female,> 60,"$150,000+",Bachelor degree +No,Yes,Yes,Medium rare,Female,> 60,"$25,000 - $49,999",High school degree +No,Yes,No,Medium rare,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,45-60,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium rare,Male,> 60,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium rare,Female,> 60,,Bachelor degree +No,Yes,No,Medium rare,Female,45-60,,Graduate degree +No,No,No,Medium rare,Female,> 60,"$25,000 - $49,999",Some college or Associate degree +No,No,No,Medium rare,Male,45-60,,Some college or Associate degree +No,Yes,Yes,Medium rare,Female,30-44,"$25,000 - $49,999",Bachelor degree +Yes,Yes,Yes,Medium rare,Male,30-44,"$25,000 - $49,999",Some college or Associate degree +Yes,Yes,No,Medium rare,Female,18-29,"$0 - $24,999",Graduate degree +No,Yes,No,Medium rare,Female,45-60,"$50,000 - $99,999",Bachelor degree +Yes,Yes,Yes,Medium rare,Female,18-29,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium rare,Female,18-29,"$25,000 - $49,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Female,30-44,"$0 - $24,999",Some college or Associate degree +Yes,Yes,Yes,Medium rare,Female,18-29,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium rare,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium rare,Female,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,30-44,"$25,000 - $49,999",Graduate degree +No,Yes,Yes,Medium rare,Male,30-44,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Female,> 60,"$25,000 - $49,999",Some college or Associate degree +Yes,Yes,No,Medium rare,Female,30-44,,Some college or Associate degree +No,Yes,Yes,Medium rare,Male,45-60,"$25,000 - $49,999",Graduate degree +No,Yes,Yes,Medium rare,Female,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Female,30-44,"$25,000 - $49,999",Graduate degree +Yes,No,No,Medium rare,Female,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,45-60,"$150,000+",Bachelor degree +No,No,Yes,Medium rare,Male,> 60,,High school degree +No,No,No,Medium rare,Male,30-44,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium rare,Female,30-44,"$100,000 - $149,999",Graduate degree +No,Yes,No,Medium rare,Male,> 60,"$150,000+",Graduate degree +Yes,Yes,Yes,Medium rare,Female,45-60,"$50,000 - $99,999",Some college or Associate degree +Yes,No,No,Medium rare,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Female,30-44,"$150,000+",Bachelor degree +No,No,No,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +No,No,No,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium rare,,,, +No,Yes,Yes,Medium rare,,,, +No,Yes,No,Medium rare,Male,> 60,"$100,000 - $149,999",Graduate degree +No,Yes,Yes,Medium rare,Female,> 60,,High school degree +Yes,Yes,No,Medium rare,Male,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium rare,Female,45-60,,Bachelor degree +No,No,No,Medium rare,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium rare,Female,> 60,,Some college or Associate degree +No,No,No,Medium rare,Male,30-44,"$100,000 - $149,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium rare,,,, +No,Yes,Yes,Medium rare,Female,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,45-60,,Graduate degree +No,Yes,Yes,Medium rare,Female,45-60,"$100,000 - $149,999",Graduate degree +No,Yes,Yes,Medium rare,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,45-60,"$50,000 - $99,999",Graduate degree +No,No,No,Medium rare,Female,> 60,,Some college or Associate degree +No,No,No,Medium rare,Female,18-29,"$25,000 - $49,999",High school degree +No,No,Yes,Medium rare,Female,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium rare,Male,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium rare,Female,18-29,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,Yes,Medium rare,Female,30-44,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium rare,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Male,18-29,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Female,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium rare,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,,,, +No,Yes,No,Medium rare,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Female,45-60,"$100,000 - $149,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,No,No,Medium rare,Female,18-29,"$25,000 - $49,999",Some college or Associate degree +Yes,Yes,Yes,Medium rare,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +Yes,No,No,Medium rare,Female,45-60,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Medium rare,Male,45-60,"$150,000+",Graduate degree +No,Yes,Yes,Medium rare,Female,45-60,,Graduate degree +No,No,No,Medium rare,Female,45-60,"$25,000 - $49,999",High school degree +No,No,Yes,Medium rare,Female,18-29,"$25,000 - $49,999",Graduate degree +Yes,Yes,Yes,Medium rare,Female,30-44,,Some college or Associate degree +No,Yes,No,Medium rare,Female,30-44,,Graduate degree +Yes,Yes,No,Medium rare,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,No,No,Medium rare,Female,45-60,"$0 - $24,999",Some college or Associate degree +No,No,No,Medium rare,Female,> 60,"$50,000 - $99,999",Graduate degree +Yes,Yes,No,Medium rare,Male,18-29,"$0 - $24,999",Some college or Associate degree +No,Yes,No,Medium rare,Male,18-29,"$25,000 - $49,999",High school degree +No,Yes,No,Medium rare,Female,> 60,,Graduate degree +No,Yes,No,Medium rare,Female,30-44,"$50,000 - $99,999",Some college or Associate degree +No,No,No,Medium rare,Male,30-44,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Medium rare,Male,45-60,,High school degree +No,Yes,Yes,Medium rare,Male,30-44,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium rare,Female,30-44,"$100,000 - $149,999",Graduate degree +No,Yes,No,Medium rare,Male,> 60,"$150,000+",Bachelor degree +No,Yes,No,Medium rare,Female,45-60,,Some college or Associate degree +Yes,Yes,Yes,Medium rare,Female,18-29,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium rare,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium rare,Female,18-29,"$25,000 - $49,999",High school degree +Yes,Yes,Yes,Medium rare,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium Well,Male,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium Well,Male,18-29,"$25,000 - $49,999",Some college or Associate degree +Yes,Yes,Yes,Medium Well,,,, +Yes,Yes,Yes,Medium Well,Male,18-29,"$50,000 - $99,999",High school degree +No,Yes,Yes,Medium Well,Male,45-60,"$50,000 - $99,999",Some college or Associate degree +No,No,No,Medium Well,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium Well,Male,45-60,,Some college or Associate degree +Yes,Yes,No,Medium Well,Male,> 60,"$50,000 - $99,999",Graduate degree +No,No,,Medium Well,Male,> 60,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,Yes,Medium Well,Male,30-44,"$50,000 - $99,999",Bachelor degree +No,No,Yes,Medium Well,Male,> 60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium Well,Male,> 60,"$150,000+",Bachelor degree +No,Yes,Yes,Medium Well,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,Yes,Medium Well,Female,> 60,"$0 - $24,999",High school degree +No,Yes,Yes,Medium Well,Male,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium Well,Male,30-44,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium Well,Female,> 60,,Bachelor degree +No,No,No,Medium Well,Female,> 60,,Graduate degree +No,Yes,Yes,Medium Well,Male,> 60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium Well,Male,> 60,"$150,000+",Graduate degree +Yes,No,No,Medium Well,Female,18-29,"$25,000 - $49,999",High school degree +No,Yes,No,Medium Well,Male,45-60,"$50,000 - $99,999",Some college or Associate degree +No,No,No,Medium Well,Female,18-29,"$100,000 - $149,999",Some college or Associate degree +No,No,No,Medium Well,Female,18-29,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium Well,Female,30-44,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium Well,Female,45-60,,Graduate degree +No,Yes,Yes,Medium Well,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,No,No,Medium Well,Female,> 60,,High school degree +No,Yes,Yes,Medium Well,Female,30-44,"$100,000 - $149,999",Graduate degree +No,Yes,No,Medium Well,Female,45-60,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium Well,Female,30-44,"$25,000 - $49,999",Bachelor degree +No,Yes,No,Medium Well,Female,18-29,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium Well,Female,18-29,"$0 - $24,999",Some college or Associate degree +No,Yes,Yes,Medium Well,Female,> 60,,Some college or Associate degree +Yes,Yes,Yes,Medium Well,Female,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Medium Well,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium Well,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,No,No,Medium Well,Male,18-29,,Some college or Associate degree +No,No,No,Medium Well,Female,30-44,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium Well,Male,18-29,"$25,000 - $49,999",Some college or Associate degree +No,No,No,Medium Well,Female,45-60,"$150,000+",Bachelor degree +No,Yes,No,Medium Well,Male,18-29,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Medium Well,Female,18-29,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium Well,Female,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Medium Well,,,, +No,Yes,No,Medium Well,Female,30-44,"$150,000+",Graduate degree +No,Yes,No,Medium Well,,,, +No,Yes,Yes,Medium Well,Male,45-60,"$100,000 - $149,999",Some college or Associate degree +No,Yes,No,Medium Well,Female,45-60,"$150,000+",Some college or Associate degree +No,Yes,No,Medium Well,Female,18-29,"$0 - $24,999",Bachelor degree +No,No,,Medium Well,Female,> 60,"$50,000 - $99,999",Graduate degree +No,Yes,No,Medium Well,Female,30-44,"$25,000 - $49,999",Bachelor degree +No,Yes,No,Medium Well,Female,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Medium Well,,,, +No,Yes,No,Medium Well,Female,30-44,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium Well,Female,30-44,"$50,000 - $99,999",Graduate degree +No,Yes,Yes,Medium Well,Female,> 60,"$50,000 - $99,999",Some college or Associate degree +Yes,Yes,No,Medium Well,Female,30-44,"$100,000 - $149,999",Graduate degree +Yes,Yes,No,Medium Well,Male,18-29,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Medium Well,Female,45-60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Medium Well,Female,18-29,,Bachelor degree +Yes,Yes,Yes,Medium Well,Male,> 60,"$0 - $24,999",Bachelor degree +No,No,No,Medium Well,Male,> 60,"$100,000 - $149,999",Graduate degree +No,Yes,No,Medium Well,Male,45-60,"$150,000+",Bachelor degree +No,Yes,Yes,Medium Well,Male,18-29,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Medium Well,Male,45-60,,Graduate degree +Yes,No,No,Medium Well,Female,45-60,"$25,000 - $49,999",Some college or Associate degree +No,Yes,Yes,Medium Well,,,, +No,Yes,Yes,Medium Well,Male,30-44,"$50,000 - $99,999",Graduate degree +No,No,Yes,Medium Well,Female,30-44,"$0 - $24,999",Some college or Associate degree +No,Yes,No,Medium Well,Male,> 60,"$150,000+",Graduate degree +Yes,Yes,Yes,Medium Well,Male,45-60,"$100,000 - $149,999",Some college or Associate degree +No,Yes,No,Medium Well,Female,> 60,"$100,000 - $149,999",Bachelor degree +No,No,Yes,Medium Well,Male,30-44,"$50,000 - $99,999",Graduate degree +,No,,Medium Well,Female,30-44,"$0 - $24,999",Bachelor degree +No,Yes,Yes,Rare,Male,> 60,"$150,000+",Graduate degree +Yes,Yes,Yes,Rare,Male,18-29,"$50,000 - $99,999",Graduate degree +No,Yes,No,Rare,Male,> 60,,Graduate degree +No,Yes,No,Rare,Male,30-44,"$25,000 - $49,999",Bachelor degree +Yes,Yes,Yes,Rare,Male,> 60,,Bachelor degree +No,Yes,Yes,Rare,Male,45-60,"$100,000 - $149,999",Bachelor degree +Yes,No,No,Rare,Female,> 60,"$0 - $24,999",Some college or Associate degree +,Yes,No,Rare,Male,18-29,"$50,000 - $99,999",High school degree +No,Yes,Yes,Rare,Female,30-44,"$150,000+",Some college or Associate degree +No,Yes,No,Rare,Female,> 60,"$25,000 - $49,999",Graduate degree +No,Yes,Yes,Rare,Male,45-60,"$100,000 - $149,999",Graduate degree +Yes,Yes,Yes,Rare,Female,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Rare,Female,> 60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,Yes,Rare,Female,45-60,"$100,000 - $149,999",Graduate degree +No,Yes,No,Rare,Female,> 60,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Rare,Female,45-60,,Bachelor degree +No,No,Yes,Rare,Female,30-44,"$0 - $24,999",Some college or Associate degree +No,No,No,Rare,Female,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Rare,Female,45-60,"$50,000 - $99,999",Graduate degree +Yes,Yes,Yes,Rare,,,, +Yes,Yes,Yes,Rare,Male,18-29,"$25,000 - $49,999",Some college or Associate degree +No,Yes,No,Rare,Female,18-29,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Rare,Male,> 60,"$150,000+",Graduate degree +No,Yes,No,Well,Male,18-29,"$25,000 - $49,999",High school degree +Yes,No,No,Well,Male,18-29,"$150,000+", +No,No,Yes,Well,Male,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Well,Male,18-29,,Some college or Associate degree +No,No,Yes,Well,Female,18-29,"$25,000 - $49,999",Some college or Associate degree +Yes,Yes,Yes,Well,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Well,,,, +No,No,Yes,Well,Female,45-60,,Some college or Associate degree +No,Yes,Yes,Well,Male,45-60,"$100,000 - $149,999",Bachelor degree +No,No,No,Well,Male,30-44,,Graduate degree +No,Yes,No,Well,Female,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Well,Male,> 60,"$0 - $24,999",Bachelor degree +Yes,Yes,No,Well,Female,18-29,"$100,000 - $149,999",Less than high school degree +No,Yes,Yes,Well,Female,30-44,"$50,000 - $99,999",Graduate degree +No,No,No,Well,Female,30-44,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Well,Female,45-60,"$100,000 - $149,999",Bachelor degree +No,Yes,No,Well,Female,45-60,"$50,000 - $99,999",Bachelor degree +No,No,No,Well,Female,45-60,"$150,000+",Bachelor degree +No,Yes,Yes,Well,Female,45-60,"$100,000 - $149,999",Some college or Associate degree +No,No,No,Well,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,No,No,Well,Female,30-44,,High school degree +Yes,Yes,Yes,Well,Female,18-29,,Some college or Associate degree +Yes,Yes,Yes,Well,Male,30-44,"$0 - $24,999",High school degree +No,Yes,No,Well,Female,45-60,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Well,Female,30-44,,Some college or Associate degree +No,Yes,Yes,Well,Female,> 60,,Graduate degree +No,No,No,Well,Female,30-44,,Graduate degree +No,Yes,Yes,Well,Male,30-44,"$50,000 - $99,999",Some college or Associate degree +No,Yes,No,Well,Female,> 60,"$50,000 - $99,999",Bachelor degree +No,Yes,Yes,Well,Male,30-44,,Bachelor degree +No,Yes,Yes,Well,Female,45-60,,Some college or Associate degree +No,Yes,Yes,Well,Female,45-60,"$150,000+",High school degree +,No,No,Well,Male,45-60,"$50,000 - $99,999",Bachelor degree +No,Yes,No,Well,Male,30-44,"$0 - $24,999",Some college or Associate degree +No,No,Yes,Well,Female,30-44,,Some college or Associate degree +No,Yes,Yes,Well,Female,> 60,"$100,000 - $149,999",Bachelor degree \ No newline at end of file diff --git a/untitled.txt b/untitled.txt new file mode 100644 index 0000000..e69de29