From b64329e20e58b353c7f6b0b91a260545bb1dcee3 Mon Sep 17 00:00:00 2001 From: mbhatti4 Date: Tue, 11 Nov 2025 16:32:26 -0500 Subject: [PATCH] I finished the project I am really glad I was able to get through the lab. I did have some difficulty with creating the differnt visuals, as I didnt fully make them in the pokemon lab, so I had to use refrences to help me out. I was able to edit accoridngly to fit my project. I wish I was a bit better at coding so I coudlve takeled even deeper reasearch questions. I have now learned how to fully work with a data set, and create visuals to compare the data. --- .ipynb_checkpoints/argument-checkpoint.ipynb | 626 ++++ .ipynb_checkpoints/poetry-checkpoint.lock | 3071 ++++++++++++++++++ .ipynb_checkpoints/proposal-checkpoint.md | 69 + .ipynb_checkpoints/pyproject-checkpoint.toml | 23 + argument.ipynb | 426 ++- data/Sleep_health_and_lifestyle_dataset.csv | 375 +++ proposal.md | 2 +- 7 files changed, 4511 insertions(+), 81 deletions(-) create mode 100644 .ipynb_checkpoints/argument-checkpoint.ipynb create mode 100644 .ipynb_checkpoints/poetry-checkpoint.lock create mode 100644 .ipynb_checkpoints/proposal-checkpoint.md create mode 100644 .ipynb_checkpoints/pyproject-checkpoint.toml create mode 100644 data/Sleep_health_and_lifestyle_dataset.csv diff --git a/.ipynb_checkpoints/argument-checkpoint.ipynb b/.ipynb_checkpoints/argument-checkpoint.ipynb new file mode 100644 index 0000000..33db885 --- /dev/null +++ b/.ipynb_checkpoints/argument-checkpoint.ipynb @@ -0,0 +1,626 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "worldwide-blood", + "metadata": {}, + "source": [ + "# Introduction" + ] + }, + { + "cell_type": "markdown", + "id": "understanding-numbers", + "metadata": {}, + "source": [ + "My research will analyze a dataset to compare different lifestyle factors and their effects on sleep duration and sleep quality. I aim to determine whether self-reported factors, such as occupation and physical activity level, have a stronger influence on sleep, or if the factors that individuals have less control over, like stress level or BMI, play a larger role. Although the stress ratings in the dataset are subjective, they still provide valuable insight that can be compared across participants to understand how strongly stress and other variables impact sleep patterns." + ] + }, + { + "cell_type": "markdown", + "id": "greater-circular", + "metadata": {}, + "source": [ + "**Which lifestyle factors most strongly influence sleep quality?**" + ] + }, + { + "cell_type": "markdown", + "id": "appreciated-testimony", + "metadata": {}, + "source": [ + "I chose this topic because I’ve personally experienced some sleep issues and wanted to explore what factors might contribute to them using this specific dataset. While the results won’t be absolute and may differ with other datasets, this analysis can still help me better understand possible connections between lifestyle and sleep quality. It’s also simply a topic that interests me, and I was curious to learn more about how different habits and conditions can affect sleep." + ] + }, + { + "cell_type": "markdown", + "id": "permanent-pollution", + "metadata": {}, + "source": [ + "# Data" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "technical-evans", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "overhead-sigma", + "metadata": {}, + "outputs": [], + "source": [ + "file_name = \"Sleep_health_and_lifestyle_dataset.csv\"\n", + "dataset_path = \"data/\" + file_name\n", + "\n", + "df = pd.read_csv(dataset_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "heated-blade", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Person IDGenderAgeOccupationSleep DurationQuality of SleepPhysical Activity LevelStress LevelBMI CategoryBlood PressureHeart RateDaily StepsSleep Disorder
01Male27Software Engineer6.16426Overweight126/83774200NaN
12Male28Doctor6.26608Normal125/807510000NaN
23Male28Doctor6.26608Normal125/807510000NaN
34Male28Sales Representative5.94308Obese140/90853000Sleep Apnea
45Male28Sales Representative5.94308Obese140/90853000Sleep Apnea
\n", + "
" + ], + "text/plain": [ + " Person ID Gender Age Occupation Sleep Duration \\\n", + "0 1 Male 27 Software Engineer 6.1 \n", + "1 2 Male 28 Doctor 6.2 \n", + "2 3 Male 28 Doctor 6.2 \n", + "3 4 Male 28 Sales Representative 5.9 \n", + "4 5 Male 28 Sales Representative 5.9 \n", + "\n", + " Quality of Sleep Physical Activity Level Stress Level BMI Category \\\n", + "0 6 42 6 Overweight \n", + "1 6 60 8 Normal \n", + "2 6 60 8 Normal \n", + "3 4 30 8 Obese \n", + "4 4 30 8 Obese \n", + "\n", + " Blood Pressure Heart Rate Daily Steps Sleep Disorder \n", + "0 126/83 77 4200 NaN \n", + "1 125/80 75 10000 NaN \n", + "2 125/80 75 10000 NaN \n", + "3 140/90 85 3000 Sleep Apnea \n", + "4 140/90 85 3000 Sleep Apnea " + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "continental-franklin", + "metadata": {}, + "source": [ + "**Data Overview**\n", + "\n", + "The dataset contains 374 rows and 9 columns of information. The most important columns for my research are Quality of Sleep, Sleep Duration, Occupation, and Physical Activtiy Level, as these variables will provide the most insight into my research questions. However, all of the data contributes to building a fuller understanding of the relationships between lifestyle and sleep.\n", + "\n", + "I obtained the dataset from https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset, where the main collaborator is Laksika Tharmalingam." + ] + }, + { + "cell_type": "markdown", + "id": "infinite-instrument", + "metadata": {}, + "source": [ + "# Methods and Results" + ] + }, + { + "cell_type": "markdown", + "id": "recognized-positive", + "metadata": {}, + "source": [ + "## First Research Question: What is the average measures of each of the cetegories?" + ] + }, + { + "cell_type": "markdown", + "id": "graduate-palmer", + "metadata": {}, + "source": [ + "### Methods" + ] + }, + { + "cell_type": "markdown", + "id": "endless-variation", + "metadata": {}, + "source": [ + "I will be using each of the categories in the dataset and calculating the average value for each one using the mean function. This will provide a simple summary of the overall trends in the data and serve as a starting point for deeper analysis." + ] + }, + { + "cell_type": "markdown", + "id": "portuguese-japan", + "metadata": {}, + "source": [ + "### Results " + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "negative-highlight", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Values for Key Categories:\n", + "Sleep Duration 7.132086\n", + "Quality of Sleep 7.312834\n", + "Physical Activity Level 59.171123\n", + "Stress Level 5.385027\n", + "Daily Steps 6816.844920\n", + "dtype: float64\n" + ] + } + ], + "source": [ + "Columns = [\"Sleep Duration\", \"Quality of Sleep\", \"Physical Activity Level\", \"Stress Level\", \"Daily Steps\"]\n", + "\n", + "mean_values = df[Columns].mean()\n", + "\n", + "print(\"Mean Values for Key Categories:\")\n", + "print(mean_values)" + ] + }, + { + "cell_type": "markdown", + "id": "collectible-puppy", + "metadata": {}, + "source": [ + "## Second Research Question: Which occupation gets the most sleep?\n" + ] + }, + { + "cell_type": "markdown", + "id": "demographic-future", + "metadata": {}, + "source": [ + "### Methods" + ] + }, + { + "cell_type": "markdown", + "id": "incorporate-roller", + "metadata": {}, + "source": [ + "I will create a bar graph with the x-axis labeled by occupation and the y-axis showing the average hours of sleep for each group. To do this, I will first calculate the average sleep duration for each occupation and then use that data to build the visual. This bar graph will make it easy to compare which occupations tend to get the most and least sleep, providing a quick and clear overview of how sleep patterns vary across different professions." + ] + }, + { + "cell_type": "markdown", + "id": "juvenile-creation", + "metadata": {}, + "source": [ + "### Results " + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "pursuant-surrey", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Occupation\n", + "Engineer 7.987302\n", + "Lawyer 7.410638\n", + "Accountant 7.113514\n", + "Nurse 7.063014\n", + "Doctor 6.970423\n", + "Manager 6.900000\n", + "Software Engineer 6.750000\n", + "Teacher 6.690000\n", + "Salesperson 6.403125\n", + "Scientist 6.000000\n", + "Sales Representative 5.900000\n", + "Name: Sleep Duration, dtype: float64\n" + ] + } + ], + "source": [ + "avg_sleep_by_occupation = df.groupby(\"Occupation\")[\"Sleep Duration\"].mean().sort_values(ascending=False)\n", + "print(avg_sleep_by_occupation)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "c09f8668-6794-4d9a-b094-575d0a63fb1f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAHqCAYAAAA+vEZWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaBFJREFUeJzt3QncVOP///FP6532olREq5KUNiQkbQqJZAstJMmaJX0psmUvkqLCNyJLCflakpQQKiJaiZIS0p6k5v94X7/Hmf+Zae77nrnvuTv3PfN6Ph5T95yZOXOd61znOud85loKhUKhkAEAAAAAAAD7WeH9/YUAAAAAAACAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAAAAAAIBIEpAAAAAAAABILAFAAAAAAAAAJBYAoAAAAAAACBIDAFAAAAAACAQBCYAgAgTf30009WqFCh8OOjjz4KOknIJf/+fO655yy/URnzp1FlEKnrlFNOCe/rXr16BZ0cAEA+RWAKAJBUDRs2jLjxrFq1qv37779BJystzJs3zy666CKrUaOGlShRwkqVKmXVq1e3Fi1a2GWXXWZPPfWUpQt/GdSjaNGiVrp0aTv00EPthBNOsGuvvdbmz59vBUl+DzoVRDt37rSxY8dap06drFq1apaRkWFly5a1evXqWZ8+fWzu3LlBJzHfIugEAEiWoklbEwAg7X355Zf23XffRSxbv369vfvuu3bGGWcElq50MH78eLviiissFApFLN+xY4f98ssvLggzZcoU69evn6WjPXv22Pbt291j7dq19tlnn9moUaPsnHPOcXlXoUIFSwUPPfRQ+G8FJJF1fdW9e3f7+eefI5b/888/tnXrVlu+fLk9++yzduGFF9q4ceNcoBeJ6d+/f7ju148WAADEQmAKAJA0mbXi0PL8GphSoOKAAw6wwoULbiPijRs3uhZAXlBKrYLOPfdcq1y5srvBXrx4sc2ZM8fSVfPmze388893QboVK1bYW2+9ZZs3b3avTZ061XUn+/jjj61kyZJ5mo4tW7a41jh56aabbsrT9aeKZcuWWfv27cPlQE4//XQ7/vjj3TGjcrFy5Uq3/KWXXrJt27bZG2+84VoHIX467gAAyFYIAIAk+Pvvv0MVKlRQZMQ9jjjiiPDfxYsXD/3xxx/h965YsSL8mh6zZs3aZ33HHnts+PXLL7884rWvv/461Lt371CtWrVCJUqUCJUqVSp0zDHHhO69997Qtm3b9lnX4YcfHl7XHXfcEfr4449Dbdu2DZUtW9Yt++uvv0K7d+8O3X777aFOnTq59ZYrVy5UtGjRUMWKFUMnnnhi6PHHHw/9888/Mbd93LhxoYYNG4YyMjJChx56aOjGG2906Yj+3miJbkdm3njjjYj8/Omnn/Z5j7bvvffei1i2atWqbPfDm2++GerSpUuoSpUqoWLFioXKly8fatOmTeiFF14I7d27N2Z6fvjhh9A111wTql+/fqhkyZJu24488sjQoEGDQr///vs+72/dunU4DT179gwtWbIkdM4557jydMABB4RatWoVmjFjRigR/u3SOv20v0877bSI9yht8eZLdHqz+tz48eNDTZo0cXnQuHFj974ff/wxdN1117lypfKiPNIxUq1atdAZZ5zh8jyz74v1UDmLtd3PPvvsPvnywQcfhLp16xY65JBD3HeWKVPGpW/o0KGhP//8c5/3R5fh+fPnh04//XR3fGjfaBt0PMVLeeJPo/LiiSeeCB111FHu+FEe3HDDDaEtW7aEP6O0ee9Xfu3ZsydinYsXL45Y57x587JNR/v27SM+8/zzz0e8vmvXrlCHDh0i3jN58uR91qOyetVVV7nyreNXeVKzZs3Q+eefH/ryyy8j3qvj5dVXXw2deeaZbjuV/yrjOua1zfrOZJe/iRMnhpo2berKX6VKlVx9s379+oj1JVr3qRxkVR71UFqySqtn2bJloSuvvNKdL5R3etStWzd0xRVXuLyNpnV469O6f/3111Dfvn1d/aT8VJ3z9NNPZ7v/AQD5C4EpAEBSvPzyyxE3Jp999pkLZHjPdXPjd9JJJ4Vf002I38qVKyPW9emnn4Zfe/LJJ91NU2Y3RA0aNAitW7cu05vrli1bhooUKRLxGQUqtm7dmu3NVrt27UL//vtvxLpvvfXWmO9VYO3ggw/ONDCVk+3IzJQpUyI+q0BVPLK6AdbN/yWXXJJlfnTv3n2f/Jg2bZoLtGT2GQVEvv/++4jP+G9emzVrFg4Y+h+FCxcOvfLKK6FkBKZE+9u/f0qXLp30wIC/jOvhBabeeuutbMvasGHDYn5fbgJTAwcOzHI92jcK8mR27KhM+49p76GAUvQ+jTcwpSBXrLS0aNEitHPnTvcZBR/83/v2229HrNMfuNJxk53o/aTgSywKjKjcee875ZRTIl5X0FHBkMzyc8SIEeH3alsy21Z/PZTM8nfqqafG/B4FnzZs2BD+XKJ1X7ICUzqeFTDLbB0qVy+99FKmgSltR9WqVWN+dsKECdmWAwBA/kFXPgBA0rvxNW3a1HWJadeunb3zzjvh16+55prwe3r37u26T8lrr71mTzzxhBUrVizcdcZTv359a9mypfv7008/tauvvtr27t3rnus7TjvtNNf15r///a/98ccf9v3339ull15q77//fsx0amwhddm6+OKL7ZBDDrGvvvrKihQp4rro1KpVy61TyzXm0O7du23p0qX26quvugHcP/jgAzdO03nnnRceo+aBBx4Ir1td53r27OnS88wzz7ixamJJxnb4HXPMMS79Xle+s846K7wt2hcnnXSSG28okW5IDz74oD3//PPub32uW7du1rhxY1u1apVbrrxRvui7//Of/7j36TWNx6MBpeWoo46ys88+223npEmT3Fg+Gt9J6/r2229dvkdbsGCBG4RaY9MoPyZMmGC7du1y69AYWh06dLBy5cpZbmkg9AsuuMAee+wx91xdtTQOlwZGTxaV78MPP9xtr8rchg0b3HINxK58UxfDSpUque596lL6ySef2KxZs9x77r77bjdgvcqiN07PzTffHNFFSp+XePJD++zRRx8NP/f2za+//urKnMbg0r7RmFsaJ05pjPbFF1+4bqI9evSwNWvW2IsvvuiWa/8oHzWIeKLefvttV15VtlRX6JgS/a8yOHToUDeBgvJw8uTJ7jWNCda5c+fwOlQO/fVKdrx6x6NxpmJR3dOoUSP7+uuvw8et8knlVhMNqDx6x7DyS+vRZzSmm8bV87vxxhvdtno0KYHyX/tO+T19+nRLtg8//NDatGnjjn+VrZkzZ7rlP/74ow0aNMjVUZJo3adjUMfPmDFj3Lr83WU9FStWzDJt6iZ5ySWXuLIjBx54oKs7lRavDtRrWtasWTOrW7fuPuvQd2uSBx0f6o6t9Hh1j8qOBq8HABQQQUfGAAAFn1o0+FshPfTQQ265upH4f8X+5ptvwp9RVzW1UvFeUysSj1o9eMsfeOCB8PKzzz47ovWCv0vPF198EfFdixYtitnqQ+lcsGBBptvy22+/uRZHatH08MMPu21RNz3v83369Am/t1+/fuHlalnhb22i1ir+9PhbTOV0O7Jy/fXXZ9mCQd2L1I3IL7OWGUrPQQcdFF6uFil+Dz74YPi1Aw88MJx+dUfylqtrjtfiJVYZ8bfq8reqUMsYr7WFTJo0KSKN6jYZj+xaTIn2sf99XousZLVYUZ57rWBiUTcmdQ8bNWpUuKz5W5vp+Mlsm2J108vqPWqt5S2vUaNGaMeOHZnmw+uvvx7z2FFXtbVr14Zf69q1a/g1dRfLSYspdcPyqLuYuvT5u+15Pvnkk4gy4nVH+/bbb8PL1QIxuptaLKpT/GlQK7/MnHXWWRHv9Voaqaup/9ifM2dOxOfU+m7NmjXu740bN0a0jlTXSbVS8lu9enW4u1yyyp+6InrdbfW/v2uiWnpt3749x3VfVumI5z3qyurPP+1Hj/72t1TTe2O1mIredyNHjox4zd8dFACQvxXckV4BAPmGWmOoJYHoF2/vl/OuXbu6X7Q9muHKoxmu/C0VvFZS33zzjWstJGqZoF/VPfrV3/PRRx+FWzrpceyxx0akSa0bYtG08GpFFE2/tKu1hVpnqAXHVVdd5QaSVisVDR7uUWsIj1rYePSrvlqheNQiK1ark2RtRzS1hnn66acj0uCn1kxq7eC1yMluYGi1WPDcdddd4fTpccstt4Rf+/PPP93sZdHbpWVqxeB9Rq2gvDKS1XapdUeNGjXCz1WWvJZ0XouqZImewTDZBgwYYOXLl99nuQZbb9WqldWrV8+12lJLQq+saYD2WGUtN7ROHVceHXfaNx61zItuVRiLjgvtR4/S7/nrr79ylDb/8a397LVG9Lb/t99+c3+rJZt33Ko1j9dC099aSq2oDj74YNsf5s6dG/67Y8eOrtz6FS9e3LUuE7WuUqsjz6233upaHPmpBZW/nCeD6iCvlaT+V0s3j1pzqtViTuu+3PKXMdWd/hn79LeWxXqvn8qi0hurPOamTAIA9j8CUwCApHbj0w2kbrKkTJkybqYrj7pz+W/Q/F0tNOOVbqC97kFeEEk3S/7Z5+L1+++/x1yurjaxDB482G2H1zUnM17XE9m0aVP47ypVqkS8T0Gpgw46KOY6krEd0XTj2bdvX3cjqW5Wr7zyil1//fWuK5k/EDNixIhs15VI+vxpTMZ2qTukn4J26uYTK89zywuoedSNKZ4Alr8MZCWzsqaAbTwBx3i/Jzu6QfdvQ3TwRkFif6Aksxt6f8BQMjIywn9nd9xkJnp/R6fNv78186RHXTyjA1Pxdt3y1ymiLqaZ8b+mYJPXRc1f1mvWrJnl90UfF9m9P1nlL968zUndl1v+PIkVTPQvy0l5zE2ZBADsf4wxBQDIlc8//9yWLFkSfq5WM5mNZaQxdv73v/9Zly5d3PMTTzzRjR2yYsUKN8aOglPeODKxxovRTaE3To8+6/+1PFpmYwXpJjyWl19+Ofz30Ucf7Vpw6Rd4BZjUisN/A+zxt4bx0uVRAM7f6ijZ25EVtdRQqxg9NAaWxjPy9pHyOjvR48NonBd/i4bMbhD9n1PLrV69emX6mczWF52PamWlVlmeWC2QckLlzb/PFUT1xmwqXDjydztv3BrvZveHH36I6ztilTW1Rlu0aFH4+UUXXeTGw1HrDx03CibEG4yMl8YM8o9B5rVC8ueFxtjyvz+W6BY9iYxZlhntb39Ll+i0+fe3WpepFY/yR+VY49J55Vr55g+CZyW6dZPGuPMHvfz7yt/STMeiNy6a/xhWa8REjie9X2O+ZSZZ5S/6WMosb3NS9+WWP0+i0xW9bH+WRwBAMAhMAQCS1loq3vd7gSkv+OQNnn3bbbeFWyiotdGZZ54Z8VndGE6bNs39vX79ejf4sAaOjr6J041UogEdf/BDAwZ7XeJ0E6zudrEokOF1LVO3Pg3oW6dOHff8hRdeiGgdlpfboTS8/vrr1q9fv3BrNY9uLv3dKeMJ7OimVK2UvDxRWtS1J9aNrwKR3ncqrRogW9atW+cGQo9uhaQ8eeutt+y4447LdGBqdXXzgl26aVbXLY+/i09ObdmyxQWElPceDUavFjGx8khdsbzBtseNG5erwJG/nMm5554bziOVs6zWrX3plSl/l7/saOB1DS7uDeKtcjVs2LBwd76JEydGvD+ZA8DH0w3YCxRpP6uln0f54m85oxYxahV43333uef+weDVJTCzrrPRVLbat29vM2bMCJc5BWNUXv1d3W644YaIVjdXXnll+G8FlKdOner+1gQFOg7UPdOj/aTgirZBg4r7952CxRrMXvvFo0HoNRC+gi3JKn+qg7zufApKqsWqR2VdQaic1n3RgaFEymN0XaH6SwPAe9+rVp/+Lrv7szwCAIJBYAoAkGN///13RAsndVGJHiNJNJaJN26UZp9SSyKvm5vGtxkyZIhrGeNveaAbquhfxDWzlVpV6SZLQSC1utEsYrp53bx5s/ue2bNnuxYg0ePmxBOM8cZT0c2fWi3oxlE3zpndCGrWNI3rpPQo/SeffLL7XgU+vK5GsSR7OzR73b333utu2BW4UdBHLXC0f3TzrZkHPZr9Lzva9oEDB7pAoShYoBmwdDOvlkUK6CgQp9ZyukHX7GKisZI0M5u+V1111FJLrbYUuFKLHJUB3eiqC5H2dayWEApO6AZfgQZvVj6PZjDLbAa1rOim9+GHH3bpUvc9Bcb8XcTUekVl0KMg4RFHHBHu6qe8VR4qQKeZznJDgUvlrxfwuO6661zASMEB/xhssSjI4QVuH3nkEfcZBZeaNGlibdu2zfKzKnPeeE4K/Gmb/bPyebTd8bY8SgYv0KLZ7zQrn/aVR0GoaJqBTS3MFOTR/kxkNj6/xx9/3AWMdLyJxl9ScEr1l8qqgk7+1oUKJPnHv1JQTMFl7Ucd+wro6HXVIzo+3nvvPRfsVHdalXMFn5988kn32YULF1qDBg1cl04FoVTOFFhWMFfPk1X+FDBTuVC9pDGxvFn5RIFZLzCWk7pP/EFnzTiosbNUr+uRVWtJb/w1zaLnzbjZunXriFn5vONDATS9FwCQ4oIefR0AUHC99NJLEbMgvfDCCzHfN3PmzIj3afYkv06dOu0zi5x/Bj+/0aNHR8xwldnDzz+zmH92vKy2xXtUrVo11L59+/BzzTLld+utt8b8nGYpO/jgg8PPhw0bluvtiHems8weSpN/pqqsZv/STHuXXHJJtuuMzg/N6KbZ27L7nH/mPf/MXccff3yoYsWK+7xfs3RpH8UrnvzQo3v37qFNmzbt8/nx48fHfH+tWrVC9evXj2tWtOjZ1DxXXnllzHW3bds2dMghh2RaVv2zHvofAwYMiGvmvoEDB2aZF9WqVYuYWTK7Y0fPvdf0vpyUVc1KGSstzZo1i5g50O/cc8+NeG+LFi1COaEZMA877LBsy8gFF1zgZhGNVUY0u11mnxsxYkT4vZqhsnPnzll+j38Gx2SUv9NPPz3mOjQro2bgy23dpxn8Yn1OMyvGM3OfZsEsUaJEpvmRkZGxzzHvn5UvOj3RZctfxwAA8jcGPwcAJKUbn1qzqNVPLGpN4B+oNrr7X3RrB7X68bqZRNOMUWo9oBYIalWgX/bVTUatjfSru1q++MfwiZfGr1HLIHV5UkstdWXTjHDqRuOfiSza8OHDw7Ph6dd9DayslhJqnaCWU57o7jnJ3A51ddH3qYXTKaec4lrlqNWF1qftUIuJkSNHugG31eIpHmo1oS5eagnRrVs3N26Vtk/dqTSgurpZap3ebIoetQJR6wu1uNI+1KDa3gDmLVu2dC1N1O0peuBij1pvqIuPurippYlaBGn7NDaZ9lFOaXu0Lu1LpUOtu9RdSPtcZTdWazi1HjnyyCPddmtwe7XWUdpyO/PbqFGj3EyHykeVtcMOO8zli1pyZdUdTS1n1MJK+8Ib6ygRamWlFnTan8oHfbf2j1q2qbxpPKXMZnXMK+PHj3czSiqfVbZ0/Ggb1TLIP3OgX/R4UPEOeh5NrcaWLl3qWjJpZj3tY+WJxgbT2Hdq9TNnzhxXxmONF6YyotZuKhca6F7HsLZBLQRVftWa0KPutGotqvKm1lfed+k41XGibfZ37UtG+VP3W6Vd9am+X8egWiWpHvAPjJ7Tuk9dsjXOl5fGRKn1o/JPXSRVZymNetSuXdu1llP9mJtjHgBQcBRSdCroRAAAUFCpe02sG2jdhPrHyFIwhrFSYlMwTV0XRTfOiY5bhvSiLm/qRqZLWB176o6YrEHxCzJ10fTP+Ddr1ix3bAEAkN8xxhQAALmggdv1q7+CULop1Ng3Gn/JG0/GGyRdrXQA5JzGJ9O4a4899lh4hkGNDUVQCgCAgo3AFAAAuaAbZN0wZzZ7lbqoaBY0pjIHckddgv3U1fOOO+4ILD0AACA5CEwBAJALGlNJ08JrhjrNYKWZwtSCQzPtadazyy+/PGLsGAC5o4CUWiDef//9brwtAABQsDHGFAAAAAAAAALBrHwAAAAAAAAIBIEpAAAAAAAABKJAjzG1d+9eN0VwmTJlGFQWAAAAAAAgH9CoUVu3brVq1apZ4cKFUzcwpaBU9erVg04GAAAAAAAAoqxZsybbyUoKdGBKLaW8DS1btmzQyQEAAAAAAEh7W7ZscQ2JvLhNygamvO57CkoRmAIAAAAAAMg/4hl2icHPAQAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAIEgMAUAAAAAAIBAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAAAAAAIBIEpAAAAAAAApF9gas+ePTZkyBCrWbOmHXDAAVa7dm27++67LRQKBZksAAAAAAAA7AdFLUAPPPCAjRkzxv773//aUUcdZfPnz7fevXtbuXLl7Nprrw0yaQAAAAAAAEjlwNSnn35qZ511lp1++unueY0aNeyll16yL774IshkAQAAAAAAINW78p1wwgk2c+ZMW758uXu+aNEimzt3rnXq1CnIZAEAAAAAACDVW0zdeuuttmXLFqtfv74VKVLEjTl17733Wo8ePWK+f9euXe7h0WcBAAAAAABQMAXaYuqVV16xSZMm2YsvvmgLFy50Y009/PDD7v9Yhg8f7saf8h7Vq1ff72kGAAAAAABAchQKBTgFngJLajU1YMCA8LJ77rnHXnjhBVu6dGlcLaa0js2bN1vZsmUtJcyeH3QKCpbWzYNOAQAAAAAA8FG8Rg2K4onXBNqVb8eOHVa4cGSjLXXp27t3b8z3Z2RkuAcAAAAAAAAKvkADU2eeeaYbU+qwww6zo446yr766it79NFHrU+fPkEmCwAAAAAAAKkemBo1apQNGTLErrrqKtuwYYNVq1bN+vXrZ0OHDg0yWQAAAAAAAEj1Mab2Z5/FAoMxphLDGFMAAAAAABTYeE2gs/IBAAAAAAAgfRGYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAACASBKQAAAAAAAASCwBQAAAAAAAACQWAKAAAAAAAAgSAwBQAAAAAAgEAQmAIAAAAAAEAgCEwBAAAAAAAgEASmAAAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAIEgMAUAAAAAAIBAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAAAAAAIBIEpAAAAAAAABKJoMF8L5EOz5wedgoKldfOgUwAAAAAAKOBoMQUAAAAAAIBAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAAAAAAIBIEpAAAAAAAABILAFAAAAAAAAAJBYAoAAAAAAACBIDAFAAAAAACAQBCYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAACASBKQAAAAAAAASiaDBfCwA+s+cHnYKCpXXzoFMAAAAAAAW/xVSNGjWsUKFC+zwGDBgQZLIAAAAAAACQ6i2mvvzyS9uzZ0/4+eLFi619+/bWvXv3IJMFAOmD1mqJo8UaAAAAkBqBqUqVKkU8v//++6127drWunXrwNIEAAAAAACANBtj6p9//rEXXnjBBg4c6LrzxbJr1y738GzZsmU/phAAAAAAAAApOSvftGnTbNOmTdarV69M3zN8+HArV65c+FG9evX9mkYAAAAAAACkYIupCRMmWKdOnaxatWqZvmfw4MGuRZW/xRTBKQBAgcUYX4lhfC8AAICUky8CUz///LN98MEHNnXq1Czfl5GR4R4AAAAAAAAo+PJFV75nn33WKleubKeffnrQSQEAAAAAAEC6BKb27t3rAlM9e/a0okXzRQMuAAAAAAAA7AeBR4LUhW/16tXWp0+foJMCAADSBeN7JYbxvQAAQKoGpjp06GChUCjoZAAAAAAAACDduvIBAAAAAAAgPRGYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAASM9Z+QAAAJBGZs8POgUFS+vmQacAAIA8RYspAAAAAAAABILAFAAAAAAAAAJBVz4AAAAgXdCVMjF0pQSAPEeLKQAAAAAAAASCwBQAAAAAAAACQWAKAAAAAAAAgSAwBQAAAAAAgEAQmAIAAAAAAEAgCEwBAAAAAAAgEASmAAAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAIEgMAUAAAAAAIBAFE3kzUuWLLHJkyfbxx9/bD///LPt2LHDKlWqZE2aNLGOHTtat27dLCMjI+9SCwAAAAAAgPQKTC1cuNBuueUWmzt3rrVq1cqOO+44O/vss+2AAw6wjRs32uLFi+22226za665xr3v+uuvJ0AFAAAAAJ7Z84NOQcHSunnQKQCQnwJTagl1880322uvvWbly5fP9H2fffaZPfbYY/bII4/Yf/7zn2SmEwAAAAAAAOkYmFq+fLkVK1Ys2/e1bNnSPXbv3p2MtAEAAAAAACDdBz/PLii1adOmhN4PAAAAAAAAJDwr3wMPPGAvv/xy+Pl5551nBx54oB1yyCG2aNGiZKcPAAAAAAAAKSrhwNTYsWOtevXq7u8ZM2a4xzvvvGOdOnVy41ABAAAAAAAASRtjym/9+vXhwNT06dNdi6kOHTpYjRo13Gx9AAAAAAAAQJ60mKpQoYKtWbPG/f3uu+9au3bt3N+hUMj27NmT6OoAAAAAAACQphJuMXXOOefYRRddZHXr1rU///zTdeGTr776yurUqZMXaQQAAAAAAEAKSjgwNWLECKtZs6atXr3aHnzwQStdurRbvm7dOrvqqqvyIo0AAAAAAABI98DU7t27rV+/fjZkyBAXnPK74YYbkp02AAAAAAAApLCExpgqVqyYTZkyJe9SAwAAAAAAgLSR8ODnXbt2tWnTpuVNagAAAAAAAJA2Eh5jSoOe33XXXfbJJ59Ys2bNrFSpUhGvX3vttclMHwAAAAAAAFJUwoGpCRMmWPny5W3BggXu4VeoUCECUwAAAAAAAMibwNSqVassmdauXWuDBg2yd955x3bs2GF16tSxZ5991po3b57U7wEAAAAAAEABD0wl019//WWtWrWyNm3auMBUpUqVbMWKFVahQoUgkwUAAAAAAID8GJjq06dPlq8/88wzca/rgQcesOrVq7sWUp6aNWsmmiQAAAAAAACkw6x8auXkf2zYsME+/PBDmzp1qm3atCmhdb355puuy1737t2tcuXK1qRJExs3blym79+1a5dt2bIl4gEAAAAAAIA0aTH1+uuv77Ns79691r9/f6tdu3ZC6/rxxx9tzJgxNnDgQPvPf/5jX375pRs8vXjx4tazZ8993j98+HAbNmxYokkGAAAAAKSr2fODTkHB0prxnpHPW0zFXEnhwi64NGLEiIQ+p4BW06ZN7b777nOtpa644grr27evjR07Nub7Bw8ebJs3bw4/1qxZk4zkAwAAAAAAoKAGpuSHH36wf//9N6HPVK1a1Ro0aBCx7Mgjj7TVq1fHfH9GRoaVLVs24gEAAAAAAIA06cqnllF+oVDI1q1bZ2+//XbM7ndZ0Yx8y5Yti1i2fPlyO/zwwxNNFgAAAAAAAFI9MPXVV1/t042vUqVK9sgjj2Q7Y1+0G264wU444QTXle+8886zL774wp5++mn3AAAAAAAAQGpLODA1a9aspH15ixYt3GDqGjvqrrvuspo1a9rIkSOtR48eSfsOAAAAAAAQAAaeT1zr9Bt8PuHAlOf3338Pd8OrV6+eazWVE2eccYZ7AAAAAAAAIL0kPPj59u3bXZc9DVx+8sknu0e1atXssssusx07duRNKgEAAAAAAJByCudk8PPZs2fbW2+9ZZs2bXKPN954wy278cYb8yaVAAAAAAAASDkJd+WbMmWKvfbaa3bKKaeEl3Xu3NkOOOAAN4D5mDFjkp1GAAAAAAAApKCEW0ypu97BBx+8z/LKlSvTlQ8AAAAAAAB5F5hq2bKl3XHHHfb333+Hl+3cudOGDRvmXgMAAAAAAADypCvfY489Zh07drRDDz3UGjdu7JYtWrTISpQoYe+9916iqwMAAAAAAECaSjgw1bBhQ1uxYoVNmjTJli5d6pZdeOGF1qNHDzfOFAAAAAAAAJAngSkpWbKk9e3bNycfBQAAAAAAAHIemFKLqVmzZtmGDRts7969Ea8NHTo0J6sEAAAAAABAmkk4MDVu3Djr37+/HXTQQValShUrVKhQ+DX9TWAKAAAAAAAAeRKYuueee+zee++1QYMGJfpRAAAAAAAAIKywJeivv/6y7t27J/oxAAAAAAAAIHeBKQWl3n///UQ/BgAAAAAAACTele/xxx8P/12nTh0bMmSIzZs3z44++mgrVqxYxHuvvfbaeFYJAAAAAACANBdXYGrEiBERz0uXLm2zZ892Dz8Nfk5gCgAAAAAAAEkLTK1atSqulQEAAAAAAAB5NsYUAAAAAAAAsN8CU/fff7/t2LEjrhV+/vnn9vbbb+c2XQAAAAAAAEhxcQWmvv/+ezv88MPtqquusnfeecd+//338Gv//vuvffPNN/bkk0/aCSecYOeff76VKVMmL9MMAAAAAACAdBljauLEibZo0SJ74okn7KKLLrItW7ZYkSJFLCMjI9ySqkmTJnb55Zdbr169rESJEnmdbgAAAAAAAKRDYEoaN25s48aNs6eeesq1kPr5559t586ddtBBB9kxxxzj/gcAAAAAAACSHpjyFC5c2AWi9AAAAAAAAAByiln5AAAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAAVjVr7t27fb/fffbzNnzrQNGzbY3r17I17/8ccfk5k+AAAAAAAApKiEA1OXX365zZ492y655BKrWrWqFSpUKG9SBgAAAAAAgJSWcGDqnXfesbfffttatWqVNykCAAAAAABAWkh4jKkKFSpYxYoV8yY1AAAAAAAASBsJB6buvvtuGzp0qO3YsSNvUgQAAAAAAIC0kHBXvkceecR++OEHO/jgg61GjRpWrFixiNcXLlyYzPQBAAAAAAAgRSUcmOratWvepAQAAAAAAABpJeHA1B133JE3KQEAAAAAAEBaSTgw5VmwYIEtWbLE/X3UUUdZkyZNkpkuAAAAAAAApLiEA1MbNmywCy64wD766CMrX768W7Zp0yZr06aNTZ482SpVqpQX6QQAAAAAAEC6z8p3zTXX2NatW+27776zjRs3usfixYtty5Ytdu211ya0rjvvvNMKFSoU8ahfv36iSQIAAAAAAEA6tJh699137YMPPrAjjzwyvKxBgwY2evRo69ChQ8IJUDdArS+coKI57l0IAAAAAACAAiThKNDevXutWLFi+yzXMr2WcAKKFrUqVaok/DkAAAAAAACkWVe+U0891a677jr79ddfw8vWrl1rN9xwg7Vt2zbhBKxYscKqVatmtWrVsh49etjq1aszfe+uXbtcl0H/AwAAAAAAAGkSmHriiSdcQKhGjRpWu3Zt96hZs6ZbNmrUqITWddxxx9lzzz3nugeOGTPGVq1aZSeddJIbwyqW4cOHW7ly5cKP6tWrJ5p8AAAAAAAAFNSufAoGLVy40I0LtXTpUrdM4021a9cu4S/v1KlT+O9GjRq5QNXhhx9ur7zyil122WX7vH/w4ME2cODA8HMFwwhOAQAAAAAAFEw5Gmlcs+e1b9/ePZKpfPnydsQRR9jKlStjvp6RkeEeAAAAAAAASJPA1OOPP25XXHGFlShRwv2dlWuvvTbHidm2bZv98MMPdskll+R4HQAAAAAAAEihwNSIESPcwOQKTOnvrFpSJRKYuummm+zMM8903fc0mPodd9xhRYoUsQsvvDDudQAAAAAAACCFA1MalDzW37n1yy+/uCDUn3/+aZUqVbITTzzR5s2b5/4GAAAAAABAakt4Vr677rrLduzYsc/ynTt3utcSMXnyZNdSateuXS5Ipeea5Q8AAAAAAACpL+HA1LBhw9xYUNEUrNJrAAAAAAAAQJ4EpkKhkBtLKtqiRYusYsWKia4OAAAAAAAAaSquMaakQoUKLiClxxFHHBERnNqzZ49rRXXllVfmVToBAAAAAACQroGpkSNHutZSffr0cV32ypUrF36tePHiVqNGDWvZsmVepRMAAAAAAADpGpjq2bOn+79mzZp2wgknWLFixfIyXQAAAAAAAEhxcQemPK1btw7//ffff9s///wT8XrZsmWTkzIAAAAAAACktIQHP9fse1dffbVVrlzZSpUq5cae8j8AAAAAAACAPAlM3Xzzzfbhhx/amDFjLCMjw8aPH+/GnKpWrZpNnDgx0dUBAAAAAAAgTSXcle+tt95yAahTTjnFevfubSeddJLVqVPHDj/8cJs0aZL16NEjb1IKAAAAAACA9G4xtXHjRqtVq1Z4PCk9lxNPPNHmzJmT/BQCAAAAAAAgJSUcmFJQatWqVe7v+vXr2yuvvBJuSVW+fPnkpxAAAAAAAAApKeHAlLrvLVq0yP1966232ujRo61EiRJ2ww03uPGnAAAAAAAAgDwZY0oBKE+7du1s6dKltmDBAjfOVKNGjRJdHQAAAAAAANJUQi2mdu/ebW3btrUVK1aEl2nQ83POOYegFAAAAAAAAPIuMFWsWDH75ptvEvsGAAAAAAAAIBljTF188cU2YcKERD8GAAAAAAAA5G6MqX///deeeeYZ++CDD6xZs2ZWqlSpiNcfffTRRFcJAAAAAACANJRwYGrx4sXWtGlT9/fy5csjXitUqFDyUgYAAAAAAICUlnBgatasWXmTEgAAAAAAAKSVhMeYAgAAAAAAAAJpMdWmTZssu+x9+OGHuU0TAAAAAAAA0kDCgaljjjkm4vnu3bvt66+/dmNP9ezZM5lpAwAAAAAAQApLODA1YsSImMvvvPNO27ZtWzLSBAAAAAAAgDSQtDGmLr74YnvmmWeStToAAAAAAACkuKQFpj777DMrUaJEslYHAAAAAACAFJdwV75zzjkn4nkoFLJ169bZ/PnzbciQIclMGwAAAAAAAFJYwoGpcuXKRTwvXLiw1atXz+666y7r0KFDMtMGAAAAAACAFJZwYOrZZ5/Nm5QAAAAAAAAgrSQcmFLXvQULFthPP/1khQoVslq1atkxxxzj/gYAAAAAAADyJDA1a9Ysu+yyy+znn392ASpRQKpmzZpuRr6TTz45kdUBAAAAAAAgjcU9K9/KlSvtjDPOsBo1atjUqVNtyZIl9v3339urr75qhx56qHXu3Nl+/PHHvE0tAAAAAAAA0q/F1MiRI+3444+3mTNnRiyvX7++nX322dauXTsbMWKEjRo1Ki/SCQAAAAAAgHRtMfXRRx/Z9ddfH/M1defTa+rqBwAAAAAAACQ1MLV69Wo7+uijM329YcOGbuwpAAAAAAAAIKmBqW3btlnJkiUzfV2v7dixI97VAQAAAAAAIM0lNCufBjtfv359zNf++OOPZKUJAAAAAAAAaSChwFTbtm0tFArFHGNKy/U/AAAAAAAAkNTA1KpVqywv3X///TZ48GC77rrr3AyAAAAAAAAASG1xB6YOP/zwPEvEl19+aU899ZQ1atQoz74DAAAAAAAABXTw87yiQdV79Ohh48aNswoVKgSdHAAAAAAAAKRLYGrAgAF2+umnW7t27bJ9765du2zLli0RDwAAAAAAAKTB4OfJNnnyZFu4cKHryheP4cOH27Bhw/I8XQAAAAAAAEjhFlNr1qxxA51PmjTJSpQoEddnNDj65s2bww+tAwAAAAAAAGnWYmrDhg22bNky93e9evWscuXKCX1+wYIFbh1NmzYNL9uzZ4/NmTPHnnjiCddtr0iRIhGfycjIcA8AAAAAAACkYWBq69atdtVVV7lueAokiQJI559/vo0ePdrKlSsX13ratm1r3377bcSy3r17W/369W3QoEH7BKUAAAAAAACQ5l35Lr/8cvv8889t+vTptmnTJvfQ3/Pnz7d+/frFvZ4yZcpYw4YNIx6lSpWyAw880P0NAAAAAACA1JZwiykFod577z078cQTw8s6duxo48aNs9NOOy3Z6QMAAAAAAECKSjgwpRZNsbrraVmFChVylZiPPvooV58HAAAAAABACnflu/32223gwIG2fv368DL9ffPNN9uQIUOSnT4AAAAAAACkqIRbTI0ZM8ZWrlxphx12mHvI6tWr3Wx5v//+uz311FPh9y5cuDC5qQUAAAAAAED6Bqa6du2aNykBAAAAAABAWkk4MHXHHXfkTUoAAAAAAACQVhIeY0o2bdpk48ePt8GDB9vGjRvD3fbWrl2b7PQBAAAAAAAgRSXcYuqbb76xdu3auVn4fvrpJ+vbt69VrFjRpk6d6saamjhxYt6kFAAAAAAAAOndYkoz8vXq1ctWrFhhJUqUCC/v3LmzzZkzJ9npAwAAAAAAQIpKODD15ZdfWr9+/fZZfsghh9j69euTlS4AAAAAAACkuIQDUxkZGbZly5Z9li9fvtwqVaqUrHQBAAAAAAAgxSUcmOrSpYvdddddtnv3bve8UKFCbmypQYMGWbdu3fIijQAAAAAAAEhBCQemHnnkEdu2bZtVrlzZdu7caa1bt7Y6depYmTJl7N57782bVAIAAAAAACDlJDwrn2bjmzFjhs2dO9fN0KcgVdOmTd1MfQAAAAAAAECeBaY8J554ojVv3tyNOaXufAAAAAAAAECeduXbu3ev3X333W4WvtKlS9uqVavc8iFDhtiECRMSXR0AAAAAAADSVMKBqXvuuceee+45e/DBB6148eLh5Q0bNrTx48cnO30AAAAAAABIUQkHpiZOnGhPP/209ejRw4oUKRJe3rhxY1u6dGmy0wcAAAAAAIAUlXBgau3atW4Wvlhd/Hbv3p2sdAEAAAAAACDFJRyYatCggX388cf7LH/ttdesSZMmyUoXAAAAAAAAUlzCs/INHTrUevbs6VpOqZXU1KlTbdmyZa6L3/Tp0/MmlQAAAAAAAEg5CbeYOuuss+ytt96yDz74wEqVKuUCVUuWLHHL2rdvnzepBAAAAAAAQMpJuMWUnHTSSTZjxozkpwYAAAAAAABpI+EWUwAAAAAAAMB+azFVoUIFK1SoUFwr3LhxY27TBAAAAAAAgDQQV2Bq5MiReZ8SAAAAAAAApJW4AlOahQ8AAAAAAAAIZPDzf//91/bs2WMZGRnhZb/99puNHTvWtm/fbl26dLETTzwxqYkDAAAAAABA6oo7MNW3b18rXry4PfXUU+751q1brUWLFvb3339b1apVbcSIEfbGG29Y586d8zK9AAAAAAAASLdZ+T755BPr1q1b+PnEiRNdC6oVK1bYokWLbODAgfbQQw/lVToBAAAAAACQroGptWvXWt26dcPPZ86c6QJV5cqVC49D9d133+VNKgEAAAAAAJC+gakSJUrYzp07w8/nzZtnxx13XMTr27ZtS34KAQAAAAAAkN6BqWOOOcaef/559/fHH3/sBj4/9dRTw6//8MMPVq1atbxJJQAAAAAAANJ38POhQ4dap06d7JVXXrF169ZZr1693KDnntdff91atWqVV+kEAAAAAABAugamWrdubQsWLLD333/fqlSpYt27d9+nRdWxxx6bF2kEAAAAAABAOgem5Mgjj3SPWK644opkpQkAAAAAAABpIO4xpgAAAAAAAIBkIjAFAAAAAACAQBCYAgAAAAAAQPoFpsaMGWONGjWysmXLukfLli3tnXfeCTJJAAAAAAAAyM+BqU2bNtn48eNt8ODBtnHjRrds4cKFtnbt2oTWc+ihh9r999/vZvubP3++nXrqqXbWWWfZd999l5NkAQAAAAAAIFVn5ZNvvvnG2rVrZ+XKlbOffvrJ+vbtaxUrVrSpU6fa6tWrbeLEiXGv68wzz4x4fu+997pWVPPmzbOjjjoq0aQBAAAAAAAglVtMDRw40Hr16mUrVqywEiVKhJd37tzZ5syZk+OE7NmzxyZPnmzbt293Xfpi2bVrl23ZsiXiAQAAAAAAgDQJTH355ZfWr1+/fZYfcsghtn79+oQT8O2331rp0qUtIyPDrrzySnv99detQYMGMd87fPhw11LLe1SvXj3h7wMAAAAAAEABDUwpgBSrpdLy5cutUqVKCSegXr169vXXX9vnn39u/fv3t549e9r3338f870a02rz5s3hx5o1axL+PgAAAAAAABTQwFSXLl3srrvust27d7vnhQoVcmNLDRo0yLp165ZwAooXL2516tSxZs2auRZRjRs3tsceeyzToJg3g5/3AAAAAAAAQJoEph555BHbtm2bVa5c2Xbu3GmtW7d2gaUyZcq4wctza+/evW4sKQAAAAAAAKS2hGfl09hOM2bMsLlz57oZ+hSkatq0qZupL1HqmtepUyc77LDDbOvWrfbiiy/aRx99ZO+9917C6wIAAAAAAECKB6Y8J554onvkxoYNG+zSSy+1devWuYBXo0aNXFCqffv2uVovAAAAAAAAUjAw9fjjj8dcrrGmSpQo4br1nXzyyVakSJFs1zVhwoREvx4AAAAAAADpGpgaMWKE/f7777Zjxw6rUKGCW/bXX39ZyZIlrXTp0q4VVK1atWzWrFlWvXr1vEgzAAAAAAAA0nHw8/vuu89atGhhK1assD///NM9li9fbscdd5ybTU8z9FWpUsVuuOGGvEkxAAAAAAAA0rPF1O23325Tpkyx2rVrh5ep+97DDz9s3bp1sx9//NEefPBB9zcAAAAAAACQtBZTGqj833//3We5lq1fv979Xa1aNTfLHgAAAAAAAJC0wFSbNm2sX79+9tVXX4WX6e/+/fvbqaee6p5/++23VrNmzURXDQAAAAAAgDSScGBKM+lVrFjRmjVrZhkZGe7RvHlzt8ybZU+DoD/yyCN5kV4AAAAAAACk6xhTGth8xowZtnTpUjfoudSrV889/K2qAAAAAAAAgKQGpjz169d3DwAAAAAAAGC/BaZ++eUXe/PNN2316tX2zz//RLz26KOP5ighAAAAAAAASC8JB6ZmzpxpXbp0sVq1arnufA0bNrSffvrJQqGQNW3aNG9SCQAAAAAAgJST8ODngwcPtptuusnNvFeiRAmbMmWKrVmzxlq3bm3du3fPm1QCAAAAAAAg5SQcmFqyZIldeuml7u+iRYvazp073Sx8d911lz3wwAN5kUYAAAAAAACkoIQDU6VKlQqPK1W1alX74Ycfwq/98ccfyU0dAAAAAAAAUlbCY0wdf/zxNnfuXDvyyCOtc+fOduONN7pufVOnTnWvAQAAAAAAAHkSmNKse9u2bXN/Dxs2zP398ssvW926dZmRDwAAAAAAAHkTmNqzZ4/98ssv1qhRo3C3vrFjxyayCgAAAAAAACDxMaaKFCliHTp0sL/++iuRjwEAAAAAAAC5H/y8YcOG9uOPPyb6MQAAAAAAACB3gal77rnHbrrpJps+fbqtW7fOtmzZEvEAAAAAAAAA8mTwc83EJ126dLFChQqFl4dCIfdc41ABAAAAAAAASQ9MzZo1K9GPAAAAAAAAALkPTLVu3TrRjwAAAAAAAAC5H2NKPv74Y7v44ovthBNOsLVr17plzz//vM2dOzcnqwMAAAAAAEAaSjgwNWXKFOvYsaMdcMABtnDhQtu1a5dbvnnzZrvvvvvyIo0AAAAAAABIQTmalW/s2LE2btw4K1asWHh5q1atXKAKAAAAAAAAyJPA1LJly+zkk0/eZ3m5cuVs06ZNia4OAAAAAAAAaSrhwFSVKlVs5cqV+yzX+FK1atVKVroAAAAAAACQ4hIOTPXt29euu+46+/zzz61QoUL266+/2qRJk+ymm26y/v37500qAQAAAAAAkHKKJvqBW2+91fbu3Wtt27a1HTt2uG59GRkZLjB1zTXX5E0qAQAAAAAAkHISDkypldRtt91mN998s+vSt23bNmvQoIGVLl06b1IIAAAAAACAlJRwV74XXnjBtZQqXry4C0gde+yxBKUAAAAAAACQ94GpG264wSpXrmwXXXSR/e9//7M9e/Yk/q0AAAAAAABIewkHptatW2eTJ092XfrOO+88q1q1qg0YMMA+/fTTvEkhAAAAAAAAUlLCgamiRYvaGWec4Wbi27Bhg40YMcJ++ukna9OmjdWuXTtvUgkAAAAAAICUk/Dg534lS5a0jh072l9//WU///yzLVmyJHkpAwAAAAAAQEpLuMWUaPBztZjq3LmzHXLIITZy5Eg7++yz7bvvvkt+CgEAAAAAAJCSEm4xdcEFF9j06dNdaymNMTVkyBBr2bJl3qQOAAAAAAAAKSvhFlNFihSxV155xQ2C/sQTT0QEpRYvXpzQuoYPH24tWrSwMmXKuJn+unbtasuWLUs0SQAAAAAAAEiHwJTXhU8BKtm6das9/fTTduyxx1rjxo0TWtfs2bPdjH7z5s2zGTNm2O7du61Dhw62ffv2RJMFAAAAAACAdBn8fM6cOTZhwgSbMmWKVatWzc455xwbPXp0Qut49913I54/99xzruXUggUL7OSTT85p0gAAAAAAAJBqgan169e74JECUlu2bHFjTO3atcumTZtmDRo0yHViNm/e7P6vWLFirtcFAAAAAACAFOnKd+aZZ1q9evXsm2++cbPw/frrrzZq1KikJWTv3r12/fXXW6tWraxhw4Yx36MgmAJi/gcAAAAAAABSvMXUO++8Y9dee63179/f6tatm/SEaKwpDZ4+d+7cLAdLHzZsWNK/GwAAAAAAAPm4xZQCRhrovFmzZnbccce5Gfn++OOPpCTi6quvtunTp9usWbPs0EMPzfR9gwcPdt39vMeaNWuS8v0AAAAAAADIx4Gp448/3saNG2fr1q2zfv362eTJk92g5+qCpxn1FLRKVCgUckGp119/3T788EOrWbNmlu/PyMiwsmXLRjwAAAAAAACQ4oEpT6lSpaxPnz6uBdW3335rN954o91///1uNr0uXbok3H3vhRdesBdffNHKlCnjBlfXY+fOnYkmCwAAAAAAAKkemPLTYOgPPvig/fLLL/bSSy8l/PkxY8a4LnmnnHKKVa1aNfx4+eWXc5MsAAAAAAAApNLg51kpUqSIde3a1T0S7coHAAAAAACA9JSrFlMAAAAAAABAThGYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAACASBKQAAAAAAAASCwBQAAAAAAAACQWAKAAAAAAAAgSAwBQAAAAAAgEAQmAIAAAAAAEAgCEwBAAAAAAAgEASmAAAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAIEgMAUAAAAAAIBAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAAAAAAIBIEpAAAAAAAABILAFAAAAAAAAAJBYAoAAAAAAACBIDAFAAAAAACAQBCYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAACASBKQAAAAAAAASCwBQAAAAAAAACQWAKAAAAAAAAgSAwBQAAAAAAgEAQmAIAAAAAAEAgCEwBAAAAAAAgEASmAAAAAAAAEAgCUwAAAAAAAEi/wNScOXPszDPPtGrVqlmhQoVs2rRpQSYHAAAAAAAA6RKY2r59uzVu3NhGjx4dZDIAAAAAAAAQgKIWoE6dOrkHAAAAAAAA0g9jTAEAAAAAACD9WkwlateuXe7h2bJlS6DpAQAAAAAAQJq0mBo+fLiVK1cu/KhevXrQSQIAAAAAAEA6BKYGDx5smzdvDj/WrFkTdJIAAAAAAACQDl35MjIy3AMAAAAAAAAFX6CBqW3bttnKlSvDz1etWmVff/21VaxY0Q477LAgkwYAAAAAAIBUDkzNnz/f2rRpE34+cOBA93/Pnj3tueeeCzBlAAAAAAAASOnA1CmnnGKhUCjIJAAAAAAAACAgBWrwcwAAAAAAAKQOAlMAAAAAAAAIBIEpAAAAAAAABILAFAAAAAAAAAJBYAoAAAAAAACBIDAFAAAAAACAQBCYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAACASBKQAAAAAAAASCwBQAAAAAAAACQWAKAAAAAAAAgSAwBQAAAAAAgEAQmAIAAAAAAEAgCEwBAAAAAAAgEASmAAAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAIEgMAUAAAAAAIBAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAAAAAAIBIEpAAAAAAAABILAFAAAAAAAAAJBYAoAAAAAAACBIDAFAAAAAACAQBCYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAACASBKQAAAAAAAASCwBQAAAAAAAACQWAKAAAAAAAA6RuYGj16tNWoUcNKlChhxx13nH3xxRdBJwkAAAAAAACpHph6+eWXbeDAgXbHHXfYwoULrXHjxtaxY0fbsGFD0EkDAAAAAABAKgemHn30Uevbt6/17t3bGjRoYGPHjrWSJUvaM888E3TSAAAAAAAAkKqBqX/++ccWLFhg7dq1+/8JKlzYPf/ss8+CTBoAAAAAAADyWFEL0B9//GF79uyxgw8+OGK5ni9dunSf9+/atcs9PJs3b3b/b9myxVLG9m1Bp6BgSea+J+8TQ94Hh7wPFvkfHPI+OOR9cJJ9nUv+J4ayHxzyPjjkfbC2pEZ8w4vThEKh/B2YStTw4cNt2LBh+yyvXr16IOkBAAAAAABAbFu3brVy5cpZvg1MHXTQQVakSBH77bffIpbreZUqVfZ5/+DBg91A6Z69e/faxo0b7cADD7RChQrtlzSnI0U6Ffxbs2aNlS1bNujkpBXyPjjkfbDI/+CQ98Eh74ND3geL/A8OeR8c8j445P3+oZZSCkpVq1Yt2/cGGpgqXry4NWvWzGbOnGldu3YNB5v0/Oqrr97n/RkZGe7hV758+f2W3nSng5YDNxjkfXDI+2CR/8Eh74ND3geHvA8W+R8c8j445H1wyPu8l11LqXzTlU8toHr27GnNmze3Y4891kaOHGnbt293s/QBAAAAAAAgdQUemDr//PPt999/t6FDh9r69evtmGOOsXfffXefAdEBAAAAAACQWgIPTIm67cXquof8Qd0n77jjjn26USLvkffBIe+DRf4Hh7wPDnkfHPI+WOR/cMj74JD3wSHv859CoXjm7gMAAAAAAACSrHCyVwgAAAAAAADEg8AUAAAAAAAAAkFgCvt47rnnrHz58kEnAwAAFGBPP/20Va9e3QoXLuxmXUZsd955p5v8B/uqUaMGZYdr8wJjf+6nU045xa6//vo8/x7KXsHy008/WaFChezrr7+2gobAVAHTq1cvV9iiH6eddlpSZ0pcvnx50taXDvuka9euQScjJXz22WdWpEgRO/30062g+eijj9yxuGnTprS+KPDqqPvvvz9i+bRp09xy5N05oVixYm5G2/bt29szzzxje/fuTdr3pOvNoZe/V1555T6vDRgwwL2m96QazZbcv39/O+yww9zAsFWqVLGOHTvaJ598Evc6tmzZ4ia2GTRokK1du9auuOKK/XYjlSxKb6xrrljlITduuukmmzlzpuVHsbbf/1BQDfvnmEL+31d5cQ+V2fXl1KlT7e67745rW0qUKGFFixbNl+VO17hefaIfMapWrerycfXq1ZYucnpu7BXjHlQ/Bq1bt84aNmxoBU2+mJUPiVEQ6tlnn41YlswZBQ444AD3CNo///xjxYsXDzoZKU1zH+zZs8edrPKDCRMm2DXXXOP+//XXX61atWpBJwk5oAugBx54wPr162cVKlRIyjqpD7I/J+hY/u233+zdd9+16667zl577TV78803883xXVD3oy7yJk+ebCNGjAifG//++2978cUX3Y1LKlDZ8W4KpFu3bm5f/fe//7VatWq5cqXAyZ9//hn3OnVTsXv3bvdDg240Cup5rm/fvnbXXXdFLCtZsqQlU+nSpd0jPx6fusHxvPzyyzZ06FBbtmxZeFl+SHdBqIeScUzldwWxfk/2vtqf91AVK1aMe1vq1atnzZo1c0H1/FjuypYt6+oV1derVq2yq666yrp3726ff/55nn6vzlH6US+VFClSxAUgCyTNyoeCo2fPnqGzzjor09e1S8eNGxfq2rVr6IADDgjVqVMn9MYbb0S8R8+1PCMjI3TKKaeEnnvuOfe5v/76y73+7LPPhsqVKxd+/x133BFq3LhxaOLEiaHDDz88VLZs2dD5558f2rJlS/g9e/bsCd13332hGjVqhEqUKBFq1KhR6NVXX4343m+//TZ02mmnhUqVKhWqXLly6OKLLw79/vvv4ddbt24dGjBgQOi6664LHXjggS5tBX2fPPLII6GGDRuGSpYsGTr00END/fv3D23dutW9tnfv3tBBBx0UkU/K5ypVqoSff/zxx6HixYuHtm/fHurdu3fo9NNPj1j/P//8E6pUqVJo/Pjxce2HWbNmuX39v//9L9S0adNQsWLF3LL8QPlSunTp0NKlS135uvfeeyNef/PNN0PNmzd35VblQ2Xc8/fff4duueUWl8fKr9q1a4fzRD766KNQixYt3GvK30GDBoV2794dfl3lesSIERHfp32hsh/PsbVq1Sr3uv+hciHvvPNOqFWrVu6YqlixotuHK1euDK/X++yUKVNcmde6td8+/fTTiH3mf/jTld9ou88444xQ/fr1QzfffHN4+euvv+7S7q9T/JT/2g/Rx9U999wTqlq1qivTMnr06HD9pXqkW7duCdVDqSaz+mfmzJnhMis///xzqEuXLq7+LVOmTKh79+6h9evXx3WMqW6OLoOe1157LdSgQQN3bGn/PfzwwxHr1LK77rordMkll7jv9Y6Lgpa/qsdfeOGF8PJJkya58qXXknWsyx9//BG64IILQtWqVXOv63tffPHFiDTp3HvRRRe584rqs0cffdTtI507/XXijTfe6Naj9x177LERdb13nlcdduSRR4aKFCni0ie6FlA6VW9mJasypfXHqhOjl+k7mzVrFnrooYfC61WeFi1aNHyuXLNmjXvvihUr3HNdi+gzOl8cfPDBoQsvvDD022+/ZXuey0n9EJ2v0eLZp/L000+785Ne13Gla4NY11nR5U75on2s8nTVVVe5c368+9i7hjjxxBPd9ur7r7nmmtC2bdtyfHxGXx+K6hjV96o36tWr5+poP52b69at67a9Zs2aodtvvz1iO7I7vyuNuh7QNZD2efXq1UNPPfVUxOdXr17typ/SVqFCBVcuvfKc1flkf4nnmMrqejGzvJ82bVqoSZMmLt+Ut3feeWf42kbXmCpXyi/Vz9pu7f/ofa/6Rt+pcvTEE0/sk+7LLrvMXauqfLRp0yb09ddf71NuVQaUp4UKucne3XGlbVG5U9lt27ZtuNzpOBw2bFjokEMOcenS51V3JnpMBbmv9J4rrrjCXYMo74866qjQW2+9laP9lJvry+j6Kfr66Mwzz3Tv79ixY8y6N6iyFy3W+h9//HGXzs2bNyeUj08++aS711TZ03v8dbyXl5MnTw6dfPLJbj367uzqsV27drn7U9XFev2www5z55JEj5PM7qMzOzf++++/oT59+oTPWUcccURo5MiREeuN/pzOAd52fvXVV+5407GmfPFbuHChO15/+umnuLZhfyEwlYKBKVUqupDVRdy1117rTuR//vmne/3HH390F2k33XSTCwC89NJLrsBmF5jSOs455xwXXJozZ447OP/zn/+E36OTvQ7od999N/TDDz+4dejg9Sp2rVsBlMGDB4eWLFniDoj27du7gu9RBavv0c2s0qZHQd8nutn+8MMPXSWhG0VVdqrwPcpTVXayceNGV4Er75VHXr7qRkc++eQTd/Pw66+/hj8/depUd1PgnUCy2w/eBbtO8u+//767afLKRtAmTJjgLkxFJ3gFl3Ryk+nTp7ttHzp0aOj77793laX/pHDeeee5E6DyQ9v9wQcfuBOP/PLLL+5kq4t65asCJKp4/cGdeANTmR1bOnnoIkrvWbZsWWjdunWhTZs2hW/c9Zo+o5OELhSOPvpod7IQ7wSi/abt1OfPPfdclyadcHVC1IlIJzKtVw//BUN+PR60L3Qi1U1lTgNTyl/dMC1evNg9vvzyS1cOtA90MlU98thjj4U/k135T0VZ1T/K406dOrmydswxx7gb1Pnz54fmzZvnbuxV53qyOsZUxlX2dRPjlUHRugoXLuyWq9wqv3VR7V3oiXcRpoCV6ht/oKYg5a+CP7q58uhvlVl/YCq3x7pXXykYoc+rDOviXPvl888/D3/35Zdf7j6jek7n5LPPPttdSPpvUPSeE044wZ2vledap46F5cuXu9e1j3QtoPfo3KLzrX4AEaVFx97111/vgh+xZFemduzY4dKn7f3iiy/CdWLLli1Dffv2DZcj1Z0DBw4M/+iiOl83sqqjvZtVBQR1neI/VyjopPz57LPP3DpVzj2ZnedyUj/EG5jKap/OnTvXHSfaB3pdNzzaxuwCUzpurrzySnfe0jlR5zEFuOLdx1qm6wOVUy3TftZNXa9evXJ8fEZfH2rf6KZT5V7Xl/pf26YfPD133323+27llQJQCiY+8MAD4dezO78rjVqn8k3H1vDhw11+eteICnIpuKobuG+++catQ4FbXW/p/JnZ+WR/iueYyu56MTrvtd+175TXKs8q67qB1c266IZcr+tYURBZdYi//ChfVW8oP1UuvbpG6/G0a9fO1WM696oMKRCqwKF33ahyqzKmQIDOx4sWLXLXqAosq87UtmifaN951y1arnTp/kP7UIFL1UVeuY3nmApyX6nuO/74410wSnmlvNfxqXzOyX7KzfWlv36KdX2kvNZ6VI6OO+64fereoMpetOj164cG3R9qe7yAZrz5qPKpIJPySkFwrUN1gr9s6XNenaXyml09prpV9xhKg/JWAX//D0bxHCdZ3Udndm78559/XL2o9SpdSqfOAy+//LL7nI4p3f/o+PM+pzrPH5gS3fPrXO2nNPqXZbcN+wuBqQJGJ1cdZDoR+B9e6xIVRB2IHh3QWuZd4KmliKLifrfddlu2gSkdCP4WUgoeqZITVdx6PfrXDEVe9Uumd2HSoUOHiNe9X0FVeXgVrC6aUi1Y6KfKWge6RxcCOrl5vwQoT7WuMWPGhCsKfwBQLRP8F3SqRLyLzHj2g3fBru/Kb3SB7f0SoAsD3Zh4v/6qwu7Ro0fMz6n8aJtmzJgR83Xln06yXpBLdJGkk4R3wxhvYCqrY8vLW+84yoxaCep9OjmJdwLxt/D67rvv3DIvQBnr16SCcDzo4k03CzkNTOkGxruxEF0s6MLEXxd54in/qSir+ke/yOmGTRdwOm+oVUF0GVPQILtjLLNjRDd/+oHBT+cG1VP+z/lbPxTU/N2wYYO76ddFqR4KuupY9gemknGsx6KgjS4SRWVfN3H+X4F1Uauy792g6EZA+3vt2rUR61EwTT8O+Vs0ZfaLqIJsanmi7VTdrM/pptMTT5nSRXH0L/OxAj0KVqh+04W40qMLdr1H1yteAEZlLTO6kNb3eDe+sc5zOa0flF7ld/Q1l9d6Lp59quMwurWzjrXsAlM6dvw3j2oRpHXFu4+1bWrV4acbKgV1du7cmaPjM/pcpB+Qolv06XpP9UlmdJOnIKYnnrpHLew9OperNYh3nfT888/vc47XeUNB8vfeey/T88n+lt0xld31YnTea1/7A3heXugG22sFoxYW0a3T/PmqG1o/lS8vyKuyovNtdHBG+9xrsaZyq+ND9aNnwYIFrvx7LTGiqWVWdIt4tWjXj4e5qSf3175SmdIx5N27REt0P+Xm+tJfn2Z2feRti9Ks78yu3O2PshfNOx+pblU97bX+UYAu3u8UfUbBfD/dV3lBNq9s+VsdxVOPqbXXqaeeGlHHeOI9TrK6j47nRxCPGjP4ewrEugaMDkzpf7WO0nlDvFZUXh0azzbsLwx+XgC1adPGjbTvf/gH4mzUqFH471KlSrl+uxs2bHDP1X+3RYsWEes79thj4xr4tkyZMuHnGi/CW+fKlSttx44dbsBdb5wEPSZOnGg//PCDe8+iRYts1qxZEa/Xr1/fvea9R9T/OZV88MEH1rZtWzvkkENc/l1yySWuX7fyS1q3bm3ff/+9G5xw9uzZbvA7PTTQofo9f/rpp+655/LLLw+PL6Y+7++884716dMn7v3gad68ueUnKpdffPGFXXjhhe65xgLRwIcaa0pUxpWPseg19adWXsayZMkSa9myZcTA261atbJt27bZL7/8klA6szq2MrNixQq3XRqnQO/XsSTRgzr61+2Nx5LduvM7jTOlMRq0D3Li6KOPjhivQmX78MMPd3mpY2nSpEnhYymR8p8udJ2mcq/81zhJengaNGjgBtT39k1Wx1hm9FkdS356rjKvMX3ya32TE5UqVXJjJWmQVtXB+vuggw5K+rGufNNgtir7Gj9EZfi9994Lr+PHH3905wb/ebtcuXJu/BDPt99+69ZzxBFHRBwLOsf4jwUdW/60RI9LonH+NEaZxjDTOalp06Zu+yWeMhWvk046ybZu3WpfffWVS6Pqcu88KN650bNgwQI788wz3fheOq96dX90PvvLXW7qhx49euxzzdWlS5e496nOb9HXWfFcdx111FHu3OZfr7fOePaxrru0v/yva9BjTYqgMVxi5VMitm/f7r7rsssui/iOe+65JyJPNS6V6gWNeaLXb7/99oh9FU/d489f1Wlal5cX2k7tX5UFLw06djQOnD8d0eeT/S27Yyq768Vo2m6NfebPe42HpjHB9BmNz7Nz505XH2n566+/bv/++2/EOnRtFP3cO361fl0nHXjggRHfobLjz1edk1U/eho3buy2Q/mtNIwbN87++uuv8IQIyoNY543oeiPIa6Ks9pXK66GHHuqOvXhkt59yc33pl9n1kbctqk/0enS5C6rsRdP3Km/nz59vjzzyiEvjvffem3A+ZlWmY9V58dRjGmBcadN59tprr7X3338/Il3xHCdZ3UdnZfTo0e7eWMeY1quZbhMdFF4zvh555JFuXEzReULfrf2UyDbsD/lnRFTETRVWnTp1Mn09ehA3ncRzOztTVutUYZa3337bVWqxBmXXe3QhqRvVaP5BUbVtqTRd5xlnnOFmw1DlqguluXPnuspPAxFq8FTv5kOVhB56ny64lE9ffvmluwE54YQTwuu89NJL7dZbb3Wz1yloVbNmTXdRH+9+yK/5rACUTlr+wc51U610P/HEE1kOJJmMQSY14O///djy/ynvk3FsqdzrYkAXZ9o+vV8zZagMZLZuL4iWzFnVgnDyySe7G6HBgwdHzFwWb35Hl1Od1BcuXOgurHRhoEF4NSOUjpVEyn+60MWY6oh45OVgrfmtvskp/QigWea8i8W8ONYfeughe+yxx9wMiDo/KO80U0/0OrKiY0EBDQVw/IGN6IGqtc+zmilTkxjoZkePIUOGuB9G7rjjjqTPQqhglm5mdVzr3KbvU93hzW6lgJ8XfNJNhOoUPXTjpYt1XaTreXQe+ctdbuoHBf6yuubKq/o7u+uu7Pax3qMJKHQjFc0/aH9Oj08vT1XejzvuuIjXvDRpfyqwN2zYMLePlJeaSEA3nonUPdnlhW7cVB6i+QMm+aEeyuyYUuA1u+vFaNpu5es555wT83sUNFZQVEGHGTNmuMGkVb/oWjOewZ61fl2fewFiP/8swdH5qn2v79M1qs7To0aNsttuu80NYq0b33gFfU2U2b7SDJqJyG4/JeveLavrI+0vlSkFKHRu8dfl8dyr7I+yp+tCr55VEEUBEaXp+eefTygf4xHr3JBVPaYgmYI0agygbTrvvPOsXbt2boKZeI+TnOzfyZMnu/Km+lIBNu1j5WNOBoRXPazAlO4h9b8Crt7xGO827A8EptKMor3/+9//Ipap0soN/UqqCztdHGbWakUH9ZQpU1zEOD/NEJWXdMGoSkcVijfT0SuvvLJPxaTA0htvvGHfffednXjiie4ksGvXLnvqqadcVN9fgaoS0bSg+sVeF3y9e/dOaD/kRwpI6Vdr5VOHDh0iXtO2vvTSS+6XJM0i4t9ej27elM864elEEU0nOJU9r/WIaJpcVfD61cu7ePXPPKRf9fy/KMfD+yXW31JEvzjp5KwTnhdA1Ak/UVq3f70Fyf333+8uhvwtOpTf69evj9gn+jUqHqo/tJ/10IWVTpoffvihu3gsiOU/ryhP1KrihhtucOV8zZo17uG1cFFLTU09rXpDsjrGMiuDOraip5zWc/2SHH2znAp0IacLdZVZ3WT7JetYV/6dddZZdvHFF7vnqtsUnPH2k36B1gWuzttecGHz5s3uPQrmSJMmTdy+0i+iXlqSQWmYNm1aeN9nV6YSqct0zKpVtVrOejdH+g79rQtmr3XC0qVLXV6rXvG+V7+wx5P2oOoH1X3R11m5ve6KZx/rukv7JLugWk4dfPDBLgCrVny66YlFwQkFaxWY8Pz8888R78mu7smOtlOtsipXruxamRQk3jEVz/VirO1WnZPV/lXQTwFzPQYMGOB6Kui8oM/KvHnzIt6v5zruvPXrPK1zrtf6M16qI9UKSg8FSFQG1Gpm4MCBrsyonvMfh3oeTyvC/LCvVF7V2l51bjytpuLZTzm5vkzk+kjBHH/d66/Lgyp72VEApXbt2u4aRp+JNx9VhvUjvv+56svc1GOiukU/luhx7rnnuuuBjRs35uo4ye7c+Mknn7jGCQrseaJbMMV7f3DRRRe51qra3wqojR07NvxasrYhGdIjQpBiFLRQAfJTYYruVhCLfj179NFHbdCgQS4arptBrzlnVr+cZkU3+IroqvJQ5abgii6UdUDpQO7Zs6erlHTBrm4Ot9xyi7voVNNrRYPHjx9f4G9itL3RN9baH2oFol+LVDErP/wVgUe/lN14440uCOX90qkbDP36d/PNN+/zfv3SoV83VBEpbxPZD/nR9OnTXTNvlUf9muqnJshqTaVfCNTMWCepCy64wAWzFGBVOVYlqm1Ta4bHH3/c/fKuC19dsOtXDVXo+oXommuuca0ddGLTCVsXSN5J+NRTT3XHgfaTTuS6kEq0TOrCS8eQtqdz587upFyhQgUXTFTTW91c6aZIJ9tEaRv1i4Yu3rV9Cl4me7ryvKLAoU722jf+Mq/uqw8++KA7wb/77rvul6jsbiqUt7p40PGhvFUZUFnXjV9BLf/JPCeoTlAXX+Xn8OHDXT2hCzSVc28/6FjQ8aPjQjcGXpN2HROZHWNeGZwzZ457TTf4qt9Ub6lruLqe6WJNwXK1cHzyySctFalO8LoERNcPyTrW69at6y4adUOvdep8rX3qBXtUzlWWdW7QeVQ349p32sfeOVw3S9rX2ve62dBFuY431R+6qVI3xKwo8KMm/qpT9X59p4I/Ol4VNBPd+GRXpmJROdKvvfqV3utypbSrTtC5UkFrr5u/lqk8ed0NRME4XYjrvRrCYPHixa78ZSc39YO6iURfc+kY0P6Jh849qrO0L3WO0Y2i6rucXnPFu4917B5//PHuvKfrBv3IpUCVWjAoX5NBLRjUIkvnbt2oqS5SWdE5XedYlWcdC7rWU12hFmsKUPhlV/dkR/mgawSVTXX1USBe1wBTp05115veD1BByu6Y0s12PNeLfrpOUR2vY0LnUR1H6pKjY0LdkHRNo3OCWoHoeuGFF15w1yW6VvHoe5QG/QiocvHqq6+6feQd42qlodf0HpU5dQnT62effXamx7mOb5VD/dCo+knPVTa9gJfqLu1z7W/9aKUfWnX9HKvFW37cV6rjdDzr+lTHtPadAuY6nnUMJLqfcnp96W/9mtn1kfa/emCoDtN26Byu1r4K7HvdkYMqe9nRDw8qZ/oubVu8+agyrLKpOl5lSj92eMOC5LQe037WeV31rL5X36HeLbpfyOlxEs+5sW7duu6He3XnV+t3tR7Tjxr+lvD6nF7XvY2uQaLvo/zvU5BL91raN/7u6MnahqTYryNaIddiTSmphwZ+FP2tQYb9NGCdf5YkTUHqTSeqqVg1+Jk+5w2GGWvw8+wGKtaAcBpMTunQQIiagU/Tk86ePTv8Ho3yr9mDypcv7wal1IwbmvXCG0wu3oHfCso+0cCjmhFDA/Npe5Ufmio0egBDb4BYb6BXL3+1TLMHRVN+Ke87d+4c87Ws9kO8A3TvT2eccUbMbRHN5KH0aqBGDeyoWaA0c6EGRtfsFh6V3RtuuMHltV5X+X7mmWfCr2vWJQ2uqdc0sK7y2j+7i6aj1aCfGvxPM29oJo5Yg59nd2xpdjKtX4MMegMia1B2DUCt402zRCkt/nVFD1Lon67YP/W3BnTUYJRa7k9XfpPZQIzKe/8pR/WO8lqDXV566aVuMNTowc+j16MBGlVPaCBPbwppb3aSeOuhVOOvfzQTkrZZkyao/HuD+4sGvdQU6spvzcSkgZTXr18fsa6sjjHNfqb8Vjn270cNrKrBzpXfmkJZAxtnN2h6Kk1u4R/8PBnHumbA0To1OYMGeNaAuDo+/GnQAKoaDFyDqaq+0Xnm2GOPDd16663h93iz+Wj2Ie0b1Y06/2qGrOwmVNAAqFpX06ZN3Xv0PTqmlBbNthdvmYo1+LkGDNakCDp+/a9pu1VveoN7+ydMGDt2bET6NEittkv5rMFpNXi6P18zO8/lpH5QfRPr/K7PxbtPRTNSabBZbbcGG9cMgdp3WQ1+Hl3udH3kn0kzu30sGoheExSoPGk/qVz6B55O9PiMVW4mTZoUrjdUN2sads3K6h/kV+cupUH7V98XvY6s6p54JifRbFQ6TvRZlYtatWq5Ga68qeYTmaQmL8RzTGV3vRgr73WNqMG59Rldv6ge8GY/0/GjwZW1XPtex51myvTn67Bhw9xx69Ul/lluvbpGAz9rwHKVMZ2zNVC9N+lBrPsDzYCm9Ov40r7QINijRo0Kv67zkmZS0/Ggderz3iDfiRxTQe4r1Ve9e/d25VoDpGtSKc0gmJP9lJvrS/99U6zrI03S4G2L6mgNgK7PRw8kv7/LXrTMzke67lA6vFlp48lHTW6kOk9lT3Wj/xoxVtmKpx7Td+g1bYu+VwOxa9bD3Bwn0ffRsc6Nf//9t5vgSnmje2cN4q796V+XJh7w6njvGMlsO5988km3XHVltOy2YX8ppH/2XxgM+ZGayis6rib5yP/UckZjZOhXplh9rQEA6UPjLumcoJYz+jUU+Z8G7VUri48//jjopCBNqQWFxq/TA0gFalWmFplq+YOCia58aUjdLNSkWk3+1GRTTaC9AV2Rf6n7wR9//OFuPtR8NHpWIABA6tPsdQpqaEwWdUdT9yXxutkh/3n44YfdOHjqTqdufJqtNFW7vAIAkBMEptKQZrhRf1wN2qa+uhonRLNmIX/TOA3qV6zxEtR/O10GkQcA7Bvo0JgSGm9JM5Kp5U0840wiGBrnRGN3bN261Q1grzH3NO4TAAD4P3TlAwAAAAAAQCD+b0oqAAAAAAAAYD8jMAUAAAAAAIBAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAApqEaNGjZy5MigkwEAAJAlAlMAACAtrVmzxvr06WPVqlWz4sWL2+GHH27XXXed/fnnn1aQPPfcc1a+fPl9ln/55Zd2xRVXBJImAACAeBGYAgAAaefHH3+05s2b24oVK+yll16ylStX2tixY23mzJnWsmVL27hxoxV0lSpVspIlSwadDAAAgCwRmAIAAGlnwIABrpXU+++/b61bt7bDDjvMOnXqZB988IGtXbvWbrvtNve+Xbt22aBBg6x69eqWkZFhderUsQkTJoTX891339kZZ5xhZcuWtTJlythJJ51kP/zwg3vtlFNOseuvvz7ie7t27Wq9evWK6G53991324UXXmilSpWyQw45xEaPHh3xmUcffdSOPvpo97rScdVVV9m2bdvcax999JH17t3bNm/ebIUKFXKPO++8M2ZXvtWrV9tZZ51lpUuXduk977zz7Lfffgu/rs8dc8wx9vzzz7vPlitXzi644ALbunVrknMfAADg/yMwBQAA0opaQ7333nsuwHPAAQdEvFalShXr0aOHvfzyyxYKhezSSy91Laoef/xxW7JkiT311FMusCMKYJ188skuYPXhhx/aggULXNfAf//9N6H0PPTQQ9a4cWP76quv7NZbb3XdCWfMmBF+vXDhwu77FQT773//677rlltuca+dcMIJLvikQNO6devc46abbtrnO/bu3euCUtr22bNnu/Wr1dj5558f8T4F1aZNm2bTp093D733/vvvT2h7AAAAElE0oXcDAAAUcOq+p6DTkUceGfN1Lf/rr7/cGE2vvPKKC+K0a9fOvVarVq3w+9SySa2KJk+ebMWKFXPLjjjiiITT06pVKxeQ8j7/ySef2IgRI6x9+/Zumb/VlVoy3XPPPXbllVfak08+6Vp9KQ1qKaWgWmbURfHbb7+1VatWuVZXMnHiRDvqqKPcdrZo0SIcwNKYVWr9JZdccon77L333pvwdgEAAMSDFlMAACAtKTiVlZ9++smKFCniuvrF8vXXX7uue15QKqc0plX0c7XO8qh7Ydu2bV03PwWMFCzSAO07duyI+zu0PgWkvKCUNGjQwA2a7v8uBb68oJRUrVrVNmzYkIutAwAAyBqBKQAAkFY0TpRaGPkDMn5aXqFChX26+UXL7nV1wYsOfu3evTuhtCo4pjGsGjVqZFOmTHHdBb0xqP755x9Ltuggm/JJragAAADyCoEpAACQVg488EDXTU5d4Xbu3Bnx2vr1623SpElu7CUNOK6gjMZZikXBoo8//jjTYJNmxdOYT549e/bY4sWL93nfvHnz9nnudTNUIEppeOSRR+z44493Xf1+/fXXiPerO5/WnRWtb82aNe7h+f77723Tpk2u5RQAAEBQCEwBAIC088QTT7gZ9zp27Ghz5sxxAZt3333XBazUZU5jKqlbW8+ePd2A5hoQXOMzaRY8jTslV199tW3ZssXNXDd//nw3dpVmtFu2bJl7/dRTT7W3337bPZYuXWr9+/d3gaBoGlPqwQcftOXLl7vWUK+++qobAN1r3aXA16hRo9xg5Vr/2LFjIz6vdGqWPo0F9ccff8Ts4qcxshRo08DuCxcutC+++MIN7K5uis2bN8+jXAYAAMgegSkAAJB26tat64JJGsz8vPPOs9q1a9sVV1xhbdq0sc8++8wqVqzo3jdmzBg799xz3Qx+9evXt759+9r27dvDLa80Q56CQgrwNGvWzMaNGxfuDqeAlgJbXgBI36X1R7vxxhtdWpo0aeIGNn/00UddwEw0W5+eP/DAA9awYUPXmmv48OERn9fMfBoMXa281EpLQa5o6pL3xhtvuC6KmklQgSqlR7MPAgAABKlQKLuRPwEAAJAn1NpJs+75Z94DAABIJ7SYAgAAAAAAQCAITAEAAAAAACAQdOUDAAAAAABAIGgxBQAAAAAAgEAQmAIAAAAAAEAgCEwBAAAAAAAgEASmAAAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAIEgMAUAAAAAAAALwv8D9gG/J2e9YrcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,5))\n", + "plt.bar(avg_sleep_by_occupation.index, avg_sleep_by_occupation.values, color='pink')\n", + "\n", + "plt.title(\"Average Sleep Duration by Occupation\", fontsize=14, fontweight='bold')\n", + "plt.xlabel(\"Occupation\", fontsize=10)\n", + "plt.ylabel(\"Average Sleep Duration (hours)\", fontsize=10)\n", + "plt.tight_layout()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "c7d81599-3128-4f57-9821-a9b53ecdc27f", + "metadata": {}, + "source": [ + "## Third Research Question: Who has more effect on sleep duration: Stress leve Physical Activity Level?" + ] + }, + { + "cell_type": "markdown", + "id": "557961a6-ddf9-4744-b1af-10b9536e8884", + "metadata": {}, + "source": [ + "### Methods" + ] + }, + { + "cell_type": "markdown", + "id": "infectious-symbol", + "metadata": {}, + "source": [ + "I will create two graphs to compare how stress and physical activity affect sleep. The first graph will plot sleep quality and sleep duration for each stress level, and the second will show the same relationship for physical activity levels. These visuals will help the reader clearly see how both stress and physical activity influence the number of hours slept and the overall quality of sleep." + ] + }, + { + "cell_type": "markdown", + "id": "faa9b939-f80f-4342-a442-cd132aeb293f", + "metadata": {}, + "source": [ + "### Results" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "d98295fb-d13b-41e9-82b5-25ba5b0e90fa", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAGGCAYAAADmRxfNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAnGBJREFUeJzt3QV0VNcWBuA/HqJAIMGDS3B3d3dKoTgUbaFQWmhLcSg16MOd4lDcXYO7a3AIDgkeSOatfYYJk5CEhMidzPzfWrdh/MzMTXr33XufY6XT6XQgIiIiIiKKBevYPJiIiIiIiEgwsCAiIiIiolhjYEFERERERLHGwIKIiIiIiGKNgQUREREREcUaAwsiIiIiIoo1BhZERERERBRrDCyIiIiIiCjWGFgQEREREVGsMbAgomjbsGEDypcvD3d3d1hZWaktadKkobc/e/YMPXv2RMaMGWFvbx96nzFjxsDcvX37FgMHDkSOHDng4OAQ+t579eql9dDIhO3YsSN0X5Ht2rVrsAQVKlQIfc9t27bVejhEFEcYWBBZ+IFMZFv4/9mfOnUK9evXx65duxAYGBjhc3fu3Bn/+9//cP36dXWgbUkHLBJUDBkyBBcvXkRQUFCMH79x40Y0bNgQadOmVUGZq6srvL29UapUKXTt2hWLFi366DESwBne66BBg2ApotpPKeE9fvwYv/zyCwoWLKj2W9l/PT09kStXLrVPDx48GDdv3tR6mESUAGwT4kWIKPFbtmxZ6AGznJGXM/EpUqSAo6Ojuk4CiSVLloTev0yZMqhTpw5sbGxQrlw5mLsFCxaE/jtPnjxo0aIF7OzsULhw4U8+9tdff8XQoUPDXCef5/Pnz3Hjxg3s27dPbV988UW8jJ3oc8lJBPldv3XrVpjrHzx4oLbz589jxYoVyJ8/P9KnT6/ZOIkoYTCwILJwcrBapEiRj66Xg+PwBxAGRYsWxW+//Rbmdn9//zBZCjmDXrlyZVgK489Hgq4OHTpE63Fnz57FsGHDQi9LKZVkhpIlS6bOBJ84cQK+vr7xMuYXL14gSZIksLZm8po+z48//hgaVNja2qJp06bw8fGBTqfDlStXsHfvXpXFIyILoSMii7J9+3ad/OobtpkzZ0Z5f7nd+P7htzZt2ui8vb2jvM/Vq1dDn8/Pz0/3zTff6HLmzKlzcnLSOTo66nLlyqX78ccfdQ8ePIhwDG/fvtVNnz5dV7VqVZ2np6fOzs5OlyJFCl3x4sV1gwYNUvcZOHBglGMIP46o3Lp1S/f999/r8uTJo3N2dtY5ODio99iyZUvdgQMHwty3fPnyUb6mfN5R+eeff0LvK6/1/Pnzj+7z8uVL3bZt20Ivy2f+qfdqYPzdyGe0e/duXeXKlXVubm7quidPnoTe9/jx47p27drpMmfOrL4XGU+BAgV0w4cPj3Bc165d03399de6rFmzqvvL55QmTRpdqVKldN99953u7NmzH+1L8nl5eHjobG1tdUmTJtVlz55d16xZM9348eN10RV+/4uO169f68aOHasrW7asLlmyZGofSpUqla5Jkya6vXv3hrnvL7/8Evr8GTNm/Oi5zp07F2YMvr6+obcFBwfrZs+erfbVlClThu6rtWrV0q1du/aTv4/R3UfF48ePdYMHD9YVLlxYfZ/yWvL5N2zYULdp06ZP/i7LZzJs2DBdtmzZdPb29rq0adPq+vTpo66PLvksDc9n+F0MT/aD8O/L+Pcmou/wc/5OxOQ7jujzePXqle7XX39V+798HpkyZVKf75s3b6L9eRBZOgYWRBZGy8BixYoV6iAhsvvJgU34g9FHjx7pihYtGulj3N3d4zSw2LlzZ5iDpfCbtbW17q+//oqzwEKey3BfORA6dOjQJ8f4uYFFyZIldTY2NmHuZwgsJkyYoA72I3s+Hx8fnb+/f+jz3rt3Tx04RzWGiRMnht7/U9+Pl5eXLr4Ci/v376sAKarvdMyYMaH3v3z5cpjbwx+UDhgwIPQ2CYyMA8AqVapE+T579+4dJ4GF/J6kS5cuytfq2bNnlL/LZcqUifBxrVq10kWXq6tr6OOaN28e7aAkqsDic/5OxPQ7jujzqFSpUoSPrVevni4kJCTanwmRJWMpFJGFk5meHj58GGGJlNRES9nTH3/8oZqHDx8+rG7LnDmzaig2lEyVLl1azWYzYsSI0Md36dIFWbJkUf9Onjw5rl69ii+//BKvXr1S1+XOnVs1doaEhGDevHmqlOj27dto3LixahSX3gzRqlUrHDp0KPR5pSG0Vq1aqs/j2LFjOHDggLq+WrVqcHFxwcSJE1UJhpASL+O+BBlHVJ4+fYpGjRrhyZMn6rKUCbVr1w5ubm6qh0LGKOP9/vvvVe+EzJAln4P0kvTt2zfC8jLDZxCZQoUKhf5bSsnk85ZSkmLFioW+Rt68ecM8pnnz5upzl8/bMNaqVauqzyAq0qfh5OSEr776SjWJy+cnn7OUq/To0UO9N1GiRAnUqFFDzfL177//qv1DSrZat26NTZs2qfssXbpU1dALKduSz8nDwwN37txRdfW7d+8O89ryvRhUqVJFNdlLKZY09Uqpl2G/iA+yDx0/flz9W5qLpf8lXbp02LNnj9r/5X1/99136juTfVm+M+kLkokKxPz581GyZMkI+2nkfRvIc2zZskX9WxqY5XvKli2b2p//++8/VR70999/q+9VxvC53r17p353DCVI8h3Ke5T3JP0Mp0+fVtf/888/av+S7y0i8rnL88j+Jr+Dhhmp5N9S6pgmTZpPjkWef+fOnerfCxcuxLp169RnJdcXL14clSpVUp95dMXm70RMvuOIbN++XT1PhgwZ1P4t+7FYtWoV5syZE+nnSERGtI5siChhhT9DGt0z7cZnyeVsY3hypjWqx0tpjPFZXik7MLhz506YM+krV65U1588eTLMc0o5SVBQ0EclEzEpsYjK6NGjw7zeunXrwpyhd3FxCb2tfv36YR4bkyxQeA0aNIjyu8iXL1+YUqjIypwiYnwf+YyPHDny0X2kdMZwnwoVKqhyHoODBw+GGcuJEyfU9X///XfodZ07d/7oOaV06u7du6GXDaVXshlnPiL7HuMqYyHjNb5/+M9R9inDbfI5GMyaNStMNuXdu3cffR7yed6+fTs0s2ac8ZkxY0aY1+nWrVvobQULFoxVxmL58uVhHiPZJuOsifF3nj9//kjP0Pfq1StMGZzxbatWrdJFh5QGStlQZPuulDB9++23uhcvXkTr9/Rz/k587ncc/vOQkj+DgIAAVcJmuK106dLR+jyILB079ogoQciZQwNp5pRsgGHKUDkzGhwcHHq7nEEX4ZuWZUpXmWnJmGRP4oqc0TdImTIlatasGXpZps80vmx839havHgxRo0apaaPjcjJkydVlsZwBvVzyfiNMyQRfTcyHbGcBTZ8N5I5MWb4buSsr9wuJk+erM7Cy9leaUSXM8TSyOvl5RX6uLJly4b+W7IttWvXVk3uU6dOxeXLl+P0e4zsvQk5g248Xa2cYQ//3kSTJk1Cz7Tfu3cP27Zt+yhbUb169dCz+pI5k0yCQfv27cO8zoQJE0JvkzPrL1++/Oz3FH7fMz6TLr9XzZo1C7PvRPZa3bp1CzNpgDFDJuxTZP+Q9y4TDoT/3RSvX79WU1Abv1Zc/5343O84PNl/DSRLWbdu3dDLR48ejdb4iSwdAwsiCzdz5kxVohF+k1KVuCQzHEWXocQm/GMyZcqE+GT8esYHxRFdF90Dr+iQA7IffvhBlYFcunRJlV3ImiAS3BgfoBkfnH6OnDlzxtl3IweUUtYj5WeGA6+5c+diwIABKoCRMhQJUoxLoaTESjx69Egd7Empztdff63KhaR8zFCKFZc+570JZ2fnMAfoUg4l4zNeT0SCh895Hfn9ks/gcxm/lnz+MtbI9lN5LSnxi4hxICulhcZi8l0UKFBAlWDJ60g50ciRIz/6+yElddH5jOLi70R0HhMROXkQ2ecopVlv3ryJ9usQWSr2WBBRgjDub5C66agWNjNMdRu+J0IOvI0PtuNzjHKWOjzj66SvID5kzZpVbdIHIXXu8m/DQagEHbER/gDU+H3fv39f/VvWJJCzz5GRBfsMJOMggcH+/ftx5swZNT7JVshP6cto06ZN6DS80q8jZ9olO3Hw4EF1H6mRX7lypTrTL1kb6esw7lmIC+H3IVnEUM6CR4eMZfr06erfy5cvV4GG9JAIWcPF+Ix2+NeRev6oehRk9frPZfxastaJ9KoYf7fG+6mcsU+aNGmEz2OcYTBkn2JD+nckoJCtX79+am0WWaPFQL5z6buI778TMfmOjcnvgPFaG8afo6zXEz74IqKPMbAgogQhB6RyQGlY80IaNKWB2JgcYK5evTr04EMOco3JgYoc4EmZjYEcuMoK1REdLMW03ETGKAe4hjOb69evDy1/koMOuWx837ggZ+6l2VYOYsMHTXIwY/xewx8gxua9GpP3Imecxd27d1WwIKUgxuSMrTQgG963HGBLyZSc1ZXSE9mENIQbyq1kcT8JiqSpW9bjkCZ0Q+BkIEGMNMcash5xHViE/54kIDBMPGBMAqPwWSgp98qePbsqyQkICED37t1Db2vZsqVq0DaQfVY+D0Opjnw30uQfnjRIX7hw4aPPNzbvafbs2aHvSb4nwz4sZGE6OeCPL998841qpJZJBsIHJ4ZslkFkAU5s/07E5js2JpnCn376Sf07MDBQvYZBdBa6JCIGFkQWL7JZoeSMaqdOneL0AGTSpEmqpEdKF6R8QhbTkjOEctZVZh2S0hkpp5DMhGQE5EBUegsMNdJr1qxRB0pynRx0y4GCzNxjPH7jg5C1a9eqM6dyoCFbVGc/hZxhl+DFkCGQAyYpd5GDQCmFkXEKOYCSs/VxQQIWWWTs559/VrPpyAGMlGQYDmyMz5rKGX1j8l4lAyBmzZqlztJKX4DMaiQz6URXnz59VOZAymbk+eRMsMyOJUGDHFBLZkFm/pEz44Z6fvnc5eBagj+ZqctQ/y4rtBvIgbfhoFZKneS5KlasqMYtZ5n9/PzC1L9H58AzPNknIlrgUcjnJ/uLzJi1efNmdZ3MfiUBonzOsjCgBKZSd3/u3DnVwxM+mJVAp3///urfsl8aX29M3o/sK9IzIn7//Xc1i5oc9Mq+KjMZSWZHAi/Zz6Q/43NJf4r0REiAYvjdkpnT5HOVANF4sUbJnMQn+YzHjRunvn8JLqSsTb53GZtx2ZiUMUqQFh9/J2L7HRv88ssvqo9JTlQsWbIkzN+VuPxbSGTWtO4eJyLTnBVKZpaJy1mhDLPZyKJrn3pt45lxHj58GK11LAxkppiI7pc7d+5ofT6yjoUs3BbVfPh//vnnR4/73FmhPrVOiGGrWbNm6MxEES2uZ7zVrl07RjNHCVmgLqp1LAybwYIFCz55X+M1G3LkyBHlfZMnT64W3IuO6HxexvuRzOgV1RoHUX0+MutT+LU/ChUqFOG4ZOajT61jEX4WpPhcx0JmY4pqX4uLffhTa9gYZobaunVrtGdv+5y/E5/zHYf/POT3JrLfJ65jQRQ9zFgQUYJp0KCBKvsZO3asOrsoZxyldEPOVMvZTDmTKPcxbiqVMhqZ9UXKPWSefCmpkXIGOTMvMwnJGhLG6tWrp86gjh8/Xp0RDwoKitEYZf0CGePo0aNVNkfGKKUXqVKlUjMbyRnVT9WJx4TU7UuGYuvWreqMtpR/SBZDxi1nwfPly6fKQeQst5x9NSalOfJZyGcjZUfGsxLFlMzaI+9dvhs5IyxrJMgY5POXpm+5TWZKMpDvavjw4epMsJzllTHLdylnkGXMMsOOjNlAGnplDQw5sy5n7yUrJOVCsmaAlFHJOiDGJW1xST5fmbloxowZqpxLZkqSz00yCXImXDIeUvIWUW+JnImX7IJxZiWyci3JzmzcuFGdqZdG9iNHjoS+T3meggULqrVGJBMWW5Ilkt8F+b6klEzKteQsv5TTSZO8rCPzqXVN4oK8X1m7Q2bNkjHIfiCZBulHkO9TMlSS3TMuf4uPvxOx+Y4NJNsms7NJo7msryLfmezDkrGKix4UIktgJdGF1oMgIiIiSkhSPmgcJPJwiCj2ON0sERERERHFGgMLIiIiIiKKNQYWREREREQUa+yxICIiIiKiWGPGgoiIiIiIYo2BBRERERERxZrFrWMREhKCO3fuqDnwOS81EREREVHkpGvi2bNnam2X8OspwdIDCwkqZLEcIiIiIiKKHlk4Ml26dFHex+ICC8lUGD4cNzc3Tcbw9u1btQKtrIoqK7KS5eK+QIL7ARlwXyAD7gtkKvtBYGCgOilvOIaOisUFFobyJwkqtAwsnJyc1Ovzj4Vl475AgvsBGXBfIAPuC2Rq+0F0WgjYvE1ERERERLHGwIKIiIiIiGKNgQUREREREcWaxfVYEBERkfkKDg5WdemJnbwHW1tbvH79Wr0nskxvE2A/kN4NGxubxB9YyJy4AwYMwPLly3H//n0ULFgQ//zzD4oWLRrpY3bs2IHevXvjzJkzqkP9l19+Qdu2bRN03ERERGR6c+3fvXsXT58+hbm8n1SpUqlZLLnuluXSJdB+kDRpUvU6sX0NTQOLjh074vTp05gzZ45adGPu3LmoUqUKzp49i7Rp0350/6tXr6J27dro0qUL5s2bh61bt6rnSJ06NapXr67JeyAiIiLtGYIKT09PNYtOYj8YlwV9nz9/DhcXl08uSkbmKySe9wMJXF6+fKlO8As5pk6UgcWrV6+wdOlSrFy5EuXKlVPXDRo0CKtXr8bEiRMxbNiwjx4zadIkZMqUCX/99Ze6nCtXLvj6+mL06NGJJ7AICYbVdV+kfbwPVtfdgMzlAOu4ST8RERFZIikRMQQVHh4eMJcDyqCgIDg6OjKwsGAhCbAfJEmSRP2U4EJ+h2JTFqVZYPHu3Tv1h0A+qPBvToKFiOzbt09lNIxJQNGrVy8kCmdXARt+hG3gHRSRy9cnAm5pgBqjAJ96Wo+OiIgoUTL0VEimgohizvC7I79LiTKwkNX7SpYsiaFDh6rMg5eXFxYsWKCCh6xZs0aa5pT7GZPLsiKgZEAMEZexN2/eqM1A7mv44BKyucvq/BrYLG0nSScYJ2d1gf7A4tYIbjwTupx1Emw8ZBoM+6A5NBrS5+N+QAbcFz6PfF5S0iGbnOE1B/JeDD/N5T2R6e4Hht+fiAKLmPw90rTHQnor2rdvr/op5E0UKlQIX375JY4cORJnrzFy5EgMHjz4o+tlefQEO7OhC0G1M71hEy6oEFbQQXaZoFW9sdlPrmC60xJt3rxZ6yGQCeB+QAbcF2JGZs2RxlOpRZeyEXMiE90QPYvn/UB+b+Qk/a5du1RVkTHpwUgUgUWWLFmwc+dOvHjxQmUSpGHkiy++QObMmSO8v/zRuHfvXpjr5LIscx5RtkL0799fzSJlIK8js0lVq1ZNPS4hSE+F7fHHkd8uKai3j1E7T1LovMskyJjINMhZADmAqFq1qprujSwT9wMy4L7weWQqTpk1Rxpcw5dYJ1Zy9lgOJpMlS6Z6Uhs0aKD1kEyWnECWnt2jR4/G+2vJxEHffvstTp48qU6Kx/dr697vB1LpE9MJCeQYWI6x//e//0Xrd0iOpaXvOfzvkKHaJ9GsY+Hs7Ky2J0+eYOPGjfj9998jvJ+UTq1bty7MdfIHWK6PjIODg9rCkz/YCfZH+9WjaN3NVu7H/5FYpATdH8lkcT8gA+4LMSM9m3LQJc2tsWlwDQ7R4eDVx7j/7DU8XR1RLFNy2FjH3+xSDx48wK+//oq1a9eqE6USROTPn19dZ3xsE9v3FRcqVKigTgYLe3t7pEiRQlWatGvXDo0aNUqwccj3LMsUGAdaffv2VQf7CfEZ9evXTy11YPj9NBzsx9drh7wvfzLs3zEhn4ucrJcT7JGdtDeQ55bXiOhvT0z+FmkaWEgQIZFYjhw5cPnyZfUB5MyZU+2khkjr9u3bmD17tros08yOGzcOP/zwgyqh2rZtGxYvXqx+IU2ai1fc3o+IiIji1IbT/hi8+iz8A16HXpfa3RED6/qgRp7YTcEZmcaNG6sSlH///Vcd+ElwIWfEHz2K3gnJhNapUycMGTJElcrcunVLHeA3b95crSc2ZcqUOAkMP4dkqmSLbzK5kJ+fn/retBYUFKQCvKhI8CeTHMlsq3/88UeCjEvT8DcgIADdu3dXwUTr1q1RpkwZFWwYIiN/f3/cuHEj9P4y1awEEZKlkIhepp2dNm2a6U81611KP/vTRx0WRpw89PcjIiKiBA8qus49GiaoEHcDXqvr5fa4JtPj7t69G6NGjULFihXh7e2NYsWKqZOq9epFPlOklHw1a9ZMLWiWPHly1K9fH9euXQtzHzk2kolxpKRFjrEmTJgQepvcVw7iFy5ciFKlSqn75MmTJzQbERXpTZWy9HTp0qFEiRJq7JMnT8bUqVOxZcuW0IWM5fmNFyo8fvy4us4wzlmzZqnxr1q1Cj4+PqqyRI73Dh06pMoA5YDY3d0d5cuXD1NilDFjRvWzYcOG6vkMl2W5ggIFCoQ5yy8BkIxTnltu27Bhw0efwbJly9RnL+9LjitlAqGoyGcm44uo3E76hjNmzKjGLcGWcU+ETCIkGRWZylUeK8e78l4NDJ+HsRUrVoQpfZKSK3kf8t3K8bBhDEuWLEHevHlVGZNMtSyzp0r5k0HdunXVuBOKpoGF/GJI5CcfuAQRko2QL8T4g5YdNHwq7tixY+ox8thEseq2rFMhU8oqkQQXL58AJxYk5KiIiIjMklr0K+hdtLZnr99i4KozaiKVj57n/c9Bq86q+0Xn+Qyz+ET3LLscQBrPXvmpHhw5mSr19hKU7NmzRz1HjRo1QpvWZQFhKaUaPnw4zp07hxEjRmDAgAEqK2JMqkT69Omjjqmk7EoOQD8nU9KmTRtVwiUH6TEhDcESmMiB8pkzZ9RBtxyMy/NJZmD//v3Ili0batWqFXqQbjgYnzlzpjpuND44N/bPP/+ok89//vmn6oWQz0yCtUuXLoW5388//4zvv/9eBT7Zs2dXEwiFb1w2Jp95kSJqwYAw5HhUvsc1a9aoTYK03377LfR2qbSRPhn5DiRQktlPZUyPH0fefxsRqe6R55HPWsYsn4GMWap45LuWY2YpSzPeByVYlexS+OAzvphEj4VFkHUqms1W61gg8M6H693SAkm9gRt7gZXdgYBbQPkfpZhOy9ESERElWq/eBsPn141x8lxyiHY38DXyDtoUrfufHVIdTva20ZrJSk6gSnmRLAAs/Qpyhl7OdufLly/CxyxatEidjZeDccPZbDnIlrPdclApE9MMHDhQHVQb+h7k7PbZs2dVZkEO2g169OgRWtIjpTJyRn/69OnqIDgmpHxJDspjeuAqQZJkUiRTYFCpUqUw95HyKnlvcqBep04dpEyZUl0v10nmJDISUPz444/qsxQSwGzfvh1jxozB+PHjQ+8nQUXt2rVDMwK5c+dWB++S5YnI9evXkSaNVKCEJd+JfJeurq7qcqtWrVRJmwR3kj2Qz1dur1mzprpdMjxSfSOftwR40SXBo7QHGD4HCVIkEJLvWjJeQrIXxgzjlbEbMjzxiXObJnRw0es03n21Aoe9u6qf6HUKaLcOKPN+5qodI4FVPYBgzmFORERkzuTA/s6dO6okSLIOEhxIgCEHoRE5ceKEOvCVA1hDxkPKoWRGHzlrLgex8rNDhw6ht8s2bNgwdb0x4+ZwCXLkTLyc9f4ccoY8pjMWSX9A+ABKekwk0JJMhVSwyOydMoWwcVn8p8gMRvKZli5dOsz1cjn8+zN+fZmZ1LD6dGRkOtaIyqDkgN0QVBiey/A88rlLEGU8Hin5l0xCTD9vCR4MQYWQoKxy5coqmGjatKkKWGQiJGOGWVNjMmVsbDBjkdCsbdSUsrfPBCK/TC0rZVKiykDAPR2w7nvg2Fzg2V2g6SzA4cOOSkRERJ+WxM5GZQ6iQ2aBajsz4pIaY7PaFVWzREXntWNCDlSlbl82KVnq2LGjyjpI72l4cpBduHBhVe4Unhxwyu1CDjCLFy8e5vbYrKb8qcZrKTEqWrSoumxowDYux4logTU54A0fjEhGRcqxpJRJDqKlP0ICoPham8R4tiPDWKJahE56P8IfuId/HsNzxWQxO/nMwpfQRfSZyQyq4b9TyXzs3btXrc82duxYVd514MABlakShnIr44AkPjFjYUqKdgCazwdskwCXtwAza+kDDCIiIoo2ObCTcqTobGWzpVSzP0V2vl2ul9vlftF5vpieuQ9PmpmNm2+NSTZDDuKlH0Hq9I03OcPv5eWlSl+uXLny0e2GA00D6WEwkHIaWZxYGr5jSvoG5GDbUFZlOICV+n8D6QeIDukZkSZn6auQsiQJLB4+fPjRQbwEM5GRLId8BvJc4Z9bPtvYKFiwoCori+mabfb29mHGI0GD9IcYxiOfmfSRGH/v0f3MZH+TbIiUckm/jLyWzNZlcPr0afWZyeeZEBhYmJocNYG2awGnFMDdk8C0qsCDC1qPioiIyCzJOhUypawIHxIYLsvtcb2ehZyZl56CuXPnqgbjq1ev4r///lNreclMTxFp2bKlOmsut0sjsTxGyqfkYFwadIUcYI4cOVItinbx4kWcOnVK9WH8/fffYZ5Leg3kAPT8+fNqhk4JDqQJOCpSTnP37l31WhKYSB+DLAXQtWtXNbuSkCBGFiKWmZokCJLZPKXnIzqkBEpmV5ISITnrLu83/ALIUnYk/QsyjoiyB0L6FqSvQnpSLly4oNaekAP1nj17Ijak4Voay2PC2dlZfT4yJuljkcBEyr3ks5SSNSHZJZmZ6qefflKlU/Pnz4+0HM6YfEbSnH/48GFVLiZN3bI2inGAKPtJ2bJlI11IOq4xsDBF6QoDHTcDyTMDATeA6dWA63u1HhUREZFZknUqJn5VCKncw9bPy2W5Pj7WsZDeBzmgHD16tFrtWKZ8lVIoOeiUWTIjIgefu3btQoYMGVTDrhxAysGp9FjImXohpVTS3C3BhNTeS0O4HKSGz1jIrEWySZ2+HCxLn4cELVGREivpH5Cz8PL6cpAsB+/G09nK2fEFCxaogEV6GOQAX3o8okOamSVYkMyMNEAbpmg1JkGKlP9I8CIZhIjI42RROJn1Sj4DOaCX9yeBS2xIoCMzWEmwEhO//fabyujIe5L3Jn0ysryCzKYlpE9GAkxZBFrGK5+fBGafIt+57A+S4ZEGelm4Tz4fQ5O4kKlmZZ9KKFa66M6LZiakqUfShbKGhuGXMKFJCkx2HtkRolzN8MVDYEFz4NYhwMYBaDQZyN0wIYdKprIvkFnjfkAG3Bc+jxxYy9l74/n9E8PK21GRGn05ZpFjlbhc1Vlmb5LPScpmjNd+oOiRzIN8LzLLlqnvB+vXr1fBlWTEpEH/c3+HYnLszIyFKXNOAbReBeSsAwS/Af5rC+z7ME0aERERxR0JIkpm8UD9AmnVT62CCjJd0hwtjeUxac7WivRsSObqU0FFXGJgYersnfTrXxT7Wn9540/A+n5ASOSNS0REREQU92QNDemFiMssUnxp0qTJR7ODxTdON5sYyJS0NX8H3NMDmwcAByYCgbeBRlMAu4RpxiEiIqLET5qfLawKnhKQ6YdbpCfT15X+Fmg8HbCxB86tAmbXB17GbDl4IiIiIqL4wMAiscnbBGi1HHB0B24eAKZXBZ5c03pURERERGThGFgkRhnLAO03Am7pgEeXgWlVgNtHtR4VEREREVkwBhaJlWcuoOMWwCsv8OIBMKs2cHGT1qMiIiIiIgvFwCIxc0sNtFsHZK4IvH2pX/PiyKdXaiQiIiIiimsMLBI7Rzeg5X9AgZaALhhY3RPYNgzgjA9ERERElIAYWJgDGzug/nig/I/6y7v+AFZ0Bd4FaT0yIiIiMhGDBg0Ks9p227Zt0aBBA03Gcv78eZQoUUKt8hybFcCtrKywYsUKmIILFy4gVapUePbsGUxFUFCQmmL48OHDCfJ6DCzMaTraij8B9cYCVjbAiQXA/KbA60CtR0ZERJQ4yOKzV3cDp5bofybAYrQ3b95E+/btkSZNGtjb26tVnXv27IlHjx7F+2v/888/mDXrQwl1hQoV0KtXLySEgQMHwtnZWR2Mb926NcL7PHjwAF27dkWGDBng4OCgDtqrV6+OPXv2wBT1798f33zzDVxdXdXl169fq+Atb968avXrmAZxZ86cUYvc5cuXDzY2NhgzZkyE9xs/frwKHiRIkwXxDh48GHqb7FPff/89fvzx/cnneMbAwtwUag20WATYOQNXdgAzawKBd7QeFRERkWk7uwoYkwf4tw6wtIP+p1yW6+PJlStXUKRIEVy6dAkLFizA5cuXMWnSJHWgXbp0aTx58gTxyd3dXa0krQU/Pz+UKVNGBVIeHh4R3qdx48Y4duwY/v33X1y8eBGrVq1SwU9CBF0xdePGDaxZs0YFEgbBwcFIkiQJvv32W1SpUiXGz/ny5UtkzpxZBWESVEVk0aJF6N27t7rP0aNHkT9/fhV83b9/P/Q+LVu2hK+vrwpU4hsDC3OUrSrQbi3g7AncO62fjvbeWa1HRUREZJokeFjc+uMTcYH++uvjKbjo3r27OqO8adMmlC9fXp2Zr1mzJrZs2YLbt29j6NChUZb8SFBgnHGQs9LZs2eHk5OTOiAdMGAA3r59G+nrG5dCyb937typshjyWrJdvXoVWbNmxZ9//hnmccePH1e3SyAUkZCQEAwZMgTp0qVTmQYpddqwYUOY93LkyBF1H/m3lGiF9/TpU+zevRujRo1CxYoVVQBSrFgxlRWoV69elBmgZs2aqc8mefLkqF+/Pq5dC7ve17Rp05ArVy51hj9nzpyYMGFC6G1yXxnTwoULUapUKXWfPHnyqM8mKosXL1YH9WnTpg29TjIyEydORKdOnSINDKJStGhR/P777yrAks8xIn///bd6/nbt2sHHx0cFpvL9z5gxI/Q+yZIlU4GqvKf4xsDCXKUpCHTcDHhkAwJvAzNqAFd3aT0qIiKi+CcTmAS9iN4mJcPrf5AHRfRE+h8bftTfLzrPF83JUx4/foyNGzeiW7du6qy2MTkIbdGiBZYvXw5dDCZjkRIcCTTOnj2rAoSpU6di9OjR0Xqs3L9kyZLqINXf319tEuhImdbMmTPD3FculytXTgUdkT3XX3/9pQKSkydPqjPoEgxIZkbIc+fOnRt9+vRR/5ZSnfBcXFzUJsHUmzdvovUeJIiS15LPQYISKZmS56hRo4bqNRDz5s3Dr7/+iuHDh+PcuXMYMWKECsAkK2Ksb9++anySMZHPpW7dulFmSuT1ihQpgoQk70kCNONsiLW1tbq8b9++MPeVoEzGGN9s4/0VSDvJMgIdNgELvgRu7gfmNAIaTATyNdV6ZERERPFHpmAfkSaOnkynz2T8lj56d//pDmDv/Mm7yUG2BA1y5jwicr2ctZc+g+ie7f7ll19C/y0193LALmepf/hBAqdPl0VJ9kTOdhu/nmQy5EBc6vbl4FQO3ufPn/9RFsOY3CbZk+bNm6vLknXYvn276hGQfgB5fuk5kIP+yN6b3C5BkgQ6cha+UKFCKqsjzyk9B5GVBUm2RDISknUwBEGSvdixYweqVaumSoYk6GnUqJG6PVOmTCoQmzx5Mtq0aRP6XD169FCZAiFZB8m4TJ8+PdLP8vr16wkeWDx8+FCVW3l5eYW5Xi5Lc7wx6eGRMcY3ZizMnVNyoPVKwKc+EPIWWNYR8B3N6WiJiIhMwKcyEnKwH11yYC0lL3KwLgftEmhI7X9syAFp7dq1Q0trVq9erTIITZtGfJIyMDAQd+7cUeMwJpclQxATcmAvzyW9FZJ1kOBAAgzj8i9jJ06cUOVZkrEwZDykHEqaqKWn48WLF+pnhw4dQm+XbdiwYep6Y5KlMA5yJGiIavyvXr1SZVMxId+N8TgMm2RR4ppkxaRnI74xY2EJ7ByBJrOATb8A+8cDWwYBAbeAmr8D1jZaj46IiChu2TnpMwfRcX0vMK/Jp+/XcgngXSp6rx0NUkYkZ9XlYLVhw4Yf3S7Xp0iRIrS5Wu4bPggx7p+Q0hdp0h08eLAqB5IMhGQr5Ox8bHXs2BGtWrVSZVWSAfjiiy9UZiMhyMF61apV1SYlSzIWyToYN0kbPH/+HIULF1blTuGlTJlS3S6kRExmTzImsy7FhnxXT2LYbC9Bm/SrhCfBUHRfU8Z97969MNfL5fCZICm9k88gvjGwsBTW1kCNEYB7OmDjT8ChafqmtMbTAPuE+eNARESUIKQMJhrlSEqWSoBbGv3/EyPss7DS3y73i8OTcTITkhwsS+Pwd999F6bP4u7du6rcSM6sG8hBofQjGJdSGZ+B3rt3r2pw/vnnn0Ovi2npi2RHpLQmvFq1aoU2IktJ0K5dkfdsurm5qQNm6W+Q0iUDuSylVLElDcqRrVsh2QzJ2nh6eqpxhCfBloxNZuOSICwq+/fvV30k4t27d6qXQcqjIlOwYEFVUhUTkgmJrE8lut+XBFIyi5ihCV9KweRy+LGePn1ajTG+sRTK0pTsBjSdBdg4ABfWAv/WBV481HpURERE2pBgocao9xf0dfkfvL9c47d4yfCPGzdOlRVJhkEO1mVGIzlwl4BDZncyruevVKmSur80E8tiZ126dIGdnV3o7dmyZVOlNZKlkLKe//3vf6r5OyakL+PAgQNqZiSp35eDVCFnxSVDIDMyyesYlwlFRBqfpa9CDvJlnYp+/fqpM/OyPkd0SaO0vOe5c+eqBnCZoeq///5TsyTJTE8RkWBBzuLL7dKoLI+R8imZ7vXWrVvqPpLRGTlypPp8ZArbU6dOqSyMzK5kTHpB5POTXgWZvUuyEdLIHhn5Dvft2/dRYCbBhrx3yRgEBASof0eUpYisOVvuK2OUf8tMYXLZeDYumWpWMjDSfC5ZLln3Q0q+ZJYoY/J5SI9JvNNZmICAADkdoX5qJSgoSLdixQr1UzPX9up0v3nrdAPddLp/Cuh0Dy9rNxYLZhL7AmmO+wEZcF/4PK9evdKdPXtW/fxsZ1bqdH/l1P9/0bD9lUt/fTy6evWqrk2bNjovLy+dlZWVOkZp1KiR7tmzZ7onT57ogoOD1f1u376tq1atms7Z2VmXLVs23bp163Tu7u66mTNnhj5X3759dR4eHjoXFxfdF198oRs9erS6j8HAgQN1+fPnD70sr1u/fv3QyxcuXNCVKFFClyRJEjUOGZuBn5+fuu7333//5HuSMQ8aNEiXNm1anZ2dnXrN9evXh7mPXCfjiczr1691/fr10xUqVEi9BycnJ12OHDl0v/zyi+7ly5eh95MxLV++PPSyv7+/rnXr1roUKVLoHBwcdJkzZ9Z16tQpzHHfvHnzdAUKFNDZ29vrkiVLpitXrpxu2bJlod+HPOf8+fN1xYoVU/fx8fHRbdu2Lcr3/PbtW12aNGl0GzZsCHO9t7e3er7wW3QYxhJ+K1++fJj7jR07VpchQwY1Vhnz/v37w9y+d+9eXdKkScN8bjH5HYrJsbOV/AcWRJqKJBUmUWNEabKEIDWR69atU6lF47MNCe7BRWBeY+DpDcDJA2ixGEiXsDMaWDqT2RdIU9wPyID7wueR5lw5Oy0z/MS0gTYMWWlbei6e3wNcvPQ9FQnciyj9A3L2XKailbIfOVaRKUS1Jme8K1eurLIq4WchMieSrZH9SDJDsv5GTIwfP141mst3F1ckayTHrrHZD6QnRtbY+Omnnz7rdygmx87ssbBkKbMDHbYA85sB/seBWXWAJtOBnLW1HhkREVHCkyAiU1lNhyClOoaSJFm8TWtSqiVT3soidjITlDkHFbHVuXNnNUXws2fP1MxUpkBKqPLmzav6eBKC9iEwacvVC2i7FshaFXj3Clj0FXBwqtajIiIislhSHy/9CKaQqViwYIFqCpcDZulvoKibsX/++WeTCSoMDd4y7XD4RRjji/Z7LGnPwQX4ciFQqDWgCwHWfQ9sHij5N61HRkRERBqSpm1pSJZZkdKmTQtzJ9ki6RKIaRkU6TGwID0bW6Du/4CK71ft3DMGWNYJePdG65ERERERUSLAwILCzvtdvi/QYCJgbQucXgLMbQy8eqr1yIiIiIjIxGkaWEhqTVZRlA50qf3KkiULhg4dGuXy9jIfsaw+GX6TxWQojhRoAbT8D7B3Ba7tBmbUAJ7e1HpUREREUTKsu0BE2vzuaDorlCyeIqs4yqIeuXPnVgu+SMOSTGkli5lERRZcMZ7ySlZZpDgkK4y2WwfMawo8OAdMr6oPNlLl1XpkREREHzWoSqPznTt31ArVcllOOib2Az2Z0UemATWFJm4yz/1Ap9Op55eZv+T55Xcn0QYWsvy8rI5Yu3bt0IYZmX3g4MGDn3ysBBJJkyZNgFFasNT5gI5bgHlNgAfngRk1gS9m64MOIiIiEyEHRFL94O/vr4ILcyAHfK9evVIVHYk9SCLT3w+cnJyQIUOGWAcvmgYWpUqVwpQpU9SS6rJ0/YkTJ+Dr6/vRsuoRkW59mVs5T548am7l0qVLJ8iYLU7S9ED7DcDCr4DrvvoMRr1xQIEvtR4ZERFRKDnTKgdG7969U6XW5rBY4q5du1CuXDkulmjB3ibAfmBjY6Omyo2LwEXTwKJfv35qNT9ZAEbelPwhGD58OFq2bBnpY1KnTo1JkyahSJEiKrCYNm0aKlSooBaSKVSo0Ef3l/vIZiCvZ/iiZNOC4XW1ev0Ys3UBmi+CzeoesD67HFjRBcFPriOkdG99wzdZzr5A8YL7ARlwX4gbckxhDiUwEiTJezGH90OmvR/Ia0QmJn+PrHRRdUrHs4ULF6Jv3774448/VI/F8ePH0atXL5WxaNOmTbSfp3z58uosxZw5cz66TbIZsoplePPnz1dpH4oBXQh87vyHbPfXqovXPCrgZPo20FnxDx4RERGROXr58iVatGiBgICAMP3NJhdYpE+fXmUtunfvHnrdsGHDMHfuXJw/fz7azyPBiZRQ7du3L1oZC3ndhw8ffvLDiS8S+W3evBlVq1ZNlOlN68PTYb2xH6ygQ0iWKghuNA2wd9F6WIlSYt8XKG5wPyAD7gtkwH2BTGU/kGPnFClSRCuwsNU6AgrfJCJpnphOeSWZDimRioiDg4PawpMvR+tfVFMYw2cp2QVImg5Y2gHWfltgPbeBfsYoF87MZXH7AsUp7gdkwH2BDLgvkNb7QUxeV9PAom7duqqnQsqYpBTq2LFjqgyqffv2offp378/bt++jdmzZ6vLY8aMUTM/yP1l6i3psdi2bRs2bdqk4TuxQLnqAG3WAAu+APyPA9OqAF8tBVJk03pkRERERKQBTQOLsWPHqgXyunXrhvv37yNNmjTo3Lkzfv3119D7yNRxN27cCL0sc+326dNHBRvSI5EvXz5s2bIFFStW1OhdWLD0RYEOm/Wrcz+5ql/r4suFQIYSWo+MiIiIiCwpsHB1dVUZCNkiM2vWrDCXf/jhB7WRifDIog8uJHNx+wjwbz2g8VTAp77WIyMiIiKiBMSlHCn2XFICbVYD2WsCwW+AxW2A/RO1HhURERERJSAGFhQ37J2BL+YCRTrIvLTAhn7Ahp9kAmatR0ZERERECYCBBcUdG1ug9l9A5YH6y/vHA0vaAW9faz0yIiIiIopnDCwobslK3GV7A42mAtZ2wNkVwJwGwMvHWo+MiIiIiOIRAwuKH/ma6aefdXADbuwDZlQHnlzXelREREREFE8YWFD8yVweaL8BcEsLPLyon472znGtR0VERERE8YCBBcUvr9z66Wi98gDP7wEzawGXNms9KiIiIiKKYwwsKP65pwXarQMylQfevgDmfwEc1a+kTkRERETmgYEFJQxHd6DlEiBfc0AXDKz6Btg+AtDptB4ZEREREcUBBhaUcGztgYaTgLLf6y/vHAWs7AEEv9V6ZEREREQUSwwsKOGno608AKgzBrCyBo7PBeY3A94803pkRERERBQLDCxIG0XaAc0XAHZOgN82YGZNINBf61ERERER0WdiYEHayVEDaLsGcE4J3D2ln472/nmtR0VEREREn4GBRQILDtHhwNXHOPLQSv2UyxYtbWH9dLTJswABN4EZ1YBrvlqPioiIiIhiiIFFAtpw2h9lRm3DVzMOY/YlG/VTLsv1Fi15Jn1wka4Y8DoAmNMQOL1U61ERERERUQwwsEggEjx0nXsU/gGvw1x/N+C1ut7igwtnD6DNKiBnHSA4CFjSHtjzP05HS0RERJRIMLBIAFLuNHj1WUR0iGy4Tm63+LIouyRAs9lA8S76y5sHAOt/BEKCtR4ZEREREX0CA4sEcPDq448yFcYknJDb5X4Wz9oGqPEbUG24/vLBycDi1sDbV1qPjIiIiIiiwMAiAdx/9jpO72cRa12U6gE0mQHY2APn1wD/1gNePNJ6ZEREREQUCQYWCcDT1TFO72cx8jQGWq0AHN2BWwf109E+vqL1qIiIiIgoAgwsEkCxTMmR2t0RVlHcx9nBBoUyJE3AUSUSGUsD7TcB7umBx37AtKrA7SNaj4qIiIiIwmFgkQBsrK0wsK6P+ndkwcWLN8HoOPswnr4MStCxJQqeOYGOW4BU+YCXD4FZdYALG7QeFREREREZYWCRQGrkSY2JXxVCKvew5U6SyehUNhOS2Nlg96WHqD9+Dy7ee6bZOE2Wayqg3TogS2Xg7Utg4ZfA4Rlaj4qIiIiI3rM1/IMSJrio6pMK+y7fx6bdB1CtbHGUzOqpMhoNC6bD13MO4/qjl2g4fg9Gf1EA1XKn0nrIpsXBFWixCFjdCzg+F1jzHfD0JlD5V33DNxERERFphhmLBCZBRPFMyVE4hU79lMvCJ40bVvUog5KZPfAiKBhfzzmCf7ZcQoilr20Rno0dUH8cUKG//rLv38Cyr4F3LCEjIiIi0hIDCxOS3NkeszsUQ9tSGdXl0Vsuotu8o3jx5p3WQzMtkp2o0A+oNw6wsgFOLQbmNQZeB2g9MiIiIiKLxcDCxNjZWGNQvdz4vXE+2NtYY8OZu2g0YS9uPHqp9dBMT6FWQIvFgL0LcHUXMKMmEHBb61ERERERWSQGFiaqWdH0WPB1CaR0dcCFe89Qb7wvfC891HpYpidbFaDtWsDFC7h/BphWBbh3RutREREREVkcBhYmrLB3MqzuUQb50yfF05dv0XrGAUz3vQqdjn0XYaQpAHTYDKTIATy7A8yoAVzZofWoiIiIiCwKAwsTJ9PTLvq6BBoXSgfp4x665iy+/+8kXr8N1npopiWZN9B+A5ChFPAmEJjbBDixSOtREREREVkMBhaJgKOdDf5smg+/1vFRs0gtPXoLX0zZj7sBr7UemmlxSg60Wg7kbgiEvAWWfw3s/gtghoeIiIgo3jGwSCSsrKzQvkwmzG5fDEmd7HDi5lPUHeeLI9efaD0002LnCDSeAZTsob+8dQiwtjcQzJm1iIiIiOITA4tEpnTWFFjVvQxyeLniwbM3+HLKfiw+dFPrYZkWa2ug+nCgxigJyfQrdC9qCQS90HpkRERERGaLgUUilMHDCcu6lUKN3KkQFByCH5aexMCVp/E2OETroZmWEl2AZrMBW0fg4gZgVh3g+QOtR0VERERkljQNLIKDgzFgwABkypQJSZIkQZYsWTB06NBPznq0Y8cOFCpUCA4ODsiaNStmzZoFS+PsYIsJLQuhd9Xs6vK/+66j1fQDePyCK1CH4VMPaL0KSJIMuHMUmF4FeHhZ61ERERERmR1NA4tRo0Zh4sSJGDduHM6dO6cu//777xg7dmykj7l69Spq166NihUr4vjx4+jVqxc6duyIjRs3wtJYW1vh28rZMKVVYTjb22D/lceoN84XZ+8Eaj0005KhuH462qTewJNrwPSqwM2DWo+KiIiIyKxoGljs3bsX9evXV4FCxowZ0aRJE1SrVg0HD0Z+0Ddp0iSV4fjrr7+QK1cu9OjRQz1u9OjRsFTVcqfC8u6l4e3hhFtPXqHxxL1Ye9Jf62GZlhTZgI5bgDQFgVePgX/rAudWaz0qIiIiIrNhq+WLlypVClOmTMHFixeRPXt2nDhxAr6+vvj7778jfcy+fftQpUqVMNdVr15dZS4i8ubNG7UZBAbqz+a/fftWbVowvG5cvn6m5I5Y8nVxfPffSfhefoTu84/i9K1M6FU5q8psEACHZEDLFbBZ3hHWlzdDt6gVQqqNREjRjpoNKT72BUp8uB+QAfcFMuC+QKayH8Tkta10Gi7jHBISgp9++kmVP9nY2Kiei+HDh6N///6RPkYCkHbt2oW5z7p161TW4+XLl6pXw9igQYMwePDgj55n/vz5cHJygrkJ1gFrrltjm78+GZU7WQhaZQ1BEk1DSNNipQtGvpuzkfHRdnX5kmdNnE3zBWDFuQyIiIiIjMnxdYsWLRAQEAA3NzdERdPDzcWLF2PevHnqID937tyhPRNp0qRBmzZt4uQ1JADp3bt3mIxF+vTpVcnVpz6c+Iz8Nm/ejKpVq8LOzi7On78ugJXH7+CnlWdx5gkw5aorJrUsgEwpnOP8tRItXR0E7x0Dmx3Dke3+emRJ4YDguuMBWwez2hcoceB+QAbcF8iA+wKZyn5gqPaJDk0Di759+6Jfv35o3ry5upw3b15cv34dI0eOjDSwSJUqFe7duxfmOrksQUL4bIWQmaNkC0++HK1/UeNzDE2KeiN7and0nnMEVx6+QOPJB/C/LwuiYg7PeHm9RKnCD0CyDMDK7rA+uwLWLx4AzefpZ5BKYKawP5L2uB+QAfcFMuC+QFrvBzF53VjVfrx+/TrWqRVrWczMiJRESYlUZEqWLImtW7eGuU4iObmewsqXLilW9iiNIt7J8Oz1O7SfdQiTdvp9cjpfi5K/OdByCWDvClzfA0yvDjy9ofWoiIiIiBKdGAcWctAva02kTZsWLi4uuHLlirpe1qOYPn16jJ6rbt26qqdi7dq1uHbtGpYvX64atxs2bBimlKl169ahl7t06aJe84cffsD58+cxYcIEVVL13XffxfStWARPV0fM71QCXxZLD4knflt/Hj0XHseroGCth2Y6slQE2q8HXFMDDy8A06oC/ie1HhVZipBgWF33RdrH+9RPuUxERGQRgcWwYcPUgnTScG1vbx96fZ48eTBt2rQYPZesVyFTxXbr1k1NHfv999+jc+fOKnAx8Pf3x40bH84gy1SzEohIliJ//vxq2ll5XZkZiiJmb2uNEQ3zYmiDPLC1tsKqE3fQZNJe3H76SuuhmY5UefXT0abMBTy/C8ysCVwOmxkjinNnVwFj8sB2bgMUuT5R/ZTL6noiIiJzDyxmz56tpoht2bKlKlsykIN8ySDEhKurK8aMGaP6Kl69egU/Pz8VuBgHLBLEyErbxipUqIBjx46paWTlMW3bto3p27A4VlZWaFXCG/M6FoeHsz3O3AlEvbG+OHDlkdZDMx3u6YD2G4CMZYGg58D8ZsCxeVqPisyVBA+LWwOBd8JeH+ivv57BBRERmXtgcfv2bWTNmjXCEinOtWz6imf2UH0XPqnd8OhFEFpOO4C5+69rPSzTkSQp8NVSIG9TIOQdsLIbsGMUVB0ZUVyRcqcNP8r0ZBHc+P66Df1YFkVEROYdWPj4+GD37t0fXb9kyRIULFgwrsZF8ShdMics7VoKdfKlxrsQHX5ZcRr9l51C0LvIm+Ytikw523AKUOZ9386OEcCqb4BgBs4UR67v/ThTEYYOCLytvx8REVEiEePpZn/99Vc1FaxkLiRLsWzZMly4cEGVSK1ZsyZ+RklxLom9DcZ+WRC507jj943nseDgDVy69wwTvyqMlK4Ju5aDSZLZyqoMAtzSAut/AI7NAZ75A03/BRxctB4dJRaScXh6HXh4GXh0CXh4CXh0Gbh7KnqPfx52am0iIiKzCizq16+P1atXY8iQIXB2dlaBRqFChdR1sngHJa6+i64VsiBnKld8u/AYDl9/gnrjfDG5VWE1VS0BKNZJH1wsaQ9c3gLMqgW0+A9w9dJ6ZGRKXj5+HzQYBQ+yPb4CBAd9/vO6cD8jIqLE47MWyCtbtqyalYnMQ8WcnljZvTQ6zj6MKw9eoOmkfRjVOB8aFEyr9dBMQ85aQNs1+mZu/xPAtCrAV0uAlDm0HhklpHdvgMdXjYIHvw//fvU48sfZOgLJswAeWYAU2QCPbEDyzMB/bYBndyPps3jv6Gz9fubChS2JiMj0abryNpmOzCldsKJ7afRaeBzbzt9Hr0XHcdY/ED/WyAkbayuth6e9dEWADpuBeU30Z6GnVwO+XAB4l9J6ZBSXpElfDvYlYJCMg3EJk5Q06aLoQ5LMlkfWD8FDiqz6n+7p9aV14dX8XT/7E6zCBRdGl08tBi5uBCoPAIq0B6w/zMRHRESU6AMLWSlbSmgiExzMWUwSKzdHO0xtXQR/b76A8dv9MGXXFZy/+wxjmxeEu5M2y8ibFDnjLMHF/C+A24eB2Q2ARpOB3B8WdKREIuiFUcbBuP/BDwh6Fvnj7F0iDh5k37B3jtkYfOoBzWbrZ4cybuR2SwPU+E0fqKz9Tp8lW/e9vs+n9t/6IJeIiMgcAgtZHduYTDEra0r8+++/GDx4cFyOjTQg2Ym+1XMiV2o39P3vJHZdfID6431VwJHNy1Xr4WnPOQXQZjWwtCNwYS3wXzv9QWHJ7lqPjMILCQECbkYQPFzWz7gUGStrIKl3BMFDVsA1lTQnxd0YJbjIWRvvruzC8d0bUaBsddhmLvchM9FpO3B4BrB16IcyvMJtgMoDAafkcTcOIiIirZq3w5PVs3Pnzo1FixahQ4cOcTEu0lidfGmQKYUzvp59BNcevUSD8XswpnlBVPVhMynsnYAv5uhnizo0Ddj4E/D0JlB9OEtVtPDq6fuypfDN035A8JvIH5ckebjg4X0AkTyTfsrhhGJtA513Gdw+E4j83mXC7kPyb5lAwKc+sPlX4MQC4Mgs4NxqoMpgoEDLiMusiIiIEnOPRYkSJfD111/H1dORCZCpaFf1KI3u849i/5XH6DT7MHpXzY4eFbPC2tL7LuSAr9af+vr5LQOBAxP1Z8EbTQHskmg9OvMja4g8uRbxzEsvHkT+OBt7faO0ChqMS5iyJa4z/tK83XASULAVsLYP8OAcsKrH+/Kov4BUebUeIRERUdwEFq9evcL//vc/pE3LWYTMjYeLA+Z0KI5ha87i333X8ffmizjnH4g/m+aHs4OF9/5LSUyZXoB7OmB5F+DcKmD2fX1Td2I6aDWlxmkJEsIED+/7ICSokJXQI+OaOoLgISvgngGwMaP9NGNpoMtu4MAkYMdvwM0DwORyQLHOQMWfAEc3rUdIREQWLMb/x02WLFmY5m2dTodnz57ByckJc+fOjevxkQmws7HG4Pp54JPGTa3Svf70XVx9+AJTWhVBBg8nrYenvbxN9OsNLGwJ3NyvnzFKpqNNllHrkZmmt6/eBwyGvgejn28CIn+cnZO+SdqQcTAuYXKwoP4fGzug1DdA7kb6MryzK/QZszPLgOojgDyN47YPhIiIKL4Ci9GjR4cJLGSWqJQpU6J48eIq6CDz9UXRDMjq6Youc4+o2aLqjffF+BaFUDprCq2Hpr1MZYEOG4G5TfQHydJk22IxkLYQLLZx+tmdDyVLoVmIy/qG6kjXbrACkqY3Ch6MMhAyWxIPmD9wTws0+xe4vBVY1xd47Acs7aDvwZDyKK6zQkREph5YtG3bNn5GQolCYe9kWN2jDDrPOYwTtwLQesZB/FwrF9qVzhjlNMQWwTMX0FHWumgK3DsNzKoNNP0XyF4NZut14IdeB+PgQQ5y376M/HGO7hEHD9I4zR6VmMlaGei2D9jzP2D3n8C13cDE0vqZysr/EPNpcImIiOIzsDh58mS0nzBfvnyfOxZKJFK5O2JR55L4afkpLDt6G0PWnMWZO4EY3jAPHO0sfFYkOavebj2wuBVwZQewoDlQ52+gcCIOyIPf6ReHCx88yM/n9yJ/nLUtkCxTuODh/cxLMm2vpQeicUlmsSrfF8jXFFjfD7i4HtgzBji9FKgxEshZh583ERGZRmBRoEABdTZa+imiIvfhAnmWQQKIv5rmVzNHDV97FkuP3sLlB88xpVVheLk5wqJJA22L/4DV3+qnB13dEwi4BVT82bQP7l48MmqaNgQPkn24AoS8jfxxzp4RBw/JvPX9AJRwpK+nxULg/Dpg/Y9AwA1g0VdAtmr6lb4lI0RERKRlYHH16tX4en1KxCSQ7FAmE3J4uaopaU/cfIq6Y30xqVVhFMpg4f02tvZAg4n66Wh3/Q7s+kMfXNT9n/42rbx7ow8UDMGDNFEb/v3qSeSPs3X8MOuScemSNFMnSZqQ74CiI2ctIHMFYPdfwJ5/gEubgCs7gbJ9gNI9ATsLD/6JiEi7wMLb2zt+Xp3MQplsKdR6F7LOxcV7z9F88n4Ma5gHzYqkh0WT7ESln/VNtmt667MXz/yBZnP0WY2QYFhd90Xax/tgdd0NMF5xOTYksyivY7zWgyF4eHoD0IVE/lgJhMLMvPQ+iHBLx4XYEuNCjpUHAPmbA+u+15fm7Rih3w9lDZZsVbQeIRERmZnPnuD97NmzuHHjBoKCgsJcX69evbgYFyUy3h7OWNatNPosPo6NZ+7hhyUncfZOIH6unUtNV2vRpL/CNQ3wXxv9wd3MmvrVlHeOgm3gHRSR+1yfqO/PqDEK8Inm79Cb5x8CB+PgQbIQQc8jf5y96/tpWsMFD8mz6A9GybzId9tqhX462o0/A0+uAvMaA7nqAjV+06/DQkREpEVgceXKFTRs2BCnTp0K03dhmBGIPRaWy8XBFhNbFsbYbZcxestFzNp7DRfuPsP4loWQ3FnD8h9TIDNDtV0LzG+mnzFK+i7CC/QHFrcGms3+EFyEBOunZw1d68Go/0Gmc42MlY2+xyGimZdkFWdT7vWguCfft6xvIb0WsrDe/onAudXA5W36maNKdNO2RI+IiCwzsOjZsycyZcqErVu3qp8HDx7Eo0eP0KdPH/z555/xM0pKNKytrdCzSjbkTO2K3ouOY9+VR6g3zhdTWxdBrtQWviqwrGnRfiMwvlgkq0i/nxxhRTfg5CJ95kH6IYLfRP6cTh5GC8UZLRwnTbw8UKTwZCHB6sOBAi2AtX2AG/uALQOB4/P1a1/IeixEREQJFVjs27cP27ZtQ4oUKdTieLKVKVMGI0eOxLfffotjx4597ljIjFTPnQrLu+v7Lq4/eolGE/bir2b5UStvali0wDuRBBVGgp4B59d8uGxjry9TCl++JJtT8ngfMpkhr9z6aZGl32LTAODhBeDfOkDeZkC1YYCrl9YjJCIiSwgspNTJ1dVV/VuCizt37iBHjhyqwfvChQvxMUZKpLJ7uWJl99L4ZsEx7L70EN3mHcU3lbLiuyrZVWbDIkW17oOxfF8AeZvqg4ekGeKmqZsofHmUZC5y1AS2DgUOzwBOLQYubgAq/QIU6QDYfHYbHhERWaAYd9XmyZMHJ06cUP8uXrw4fv/9d+zZswdDhgxB5syZ42OMlIgldbLHzLZF0amsfv586b/4es5hPHsdxboI5swlmmeCC7YCslXVrzvAoILiU5Jk+kUcO20D0hQE3gQC638AplYAbh7SenRERGTOgcUvv/yCkBD9dJUSTMgaF2XLlsW6devwv//9Lz7GSImcrY01fq7tg7+b5Ye9rTW2nLuPhhP24urDF7A43qX0sz8hsoyNFeCWVn8/ooTuAeq4Faj9N+DoDtw9BUyvAqz6Bnj5WOvRERGROQUWRYoUwaRJk1CyZEk0atRIXZc1a1acP38eDx8+xP3791GpUqX4HCslco0KpcN/nUsilZsjLt9/jvrjfLHjwn1YFMk+yJSySvjg4v1lmQKUWQrSgux3RTsAPY4ABVrqrzs6GxhbCDjyL/D+pBIREVGsAov8+fPjhx9+QOrUqdG6dWvs2LEj9LbkyZOHTjdLFJX86ZNi1TelUdg7GQJfv0P7WYcweadf6LTFFkGmkpUpZd3CNbJLJsN4qlkirbikBBpMANptADxz61dlX/0tMKMa4K8vhSUiIvrswGL69Om4e/cuxo8frxbGq1y5sspYjBgxArdv347u0xDB09UR8zsVR/Oi6RGiA0auP49ei47j9VsLWgNFgodep/HuqxU47N1V/USvUwwqyLR4lwQ67wKqjwDsXYBbh4ApFYB1PwCvA7QeHRERJeYeCycnJ7Rt21ZlKy5evIjmzZtj8uTJyJgxI2rXro1ly5bF30jJrDjY2mBko7wYWj83bK2tsPL4HTSZtBe3n76CxbC2gc67DG4nL6l+svyJTJLMDFWyO9DjsH6RPV0IcHAyMLYIcGIRYEnZRiIiitvmbYMsWbJg2LBhuHbtGhYsWID9+/ejadOmn/t0ZIGkfK5VyYyY27G4Wpn79O1A1Xdx8CobRYlMjpTuNZkBtF6pX0/lxX1g+dfArDrA/fNaj46IiBJzYCEkcyEZDNlkfYtOnTrF3cjIYpTI7IFVPUrDJ7UbHj4PQoup+zF3/3Wth0VEEclcAei6B6j8K2CbBLjuC0wqDWz+FXjzXOvRERFRYgosbt26pTIV0l8hs0BJxmLChAnw9/dXs0YRfY50yZywtGsp1MmXGu9CdPhlxWn8tPwUgt5xFhoik2PrAJTtA3Q/AOSorV9Nfs8/wPhiwNmVLI8iIrJQ0Q4sFi9ejBo1aiBTpkyYOHEimjVrpvosdu7cqWaJSpIkSfyOlMxeEnsbjP2yIH6okUMtCjz/wA20nLYfD5690XpoRBSRZN7Al/OBLxfpV4gPvA0sbg3MawI88tN6dEREZKqBxVdffaWCh+XLl+PmzZtqNijJWsSGNH1LnX34rXv37hHef9asWR/d19HRMVZjINMi32m3ClkxvU0RuDrY4tC1J6g3zhenbnEGGiKTlaMG0P0gUO4HwMYeuLwFmFAS2D4CeGtBEzIQEVk465iUQElQUadOHVhbx6o1I9ShQ4dUCZVh27x5s7o+qiZwNze3MI+5fp21+OaoUk4vrOhRGplTOsM/4LWaMWrlcU5rTOYnOESHA1cf48hDK/VTLidKdkmASj8D3fYDWSoBwW+AnaOACSWAi5u0Hh0RESUA2+je0dPTM85fPGXKlGEu//bbb2q2qfLly0d5RjtVqlRxPhYyPVlSumBF99LoueAYtl94gJ4Lj+PsnUD8UCMnbKy5ICMlfhtO+2Pw6rMqeAZsMPvSYaR2d8TAuj6okSfcAoqJhUcW4Ktl+l6LDf2BJ9eA+U2BnHWAGiP1JVNERGTZgUV8CwoKwty5c9G7d+8oV/F+/vw5vL29ERISgkKFCqmSrNy5c0d6/zdv3qjNIDAwUP18+/at2rRgeF2tXj8xSWIDTGxRAGO2XsakXVcxedcVnPMPwN9N88E9iR0SO+4LlmvjmXv4ZuEJhM9P3A14ja5zj2Js8/yontsLiVb22oB3OVj7/gnrg5NhdX4NdJe3IqTs9wgp3lVfMkVhSLZqv98Dlb1yv3QfJbKk5EkUC8b/P5Cp7AcxeW0rnc40pu+Q5vAWLVqoVb3TpEkT4X327duHS5cuIV++fAgICMCff/6JXbt24cyZM0iXLl2Ejxk0aBAGDx780fXz589XC/5R4nH0oRXm+1njbYgVUjjq0ClHMFLxK6RESKqdBh+1wdMguRTRgaMO7vbAT/mDYWejr1mN4nyLyXN9dQv5bv6LFC8uqMvPHFLjZPo2eOjqo/XQTMaJR1ZYds0aT4M+fNFJ7XVolDEE+T1M4n/TRGShXr58qY7R5dhbWhISRWBRvXp12NvbY/Xq1TGKoHLlyoUvv/wSQ4cOjXbGIn369Hj48OEnP5z4IuOWfpKqVavCzi7xn3VPSGf9A9F13nHcCXgNZwcb/NUkLyrnjPsyvYTCfcEySS/FVzMOx+gxdjZWsLOxVivV28q/ra3VT9v3P+3U9Ybr9Pe1C3P7+9veX6e/Tf8Y/WON7vvRY98/t+G1IxlH6Bgjem4rKzicWwKbbYNg9eKBek8huRshuPIQwNWyy1sjy14ZQoxEn72iz8L/P5Cp7Ady7JwiRYpoBRafVQr19OlTLFmyBH5+fujbty+SJ0+Oo0ePwsvLC2nTpo3x80kD9pYtW7Bs2bIYPU4+4IIFC+Ly5cuR3sfBwUFtET1W619UUxhDYpM/gwdWf1MGXecdVSt0d51/HL2rZEePSlmjLKEzddwXLMP9wNfYfO4e5n3GApBvg3V4GxyMxC0ZklqPxPe2i/Gl1WbYnFmGl2fWY5rNl1hpXxtWtrZGAdCHoORDIPMh4AkNfowDpdDHhA+m9Ncbgh7D830Igj483vh6w+M/vNaH2+OqREnKn4avv/BRUCHkOnkVub1mvrQsi7JQ/P8Dab0fxOR1YxxYnDx5ElWqVIG7u7taHE9W25bAQoICKWOaPXt2TJ8SM2fOVM3htWvXjtHjZLXvU6dOoVatWjF+TUq8PFwcMK9jcQxdcxaz913HX5sv4tzdQPzRJD+cHUymbYgIkhC+eO85Np+9i83n7uPEzacxevyMNkVQMEMyvA0JwbtgndoM/34bHKIWk3wXHKKCjnch8vP9v0Mvv7/9/f2MH2+4/u07/fO8DX+70ePD3m54TNj7G8ZgPLaIZrh6GuKEX4LaYoFVeQy3m4EC1n7oFTwD1V5sxS9v2+GoLjsSAzmP8SFbE3GQ8iHzEz4o+pANevry7fvm/YjJJyi3y4mUklk8EvQ9EhHFVIyPwqS5um3btvj999/h6uoaer0c3Ev9VUxJE7YEFm3atIGtbdjhyMJ7kgEZOXKkujxkyBCUKFFCrZ8hWZM//vhDZTs6duwY49elxE3+hz2kfh74pHbDgJWnse7UXVx58AJTWxdB+uRsvCDtyIG4rL+y+ew9bDl3Dzcevwxze4H0SVE5lyf+3XsNj54HRXimWs5Lp3J3RPkcnon6LHWIBDRqC8Hbd+GDogp4964V7pyZD8+DI+Hz5jqWOQzCvSxNcTlfH7yyS64PlCIIiiIKqgzBjf62yIKqiJ/rw/N9eG5DIGV4rvCkiDgoOARBCZREuv8s8uCDiCjRBhay9sTkyZM/ul4CgLt378Z4AFICJZmO9u3bf3SbXG+8ZsaTJ09UhkReJ1myZChcuDD27t0LHx82AFqq5sUyIJuXCzrPOYrzd5+pxfTGtyiEUllTaD00siDP37zDrosPsOXsPWy7cF+dhTawt7VGmawpUNXHSwUUnq76RT2zebqo2Z8kbDA+bDWEETLlbGIOKoS1tRXsZZP288gmgUrVFSjRDNgyEDg2B15+/8Hr9magykCgUFt5EphC5kmyL2EyN0ZBS0TZmvCBycdBjP56vwfPMO/AzU+OwbDfEBGZVWAh/QqGKVuNXbx48aN1KaKjWrVq6o92RHbs2BHm8ujRo9VGZKywd3Ks/qY0Os85gpO3AtBqxkEMqJ0LbUrpV3Ynig/3pF/ifVZi7+VH6uy1QTInO7XIowQT5bKngJP9x39qZZ2KiV8VMlrHQi9VYl/H4nM4ewD1xwEFWwFr+wD3TgFrvgOOzQVq/wWkKajp8OTviL5XA3CUabrikAQs284/UNMMRzaTioOtNdImSxKnr0tEZBKBRb169VRJkkwPa/iDK5mFH3/8EY0bN46PMRJ9Umr3JFjcuSR+WnYKy47dxqDVZ3HmTiCGNcwDBzkaIIolOQFy4d4zbD6jDyZO3AoIc3tGDycVSFT1SYXC3smilW2Q4EHuv+/yfWzafQDVyhZHyayJu/wpVjIUB77eARyaBmwbBtw+AkypCBTtCFT6BUiSFOZGvmsJJCPKXhm8eReCWv/sxs+1c6F50fQ8YUJE5hNY/PXXX2jSpIlqtn716pVaJVtKk0qWLInhw4fHzyiJokHOJP7VLD980rhhxLpz+O/ILVy6/xyTWxWGlxvLCCjmpFzl4LXHoZmJm49fhd4mx3YF0ydFFR8vVPPxUivFf84BnxxYFs+UHI/O6dRPiw0qDGxsgRJdgNwNgE2/AKf+Aw5NBc6uAKoOBfI3T9yLekQgsuyVrMLepXwWrD5xB4evP0H/Zaew7pQ/fmucD2mTMoNBRGYQWMhsUDKfrq+vr5ohSlbClhWwZaYoIq3JgV3HspmRI5Uresw/huM3n6LuWF8VXMjsOkTR6ZfYeeGBmslp+4UHCHj1NkxJStlsKVAllxcqGfVLUDyQtS0aT9OXR637Hnh4EVjRRfVhoNafgJd59dZFlb36qoQ3Zu65ij82XsDuSw9RffQu/FI7F75g9oKITMxnz81ZpkwZtRGZorLZUmJVj9LoNPuwmu7zi8n7MbxhHjQtkl7roZEJkvp2WV9CMhP7/cL2SyR3tkelnJ6qzEmCioj6JSgeZS4PdNkD7B8P7PwduL4HmFQGKNEVqNAPcPgwO2FiF1n2Sn7KCZOKOT3R978TOHrjKfpJ9uL0XfzWKC/SMHtBRCYixv+H/N///hfh9XLWxNHRUU0FW65cOdjYsK6dtOXt4Yxl3Uqj96Lj2HT2HvouOalW7v65Vi41pzxZdr+EzCImgYRsp26H7ZfIlML5fb+EFwpliF6/BMUjW3ugzHdAnibAhn7A+TXAvnHA6WVAjRGATwOzK4+KiJTb/delFGb4XsWfmy6omchU9qJOLjQrwuwFESXCwEJmZXrw4AFevnyppnw1TAPr5OQEFxcX3L9/H5kzZ8b27duRPj3PDpO2XBxsMemrwvhn6yW1zdxzDRfuPlNT0iZzjmz+SzJHMs3noauPVZAp/RK3noTtl5AAQkqcJJjI6umi6VgpEknTA83nARc3Aev7Ak+uAf+1BTJX1JdHpcgKcydBbqdymVUp3vf/ncCxG0/x41LpvbiL3xrnVRNZEBFpJcanbUeMGIGiRYvi0qVLePTokdpkqtnixYvjn3/+UTNEpUqVCt999138jJjoM+bS/65qdhVgONnbYK/fI9Qb74vzdz+eNpnMy7PXb7Hm5B30XHgMhYduRotpBzBr7zUVVEi/hAQSoxrnxcGfqmBp11LoWiELg4rEIHs1oNt+oHw/wMYBuLIdmFhSP5NUUNgFCc05e7GkSyn8VCunWitl58UHqDZ6FxYfvhnpFO5ERCaXsfjll1+wdOlSZMmSJfQ6KX/6888/1XSzV65cUatyc+pZMjU18qRCphT6vgtZDbnRhL34q2l+1MxrQesFWAD/gFdqoTrJTOy/8ijMqskezvZqkToJKKQPJ4k9SzYTLbskQMX+QL5mwPofgMtbgF1/ACcXATX/AHLUgCVkL74ul0WtmSLZC5ms4oclJ7H+lD9GNsqn1kQhIjLpwMLf3x/v3r376Hq5zrDydpo0afDs2bO4GSFRHJLZoqSpW2aM8r38EF3nHcW3lbKiV5XsKrNBiY+cnT3n/75f4txdnL4dNhOVOaUzqr4vcZKZwdgvYWY8sgAtlwDnVuv7L57eABZ8AeSoBdT4DUjmDXMnWTbJuE3dfQV/b76oZjOrOnonfq3jgyaF07H3gohMN7CoWLEiOnfujGnTpqFgQf1qqMeOHUPXrl1RqVIldfnUqVPIlClT3I+WKA4kdbLHrHZFMXL9eUz3vYr/bbuMs/7PMPqL/HB1tNN6eBTNfomDV/XrS8h2+2nYfonC0i/xvvlaSkbIzMmX7lMPyFIJ2PU7sG88cGEd4LcdKPc9UOobwNYB5kwCZlnzokouT/T57yRO3HyqJqxYf/ouRjTMy+wFEZlmYDF9+nS0atUKhQsXhp2dXWi2onLlyuo2IU3cspAekamSWaEG1PGBT2o39F9+SjXzNpywF1NbF1EzApHpCXz99v36Evew/cJ9PHv9IXPqaGeNMllTqoXqpKk1hYt5H0RSJBxcgKpDgPwtgLV9gOu+wLahwIkF+ubuLBVh7rJ6umJpl5KYuvsqRm++iG3n76OaZC/q5kbjQmmZvSAi0wospDFbFsg7f/68atoWOXLkUJtxVoMoMWhcOB2yeLqg85zDuHz/OeqP88XYFoVQPntKrYdGAO48faWCvs1R9EvIomJlsqZgvwR94JkTaLtGv2r3xp+BR5eBOQ2A3I2A6sMBtzQw9xMnMhGBZC+k9+LErQD1U1btHtkoL7zcmL0govjx2Ss95cyZU21EiV2B9EmxukcZdJl7RC081W7mQfSrmROdymbm2T0N+iVkrRFDidOZO2H7JbKkdFYlTpKZKJCe/RIUBfndlcbu7NWB7SOAg1OAM8uAS5uACv2B4p0BG/Mufczm5ap6L6bsvoIxmy+p7EXVv3diYN3caMTsBRGZSmBx69YtrFq1Sk0tGxQUFOa2v//+O67GRpRgPN0cseDrEvh1xRksOnwTI9adx9k7gfitcT442vFMeHwKemfol7iLLefuf9QvUcT7w/oSmdkvQTHl6A7UHAUUeF8edesQsOln4Ph8oPZfgHdJmHv2oluFrOp3SLIWJ28FoM/77MUIZi+ISOvAYuvWrahXr55aBE/KofLkyYNr166pM42FChWK6/ERJRgHWxu1wJRPGjcMWXMWK47fgd+DF5jcqjDSJOWiU3Ep4NVbNe++ZCV2RNAvUS5bSpWZqJzTEx7sl6C4kDo/0H4TcHwusHkgcP8MMLMGUKAlUGUw4GLe5Y/ZvVyxrGspTN51BWO2XMTW99mLQfVyo2FBZi+ISKPAon///vj+++8xePBguLq6qjUtPD090bJlS9SoYf7zhpN5k/+5timVUf1PuPv8ozh1OwD1xvli4leFUTRjcq2Hl6hJJkLWlzD0S7wL+dAvIc3WUg8uZ1XLZEvBLBHFD2troFBrIGcdYMsg4Oi/wPF5wPk1QOVfgcLtAGsbs85edK/4IXshf996L5bshcwclUdlbomIEjSwOHfuHBYsWKB/sK0tXr16pWaBGjJkCOrXr6+mnSVK7Epm8cDK7qXx9ZwjOOcfiBZT92NwvTxoUTyD1kNLNCSLKT0Shn4J6Z0IP/e+lDfJQU7B9Em5jgglHKfkQL3/AQVbAWt7A3dP6sukjs0Fav8NpC1k9uv5LOtWCpN3+uGfrZfUBAmHrj3G4Hq5Ub9AGmYviCjhAgtnZ+fQvorUqVPDz88PuXPnVpcfPnz4+SMhMjHpkzthadeSai74tSf98dPyUzhzJ0A1PtrbWms9PJPtl5BshByoSHbiTsDr0NskbijinRxVfPQzOXFaX9Jc+qLA1zuAQ9P109LeOQZMrQQUaafPYCRJBnNlZ2ONHpWyqZJDyV7IwpK9Fh3H2lP+GC7ZC1dmL4goAQKLEiVKwNfXF7ly5UKtWrXQp08ftSDesmXL1G1E5sTJ3hbjviyo1rv4c9MFzDtwA5fuPceErwpxrQSjfgnpk5CshKwz8ezNh36JJHY2KJc9hcpKVGK/BJkiKX0q/jXgUx/YPAA4uQg4PAM4u+r9mhhf6kuozFTOVG5Y3q00Ju3ww/+2XVK/x4bsRb38zF4QUTwHFjLr0/Pnz9W/pc9C/r1o0SJky5aNM0KRWZL/sUpdcq7Urui54DgOXnuMemN9MaV1EeRJ6w5LdOvJS3UAIpmJA1cef9QvUdVH3y9ROiv7JSiRcPUCGk3Rl0et+x54cB5Y2Q04Ols/e1SqPDDn7MU3lT9kL6SEsefC4ypTO7xhXqR05QkBIoqHwCI4OFhNNZsvX77QsqhJkybF5CmIEq1KOb2wXPouZh/GlYcv0GTSXoxqnA/1C6SFJfRLSKmETAm7+dx91XdiLJuhX0LWl0jHfglKxDKVBbr4AvsnADtGATf3A5PLAcW7ABX6AY5uMFe5UrthRffSmLDdD2O3XcKms/fUiRRmL4goXgILGxsbVKtWTTVwJ02aNCYPJTIL0nAswUXPhcew48IDdVbvnP8z9K2ew+wWa3vzLhj7r7xfX+LsfdwNDNcvkTG5WqhOMhMZ2S9B5kQWzivdE8jTGNjQHzi3Ctg/Hji9VL9yt1xvpgfZkr3oWSWbOlEg2QuZdEH+zq0/dRdDG+Rh9oKI4rYUStatuHLlCjJlyhTThxKZBfckdpjepqjquZi4ww+Tdvrh/N1A/NO8oLotMQt4+RbbDf0SFx/guVG/hJO9jVpfQg44Kub0RHJne03HShTv3NMBX8wBLm8B1vUFHl8Blnb4UB6VIhvMlazns7JHaYzffhnjtl3GhjN3ceDqIwypnwd18qVm9oKI4iawGDZsmFrHYujQoShcuLAqhzLm5ma+aWIiA8lO/Fgjpyod+GHJCZW9aDB+D6a2Loysnq5ITG4+1vdLbH5f9hBs1C8hZyf1q157olQW9kuQhcpaBei6D9jzD7D7L+DqTmBCSaD0t0DZ7wF7J5hr9qJXlezvsxcnVQnkNwuOqVW7JXvBCSyIKNaBhcwEJWT1beMzFlKDLZelD4PIUkjdceYUzug85wiuPnyBBuP34p/mBVA5lxdMlfyuysJYhmDi/N1nYW7P7vVhfYn87Jcg0rNzBCr8CORrCqz/Ebi0SR9knPwPqDkKyKn/f6M5yp3GXa3rI9kL2dafluzFYwypnxt18qXRenhElJgDi+3bt8fPSIgSKZkZSkoGus07ioNXH6Pj7MP4vloOdKuQxWTKBaRfYp/fo9CZnO4Fvgm9TeIGWVVcggnZvD3YL0EUqeSZgRaLgfNrgQ39gIAbwMIvgew19AFGsowwR7J2z3dVDdmLE+qERI/577MX9fNwKmki+rzAonz58jF9CJHZk5KAeR2LY8jqs5iz/zr+2HgBZ+8E4o+m+dRaGFp4+jJI9UtI43VE/RLls6cMXV8iGfsliKJPThjkqgNkqQjs+gPYOw64uAG4sgMo20ff+G3rYLYnUlb1KINx2y5h/A4/rDt1V03yIMFF7XyptR4eEWnss454du/ejcmTJ6sm7v/++w9p06bFnDlzVEN3mTJl4n6URImkHlnqjqXp8deVp9UKtn4PnmNq6yJqFe+E6peQKSK3RNAv4Sn9EpKVyOWFklk82C9BFFv2zkCVQUD+FsC6PsDVXcD24cCJhUCtP4CslWGu2Yve1XKgWu5UodmL7vOPYt3p1BhSLzezF0QWLMaBxdKlS9GqVSu0bNkSR48exZs3+pKKgIAAjBgxAuvWrYuPcRIlGl8Wy6DWdegy96j6H269cb4Y37KQan6OayEhH/olpMQpfL9EDi/X0PUl8qV1Z78EUXxImR1ovUo/He3Gn4HHfsDcRvrVvKuPBNzTmnX2Qta8mLDDTy2ot9/vEYY1yIOaeZm9ILJEnzUrlCyK17p1ayxcuDD0+tKlS6vbiEi/xsOqHqVVU7cc+LeafhADaudCm1IZY913If0Se9/3S2wN1y8hs1UVzZgMVX1SqcxEBg/znK2GyOTI73XeJkC2asCOkcCBycDZlcClLfqF9Up01a+PYYbZiz6SvfDRZy8u3HuGrvOOqilpZWpaTktNZFliHFhcuHAB5cqV++h6d3d3PH36NK7GRZTopUmaBP91KYn+y05h+bHbGLT6rFpsSsqlHGxtVJmSzKxy5KEVPK4+RsmsnpEusif9EtvO69eX2HXxAV4EfZh9zVn6JXK8X18ihyeSOvF/5ESakZW5a4wECrQA1vYBbh4ANg8Ajs/Xr32RsTTMUd507lj1TWmM3XoZE3f6YY1kL67osxc18jB7QWQpYhxYpEqVCpcvX0bGjGFnvvD19UXmzJnjcmxEiZ70MfzdLD98Urth5PpzWHz4Fi7df47mRdJjzNZL8A+Q1axtMPvSYaR2d8TAuj6h/xO+8Uj6Je6qYOLw9Sdh+iW83PTrS0iJU6ksHipQISITkiov0G4DcHwesGUg8OAcMKsWkK85UG0o4OIJcyN/h76vLr0X+pmjLt57rkpC6+ZPo3ovOEkEkfmLcWDRqVMn9OzZEzNmzFAlHXfu3MG+ffvUonkDBgyIn1ESJWLye9KpXGbkSOWKHvOP4tiNp2oL727Aa/U/4Rp5vHDlwQv1P2VjOVO975fI5YW87JcgMn3W1kChVkDO2sDWIcCRWcDJhcCF9UDlAUCR9oC1+Z0UyJcuKVZ/Uwb/bLmESTv9sPrEHezze4hhDfKiRp5UWg+PiOKRdUwf0K9fP7Ro0QKVK1fG8+fPVVlUx44d0blzZ3zzzTcxei7JeshBV/ite/fukT5GZqHKmTMnHB0dkTdvXjaLU6JRLntKLO9WGraRBASGfMSG0/dUUCFlUSUze+DXOj7Y1bciNvQqp2qZ86fnonVEiYpTcqDuGKDjViB1fuBNALDue2BqReDW4Q/3CwmG1XVfpH28T/2Uy4k5e/FDjZzqb55MZvHweRC6zD2CnguP4cmLIK2HR0SmkrGQA/+ff/4Zffv2VSVRElz4+PjAxcUlxi9+6NChMCt1nz59GlWrVkXTpk0jvP/evXvx5ZdfYuTIkahTpw7mz5+PBg0aqNmp8uTJE+PXJ0po95+9wTujkqbIdK+YBZ3KZma/BJE5SVcY6LQdODwD2DoU8D8BTKsCFG4DpC8ObBsK28A7KCL3vT4RcEsD1BgF+NRDYiUnQlT2YuslTN7ph5XH72DP5UcY0TCPmq6WiCw8YzF37ly8fPkS9vb2KqAoVqzYZwUVImXKlKpnw7CtWbMGWbJkiXQRvn/++Qc1atRQQU2uXLkwdOhQFCpUCOPGjfus1ydKaPefSU/Fp2X3cmVQQWSOpPSpWCfgm8NA/i/1uUopkVrRFQi8E/a+gf7A4tbA2VVI7L1mP9bIiWXdSiOryl68wddzjqDXwmNqYgoisuDA4rvvvoOnp6cqh5IyJOOMQ2wEBQWpoKV9+/aRTscpvRxVqlQJc1316tXV9USJgaerY5zej4gSKWnebjgJaLMGsI6seOB9dnNDv0RdFmVQIH1SrPmmDLqUzwKp5lxx/A6qjt6lJqggIgsthfL398eGDRuwYMECNGvWDE5OTqp0SRbMK1Wq1GcPZMWKFWq62rZt20Z6n7t378LLyyvMdXJZro+MLOBnWMRPBAYGqp9v375VmxYMr6vV65N2CqZzRSo3B7X2REQFURJSp3J3UPfj/mE5+DfBclkFv4NtyLso7qEDAm/j3ZVd0HmXQWInrep9qmRB5Rwe+HHZGVx5+AKdZh9G/fyp8UutnEjqZH5rfXwu/l0gU9kPYvLaMQ4sbG1tVX+DbFIStXz5ctXrULFiRaRLlw5+fn74HNOnT0fNmjWRJk0axCXpxxg8ePBH12/atEkFRVravHmzpq9P2qiVygozAg3JQuPsnE4FGzW9XmLjhvUajY60xL8JlkcatVVPxScc370Rt8/oT4yZi25ZgHX21th+xworT/hj+9k7+CJzCPIk/3QfmiXh3wXSej+Q4/14CyyMyYG5lCI9efIE169fx7lz5z7reeSxW7ZswbJly6K8n/Rh3LsXNmUql+X6yPTv3x+9e/cOk7FInz49qlWrBjc3N2gV+ckOIo3qdnY8O2NpagEodOYehq07j7tGq2bLOhY/18yJ6rnDZuXI/PFvguWyuu6mb9T+hAKlqyJ/po8Xp03s6gM4dvMp+i07jSsPX2LqBRs0LJAaP9fKCfcklv27wL8LZCr7gaHaJ94CC0OmYt68edi6das6UJfZmpYsWfI5T4eZM2eqvo3atWtHeb+SJUuq1+vVq1fodfJhy/WRcXBwUFt48uVo/YtqCmMgbdQpkA4186XFvsv3sWn3AVQrWzzKlbfJMvBvggXKXE4/+5M0akdYIKlnu3MkkNwbSJEV5qZY5pRY17Mc/t58EVN3X8Hy4/7Ye+UxRjbKi0o5eaKFfxdI6/0gJq8b4+bt5s2bqyBAmrhlpe0dO3aoaWdlhiZZXyKmQkJCVGDRpk0bVWZlrHXr1irjYCAL80l/x19//YXz589j0KBBOHz4MHr06BHj1yXSmgQRxTMlR+EUOvWTQQWRhc4SJVPKKuH/Bry/bOsI3D4ETCoD7J8k/+OEuZGZo36qlQtLupRC5hTOqg+t/azD6LP4BAJesceAKLGIcWBhY2ODxYsXqyZumebVOFsg61DElJRA3bhxQ80GFZ5cL69jIM3h0s8xZcoU5M+fX2VIpOmba1gQEVGiJetUNJsNuKUOe71kMprNAXocBjJXAN69Ajb8CMyuBzy5DnNU2DsZ1vUsi05lM0EmiFx69Baqjd6J7efvaz00IoqPUigpfzL27NkzNUPUtGnTcOTIkRhPPyu9DjpdxOlfyYaEJzNQRbaAHhERUaINLnLWVrM/SaN2gbLVYStlUpLREK1WAIenA5sGANd2AxNLAdWGAYXbysq1MLfsxc+1fVA9dyr0XXISVx++QLtZh9CkcDoMqONj8b0XRKYsxhkLg127dqnypdSpU+PPP/9EpUqVsH///rgdHRERkaWwtlFTyt5OXlI/tawhqBASPBTtCHTdA2QoBQQ9B9b0AuY2BgJuwxwVyZgc674tiw5l9NmLJUduofroXdh+gdkLIrMILGS9iN9++w3ZsmVTWQOZVUnWiJByJLm+aNGi8TdSIiIiS5c8M9B2DVBtOGDjAPhtBSaUBE4sBCLJ/idmSextVJZiceeSyOjhhLuBr9Fu5iH8sOQEAl+z94Io0QYWdevWRY4cOXDy5EmMGTMGd+7cwdixY+N3dERERBSWZDJK9QC67AbSFALeBADLOwMLWwLPzfNsftGMybG+Zzm0L63PXiw+rM9e7Lz4QOuhEdHnBBbr169Hhw4d1GJzMi2sNHETERGRRlLmADpsBioNAKztgAtrgfHFgTPLYY4ke/FrXR8s+lqfvfAPeI02Mw7ixyUnmb0gSmyBha+vr2rULly4MIoXL65mhHr48GH8jo6IiIgiZ2MLlPse+Ho74JUXePUY+K8tsKQ98PIxzFGxTPrsRbvSGVX2YtHhmyp7sYvZC6LEE1iUKFECU6dOVdO/du7cGQsXLkSaNGnUOhSySJ0EHURERKSBVHmBTtuAcn0BKxvg9FJgQgngwnqYa/ZiYN3cWNipBDIk12cvWs84iH5LT+IZsxdEiWdWKGdnZ7XmhGQwTp06hT59+qjGbVk0r169evEzSiIiIoqarT1Q6Reg42YgRQ7g+T1gQXNgRTfgdQDMUfHMHtjQqyzalsqoLi88xOwFUaKcblZIM/fvv/+OW7duqbUsiIiISGNpCwOddwGlvtGv3n18HjChFOC3DebIyd4Wg+rlxsKv9dmLO++zF/2XMXtBlKgCCwNp5G7QoAFWrVoVF09HREREsWHnqF9Ar916IFkmIPAWMKchsKY38OY5zFGJ99mLNiW91eUFB2+ixpjd2H2J2QuiRBVYEBERkQnyLqlfVK/Y1/rLsnr3pNLAtT0w1+zF4Pp5sKBTCaRPngS3n75Cq+mSvTiF52/eaT08IrPHwIKIiMic2TsDtf4AWq8E3NMDT64Bs2oDG34C3r6COSqZxQMbepZD69DsxQ3Ve+F7ibNZEsUnBhZERESWIHMFoOteoGArADpg/3hgUlng1mGYI2cHWwypnwfzOxVHumT67MVX0w/g5+XMXhDFFwYWRERElsLRDag/DmjxH+CSCnh0CZheFdgyGHj3BuaoVJYU2NirHL4qkUFdnndAn73Ye5nZC6K4xsCCiIjI0mSvBnTbB+RtBuhCAN+/gSkVAf+TMNfsxbAGeTG/Y3GkTarPXrSYdgC/rDiFF8xeEMUZBhZERESWyCk50Hgq0GwO4JQCuH8GmFoR2Pk7EGye07SWypoCG78rh5bF9dmLuftvoPqYXdjrx+wFUVxgYEFERGTJfOoB3fYDueoCIe+A7cOBaVWA++dgjlwcbDG8YV7Me5+9uPXkFVpMPYABK04ze0EUSwwsiIiILJ1LSn3motE0wDEp4H8cmFwO2PMPEBIMc1T6ffaixfvsxZz911Hjn13Y5/dI66ERJVoMLIiIiAiwsgLyNdVnL7JVA4KDgM2/AjNrAo/8YK7ZixEN82JOh2JI4+6Im49f4cup+zFw5Wm8DGL2giimGFgQERHRB26pgRaLgXpjAXtX4OYBYGJp4MAUICQE5qhstpQqe/FlsfTq8r/7rqtVu/dfYfaCKCYYWBAREdHH2YtCrYFue4FM5YB3r4D1fYHZ9YAn12GOXB3tMLJRPsxur89e3Hj8Es2n7MegVWeYvSCKJgYWREREFLGkGYBWK4FafwJ2TsC13cDEUsCRfwGdTuvRxYty2VNiw3fl0LyoPnsxa+811PxnNw4we0H0SQwsiIiIKHLW1kCxTkAXXyB9CSDoObD6W2BeUyDwDsyRm6MdfmucD/+2L4bU7o64/uglmk9l9oLoUxhYEBER0ad5ZAHarQOqDgVsHIDLm4EJJYATi8w2e1E+u7734osi6dVbNGQvDl59rPXQiEwSAwsiIiKKHmsboPS3QOddQJqCwOsAYPnXwKKvgOcPYK7Zi1FN8mFmu6JI5abPXnwxZR+GrD6LV0HmORUv0ediYEFEREQx45kT6LAFqPgLYG0HnF8DTCgOnFkBc1Uxh6fKXjQtnE5lL2bsuYpa/9uNw9eYvSAyYGBBREREMWdjC5TvC3TaBnjlAV4+Av5rAyzpALw0z4Nt9yR2+KNpfsxsWxRebg64+vAFmk7eh6FrmL0gEgwsiIiI6POlzgd02g6U/R6wsgZOL9H3XlzcCHNVMacnNn1XHk3eZy+m++qzF0eum2dARRRdDCyIiIgodmztgcoD9OVRKbIDz+8B85sBK7vr+zDMNHvxZ7jsRZNJ+zBszVm8fsvsBVkmBhZEREQUN9IV1jd2l+whq+wBx+YCE0oBftth1tmLXuXRuJA+ezFNshf/SPbiidZDI0pwDCyIiIgo7tglAaoP109NmywjEHgLmNMAWNsHePMc5sjdyQ5/NcuPGW2LwNPVAVek92LSXoxYd47ZC7IoDCyIiIgo7nmXArrsAYp21F8+NA2YVBq4vhfmqlJOL2z+rjwaFUqLEB0wZdcV1Xtx9AazF2QZGFgQERFR/HBwAWr/BbRaAbilA55cA2bWAjb+DLx9BXPNXvzdrACmtX6fvXjwAk0m7sVIZi/IAjCwICIioviVpSLQbS9Q4CsAOmDfOGByOeDWEZirKj5e2PRdOTQqqM9eTN51BbX/txvHmL0gM8bAgoiIiOKfozvQYDzw5SLAxQt4eBGYXhXYOhR4FwRzlNTJHn9/UQBTWxdBSlcH+D14gcaSvVjP7AWZJ80Di9u3b+Orr76Ch4cHkiRJgrx58+Lw4cOR3n/Hjh2wsrL6aLt7926CjpuIiIg+Q44aQLf9QJ4mgC4Y2P0nMLUicPcUzFVVH+m9KIcGBdLosxc7r6DOWF8cv/lU66ERmU9g8eTJE5QuXRp2dnZYv349zp49i7/++gvJkiX75GMvXLgAf3//0M3T0zNBxkxERESx5JQcaDIdaDYbcPIA7p0GplQEdv4BBL+DuWYvxjQviCmtCiOFiwMu33+ORhP2YNSG83jzjtkLMg+2Wr74qFGjkD59esycOTP0ukyZMkXrsRJIJE2aNB5HR0RERPHKpz6QoRSwphdwfg2wfRhwYR3QcBKQMgfMUbXcqVA0Y3IMWn0GK4/fwcQdfthy9p5abC9/ev1xTXCIDgeuPsaRh1bwuPoYJbN6wsbaSuuhE5l2YLFq1SpUr14dTZs2xc6dO5E2bVp069YNnTp1+uRjCxQogDdv3iBPnjwYNGiQynxERO4jm0FgYKD6+fbtW7VpwfC6Wr0+mQ7uCyS4H5BF7wsOSYFGM2F1+j/YbOoPqztHoZtUFiEVfkJIsS6AtQ3MjYu9Ff5snAfVc3liwKqzuCTZi4l70alMRuRI5YpRGy7gbqAcu9hg9qXDSOXmgF9q5UT13F5aD50s8G/C2xi8tpVOJ+tEasPR0VH97N27twouDh06hJ49e2LSpElo06ZNpCVQ0mdRpEgRFTBMmzYNc+bMwYEDB1CoUKGP7i9Bx+DBgz+6fv78+XBycoqHd0VERESfwzHoMQrcmAGvZyfV5UfO2XDM+2u8cDDfA+oXb4ElV61x9JGhOt1wWGacodBf1z57CPJ7aHbYRhbq5cuXaNGiBQICAuDm5ma6gYW9vb0KEPbu/bBYzrfffqsCjH379kX7ecqXL48MGTKoACM6GQspv3r48OEnP5z4jPw2b96MqlWrqv4SslzcF0hwPyAD7gtyDK2D1fG5sNnyC6yCXkBn54SQSgMRUrgdYKX5nDPxZv2pu+j130nV3B0RCTNSuTtge+9yLIuyIG9N4G+CHDunSJEiWoGFpqVQqVOnho+PT5jrcuXKhaVLl8boeYoVKwZfX98Ib3NwcFBbePLlaP1H2xTGQKaB+wIJ7gdkYPH7QrH2QLbKwMrusLq2GzYbf4TNxbVA/fFA0gwwRyndnSINKoTc5B/wBsduPUPJLB4JOTSy8L8JdjF4XU1Df+mLkNImYxcvXoS3t3eMnuf48eMqSCEiIiIzkcwbaL0KqPkHYJsEuLoLmFAKODpHZTXMzf1nr6N1v3HbLmHz2Xt48cY8Z8+ixE3TjMV3332HUqVKYcSIEWjWrBkOHjyIKVOmqM2gf//+aq2L2bNnq8tjxoxRM0flzp0br1+/Vj0W27Ztw6ZNmzR8J0RERBTnrK2B4l8DWSsDy7sAtw4Cq3oA51YBdf8HuJnPSUVPV33f6afs8XukNjsbKzW7VPnsKVEhhyeye7modb2ILDawKFq0KJYvX66ChyFDhqiAQQKHli1bht5H1qi4ceNG6OWgoCD06dNHBRvSfJ0vXz5s2bIFFStW1OhdEBERUbzyyAK03wDsGwdsGwZc2gRMKAHU+hPI2wQwgwPqYpmSI7W7I+4GvA5t3zYm7zCZkx1q5UuNXRcf4sbjl9jr90htI9efV4+VIEO20tlSwM3RgkvpyDIDC1GnTh21RWbWrFlhLv/www9qIyIiIgsi086W7glkq6bPXvgfB5Z1BM6tBGqPBlxSIjGThuyBdX3Qde5RFUQYBxeGsGlEo7yokSc1ZN6da49eYseF+9h58QH2+T2Cf8BrLDx0U23yXIUzJEP5HPpAI3caN2YzyDICCyIiIqJo88wFdNwC+I4Gdo4Czq0Gru8D6owGfOohMZOgYeJXhTB49VkVKBikcndUQYfcLiRIyJTCGZlSZEK70pnw+m2wWlDPEGhcefACB689VtsfGy8gpasDymWTkqmUKJsthVoFnCg+MLAgIiKixMXGDij/A5C9OrC8K3D/DLC4FZC3GVDrdyBJMiRWEjxU9UmFfZfvY9PuA6hWtvgnV952tLMJLYMSNx69xM5LD7Dzwn1VKvXg2RssPXpLbfI0BdInRfnsnirQyJvWHdacvpbiCAMLIiIiSpxS5we+3g7s+A3YMwY4tVg/e1S9sUD2akisJIgonik5Hp3TqZ8xXbcig4cTWnl4o1UJb7x5F4zD156oTIZkNC7ee46jN56qbfSWi0jubI9y2VKosinJani4fDxFP1F0MbAgIiKixMvWAagyEMhZW9978egSML8pULAVUH0E4KjNYrimwsHWBqWzplDbT7Vy4c7TVyrI2HnhAXwvP8TjF0FYcfyO2qQNQzIYFST7kcNTZTa4GB/FBAMLIiIiSvzSFQG67Aa2DgX2TwCOzQGu7ADqjwMyV9B6dCYjTdIk+LJYBrW9DQ7B0etPsENlMx7gnH8gTt4KUNv/tl2GexI71ZOhyqxypIz2lLhkuRhYEBERkXmwSwLUGKHPXqzoCjy9DsyuDxTtBFQdDNg7az1Ck2JnY43imT3U9mONnLgX+Fqfzbj4ALsvPkDAq7dYc9JfbcIntZvqy5BAo5B3MvV4ImMMLIiIiMi8ZCwNdN0LbP4VODwdODQVuLwFaDgJyFBC69GZLC83RzQrkl5t74JDcOLWU5XJkEBDshhn/QPVNmGHH1wdbFV5lQo0cqREavckWg+fTAADCyIiIjI/Di5Anb/12YtV3wBPrgIzagClegAVfwHsWNYTFVsbaxT2Tq62PtVy4OHzN9h9SV8yteviAzx5+RYbztxVm8jh5aoCDOnPKJwxmertIMvDwIKIiIjMV9bK+uzFxp+A4/OAvWOBi5uAhhOBtIW1Hl2ikcLFAQ0LplNbcIgOp24HqAbwHRfv48TNp7hw75napuy6Aid7G5TKkiI00Eif3Enr4VMCYWBBRERE5i1JUqDBBCBXXWDVt8DDC8C0qkDZ3kC5HwBbLhgXEzJTlMwYJVvPKtnw5EUQdl9+qAINKZuS7MaWc/fUJjKndEaF7J4q0JDpc2XdDTJPDCyIiIjIMuSoCXQ/AKz7Hji9FNj1B3Bhg773IlUerUeXaCVztke9/GnUFhKiU30Yhiltj9x4olYCv/LgKmbsuQpHO2uUyOwROqWtrCBO5oOBBREREVkOp+RAkxlAzjrA2j7AvVPAlApAhX5A6V6ADQ+NYkNW8c6T1l1t3StmVTNL7b38MLQJ/G7ga/Vv2bD6LLw9nNQsU9IELgGHkz0//8SM3x4RERFZnjyNgIxlgNW9gAtrgW1DgQvrgAaTgJTZtR6d2ZC1MGrmTa02nU6n+jBUb8aFBzh8/TGuP3qJ2fuuq83e1lqVShkCjSwpXWAlq/ZRosHAgoiIiCyTiyfQfB5wchGw7gfg9hFgclmg0gCgRFfAmr0AcUmChJyp3NTWuXwWPH/zTmUzJJMhgcbtp6+w+9JDtQ1bew5pkyYJbQAvlTUFXBx42Grq+A0RERGR5ZIz4vmbAxnL6qel9dsKbPoZOL9G3/CdPLPWIzRbEihUy51KbZLN8HvwAjsu3FeBxoGrj1WgMf/ADbXZ2VihiHdyfaCRI6Wa3pbZDNPDwIKIiIjIPS3w1VLg6L/Axp+BG/uAiaWBqkOAIh2keUDrEZo1CRKyerqorWPZzHgZ9A4HrjxWgcaOiw9UydS+K4/U9tv680jl5qhKpiTQkIX6pOSKtMfAgoiIiEjIGfDCbYHMFYAV3YHrvvoZpCR7UW8ckDS91iO0GNLEXTGnp9rEtYcv3pdM3VfBhTSBLzp8U20y/W2hDElRIYenCjZ8UrupJnJKeAwsiIiIiIwlywi0WQ0cnAJsGQRc2QFMLAXUGAkUaKkPQChBZUzhrLY2pTLi9dtgHLz6ODTQkBKqQ9eeqO2PjRfUYn7lsqdQgUbZrCnUdLiUMBhYEBEREYUnpU8lugBZqwArugC3DgEruwPnVgN1/wFcU2k9QoslC+yVy55SbQPq+ODm45f6dTMuPlDN4LJA37Kjt9UmiYv86ZO+n2nKE3nTuqsMB8UPBhZEREREkUmRFWi/Edg7Ftg+HLi4ARhfHKj9F5CnMbMXJiB9cid8VcJbbUHvQtQ0toZVwM/ffYZjN56qbcyWS0jmZKcCEgk05KdkNyjuMLAgIiIiiopMO1umF5Ctmj574X8CWNoBOLcKqP034JxC6xHSe7IWRqksKdTWv1Yu+Ae8wq7309n6XnqIJy/fYuXxO2oTksGQWaYk0CiQPilsbdikHxsMLIiIiIiiw8sH6LgV2P0XsOsP4OxK4NoefWlUrjpaj44ikNo9Cb4omkFtb4NDVObCMKXtmTuBOHU7QG1jt12Gm6MtymbTzzQlgYaXm6PWw090GFgQERERRZeNHVChH5C9BrC8C/DgHLCoJZDvC6DmKCBJMq1HSJGws7FGsUzJ1fZDjZy4H/gauy49VIGGLMoX8Oot1p7yV5vIldotdBXwwt7J1OMpagwsiIiIiGIqTQGg805gx0hgzz/61buv7tJPS5utitajo2jwdHNEk8Lp1BYcosPxm0/1TeAX7uPk7QCc8w9U26Sdfmoxv9JZPVA+u6cKNNIkTaL18E0SAwsiIiKiz2HrAFQZBOSore+9eHQZmNcYKNQaqDYccHTTeoQUTTJTlGQlZOtdNTsePX+jshgSaEiPxqMXQdh45p7aRDZPl/e9GZ4omikZHGxttH4LJoGBBREREVFspC8KdN4NbB0CHJgIHJ0N+O0AGowHMpXTenT0GTxcHNCgYFq1hYTocPpOgGoAl0Dj2I0nuHT/udqm7r6KJHY2KJXFQwUaMqWtzFJlqRhYEBEREcWWvRNQ8zcgZ21gZTfg6Q3g37pAsc76rIbcTomSrOKdL11StX1bORuevgyC7+WHoYHGg2dvsPX8fbUBZ5A5hXNoA3iJzB5q3Q1LwcCCiIiIKK5kKgt03QtsGgAcmQkcnAxc3gI0mAhkKK716CgOJHWyR518adSm0+lw1j/w/SrgD3Dk+hNcefhCbTP3XIODrbUKLgxT2mZK4QwrM177hIEFERERUVxycAXqjtFPQbvyG+CxHzCzBlCyB1DxZ8CO05iaCwkScqdxV1u3ClkR+PqtWv3bEGj4B7wOXRVcZEjuFDrTVMksHnCyj/xQXBrKD1x9jCMPreBx9TFKZvU0+VXDGVgQERERxYesVYBu+4AN/YET84G9/wMubQIaTgLSFNR6dBQP3BztUCNParVJNkP6MAzrZhy8+hg3Hr/EnP3X1Wb/fvpbQ6CR1dMlNJux4bQ/Bq8+qwITwAazLx1GandHDKzro57bVDGwICIiIoovSZICDSfqsxerewIPzgNTKwPlvgfKfg/Y2ms9QoonVlZWyO7lqravy2XBizfvsM/vEXZcvK+yGbeevFK9GrINX3cOaZMmQbnsKdVCfVN2XYEu3PPdDXiNrnOPYuJXhUw2uGBgQURERBTfpKk7fQlgXR/gzHJg5yjgwjqg4WTAK7fWo6ME4Oxgiyo+XmqTbIb0Yey88AA7Lj7A/iuPcPvpKyw4eCPSx0ugIfkMyWRU9UllkmVRXEKQiIiIKCE4ewBNZwFNZuhX6L57CphcHtj9FxD87sP9QoJhdd0XaR/vUz/lMplfNiNLShe0L5MJs9sXw4lfq2Fmu6KontsrysdJcCHlUVJWZYo0Dyxu376Nr776Ch4eHkiSJAny5s2Lw4cPR/mYHTt2oFChQnBwcEDWrFkxa9asBBsvERERUazkaQx0OwDkqAWEvNWvfzGjOvDwEnB2FTAmD2znNkCR6xPVT7msriezlcTeBhVzeKJW3uiVON1/Jr0XpkfTwOLJkycoXbo07OzssH79epw9exZ//fUXkiVLFuljrl69itq1a6NixYo4fvw4evXqhY4dO2Ljxo0JOnYiIiKiz+bqBTSfr5+G1sEduH0YmFASWNwKCLwT9r6B/sDi1gwuLICnq2Oc3s+ieixGjRqF9OnTY+bMmaHXZcqUKcrHTJo0Sd1HAhCRK1cu+Pr6YvTo0ahevXq8j5mIiIgoTsgMQAVa6FfnXtEduLoj6ur6Df30vRrWlrPgmqUplim5mv1JGrXDN28L6apI5e6o7meKNA0sVq1apYKBpk2bYufOnUibNi26deuGTp06RfqYffv2oUqVKmGuk+eQzEVE3rx5ozaDwMBA9fPt27dq04LhdbV6fTId3BdIcD8gA+4LFsrJC1alesE20sBC6IDA2wg+OAMh2aoDLikBa87BY45+rpkD3yw8oYII4+DCyuj2kOB3CdZ6E5O/R1Y6aUvXiKOjPo3Tu3dvFVwcOnQIPXv2VFmJNm3aRPiY7Nmzo127dujfv3/odevWrVPlUS9fvlR9GsYGDRqEwYMHf/Q88+fPh5OTU5y/JyIiIqKYkkZt6amILh2sEGTrgte2SfHaLine2MlPd7x5f1n+ra63TYpgG4d4HTvFvROPrLDsmjWeBn2Y+SmpvQ6NMoYgv0fCHrrL8XWLFi0QEBAANze3KO+raagbEhKCIkWKYMSIEepywYIFcfr06SgDi5iSAEQCF+OMhZRfVatW7ZMfTnxGfps3b0bVqlVVfwlZLu4LJLgfkAH3Bctldd0NiEZgoXNMBrwJhJUuGA7vnqnN/fXNqB9j7wK4eEHn4vX+p+f7n6k+XO/sqZ+p6v0CbaStWgB+CNFhv98DbNt3BJVKFkaJLCk1mWLWUO0THZoGFqlTp4aPj0+Y66RnYunSpZE+JlWqVLh3716Y6+SyBAnhsxVCZo6SLTz5g631H21TGAOZBu4LJLgfkAH3BQuUuRzglkbfqB1Zdb1bGlj1OqW/+PIR8Owu8Pw+8Pzu+3/f02/P7r2/7h7w7hWsgp4Dj5/D6rFf1GOwsVeBRugmDeYSfBh+SkDimkofhNiwDCu+2QEonc0TAZd06qdWfxNi8rqa7hUyI9SFCxfCXHfx4kV4e3tH+piSJUuq0idjcnZHriciIiJKlKQhu8Yo/exPkVXX1/jtQ+O2yjp4Rv2cUu3+JlAffBgCD/Xz7sfXvX4KBAcBATf1W5SsAOcUYYMNFYi8v2wcjNiz7NySaBpYfPfddyhVqpQqhWrWrBkOHjyIKVOmqM24lEnWupg9e7a63KVLF4wbNw4//PAD2rdvj23btmHx4sVYu3athu+EiIiIKJZ86gHNZgMbfgw75axkMiSokNtjQsqaHN31W4psUd/33Ztw2Q7jbMj769Tl+4AuGHjxQL+FLSL5mIPbx8HGR8GIF8uwzISmgUXRokWxfPlyFTwMGTJETSM7ZswYtGzZMvQ+/v7+uHHjw/Lmch8JIiQo+eeff5AuXTpMmzaNU80SERFR4ifBQ87aeHdlF47v3ogCZavDVsqk4nuKWVsHIGkG/RYVmYootAzLUHplnA0xKsd690qfMZHt0eXol2EZgo2PyrHe94KwDMtkaf7N1KlTR22RiWhV7QoVKuDYsWPxPDIiIiIiDVjbQOddBrfPBCK/dxnTWrdCxhKTMiyV7TAOQO5+fN3nlmEZgg3jYMS4HItlWJYXWBARERGRmTEuw0qZPer7vn0NvLgfrgwrgkZ0uY8uxKgM630je5RlWJ9oRGcZVpxiYEFERERE2rFz/LwyrKjKsd69NirDuhT188o6HyoA+UQjunPKhC3DCgmG1XVftcaJmo44IUriYomBBRERERGZvs8qwzKeAStcI3poGdYbIOCGfotRGVYk5VguXrEvwzq7SjXx2wbeQRG5LGucqCb+UTFv4k9ADCyIiIiIyHLLsAxZj48yH/djX4blGkUjemRlWBJUqGmHw61nImucyPUyc5iJBhcMLIiIiIjIcsuwknnrt0+VYb14+HEj+kdrhNz7vDKs0FmvUgKnl0SySKJcZwVs6KdmDjPFsigGFkREREREUZGDeDn4ly0mZVjPDNmQux9fF6MyrNAXAAJvA9f3ApnKwtQwsCAiIiIiMoUyrCs7gPNrPv06cn8TxMCCiIiIiMgUyrBS5oxeYCFlUybIWusBEBERERERAO9S+tmfpJciQlaAW1r9/UwQAwsiIiIiIlPp5agx6v2F8MHF+8s1fjPJxm3BwIKIiIiIyFT41NNPKeuWOuz1kskw4almBXssiIiIiIhMiU89NaXsuyu7cHz3RhQoWx22iWDlbWYsiIiIiIhMjbUNdN5lcDt5SfXT1IMKwcCCiIiIiIhijYEFERERERHFGgMLIiIiIiKKNQYWREREREQUawwsiIiIiIgo1hhYEBERERFRrFncOhY6nU79DAwM1GwMb9++xcuXL9UY7OzsNBsHaY/7AgnuB2TAfYEMuC+QqewHhmNmwzF0VCwusHj27Jn6mT59eq2HQkRERESUaI6h3d3do7yPlS464YcZCQkJwZ07d+Dq6gorKyvNIj8JbG7evAk3NzdNxkCmgfsCCe4HZMB9gQy4L5Cp7AcSKkhQkSZNGlhbR91FYXEZC/lA0qVLB1MgOwj/WJDgvkCC+wEZcF8gA+4LZAr7wacyFQZs3iYiIiIiolhjYEFERERERLHGwEIDDg4OGDhwoPpJlo37AgnuB2TAfYEMuC9QYtwPLK55m4iIiIiI4h4zFkREREREFGsMLIiIiIiIKNYYWBARERERUawxsEhAEydORL58+ULnIi5ZsiTWr1+v9bBIY7/99ptarLFXr15aD4US2KBBg9R3b7zlzJlT62GRRm7fvo2vvvoKHh4eSJIkCfLmzYvDhw9rPSxKQBkzZvzob4Js3bt313polMCCg4MxYMAAZMqUSf09yJIlC4YOHaoWqzNlFrdAnpZkYT45iMyWLZvaMf7991/Ur18fx44dQ+7cubUeHmng0KFDmDx5sgo4yTLJ7/6WLVtCL9va8s+yJXry5AlKly6NihUrqhNOKVOmxKVLl5AsWTKth0YJ/P8EOaA0OH36NKpWrYqmTZtqOi5KeKNGjVInpOVYUf4/IScZ2rVrpxaq+/bbb2Gq+H+wBFS3bt0wl4cPH652mv379zOwsEDPnz9Hy5YtMXXqVAwbNkzr4ZBGJJBIlSqV1sMgEziISJ8+PWbOnBl6nZypJMsiAaUxORkpZ6rLly+v2ZhIG3v37lUnn2vXrh2azVqwYAEOHjwIU8ZSKI3IGYmFCxfixYsXqiSKLI+ktuUPRpUqVbQeCmlIzkqnSZMGmTNnVoHmjRs3tB4SaWDVqlUoUqSIOjPt6emJggULqpMOZLmCgoIwd+5ctG/fXpVDkWUpVaoUtm7diosXL6rLJ06cgK+vL2rWrAlTxoxFAjt16pQKJF6/fg0XFxcsX74cPj4+Wg+LEpgElUePHlVpb7JcxYsXx6xZs5AjRw74+/tj8ODBKFu2rCp/cHV11Xp4lICuXLmiMti9e/fGTz/9pP42SLmDvb092rRpo/XwSAMrVqzA06dP0bZtW62HQhro168fAgMDVd+djY2NOiEtlS5yAsqUcYE8Dc5AyBnJgIAALFmyBNOmTcPOnTsZXFiQmzdvqjOTmzdvDu2tqFChAgoUKIAxY8ZoPTzSkBxEeHt74++//0aHDh20Hg4lIAkg5O+ClD8YSGAhAca+ffs0HRtpo3r16mq/WL16tdZDIY1OQPbt2xd//PGHKpc/fvy4muRF/v9gyicbmLFIYPJHImvWrOrfhQsXVv/T+Oeff1QDL1mGI0eO4P79+yhUqFDodXImYteuXRg3bhzevHmjzk6Q5UmaNCmyZ8+Oy5cvaz0USmCpU6f+6ARTrly5sHTpUs3GRNq5fv26mtRh2bJlWg+FNNK3b1+VtWjevLm6LLPEyX4xcuRIBhYUuZCQEHUgSZajcuXKqiTOmMz0IOnOH3/8kUGFhTf0+/n5oVWrVloPhRKYzAh14cKFMNdJbbVksMjySBO/9NoYGnfJ8rx8+RLW1mFboeX4QI4bTRkDiwTUv39/1XSTIUMGPHv2DPPnz8eOHTuwceNGrYdGCUhq5/PkyRPmOmdnZzV3ffjrybx9//33arY4OXi8c+cOBg4cqP7H8eWXX2o9NEpg3333nWrWHDFiBJo1a6ZmfpkyZYrayLLIgaMEFnJWmtNPW666deuqngo5ZpRSKFmaQMqgpJnflHGPTUBS/tK6dWvVpCnzEEt9vQQVMkc1EVmeW7duqSDi0aNHaprJMmXKqOmnw085SeavaNGiajIPOQE1ZMgQNdWs9FyZeqMmxT0pgZJeTFM/gKT4NXbsWLVAXrdu3dTxo8we2LlzZ/z6668wZWzeJiIiIiKiWOM6FkREREREFGsMLIiIiIiIKNYYWBARERERUawxsCAiIiIiolhjYEFERERERLHGwIKIiIiIiGKNgQUREREREcUaAwsiIiIiIoo1BhZERESfcO3aNVhZWeH48eNaD4WIyGQxsCAishAPHjxA165dkSFDBjg4OCBVqlSoXr069uzZE3ofOXhesWIFTE2FChXQq1cvrYdBRERRsI3qRiIiMh+NGzdGUFAQ/v33X2TOnBn37t3D1q1b8ejRoxg9jzyHvb19vI2TiIgSJ2YsiIgswNOnT7F7926MGjUKFStWhLe3N4oVK4b+/fujXr166j4ZM2ZUPxs2bKgyF4bLgwYNQoECBTBt2jRkypQJjo6Ooc/ZsWNHpEyZEm5ubqhUqRJOnDgR+pryb3ktV1dXdXvhwoVx+PBhddv169dRt25dJEuWDM7OzsidOzfWrVv32e/P19cXZcuWRZIkSZA+fXp8++23ePHihbrtp59+QvHixT96TP78+TFkyJDQy/L+cuXKpd5fzpw5MWHChM8eDxGRJWJgQURkAVxcXNQmZU5v3ryJ8D6HDh1SP2fOnAl/f//Qy+Ly5ctYunQpli1bFtpn0LRpU9y/fx/r16/HkSNHUKhQIVSuXBmPHz9Wt7ds2RLp0qVTzyO39+vXD3Z2duq27t27q3Hs2rULp06dUgGPjO9z+Pn5oUaNGiojc/LkSSxatEgFGj169Agdx8GDB9X9DM6cOaPu26JFC3V53rx5+PXXXzF8+HCcO3cOI0aMwIABA1R2h4iIoklHREQWYcmSJbpkyZLpHB0ddaVKldL1799fd+LEiTD3kf8tLF++PMx1AwcO1NnZ2enu378fet3u3bt1bm5uutevX4e5b5YsWXSTJ09W/3Z1ddXNmjUrwrHkzZtXN2jQoGiPvXz58rqePXtGeFuHDh10X3/9dZjrZHzW1ta6V69eqcv58+fXDRkyJPR2ee/FixcPM+758+eHeY6hQ4fqSpYsqf599epV9dkcO3Ys2mMmIrI0zFgQEVkIOaN/584drFq1Sp3h37Fjh8oyzJo165OPldIpKXkyLnN6/vw5PDw8QrMhsl29ejU0M9C7d29VKlWlShX89ttvYTIGUqo0bNgwlC5dGgMHDlTZg88lY5H3YDwOaUoPCQlR4zFkLebPn6/+LfHTggUL1HVCSqZkbB06dAjzHDI+4zETEVHUGFgQEVkQ6R+oWrWqKvPZu3cv2rZtqw7sP0X6IIxJUJE6dWpVFmW8XbhwAX379g3tzZCSo9q1a2Pbtm3w8fHB8uXL1W0ScFy5cgWtWrVSpVBFihTB2LFjP+s9yVg6d+4cZhwSbFy6dAlZsmRR9/nyyy/V2I4ePare982bN/HFF1+EPl5MnTo1zHOcPn0a+/fv/6wxERFZIs4KRURkweRg33h6WemBCA4O/uTjJNNx9+5d2NrahjZ5RyR79uxq++6779TBvfRvSHO4kCbrLl26qE2ayOXA/ptvvonxe5CxnD17FlmzZo30PtLrUb58edVL8erVKxVceXp6qtu8vLyQJk0aFegYshhERBRzDCyIiCyATCkrzdbt27dHvnz51ExNMkPT77//jvr164feT4IEmYJWSpRkrQuZtSkiUt5UsmRJNGjQQD2HBA9SZrV27VoVOMgsT5K5aNKkiZpJ6tatW6qJW8qxhKxJUbNmTfW4J0+eYPv27WpGpk+twxF+gTrJmvz4448oUaKEataWTIhkVyTQ2Lx5M8aNGxd6XwkaJDsj0+WOHj06zPMMHjxYlWe5u7urMjFpLJfPR8YmJV1ERBQNWjd5EBFR/JMm6379+ukKFSqkc3d31zk5Oely5Mih++WXX3QvX74Mvd+qVat0WbNm1dna2uq8vb1Dm7el+Tm8wMBA3TfffKNLkyaNau5Onz69rmXLlrobN27o3rx5o2vevLm6zt7eXt2nR48eoc3U8m9pmHZwcNClTJlS16pVK93Dhw+jbN6W/2WF36TBWhw8eFBXtWpVnYuLi87Z2VmXL18+3fDhw8M8x5MnT9TryXt/9uzZR68xb948XYECBdR4pcm9XLlyumXLlqnb2LxNRPRpVvKf6AQgREREREREkWHzNhERERERxRoDCyIiIiIiijUGFkREREREFGsMLIiIiIiIKNYYWBARERERUawxsCAiIiIiolhjYEFERERERLHGwIKIiIiIiGKNgQUREREREcUaAwsiIiIiIoo1BhZERERERBRrDCyIiIiIiAix9X8lkpQbvaAOZwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "stress_group = df.groupby(\"Stress Level\")[[\"Sleep Duration\", \"Quality of Sleep\"]].mean()\n", + "\n", + "plt.figure(figsize=(8,4))\n", + "\n", + "plt.plot(stress_group.index, stress_group[\"Sleep Duration\"], marker='o', label=\"Sleep Duration (hours)\")\n", + "plt.plot(stress_group.index, stress_group[\"Quality of Sleep\"], marker='o', label=\"Quality of Sleep (1–10)\")\n", + "\n", + "plt.title(\"Effect of Stress Level on Sleep\", fontsize=14, fontweight='bold')\n", + "plt.xlabel(\"Stress Level\")\n", + "plt.ylabel(\"Average Value\")\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "c04a03e1-a8b2-4c02-aab3-917be005d327", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAGGCAYAAAANcKzOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAqpdJREFUeJzsnQV0FFcbht+4J4SgCRDc3d2tUKDQQltcapT+daGKtLRAXWlpKa6lQCktVtzd3TUQgkSA+Pznu5MNm7BJNrqS9zlnszuyM3fn7mzuez9z0DRNAyGEEEIIIYRkEcesvpEQQgghhBBCBIoKQgghhBBCSLagqCCEEEIIIYRkC4oKQgghhBBCSLagqCCEEEIIIYRkC4oKQgghhBBCSLagqCCEEEIIIYRkC4oKQgghhBBCSLagqCCEEEIIIYRkC4oKQrLAihUr0KpVK/j5+cHBwUE9ChQokLw9MjISr7zyCkqXLg1XV9fkfb755hvYO3FxcRg1ahQqVaoENze35M/+6quv5sr5zp8/n3wOeaxfvx7WgnG7pk2blqfnHjx4cPK5W7duDVskp/tWroPhWHJ9SM4h32/jvsovyG+84TOPHj3a0s0hxKJQVJB8iwxQjP8JpvVIPfg4dOgQevTogY0bNyIiIsLksZ9//nl89913uHDhghpkWwJLDaBEUIwdOxYnT55EbGxslgeQxg9PT0+UL18eQ4cOxYEDB3K1/eQBjz76aIp+EJF469YtuxSDeX2/pP78HJBansuXL6vJj2rVqsHLy0t934sVK4YaNWrgySefxGeffYbbt29bupmEWC3Olm4AIbbGokWLkgfL8k9H/gkVKlQI7u7uap2IiIULFybv37x5czU4c3JyQsuWLWHvzJ07N/l19erV0bdvX7i4uKBevXpZPub9+/dx5swZ9Zg5cyamTJmCgQMHwtr5/PPPk183aNAAtsS1a9eURc4Y+d7PmTMHL730Up60oWDBgimuYbly5bJ1vOHDh6t70fDdJMTA3r170bZtW4SHh6dYf/36dfU4fPgwFixYgEceeQT+/v4Waych1gxFBSFJyExU/fr1H1qfevAh1gfjgeL48eNTbA8JCUlhnZAZyHbt2iG/YHx9RHANGzYsS8fp0KEDOnbsiISEBGWdmD9/PhITExEfH48XXnhBbS9evDismTfffBO2iog3ufam3FzySlT4+vrm6DWUe5wQU7z44ovJgkKsFPJdKVu2rPotP3XqFDZt2oRLly5ZupmEWDcaIfmUdevWaXILGB5Tp05Nd3/Zbrx/6segQYO04ODgdPc5d+5c8vHOnDmj/e9//9MqV66seXp6au7u7lqVKlW0d955R7tx44bJNsTFxWlTpkzROnTooBUpUkRzcXHRChUqpDVq1EgbPXq02mfUqFHptiF1O9Lj8uXL2ptvvqlVr15d8/Ly0tzc3NRn7Nevn7Zjx44U+7Zq1Srdc8r1Tg9pk/H+8jmMef/991Nsl+tg6n1ynkWLFmmNGzfWPDw8tAIFCmhPPPGEdvHixeRj/f7778n7yz537txJca7bt2+ra2vYZ968ecnX/+uvv1bH9vPz05ycnLSCBQtqVatW1QYMGKDNnTs3xXEy+n7t3LlTGzx4sFauXDnVDrnGFSpUUOtOnz6dvJ98pqFDh2p16tTRihUrprm6uqr95X2y78GDBx86tnwfDeeWvsks8pkM769YsWKKz3Lo0KE033fp0iXt7bff1mrXrq35+Pio70zJkiW1Hj16aKtWrVL7ZHSfGNprqm+F/v37p/vZ/v333+Ttjo6OyX1v/B2V62Pu/SL3apkyZZKX33333YfOKfeJYbvcxxmR0fc9LcLDw7VPP/1Ua9iwoebr66u+p3J95fMcPnw4xb5ZvU5CdHS09v3332stWrTQ/P391Xnkuyf30tatWzP8fcwMmfmdSd1nsp/cv/L+UqVKqXZKX40bN05LTEw0+5oat33atGkm95P7NfVvs/F32VQf7t+/XxsyZIhWtmxZ9Rsvn0/uDWlfVFRUtvvY1PWQ36+XX35ZCwoKUr8V8n2UvjT3ehCSVSgqSL7FkqJiyZIlSkiktZ/8Mzh69GiK89+8eVNr0KBBmu+RQW5OiooNGzaowURax5BByJdffplnomLZsmUptss/ZVPv69Spk8nzy2D9/v376j3yHBAQkLztxx9/THEuY9Eh10AGWKkH6qYeIu6MSe/7NWbMGM3BwSHNYy1evDh53zfeeCPd88rAYfXq1TkmKmQgZ3z85cuXa4ULF05efv31102+759//lFCIq12vvLKKzkiKtasWZPieyiDUmNE4Bm2d+zYMXl9VkWFtOPzzz9PXg4MDNTi4+NTnNP4M02cODFXRMXJkye10qVLp9lOGYwvWLAgef+sXqfQ0FA18E3v3v/mm29yRFRk9ncmdZ/JfSyDZlPv/fDDD81qg/y2Gr9PBErq/k2L9ETFTz/9pDk7O6f52US4h4SEZKuPU18PuU9FnJl6r0xiEZKb0P2JkCTEfzwsLOyh9WIGL1mypHJ1Ev9uccPZvXu32ibmcfHTNrhJNWvWTAVgfvrpp8nvF1cdgy+4+IifO3cOTz/9tIoTECQosGfPnsq1Z/bs2cp96MqVK3j88cdVULjEYggDBgzArl27ko9bpUoVdOnSRcV17Nu3Dzt27FDrxWXI29sbkyZNwtmzZ9U6cesydv2QdqTHnTt30KtXr+SgRA8PDwwZMkS5o0jMhLRR2iuuKRIrIZmwDP7qb731lkmXsuz6w2/bti3FsgRQmmLlypWqrzp16oR169Zhy5Ytar24MCxZsgRPPfWUin959tlnk13XfvvtN+X+YOCPP/5Ifi0xIXKNo6KiMGvWrOT10j9169ZVLhNyPTZs2GD2Z5HjS0C7AQlEl3YFBwer78fff/+dYn9xx5BrLAGj0nfSHzdv3sQ///yDY8eOqViHl19+GUePHkVOYJypqkiRIsrV7IknnlDfKUG+pxMmTICz84N/IXINevfujXv37qllCT7u3r07ateujRs3bmDt2rXJ+77//vvp3idyv6VHmzZtVNYdOYZ8D+fNm4c33nhDbZP7SvrZgHxv08Pc+0Xc+KTP5PNdvXpVXXv5fMLOnTuT3f7kmsi9mtOIK5r8TshnFgoXLqy+m9I2+c5v3boVMTExKtZI7kn5bcrqdZL279+/X7328fFR5ylRooS6l+R3Uo712muvqeskv3lZJSu/M6mR+0DeL587MDBQ3cuG3/Fvv/0WH3zwgcrAlx5yDeXeM/ThF198galTp6rPVqdOHTRp0kQF8svvgLlIf4iboLRfaNy4MTp37qwyA06fPl21Ue5XafeqVauy3MepkXtNEojI/SQZCeU3SwLQhe+//179bpm6joTkCLkqWQixIUuFuTPsGc0ApzW7auC1115L4VZimD0Xrl69qlxqDNv/+usvtV7cW4yP2aVLFy02NjbFccVFwxhTs7LmIi4+xucTNwkD169f17y9vZO3iVuLMZmx/qR33cTFS2aHx48fr/Xt21fNWBq2ieuPXCtT7xOXAcO1kWdxEzM1w37hwoUU13rPnj1q/a1bt1K4PhmvN6wTl4SYmJgU7RfXgrNnz5p1LerWrZu8XtwhTpw4keJ94hYh19mYhIQEZUEQ1wyZJZZrI5/H+BzG7itZtVSIVcZ45njEiBFq/caNG1Oca+nSpSnel7ots2fPfqj9xhayjO6TjPYRdz/D+nr16iWvl1lcU1amjO4Jc+6XZ599Nnmfbt26mbQkGa/PSUuF/BYY9pXvrcxoG5BZ9Ro1aiRvl9+YrF6nAwcOpGjX2rVrU7RDfnsM23r27JktS0VWf2dSW5eMrSZiBTbeZso10BTiMpme5VAswWJdTM9CZdyHcm0M61u3bq2+/8ZuVMbHlmuenT5OfT2M7z35nhn/nolLGSG5BVPKEpLHGGbOBUm7KrNzhrSSMtNmHBwrM1PC5s2bUxxDZkwlo5IxpmatcsIqILNlkvHEeObaeDm1BSGnWL16tbJ6jBw5UmUcMsz4ieXmxx9/TDNI+5lnnkm+NvJcpkyZ5G3G6SBLlSqlUgMb+PXXX9WzzN4aAu1r1qyprBGCZHwRq5IgM4Fy3Mcee0y1ccaMGWr22vhcaSEz3WJZMiCzjhUrVnzIMiHX2fhayLEbNWqk0p1KALyc96uvvkrxPsOMZHb466+/UlwnsaAYspjJbLUBmck1xvg7KlY0mWE1xtHRUc2a53QdDmHPnj3KEpU6+5hYBDMzu5wR//vf/5Jf//vvv6rPBeNsbxlZRnLid0N+I+Q7Y/jdEOuIWDVT/25k5ToZn0eQjEjGqW/lc5s6j6V+Z+T3QFJ4G5D6OMaYmwJWLARiTZPPK9/V1IhFUn53P/74Y7OOZ3wdJV2ytNNwDRs2bJhiX8N1zGofGyO/ecZWNrnn5N41IN8BQnILigpCjAZJSXFGKR45XTgsM3n+xZRt6j3mDF6zg/H5ihYt+tB243V5kbddBjwimgYNGqRcwNIbuKUeuBoPKg3CxIC4DBmQQZYM+CVtpAGpi2GMiJuqVauq1zKglAG4uEpIu0SkvP766xl+FrleuhHDvL6U84h4uXjxYobHFteI7GIsFsQNyeDeIgMb48GKuP+I64mp70xufz8FcVeRAaBx38jAz3jQm7r/sou4nxl+D2TQJ9dK3A4NbjMyMDakrM1psvK7kZXrlNXzWOp3RvYxpPMWUovI1Pd8ekjfrlmzRrVr+fLlKnNf6oyAX3/9dZ79zpvzntQEBAQku8yauo7ickZIbsGYCkLyGON4Bpn5Tq/QliGdbeoYCPG7lwFMXrRRcrSnxnhdbuVsl1nBrBQES23BSa+6ryFOQWYAZaD1yy+/qEGFIH7Y/fr1S7G/WC6OHDmi9pe89jLrK88yAJHBiww4unXrpnzZ00Kul7TJICykL9ND4isMcQrCl19+qfz7pZq7+GQbrCc5gQgYsYoYkBSapmZtBYnjkNgKgzAz/s5k9JlyChGXhv4SUSjCziCspK+yUxslPWuFoVDf77//nkJY9e/f/6HvX05hfH1lEJ3ejLl8N7J6nVL/1kghS7Gm5gY58TuTmfvdXOT6SfyDPOR3SO436WuDlVLaZUoEpf5soaGh6rVYCoytoqlp2rRp8nuy2scG5PsogtdYWBhfR4mzICS3oKggJI+RfyAS2GmoaSGuB0FBQSn2kVoMMpgUdxfB2HwtyD+bxYsXPxQoK7OSpv7ZGg9KzW2jYcZeZsRk0GxwRZB/lLJsvK8tI4PE5557Tr1+7733kl2fRBxIUUNjJHhVAo9FiMjDQK1atXDw4EH1WkRGeqJCgrIl+FP2M9SDEAuHVAw3IEG0EtApLiDGg1bDANEwoDC2quRmbYr0AroNokK+o4bvtQSPS1CwwXVKEBElIkUGtKYGg5n9jgoS5CvXQgThiRMnUgzCMuuGZO79IoND+QxiOZLAbkPwem5YRowxvs+io6OVmDR2DzIglpPUs/WZuU6p72e5BwzJKIwRcZ1dK6U1/c6ItVG+y6aEqATyGxCRLcHrGSHtNQTCSyFJ+Y2RAHRj5D6XpA2Gz5adPjYgv1+STMTgfihB38auibkhtAkxQFFBSAbZn+SfsWQKyslB7M8//6z+aYi5WwapkjVHXE0kw5DMPstMqJipZcZXZuhkACuZngwuC8uWLVMDWVknM1ryD37jxo0p2m8sVMRVRWITZIAgj/SsI4Z/sDLwMAxoJWOIDJjkn6K4T0g7DbOC4t9vy4g14p133lEDJOmT9AalksFF4l5atGihnuV6SGE+g6AwdyZQ+qJPnz7qtVxL+Q4Ysj/JwFv696efflJuT6l9xLt27aoGGnJOY1/+3Mj6ZEocyUDakIVMYkOkHTLbLQMyGWAbsprJoEYGN/LZ5NrKd1rcS7755hu1XSxtMpA3iDjJCCXXUtbJfqYKUaZGZtDluomFydhCIsdIbWXKCHPvF5kBlkH2u+++q5YN3xlpb3aqdE+ePFn1uykk25z0u8SqiGAT5LshYkHc8cRKJtXm5TdAJhfELUuue1auk/yuSLYvg8VKMhjJ4F4GozKgluOLP7+0Q2bxU094ZAZr+p2RuCh5SAYy+Uzibinnle/kokWLkvdr2bKlmhjICMmyJe6RIqZPnz6tvhvSX2LhEHEn1k7JGHf37l0VVyVkp4+NkWsoxfoM2Z+Mi7FKzBkhuUauhYATYifZnyS7R05mfxKkBoFk/cno3MbZcsLCwsyqU2HAOJOI8aNatWpm54+XwnFpnU+yMX3xxRcPvS+nsj+ZWwwso+ttTlYf48Jl8ihevLjJPPWSIz69/pKiW8aF9NK7FpKVx5w6FZLByjjri/Ejdd0M48+e2exP27ZtS3GsTz75xOR+UpTPeL9XX30103UqTGXIMX5IZitz76XUNTXk0atXL5NtT++7kJn7Re5FKWRmvF/qWicZkfqzpfcwIFnC0qthkN59l5nrJJmX0qtTYeoezU6disz+zqQu9pbedc2oPo4Bc/pBCl2mLvyYXp0K+U6kV6fC1LXKSh8bX4+iRYuqLF+m3vPiiy+a3S+EZAUGahNiAWQG6vDhw8rtRawQYl6XGVAJspOc6JLZRzKBGAcdyzZZJ3nY27dvr2Z6xf1JLBkyi5h6Jk9y6P/www9q5iujPO2mkBk5aaPMuIkZXmbn5Dji+iGzmzJbach5b+uMGDEiReyAzBymDnYUZCZeLBgyM2+4/tJ3svz2228rt4S0fJ1TI7O827dvV7O1MisqFie5xvJa6gQYZr1lNlmy0shsuXwHxO1BtsnMdlZiTsyxUsi1kHaZQmZy5bthQOIqDDOhYjkTq5l8f+WayLWR9otVR2ZhZbsxknFLziOzt2nFbmSEZNJJHVeSlQxMmblfpB+Ms1tJ36XOdpUbSDYgsQxNnDhRucrIvS/fU3HHkests9DiFmmqLZm5TmKlku+yfN8lyFusNXIeyUpWuXJlFTsi/W5ckyarWMvvjLgjSh0ig7XAEPAs11bcFeX+lu92ZqxRUvtGrHni+iR9J59NfjPk+y7xXB9++KGyhORUHxu+i1KfR+qISLY2uZZi7ZSaHfL9JiQ3cRBlkatnIIQQK0dcWKSYnrglCMePH3/I7YgQY6RwosEFSlyLjFO0EpKXyOTCmDFj1GtxoTQUzyMkr2FMBSEk3yKWAoldEV9qg6AQKxAFBTGFBNyKv7v4tEsqYQMSd0AIIfkdigpCSL5FZpgNNQYEcRUQtwNC0krmkNplSJIsGGp5EEJIfoYxFYSQfI/4K4tv93///af8pwlJD4n/EJ9/yRo2ffp0SzeHEEKsAsZUEEIIIYQQQrIFLRWEEEIIIYSQbEFRQQghhBBCCMm/gdpSYfLq1avKH1oqXxJCCCGEEEJyDomUiIyMVDWH0qspZNOiQgRFyZIlLd0MQgghhBBC7JpLly6poop2KSrEQmH4kL6+vhZpg1SSXbVqFTp27KgqxxLbgX1nu7DvbBf2ne3CvrNd2He2S5wV9F1ERISaxDeMu+1SVBhcnkRQWFJUeHp6qvPzRrUt2He2C/vOdmHf2S7sO9uFfWe7xFlR32UUasBAbUIIIYQQQki2oKgghBBCCCGEZAuKCkIIIYQQQki2sOmYCnNJSEhQPmm5gRzX2dkZ0dHR6jzEdmDfpY34bTo5OVm6GYQQQgixEZztPa/utWvXcOfOnVw9R7FixVQGKtbKsC3Yd+lToEABdX14bQghhBCSr0WFQVAUKVJERc7nxuBICvBFRUXB29s73YIgxPpg36Uttu7du4fQ0FC1XLx4cUs3iRBCCCFWjt2KCnFnMQiKgICAXB2YxsbGwt3dnQNTG4N9lzYeHh7qWYSF3EN0hSKEEBslMQEOFzYj6NY2OFzwBcq2BBzt5Dc9MQG4sBWIug54FwWCm9rPZ7NBLCoqpOT3hx9+iMWLF6vBS506dfDtt9+iQYMG2T62IYZCLBSEkMxjuHfkXqKoIIQQG+ToUmDFO3COuIr6snxhEuAbCHSeAFTtDnv4bIi4+mCdvXw2G8Wi07PPPPMMVq9ejZkzZ+LQoUOqWmD79u1x5cqVHDsH/cEJyRq8dwghxMYH3QsGphx0CxEh+nrZbqvY82ezYSwmKu7fv48///wTEydORMuWLVG+fHmMHj1aPU+aNMlSzSKEEEIIsX23IJnFh2ZiY9K6FSP1/WwNe/5sNo7F3J/i4+NV3IP4s6f25d68ebPJ98TExKiHgYiIiGT3jNQpY2VZAk7Fb14euYWcw/Ccm+dJjbijiCh77LHH8uyctsaYMWPw119/Ye/evbned2vWrMHLL7+MgwcPqr7J6NyW5N1338Xdu3fx3XffpbufXBO5Ntbo/mS433MrVTTJPdh3tgv7znaQGApxeUobDYi4Am1CacDJBTZFQhwcYvTxX3qfLf7sRmjBzWHrxFnBfWfuuR00w8jKAjRt2hSurq6YM2cOihYtirlz52LQoEHKWnHixImH9hdLhgzWUiPvTx07IfUHJB1myZIl1TmyQ0Kihr2XIhB2NxaFvFxRt6QvnBxzzzUkLCwMn376KVatWoUbN26o1J7Vq1fHW2+9hcaNG6t9/P39MWvWLHTt2hWW5NFHH8WWLVvUa7nOEhRfs2ZN9OvXD926dcuzdpi6HpLZSQKxCxYsmOvnb926NV588UX06dNHLY8fPx7//PMPNm3aBGvj5s2bKn5p48aNKF26dJr7ybWTdLuSRU0mAQghhNgGEpRdX+In8jG7g4fjSsEmlm6GXSAZIfv27Yvw8HD4+vpaZ6C2xFIMHToUQUFBaia0bt26ePrpp7Fnz540Z1hff/31FJYKEQ0Si5H6Q0pBMxkQSbrQ1NaQzLDi8DWMXXYM1yKik9cV83XHR49WQefqxdRMrgSc+/j45JgPevfu3dWAbvr06ShbtiyuX7+OtWvXqs9k/DnFqpNe5+YFIt4kNkbEngw8L1++jCVLlmDYsGFKIP7yyy9ZPrZYsuSampuZKfX1yOja5FTfiWXt/Pnz6N+/f/J3zc3NTX2n87p/5HuTkYiWNsk9IyJM3A/TQr5vck3FPTE791BuzZpIPFaHDh1UoT5iO7DvbBf2ne2gsjyZISriH/0eWmBd2BIOV/fCedn/MtyvdotOqGUnlorVFr7vDJ5BGaJZAVFRUdrVq1fV6z59+mhdunQx633h4eFiZVHPqbl//7529OhR9ZxVlh+6qpV+Z5kWnOpROukh2xMSErTbt2+r55xAjiWfaf369enuJ/ssXrw4efnixYta7969NT8/P83f31/r3r27du7cuRTv+fXXX7XKlStrbm5uWqVKlbQff/wxeZvsK8ecO3eu1qRJE7VPtWrVMmxHq1attFdeeeWh9b///rs63urVq9XyunXr1LJ8PgP79u1T6wztnDp1qmr/X3/9pVWpUkVzcnJS23bu3Km1b99eCwgI0Hx9fbWWLVtqe/bsST5OcHCwOo7hIcvCqFGjtFq1aiXvJ300ZswYLSgoSHN1dVXb/vjjj+S+M1yDP//8U2vdurXm4eGh1axZU9u6dWu612DEiBHaE088kWKd4dwzZsxQ7ZF2P/nkk1pERETyPtHR0dr//vc/rXDhwup6N2vWTH1WA4brYYz0ufFtaziP9G3p0qU1BwdlfFSfq3r16pq7u7tWsGBBrV27duo+MzB9+nStRIkS6X6unLiHcovY2FhtyZIl6pnYFuw724V9Z0OEHNa00QU0bZRvGg8/TfuyiqYlxGs2h7T5y8r6Z7C3z2al9116421jrCI5v5eXlyqwdfv2baxcuRI9evTIvaJesfFmPSKj4zBq6ZH0woAweulRtd/92IR0j5UZDzOxrMhDZvuN40cyUrGdOnVSM+7ibiPuSHKMzp07q5lrYfbs2fjoo48wbtw4HDt2TLlXSTpfsYYYIy5Wb7zxBvbt24cmTZooFyZxl8ksYqUQl6RFixZl2sQ2YcIE/Pbbbzhy5IiqkSDWBDmeWAS2b9+OChUqoEuXLmq9sGvXLvU8depUhISEJC+nRtIVf/nll/jiiy9U7IPM1os579SpUyn2e//99/Hmm29i//79qFixorKepef+I9e8fn2VrC8FZ86cUf24bNky9diwYYNyizLw9ttvq7gY6QOJvRC3P+nHW7duZeqanT59Wh1HrrW0Wa6BtFmsgNLX69evR69evVJ8Dxs2bKisSmJhIYQQYkdcPwLM6A5ohljB1Jb4pOXO422zpoO0WdLGKkx5GWi2+9lsHIu6P4mAkIFOpUqV1MBIBrSVK1fGkCFDcuV89+MSUPWjlTlyLBmeiUtUrbH/Zbjv0bGd4OnqbLY70bRp0/Dss8/i559/Vi5hrVq1wlNPPaViFUwxf/58FVQrA3GDG48MsCUWQwaUMngeNWqUGlDL4FIoU6YMjh49qtyTZMBu4KWXXsLjjz+uXksWrhUrVmDKlClqAJwZxGVJBuSZHbSKQPrpp59Qq1at5HVt27ZNsc/kyZPVZ5NBusR0FC5cWK2XdRJHkxYiJt555x11LQUZ4EuAtYgNOacBERSG2Axx66pWrZr6fsp30xQXLlxAYGDgQ+ulT6QvRewJAwYMUOcTYSeB0nJ9Zfsjjzyitv/666/KxCnXW+4FcxHhOGPGjOTrIAJFRJD0dXBwsFpXo0aNFO8xtFfanl5cBSGEEBsi5CAwowdw/xZQvBbQ6AVg7ccmajmMt+1aDtL2PjMerlMhFK4MVMm7mE7yAItaKiTgY8SIEWqwNnDgQDRv3lwJjfzuqymD+qtXr2Lp0qXK2iDCQMSFDEBNceDAATXolcGrwdIhwcniEy+z5TKAlWeJczBsl8cnn3yi1hsj1gljgSMz8DLbnRVEMGY2VkHiAVKLJ4kpEZElFgo/Pz8VEyBB2BcvXsyUP6Bc02bNmqVY36hRIxw/fjzFOuPziwVNkOKM6aVHNhVzIIN1g6AwHMtwHLnuIqCM2yPfe7EgZPZ6i3AwCApBBFm7du2UkOjdu7cSK2IFNFUxWyxDhBBC7ICr+4Dp3XRBEVQPGLgUqN0XePUw4vsvUYHL8oxXD9m2oDAgn+HVw8CgZcDjU4AnpgKOrsCN48CZtZZuXb7EopYKyZRjyJaTF3i4OCmrgTnsPHcLg6eadqMx5vdB9VAlwAU+vj5pBhTLeTOLDFIlKEce4qYkwdBibRg8ePBD+8oAu169esrFKTUy2JTtggwuZRBtTG6lCpUga3ErMlRHN1wbYxccUynKZLCbWoiIJUVcsMSiIANoCYIW8WNw7cppjEWtoS3ppZwtVKjQQ4P21McxHCszqWvlmqV2nTN1zcR9MHWfisVj69atKoPY999/r1y6duzYoSxUgsHFyliMEEIIsVEu7wZm9gJiwoESDYH+CwF3P32bo5NKrXrlSIQeuGxPbkHyWcq0eLB8eRew/SfdOlOurfzjtWTr8h1WEVORV8igTtyQzHm0qFAYxf3cTXrrqWPJzLOfu9rPw9Up3WPlRFaoqlWrKouDKcSKIQN4iT8Qv3zjh8zsS7pecXc5e/bsQ9sNg0wDErNgQFxoJBNXlSpVMt1eiROQgbbBlcoweBV/fwPi/28OEiMiNSAkjkJckURUSNrd1AN4ETJpIdYNuQaG9LcGZKCdlc9njKRnFVeyzFCuXDlllTFujwgGiQeRvjZcM4kbMe53c6+ZfOfECiLuWxIfI+davHhx8vbDhw+raybXkxBCiA1zcQcw4zFdUJRqCgxY9EBQ5Deavw64eOlWm+PLLN2afEe+EhWZQepQjOpWNb0QJ7U9p+tVyIy8xBBIuk8JJj537hz++OMPlfozrQB2qQkhs+WyXYKG5T3iMiUDcQnGFWRw+dlnn6mCZydPnsShQ4dU3MVXX32V4lg//vijGnyKS5C4pokwkIDf9BAXGqllIOcSUSJxCy+88AKGDx+ONm3aqH1EwEj6X6k1IgJIajhIjIc5iNuTpB8WtyARAfJ5De47xq5GEq8g7TBlNRAkTkGCwCUGReqgSIpiuQ5ynbKDBFenVbAxLcS6INdH2iRxKyJKxMVLrqW4qQliVZL6K++9955yl5J6LGm5wBkj10gC8Xfv3q1cxCSAW+qdGIsn+Z60aNHioetICCHEhji/BZjVC4iNBEq30C0Ubg/cbvMd3oWBJi/qr9d+wqraeQxFRTp0rl4ck/rXRTG/lP7ysizrZXtOI7EOMpj8+uuvVX0AKXon7k8y4Pzhhx9MvkcGnlLIrFSpUio4VwaPMjA1rmsh7lMSyC1CQnztJfhbBqipLRUSvCwP8cuXgbLEdYhgSQ9xq5J4AZl9l/PLAFkG7sbBzzIrLsUNRaxIzIIM7iWmwxwkcFmEglhkJNhZRIBYZYwRgSIuPyJcxHJgCnmf1DmR7FZyDSR+RwbqIlqyg4gcyVRlqmBjesh1FkuOfCb5bBIXI22SrFmCxMWIuPz3339Ve+X6iSjLCOlz+T6IZUeC5T/44AN1fQwB4cK8efPUd4oQQoiNcnYDMPsJIDYKKNsa6LsAcE3pDpsvafKSbqmR2IpDCy3dmnyFRStqZxcJvhX3HlMV/mRALTP2MmjObuEuqagtMRahkdEo4uOOhmUKJlsoxEde2iHnN7dImzUiWZrkWomrTO3atZEfyMm+E4uDHCs7xf7yiuXLlythJZYwCcZPi5y8h3IacRUTsSXCKb8ndrA12He2C/vOipBA5LlPA/HRQPn2wJOzAJe0Lc/5ru82fQWsGQP4lwZG7AKc0y8Ka83EWUHfpTfeNsZ2R8F5iAiIJuUC0KN2kHrOaZcnYvtIILQEkWcmENtSSIyGWKzSExSEEEKslFOrgTlP6YKiYmfgqTnpCop8SaPnAa8iwO3zwL6Zlm5NvoGigpAcQGpkSOyDLVirnnjiiYeygBFCCLEBTiwH5vUFEmKAyo8CfWYCzm6WbpX1IW5gLd/UX2/8HIi7b+kW5QusfwRE8gQJdBZPuPzi+kQIIYTYFMf+Bub3BxJigao9gN7TbNqtJ9epNxjwKwlEhgC7frN0a/IFFBWEEEIIIdbMkcXAgkFAYjxQ/XHg8d8Bp3wQG5EdxILTeuSDGIvoCEu3yO6hqCCEEEIIsVYkg9HCYYCWANR8Cug5GXBiTJxZyPUKqKBXGd8+ydKtsXsoKgghhBBCrJED84BFz+qConZ/4LGfKCgyg1yrNu/pr7d+D9y7ZekW2TUUFYQQQggh1sbemcDiFwAtUY8P6P494Ohk6VbZHlUfA4rW0AsEbvnG0q2xaygqCCGEEEKsid2/A0tfAqABDZ4Bun4N2EB2QatErlu7D/XXOyYDESGWbpHdwm8oIYQQQoi1sPNXYNlr+utGw4EuX1BQZJcKHYGSjYD4+8CmLyzdGruF31KC0aNHp0glO3jwYDz22GMWacvx48fRuHFjVcE5O+ltHRwcsGTJElgDJ06cQLFixRAZGQlrITY2VqUR3r17t6WbQgghxMC2n4B/k+orNP0f0Pkz+Ydm6VbZPnIN2yZZK/ZM14vikRyHosIcEhOAc5v0DAzyLMu5zKVLlzB06FAEBgbC1dVVVWt+5ZVXcPPmzVw/97fffotp06YlL7du3Rqvvvoq8oJRo0bBy8tLDcTXrFljcp8bN25g+PDhKFWqFNzc3NSAvVOnTtiyZQuskXfffRf/+9//4OPjo5ajo6OVcKtRo4aqap1ZAXfkyBE8/vjjShSIePrmG9M+oj/++KPaRwSaFLvbuXNn8jb5Tr355pt45513svnpCCGE5AhbvgVWvqu/bvEG0OFjCoqcpEwLoGwbIDEOWD/B0q2xSygqMuLoUuCb6sD0R4E/h+nPsizrc4mzZ8+ifv36OHXqFObOnYvTp0/j559/VoPsJk2a4Nat3M1e4OfnpypEW4IzZ86gefPmSkQFBASY3EcG1Pv27cP06dNx8uRJLF26VAmfvBBcmeXixYtYtmyZEhEGEhIS4OHhgZdffhnt27fP9DHv3buHsmXLYvz48UpQmWL+/Pl4/fXXlUjbu3cvatWqpYRXaGho8j79+vXD5s2blUghhBBiQaTq8+qP9NetRuqz6hQUOY8htuLgPODGCUu3xu6gqEgPEQ4LBgIRV1OulyAfWZ9LwmLEiBFqJnnVqlVo1aqVmpF/5JFH8N9//+HKlSt4//3303XzEUFgbGmQ2eiKFSvC09NTDUY//PBDxMXFpXl+Y/cneb1hwwZlvZBzyePcuXMoX748vvgipV/i/v371XYRQaZITEzE2LFjUaJECWVhEPemFStWpPgse/bsUfvIa3HLSs2dO3ewadMmTJgwAW3atFHio2HDhsoa0L1793QtP3369FHXpmDBgujRowfOn09p/vztt99QpUoVNbNfuXJl/PTTT8nbZF9p07x589C0aVO1T/Xq1dW1SY8FCxaoAX1QUFDyOrHETJo0Cc8++2yaoiA9GjRogM8//xxPPfWUuo6m+Oqrr9TxhwwZgqpVqypRKv3/+++/J+/j7++PZs2aqc9ECCHEAmgasH48sPYTfbnNB0CbdykocougekDlR/WMWuvGWbo1dodjvrt5Y++a95DKi8vf1jMvPHwg/WnFO/p+cffSP5ac10zECrFy5Uq8+OKLajbbGBmAyuyyzEJrmTimuN2IyDh69KgSB7/++iu+/vprs94r+4t1RAaoISEh6iEiR1yzpk6dmmJfWW7ZsqUSHGkd68svv1Ri5ODBg2rmXISAWGQEOXa1atXwxhtvqNfinpMab29v9RAhFRMTY9ZnEAEl55LrIIJE3KTkGF26dFGxBcLs2bPx0UcfYdy4cTh27Bg+/fRTJb7EGmLMW2+9pdonlhK5Lt26dUvXQiLnE6tTXiKfScSZsRXE0dFRLW/bti3FviLIpI2EEELyGPk/LmJi/Wf6cvvRQKu3LN0q+6eNTMw6AEf/Aq7ut3Rr7Ir8VUFFBv+fBubQwTRlwXCcGIwMHYXeuwq4epl1VBlgi2CQGXNTyPrbt2+ruIIiRYqYdcwPPvgg+bX42MtgXWan335bRFPGrlBiNZFZbuNZdbFgyCBc/PRlYCoD9zlz5jxkvTBGtonVRGbYBbE2rFu3TsUEiP+/HF9iDGTAn9YMvmwXgSQiR2bf69atq6w5csyaNWuafI+IMLGSiCVCrA0GASRWC3H/EauMuAmJ4OnVq5faXqZMGSXCfvnlFwwaNCj5WC+99JJyvxLE2iCWlilTpqR5LS9cuJDnoiIsLEy5WBUtWjTFelmWQHhjJGZH2kgIISSPBcV/o/Q4CqHjOKCppJAluU7RqkDNPsDB+bqo67/Q0i2yG/KXpcKGyMgSIQN9c5FBtbi5yEBdBuwiMsTXPzvIYLRr167J7jR///23shz07t3b5P4RERG4evWqaocxsiyWgcwgg3o5lsRSdO7cGevXr1fiwtjly5gDBw4olyyxVBgsHeICJQHT4sp19+5dFcsxbNiw5O3y+OSTT9R6Y8Q6YSxwRDCk1/779+8rV6nMIH1j3A7DQ6wnOY1YwyRGgxBCSB4h/99Xvv9AUDwykYIir2k9EnB0Bk6vBi5stXRr7Ib8Zalw8dStBuYgX7LZT2S4W+LTCxBRsAZ8fXyUi0ma5zUTcR2S2XQZqPbs2fOh7bK+cOHCyYHUsm9qAWIcLyHuLuIyNWbMGOUCJJYHsVLIrHx2eeaZZzBgwADlSiUz/08++aSyaOQFMlDv0KGDeoibkrRFrA3GAdEGoqKiUK9ePeXiZIxYLyQmQbYL4hYmWZKMcXLKXvXSQoUKKctSZgWbxKekRoSQueeUdl+/fj3FellObQESdzv5PhFCCMkD5P+1uFbvnKwvd/0KaDDM0q3KfxQsC9QZAOyZCqz5GBjyL+NYcoD8ZamQL4y4IZnzKNcW8BVXqbS+ZA6Ab5C+n4iG9I6ViS+qZDySgbIECcsstzHXrl1TA2PjgbMMCCX+wNh9ynjmeevWrSqYWYK7ZVa9QoUKmXZ3EauIuNOkRmISDEHH4gYkcRZp4evrqwbLqdO+yrIEEmcXOYZYHEwhVgy5LuIuJqLN+CEiS9yCpG2SdSv1dnGDMmb79u3Jr+Pj41XsQlquakKdOnWUG1VmEAtI6nbIw1xRIf0lIso4Ja8IKEP2MGMOHz6s2kgIISSXSUzUi9opQeEAdPuOgsKStHwLcHIDLm4FzphOYU8yR/4SFZnB0QnobMhjnFoUJC13Hq/vl8P88MMPypVILAsbN25UmYtk0C5iQ7I4SSyDgbZt26r9JXBYCpm98MILcHFxSd4uIkLcacQ6Ia483333HRYvXpyp9kgcxo4dO1QGJPHXlwGqILPhInAk85KcJ/WANTUS5CxxFOKOJXUoRo4cqWbkpf6GuUhQtHzmWbNmqWBvcV/6448/MHHiRJXRyRRiqZHZe9kuQcnyHnGZkvNKNi1BLDmfffaZuj6SpvbQoUPK+iJZlIyR2A+5fhKbIFm6xAqRnpiSPhRrUWpRJkJDPrtYCsLDw9VrU9aJtAKxDfvLa/kM8to465akkxXLiwSai3VL6nqI6JJsUMbI9ejYsaNZ5yWEEJJF5P/m3y/rM+MyhnjsJ6Deg3g9YgH8goCGz+qv14zNVFIdkgaaDRMeHi7fAPWcmvv372tHjx5Vz9niyF+a9mVlTRvl++DxZRV9vaZpCQkJ2u3bt9VzTnLu3Dlt0KBBWtGiRTUHBwf1OXv16qXdvXs3xX5XrlzROnbsqHl5eWkVKlTQ/v33X83Pz0+bOnVq8j5vvfWWFhAQoHl7e2tPPvmk9vXXX6t9DIwaNUqrVatW8rKct0ePHsnLJ06c0Bo3bqx5eHiodkjbDJw5c0atmzhxYoafSa7R6NGjtaCgIM3FxUWdc/ny5Sn2kXXSnrSIjo7WRo4cqdWtW1d9Bk9PT61SpUraBx98oN27dy95P2nT4sWLk5dDQkK0gQMHaoUKFdLc3Ny0smXLas8884x24cKF5L6bPXu2Vrt2bc3V1VXz9/fXWrZsqS1atCi5P+SYc+bM0Ro2bKj2qVq1qrZ27dp0P3NcXJwWGBiorVixIsX64OBgdbzUD3MwtCX1o1WrVin2+/7777VSpUqptkqbt2/fnmL71q1btQIFCqS4brlyD+UCsbGx2pIlS9QzsS3Yd7YL+y6LJMRr2qLn9fHD6AKadmB+njeBfZcGUTc0bVyg3jdHlmjWSKwV9F16421jHOQPbBQJ/hX3FZnpFfcaYwxBuOK+ktlA2YeQCtoSYxF1HfAuCgQ3TbZQyKy9tEPOn2ZMRQ4g8QIya7569Wo0btwY1oLMdLdr105ZU1JnG7J2MtN3YqWR75JYhKS+RmYQ64YElUuqYGtCYmCkhsZ7771ncnuO3kM5jMQN/fvvv8oFz9gyR6wf9p3twr7LAgnxwJIXgEN/AA5OwOO/AdX1LIN5CfsuHdaOAzZOBApVAl7cliseKLbed+mNt/NvoHZWkS+YlHe3IOKeI25I4tMvKVxzU8CYg7hnSVpbKVAnGZ9sTVDkJc8//7wq2hcZGakyUFkD4jZVo0YNvPbaa5ZuCiGE2CcJccCfzwBHl+iZhp74Hahq2k2XWBDJvCVxLmEngIMLgNpPW7pFNgtjKmwI8Yd/9dVXLS4ohLlz56oAcBksSzwDST/wWgLlrUVQGIK5JbVw6gKLhBBCcoD4WOCPwUmCwgXoM4OCwlpx9wOaJ02wrf9U7zuSJSw/OiU2iQRoS/CxZD8KCgqCvSNWIvEUzKzrEyGEkHxGfAywYCBwfBng5Ao8NRuo3NXSrSLp0fA53b39zkVg3wxLt8ZmoagghBBCCMkJ4qKBef2Ak8sBZ3fg6blAxU6WbhXJCFdPPcWssOFzIJZFYbMCRQUhhBBCSHaRgejcp/Qqzc4eQN/5QPn2lm4VMZe6g4ACpYCoa8Cu3yzdGpvE7kWFoaYCISRz8N4hhBAzib0LzOkDnF0HuHgB/RcCZVtbulUkMzi7Aq1G6q83fwVER1i6RTaH3WZ/kkBUCWi+evWqqjotyw65UIJdBl6SSUfSb1pDADUxH/adaSR2RK6LZPeS6yL3DiGEkDSIiQTmPAlc2AK4egP9FgLB6ReDJVZKzSeBLd8AYSeBbT8Cbd61dItsCrsVFTIYkvz6ISEhSljk5gDs/v37KotObogWknuw79LH09MTpUqVouAihJC0kNns2U8Al3YAbr5A/0VAyQaWbhXJKk7OQJv3gT8G6aJCAri9AizdKpvBbkWFIDOsMiiKj49XmYpyqyjJxo0b0bJlSxaUsTHYd2nj5OSkUuFSbBFCSBrcvwPMehy4sltPSzpgMRBUz9KtItmlSnegWE3g2kFgy9dAx08s3SKbwa5FhSCDIhkw5tagUQZfIlqk4jAHprYF+44QQkiWuHcLmNkTCNkPePgDA/8CiteydKtITiDW+XYf6Raonb8CjUcAvsUt3SqbgH4NhBBCCCHmcvcmMKO7Lig8A4BBf1NQ2BuStatkYyA+Gtj4uaVbYzNQVBBCCCGEmEPUDWB6N+DaIcCrMDBoGVCshqVbRXIacf0Va4Wwdzpw65ylW2QTUFQQQgghhGRE5HVg+qNA6BG9+vLgf4CiVS3dKpJblG4GlGsHJMYD68dbujU2AUUFIYQQQkh6RIQA07oCN44DPoHA4H+BwpUs3ap8T0Kihm1nbuKv/VfUsyznKG0/0J8PzgdCj+Xsse0Quw/UJoQQQgjJMuGXdZenW2cBv5LAoKVAwbKWblW+Z8XhEIz5+yhCwqOT1xX3c8eoblXRuXoOBVYH1QWqdAOO/Q2sGwc8OStnjmun0FJBCCGEEGKKOxeBqV10QVGglO7yREFhFYJi+Ky9KQSFcC08Wq2X7TlGG7FWOOjC4srenDuuHUJRQQghhBCSGgnOndoVuHMB8C+juzz5B1u6VfkecXESC4UpRyfDOtmeY65QRSrrlbaFtaxZkR50fyKEEEJI/iUxAbiwFYi6rgdgBzcFbp/XXZ4irgAFywGDlwG+gZZuab4gPiERYVGxuB4RjdDImOTnG5HRuB4Rg7NhUQ9ZKIwRKSHbd567hSblcqgaduuRwOGFwJk1wPktehA3eQiKCkIIIYSkT2ICHC5sRtCtbXC44AuUbQk4OsHmOboUWPEOEHH1wTrvIkB8LBB9ByhUUa9D4VMMtorM2O84dwt7whwQIAPt8kXg5OiQ5+2IU2JBREIMQiOicV2EgjzLcpJgEPFw824MtBwwMsgxc4yCZYC6g4DdU4C1HwNDlutpZ4n1iIqEhASMHj0as2bNwrVr1xAYGIjBgwfjgw8+UJWwCSGEEGIdA2/niKuoL8sXJumz9p0nAFW7w6Y/14KBRk4zSUSF6s++JfQYChEZdhHM7IQZp3bneDBzbHwibkQlCYWIBxYFY6Eg627ejTVbLIjoKezthqK+bijs466eiyQ937obg4krT2Z4DNk/R2n5FrB/NnBxG3D6P6BCh5w9vh1gUVExYcIETJo0CdOnT0e1atWwe/duDBkyBH5+fnj55Zct2TRCCCGEpDXwlhSrsr7PDNsUFuLyJBYKk575SWgJesVsGw9mTv0JDcHMk/rXTVdYxMQn4EakLgpCjV2RImKUlcGw7tbdWLPb5OzogCI+bijs646iPm4oYiQW5NmwHODlCsc0rClieZm5/aL6HGn1XmEfNzQsUxA5im9xoOGzwNbvgTVj9RoWjgxNthpRsXXrVvTo0QNdu3ZVy6VLl8bcuXOxc+dOSzaLEEIIIekOvGWdA7BiJFC5q/muUImJ+mBdCoolPxJTLccDWup18p7U70tIdSzDaxPrUu8n2ZyMXZ5MERmix1qUaQF7DGZ+f8lhJCRoupVBCQbdunAjSTzcvhdn9vlcnEQsuKvBfNE0hIIs+3umLRbMRawYYmkRYSRHMvUZ5XPdjIpBEd8ctlY0ew3YPQ24dhA4thSo9ljOHt/GsaioaNq0KSZPnoyTJ0+iYsWKOHDgADZv3oyvvvrK5P4xMTHqYSAiIkI9x8XFqYclMJzXUucnWYd9Z7uw72wX9p3tIDEU4vKUNpoKZNa+qQ44uaUczKtB/MODfIf0LANWSHz4FWg28F29Fxuv3ItuRsWq593nb6cbzCzIviPm7jNDLIgoEDcktxSvixqtK+DhYpZYSEiIR0ICsk27SoXw/VO18Mm/x3Et4sG4UNqUqIlQisWQaTsxa2gDeLvl4FDX1ReOjV6A06bPoa39BPHlOwGOznb/mxln5rkdNC0nwmGyRmJiIt577z1MnDgRTk5OKsZi3LhxePfdd03uL/EXY8aMeWj9nDlz4OnpmQctJoQQkmW0RAREnYB73B1EuxTATe9KgAPdB6wVCcquL/ETeYAmcsPBEYlwUs+aQ9Iz9NeJhnVq+cHrRMN+al/9dWLq/VJs09e5xd5BYETGNQc2l38XN32qIK9J0IC7cUBkHBAV56A/x8uyA6LUOv21vh2ITcza7H9hdw2Bnhr8XAFfVw1+LvL84LWns3XHI0vW2DMRDoiIA3xdgHK+Gm7FAF8fckJUvAOqFEjEs5US4ZSDPzPOCffR4cjrcE24i72lnsWlANuzZGWWe/fuoW/fvggPD4evr691iop58+bhrbfewueff65iKvbv349XX31VWSoGDRpklqWiZMmSCAsLS/dD5rZ6W716NTp06AAXFxeLtIFkDfad7cK+sz0cji+D06r34BD5YOZb8wlEQsdPoVV+1KJtI+lYKmZl7N6R0GEctMA6gAzgxQ1KZm7Vw0mtS7Esz2pd6v3yWFwmJsD5hzrKxcmU9UREjgSjx4/YmyNZrmSoFRmdZE0wsijI45aJ5cy4Hhlwc3ZUsQiFvF2VEDhwWffmSI9ZQ+ujUU7HHlgBBy6Ho//vuxAdl4gn6gbh08eq5mgCIMdt38Np7RhofiUR/8J2wNkN9vz/TsbbhQoVylBUWNT9SQTFyJEj8dRTT6nlGjVq4MKFC/jss89Migo3Nzf1SI1cZEsPLKyhDSRrsO9sF/adDQX7/jnkIe9nh8gQOMt6Ww32tXdKNtTdmhIeTOalRB94OzUZboPpZV2wr/pI1Nr6svpWGnvu6DXTNByo9g7quKXtkx8dl5AsCMLuxujCIEpSosaq1KlhhmUlGGIQJ+aHTCBtKujligAvNwR4uyLA2y1ZNBhey7Nh2cvVKXngLDEVzSesTTOYWfYq5udusfSyuU39MoXww9N18dzM3Vi49wpKFvTCK+0r5NwJGr8A7PwFDuGX4HJorh7Abcf/78w9r7OlzSmOqSLnxQ1K3KIIIYTYAbkR7Etyn7hoYMGA9AWF0Hm8TfabDLpf3FsCNeNexSiXGQjEreRt1xCAMXEDsGNHcbzsdVZZDZIFwt0HQiEyJj7T5/Vxc04hEJJFQdJr2VYoaVsBT9csD/jTC2Y2HFG226OgMNC+alGM7VEdHyw5jK//O4niBdzRp37JnDm4qyfQ6i3gnzeAjZ8Dtfvp6/I5FhUV3bp1UzEUpUqVUu5P+/btU65PQ4cOtWSzCCGE5BSSPceMYF9bzbJjl8TdB+b1Bc6sBVw8geavAnumpexHVadivM1amKTasgQyh6AhVsfUR0PH4yiCOwhFAexMrIxEOAL34jB22bEMA5mNLQmFlDgwtiqktDK4u+SdAJN0sZI29kGdCp1iOVynwprp3zgYV+/cx0/rz+C9RYdQ1NcdrSoWzpmD1xkIbPkWuHMR2DlZv0/yORYVFd9//z0+/PBDvPjiiwgNDVXF755//nl89NFHlmwWIYSQnCLqes7uR3JfUMx9Gji7DnDxAvr9AZRuBrR4E/FnN2L/ppWo3aITnG20orakSt1w8gbm7riYvE4ExPbEqib3r12yAGqW8EsWDqldj3zdna26WK8Ihw5Vi2Hb6VCs2rQDHVs0sluXp7R4q1MlJaoW77uCF2ftwfznm6B6kF/2D+zsCrR+D1jyArD5a6D+EMA9B45rw1hUVPj4+OCbb75RD0IIIXZGdDhw7G/z9vUumtutIRkRew+YJ4JivS4o+i8Egpvq2xydoAU3x5UjEagV3NxmBIUUcJP0qiIkNp68gePXIjP1/nc6V0aTcrZbAE8QASHB2DePaeo5PwkKQUTfhMdrKkG59cxNDJm2C4tfbIoS/jngrlSzjy4owk4A234E2ryH/IxFRQUhhBA7jaPYN0uvOnsvLOP9PfwfDF6J5QTF3KeAcxseFhQ2hGRZOhd2VwkIERLbz97C/bgHhRHEqFCzRAG0KB+AuTsvqUDr9AKZc7wqM7EIrs6O+HlAPfT5eZsSloOn7sKfLzSFn2c2A59FXLd9X68uv+1HoOFzgFch5FcoKgghhOQcEhux/B294qwQUAGo2gPY9GXSDiaGcPdvA1u/A5q9at1J8e1aUDwJnNsIuHoD/URQNIGtEBkdp2agDULi8u37KbZLcbaWFQurR/PyhVRGJUFcYPJzIHN+w9fdBVOHNEDPH7fidGgUnp25GzOGNsx+nEuV7kDx2kDIft1q0Wkc8isUFYQQQrLPnUvA6o+AI4v0ZTc/oPVIPdWikwtQvJaeBSpFsG+Qvv7Ev8B/o4GoG0DHT4BUWQFJLhJ7F5jzJHB+ky4o+v8JlGoMayYxUcPRkAglIOSx98JtxOt5YBWuTo6oX9pfBeSKkKhczMdk3AMDmfMfxf08MG1oA/SetE0F67/xxwF8/1Qds6qBp4l8t9p9CMx6HNj5K9D4RcAvCPkRigpCCCHZm+WWDChbvgHio/UiZnUHAW0/SOkGIFmCKnc1Hey79Xtg1QfA9h91d6keP+pChOShoPBJEhSNYI1I3YdNp25gw4kb2HQqTKV2NaZMIS+0rFAIrSoVRuOyAfB0dc5UILMMMEMjo1HER3d5ooXCfqlczBe/DKiHQVN34p+DIQgq4IH3umSzanq5dkCppsDFrXqK2W75M1aYooIQQkjm0TTg8J+6dUJSwgoSwNv5M6B4TdPvSSvYt+n/AK/CwF8jgIPzgXs39YJ4rl5593nyo6CY3Qe4sFkXFAMW6cXurITY+ETsvfggwPrI1ZTVoaXQW9PyhZQlolWFwigVkPWgWxEQth6MTTKHfHc+f6IWXp2/H5M3nkVxP3cMaVYm+9aKqY8A+2YCzV4GCpZFfoOighBCSOa4ug9YPhK4tF1f9isFdPxYj53IakxEracAzwBg/gDg9H/A9O56OlNPBsrmODFRwBwRFFsAN1+gvwiKBpZuFS7evIcNp3QRsfV0GO7GPgiwFqoH+aJlBd2lqW4pfxV8S0hWeaxOEK7cuY/PV57A2GVHlbDIlstbcFOgfHv992v9eKDXZOQ3KCoIIYSYR1SontFJMjtJaKsqjPY60PQlwMUj+8ev0AEYtBSY3Ru4shv4vZM+4C2QQ1VwiS4o5PqKm4YIigGLgRL1LdKUuzHx2H5WD7DeeCpMZW0yRmpB6AHWhdC8fGEU9nGzSDuJ/fJi63KqON7sHRfxyrz9mPOsG+oFZ2Mio+0Huqg4uEBPPFHUdP0Te4WighBCSPrExwI7fgY2TARik/L81+gDtB+d8wGJ4oIzdCUwqxcQdhKY0lF3zSmSTZ9nAsREJgmKbRYRFJLuVdJ5GlyapH5EbEJi8nZnRwfUDdYDrOVRtbhv9gJoCckACeAf070aroVHY83xUAybvht/Dm+KcoW9s3bAwDq6xfboX8C6ccBTs5GfoKgghBCSdtzEyZXAyveAW2ce/NPsPCF3A3qLVAaGrQJmirA4AfzeGei7wGqDiG1GUMx6QndZk8xcSlDUy/XT3r4bi02nw5ICrG8gNDImxfaSBT2SXZqalguAjzsD9Ene4uzkiO/71sHTk7fjwOVwDJ66E4uGN8u6ZazN+3rRz+PLgCt7gKDcv8+sBYoKQgghD3PjBLDiXeDMmgcVr8UyUfOpvEn56lcCGLpC9/2/vAuY0QPoMx2o2Cn3z23vgmLg4kwPdBISNew4dwt7whwQcO4WmpQvYjJDUnxCIvZfupNcM+LglXClTQ14uDipoGg9U1MRlA7wNJnulZC8RLKFTRncAL1+2oqLt+5h2PRdmPdcY7OziKWgcCX9d/LAHGDNx8DAJcgvUFQQQghJWYhu/QRg52RASwCcXIEmI4AWbwBuPnnbFgnSHvgXsGAQcHo1MPdpoMcPQO2+edsOWyY6ApgtgmIH4C4WiiVAUN1MHWLF4RCjWg5OmHFqtwpqNdRykGBXFRdx8gY2nw5DZHR8ivdLnQhDzQipH+HmnM1iY4TkAoW83TB9aEP0+mkLDl4Ox0tz9mHygHrKkpFpWr8DHPoDOLsOOLcJKNMC+QGKCkIIIUBCPLB3GrB2HHD/lr6u8qN6VidLpkaUtLJPzwX+egk4OA9YMhy4ewNo9orl2mRLgkIKcl3eCbgX0GdMxX0tk4JCqk6nroMuAuOFWXtRzNcd1yIeFI4TCni6qMrVBiFR1Nc9Bz4MIbmP1Dv5bVAD9P11O9YeD8WHfx3Bpz2rZ96a5l8aqDcI2PUbsPZjPU4sH1jkKCoIISS/c26j7up0/bC+XLiKXm+iXBtYBVII77FJgHdhvVCe1MaQTFQdPmb17bSIDk8SFLuSBMVfQGDtTLs8iYUitaAwRgSFDJUkwFpiI6T4XI0gPxaPIzZLvWB/fPd0Hbwwaw/m7ryIEv4eGNGmfOYP1PItYN9s3Up4alW+cN2kqCCEkPzK7fPAqg+BY0v1ZRl8SkrEekMAJyv79yDioeMngFcRYPWHwLYfgLtSffsHVt82JSgkyF3S8mZRUAjLD4UkuTylz68D66N91aJZbCwh1kenasUwuls1jFp6RNWxEHe/XnVLZO4gPsWARs8BW77VrRXlO9j9JIiV/dcghBCSJ7UKNn+tz/onxAAOTkCDYUDrd62/2JxUqk2uvj0vqfr2dFbfNnD/jp6OV7LOePjrgqJ4LbPfLvERIib+ORSCfRfvmPWeu7EpYygIsQcGNS2talj8svEs3l54EEV83NG8QqHMHaTZq8DuqcC1Q8DRJUD1XrBnKCoIISS/kJioBw/+NwqIDNHXlWkFdB5vW0Waaj+tix9DALdkhpKUs9YuiPJCUMzsCVzdmyQolgLFa2b4tsu372H5oWtKSEjmpswigy1C7JF3OlfG1fBo/H3gqnKHWvB8E1QN9DX/AJ4FgSYvAes/1etWVOlufVbgHMS+7TCEEEJ0Lu8Bfu8ILH5OFxQSSPjUHH0m25YEhQHxT5a2i3uPxA1ILYvwy8i3pBAUBYFBf6crKC7duodfNpxBjx82o/mEdRj37zElKCSWtFGZghjboxq2jWyr3D7Sio6Q9bK9YZl8LuaI3SLFF7/oXVPdE1Ex8RgybaeyXmSKxsP1e/Lmad26asfYr1wihBACRIQAa8YAB+bqy67eQMs3gcYvAs5ZLO5kLUgxPKllYSiSJ9W3+0v17crId2mAlaDYB3gG6BaKYtVNCgmxRvx7KESlzDQgMdUiDLrWKI5O1YulsDxI2ljJ/iQCwjhg28FoO4OyiT0jKZAnD6iPJ37eilOhUao43h8vNIWfh5mxXO6+QIvXgVUfAOvHAzV62/5vbxpQVBBCiD0SFw1s/xHY+CUQd1dfV7sf0O4jPYDQXihSRa++LXEEYSeB3zsB/f4ASjZEvhEUMx4DQvbrgkIsFEWrJW++ePOBkDh0JaWQaFQmAF1qFkfnasXSrB4sdSgm9a9rVKdCp5hRnQpC7B0/TxdMG9oQPX/cgpPXo/D8zN2qpoXZNVcaPANs+xEIvwTsmQY0eh72CEUFIYTYE1K++PgyYOX7wJ0L+roSDYBHJmS6irLNUKCkngd+dm8949H07kCfGUDFjrBr7t0CZoqgOJBCUJwPu5ssJI5cjUghJKSadRexSFQrpop9mYMIhw5Vi2Hb6VCs2rQDHVs0SrOiNiH2SlABD0wd0gB9ft6G7WdvqeDtr/vUVi5SGeLioaeY/ed1YOMXQJ3+dplcgqKCEELshetHgBUj9boTgk9xoMNY3dxu74WXJCBy0FKj6ttPAT1+1IO67VVQSID6tYOAZyFc7rEAfx11wz/zNuFoyAMhIQP/JmUNQqIoAswUEqmR44hf+c1jmnqmoCD5kWqBfpjUvx6GTtuFv/ZfRWABDxXMbRZ1BgBbv9NTee/4RXeJsjMoKgghxB4GmJJZZPfvgJYIOLnpqVclnaGbN/INydW3Jd3sfGDJC0nVt1+G/QmK7ipN5T2XgnjNeQxWTr0mpejUZhnwNzWySBT0crV0iwmxG6RK/Ge9auCthQcxaf0ZBPq5Y0CT0hm/0dkVaP2enixDalfUHwp4FIA9QVFBCCG2SkKcLiTWfQpEJ6UCrdpDrzTtH4x8iaq+/bNey0IK5EmhvLuhQPuxdlF46uzFi/CZ/zgK3z2JG5ovno4aidOR/nAWIVG+ELrWKKZclSgkCMk9etcvqWKMvlp9UhXIK+bngQ7mFICs8QSw+SvgxnH990mKjdoRFBWEEGKLnFkLrHhX/+ckFK0BPDIeKN3c0i2zPCIeOo0DvKX69kd6kT+pvt39e5usvn06NBL/HLyGzQeOY0z4+yjreAE3ND8MiPsAQRVq47kaEvNQFP4UEoTkGf9rW16ll5236xL+N3cv5j7bGHVK+af/JkcnXUjM7w9s+wlo+DzgXRj2AkVFdkhMgMOFzQi6tQ0OF3yBsi31LwwhhOQWN8/oqQlP/KsvS/7zdh8CdQfx9yc1zV5R8QZY+j89pa5U3+49zSYCJE9dj0wOtpZsM/6IwBzXT1HF8SLCHf2xu8U0zGvUFAU8KSQIsQQODg745LHquBYRjfUnbmDY9N1YNLwpShfK4Pel8qNAYB09BfTmr4HOn8JeoKjIKkeXAivegXPEVdSX5QuTAN9AoPMEoGp3S7eOEGKrJCYAF7YCUdcB76JAcFNdLERHAJu+0Ge3EuMAR2eg4XNAq7f16snENHX66ZmR/hgMnFpltdW3NU1T4sEgJE6HRiVvK+oUiYWeE1Ay7iISvYrAb/A/eKRwRYu2lxACODs54se+dfHk5G04fCVC1bD4c3jT9BMiSNKMth/qabB3/QY0eRHwKwF7gKIiq4JiwcBUpYCSikzJekllSGFBCMniZAUirj5YJ5MVlboCR//SYwOEcu2Azp8BhStZrKk2RaXOevXtOb0fVN8esMji/8hFSJy4Hol/D4YoMXHmxt0HMedOjmhRoRAeq+iGLvueh9ONc0pkOg5aBlBQEGI1eLk54/fBDdDrp604f/OesliIK5SHazqW43JtgeDmwIXNwIaJQPfvgPwuKqKjo+Hu/qDyZr6ZRZR/+qkFhULWOegpHSt3pSsCISQHJiuuArt+1V8XLKeLiQod7T9FbK5U316Zsvr2gMU5KswSEjXsPHcLoZHRqip1QxOpV0VIHL8WqawRIiTOphISLSsWUlmb2lctCt/4O3qWpxtHAe9iwOBlQKEKOdZeQkjOIPf7tCEN8fikrdh/6Q5enrcPP/evl3bqZfn9FrdVKda5b5buqhlQDvlOVCQmJmLcuHH4+eefcf36dZw8eRJly5bFhx9+iNKlS2PYsGGwa8QtwXgW8SE0IOKKvl+ZFnnYMEKIfU5WJOHmB7ywBXD1yMuW2ReG6tszewI3T+n/0PtK9e0G2T70isMhD1WdLp5UdVrSukrtCBESyw9dw9kwIyHh7IiWFQqja81iaFelKHzdkwLJo24A07sBN47p9UbEQlGofLbbSQjJHcoX8cZvg+qj3287sProdYxeegRje1RTsRcmKdVYnyASt8z1nwGP/wZbJ9P59T755BNMmzYNEydOhKvrgwCx6tWr47ffbP+CZIj4OefkfoQQkuFkBYCYcL1aNMmZ6ttSXfz+bd0ScGp1tgXF8Fl7UwgKQZZfmLUXDcf9h67fbcaP684oQSFComPVovj2qdrY80F7NRDpWaeEkaAIBaY/+kBQDP6HgoIQG6BB6YL49snayhAxc/sF/LLxbPpvMKSUPbRQL16a30TFjBkzMHnyZPTr1w9OTg/ce2rVqoXjx5NSG9ozEjiZk/sRQkikXrQsQzhZkTN4BQCD/tZjU+Lu6dW3D8zPssuTWCjSsTHhRlQsXJ0cVEVrERJ7P+yAyQPro0ftIPgYhISByOvANBEUxwGfQF1Q2IFbBCH5hUdqFMcHXauq1+OXH8df+6+kvXPxWkDVx3Qr9dpxyHfuT1euXEH58uVNukXFxcXB7pFMLBI4KUHZJv+NOOjbZT9CCMmIa4f16qrmwMmKHK6+PQ/460Xg0B96lVupvt30pYd2lTiI8PtxKnWkWB+uGT2OXYt4yEJhip8H1EfbykXS30kEhVgowk4CvkG68KGgIMTmGNa8jKphMWXzObz5xwEU9nFD03KFTO/c5n3g2FLgxD/A5d1ACZVTNH+IiqpVq2LTpk0IDk5ZrXXhwoWoU6cO7B4Jvpa0sSqg0iGVsEjym+s8nkHahJD0uXcLWPsJsGcqoCVmsDMnK3IFZ1ckPPYLYlz84bl3MrDqfRw+eQr/FH0B1yJiEBJ+H9eTnqPjMuqj9ImMjsvYWiUxFAZBIUHZBctm65yEEMvxfpcqauJBEjI8P3MPFr7QFJWK+Ty8o2Rzq9UX2D8LWPuxnqkuv4iKjz76CIMGDVIWC7FOLFq0CCdOnFBuUcuWLUO+QNLF9pkBbcU7cDDyg9Z8A+EggoLpZAkhaZEQB+z+HVj3KRB9R19XrSdQpiWw7PWknexzskJchXacu4U9YQ4IOHcLTcoXSTs7Sg4QG5+I6xHRysJgsCyIVUHWiVCQ5dDIGMQntsILThEY6TIP1c9Pw/EzZ/Fr3DOIT/UvsqCXK4r6uqsA7GLy8HXH3Zj4jP2mk7LDpCsoxOVJgsd9SwCD/6agIMTGcXR0wJd9aqlscLvO31Y1LBa/2Ez9djyE1Bs6OB84ux44uwEo2wr5QlT06NEDf//9N8aOHQsvLy8lMurWravWdejQAfmFFYkN8HH0tygZux8zXcbDxSEBve+/h2cSG6CzpRtHCLFOzqzTU06Lv7xQtAbwyHigdHN9Wao/m6pTYQeTFSmzIzlhxqndydmROlcvnunjyWDeWCxcSxYKMbgWoQuGsKhYs47l6OCAJV594OlWDCMiv8MTThvRoEgiDjX5FoUL+qtBgIgJdxcnk0Jp6YGr6nxpOMSq90t6WZOIK624PN08DfiV1F2eCpbJ7OUghFgh7i5O+HVgfZVqVurQiLD444UmD8dS+QcD9YcAOyfr1gqZZLLBtOFZqlPRokULrF6dvWwZtowh04f8A7mCarikFUZZh2twvquvn9S/bpb+SRJC7JRbZ4GVH+g+s4JHQT1Hed1BKa0PIhykxo2pitp28ptpjAzEU/9mSvzCnXt6/ILBsqC/vm9kZYhGZHS8WeeW2g8Gq4I8i5BJYW3wc0dhbzdVGRdoB5xorKpvB9/cjOADL+pxF55eaR5fLC0ijORzpOEQq7abtMikFhTi8uRf2qzPRQixDQp4uqoaFj1/2qpq1MhvhRTLkyxwKWjxJrB3pl6g8+RKvWinjcGK2jmQ6eOKVghlcQ2BCFPLsr1D1WK5atYnhNgAMVHApi+BbT8ACbGAgxPQ8Dmg9TuAh7/p94iAsKMaN+llRzKse23+fvy++ZxyRRLBEBNvXvyCt5tz+oLB1125LKWZJ94UlR4BBiwB5j4JXNoBTO0C9P8T8AtK8y0iiEQYpa5TUSw9S4xYo8Tl6dYZwK+U7vJEQUGIXVKyoCemDm6AJydvw+bTYRi56CC+7F0r5W+TT1Gg0fPAlm90a4XUsHDMdJJW2xIVjo6O6f5AJyQkwJ6RaqmpM32IqBCCHMLUP0nZLvs1KRdgoVYSQixKYiJwaAGwehQQlZQutmwb3Y2pSGXYExK3cPNuDMIiYxEWFYMbkTG4ERWjXov70enQyAyzI92PS8TO87dTrBMxIKJACQURDEnCwVg8PORCkFMENwGGrABm9dJrRSRX366Y5ltEOMhkUkYVtRXhV3QLhViwCpTSC9uJ+wMhxG6pUcIPP/ari2em78aivVcQVMADb3SslHInqawtMXfXDwNHFgE1noBdi4rFixenWJY0svv27cP06dMxZswY2DvyzyI1V41ERXr7EULyAZf36HERYsIW/MsAnT7VZ8DNmDGXmX2zBqZ5KRSSxIJBKNyI1OMVZFlclXKCgU2C0bVGcRT380ARXzeT8Qt5StGqSdW3ez2ovt3vj3TTPUo/ZTiZJIJiWlfg9jldUEgdCnkmhNg9bSoVwac9q+OdPw/h+7Wn1e9d30ZG979nQaDpy8C6T/RkHqqGhZ0HaqfmiSeeQLVq1TB//nwMGzYM9oypDB4GS0Wgw8109yOE2DGSwWfNWGD/bH3Z1Rto+SbQ+EXA2S0Lwcw62QlmNiYuIRE3lSDQxYHBmqAvxyLMyMKQWaEgg+lC3q4o5O2W/JC87LLuzr1Y/LDuTIbHeKR6cTQqa2XWXRnsS/Xt2U8AV/fqKV/7zAQqtM/a8cIv6y5PSlAE6zEUFBSE5CuebFAKV+5E47s1p/DBkkMo5ueGtpWNahA1fgHYMUl3jdw/Cw5+wQi6tQ0OF3yBsi2tOsYux2IqGjdujOeeew72jswayj9540wfV/DAUpFhpg9CiH0RHwNsnwRs/ByIjdLXSc7x9qMAn2K5EsycWiikdjsyFgoGAZEVoRDg5ZokDlIKBcM6w3MBDxeVPjEty8ufe69kPTuStVTfXjAAOLNWj7V4bBJQs0/mjnPnku7ydPt8kqAQC0XJ3Go1IcSKea19BVUcb+Geyxgxex/mP98YNUsU0De6+QAt3gBWvqfSjDtrCVD20QuTkrIBTrDabIA5Iiru37+P7777DkFBaQey2QumMn1cTuH+pKWd6YMQYj9oGnByhf7DL77xQlA94JGJma6Iak4w8xsLDmDZwZAHIiKHhEIhH1eV/Si1eEhPKGT2nFnOjmQtuHkDT88HlgwHDi8EFj2rV99uMsJ8QSEuT3cu6MHYIij8SuR2qwkhVoqDgwM+61VDZbPbdCoMQ6ftwqLhzVAqwFPfwTtpQkpLeDhjnBRf7jPDKoVFpkWFv79/ikBtSf8XGRkJT09PzJo1C/mB1Jk+rmsFkag5wN0hDlOeKI22TCdLiH1z44Reb0JmrgVJ/dp+DFDzySxl6zCVACI1d2MTlKhISygYWw5yWyhklixlR7I2nF2BXr8CXoV11wQRk1GhQPvR6cfK3LmouzwpQVFGd3mioCAk3+Pi5Iif+tXFk79sx9GQCFXD4s/hTeHv4QSs/iCNd8m0jIP+/0fSj1uZK1SmRcXXX3+dQlRINqjChQujUaNGSnDkFwyZPradDsXCNTtw/Zo/iuMWGgbctXTTCCG5xf07wPrxeoEimUFyctVnq8VULSbrLCATMxtP3jBr38dqB6JN5SJGsQuu8Pd0tYhQyM5v5qpNO9CxRaNcr6id44hg7PwZ4F0EWDNGT/14Nwzo9i3g5AwkJqSsMeIbBMzsoQsLJSjEQmH/Fn1CiHlIBrupQxqg109bcTbsLp6ZsRtzO8TB1bgA6kNoQMQV/bfGytKPZ1pUDB48OMdOXrp0aVy4cOGh9S+++CJ+/PFHWDvyz7BRmYK4Gajh5o0iKJ54C6eOH0WdMo0s3TRCSE4ig8W9M/Tc4feSEjJU6gp0/BgIKJelQ4rL08oj1zBp/RkcuhJudoCfLaeqTv7NPKapZ5sSFAZkUq3F64BXIeDvV1QgpfpOVH8c+O+jlNXQpS6JiM+CZXVBIf7QhBBihKTHnjakgaq6vefCbcxYdQTPwAxk8sLKMEtUHDx40OwD1qxZ0+x9d+3alaKuxeHDh9GhQwf07t0btoYm5uzbx3HlwknUsXRjCCE5x/kteorYa4f05UKVgEfGA+XaZjld65J9V/DzhjNqZkpwc3aAk6Mj7sWarvNj9cHM+ZG6AwHPQsDCIcDJ5fojNQZ/aMk9T0FBCEmDCkV9MHlgfQycshP/XXbAM67IGLGG2qKoqF27tnJ5EjN9esg+mSl+J25TxowfPx7lypVDq1atYGv4FSsD3BYX2/PqOmWqgishxPqQ4NrVHwJHkmrzuPsBrd8DGgwDnDJfdO1ebDzm7ryE3zadTY4r8HV3xuCmpTG4WRnsPHdTBTPDVoOZ8yOVuwD9FuqpZk2G2QsOwIaJQJ0BVuf/TAixHhqXDcCXfWrhlbnxuKoVRHGH23BIK2eeTFIEN4VNiopz587lekNiY2NVoPfrr7+e5oA8JiZGPQxEREQkF+CThyUwnLdQYBngGFAw7joOXLyFaoG+FmkPyXzfWeq7Q6y07+LuwXHbD3Dc9j0c4u9Dc3BEYp2BSGw5Und5SRR3KPPPKxmaZu64iJnbL+J2UramIj5uGNI0GE81KAFvN/1nuF2lQvj+qVr45N/juBbx4HdOcpi//0hltd0evqv2dt85JMTDOU1B8cD/Of7sRmjBzWHL2Fvf5SfYd7ZB56qF8VanyhizeiAmuXwDzQEwTv0h/35khJzQYRy0hETxo82Tdpn7vXHQMjI/5BELFixA3759cfHiRQQGmjYTjx492mTV7jlz5qjsU5akaPh+ND77FY4kBuPHop+gUwmruKyEEHPRNATe2YlqV+bBM06PmwjzroRDQf0R4Rmc6cOFxwLrrjpi63UHxCTqEyWF3DS0C0pEg8IaXNJIEpWoAWciHBARB/i6AOV8NdBAYb1IUar6kj8+A3YHD8eVgk3ypE2EENtF04DJxx1RMmI3RrnMQKDDreRtYsEYEzcQQeXroVZA3o0z7927p8bo4eHh8PX1zXlRcfToUSUAxMJgTPfuWcub26lTJ7i6uuLvv/9Ocx9TloqSJUsiLCws3Q+Z2+pt9erV6Fi7JDymtsFtzRtDi8zHgucYrG3tGPpO4nhcXDLvzpIfkeDi3RduIzQyRs221w/2t4hLTo733bWDcFr1HhwvbVeLmm8JJLQfA61y9/TThZrgws17+HXzOSzadxVxCfrPa+Wi3ni+ZRl0rlYUzk6ZTzlrT9jbfedwYTOcZz2W4X7x/ZfYhaXCnvouP8G+s63/s62/3Kgs1o5IREPH4yiCOwhFAexMrAwNjsqCve71lnn2/1fG24UKFcpQVGQ6+9PZs2fRs2dPHDp0KEWchcFlKTMxFQYkA9R///2HRYsWpbufm5ubeqRGbhBL3yTOAaXVs79DFE5evo7IWA0FvcyJtCGWxhq+P7aAVHxOXWeguIXrDGS77yQdqGR02jNdd1Nx9gCavwaHpv+Ds2vmrJ9HroarTE7/HgpR1gahQWl/vNi6PFpXKsw4K3u978q21P2bpShVOv7PzrKfncRU2E3f5UPYd9bP7jM3k11gE+GI7YlVH9onJDwG+y5H5lk2QHO/M5meMnvllVdQpkwZhIaGKpejI0eOYOPGjahfvz7Wr1+flbZi6tSpKFKkCLp27QqbRXLUSyAngECEmZ13nhBbERQSRJy6QNu18Gi1XrbbFAlxwLafgO/qAnum6YNBSQn60i6g9TtAJgSFFK6TokVdv9usitOJoGhTqTD+eKEJ/nihqaorQUFhx4hQ6DwhaSF1Pyctdx5vN4KCEJK7hEZG5+h+eUmmLRXbtm3D2rVrlRlECt/Jo3nz5vjss8/w8ssvY9++fZk6XmJiohIVgwYNgrNzpptjXfiVAqIPIcghDOtOhOKxOixyROzDFCsWCi3t2p5quxQ2s4nsRKfXACveBcJO6MvFagKPTMhUJg2x0Mo9/tO6M8odTJCP3rVmIIa3KoeqTNSQv6jaHegzQ089bFynQiwYIihkOyGEmEERH/cc3S8vyfQoXtybfHz0yrEiLK5evYpKlSohODgYJ04k/ZPOBOL2JLEZQ4cOhc1ToCRwXRcV/5y8oQZjNjHIIiSDmfjUForUwkK2y35WXZjt5hlg5fsP6gl4BgDtPspUqs/4hET8cyhEuTkdvxap1rk6OeLxeiXwfMuyKF3IKzc/AbFmRDhU7pqyorYIVVooCCGZQOoRiWuxeAJoNla3KNOionr16jhw4IBygWrUqBEmTpyoAqwnT56MsmXLZroBHTt2zLD+hc3gV1I9lXG5pdJI7r90G/WCra/TCckvplhFTCSw8XPd3UlSwTo6Aw2fB1q9DXgUMOsQ0XEJ+HPvZfyy4Swu3rqn1nm5OqFf42AMa15GVUQlRAmIMi0s3QpCiA3j5OigYhXFtdjBxuoWZVpUfPDBB7h7V68CO3bsWDz66KNo0aIFAgICMH/+fORrpKq2FAv0iQCigXXHb1BUEJvHXBPrgl2XUL6IN6oF6rFFFicxETgwF1gzRp85Fsq1Azp/BhSuZNYhomLiMXv7Bfy2+RxuROqBc/6eLhjSrAwGNSkNP08GPBJCCMlZJPnJpP51H0qOUszCyVFyTFRIIPYzzzyj8tQa0kmVL18ex48fx61bt+Dv789gRHF/AlDaRfexFp/rNzuZN3ghxFo5Gaq7+WTEljM3VbBy8/KF8FzLsmhRoZDlfhMu7QKWvw1c1StUo2BZoNNnQMVOZqWIvRkVg2lbz2P61vOIiI5X68Qc/WyLsniqYUl4utp4/BchhBCrpnP14ipWcdvpUKzatAMdWzRCk/JFrNJCYcDs/4y1atXC22+/jTfeeAOPP/64ioFo3bq12lawIGfjkwO1ZSYz7roatxy5GoHrEdF0jSA2ibglfrfmNL7+72TyurRMse8+UhmHr0aoeIPNp8PUo0pxXzzXsgwerRkIl5yszZCYoGoDSNExhwu+ekpPg9+6pPX8bzRwcJ6+7OoDtHoLaPQC4PxwOurUXLlzH79uPIt5uy4iOk6vVFq2sBdeaFUOj9UOgqtz/q4xQQghJO9wcnRAozIFcfOYpp6tWVBkSlRMmTIF33//vap8PW3aNLRr107FVYi4kMxNQUHMdGRwf3KKuoY6Qd7YezkK60+E4skGutggxFZITNQw+u8jmLHtglp+pV0FVC7mg7HL0jfFvtWpEn7fcg7zd13CsZAIvDb/ACauOIGhzcqoGX4f92y6Cx1dqjLsOEdcRX1ZlkrGkmGnwyfAnfPAxi+BON09E7X764HYPkUzPOzp0Cj8vOEMluy7gvikIhM1gvzwYuty6FjNRrJaEUIIIRYkUzZ8qUsxePBg9Thz5oxKBfvLL79g1KhRKuB62LBh6NWrF/ItXoUBJzcgIQaPlgb2XtbjKigqiC0RG5+I1xfsVzUXxOI2uls1DGqqF3eUAbZkeZKgbIm1kOwTxgPukgU9MapbNbzariJm7bigXIhEhIz79xi+W3MKfRuXwpCmZZQYyZKgWDDw4QJjksLzT6PscSUa6Clig+pleMiDl++otLArj16DIV9Ek7IBeLFNOeXGle9dOgkhhBAzybJjcLly5fDJJ5/g448/xp9//onnn38eK1asyFJFbbvB0VG3Vtw6g1ZF76tV4gYigzS6TRBb4G5MPF6YtQebToXBxckBX/apje61ApO3i4AwJ22sBDCPaFMez7Qoo2b/J288izM37qrsSb9vPofutYJU3EWlYnp66gxJTNBrAJhMsJeEgyPQ4yeg5pP6vZiOW9e2Mzfx0/oz6v400KFqUWWZqFPK37w2EUIIISSZbEUbSgVtsVaIqJDCdc8++2x2DmcfJImKMs63UMi7MMKiYrH7/C00LV/I0i0jJF1u3Y3FkKk7ceByODxdnfBz/3poWbFwto7p5uykLHW965VUiQt+2XhWWTokPas8WlUsrOo7iFBJ1yoguf+Ni4qZQkvU7780BIW4dK0+dl2JiQOX7iSLpB61A1XMRMWiZgocQgghhGRfVFy+fFnFVMjj7NmzKp3sTz/9hN69e8PDwyOzh7PbDFCOEVfQqmI1NXCSwRRFBbFmJEB5wJQdOHvjrkqZOnVIQ9QuaV4NB3NwdHRAuypF1WP/pTuYvPEMVhy+hg0nb6hH9SBflVmpa43icDYV1G1ICZsRJvaLS0jE0v1XVczEqdAotc7N2RFPNiipzikuW4QQQgjJI1EhAdq///471qxZgyJFiqjgbAnSlrSy5OEMUAi/iLaViyhRsfZ4KN7vWtXSLSPEJKeuR2Lg7ztV7EOgnztmDGuk6k3kFiJWfupXDxdu3sWUzeewYPclHL4SgVfm7VdB3VJMTgb8Xm5GP09SndgcjPa7H5ugji2uVyKaBB83ZwxoEqzqTBT2yTgbFCGEEEJyWFT0798fXbt2xeLFi9GlSxc4puOznK9JygCFO5fQvEIh5V4hvuQXb95DqQDOiBLrYu/F2xg6bZeqAC9CYuawhijulzcWx+AAL4ztUR2vtq+ImdsuYMa282rwLxmmvvnvJPo3DsbgZqX14nvBTQHvYkDUtTSO5qBngQpuivD7cZi1/YKK3bh5N1ZtLeTtpsRKv8al4JvdDFSEEEIIybqoELcnsVAQ89yfEH4Jfh4uqBfsr3zI158MxcAmegYdQqwBSXc8fNZe3I9LQJ1SBfD7oAbw93LN83YU9HLFK+0r4PlWZZVl77dN53Au7K6KfZDXPesE4dlmJVDeo4ASFRKqbRx9kZi0HNH6Y/y08iRmb7+oKmELJfw98HyrcuhdrwTcXZJqWRBCCCHEcqKCgsJM/Ayi4rKkmVEuUCIq1h2nqCDWw1/7r+CNBQdUTQYJxv65f12LV4mWQX+/RsF4qkEprD56XcVd7L14B/N3X0KV/R+jvPNx3NdcEQkPFHEIT37fNS0AY+IGYM1CD8QnnlXrKhb1xvDW5dCtZqDpGA1CCCGE5CiWHUXYI75SBNABiI8G7oahTaUiGL/8OLaeual8vD1cOVtKLMvULecw5u+j6rVkPvr8iVpWlfJYXAY7Vy+mHnsu3MLhv3/EoLBVattLcf/DusQ6aOh4HEVwB6EogJ2JlZEIab+GOiX9MKJNBSXmJTicEEIIIXkDRUVO4+wK+BQDIkNUsHbFwLoq+PVqeDS2n72JNpVp8SGWQeozfLnqJH5Yd1otD25aGh89WtWqB9/1nM6i3u3v1Osv457AmkS9oN32RNOJD97uXBlNyjHTGiGEEJLXWM/0pJ26QEnu/dZJQkJSyxLrICFRw45zt7AnzEE9y7I9kRAfjyNb/sHuZZPVc2xsHN5bfChZULzVqRJGdbNuQYHI68D8/kBCLEKKt8MPCY9l+JbQyJg8aRohhBBCcsBScefOHSxcuBBnzpzBW2+9hYIFC2Lv3r0oWrQogoLE/SefI8Hal3eqDFBC20pFMGfHRZVadkx3Lf0iXyTXWXE4RLn/SApVwAkzTu1GcT93NcjuXL04bJ19K6cjcNsYVMPN5HUhqwriVtxAODo0xLieNfB0w6TUx9ZKfCywYIBu8StcGRdbfQ3t3OEM36YyRRFCCCHE+i0VBw8eRMWKFTFhwgR88cUXSmAIixYtwrvvvpsbbbTdtLLhuqhoWj4Ark6OuHz7Ps7c0Itv2QIye7/tzE0V1CvP9jCbL4JCMh7pguIB18Kj1XrZbuuCotbWl1FYeyAohKK4hUku3+DzahesX1AIy98GLu0A3PyAp+agfsVSSvilJcdlvWxvWKZgHjeUEEIIIVkSFa+//joGDx6MU6dOwd39wayg1K7YuHEjr2rqDFCAyqrTqKw+2Fl3/AZsARlcN5+wFk//ul0VJZNnWbblQbeIIrFQmJJGhnWy3VbFk7g8iYVCSO3VZFhudvoLtZ9Vs/t3YM9UXSo8MQUIKKeCt8WSJKQWFoZl2S77EUIIIcQG3J927dqFX3755aH14vZ07VpahanyGQWSZoLvXExeJdloNp0KUy5Qz7YsC1uYzU89tDbM5k/qXzfX3YQkqDgmPhExcYmIiU9AdDaf5Tgh4fcfslCkOKe4CYVHqxTATcoFwNY4vmOl7vKUxrhaxtvFcBNHZL9mXWGVXNwO/Pu2/rrdR0CFDsmb5Dsn370Hrms6xezIdY0QQgjJN6LCzc0NERERD60/efIkChcunFPtsiv3J0FSy8pgaNf5W4iMjoOPlVb1NWc2/8MlR1DU113VOIiO0wfs0fHpPxsG9hntp44nYiJeSppZhtDItIWHNXP/9pUc3S/PibgKzB8AJMYBVR8Dmr/20C4iHDpULYZtp0OxatMOdGzRCE3KF6GFghBCCLE1UdG9e3eMHTsWCxYsUMsSdHzx4kW88847ePzxx3Ojjbbr/nT/NhATBbh5o3QhL5Qp5KUqBW85HWa1s6oyS5/ebL5wIyoGPX/ammdtkvGiFEZzc3Z86NktjfWmni/fvodfN52z22DfRE/z0hV7+FthMoW4aD3T091QoEg14LGf5MfF5K4iIBqVKYibxzT1TEFBCCGE2KCo+PLLL/HEE0+oCtv3799Hq1atlNtTkyZNMG7cuNxppa3h7gu4+wHR4XpcRZHKanXrSoWVqBAXKGsVFebO0hfwcEFBL1dVNE0G9u4mnx3h7uyU8jkLosDZ0SFHMmaJFWbZwRDlxpVW1ERRXzebDPaVdMWLNh1Hfe3heAoDEioS6hCAyo06warQNOCfN4ArewD3AsBTswFXL0u3ihBCCCG5KSr8/PywevVqbN68WWWCioqKQt26ddG+ffvMHsq+8SsFRB/SXaCSRIXEVUzdch7rTtxQMQPWmFrW3Fn6Sf3r2VzcgSHYV+JC5MqbEhbebs6IjU+0mcrn4i42YcVxRG2fhq+df1OCQsbo8tlSiwtZDGkyCsWcrazm5a7fgP2zAAdHoPdUoGAZS7eIEEIIIXlV/K558+Z48cUX8fbbb1NQpBdXYRSsLTPgHi5OuBEZgyNXH45LsQYalPaHu0vaXwtbT91pCPaV4F5jCnm7qc995sZdvDh7D+ISLBfTYS4nr0fisR82o8COL/C5y2Q4OyQioXof7G/8FW44PCz4NEcn1KlRC1bF+c3AipH66w5jgXJtLd0iQgghhGSBTE9ZfvfddybXy6y7pJgtX748WrZsCScn25jpzdUCeEZpZQU3Zyc0K18I/x27jvUnQlE9yA/WxndrTqmMSaawl9SdaQX77r14GwOm7FCWpDf/OICv+9S2yorTYuWateMiJiw7iNEOk/GEc1Iq5xZvwqntB6jj4ICEDoNUlicJyvYoEIiqF2bC8dQK4I9BwHMbAI8Clv4YenHIBYOAxHigRm+gyUuWbhEhhBBC8kpUfP3117hx4wbu3bsHf39/te727dvw9PSEt7c3QkNDUbZsWaxbtw4lSyYNrPN1rYoHGaAMLlAiKiSu4qW2FWBNLNxzGd+tPa1eD2gcrNppr6k7TQX7NihdULl1PTt9N/7afxV+Hi4Y072aVbmp3bobi7cXHsT2Y+dUMbsWToehOTjBoeuXQP0hyfs5OTunTBtbrxnwS0vg9nngrxHAk+JuZMHPFXcfmN8PuBcGFKsJdPvOsu0hhBBCSN66P3366ado0KCBKn538+ZN9ZB0so0aNcK3336rMkEVK1YMr732cDrI/On+lFJUSLC2sO/SHTVAtBa2ngnDu4sOqtcj2pTDx49Vx+Z32mLus43x7VO11bMs24OgSA9J/ftln1pqfDtj2wV8vfokrIXNp8LQ+ZuNOHTsGBa6jdUFhYsXHJ6el0JQmMTDH+g9HXByBY4vA7b/BIshQR9/vwKEHAA8A5ICsz0t1x5CCCGE5L2o+OCDD5S1oly5csnrxOXpiy++wLvvvosSJUpg4sSJ2LJlC/I1hgJ4Ru5PQmABD1Qu5qPGVZtOWUd17dOhkXhhpsQRaHi0ZnG80aGSWi+z9xKM3aN2kHq2ZZenzCCfd2yP6uq1WG6mbM44DW1uIjU+xv1zFP2n7IB/1Cn87TEalR0uAl5F4DDkH6BiR/MOFFQX6PSp/nr1R8DFHbAIImgOzgccnIDe0x7cK4QQQgjJP6IiJCQE8fHxD62XdYaK2oGBgYiMjES+xuD+FHkVSIhLsal1Jb2egLhAWZqwqBgMmbYLEdHxqBfsjy9617LKOIK8Rty/3uxYUb3+eNlR/LknpTjMK06HRqHXT1tVfY2mjofxl8fHKKKFAYUqAs/8BwTWydwBGzwDVOulxzEsHALcvYk85ex6YNWH+msROGVa5u35CSGEEGIdoqJNmzZ4/vnnsW/fvuR18nr48OFo21bP3HLo0CGUKZPP00J6FdZdTbREvVJwqrgKYcPJG6p2giXTkT4zfTcu3bqP4ABP/DqwvqoLQXRGtCmPYc317/Hbfx7EqiO6aM6rYOy5Oy/i0e83qUxh/T22Ypbb53BPvAuUagoMXQn4B2f+wOLX1f07IKA8EHEFWPwckJhHma4knuOPIYCWANTqCzR6Pm/OSwghhBDrExVTpkxBwYIFUa9ePbi5ualH/fr11TrZJkjAthTJy9c4Oj6Iq0jlAlW3VAH4uDvjzr047L90xyLNS0zU8Nr8/er8EpA8dXADVcyOPEACtN/vUgVP1CuhxN9Lc/dh25ncn9m/fTcWL8zag3cXHVLCb2KRlfhE+wGOWhxQrScwYDHgmY2Uvm4+QJ8ZgLM7cPo/YHMe3Kuxd4F5/YH7t4DAusCjXzMwmxBCCMnP2Z8kCFuK3x0/flwFaAuVKlVSD2NrBklygbp19qEMUM5OjmhZsTD+ORiCdcdDldtRXjNh5XEsP3wNrk6OmDygHsoW9s7zNtgC4go2vlcNRNyPw6qj1/HsjN2Y82wj1CxRINcC5l+ffwDXIqLh7pSIxcF/osrVxfrGpi8D7cfogjW7FK0GSMYoyQS17lOgZKPcc0WSAKK/XgKuH9IteJJ5ysW8IouEEEIIsQ2yPDqpXLkyunfvrh7GgoKYiKtIlQFKaJsUV7HuRN7HVczZcRG/bDirXk98oiYalbWtyth5jYjA756ugyZlAxAVE4/BU3epWIecRIrtSWXsfr/tUIKiaoAjdpWdogsKqTTd5Qug48c5IygM1OkP1O6nu+gtHAZE5pJ715ZvgSOLAEdn3ULiF5Q75yGEEEKI7VgqhMuXL2Pp0qUqfWxsbMq0qF999VVOtc2OCuA9qKptoFVSalnxl78eEY2ivnkzcytF9z7867B6/Vr7inisDgd45iCxJr8Oqo++v27HwcvhqkjewuFNEVTAI9vHPh92F6/M24cDl8PV8jO1PfHenVFwvHQAcPYAnpgCVDaqOZGTiFi5ug8IPaoLi4F/SZGLnDu+uFf9N1p//cgEILhpzh2bEEIIIVZDpqc916xZoywTkyZNUnETUuRu6tSp+P3337F///7caaXNF8B7OHNQIW831CqhV9TecCJvUsseC4nAS3P2qfiAXnWD8HK78nlyXnvB280Z04Y0RLnCXqoo4IDfdqjsWdkJxv5j9yV0+W6TEhQS2zKjmx8+CHkZjtekhkMhYPCy3BMUgtSHEOuBqzdwYTOw/rOcO/bNM8DCofJJgboDgfrDcu7YhBBCCLFtUSG1KN58802V4cnd3R1//vknLl26hFatWqF3796500pbt1SYcH8S2lTOu9SyYg0ZOm2Xct9pXLYgxveqaVWVom0FCWaf9UwjZaE4G3YXg37fiYjolCmDzSH8fpwK/H5r4UHci01QfbLmcWe03NRXt2wVLAs8sxooUR+5TqEKekYoYdMXwKnV2T9mTBQwrx8QHQ6UaKBbRPh9I4QQQuyWTIuKY8eOYeDAgeq1s7Mz7t+/r7I9jR07FhMmTMiNNtouxtmfJFjVRPVmYfPpMMTG515az7sx8UpQyOx62cJe+KV/fbg656Bvfj6juJ8HZg5riAAvV+W+Jml5JUuTuew8dwtdvt2kAvWdHR3wVqdKmNP4CgotfjJpEN4QGPafLizyiuqP6zUshEXPmrSumY1815e8ANw4BngXA/rMBJzdcqyphBBCCLE+Mj2y9PLySo6jKF68OM6cOZO8LSwsLGdbZ+v4iqhwAOLvA/ceTkVaI8hPDUzFerD7wq1caYK4Oom/vgx+5VzTBjeEn6dLrpwrPyHZsqYPbQgfN2clEl6as1cFW6dHfEIivlp1Ak9N3oYrd/TaIAtfaIIRrv/AcdEwICEWqPwoMGgp4GWB4HkpRle8NnD/NvDHYCA+ZbyU2Yi149jfep0WyfTkWzynW0oIIYQQWxcVjRs3xubNm9XrLl264I033sC4ceMwdOhQtY0Y4ewK+BTTX9+5aDJdqSFgW1LL5gZSDfq/Y6Fwc3ZUgcalAjxz5Tz5kepBfpgyuIG6tnKN3154EHHxiaqWxV/7r6hnQ3HDS7fuoc8v2/Dd2tOQVY/XLYF/XmqK2oc+AVZ/pB+w0XA9vsEl+8HfWUKsCX2mA25+wOVdDwKsM8OJFcDacfprcXkq2SDHm0kIIYQQ6yPTaV4ku1NUlJ5Oc8yYMer1/PnzUaFCBWZ+SssFKjJEr1URVPehzVJde9HeK1h34gbez+F43KlbzmHa1vPq9ddP1kbdUnlfD8PeaVimICb1r4vnZuzB4n1XsPLINRUjYaC4nzs6Vy+KP3ZfURYpKXo4rmcNdK9SAPhzMHDiX92a1Wkc0GQELI5/aaDnJGBeX2D7j0CpxkDV7ua9N+yU7jolgdkSlF1vUG63lhBCCCG2KCoSEhJUOtmaNWsmu0L9/PPPudU2+8kAJbO+afiotyhfGE6ODqrugcxmlyyYM5aE1UevY+yyo+r1yEcqo0sNuqDkFm0rF8WAJsGYuuV8CkEhSBzL1C0X1OsGpf2VuCvhcheY/ihwZQ/g5Ab0mgxUewxWg2Sbavo/YOv3enG8YtUzju+IjtCFSEwEUKoJ0Hl8XrWWEEIIIbbm/uTk5ISOHTvi9u3budeifJYBSuIb6iVZEHKqEN6hy+F4ee4+FS/7dMNSeL5lHgb85kPExWnF4fQLx0nsxaxhjVAi4Sowpb0uKDz89fgJaxIUBtqN0qtsi0hYMAiIi05738REYPHzQNhJwCdQd+ES1z9CCCGE5BsyHVNRvXp1nD2rV2MmmalVYVpUGKeWzYm4CgkAHjp9F+7HJaBFhUIY26MaU8fmMhKoLRaJ9IiMicfJ3WuAKR2A2+eBAsHAsNW6e5E14uQCPDEV8AwArh0EVoxMe98NE3Q3LrG6PDUL8Na/z4QQQgjJP2RaVHzyySeqTsWyZcsQEhKCiIiIFA+ShqgwEahtoE1lPVh765mbmUpNmprI6DgMnboLNyJjULmYD37qVxcuTkwdm9uERqYvKIROjjtRdXV/4P4tILAO8Mx/en0Ia8YvCOj1qx7zsWcqcHDBw/scWwZsSHJ16vYNEFQvz5tJCCGEEMuT6RGnZHw6cOAAunfvjhIlSsDf3189ChQooJ4zy5UrV9C/f38EBATAw8MDNWrUwO7du2F37k/p5P2vVNRHBfTGSOagsw+nnjUHSWf64uy9OHE9EoV93FRWIh93po7NC4r4uCe/dkQiGjseRXfHrepZloc4Lcckl2/hlBgDVOwMDP7Hdmbzy7cDWr6lv/77VeD6UeDcJuDQQmDfbGDRc/q2Ri8AtftatKmEEEIIsaHsT+vWrcuxk0tsRrNmzdCmTRssX74chQsXxqlTp7IkTqzeUiEz1LF3AVevh3YR96TWlYpg7s6LygXKUBTPXDRNw0d/HcamU2HwcHHC74MaqIrPJO8yQIkorBW5ER+5zECgw4OaI1GaO7wddEtGYv1hcHxkIuCU6dvOsrQeCVzaDpzbCPzSAkiMT7m9cBWg4yeWah0hhBBCrIBMj25atWqVYyeXCtwlS5bE1KlTk9eVKVMGdoW7r573PyZcD9YuUtnkbpJaVkTF2uOhGNNdy1QcxC8bz2LuzkuQt3z3dB3UKOGXgx+AZIRk7/qp7mXU2vrNQ9sMguJKye4I6vqlKEjYHI5OQI0+uqhILSiEG8eBE8vNTz1LCCGEELsjSw73mzZtUi5LTZs2Ve5LwsyZM5OL4pnL0qVLUb9+ffTu3RtFihRBnTp18Ouv4sNtZ5jhAtW0XABcnRxx+fZ9nLlx1+xD/3soBOOXH1evP3q0KjpULZr99pLMkZiAOkfGK73gaEIzSPm7oPA9gJZ+xW2rJTEBWP9p+vtIILfsRwghhJB8SaYtFX/++ScGDBiAfv36Ye/evYiJiVHrw8PD8emnn+Lff6WYl3lIFqlJkybh9ddfx3vvvYddu3bh5ZdfhqurKwYNerhwlpzLcD7BEBgeFxenHpbAcN70zu/kGwTH64eRcOscEtPYz9VRr2Ow5cxN/Hc0BMFShCwD9l26g9fm71evBzQuhf4NS1jsOtgi5vSdOThc2AzniKsSzmx6u/yJuIL4sxuhBTeHrWH4fGmj5fnny6m+I3kP+852Yd/ZLuw72yXOCvrO3HM7aOKQnwnEmvDaa69h4MCB8PHxUUHbZcuWxb59+/DII4/g2rX08/UbI+JBLBVbt25NXieiQsTFtm3bHtp/9OjRqop3aubMmQNPz5wpGpcb1Lg0A2XD/sPJot1wLLB3mvutD3HA4vNOqOCbiJeqpT+rHRYNfH3ICVHxDqjun4hhlRJNzpKT3MU1PhLVL81EyTvbM9x3d/BwXCnYBLZG0K1tqH9hkt1+PkIIIYSkzb1799C3b19lQPD19c05S8WJEyfQsmXLh9b7+fnhzp07mTpW8eLFUbVq1RTrqlSpoqwhpnj33XeVVcPYUiExGVKQL70PmdvqbfXq1ejQoQNcXExnW3LcdgZY+x/KF3ZDmS5d0jxW1Zt3sfibLTh/1wkt2raHj7vp7gm/H4c+k3ciKv4uqhb3waxhDeDlZmPBv1aAOX1nEk2Dw9W9cNzzOxyOLoFDwgPrWXrUbtEJtWzSUuELmCEq8vLzZbnviMVh39ku7DvbhX1nu8RZQd+ZWzIi0yPRYsWK4fTp0yhdOqV7jsRTiMUiM0jmJxEpxpw8eRLBwcEm93dzc1OP1MhFtvRNkm4bCurXyjHiChzTaWeFYgVQOsAT52/ew84Ld9C5evGH9omNT8RL83bjbNhdBPq5Y+qQhijg/SClKck8Zn9/Yu8BhxcCu34DQg48WF+spl6HJDo8KYIiNQ6AbyCcy7bUg55tDWm3byAQEWJ1n88a7n2SNdh3tgv7znZh39kuLhbsO3PPm+lA7WeffRavvPIKduzYoTIUXb16FbNnz1YF8YYPH56pY4kb1fbt21UshggVcWOaPHkyRowYAfssgJd2VW0DklpWWHf8xkPbxFNt5KKD2H72FrzdnFUtiqK+FBS5TthpYMV7wFeVgaX/0wWFVI+u1Rd4Zi3w/Eag+/dJO6f2QUta7jzeNgWFIO3uPMF+Px8hhBBCsk2mLRUjR45EYmIi2rVrp3ysxBVKrAciKv73v/9l6lgNGjTA4sWLlVvT2LFjVTrZb775RgWB22X2p8irQEIc4JS24pPUstO2nse6E6FKRBinlv1uzWks2ntFpTD9sV9dVCluGZcvuyAxQQUgS7yAcu9JPcueEA+cXKFbJc4a1WYpEAw0GAbUGQB4FnywXtKp9pkBrHgHMA5qlhl+GXDberpVe/98hBBCCMlbUSGD3Pfffx9vvfWWsi5ERUWpuAhvb+8sNeDRRx9VD7vGqwjg5AokxAKRIUCBUukWUpMCdqGRMTgaEoFqgXrNicX7LuPr/06q1x/3qI5WFQvnWfPtjqNL1eBYMhrVl2WJF1CD4wlAyUbA3hnAnqkqo5GOA1CxE9DgGaBcO8AxDQOfDKwrdwUubAWirgPeRYHgpvYzg2/vn48QQggheScqZs2ahV69eqlsS6mDrEkayCDUNwi4fU53gUpHVLi7OKFZ+QD8dywU07eeR7PyhXAzKgaf/avXoni+ZVn0bZT2+4kZgmLBwIdjA2T2fcEAwMEJ0JLqLXgGAHUHAvWGAP6m43weQgbYZVrAbrH3z0cIIYSQvBEVEgfxwgsvoHv37qoAXqdOneDkxJlKs1ygRFSEZxxXUcRHD0ZfsPuyehioU7IA3ulsuiI3MQMpzibuOyaDjZMQQRHUAGj0HFC1B+D8cGIAQgghhBCSzUDtkJAQzJs3T7lB9enTR6WFlcBq41oTxAR+SdaFDETFisMhmLPT9D77L93BqqPm1wEhqRC3nXSLuCXRfhRQsw8FBSGEEEJIbokKZ2dnFQMhGZ9CQ0Px9ddf4/z582jTpg3KlSuX2cPlHwpknAEqIVHDmL+PpnsY2S77kSwgcQA5uR8hhBBCCFFkq2KaxFWI+9Pt27dx4cIFHDt2LDuHs2/8SmRoqdh57hZCwqPT3C5SQrbLfk3KBeRGK+0bCSzOyf0IIYQQQkjWLBWCpJIVS0WXLl0QFBSk0sD27NkTR44cycrh8geGWhXhD2IkUhMambagyMp+BClTxB79K4OdpIhbkJ7RiBBCCCGE5J6l4qmnnsKyZcuUlUJiKj788EM0adIks4fJ3+5Pmia5eR/apYiPeYXszN2PJHH/NvDHYODseqOVcv2N3chYxI0QQgghJM9EhWR6WrBggcmsT4cPH0b16tWz3Bi7RmbAhfj7wL2bgFchkzUqivu541p4tMn8RDLsLebnrvYjmaiGPfdJ4OZpwMUL6PWLLupYxI0QQgghxHKiQtyejImMjMTcuXPx22+/Yc+ePUhISMrxT1IimYS8iwFR14A7F02KCqmUPapbVQyftTeteXS1XfYjZnBmrW6hiA7X3c+engsUq6Fvq9wV8Wc3Yv+mlajdohOcU1fUJoQQQgghuRtTIWzcuBGDBg1SKWW/+OILtG3bFtu3b8/q4fKXC1Q6cRWdqxfHpP51lUXCGFmW9bKdZIBYInb8Asx6QhcUJRsDz657ICgERydowc1xpWAT9UxBQQghhBCSR5aKa9euYdq0aZgyZQoiIiJUTEVMTAyWLFnC6trmZoC6vCvDWhUiHDpULaayPElQtsRQiMsTLRRmkBAH/PsmsGeavlyrL9DtG9acIIQQQgixBlHRrVs3ZZ3o2rWryvbUuXNnFVPx888/52b77DMDVDq1KgyIgGDa2Exy7xawYCBwfpPuMNZhLND0fyaD4gkhhBBCiAVExfLly/Hyyy9j+PDhqFChQg42IR9RwLyq2iQLhB4D5j4F3D4PuPoAT0wBKnaydKsIIYQQQvIFZsdUbN68WQVl16tXD40aNcIPP/yAsLCw3G2d3daqoKjIUU6uBH7roAuKAsHAM6spKAghhBBCrFFUNG7cGL/++itCQkLw/PPPY968eQgMDERiYiJWr16tBAcxs6q2Ge5PxMyA7C3fAXOeBGIjAQm4loDsIlUs3TJCCCGEkHxFprM/eXl5YejQocpycejQIbzxxhsYP348ihQpgu7dmePfrOxP928BsXct3RrbJj4G+GsEsPpDPflu3UHAgMWAF+NQCCGEEEJsJqWsUKlSJUycOBGXL19WtSpIBrj7AW5+GaaVJRkQdQOY3g3YPxtwcAQemQh0+xZwdrV0ywghhBBC8iXZEhUGJAvUY489hqVLl+bE4ewbukBlj2uHgF/bAJd26AKt30Kg0fPM8EQIIYQQYuuigmSlAN5FS7fE9ji2DJjSSQ90L1gOeHYNUL6dpVtFCCGEEJLvyVTxO5KTGaDo/pSpgOxNXwJrP9aXy7YGek8DPPwt3TJCCCGEEEJRYQHo/pQ54u4DS/8HHPpDX274PNDpU8CJX11CCCGEEGuBIzOLuT9RVGRI5DVgXl/gyh7A0Rno8jlQf6ilW0UIIYQQQlJBUZHX+BmqatP9KV2u7gPm9gUir+puTn1mAGVaWrpVhBBCCCHEBBQVlnJ/irgKJMTTjccUhxcBS14E4u8DhSoBfecBBctaulWEEEIIISQNmP0pr/EuCji5AlqCPgtPHpCYCKz7FFg4RBcUFToCz6ymoCCEEEIIsXIoKvIaR0fAN0h/TReoB0iF8YWDgQ0T9OUmLwFPz9MLBhJCCCGEEKuGvjeWCta+fU7PABVs6cZYASKu5j4NXDsIOLoA3b4B6vS3dKsIIYQQQoiZUFRYtFYFC+Dh0i49w9PdUMCzEPDkLCC4iaVbRQghhBBCMgFFhSVgATydA/P1GhQJMUCRasDTcwF/mm4IIYQQQmwNigpL1qrIrwXwJCB77Vhg89f6cqWuQK/JgJu3pVtGCCGEEEKyAEWFJdPK5scCeDGRwKLngBP/6svNXwfafqgHsBNCCCGEEJuEosKS7k9iqdA0wMEB+YLbF/SA7NAjgJMb0OMHoGYfS7eKEEIIIYRkE4oKS1oqpBbDvVuAVwDsngtbgfn9gXs39VodT80BStS3dKsIIYQQQkgOQJ8TS+Dspg+s80sGqL0zgenddUFRrCbw7FoKCkIIIYQQO4KiwhpcoOyVxARg5fvA0peAxDigag9g6IoHlhpCCCGEEGIXUFRYOgOUvaaVjQ4H5vQBtv2gL7d+F3hiGuDqZemWEUIIIYSQHIYxFRavVWGHloqbZ4C5TwFhJwFnD6DnJKBaT0u3ihBCCCGE5BIUFRZ3f7KzmIqzG4AFA4HoO4BPIPD0HCCwjqVbRQghhBBCchGKCkthj+5Pu6YAy98GEuOBoHp6hiefYpZuFSGEEEIIyWUoKiyFPbk/JcQBK94Fdv2qL9foA3T/DnDxsHTLCCGEEEJIHkBRYSkMGZAkzWrsXdsNYJY6G38MBs5t0JfbfaRXyc4vBf0IIYQQQghFhcXwKAC4+QIxEboLVOFKsDlunATmPgncOgu4eAG9JgNVHrV0qwghhBBCSB7DlLKWxJZdoE7/B/zWXhcU8jmGraSgIIQQQgjJp1BUWIMLlC0VwNM0YPskYHZvICYcKNkYeHYdUKyGpVtGCCGEEELyo6gYPXo0HBwcUjwqV66M/JcB6pL1VsQ+twk4tFB/jr0P/P0ysGIkoCUCtfsBg5YC3oUt3VJCCCGEEJKfYyqqVauG//77L3nZ2dniTbKA+5MVppU9uhRY8Q4QcfXBOidXICEWgAPQ8WOgyUsMyCaEEEIIIZYXFSIiihXLp7UMrNX9SQSFFLCDlnK9EhQAWrwBNP2fRZpGCCGEEEKsD4vHVJw6dQqBgYEoW7Ys+vXrh4sX7azCdHoUKGV97k/i8iQWitSCwpgDc/X9CCGEEEIIsbSlolGjRpg2bRoqVaqEkJAQjBkzBi1atMDhw4fh4+Pz0P4xMTHqYSAiIkI9x8XFqYclMJw3S+f3KgYXGb5HXEV8zH3A0eKGIzhc2AxnY5cnU0RcQfzZjdCCm8OWyVbfEYvCvrNd2He2C/vOdmHf2S5xVtB35p7bQdMknY91cOfOHQQHB+Orr77CsGHDTAZ2i/BIzZw5c+Dp6QmbQ0tEtwPD4KglYFW1r3DftZClW4SgW9tQ/8KkDPfbHTwcVwo2yZM2EUIIIYQQy3Dv3j307dsX4eHh8PX1tQ1RITRo0ADt27fHZ599ZpalomTJkggLC0v3Q+a2elu9ejU6dOgAFxexO2QO5x/rw+HOecQP+BtaqSbWYamY9ViG+8X3X2IXlors9B2xHOw724V9Z7uw72wX9p3tEmcFfSfj7UKFCmUoKizvb2NEVFQUzpw5gwEDBpjc7ubmph6pkYts6Zsky22QtLJ3zsM5KkQOAotTtiXgXQyIupbGDg6AbyCcZT9HJ9gD1vD9IVmDfWe7sO9sF/ad7cK+s11cLNh35p7XooHab775JjZs2IDz589j69at6NmzJ5ycnPD0008j32BtwdoiFApXSmNjUvrYzuPtRlAQQgghhJDsY1FLxeXLl5WAuHnzJgoXLozmzZtj+/bt6nW+SytrLaLi0i7g3Ab9tWch4F7Yg22+gbqgqNrdYs0jhBBCCCHWh0VFxbx58yx5eusqgGcNtSokTew/r+uva/UFevwAXNgKRF0HvIsCwU1poSCEEEIIIdYdU5EvkZgKa6mqvft34NpBwM0P6DBWFxBlWli6VYQQQgghxMqxePG7fI/BUiHuT5ZMxBV1A1jzsf663YeAdz5yQSOEEEIIIdmCosLS+Abpz3H3gHu3LNeO1R8BMeFAsZpA/aGWawchhBBCCLE5KCosjYu7Hq9gyWDtC9uAA3P0112/YtwEIYQQQgjJFBQV1uYCldckxAP/vqm/rjMAKNkg79tACCGEEEJsGooKa0ora4kMULt+Ba4fBtwLAO3H5P35CSGEEEKIzUNRYVUZoPJYVEReA9Z9qr9uPwrwCsjb8xNCCCGEELuAosIa8LNQVe1VHwIxEUBgHaDuoLw9NyGEEEIIsRsoKvKr+9P5zcChBQAcgK5fMjibEEIIIYRkGYqK/Oj+lBAH/JMUnF1vMBBUL2/OSwghhBBC7BKKCmvK/nTvJhB7L/fPt+Nn4MYxwKMg0O6j3D8fIYQQQgixaygqrAF3P8DVR38dfjl3zxVxFVg/Xn/dYQzgWTB3z0cIIYQQQuweigprwMHByAXqYu6ea9UHQGwUUKIBULt/7p6LEEIIIYTkCygqrK4AXi5aKs6uBw7/CTg4Al2+ABzZ/YQQQgghJPtwVJlfMkDFxwL/vqW/rj8MCKydO+chhBBCCCH5DoqK/JIBavuPQNhJwLMQ0PaD3DkHIYQQQgjJl1BU5Af3Jznmhon6644fAx4Fcv4chBBCCCEk30JRYS0UKJV77k8r3wPi7gElGwM1n8r54xNCCCGEkHwNRYW1xVREXAES4nPuuKfXAEf/Ahyckipns8sJIYQQQkjOwhGmteBdDHB0AbQEIDIkZ44ZH/MgOLvhc0Cx6jlzXEIIIYQQQoygqLAWxILgF5SzcRVbvwdunQG8iwJt3s2ZYxJCCCGEEJIKigqrDNbOgbiK2xeAjV/orzt+olftJoQQQgghJBegqLBGUXHnYs4EZ8ffB4KbAzV6Z/94hBBCCCGEpAFFhVXWqsim+9PJVcDxZUnB2V8ADg450jxCCCGEEEJMQVFhjRmgsuP+FBcNLE8Kzm48HChSJWfaRgghhBBCSBpQVFil+1M2RMWWb4Hb5wGf4kDrkTnWNEIIIYQQQtKCosIaC+CJ+5OmZf79t84Bm7/SX3caB7j55Gz7CCGEEEIIMQFFhTXhm5RSNu4ucP925t+/YiQQHw2UaQlU65XjzSOEEEIIIcQUFBXWhIs74FUkaxmgTiwHTq7QC+h1+ZLB2YQQQgghJM+gqLDaDFCZiKuIvQcsf1t/3WQEULhi7rSNEEIIIYQQE1BUWG0BvEykld38tW7Z8C0BtEoSF4QQQgghhOQRFBXWmlbW3AxQN88AW77RX3f+FHD1yr22EUIIIYQQYgKKCqvNAGVGTIVkiPr3LSAhFijXFqjSPdebRwghhBBCSGooKmzZ/UmqZp9ZAzi5Al1YOZsQQgghhFgGigpbdX+KvQssTypu1/RlIKBc7reNEEIIIYQQE1BUWGv2p3thelantNj4BRBxGfArBbR4I8+aRwghhBBCSGooKqwN9wKAa1Il7IgrpvcJOwVs/V5//ch4wNUz79pHCCGEEEJIKigqrA2Ji0h2gbqYRnD2m0BiHFChI1CpS543kRBCCCGEEGMoKmytAN7RJcDZ9YCTG/DIBAZnE0IIIYQQi0NRYc0ZoFIHa8dEAive0183fw0oWDbv20YIIYQQQkgqKCqs2lKRKq3sholA5FXAvzTQ/FWLNI0QQgghhJDUUFRYda0KI0tF6HFg+0/660cmAi4elmkbIYQQQgghqaCosAX3p+Tg7Hg9MLtiJ4s2jxBCCCGEEGOcUywR63J/kpSyiQnAkcXA+U2AszvQebylW0cIIYQQQoh1WirGjx8PBwcHvPoqYwXgXRRwcAK0BGDbD8A/b+rrW7wJ+AdbunWEEEIIIYRYn6Vi165d+OWXX1CzZk1LN8U6OP7Pg9erP9KfRWQEMNsTIYQQQgixPixuqYiKikK/fv3w66+/wt/f39LNsTxHlwILBupWCmNkeeEwfTshhBBCCCFWhMVFxYgRI9C1a1e0b9/e0k2xPBI/seIdURBp77NipL4fIYQQQgghVoJF3Z/mzZuHvXv3Kvcnc4iJiVEPAxEREeo5Li5OPSyB4bw5cX6HC5vhHHE1nT00Fbwdf3YjtODm2T5fficn+47kLew724V9Z7uw72wX9p3tEmcFfWfuuR00TfKV5j2XLl1C/fr1sXr16uRYitatW6N27dr45ptvTL5n9OjRGDNmzEPr58yZA09PT9g6Qbe2of6FSRnutzt4OK4UbJInbSKEEEIIIfmXe/fuoW/fvggPD4evr6/1iYolS5agZ8+ecHJySl6XkJCgMkA5Ojoqi4TxtrQsFSVLlkRYWFi6HzK31ZsIow4dOsDFxSX7lopZj2W4X3z/JbRUWFnfkbyFfWe7sO9sF/ad7cK+s13irKDvZLxdqFChDEWFxdyf2rVrh0OHDqVYN2TIEFSuXBnvvPPOQ4JCcHNzU4/UyEW29E2SI20o2xLwDQQiQtKIq3BQ251lP8eHrw/JGtbw/SFZg31nu7DvbBf2ne3CvrNdXCzYd+ae12KiwsfHB9WrV0+xzsvLCwEBAQ+tzzeIUOg8Qc/+JAIihbCQZejF7ygoCCGEEEKIFWHx7E8kFVW7A31mAL7FU64XC4asl+2EEEIIIYRYEVZR/M7A+vXrLd0E60CEQ+WuwIWtQNR1vcJ2cFNaKAghhBBCiFViVaKCGCECokwLS7eCEEIIIYSQDKH7EyGEEEIIISRbUFQQQgghhBBCsgVFBSGEEEIIISRbUFQQQgghhBBCsgVFBSGEEEIIISRbUFQQQgghhBBC8m9KWU3TK05HRERYrA1xcXG4d++eaoOlyqeTrMG+s13Yd7YL+852Yd/ZLuw72yXOCvrOMM42jLvtUlRERkaq55IlS1q6KYQQQgghhNgtMu728/NLc7uDlpHssGISExNx9epV+Pj4wMHBwWLqTUTNpUuX4Ovra5E2kKzBvrNd2He2C/vOdmHf2S7sO9slwgr6TqSCCIrAwEA4Ojrap6VCPliJEiVgDUhH80a1Tdh3tgv7znZh39ku7DvbhX1nu/hauO/Ss1AYYKA2IYQQQgghJFtQVBBCCCGEEEKyBUVFNnFzc8OoUaPUM7Et2He2C/vOdmHf2S7sO9uFfWe7uNlQ39l0oDYhhBBCCCHE8tBSQQghhBBCCMkWFBWEEEIIIYSQbEFRQQghhBBCCMkWFBVmMmnSJNSsWTM5T3CTJk2wfPny5O3R0dEYMWIEAgIC4O3tjccffxzXr1+3aJvJw4wfP14VSnz11VeT17HvrJfRo0er/jJ+VK5cOXk7+856uXLlCvr376/6xsPDAzVq1MDu3buTt0s430cffYTixYur7e3bt8epU6cs2mYClC5d+qF7Th5ynwm856yXhIQEfPjhhyhTpoy6p8qVK4ePP/5Y3WsGeN9ZL5GRkWpsEhwcrPqmadOm2LVrl031HUWFmUiRPRmQ7tmzR/1jbNu2LXr06IEjR46o7a+99hr+/vtv/PHHH9iwYYOq9N2rVy9LN5sYITfnL7/8osShMew766ZatWoICQlJfmzevDl5G/vOOrl9+zaaNWsGFxcXNfly9OhRfPnll/D390/eZ+LEifjuu+/w888/Y8eOHfDy8kKnTp3UoJVY9nfS+H5bvXq1Wt+7d2/1zHvOepkwYYKaAP3hhx9w7NgxtSz32ffff5+8D+876+WZZ55R99vMmTNx6NAhdOzYUQkHmaCxmb6T7E8ka/j7+2u//fabdufOHc3FxUX7448/krcdO3ZMpga0bdu2WbSNRCcyMlKrUKGCtnr1aq1Vq1baK6+8otaz76ybUaNGabVq1TK5jX1nvbzzzjta8+bN09yemJioFStWTPv8889T9Kebm5s2d+7cPGolMQf5rSxXrpzqM95z1k3Xrl21oUOHpljXq1cvrV+/fuo17zvr5d69e5qTk5O2bNmyFOvr1q2rvf/++zbTd7RUZNHEOG/ePNy9e1e5QYn1Ii4uTilKA+KiUapUKWzbts2ibSU6Yq7v2rVrij4S2HfWj5h3AwMDUbZsWfTr1w8XL15U69l31svSpUtRv359NbtdpEgR1KlTB7/++mvy9nPnzuHatWsp+s7Pzw+NGjVi31kRsbGxmDVrFoYOHapcoHjPWTfiLrNmzRqcPHlSLR84cEBZdh955BG1zPvOeomPj1djS3d39xTrxc1J+tBW+s7Z0g2wJcQcJSJCTE3iS7p48WJUrVoV+/fvh6urKwoUKJBi/6JFi6ovAbEsIgD37t2bwjfRgPQP+856kR/MadOmoVKlSsoVY8yYMWjRogUOHz7MvrNizp49q9wwXn/9dbz33nvq3nv55ZdVfw0aNCi5f6SvjGHfWRdLlizBnTt3MHjwYLXMe866GTlyJCIiIpTQc3JyUoPUcePGqckYgfed9eLj46PGlxIDU6VKFdUnc+fOVYKhfPnyNtN3FBWZQAY2IiDCw8OxcOFC9c9RfEqJ9XLp0iW88soryk8x9QwAsX4MM2yCxMKIyJAgtgULFqgZHGKdJCYmKkvFp59+qpbFUiFCUHyB5XeT2AZTpkxR96BYCon1I7+Ls2fPxpw5c1QsmoxXJPBX+o/3nfUzc+ZMZRUMCgpSorBu3bp4+umnlYXQVqD7UyaQGRpRjPXq1cNnn32GWrVq4dtvv0WxYsWUmVhmdIyRjBiyjVgOuRlDQ0PVzens7KweIgQl2Elei8pn39kOMkNasWJFnD59mvedFSPZScSKa4zMvhlc1wz9kzprEPvOerhw4QL+++8/FTxqgPecdfPWW28pa8VTTz2lsq0NGDBABdbLeEXgfWfdlCtXTo1PoqKi1ITozp07lbuhuP7aSt9RVGRzNi4mJkaJDMlyIr6MBk6cOKH+gYo5i1iOdu3aKbc1mbExPGQGVczBhtfsO9tBfmzPnDmjBq2876wXyfwkfWGM+HmLlUmQlJfyj9C478RtQzKasO+sg6lTp6p4GIlFM8B7zrq5d+8eHB1TDutkxlvGKgLvO9vAy8tL/Y+TLHorV65UmUZtpu8sHSluK4wcOVLbsGGDdu7cOe3gwYNq2cHBQVu1apXa/sILL2ilSpXS1q5dq+3evVtr0qSJehDrwzj7k8C+s17eeOMNbf369eq+27Jli9a+fXutUKFCWmhoqNrOvrNOdu7cqTk7O2vjxo3TTp06pc2ePVvz9PTUZs2albzP+PHjtQIFCmh//fWX+k3t0aOHVqZMGe3+/fsWbTvRtISEBHVfSRav1PCes14GDRqkBQUFqQxC8pu5aNEi9Xv59ttvJ+/D+856WbFihbZ8+XLt7NmzamwpmQ8bNWqkxcbG2kzfUVSYiaRpCw4O1lxdXbXChQtr7dq1SxYUgnTqiy++qNLMyj/Pnj17aiEhIRZtMzFPVLDvrJcnn3xSK168uLrv5J+lLJ8+fTp5O/vOevn777+16tWrq5SHlStX1iZPnpxiu6RI/PDDD7WiRYuqfeQ39cSJExZrL3nAypUrVZpYU/3Be856iYiIUP/bRPS5u7trZcuWVelIY2JikvfhfWe9zJ8/X/WZ/L+T9LEjRoxQaWNtqe8c5I+lrSWEEEIIIYQQ24UxFYQQQgghhJBsQVFBCCGEEEIIyRYUFYQQQgghhJBsQVFBCCGEEEIIyRYUFYQQQgghhJBsQVFBCCGEEEIIyRYUFYQQQgghhJBsQVFBCCGEEEIIyRYUFYQQkstMmzYNBQoUyLXjr1+/Hg4ODrhz506OHO/8+fPqePv370deM3r0aNSuXdtqrq0lGTx4MB577DFLN4MQQsyCooIQQnJg8CeDcHm4urqifPnyGDt2LOLj4/Pk/E2bNkVISAj8/PyQ18ydOxdOTk4YMWJEpt8r12vJkiUp1r355ptYs2aN2cd48skncfLkySyLkrwSaoQQYu9QVBBCSA7QuXNnNbA/deoU3njjDTW4/fzzz/Pk3CJkihUrpgbBec2UKVPw9ttvK3ERHR2d7eN5e3sjICDA7P09PDxQpEiRbJ+XEEJI9qCoIISQHMDNzU0N7IODgzF8+HC0b98eS5cuTbHPypUrUaVKFTVwNogQYePGjXBxccG1a9dS7P/qq6+iRYsW6vWFCxfQrVs3+Pv7w8vLC9WqVcO///6b5qz6li1b0Lp1a3h6eqr3dOrUCbdv31bbVqxYgebNmyu3IRnAP/roozhz5kymP/O5c+ewdetWjBw5EhUrVsSiRYse2uf3339XbZXrU7x4cbz00ktqfenSpdVzz549VdsNy8aWhlWrVsHd3f0ha8Err7yCtm3bPuT+JK/HjBmDAwcOJFuOZN3QoUPVZzQmLi5OiRERRVkhJiZGWVWCgoJUfzRq1Ej1gxAREaHEzvLly1O8Z/HixfDx8cG9e/fU8qVLl9CnTx/V/oIFC6JHjx7K9YwQQmwRigpCCMkFZFAZGxubvCwDyS+++AIzZ85UIuLixYtqUCq0bNkSZcuWVduMB72zZ89WA2JB3ItkICvvPXToECZMmKDEiSkkFqJdu3aoWrUqtm3bhs2bNytBkpCQoLbfvXsXr7/+Onbv3q1cjRwdHdXgPjExMVOfcerUqejatatyu+rfv/9DA/RJkyapdj/33HOqzSKyxDVM2LVrV/IxRFwZlo2RzyAD7j///DN5nXyG+fPno1+/fiZdocRKJCJGjikPWffMM88oIWUQccKyZctUn8j2rCDiSK7tvHnzcPDgQfTu3VsJRbFU+fr6KhEzZ86cFO+R/pQYCRF60r8i9ERkbNq0SYlAg9g0/t4QQojNoBFCCMkWgwYN0nr06KFeJyYmaqtXr9bc3Ny0N998U62bOnWqJj+3p0+fTn7Pjz/+qBUtWjR5ecKECVqVKlWSl//880/N29tbi4qKUss1atTQRo8ebfL869atU8e/ffu2Wn766ae1Zs2amd3+GzduqPcfOnRILZ87d04t79u3L833JCQkaCVLltSWLFmSfAxXV1ft7NmzyfsEBgZq77//fprHkHMsXrw4xbpRo0ZptWrVSl5+5ZVXtLZt2yYvr1y5Ul1bw2eVa+vn55fm+w1UrVpVXWMD3bp10wYPHpxm21JfU2MuXLigOTk5aVeuXEmxvl27dtq7776rXsvnkv67e/euWg4PD9fc3d215cuXq+WZM2dqlSpVUt8XAzExMZqHh4f6jKm/V4QQYu3QUkEIITmAzHzLTLO46zzyyCNqBlxceQzI7HS5cuWSl8UVKDQ0NEWw9+nTp7F9+3a1LG474hojrjXCyy+/jE8++QTNmjXDqFGj1Ox4WhgsFWkhs+lPP/20so7IrLrB9UisJ+ayevVqZfHo0qWLWi5UqBA6dOig3J0E+WxXr15Ntx3mIBYJcSuSYxlm+8U6ktmMT/9v7/5VGomiAIzPgq9gIxqwsvEPGhQsfQELtbBSxEYEC8s8gFgFUlnoU1jYKraCpYWPIGpA9AGW78iVOEzUyQQS5ftBkN1NZm4mspwz55wbqhVURfDw8BCtSakKVBZVFyomtHzxmafH9fX1RxsZ14WWttQCR7WFa01bHGjR4vOmUpFeTwsUcym9tKJJ0qCNDHoBkvQXrKysRLsPQ9NjY2PZyMjn/14JMDvR7/9+s/4d/f20KBH4Tk5ORtCbevRTUEy7zMXFRcwaHB8fZ81mMzs4OChsvfoK52H24+zsLNZK29P09HSpthtandrt9qdzcRySHeYavlvDTy0uLkYyRpsRsyrMJZBwlbW1tRWzH7QsMQfCNU7zKmW9vb3Fjle3t7fxs1NqSeP3YGNjI1qgNjc34yeJZvq94Bj1ej2SpLzR0dGe1iVJg2RSIUl9QEUhzQv0isSBCsL4+HgE0lQlOk1MTGR7e3vxaDQakRQUJRWzs7MxK0Fwn/f8/Jzd39/Ha1NQzcxFGRzj/Pw8An3mFxLu3jMATtLDbAAVENZBwlWERCvNeXxXrSD45row/0GlohuC+aJjMpDOPANJG4nFzs5O1qv5+fk4B9WYrxIT1k315u7uLru8vIxKU7KwsBCzISSTVDAk6bczqZCkIUElggCT4JPvucjvBEVbFS037OJ0dXUVO0kVIeGYmZnJ9vf3IwEh0Ob5DBPTYkOAfXp6Gi1YtDxxB78MBso5Bu1Z+W1safuhikFSQfsX5ydwZu2vr68xkJwSoZR0kDyxOxS7VHULzjnW0dFR3P3nud1wTHalogWMJIT2ovR8kjYGqEkItre3f9zqxDES3u/c3FysieoH1SKSjMfHx3gvJHQp6WEAnx3BeC6VEXaI6nxPbDnMjk981qyVHb7YQYstevmzJP0mzlRI0pDgLjyzFQS9BKyd+Dt2UiKRIGAnuTg5OSk8Dv9GtYC+/aWlpWx5eTkqC7TecA4qDLTu0PJ0eHhY+vs0mJtIW8Hmra+vxxzB09NTBO6tVivWSUWDgJ55joSAnNkMKjAE5t1QAeJ90FpVtOtT/vxcH6ojtBHx/RkJ8wwkUiRvtH39BIkBa0sPWpZAxYPPiN2mpqamogrCDla1Wu3jtVwfKk98Dvl1M2PDTl48f21tLT7X3d3dmKmwciHpN/rHtPagFyFJekdgyV3v/HdcqDrmGPheCRICAnlJUv/Y/iRJQ+Dl5SVabRjoNaHoLwbIqZxQGWHXqNXV1UEvSZL+HJMKSRoC9Nbf3NzEDALDveof5kaYaWBOgZ2j8jtzSZKqs/1JkiRJUiUOakuSJEmqxKRCkiRJUiUmFZIkSZIqMamQJEmSVIlJhSRJkqRKTCokSZIkVWJSIUmSJKkSkwpJkiRJlZhUSJIkScqq+A8jYoOlNlp5cQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "activity_group = df.groupby(\"Physical Activity Level\")[[\"Sleep Duration\", \"Quality of Sleep\"]].mean()\n", + "\n", + "plt.figure(figsize=(8,4))\n", + "\n", + "plt.plot(activity_group.index, activity_group[\"Sleep Duration\"], marker='o', label=\"Sleep Duration (hours)\")\n", + "plt.plot(activity_group.index, activity_group[\"Quality of Sleep\"], marker='o', label=\"Quality of Sleep (1–10)\")\n", + "\n", + "plt.title(\"Effect of Physical Activity Level on Sleep\", fontsize=14, fontweight='bold')\n", + "plt.xlabel(\"Physical Activity Level\")\n", + "plt.ylabel(\"Average Value\")\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6bf97684-cdbf-443f-8229-8b4a01e134af", + "metadata": {}, + "source": [ + "# Discussion" + ] + }, + { + "cell_type": "markdown", + "id": "furnished-camping", + "metadata": { + "code_folding": [] + }, + "source": [ + "## Considerations" + ] + }, + { + "cell_type": "markdown", + "id": "bearing-stadium", + "metadata": {}, + "source": [ + "My results provided clear visual representations that allowed me to effectively compare different aspects of the data. They directly answered my research questions, which was expected since the questions were straightforward and focused. However, I recognize that the simplicity of my questions was partly due to my current coding limitations. As I continue to improve my programming skills, I hope to design more complex and detailed research questions that explore deeper relationships within the data. Overall, there did not appear to be any bias in the dataset that could have influenced my results.\n" + ] + }, + { + "cell_type": "markdown", + "id": "beneficial-invasion", + "metadata": {}, + "source": [ + "## Summary" + ] + }, + { + "cell_type": "markdown", + "id": "about-raise", + "metadata": {}, + "source": [ + "Through this project, I learned a lot about how lifestyle factors such as stress and physical activity influence sleep. By analyzing and visualizing the data, I could clearly see patterns showing that higher stress levels generally corresponded with shorter and lower-quality sleep, while higher physical activity levels were associated with longer and better-quality sleep. This helped me better understand the balance between rest, activity, and stress management. When comparing occupations, it became clear that some professions tend to get significantly less sleep on average, likely due to longer work hours or higher daily stress, while others maintained more consistent and healthier sleep patterns\n", + "\n", + "The results made sense overall and supported what I expected: stress tends to disrupt sleep, while physical activity can improve it. What surprised me most, however, was how strong the effect of occupation and stress seemed to be compared to other factors. Some groups showed noticeable differences in sleep duration simply based on their line of work, suggesting that job demands and lifestyle balance play a big role in sleep health.\n", + "\n", + "Going forward, this project will make me more aware of how interconnected daily habits, work routines, and stress management are with getting quality sleep. I plan to pay closer attention to how my own schedule and responsibilities impact my rest and find ways to maintain a healthier balance between productivity and recovery. Understanding these patterns gives me a clearer picture of how small changes in lifestyle can lead to better overall well-being." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bb832499-95a8-478a-ab91-2d4c0d1c5d1f", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "jupytext": { + "cell_metadata_json": true, + "text_representation": { + "extension": ".Rmd", + "format_name": "rmarkdown", + "format_version": "1.2", + "jupytext_version": "1.9.1" + } + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.7" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": false, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.ipynb_checkpoints/poetry-checkpoint.lock b/.ipynb_checkpoints/poetry-checkpoint.lock new file mode 100644 index 0000000..afabeb5 --- /dev/null +++ b/.ipynb_checkpoints/poetry-checkpoint.lock @@ -0,0 +1,3071 @@ +# This file is automatically @generated by Poetry 2.0.0 and should not be changed by hand. + +[[package]] +name = "anyio" +version = "4.8.0" +description = "High level compatibility layer for multiple asynchronous event loop implementations" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "anyio-4.8.0-py3-none-any.whl", hash = "sha256:b5011f270ab5eb0abf13385f851315585cc37ef330dd88e27ec3d34d651fd47a"}, + {file = "anyio-4.8.0.tar.gz", hash = "sha256:1d9fe889df5212298c0c0723fa20479d1b94883a2df44bd3897aa91083316f7a"}, +] + +[package.dependencies] +exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} +idna = ">=2.8" +sniffio = ">=1.1" +typing_extensions = {version = ">=4.5", markers = "python_version < \"3.13\""} + +[package.extras] +doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx_rtd_theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "trustme", "truststore (>=0.9.1)", "uvloop (>=0.21)"] +trio = ["trio (>=0.26.1)"] + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "(python_version <= \"3.11\" or python_version >= \"3.12\") and platform_system == \"Darwin\"" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "argon2-cffi" +version = "23.1.0" +description = "Argon2 for Python" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea"}, + {file = "argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08"}, +] + +[package.dependencies] +argon2-cffi-bindings = "*" + +[package.extras] +dev = ["argon2-cffi[tests,typing]", "tox (>4)"] +docs = ["furo", "myst-parser", "sphinx", "sphinx-copybutton", "sphinx-notfound-page"] +tests = ["hypothesis", "pytest"] +typing = ["mypy"] + +[[package]] +name = "argon2-cffi-bindings" +version = "21.2.0" +description = "Low-level CFFI bindings for Argon2" +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"}, + {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, +] + +[package.dependencies] +cffi = ">=1.0.1" + +[package.extras] +dev = ["cogapp", "pre-commit", "pytest", "wheel"] +tests = ["pytest"] + +[[package]] +name = "arrow" +version = "1.3.0" +description = "Better dates & times for Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80"}, + {file = "arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85"}, +] + +[package.dependencies] +python-dateutil = ">=2.7.0" +types-python-dateutil = ">=2.8.10" + +[package.extras] +doc = ["doc8", "sphinx (>=7.0.0)", "sphinx-autobuild", "sphinx-autodoc-typehints", "sphinx_rtd_theme (>=1.3.0)"] +test = ["dateparser (==1.*)", "pre-commit", "pytest", "pytest-cov", "pytest-mock", "pytz (==2021.1)", "simplejson (==3.*)"] + +[[package]] +name = "asttokens" +version = "3.0.0" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2"}, + {file = "asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7"}, +] + +[package.extras] +astroid = ["astroid (>=2,<4)"] +test = ["astroid (>=2,<4)", "pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "async-lru" +version = "2.0.4" +description = "Simple LRU cache for asyncio" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627"}, + {file = "async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""} + +[[package]] +name = "attrs" +version = "24.3.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "attrs-24.3.0-py3-none-any.whl", hash = "sha256:ac96cd038792094f438ad1f6ff80837353805ac950cd2aa0e0625ef19850c308"}, + {file = "attrs-24.3.0.tar.gz", hash = "sha256:8f5c07333d543103541ba7be0e2ce16eeee8130cb0b3f9238ab904ce1e85baff"}, +] + +[package.extras] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit-uv", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] + +[[package]] +name = "babel" +version = "2.16.0" +description = "Internationalization utilities" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "babel-2.16.0-py3-none-any.whl", hash = "sha256:368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b"}, + {file = "babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316"}, +] + +[package.extras] +dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] + +[[package]] +name = "beautifulsoup4" +version = "4.12.3" +description = "Screen-scraping library" +optional = false +python-versions = ">=3.6.0" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed"}, + {file = "beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051"}, +] + +[package.dependencies] +soupsieve = ">1.2" + +[package.extras] +cchardet = ["cchardet"] +chardet = ["chardet"] +charset-normalizer = ["charset-normalizer"] +html5lib = ["html5lib"] +lxml = ["lxml"] + +[[package]] +name = "bleach" +version = "6.2.0" +description = "An easy safelist-based HTML-sanitizing tool." +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "bleach-6.2.0-py3-none-any.whl", hash = "sha256:117d9c6097a7c3d22fd578fcd8d35ff1e125df6736f554da4e432fdd63f31e5e"}, + {file = "bleach-6.2.0.tar.gz", hash = "sha256:123e894118b8a599fd80d3ec1a6d4cc7ce4e5882b1317a7e1ba69b56e95f991f"}, +] + +[package.dependencies] +tinycss2 = {version = ">=1.1.0,<1.5", optional = true, markers = "extra == \"css\""} +webencodings = "*" + +[package.extras] +css = ["tinycss2 (>=1.1.0,<1.5)"] + +[[package]] +name = "certifi" +version = "2024.12.14" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "certifi-2024.12.14-py3-none-any.whl", hash = "sha256:1275f7a45be9464efc1173084eaa30f866fe2e47d389406136d332ed4967ec56"}, + {file = "certifi-2024.12.14.tar.gz", hash = "sha256:b650d30f370c2b724812bee08008be0c4163b163ddaec3f2546c1caf65f191db"}, +] + +[[package]] +name = "cffi" +version = "1.17.1" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "charset-normalizer" +version = "3.4.1" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "charset_normalizer-3.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:91b36a978b5ae0ee86c394f5a54d6ef44db1de0815eb43de826d41d21e4af3de"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7461baadb4dc00fd9e0acbe254e3d7d2112e7f92ced2adc96e54ef6501c5f176"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e218488cd232553829be0664c2292d3af2eeeb94b32bea483cf79ac6a694e037"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:80ed5e856eb7f30115aaf94e4a08114ccc8813e6ed1b5efa74f9f82e8509858f"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b010a7a4fd316c3c484d482922d13044979e78d1861f0e0650423144c616a46a"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4532bff1b8421fd0a320463030c7520f56a79c9024a4e88f01c537316019005a"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d973f03c0cb71c5ed99037b870f2be986c3c05e63622c017ea9816881d2dd247"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3a3bd0dcd373514dcec91c411ddb9632c0d7d92aed7093b8c3bbb6d69ca74408"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d9c3cdf5390dcd29aa8056d13e8e99526cda0305acc038b96b30352aff5ff2bb"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2bdfe3ac2e1bbe5b59a1a63721eb3b95fc9b6817ae4a46debbb4e11f6232428d"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:eab677309cdb30d047996b36d34caeda1dc91149e4fdca0b1a039b3f79d9a807"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-win32.whl", hash = "sha256:c0429126cf75e16c4f0ad00ee0eae4242dc652290f940152ca8c75c3a4b6ee8f"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:9f0b8b1c6d84c8034a44893aba5e767bf9c7a211e313a9605d9c617d7083829f"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8bfa33f4f2672964266e940dd22a195989ba31669bd84629f05fab3ef4e2d125"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28bf57629c75e810b6ae989f03c0828d64d6b26a5e205535585f96093e405ed1"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f08ff5e948271dc7e18a35641d2f11a4cd8dfd5634f55228b691e62b37125eb3"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:234ac59ea147c59ee4da87a0c0f098e9c8d169f4dc2a159ef720f1a61bbe27cd"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd4ec41f914fa74ad1b8304bbc634b3de73d2a0889bd32076342a573e0779e00"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eea6ee1db730b3483adf394ea72f808b6e18cf3cb6454b4d86e04fa8c4327a12"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c96836c97b1238e9c9e3fe90844c947d5afbf4f4c92762679acfe19927d81d77"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d86f7aff21ee58f26dcf5ae81a9addbd914115cdebcbb2217e4f0ed8982e146"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:09b5e6733cbd160dcc09589227187e242a30a49ca5cefa5a7edd3f9d19ed53fd"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:5777ee0881f9499ed0f71cc82cf873d9a0ca8af166dfa0af8ec4e675b7df48e6"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:237bdbe6159cff53b4f24f397d43c6336c6b0b42affbe857970cefbb620911c8"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-win32.whl", hash = "sha256:8417cb1f36cc0bc7eaba8ccb0e04d55f0ee52df06df3ad55259b9a323555fc8b"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:d7f50a1f8c450f3925cb367d011448c39239bb3eb4117c36a6d354794de4ce76"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:73d94b58ec7fecbc7366247d3b0b10a21681004153238750bb67bd9012414545"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad3e487649f498dd991eeb901125411559b22e8d7ab25d3aeb1af367df5efd7"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c30197aa96e8eed02200a83fba2657b4c3acd0f0aa4bdc9f6c1af8e8962e0757"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2369eea1ee4a7610a860d88f268eb39b95cb588acd7235e02fd5a5601773d4fa"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc2722592d8998c870fa4e290c2eec2c1569b87fe58618e67d38b4665dfa680d"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffc9202a29ab3920fa812879e95a9e78b2465fd10be7fcbd042899695d75e616"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:804a4d582ba6e5b747c625bf1255e6b1507465494a40a2130978bda7b932c90b"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f55e69f030f7163dffe9fd0752b32f070566451afe180f99dbeeb81f511ad8d"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c4c3e6da02df6fa1410a7680bd3f63d4f710232d3139089536310d027950696a"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5df196eb874dae23dcfb968c83d4f8fdccb333330fe1fc278ac5ceeb101003a9"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e358e64305fe12299a08e08978f51fc21fac060dcfcddd95453eabe5b93ed0e1"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-win32.whl", hash = "sha256:9b23ca7ef998bc739bf6ffc077c2116917eabcc901f88da1b9856b210ef63f35"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ff8a4a60c227ad87030d76e99cd1698345d4491638dfa6673027c48b3cd395f"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:aabfa34badd18f1da5ec1bc2715cadc8dca465868a4e73a0173466b688f29dda"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22e14b5d70560b8dd51ec22863f370d1e595ac3d024cb8ad7d308b4cd95f8313"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8436c508b408b82d87dc5f62496973a1805cd46727c34440b0d29d8a2f50a6c9"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2d074908e1aecee37a7635990b2c6d504cd4766c7bc9fc86d63f9c09af3fa11b"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:955f8851919303c92343d2f66165294848d57e9bba6cf6e3625485a70a038d11"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44ecbf16649486d4aebafeaa7ec4c9fed8b88101f4dd612dcaf65d5e815f837f"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0924e81d3d5e70f8126529951dac65c1010cdf117bb75eb02dd12339b57749dd"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:2967f74ad52c3b98de4c3b32e1a44e32975e008a9cd2a8cc8966d6a5218c5cb2"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c75cb2a3e389853835e84a2d8fb2b81a10645b503eca9bcb98df6b5a43eb8886"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09b26ae6b1abf0d27570633b2b078a2a20419c99d66fb2823173d73f188ce601"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fa88b843d6e211393a37219e6a1c1df99d35e8fd90446f1118f4216e307e48cd"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-win32.whl", hash = "sha256:eb8178fe3dba6450a3e024e95ac49ed3400e506fd4e9e5c32d30adda88cbd407"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-win_amd64.whl", hash = "sha256:b1ac5992a838106edb89654e0aebfc24f5848ae2547d22c2c3f66454daa11971"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f30bf9fd9be89ecb2360c7d94a711f00c09b976258846efe40db3d05828e8089"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:97f68b8d6831127e4787ad15e6757232e14e12060bec17091b85eb1486b91d8d"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7974a0b5ecd505609e3b19742b60cee7aa2aa2fb3151bc917e6e2646d7667dcf"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc54db6c8593ef7d4b2a331b58653356cf04f67c960f584edb7c3d8c97e8f39e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:311f30128d7d333eebd7896965bfcfbd0065f1716ec92bd5638d7748eb6f936a"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:7d053096f67cd1241601111b698f5cad775f97ab25d81567d3f59219b5f1adbd"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:807f52c1f798eef6cf26beb819eeb8819b1622ddfeef9d0977a8502d4db6d534"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:dccbe65bd2f7f7ec22c4ff99ed56faa1e9f785482b9bbd7c717e26fd723a1d1e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:2fb9bd477fdea8684f78791a6de97a953c51831ee2981f8e4f583ff3b9d9687e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:01732659ba9b5b873fc117534143e4feefecf3b2078b0a6a2e925271bb6f4cfa"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-win32.whl", hash = "sha256:7a4f97a081603d2050bfaffdefa5b02a9ec823f8348a572e39032caa8404a487"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-win_amd64.whl", hash = "sha256:7b1bef6280950ee6c177b326508f86cad7ad4dff12454483b51d8b7d673a2c5d"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ecddf25bee22fe4fe3737a399d0d177d72bc22be6913acfab364b40bce1ba83c"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c60ca7339acd497a55b0ea5d506b2a2612afb2826560416f6894e8b5770d4a9"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b7b2d86dd06bfc2ade3312a83a5c364c7ec2e3498f8734282c6c3d4b07b346b8"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dd78cfcda14a1ef52584dbb008f7ac81c1328c0f58184bf9a84c49c605002da6"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e27f48bcd0957c6d4cb9d6fa6b61d192d0b13d5ef563e5f2ae35feafc0d179c"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01ad647cdd609225c5350561d084b42ddf732f4eeefe6e678765636791e78b9a"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:619a609aa74ae43d90ed2e89bdd784765de0a25ca761b93e196d938b8fd1dbbd"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:89149166622f4db9b4b6a449256291dc87a99ee53151c74cbd82a53c8c2f6ccd"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:7709f51f5f7c853f0fb938bcd3bc59cdfdc5203635ffd18bf354f6967ea0f824"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:345b0426edd4e18138d6528aed636de7a9ed169b4aaf9d61a8c19e39d26838ca"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0907f11d019260cdc3f94fbdb23ff9125f6b5d1039b76003b5b0ac9d6a6c9d5b"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-win32.whl", hash = "sha256:ea0d8d539afa5eb2728aa1932a988a9a7af94f18582ffae4bc10b3fbdad0626e"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:329ce159e82018d646c7ac45b01a430369d526569ec08516081727a20e9e4af4"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b97e690a2118911e39b4042088092771b4ae3fc3aa86518f84b8cf6888dbdb41"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78baa6d91634dfb69ec52a463534bc0df05dbd546209b79a3880a34487f4b84f"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1a2bc9f351a75ef49d664206d51f8e5ede9da246602dc2d2726837620ea034b2"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75832c08354f595c760a804588b9357d34ec00ba1c940c15e31e96d902093770"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0af291f4fe114be0280cdd29d533696a77b5b49cfde5467176ecab32353395c4"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0167ddc8ab6508fe81860a57dd472b2ef4060e8d378f0cc555707126830f2537"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2a75d49014d118e4198bcee5ee0a6f25856b29b12dbf7cd012791f8a6cc5c496"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:363e2f92b0f0174b2f8238240a1a30142e3db7b957a5dd5689b0e75fb717cc78"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ab36c8eb7e454e34e60eb55ca5d241a5d18b2c6244f6827a30e451c42410b5f7"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:4c0907b1928a36d5a998d72d64d8eaa7244989f7aaaf947500d3a800c83a3fd6"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:04432ad9479fa40ec0f387795ddad4437a2b50417c69fa275e212933519ff294"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-win32.whl", hash = "sha256:3bed14e9c89dcb10e8f3a29f9ccac4955aebe93c71ae803af79265c9ca5644c5"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:49402233c892a461407c512a19435d1ce275543138294f7ef013f0b63d5d3765"}, + {file = "charset_normalizer-3.4.1-py3-none-any.whl", hash = "sha256:d98b1668f06378c6dbefec3b92299716b931cd4e6061f3c875a71ced1780ab85"}, + {file = "charset_normalizer-3.4.1.tar.gz", hash = "sha256:44251f18cd68a75b56585dd00dae26183e102cd5e0f9f1466e6df5da2ed64ea3"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +groups = ["main"] +markers = "(python_version <= \"3.11\" or python_version >= \"3.12\") and sys_platform == \"win32\"" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "contourpy" +version = "1.3.1" +description = "Python library for calculating contours of 2D quadrilateral grids" +optional = false +python-versions = ">=3.10" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "contourpy-1.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a045f341a77b77e1c5de31e74e966537bba9f3c4099b35bf4c2e3939dd54cdab"}, + {file = "contourpy-1.3.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:500360b77259914f7805af7462e41f9cb7ca92ad38e9f94d6c8641b089338124"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2f926efda994cdf3c8d3fdb40b9962f86edbc4457e739277b961eced3d0b4c1"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:adce39d67c0edf383647a3a007de0a45fd1b08dedaa5318404f1a73059c2512b"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:abbb49fb7dac584e5abc6636b7b2a7227111c4f771005853e7d25176daaf8453"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0cffcbede75c059f535725c1680dfb17b6ba8753f0c74b14e6a9c68c29d7ea3"}, + {file = "contourpy-1.3.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ab29962927945d89d9b293eabd0d59aea28d887d4f3be6c22deaefbb938a7277"}, + {file = "contourpy-1.3.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:974d8145f8ca354498005b5b981165b74a195abfae9a8129df3e56771961d595"}, + {file = "contourpy-1.3.1-cp310-cp310-win32.whl", hash = "sha256:ac4578ac281983f63b400f7fe6c101bedc10651650eef012be1ccffcbacf3697"}, + {file = "contourpy-1.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:174e758c66bbc1c8576992cec9599ce8b6672b741b5d336b5c74e35ac382b18e"}, + {file = "contourpy-1.3.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3e8b974d8db2c5610fb4e76307e265de0edb655ae8169e8b21f41807ccbeec4b"}, + {file = "contourpy-1.3.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:20914c8c973f41456337652a6eeca26d2148aa96dd7ac323b74516988bea89fc"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:19d40d37c1c3a4961b4619dd9d77b12124a453cc3d02bb31a07d58ef684d3d86"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:113231fe3825ebf6f15eaa8bc1f5b0ddc19d42b733345eae0934cb291beb88b6"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4dbbc03a40f916a8420e420d63e96a1258d3d1b58cbdfd8d1f07b49fcbd38e85"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a04ecd68acbd77fa2d39723ceca4c3197cb2969633836ced1bea14e219d077c"}, + {file = "contourpy-1.3.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c414fc1ed8ee1dbd5da626cf3710c6013d3d27456651d156711fa24f24bd1291"}, + {file = "contourpy-1.3.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:31c1b55c1f34f80557d3830d3dd93ba722ce7e33a0b472cba0ec3b6535684d8f"}, + {file = "contourpy-1.3.1-cp311-cp311-win32.whl", hash = "sha256:f611e628ef06670df83fce17805c344710ca5cde01edfdc72751311da8585375"}, + {file = "contourpy-1.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:b2bdca22a27e35f16794cf585832e542123296b4687f9fd96822db6bae17bfc9"}, + {file = "contourpy-1.3.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:0ffa84be8e0bd33410b17189f7164c3589c229ce5db85798076a3fa136d0e509"}, + {file = "contourpy-1.3.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:805617228ba7e2cbbfb6c503858e626ab528ac2a32a04a2fe88ffaf6b02c32bc"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ade08d343436a94e633db932e7e8407fe7de8083967962b46bdfc1b0ced39454"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:47734d7073fb4590b4a40122b35917cd77be5722d80683b249dac1de266aac80"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2ba94a401342fc0f8b948e57d977557fbf4d515f03c67682dd5c6191cb2d16ec"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efa874e87e4a647fd2e4f514d5e91c7d493697127beb95e77d2f7561f6905bd9"}, + {file = "contourpy-1.3.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1bf98051f1045b15c87868dbaea84f92408337d4f81d0e449ee41920ea121d3b"}, + {file = "contourpy-1.3.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:61332c87493b00091423e747ea78200659dc09bdf7fd69edd5e98cef5d3e9a8d"}, + {file = "contourpy-1.3.1-cp312-cp312-win32.whl", hash = "sha256:e914a8cb05ce5c809dd0fe350cfbb4e881bde5e2a38dc04e3afe1b3e58bd158e"}, + {file = "contourpy-1.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:08d9d449a61cf53033612cb368f3a1b26cd7835d9b8cd326647efe43bca7568d"}, + {file = "contourpy-1.3.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a761d9ccfc5e2ecd1bf05534eda382aa14c3e4f9205ba5b1684ecfe400716ef2"}, + {file = "contourpy-1.3.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:523a8ee12edfa36f6d2a49407f705a6ef4c5098de4f498619787e272de93f2d5"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece6df05e2c41bd46776fbc712e0996f7c94e0d0543af1656956d150c4ca7c81"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:573abb30e0e05bf31ed067d2f82500ecfdaec15627a59d63ea2d95714790f5c2"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9fa36448e6a3a1a9a2ba23c02012c43ed88905ec80163f2ffe2421c7192a5d7"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ea9924d28fc5586bf0b42d15f590b10c224117e74409dd7a0be3b62b74a501c"}, + {file = "contourpy-1.3.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5b75aa69cb4d6f137b36f7eb2ace9280cfb60c55dc5f61c731fdf6f037f958a3"}, + {file = "contourpy-1.3.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:041b640d4ec01922083645a94bb3b2e777e6b626788f4095cf21abbe266413c1"}, + {file = "contourpy-1.3.1-cp313-cp313-win32.whl", hash = "sha256:36987a15e8ace5f58d4d5da9dca82d498c2bbb28dff6e5d04fbfcc35a9cb3a82"}, + {file = "contourpy-1.3.1-cp313-cp313-win_amd64.whl", hash = "sha256:a7895f46d47671fa7ceec40f31fae721da51ad34bdca0bee83e38870b1f47ffd"}, + {file = "contourpy-1.3.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9ddeb796389dadcd884c7eb07bd14ef12408aaae358f0e2ae24114d797eede30"}, + {file = "contourpy-1.3.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:19c1555a6801c2f084c7ddc1c6e11f02eb6a6016ca1318dd5452ba3f613a1751"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:841ad858cff65c2c04bf93875e384ccb82b654574a6d7f30453a04f04af71342"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4318af1c925fb9a4fb190559ef3eec206845f63e80fb603d47f2d6d67683901c"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:14c102b0eab282427b662cb590f2e9340a9d91a1c297f48729431f2dcd16e14f"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05e806338bfeaa006acbdeba0ad681a10be63b26e1b17317bfac3c5d98f36cda"}, + {file = "contourpy-1.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4d76d5993a34ef3df5181ba3c92fabb93f1eaa5729504fb03423fcd9f3177242"}, + {file = "contourpy-1.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:89785bb2a1980c1bd87f0cb1517a71cde374776a5f150936b82580ae6ead44a1"}, + {file = "contourpy-1.3.1-cp313-cp313t-win32.whl", hash = "sha256:8eb96e79b9f3dcadbad2a3891672f81cdcab7f95b27f28f1c67d75f045b6b4f1"}, + {file = "contourpy-1.3.1-cp313-cp313t-win_amd64.whl", hash = "sha256:287ccc248c9e0d0566934e7d606201abd74761b5703d804ff3df8935f523d546"}, + {file = "contourpy-1.3.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b457d6430833cee8e4b8e9b6f07aa1c161e5e0d52e118dc102c8f9bd7dd060d6"}, + {file = "contourpy-1.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb76c1a154b83991a3cbbf0dfeb26ec2833ad56f95540b442c73950af2013750"}, + {file = "contourpy-1.3.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:44a29502ca9c7b5ba389e620d44f2fbe792b1fb5734e8b931ad307071ec58c53"}, + {file = "contourpy-1.3.1.tar.gz", hash = "sha256:dfd97abd83335045a913e3bcc4a09c0ceadbe66580cf573fe961f4a825efa699"}, +] + +[package.dependencies] +numpy = ">=1.23" + +[package.extras] +bokeh = ["bokeh", "selenium"] +docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] +mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.11.1)", "types-Pillow"] +test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] +test-no-images = ["pytest", "pytest-cov", "pytest-rerunfailures", "pytest-xdist", "wurlitzer"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "debugpy" +version = "1.8.11" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "debugpy-1.8.11-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:2b26fefc4e31ff85593d68b9022e35e8925714a10ab4858fb1b577a8a48cb8cd"}, + {file = "debugpy-1.8.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61bc8b3b265e6949855300e84dc93d02d7a3a637f2aec6d382afd4ceb9120c9f"}, + {file = "debugpy-1.8.11-cp310-cp310-win32.whl", hash = "sha256:c928bbf47f65288574b78518449edaa46c82572d340e2750889bbf8cd92f3737"}, + {file = "debugpy-1.8.11-cp310-cp310-win_amd64.whl", hash = "sha256:8da1db4ca4f22583e834dcabdc7832e56fe16275253ee53ba66627b86e304da1"}, + {file = "debugpy-1.8.11-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:85de8474ad53ad546ff1c7c7c89230db215b9b8a02754d41cb5a76f70d0be296"}, + {file = "debugpy-1.8.11-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ffc382e4afa4aee367bf413f55ed17bd91b191dcaf979890af239dda435f2a1"}, + {file = "debugpy-1.8.11-cp311-cp311-win32.whl", hash = "sha256:40499a9979c55f72f4eb2fc38695419546b62594f8af194b879d2a18439c97a9"}, + {file = "debugpy-1.8.11-cp311-cp311-win_amd64.whl", hash = "sha256:987bce16e86efa86f747d5151c54e91b3c1e36acc03ce1ddb50f9d09d16ded0e"}, + {file = "debugpy-1.8.11-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:84e511a7545d11683d32cdb8f809ef63fc17ea2a00455cc62d0a4dbb4ed1c308"}, + {file = "debugpy-1.8.11-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce291a5aca4985d82875d6779f61375e959208cdf09fcec40001e65fb0a54768"}, + {file = "debugpy-1.8.11-cp312-cp312-win32.whl", hash = "sha256:28e45b3f827d3bf2592f3cf7ae63282e859f3259db44ed2b129093ca0ac7940b"}, + {file = "debugpy-1.8.11-cp312-cp312-win_amd64.whl", hash = "sha256:44b1b8e6253bceada11f714acf4309ffb98bfa9ac55e4fce14f9e5d4484287a1"}, + {file = "debugpy-1.8.11-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:8988f7163e4381b0da7696f37eec7aca19deb02e500245df68a7159739bbd0d3"}, + {file = "debugpy-1.8.11-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c1f6a173d1140e557347419767d2b14ac1c9cd847e0b4c5444c7f3144697e4e"}, + {file = "debugpy-1.8.11-cp313-cp313-win32.whl", hash = "sha256:bb3b15e25891f38da3ca0740271e63ab9db61f41d4d8541745cfc1824252cb28"}, + {file = "debugpy-1.8.11-cp313-cp313-win_amd64.whl", hash = "sha256:d8768edcbeb34da9e11bcb8b5c2e0958d25218df7a6e56adf415ef262cd7b6d1"}, + {file = "debugpy-1.8.11-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:ad7efe588c8f5cf940f40c3de0cd683cc5b76819446abaa50dc0829a30c094db"}, + {file = "debugpy-1.8.11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:189058d03a40103a57144752652b3ab08ff02b7595d0ce1f651b9acc3a3a35a0"}, + {file = "debugpy-1.8.11-cp38-cp38-win32.whl", hash = "sha256:32db46ba45849daed7ccf3f2e26f7a386867b077f39b2a974bb5c4c2c3b0a280"}, + {file = "debugpy-1.8.11-cp38-cp38-win_amd64.whl", hash = "sha256:116bf8342062246ca749013df4f6ea106f23bc159305843491f64672a55af2e5"}, + {file = "debugpy-1.8.11-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:654130ca6ad5de73d978057eaf9e582244ff72d4574b3e106fb8d3d2a0d32458"}, + {file = "debugpy-1.8.11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23dc34c5e03b0212fa3c49a874df2b8b1b8fda95160bd79c01eb3ab51ea8d851"}, + {file = "debugpy-1.8.11-cp39-cp39-win32.whl", hash = "sha256:52d8a3166c9f2815bfae05f386114b0b2d274456980d41f320299a8d9a5615a7"}, + {file = "debugpy-1.8.11-cp39-cp39-win_amd64.whl", hash = "sha256:52c3cf9ecda273a19cc092961ee34eb9ba8687d67ba34cc7b79a521c1c64c4c0"}, + {file = "debugpy-1.8.11-py2.py3-none-any.whl", hash = "sha256:0e22f846f4211383e6a416d04b4c13ed174d24cc5d43f5fd52e7821d0ebc8920"}, + {file = "debugpy-1.8.11.tar.gz", hash = "sha256:6ad2688b69235c43b020e04fecccdf6a96c8943ca9c2fb340b8adc103c655e57"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "defusedxml" +version = "0.7.1" +description = "XML bomb protection for Python stdlib modules" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, + {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, +] + +[[package]] +name = "exceptiongroup" +version = "1.2.2" +description = "Backport of PEP 654 (exception groups)" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version < \"3.11\"" +files = [ + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, +] + +[package.extras] +test = ["pytest (>=6)"] + +[[package]] +name = "executing" +version = "2.1.0" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "fastjsonschema" +version = "2.21.1" +description = "Fastest Python implementation of JSON schema" +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "fastjsonschema-2.21.1-py3-none-any.whl", hash = "sha256:c9e5b7e908310918cf494a434eeb31384dd84a98b57a30bcb1f535015b554667"}, + {file = "fastjsonschema-2.21.1.tar.gz", hash = "sha256:794d4f0a58f848961ba16af7b9c85a3e88cd360df008c59aac6fc5ae9323b5d4"}, +] + +[package.extras] +devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] + +[[package]] +name = "fonttools" +version = "4.55.3" +description = "Tools to manipulate font files" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "fonttools-4.55.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1dcc07934a2165ccdc3a5a608db56fb3c24b609658a5b340aee4ecf3ba679dc0"}, + {file = "fonttools-4.55.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f7d66c15ba875432a2d2fb419523f5d3d347f91f48f57b8b08a2dfc3c39b8a3f"}, + {file = "fonttools-4.55.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27e4ae3592e62eba83cd2c4ccd9462dcfa603ff78e09110680a5444c6925d841"}, + {file = "fonttools-4.55.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:62d65a3022c35e404d19ca14f291c89cc5890032ff04f6c17af0bd1927299674"}, + {file = "fonttools-4.55.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d342e88764fb201286d185093781bf6628bbe380a913c24adf772d901baa8276"}, + {file = "fonttools-4.55.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:dd68c87a2bfe37c5b33bcda0fba39b65a353876d3b9006fde3adae31f97b3ef5"}, + {file = "fonttools-4.55.3-cp310-cp310-win32.whl", hash = "sha256:1bc7ad24ff98846282eef1cbeac05d013c2154f977a79886bb943015d2b1b261"}, + {file = "fonttools-4.55.3-cp310-cp310-win_amd64.whl", hash = "sha256:b54baf65c52952db65df39fcd4820668d0ef4766c0ccdf32879b77f7c804d5c5"}, + {file = "fonttools-4.55.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8c4491699bad88efe95772543cd49870cf756b019ad56294f6498982408ab03e"}, + {file = "fonttools-4.55.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5323a22eabddf4b24f66d26894f1229261021dacd9d29e89f7872dd8c63f0b8b"}, + {file = "fonttools-4.55.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5480673f599ad410695ca2ddef2dfefe9df779a9a5cda89503881e503c9c7d90"}, + {file = "fonttools-4.55.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da9da6d65cd7aa6b0f806556f4985bcbf603bf0c5c590e61b43aa3e5a0f822d0"}, + {file = "fonttools-4.55.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e894b5bd60d9f473bed7a8f506515549cc194de08064d829464088d23097331b"}, + {file = "fonttools-4.55.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:aee3b57643827e237ff6ec6d28d9ff9766bd8b21e08cd13bff479e13d4b14765"}, + {file = "fonttools-4.55.3-cp311-cp311-win32.whl", hash = "sha256:eb6ca911c4c17eb51853143624d8dc87cdcdf12a711fc38bf5bd21521e79715f"}, + {file = "fonttools-4.55.3-cp311-cp311-win_amd64.whl", hash = "sha256:6314bf82c54c53c71805318fcf6786d986461622dd926d92a465199ff54b1b72"}, + {file = "fonttools-4.55.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f9e736f60f4911061235603a6119e72053073a12c6d7904011df2d8fad2c0e35"}, + {file = "fonttools-4.55.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7a8aa2c5e5b8b3bcb2e4538d929f6589a5c6bdb84fd16e2ed92649fb5454f11c"}, + {file = "fonttools-4.55.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07f8288aacf0a38d174445fc78377a97fb0b83cfe352a90c9d9c1400571963c7"}, + {file = "fonttools-4.55.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8d5e8916c0970fbc0f6f1bece0063363bb5857a7f170121a4493e31c3db3314"}, + {file = "fonttools-4.55.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ae3b6600565b2d80b7c05acb8e24d2b26ac407b27a3f2e078229721ba5698427"}, + {file = "fonttools-4.55.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:54153c49913f45065c8d9e6d0c101396725c5621c8aee744719300f79771d75a"}, + {file = "fonttools-4.55.3-cp312-cp312-win32.whl", hash = "sha256:827e95fdbbd3e51f8b459af5ea10ecb4e30af50221ca103bea68218e9615de07"}, + {file = "fonttools-4.55.3-cp312-cp312-win_amd64.whl", hash = "sha256:e6e8766eeeb2de759e862004aa11a9ea3d6f6d5ec710551a88b476192b64fd54"}, + {file = "fonttools-4.55.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a430178ad3e650e695167cb53242dae3477b35c95bef6525b074d87493c4bf29"}, + {file = "fonttools-4.55.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:529cef2ce91dc44f8e407cc567fae6e49a1786f2fefefa73a294704c415322a4"}, + {file = "fonttools-4.55.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e75f12c82127486fac2d8bfbf5bf058202f54bf4f158d367e41647b972342ca"}, + {file = "fonttools-4.55.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:859c358ebf41db18fb72342d3080bce67c02b39e86b9fbcf1610cca14984841b"}, + {file = "fonttools-4.55.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:546565028e244a701f73df6d8dd6be489d01617863ec0c6a42fa25bf45d43048"}, + {file = "fonttools-4.55.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:aca318b77f23523309eec4475d1fbbb00a6b133eb766a8bdc401faba91261abe"}, + {file = "fonttools-4.55.3-cp313-cp313-win32.whl", hash = "sha256:8c5ec45428edaa7022f1c949a632a6f298edc7b481312fc7dc258921e9399628"}, + {file = "fonttools-4.55.3-cp313-cp313-win_amd64.whl", hash = "sha256:11e5de1ee0d95af4ae23c1a138b184b7f06e0b6abacabf1d0db41c90b03d834b"}, + {file = "fonttools-4.55.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:caf8230f3e10f8f5d7593eb6d252a37caf58c480b19a17e250a63dad63834cf3"}, + {file = "fonttools-4.55.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b586ab5b15b6097f2fb71cafa3c98edfd0dba1ad8027229e7b1e204a58b0e09d"}, + {file = "fonttools-4.55.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a8c2794ded89399cc2169c4d0bf7941247b8d5932b2659e09834adfbb01589aa"}, + {file = "fonttools-4.55.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf4fe7c124aa3f4e4c1940880156e13f2f4d98170d35c749e6b4f119a872551e"}, + {file = "fonttools-4.55.3-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:86721fbc389ef5cc1e2f477019e5069e8e4421e8d9576e9c26f840dbb04678de"}, + {file = "fonttools-4.55.3-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:89bdc5d88bdeec1b15af790810e267e8332d92561dce4f0748c2b95c9bdf3926"}, + {file = "fonttools-4.55.3-cp38-cp38-win32.whl", hash = "sha256:bc5dbb4685e51235ef487e4bd501ddfc49be5aede5e40f4cefcccabc6e60fb4b"}, + {file = "fonttools-4.55.3-cp38-cp38-win_amd64.whl", hash = "sha256:cd70de1a52a8ee2d1877b6293af8a2484ac82514f10b1c67c1c5762d38073e56"}, + {file = "fonttools-4.55.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bdcc9f04b36c6c20978d3f060e5323a43f6222accc4e7fcbef3f428e216d96af"}, + {file = "fonttools-4.55.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c3ca99e0d460eff46e033cd3992a969658c3169ffcd533e0a39c63a38beb6831"}, + {file = "fonttools-4.55.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22f38464daa6cdb7b6aebd14ab06609328fe1e9705bb0fcc7d1e69de7109ee02"}, + {file = "fonttools-4.55.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ed63959d00b61959b035c7d47f9313c2c1ece090ff63afea702fe86de00dbed4"}, + {file = "fonttools-4.55.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5e8d657cd7326eeaba27de2740e847c6b39dde2f8d7cd7cc56f6aad404ddf0bd"}, + {file = "fonttools-4.55.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:fb594b5a99943042c702c550d5494bdd7577f6ef19b0bc73877c948a63184a32"}, + {file = "fonttools-4.55.3-cp39-cp39-win32.whl", hash = "sha256:dc5294a3d5c84226e3dbba1b6f61d7ad813a8c0238fceea4e09aa04848c3d851"}, + {file = "fonttools-4.55.3-cp39-cp39-win_amd64.whl", hash = "sha256:aedbeb1db64496d098e6be92b2e63b5fac4e53b1b92032dfc6988e1ea9134a4d"}, + {file = "fonttools-4.55.3-py3-none-any.whl", hash = "sha256:f412604ccbeee81b091b420272841e5ec5ef68967a9790e80bffd0e30b8e2977"}, + {file = "fonttools-4.55.3.tar.gz", hash = "sha256:3983313c2a04d6cc1fe9251f8fc647754cf49a61dac6cb1e7249ae67afaafc45"}, +] + +[package.extras] +all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] +graphite = ["lz4 (>=1.7.4.2)"] +interpolatable = ["munkres", "pycairo", "scipy"] +lxml = ["lxml (>=4.0)"] +pathops = ["skia-pathops (>=0.5.0)"] +plot = ["matplotlib"] +repacker = ["uharfbuzz (>=0.23.0)"] +symfont = ["sympy"] +type1 = ["xattr"] +ufo = ["fs (>=2.2.0,<3)"] +unicode = ["unicodedata2 (>=15.1.0)"] +woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] + +[[package]] +name = "fqdn" +version = "1.5.1" +description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers" +optional = false +python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"}, + {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"}, +] + +[[package]] +name = "h11" +version = "0.14.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] + +[[package]] +name = "httpcore" +version = "1.0.7" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "httpcore-1.0.7-py3-none-any.whl", hash = "sha256:a3fff8f43dc260d5bd363d9f9cf1830fa3a458b332856f34282de498ed420edd"}, + {file = "httpcore-1.0.7.tar.gz", hash = "sha256:8551cb62a169ec7162ac7be8d4817d561f60e08eaa485234898414bb5a8a0b4c"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.13,<0.15" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<1.0)"] + +[[package]] +name = "httpx" +version = "0.28.1" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "httpx-0.28.1-py3-none-any.whl", hash = "sha256:d909fcccc110f8c7faf814ca82a9a4d816bc5a6dbfea25d6591d6985b8ba59ad"}, + {file = "httpx-0.28.1.tar.gz", hash = "sha256:75e98c5f16b0f35b567856f597f06ff2270a374470a5c2392242528e3e3e42fc"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" + +[package.extras] +brotli = ["brotli", "brotlicffi"] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "idna" +version = "3.10" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, +] + +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + +[[package]] +name = "ipykernel" +version = "6.29.5" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.31.0" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.10" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "ipython-8.31.0-py3-none-any.whl", hash = "sha256:46ec58f8d3d076a61d128fe517a51eb730e3aaf0c184ea8c17d16e366660c6a6"}, + {file = "ipython-8.31.0.tar.gz", hash = "sha256:b6a2274606bec6166405ff05e54932ed6e5cfecaca1fc05f2cacde7bb074d70b"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\" and sys_platform != \"emscripten\""} +prompt_toolkit = ">=3.0.41,<3.1.0" +pygments = ">=2.4.0" +stack_data = "*" +traitlets = ">=5.13.0" +typing_extensions = {version = ">=4.6", markers = "python_version < \"3.12\""} + +[package.extras] +all = ["ipython[black,doc,kernel,matplotlib,nbconvert,nbformat,notebook,parallel,qtconsole]", "ipython[test,test-extra]"] +black = ["black"] +doc = ["docrepr", "exceptiongroup", "intersphinx_registry", "ipykernel", "ipython[test]", "matplotlib", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "sphinxcontrib-jquery", "tomli", "typing_extensions"] +kernel = ["ipykernel"] +matplotlib = ["matplotlib"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["packaging", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "ipython[test]", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.23)", "pandas", "trio"] + +[[package]] +name = "ipywidgets" +version = "8.1.5" +description = "Jupyter interactive widgets" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "ipywidgets-8.1.5-py3-none-any.whl", hash = "sha256:3290f526f87ae6e77655555baba4f36681c555b8bdbbff430b70e52c34c86245"}, + {file = "ipywidgets-8.1.5.tar.gz", hash = "sha256:870e43b1a35656a80c18c9503bbf2d16802db1cb487eec6fab27d683381dde17"}, +] + +[package.dependencies] +comm = ">=0.1.3" +ipython = ">=6.1.0" +jupyterlab-widgets = ">=3.0.12,<3.1.0" +traitlets = ">=4.3.1" +widgetsnbextension = ">=4.0.12,<4.1.0" + +[package.extras] +test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] + +[[package]] +name = "isoduration" +version = "20.11.0" +description = "Operations with ISO 8601 durations" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"}, + {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"}, +] + +[package.dependencies] +arrow = ">=0.15.0" + +[[package]] +name = "jedi" +version = "0.19.2" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9"}, + {file = "jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0"}, +] + +[package.dependencies] +parso = ">=0.8.4,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<9.0.0)"] + +[[package]] +name = "jinja2" +version = "3.1.5" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jinja2-3.1.5-py3-none-any.whl", hash = "sha256:aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb"}, + {file = "jinja2-3.1.5.tar.gz", hash = "sha256:8fefff8dc3034e27bb80d67c671eb8a9bc424c0ef4c0826edbff304cceff43bb"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + +[[package]] +name = "json5" +version = "0.10.0" +description = "A Python implementation of the JSON5 data format." +optional = false +python-versions = ">=3.8.0" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "json5-0.10.0-py3-none-any.whl", hash = "sha256:19b23410220a7271e8377f81ba8aacba2fdd56947fbb137ee5977cbe1f5e8dfa"}, + {file = "json5-0.10.0.tar.gz", hash = "sha256:e66941c8f0a02026943c52c2eb34ebeb2a6f819a0be05920a6f5243cd30fd559"}, +] + +[package.extras] +dev = ["build (==1.2.2.post1)", "coverage (==7.5.3)", "mypy (==1.13.0)", "pip (==24.3.1)", "pylint (==3.2.3)", "ruff (==0.7.3)", "twine (==5.1.1)", "uv (==0.5.1)"] + +[[package]] +name = "jsonpointer" +version = "3.0.0" +description = "Identify specific nodes in a JSON document (RFC 6901)" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, + {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, +] + +[[package]] +name = "jsonschema" +version = "4.23.0" +description = "An implementation of JSON Schema validation for Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566"}, + {file = "jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4"}, +] + +[package.dependencies] +attrs = ">=22.2.0" +fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} +jsonschema-specifications = ">=2023.03.6" +referencing = ">=0.28.4" +rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} +rpds-py = ">=0.7.1" +uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +webcolors = {version = ">=24.6.0", optional = true, markers = "extra == \"format-nongpl\""} + +[package.extras] +format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] +format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=24.6.0)"] + +[[package]] +name = "jsonschema-specifications" +version = "2024.10.1" +description = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jsonschema_specifications-2024.10.1-py3-none-any.whl", hash = "sha256:a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf"}, + {file = "jsonschema_specifications-2024.10.1.tar.gz", hash = "sha256:0f38b83639958ce1152d02a7f062902c41c8fd20d558b0c34344292d417ae272"}, +] + +[package.dependencies] +referencing = ">=0.31.0" + +[[package]] +name = "jupyter" +version = "1.1.1" +description = "Jupyter metapackage. Install all the Jupyter components in one go." +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter-1.1.1-py2.py3-none-any.whl", hash = "sha256:7a59533c22af65439b24bbe60373a4e95af8f16ac65a6c00820ad378e3f7cc83"}, + {file = "jupyter-1.1.1.tar.gz", hash = "sha256:d55467bceabdea49d7e3624af7e33d59c37fff53ed3a350e1ac957bed731de7a"}, +] + +[package.dependencies] +ipykernel = "*" +ipywidgets = "*" +jupyter-console = "*" +jupyterlab = "*" +nbconvert = "*" +notebook = "*" + +[[package]] +name = "jupyter-client" +version = "8.6.3" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, +] + +[package.dependencies] +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-console" +version = "6.6.3" +description = "Jupyter terminal console" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485"}, + {file = "jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539"}, +] + +[package.dependencies] +ipykernel = ">=6.14" +ipython = "*" +jupyter-client = ">=7.0.0" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +prompt-toolkit = ">=3.0.30" +pygments = "*" +pyzmq = ">=17" +traitlets = ">=5.4" + +[package.extras] +test = ["flaky", "pexpect", "pytest"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "jupyter-events" +version = "0.11.0" +description = "Jupyter Event System library" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter_events-0.11.0-py3-none-any.whl", hash = "sha256:36399b41ce1ca45fe8b8271067d6a140ffa54cec4028e95491c93b78a855cacf"}, + {file = "jupyter_events-0.11.0.tar.gz", hash = "sha256:c0bc56a37aac29c1fbc3bcfbddb8c8c49533f9cf11f1c4e6adadba936574ab90"}, +] + +[package.dependencies] +jsonschema = {version = ">=4.18.0", extras = ["format-nongpl"]} +python-json-logger = ">=2.0.4" +pyyaml = ">=5.3" +referencing = "*" +rfc3339-validator = "*" +rfc3986-validator = ">=0.1.1" +traitlets = ">=5.3" + +[package.extras] +cli = ["click", "rich"] +docs = ["jupyterlite-sphinx", "myst-parser", "pydata-sphinx-theme (>=0.16)", "sphinx (>=8)", "sphinxcontrib-spelling"] +test = ["click", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.19.0)", "pytest-console-scripts", "rich"] + +[[package]] +name = "jupyter-lsp" +version = "2.2.5" +description = "Multi-Language Server WebSocket proxy for Jupyter Notebook/Lab server" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter-lsp-2.2.5.tar.gz", hash = "sha256:793147a05ad446f809fd53ef1cd19a9f5256fd0a2d6b7ce943a982cb4f545001"}, + {file = "jupyter_lsp-2.2.5-py3-none-any.whl", hash = "sha256:45fbddbd505f3fbfb0b6cb2f1bc5e15e83ab7c79cd6e89416b248cb3c00c11da"}, +] + +[package.dependencies] +jupyter-server = ">=1.1.2" + +[[package]] +name = "jupyter-server" +version = "2.15.0" +description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter_server-2.15.0-py3-none-any.whl", hash = "sha256:872d989becf83517012ee669f09604aa4a28097c0bd90b2f424310156c2cdae3"}, + {file = "jupyter_server-2.15.0.tar.gz", hash = "sha256:9d446b8697b4f7337a1b7cdcac40778babdd93ba614b6d68ab1c0c918f1c4084"}, +] + +[package.dependencies] +anyio = ">=3.1.0" +argon2-cffi = ">=21.1" +jinja2 = ">=3.0.3" +jupyter-client = ">=7.4.4" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +jupyter-events = ">=0.11.0" +jupyter-server-terminals = ">=0.4.4" +nbconvert = ">=6.4.4" +nbformat = ">=5.3.0" +overrides = ">=5.0" +packaging = ">=22.0" +prometheus-client = ">=0.9" +pywinpty = {version = ">=2.0.1", markers = "os_name == \"nt\""} +pyzmq = ">=24" +send2trash = ">=1.8.2" +terminado = ">=0.8.3" +tornado = ">=6.2.0" +traitlets = ">=5.6.0" +websocket-client = ">=1.7" + +[package.extras] +docs = ["ipykernel", "jinja2", "jupyter-client", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] +test = ["flaky", "ipykernel", "pre-commit", "pytest (>=7.0,<9)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.7)", "pytest-timeout", "requests"] + +[[package]] +name = "jupyter-server-terminals" +version = "0.5.3" +description = "A Jupyter Server Extension Providing Terminals." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa"}, + {file = "jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269"}, +] + +[package.dependencies] +pywinpty = {version = ">=2.0.3", markers = "os_name == \"nt\""} +terminado = ">=0.8.3" + +[package.extras] +docs = ["jinja2", "jupyter-server", "mistune (<4.0)", "myst-parser", "nbformat", "packaging", "pydata-sphinx-theme", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado"] +test = ["jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-jupyter[server] (>=0.5.3)", "pytest-timeout"] + +[[package]] +name = "jupyterlab" +version = "4.3.4" +description = "JupyterLab computational environment" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyterlab-4.3.4-py3-none-any.whl", hash = "sha256:b754c2601c5be6adf87cb5a1d8495d653ffb945f021939f77776acaa94dae952"}, + {file = "jupyterlab-4.3.4.tar.gz", hash = "sha256:f0bb9b09a04766e3423cccc2fc23169aa2ffedcdf8713e9e0fb33cac0b6859d0"}, +] + +[package.dependencies] +async-lru = ">=1.0.0" +httpx = ">=0.25.0" +ipykernel = ">=6.5.0" +jinja2 = ">=3.0.3" +jupyter-core = "*" +jupyter-lsp = ">=2.0.0" +jupyter-server = ">=2.4.0,<3" +jupyterlab-server = ">=2.27.1,<3" +notebook-shim = ">=0.2" +packaging = "*" +setuptools = ">=40.8.0" +tomli = {version = ">=1.2.2", markers = "python_version < \"3.11\""} +tornado = ">=6.2.0" +traitlets = "*" + +[package.extras] +dev = ["build", "bump2version", "coverage", "hatch", "pre-commit", "pytest-cov", "ruff (==0.6.9)"] +docs = ["jsx-lexer", "myst-parser", "pydata-sphinx-theme (>=0.13.0)", "pytest", "pytest-check-links", "pytest-jupyter", "sphinx (>=1.8,<8.1.0)", "sphinx-copybutton"] +docs-screenshots = ["altair (==5.4.1)", "ipython (==8.16.1)", "ipywidgets (==8.1.5)", "jupyterlab-geojson (==3.4.0)", "jupyterlab-language-pack-zh-cn (==4.2.post3)", "matplotlib (==3.9.2)", "nbconvert (>=7.0.0)", "pandas (==2.2.3)", "scipy (==1.14.1)", "vega-datasets (==0.9.0)"] +test = ["coverage", "pytest (>=7.0)", "pytest-check-links (>=0.7)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter (>=0.5.3)", "pytest-timeout", "pytest-tornasync", "requests", "requests-cache", "virtualenv"] +upgrade-extension = ["copier (>=9,<10)", "jinja2-time (<0.3)", "pydantic (<3.0)", "pyyaml-include (<3.0)", "tomli-w (<2.0)"] + +[[package]] +name = "jupyterlab-pygments" +version = "0.3.0" +description = "Pygments theme using JupyterLab CSS variables" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780"}, + {file = "jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d"}, +] + +[[package]] +name = "jupyterlab-server" +version = "2.27.3" +description = "A set of server components for JupyterLab and JupyterLab like applications." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyterlab_server-2.27.3-py3-none-any.whl", hash = "sha256:e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4"}, + {file = "jupyterlab_server-2.27.3.tar.gz", hash = "sha256:eb36caca59e74471988f0ae25c77945610b887f777255aa21f8065def9e51ed4"}, +] + +[package.dependencies] +babel = ">=2.10" +jinja2 = ">=3.0.3" +json5 = ">=0.9.0" +jsonschema = ">=4.18.0" +jupyter-server = ">=1.21,<3" +packaging = ">=21.3" +requests = ">=2.31" + +[package.extras] +docs = ["autodoc-traits", "jinja2 (<3.2.0)", "mistune (<4)", "myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-copybutton", "sphinxcontrib-openapi (>0.8)"] +openapi = ["openapi-core (>=0.18.0,<0.19.0)", "ruamel-yaml"] +test = ["hatch", "ipykernel", "openapi-core (>=0.18.0,<0.19.0)", "openapi-spec-validator (>=0.6.0,<0.8.0)", "pytest (>=7.0,<8)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter[server] (>=0.6.2)", "pytest-timeout", "requests-mock", "ruamel-yaml", "sphinxcontrib-spelling", "strict-rfc3339", "werkzeug"] + +[[package]] +name = "jupyterlab-widgets" +version = "3.0.13" +description = "Jupyter interactive widgets for JupyterLab" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyterlab_widgets-3.0.13-py3-none-any.whl", hash = "sha256:e3cda2c233ce144192f1e29914ad522b2f4c40e77214b0cc97377ca3d323db54"}, + {file = "jupyterlab_widgets-3.0.13.tar.gz", hash = "sha256:a2966d385328c1942b683a8cd96b89b8dd82c8b8f81dda902bb2bc06d46f5bed"}, +] + +[[package]] +name = "kiwisolver" +version = "1.4.8" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.10" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "kiwisolver-1.4.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:88c6f252f6816a73b1f8c904f7bbe02fd67c09a69f7cb8a0eecdbf5ce78e63db"}, + {file = "kiwisolver-1.4.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c72941acb7b67138f35b879bbe85be0f6c6a70cab78fe3ef6db9c024d9223e5b"}, + {file = "kiwisolver-1.4.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ce2cf1e5688edcb727fdf7cd1bbd0b6416758996826a8be1d958f91880d0809d"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:c8bf637892dc6e6aad2bc6d4d69d08764166e5e3f69d469e55427b6ac001b19d"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:034d2c891f76bd3edbdb3ea11140d8510dca675443da7304205a2eaa45d8334c"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d47b28d1dfe0793d5e96bce90835e17edf9a499b53969b03c6c47ea5985844c3"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb158fe28ca0c29f2260cca8c43005329ad58452c36f0edf298204de32a9a3ed"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5536185fce131780ebd809f8e623bf4030ce1b161353166c49a3c74c287897f"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:369b75d40abedc1da2c1f4de13f3482cb99e3237b38726710f4a793432b1c5ff"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:641f2ddf9358c80faa22e22eb4c9f54bd3f0e442e038728f500e3b978d00aa7d"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d561d2d8883e0819445cfe58d7ddd673e4015c3c57261d7bdcd3710d0d14005c"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:1732e065704b47c9afca7ffa272f845300a4eb959276bf6970dc07265e73b605"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:bcb1ebc3547619c3b58a39e2448af089ea2ef44b37988caf432447374941574e"}, + {file = "kiwisolver-1.4.8-cp310-cp310-win_amd64.whl", hash = "sha256:89c107041f7b27844179ea9c85d6da275aa55ecf28413e87624d033cf1f6b751"}, + {file = "kiwisolver-1.4.8-cp310-cp310-win_arm64.whl", hash = "sha256:b5773efa2be9eb9fcf5415ea3ab70fc785d598729fd6057bea38d539ead28271"}, + {file = "kiwisolver-1.4.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a4d3601908c560bdf880f07d94f31d734afd1bb71e96585cace0e38ef44c6d84"}, + {file = "kiwisolver-1.4.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:856b269c4d28a5c0d5e6c1955ec36ebfd1651ac00e1ce0afa3e28da95293b561"}, + {file = "kiwisolver-1.4.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c2b9a96e0f326205af81a15718a9073328df1173a2619a68553decb7097fd5d7"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5020c83e8553f770cb3b5fc13faac40f17e0b205bd237aebd21d53d733adb03"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dace81d28c787956bfbfbbfd72fdcef014f37d9b48830829e488fdb32b49d954"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11e1022b524bd48ae56c9b4f9296bce77e15a2e42a502cceba602f804b32bb79"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b9b4d2892fefc886f30301cdd80debd8bb01ecdf165a449eb6e78f79f0fabd6"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a96c0e790ee875d65e340ab383700e2b4891677b7fcd30a699146f9384a2bb0"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:23454ff084b07ac54ca8be535f4174170c1094a4cff78fbae4f73a4bcc0d4dab"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:87b287251ad6488e95b4f0b4a79a6d04d3ea35fde6340eb38fbd1ca9cd35bbbc"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:b21dbe165081142b1232a240fc6383fd32cdd877ca6cc89eab93e5f5883e1c25"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:768cade2c2df13db52475bd28d3a3fac8c9eff04b0e9e2fda0f3760f20b3f7fc"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d47cfb2650f0e103d4bf68b0b5804c68da97272c84bb12850d877a95c056bd67"}, + {file = "kiwisolver-1.4.8-cp311-cp311-win_amd64.whl", hash = "sha256:ed33ca2002a779a2e20eeb06aea7721b6e47f2d4b8a8ece979d8ba9e2a167e34"}, + {file = "kiwisolver-1.4.8-cp311-cp311-win_arm64.whl", hash = "sha256:16523b40aab60426ffdebe33ac374457cf62863e330a90a0383639ce14bf44b2"}, + {file = "kiwisolver-1.4.8-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:d6af5e8815fd02997cb6ad9bbed0ee1e60014438ee1a5c2444c96f87b8843502"}, + {file = "kiwisolver-1.4.8-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:bade438f86e21d91e0cf5dd7c0ed00cda0f77c8c1616bd83f9fc157fa6760d31"}, + {file = "kiwisolver-1.4.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b83dc6769ddbc57613280118fb4ce3cd08899cc3369f7d0e0fab518a7cf37fdb"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:111793b232842991be367ed828076b03d96202c19221b5ebab421ce8bcad016f"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:257af1622860e51b1a9d0ce387bf5c2c4f36a90594cb9514f55b074bcc787cfc"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:69b5637c3f316cab1ec1c9a12b8c5f4750a4c4b71af9157645bf32830e39c03a"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:782bb86f245ec18009890e7cb8d13a5ef54dcf2ebe18ed65f795e635a96a1c6a"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc978a80a0db3a66d25767b03688f1147a69e6237175c0f4ffffaaedf744055a"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:36dbbfd34838500a31f52c9786990d00150860e46cd5041386f217101350f0d3"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:eaa973f1e05131de5ff3569bbba7f5fd07ea0595d3870ed4a526d486fe57fa1b"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:a66f60f8d0c87ab7f59b6fb80e642ebb29fec354a4dfad687ca4092ae69d04f4"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858416b7fb777a53f0c59ca08190ce24e9abbd3cffa18886a5781b8e3e26f65d"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:085940635c62697391baafaaeabdf3dd7a6c3643577dde337f4d66eba021b2b8"}, + {file = "kiwisolver-1.4.8-cp312-cp312-win_amd64.whl", hash = "sha256:01c3d31902c7db5fb6182832713d3b4122ad9317c2c5877d0539227d96bb2e50"}, + {file = "kiwisolver-1.4.8-cp312-cp312-win_arm64.whl", hash = "sha256:a3c44cb68861de93f0c4a8175fbaa691f0aa22550c331fefef02b618a9dcb476"}, + {file = "kiwisolver-1.4.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1c8ceb754339793c24aee1c9fb2485b5b1f5bb1c2c214ff13368431e51fc9a09"}, + {file = "kiwisolver-1.4.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:54a62808ac74b5e55a04a408cda6156f986cefbcf0ada13572696b507cc92fa1"}, + {file = "kiwisolver-1.4.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:68269e60ee4929893aad82666821aaacbd455284124817af45c11e50a4b42e3c"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34d142fba9c464bc3bbfeff15c96eab0e7310343d6aefb62a79d51421fcc5f1b"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc373e0eef45b59197de815b1b28ef89ae3955e7722cc9710fb91cd77b7f47"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:77e6f57a20b9bd4e1e2cedda4d0b986ebd0216236f0106e55c28aea3d3d69b16"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08e77738ed7538f036cd1170cbed942ef749137b1311fa2bbe2a7fda2f6bf3cc"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5ce1e481a74b44dd5e92ff03ea0cb371ae7a0268318e202be06c8f04f4f1246"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:fc2ace710ba7c1dfd1a3b42530b62b9ceed115f19a1656adefce7b1782a37794"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:3452046c37c7692bd52b0e752b87954ef86ee2224e624ef7ce6cb21e8c41cc1b"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:7e9a60b50fe8b2ec6f448fe8d81b07e40141bfced7f896309df271a0b92f80f3"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:918139571133f366e8362fa4a297aeba86c7816b7ecf0bc79168080e2bd79957"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e063ef9f89885a1d68dd8b2e18f5ead48653176d10a0e324e3b0030e3a69adeb"}, + {file = "kiwisolver-1.4.8-cp313-cp313-win_amd64.whl", hash = "sha256:a17b7c4f5b2c51bb68ed379defd608a03954a1845dfed7cc0117f1cc8a9b7fd2"}, + {file = "kiwisolver-1.4.8-cp313-cp313-win_arm64.whl", hash = "sha256:3cd3bc628b25f74aedc6d374d5babf0166a92ff1317f46267f12d2ed54bc1d30"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:370fd2df41660ed4e26b8c9d6bbcad668fbe2560462cba151a721d49e5b6628c"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:84a2f830d42707de1d191b9490ac186bf7997a9495d4e9072210a1296345f7dc"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:7a3ad337add5148cf51ce0b55642dc551c0b9d6248458a757f98796ca7348712"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7506488470f41169b86d8c9aeff587293f530a23a23a49d6bc64dab66bedc71e"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f0121b07b356a22fb0414cec4666bbe36fd6d0d759db3d37228f496ed67c880"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d6d6bd87df62c27d4185de7c511c6248040afae67028a8a22012b010bc7ad062"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:291331973c64bb9cce50bbe871fb2e675c4331dab4f31abe89f175ad7679a4d7"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:893f5525bb92d3d735878ec00f781b2de998333659507d29ea4466208df37bed"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:b47a465040146981dc9db8647981b8cb96366fbc8d452b031e4f8fdffec3f26d"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:99cea8b9dd34ff80c521aef46a1dddb0dcc0283cf18bde6d756f1e6f31772165"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:151dffc4865e5fe6dafce5480fab84f950d14566c480c08a53c663a0020504b6"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:577facaa411c10421314598b50413aa1ebcf5126f704f1e5d72d7e4e9f020d90"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:be4816dc51c8a471749d664161b434912eee82f2ea66bd7628bd14583a833e85"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e7a019419b7b510f0f7c9dceff8c5eae2392037eae483a7f9162625233802b0a"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:286b18e86682fd2217a48fc6be6b0f20c1d0ed10958d8dc53453ad58d7be0bf8"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4191ee8dfd0be1c3666ccbac178c5a05d5f8d689bbe3fc92f3c4abec817f8fe0"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7cd2785b9391f2873ad46088ed7599a6a71e762e1ea33e87514b1a441ed1da1c"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c07b29089b7ba090b6f1a669f1411f27221c3662b3a1b7010e67b59bb5a6f10b"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:65ea09a5a3faadd59c2ce96dc7bf0f364986a315949dc6374f04396b0d60e09b"}, + {file = "kiwisolver-1.4.8.tar.gz", hash = "sha256:23d5f023bdc8c7e54eb65f03ca5d5bb25b601eac4d7f1a042888a1f45237987e"}, +] + +[[package]] +name = "markupsafe" +version = "3.0.2" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "MarkupSafe-3.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7e94c425039cde14257288fd61dcfb01963e658efbc0ff54f5306b06054700f8"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9e2d922824181480953426608b81967de705c3cef4d1af983af849d7bd619158"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:38a9ef736c01fccdd6600705b09dc574584b89bea478200c5fbf112a6b0d5579"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbcb445fa71794da8f178f0f6d66789a28d7319071af7a496d4d507ed566270d"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57cb5a3cf367aeb1d316576250f65edec5bb3be939e9247ae594b4bcbc317dfb"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:3809ede931876f5b2ec92eef964286840ed3540dadf803dd570c3b7e13141a3b"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e07c3764494e3776c602c1e78e298937c3315ccc9043ead7e685b7f2b8d47b3c"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b424c77b206d63d500bcb69fa55ed8d0e6a3774056bdc4839fc9298a7edca171"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-win32.whl", hash = "sha256:fcabf5ff6eea076f859677f5f0b6b5c1a51e70a376b0579e0eadef8db48c6b50"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:6af100e168aa82a50e186c82875a5893c5597a0c1ccdb0d8b40240b1f28b969a"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9025b4018f3a1314059769c7bf15441064b2207cb3f065e6ea1e7359cb46db9d"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:93335ca3812df2f366e80509ae119189886b0f3c2b81325d39efdb84a1e2ae93"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cb8438c3cbb25e220c2ab33bb226559e7afb3baec11c4f218ffa7308603c832"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a123e330ef0853c6e822384873bef7507557d8e4a082961e1defa947aa59ba84"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e084f686b92e5b83186b07e8a17fc09e38fff551f3602b249881fec658d3eca"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d8213e09c917a951de9d09ecee036d5c7d36cb6cb7dbaece4c71a60d79fb9798"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5b02fb34468b6aaa40dfc198d813a641e3a63b98c2b05a16b9f80b7ec314185e"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0bff5e0ae4ef2e1ae4fdf2dfd5b76c75e5c2fa4132d05fc1b0dabcd20c7e28c4"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-win32.whl", hash = "sha256:6c89876f41da747c8d3677a2b540fb32ef5715f97b66eeb0c6b66f5e3ef6f59d"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:70a87b411535ccad5ef2f1df5136506a10775d267e197e4cf531ced10537bd6b"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-win32.whl", hash = "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-win32.whl", hash = "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:eaa0a10b7f72326f1372a713e73c3f739b524b3af41feb43e4921cb529f5929a"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:48032821bbdf20f5799ff537c7ac3d1fba0ba032cfc06194faffa8cda8b560ff"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a9d3f5f0901fdec14d8d2f66ef7d035f2157240a433441719ac9a3fba440b13"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88b49a3b9ff31e19998750c38e030fc7bb937398b1f78cfa599aaef92d693144"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cfad01eed2c2e0c01fd0ecd2ef42c492f7f93902e39a42fc9ee1692961443a29"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:1225beacc926f536dc82e45f8a4d68502949dc67eea90eab715dea3a21c1b5f0"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:3169b1eefae027567d1ce6ee7cae382c57fe26e82775f460f0b2778beaad66c0"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:eb7972a85c54febfb25b5c4b4f3af4dcc731994c7da0d8a0b4a6eb0640e1d178"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-win32.whl", hash = "sha256:8c4e8c3ce11e1f92f6536ff07154f9d49677ebaaafc32db9db4620bc11ed480f"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:6e296a513ca3d94054c2c881cc913116e90fd030ad1c656b3869762b754f5f8a"}, + {file = "markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0"}, +] + +[[package]] +name = "matplotlib" +version = "3.10.0" +description = "Python plotting package" +optional = false +python-versions = ">=3.10" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "matplotlib-3.10.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2c5829a5a1dd5a71f0e31e6e8bb449bc0ee9dbfb05ad28fc0c6b55101b3a4be6"}, + {file = "matplotlib-3.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2a43cbefe22d653ab34bb55d42384ed30f611bcbdea1f8d7f431011a2e1c62e"}, + {file = "matplotlib-3.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:607b16c8a73943df110f99ee2e940b8a1cbf9714b65307c040d422558397dac5"}, + {file = "matplotlib-3.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01d2b19f13aeec2e759414d3bfe19ddfb16b13a1250add08d46d5ff6f9be83c6"}, + {file = "matplotlib-3.10.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5e6c6461e1fc63df30bf6f80f0b93f5b6784299f721bc28530477acd51bfc3d1"}, + {file = "matplotlib-3.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:994c07b9d9fe8d25951e3202a68c17900679274dadfc1248738dcfa1bd40d7f3"}, + {file = "matplotlib-3.10.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:fd44fc75522f58612ec4a33958a7e5552562b7705b42ef1b4f8c0818e304a363"}, + {file = "matplotlib-3.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c58a9622d5dbeb668f407f35f4e6bfac34bb9ecdcc81680c04d0258169747997"}, + {file = "matplotlib-3.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:845d96568ec873be63f25fa80e9e7fae4be854a66a7e2f0c8ccc99e94a8bd4ef"}, + {file = "matplotlib-3.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5439f4c5a3e2e8eab18e2f8c3ef929772fd5641876db71f08127eed95ab64683"}, + {file = "matplotlib-3.10.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4673ff67a36152c48ddeaf1135e74ce0d4bce1bbf836ae40ed39c29edf7e2765"}, + {file = "matplotlib-3.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:7e8632baebb058555ac0cde75db885c61f1212e47723d63921879806b40bec6a"}, + {file = "matplotlib-3.10.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4659665bc7c9b58f8c00317c3c2a299f7f258eeae5a5d56b4c64226fca2f7c59"}, + {file = "matplotlib-3.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d44cb942af1693cced2604c33a9abcef6205601c445f6d0dc531d813af8a2f5a"}, + {file = "matplotlib-3.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a994f29e968ca002b50982b27168addfd65f0105610b6be7fa515ca4b5307c95"}, + {file = "matplotlib-3.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b0558bae37f154fffda54d779a592bc97ca8b4701f1c710055b609a3bac44c8"}, + {file = "matplotlib-3.10.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:503feb23bd8c8acc75541548a1d709c059b7184cde26314896e10a9f14df5f12"}, + {file = "matplotlib-3.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:c40ba2eb08b3f5de88152c2333c58cee7edcead0a2a0d60fcafa116b17117adc"}, + {file = "matplotlib-3.10.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:96f2886f5c1e466f21cc41b70c5a0cd47bfa0015eb2d5793c88ebce658600e25"}, + {file = "matplotlib-3.10.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:12eaf48463b472c3c0f8dbacdbf906e573013df81a0ab82f0616ea4b11281908"}, + {file = "matplotlib-3.10.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2fbbabc82fde51391c4da5006f965e36d86d95f6ee83fb594b279564a4c5d0d2"}, + {file = "matplotlib-3.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad2e15300530c1a94c63cfa546e3b7864bd18ea2901317bae8bbf06a5ade6dcf"}, + {file = "matplotlib-3.10.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3547d153d70233a8496859097ef0312212e2689cdf8d7ed764441c77604095ae"}, + {file = "matplotlib-3.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:c55b20591ced744aa04e8c3e4b7543ea4d650b6c3c4b208c08a05b4010e8b442"}, + {file = "matplotlib-3.10.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9ade1003376731a971e398cc4ef38bb83ee8caf0aee46ac6daa4b0506db1fd06"}, + {file = "matplotlib-3.10.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:95b710fea129c76d30be72c3b38f330269363fbc6e570a5dd43580487380b5ff"}, + {file = "matplotlib-3.10.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cdbaf909887373c3e094b0318d7ff230b2ad9dcb64da7ade654182872ab2593"}, + {file = "matplotlib-3.10.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d907fddb39f923d011875452ff1eca29a9e7f21722b873e90db32e5d8ddff12e"}, + {file = "matplotlib-3.10.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:3b427392354d10975c1d0f4ee18aa5844640b512d5311ef32efd4dd7db106ede"}, + {file = "matplotlib-3.10.0-cp313-cp313t-win_amd64.whl", hash = "sha256:5fd41b0ec7ee45cd960a8e71aea7c946a28a0b8a4dcee47d2856b2af051f334c"}, + {file = "matplotlib-3.10.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:81713dd0d103b379de4516b861d964b1d789a144103277769238c732229d7f03"}, + {file = "matplotlib-3.10.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:359f87baedb1f836ce307f0e850d12bb5f1936f70d035561f90d41d305fdacea"}, + {file = "matplotlib-3.10.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ae80dc3a4add4665cf2faa90138384a7ffe2a4e37c58d83e115b54287c4f06ef"}, + {file = "matplotlib-3.10.0.tar.gz", hash = "sha256:b886d02a581b96704c9d1ffe55709e49b4d2d52709ccebc4be42db856e511278"}, +] + +[package.dependencies] +contourpy = ">=1.0.1" +cycler = ">=0.10" +fonttools = ">=4.22.0" +kiwisolver = ">=1.3.1" +numpy = ">=1.23" +packaging = ">=20.0" +pillow = ">=8" +pyparsing = ">=2.3.1" +python-dateutil = ">=2.7" + +[package.extras] +dev = ["meson-python (>=0.13.1,<0.17.0)", "pybind11 (>=2.13.2,!=2.13.3)", "setuptools (>=64)", "setuptools_scm (>=7)"] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mistune" +version = "3.1.0" +description = "A sane and fast Markdown parser with useful plugins and renderers" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "mistune-3.1.0-py3-none-any.whl", hash = "sha256:b05198cf6d671b3deba6c87ec6cf0d4eb7b72c524636eddb6dbf13823b52cee1"}, + {file = "mistune-3.1.0.tar.gz", hash = "sha256:dbcac2f78292b9dc066cd03b7a3a26b62d85f8159f2ea5fd28e55df79908d667"}, +] + +[package.dependencies] +typing-extensions = {version = "*", markers = "python_version < \"3.11\""} + +[[package]] +name = "nbclient" +version = "0.10.2" +description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." +optional = false +python-versions = ">=3.9.0" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "nbclient-0.10.2-py3-none-any.whl", hash = "sha256:4ffee11e788b4a27fabeb7955547e4318a5298f34342a4bfd01f2e1faaeadc3d"}, + {file = "nbclient-0.10.2.tar.gz", hash = "sha256:90b7fc6b810630db87a6d0c2250b1f0ab4cf4d3c27a299b0cde78a4ed3fd9193"}, +] + +[package.dependencies] +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +nbformat = ">=5.1" +traitlets = ">=5.4" + +[package.extras] +dev = ["pre-commit"] +docs = ["autodoc-traits", "flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "mock", "moto", "myst-parser", "nbconvert (>=7.1.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling", "testpath", "xmltodict"] +test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.1.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] + +[[package]] +name = "nbconvert" +version = "7.16.5" +description = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "nbconvert-7.16.5-py3-none-any.whl", hash = "sha256:e12eac052d6fd03040af4166c563d76e7aeead2e9aadf5356db552a1784bd547"}, + {file = "nbconvert-7.16.5.tar.gz", hash = "sha256:c83467bb5777fdfaac5ebbb8e864f300b277f68692ecc04d6dab72f2d8442344"}, +] + +[package.dependencies] +beautifulsoup4 = "*" +bleach = {version = "!=5.0.0", extras = ["css"]} +defusedxml = "*" +jinja2 = ">=3.0" +jupyter-core = ">=4.7" +jupyterlab-pygments = "*" +markupsafe = ">=2.0" +mistune = ">=2.0.3,<4" +nbclient = ">=0.5.0" +nbformat = ">=5.7" +packaging = "*" +pandocfilters = ">=1.4.1" +pygments = ">=2.4.1" +traitlets = ">=5.1" + +[package.extras] +all = ["flaky", "ipykernel", "ipython", "ipywidgets (>=7.5)", "myst-parser", "nbsphinx (>=0.2.12)", "playwright", "pydata-sphinx-theme", "pyqtwebengine (>=5.15)", "pytest (>=7)", "sphinx (==5.0.2)", "sphinxcontrib-spelling", "tornado (>=6.1)"] +docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] +qtpdf = ["pyqtwebengine (>=5.15)"] +qtpng = ["pyqtwebengine (>=5.15)"] +serve = ["tornado (>=6.1)"] +test = ["flaky", "ipykernel", "ipywidgets (>=7.5)", "pytest (>=7)"] +webpdf = ["playwright"] + +[[package]] +name = "nbformat" +version = "5.10.4" +description = "The Jupyter Notebook format" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b"}, + {file = "nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a"}, +] + +[package.dependencies] +fastjsonschema = ">=2.15" +jsonschema = ">=2.6" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +traitlets = ">=5.1" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["pep440", "pre-commit", "pytest", "testpath"] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "notebook" +version = "7.3.2" +description = "Jupyter Notebook - A web-based notebook environment for interactive computing" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "notebook-7.3.2-py3-none-any.whl", hash = "sha256:e5f85fc59b69d3618d73cf27544418193ff8e8058d5bf61d315ce4f473556288"}, + {file = "notebook-7.3.2.tar.gz", hash = "sha256:705e83a1785f45b383bf3ee13cb76680b92d24f56fb0c7d2136fe1d850cd3ca8"}, +] + +[package.dependencies] +jupyter-server = ">=2.4.0,<3" +jupyterlab = ">=4.3.4,<4.4" +jupyterlab-server = ">=2.27.1,<3" +notebook-shim = ">=0.2,<0.3" +tornado = ">=6.2.0" + +[package.extras] +dev = ["hatch", "pre-commit"] +docs = ["myst-parser", "nbsphinx", "pydata-sphinx-theme", "sphinx (>=1.3.6)", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.27.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"] + +[[package]] +name = "notebook-shim" +version = "0.2.4" +description = "A shim layer for notebook traits and config" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef"}, + {file = "notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb"}, +] + +[package.dependencies] +jupyter-server = ">=1.8,<3" + +[package.extras] +test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"] + +[[package]] +name = "numpy" +version = "2.2.1" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.10" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5edb4e4caf751c1518e6a26a83501fda79bff41cc59dac48d70e6d65d4ec4440"}, + {file = "numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa3017c40d513ccac9621a2364f939d39e550c542eb2a894b4c8da92b38896ab"}, + {file = "numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:61048b4a49b1c93fe13426e04e04fdf5a03f456616f6e98c7576144677598675"}, + {file = "numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:7671dc19c7019103ca44e8d94917eba8534c76133523ca8406822efdd19c9308"}, + {file = "numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4250888bcb96617e00bfa28ac24850a83c9f3a16db471eca2ee1f1714df0f957"}, + {file = "numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7746f235c47abc72b102d3bce9977714c2444bdfaea7888d241b4c4bb6a78bf"}, + {file = "numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:059e6a747ae84fce488c3ee397cee7e5f905fd1bda5fb18c66bc41807ff119b2"}, + {file = "numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:f62aa6ee4eb43b024b0e5a01cf65a0bb078ef8c395e8713c6e8a12a697144528"}, + {file = "numpy-2.2.1-cp310-cp310-win32.whl", hash = "sha256:48fd472630715e1c1c89bf1feab55c29098cb403cc184b4859f9c86d4fcb6a95"}, + {file = "numpy-2.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:b541032178a718c165a49638d28272b771053f628382d5e9d1c93df23ff58dbf"}, + {file = "numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:40f9e544c1c56ba8f1cf7686a8c9b5bb249e665d40d626a23899ba6d5d9e1484"}, + {file = "numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f9b57eaa3b0cd8db52049ed0330747b0364e899e8a606a624813452b8203d5f7"}, + {file = "numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:bc8a37ad5b22c08e2dbd27df2b3ef7e5c0864235805b1e718a235bcb200cf1cb"}, + {file = "numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:9036d6365d13b6cbe8f27a0eaf73ddcc070cae584e5ff94bb45e3e9d729feab5"}, + {file = "numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51faf345324db860b515d3f364eaa93d0e0551a88d6218a7d61286554d190d73"}, + {file = "numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38efc1e56b73cc9b182fe55e56e63b044dd26a72128fd2fbd502f75555d92591"}, + {file = "numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:31b89fa67a8042e96715c68e071a1200c4e172f93b0fbe01a14c0ff3ff820fc8"}, + {file = "numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4c86e2a209199ead7ee0af65e1d9992d1dce7e1f63c4b9a616500f93820658d0"}, + {file = "numpy-2.2.1-cp311-cp311-win32.whl", hash = "sha256:b34d87e8a3090ea626003f87f9392b3929a7bbf4104a05b6667348b6bd4bf1cd"}, + {file = "numpy-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:360137f8fb1b753c5cde3ac388597ad680eccbbbb3865ab65efea062c4a1fd16"}, + {file = "numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:694f9e921a0c8f252980e85bce61ebbd07ed2b7d4fa72d0e4246f2f8aa6642ab"}, + {file = "numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3683a8d166f2692664262fd4900f207791d005fb088d7fdb973cc8d663626faa"}, + {file = "numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:780077d95eafc2ccc3ced969db22377b3864e5b9a0ea5eb347cc93b3ea900315"}, + {file = "numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:55ba24ebe208344aa7a00e4482f65742969a039c2acfcb910bc6fcd776eb4355"}, + {file = "numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b1d07b53b78bf84a96898c1bc139ad7f10fda7423f5fd158fd0f47ec5e01ac7"}, + {file = "numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5062dc1a4e32a10dc2b8b13cedd58988261416e811c1dc4dbdea4f57eea61b0d"}, + {file = "numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:fce4f615f8ca31b2e61aa0eb5865a21e14f5629515c9151850aa936c02a1ee51"}, + {file = "numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:67d4cda6fa6ffa073b08c8372aa5fa767ceb10c9a0587c707505a6d426f4e046"}, + {file = "numpy-2.2.1-cp312-cp312-win32.whl", hash = "sha256:32cb94448be47c500d2c7a95f93e2f21a01f1fd05dd2beea1ccd049bb6001cd2"}, + {file = "numpy-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:ba5511d8f31c033a5fcbda22dd5c813630af98c70b2661f2d2c654ae3cdfcfc8"}, + {file = "numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f1d09e520217618e76396377c81fba6f290d5f926f50c35f3a5f72b01a0da780"}, + {file = "numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3ecc47cd7f6ea0336042be87d9e7da378e5c7e9b3c8ad0f7c966f714fc10d821"}, + {file = "numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:f419290bc8968a46c4933158c91a0012b7a99bb2e465d5ef5293879742f8797e"}, + {file = "numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:5b6c390bfaef8c45a260554888966618328d30e72173697e5cabe6b285fb2348"}, + {file = "numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:526fc406ab991a340744aad7e25251dd47a6720a685fa3331e5c59fef5282a59"}, + {file = "numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af"}, + {file = "numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:53c09385ff0b72ba79d8715683c1168c12e0b6e84fb0372e97553d1ea91efe51"}, + {file = "numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f3eac17d9ec51be534685ba877b6ab5edc3ab7ec95c8f163e5d7b39859524716"}, + {file = "numpy-2.2.1-cp313-cp313-win32.whl", hash = "sha256:9ad014faa93dbb52c80d8f4d3dcf855865c876c9660cb9bd7553843dd03a4b1e"}, + {file = "numpy-2.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:164a829b6aacf79ca47ba4814b130c4020b202522a93d7bff2202bfb33b61c60"}, + {file = "numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:4dfda918a13cc4f81e9118dea249e192ab167a0bb1966272d5503e39234d694e"}, + {file = "numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:733585f9f4b62e9b3528dd1070ec4f52b8acf64215b60a845fa13ebd73cd0712"}, + {file = "numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:89b16a18e7bba224ce5114db863e7029803c179979e1af6ad6a6b11f70545008"}, + {file = "numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:676f4eebf6b2d430300f1f4f4c2461685f8269f94c89698d832cdf9277f30b84"}, + {file = "numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27f5cdf9f493b35f7e41e8368e7d7b4bbafaf9660cba53fb21d2cd174ec09631"}, + {file = "numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c1ad395cf254c4fbb5b2132fee391f361a6e8c1adbd28f2cd8e79308a615fe9d"}, + {file = "numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:08ef779aed40dbc52729d6ffe7dd51df85796a702afbf68a4f4e41fafdc8bda5"}, + {file = "numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:26c9c4382b19fcfbbed3238a14abf7ff223890ea1936b8890f058e7ba35e8d71"}, + {file = "numpy-2.2.1-cp313-cp313t-win32.whl", hash = "sha256:93cf4e045bae74c90ca833cba583c14b62cb4ba2cba0abd2b141ab52548247e2"}, + {file = "numpy-2.2.1-cp313-cp313t-win_amd64.whl", hash = "sha256:bff7d8ec20f5f42607599f9994770fa65d76edca264a87b5e4ea5629bce12268"}, + {file = "numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:7ba9cc93a91d86365a5d270dee221fdc04fb68d7478e6bf6af650de78a8339e3"}, + {file = "numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:3d03883435a19794e41f147612a77a8f56d4e52822337844fff3d4040a142964"}, + {file = "numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4511d9e6071452b944207c8ce46ad2f897307910b402ea5fa975da32e0102800"}, + {file = "numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:5c5cc0cbabe9452038ed984d05ac87910f89370b9242371bd9079cb4af61811e"}, + {file = "numpy-2.2.1.tar.gz", hash = "sha256:45681fd7128c8ad1c379f0ca0776a8b0c6583d2f69889ddac01559dfe4390918"}, +] + +[[package]] +name = "overrides" +version = "7.7.0" +description = "A decorator to automatically detect mismatch when overriding a method." +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "overrides-7.7.0-py3-none-any.whl", hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49"}, + {file = "overrides-7.7.0.tar.gz", hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a"}, +] + +[[package]] +name = "packaging" +version = "24.2" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759"}, + {file = "packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f"}, +] + +[[package]] +name = "pandas" +version = "2.2.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f"}, + {file = "pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32"}, + {file = "pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a"}, + {file = "pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb"}, + {file = "pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc6b93f9b966093cb0fd62ff1a7e4c09e6d546ad7c1de191767baffc57628f39"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5dbca4c1acd72e8eeef4753eeca07de9b1db4f398669d5994086f788a5d7cc30"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8cd6d7cc958a3910f934ea8dbdf17b2364827bb4dafc38ce6eef6bb3d65ff09c"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99df71520d25fade9db7c1076ac94eb994f4d2673ef2aa2e86ee039b6746d20c"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:31d0ced62d4ea3e231a9f228366919a5ea0b07440d9d4dac345376fd8e1477ea"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7eee9e7cea6adf3e3d24e304ac6b8300646e2a5d1cd3a3c2abed9101b0846761"}, + {file = "pandas-2.2.3-cp39-cp39-win_amd64.whl", hash = "sha256:4850ba03528b6dd51d6c5d273c46f183f39a9baf3f0143e566b89450965b105e"}, + {file = "pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667"}, +] + +[package.dependencies] +numpy = [ + {version = ">=1.22.4", markers = "python_version < \"3.11\""}, + {version = ">=1.23.2", markers = "python_version == \"3.11\""}, + {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, +] +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.7" + +[package.extras] +all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] +aws = ["s3fs (>=2022.11.0)"] +clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] +compression = ["zstandard (>=0.19.0)"] +computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] +feather = ["pyarrow (>=10.0.1)"] +fss = ["fsspec (>=2022.11.0)"] +gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] +hdf5 = ["tables (>=3.8.0)"] +html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] +mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] +parquet = ["pyarrow (>=10.0.1)"] +performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] +plot = ["matplotlib (>=3.6.3)"] +postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] +pyarrow = ["pyarrow (>=10.0.1)"] +spss = ["pyreadstat (>=1.2.0)"] +sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.9.2)"] + +[[package]] +name = "pandocfilters" +version = "1.5.1" +description = "Utilities for writing pandoc filters in python" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc"}, + {file = "pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e"}, +] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +groups = ["main"] +markers = "(python_version <= \"3.11\" or python_version >= \"3.12\") and (sys_platform != \"win32\" and sys_platform != \"emscripten\")" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pillow" +version = "11.1.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pillow-11.1.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:e1abe69aca89514737465752b4bcaf8016de61b3be1397a8fc260ba33321b3a8"}, + {file = "pillow-11.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c640e5a06869c75994624551f45e5506e4256562ead981cce820d5ab39ae2192"}, + {file = "pillow-11.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a07dba04c5e22824816b2615ad7a7484432d7f540e6fa86af60d2de57b0fcee2"}, + {file = "pillow-11.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e267b0ed063341f3e60acd25c05200df4193e15a4a5807075cd71225a2386e26"}, + {file = "pillow-11.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:bd165131fd51697e22421d0e467997ad31621b74bfc0b75956608cb2906dda07"}, + {file = "pillow-11.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:abc56501c3fd148d60659aae0af6ddc149660469082859fa7b066a298bde9482"}, + {file = "pillow-11.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:54ce1c9a16a9561b6d6d8cb30089ab1e5eb66918cb47d457bd996ef34182922e"}, + {file = "pillow-11.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:73ddde795ee9b06257dac5ad42fcb07f3b9b813f8c1f7f870f402f4dc54b5269"}, + {file = "pillow-11.1.0-cp310-cp310-win32.whl", hash = "sha256:3a5fe20a7b66e8135d7fd617b13272626a28278d0e578c98720d9ba4b2439d49"}, + {file = "pillow-11.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:b6123aa4a59d75f06e9dd3dac5bf8bc9aa383121bb3dd9a7a612e05eabc9961a"}, + {file = "pillow-11.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:a76da0a31da6fcae4210aa94fd779c65c75786bc9af06289cd1c184451ef7a65"}, + {file = "pillow-11.1.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:e06695e0326d05b06833b40b7ef477e475d0b1ba3a6d27da1bb48c23209bf457"}, + {file = "pillow-11.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:96f82000e12f23e4f29346e42702b6ed9a2f2fea34a740dd5ffffcc8c539eb35"}, + {file = "pillow-11.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3cd561ded2cf2bbae44d4605837221b987c216cff94f49dfeed63488bb228d2"}, + {file = "pillow-11.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f189805c8be5ca5add39e6f899e6ce2ed824e65fb45f3c28cb2841911da19070"}, + {file = "pillow-11.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:dd0052e9db3474df30433f83a71b9b23bd9e4ef1de13d92df21a52c0303b8ab6"}, + {file = "pillow-11.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:837060a8599b8f5d402e97197d4924f05a2e0d68756998345c829c33186217b1"}, + {file = "pillow-11.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:aa8dd43daa836b9a8128dbe7d923423e5ad86f50a7a14dc688194b7be5c0dea2"}, + {file = "pillow-11.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0a2f91f8a8b367e7a57c6e91cd25af510168091fb89ec5146003e424e1558a96"}, + {file = "pillow-11.1.0-cp311-cp311-win32.whl", hash = "sha256:c12fc111ef090845de2bb15009372175d76ac99969bdf31e2ce9b42e4b8cd88f"}, + {file = "pillow-11.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:fbd43429d0d7ed6533b25fc993861b8fd512c42d04514a0dd6337fb3ccf22761"}, + {file = "pillow-11.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:f7955ecf5609dee9442cbface754f2c6e541d9e6eda87fad7f7a989b0bdb9d71"}, + {file = "pillow-11.1.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:2062ffb1d36544d42fcaa277b069c88b01bb7298f4efa06731a7fd6cc290b81a"}, + {file = "pillow-11.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a85b653980faad27e88b141348707ceeef8a1186f75ecc600c395dcac19f385b"}, + {file = "pillow-11.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9409c080586d1f683df3f184f20e36fb647f2e0bc3988094d4fd8c9f4eb1b3b3"}, + {file = "pillow-11.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7fdadc077553621911f27ce206ffcbec7d3f8d7b50e0da39f10997e8e2bb7f6a"}, + {file = "pillow-11.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:93a18841d09bcdd774dcdc308e4537e1f867b3dec059c131fde0327899734aa1"}, + {file = "pillow-11.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9aa9aeddeed452b2f616ff5507459e7bab436916ccb10961c4a382cd3e03f47f"}, + {file = "pillow-11.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3cdcdb0b896e981678eee140d882b70092dac83ac1cdf6b3a60e2216a73f2b91"}, + {file = "pillow-11.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:36ba10b9cb413e7c7dfa3e189aba252deee0602c86c309799da5a74009ac7a1c"}, + {file = "pillow-11.1.0-cp312-cp312-win32.whl", hash = "sha256:cfd5cd998c2e36a862d0e27b2df63237e67273f2fc78f47445b14e73a810e7e6"}, + {file = "pillow-11.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:a697cd8ba0383bba3d2d3ada02b34ed268cb548b369943cd349007730c92bddf"}, + {file = "pillow-11.1.0-cp312-cp312-win_arm64.whl", hash = "sha256:4dd43a78897793f60766563969442020e90eb7847463eca901e41ba186a7d4a5"}, + {file = "pillow-11.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ae98e14432d458fc3de11a77ccb3ae65ddce70f730e7c76140653048c71bfcbc"}, + {file = "pillow-11.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cc1331b6d5a6e144aeb5e626f4375f5b7ae9934ba620c0ac6b3e43d5e683a0f0"}, + {file = "pillow-11.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:758e9d4ef15d3560214cddbc97b8ef3ef86ce04d62ddac17ad39ba87e89bd3b1"}, + {file = "pillow-11.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b523466b1a31d0dcef7c5be1f20b942919b62fd6e9a9be199d035509cbefc0ec"}, + {file = "pillow-11.1.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:9044b5e4f7083f209c4e35aa5dd54b1dd5b112b108648f5c902ad586d4f945c5"}, + {file = "pillow-11.1.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:3764d53e09cdedd91bee65c2527815d315c6b90d7b8b79759cc48d7bf5d4f114"}, + {file = "pillow-11.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:31eba6bbdd27dde97b0174ddf0297d7a9c3a507a8a1480e1e60ef914fe23d352"}, + {file = "pillow-11.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b5d658fbd9f0d6eea113aea286b21d3cd4d3fd978157cbf2447a6035916506d3"}, + {file = "pillow-11.1.0-cp313-cp313-win32.whl", hash = "sha256:f86d3a7a9af5d826744fabf4afd15b9dfef44fe69a98541f666f66fbb8d3fef9"}, + {file = "pillow-11.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:593c5fd6be85da83656b93ffcccc2312d2d149d251e98588b14fbc288fd8909c"}, + {file = "pillow-11.1.0-cp313-cp313-win_arm64.whl", hash = "sha256:11633d58b6ee5733bde153a8dafd25e505ea3d32e261accd388827ee987baf65"}, + {file = "pillow-11.1.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:70ca5ef3b3b1c4a0812b5c63c57c23b63e53bc38e758b37a951e5bc466449861"}, + {file = "pillow-11.1.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:8000376f139d4d38d6851eb149b321a52bb8893a88dae8ee7d95840431977081"}, + {file = "pillow-11.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ee85f0696a17dd28fbcfceb59f9510aa71934b483d1f5601d1030c3c8304f3c"}, + {file = "pillow-11.1.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:dd0e081319328928531df7a0e63621caf67652c8464303fd102141b785ef9547"}, + {file = "pillow-11.1.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:e63e4e5081de46517099dc30abe418122f54531a6ae2ebc8680bcd7096860eab"}, + {file = "pillow-11.1.0-cp313-cp313t-win32.whl", hash = "sha256:dda60aa465b861324e65a78c9f5cf0f4bc713e4309f83bc387be158b077963d9"}, + {file = "pillow-11.1.0-cp313-cp313t-win_amd64.whl", hash = "sha256:ad5db5781c774ab9a9b2c4302bbf0c1014960a0a7be63278d13ae6fdf88126fe"}, + {file = "pillow-11.1.0-cp313-cp313t-win_arm64.whl", hash = "sha256:67cd427c68926108778a9005f2a04adbd5e67c442ed21d95389fe1d595458756"}, + {file = "pillow-11.1.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:bf902d7413c82a1bfa08b06a070876132a5ae6b2388e2712aab3a7cbc02205c6"}, + {file = "pillow-11.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c1eec9d950b6fe688edee07138993e54ee4ae634c51443cfb7c1e7613322718e"}, + {file = "pillow-11.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e275ee4cb11c262bd108ab2081f750db2a1c0b8c12c1897f27b160c8bd57bbc"}, + {file = "pillow-11.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4db853948ce4e718f2fc775b75c37ba2efb6aaea41a1a5fc57f0af59eee774b2"}, + {file = "pillow-11.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:ab8a209b8485d3db694fa97a896d96dd6533d63c22829043fd9de627060beade"}, + {file = "pillow-11.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:54251ef02a2309b5eec99d151ebf5c9904b77976c8abdcbce7891ed22df53884"}, + {file = "pillow-11.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5bb94705aea800051a743aa4874bb1397d4695fb0583ba5e425ee0328757f196"}, + {file = "pillow-11.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:89dbdb3e6e9594d512780a5a1c42801879628b38e3efc7038094430844e271d8"}, + {file = "pillow-11.1.0-cp39-cp39-win32.whl", hash = "sha256:e5449ca63da169a2e6068dd0e2fcc8d91f9558aba89ff6d02121ca8ab11e79e5"}, + {file = "pillow-11.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:3362c6ca227e65c54bf71a5f88b3d4565ff1bcbc63ae72c34b07bbb1cc59a43f"}, + {file = "pillow-11.1.0-cp39-cp39-win_arm64.whl", hash = "sha256:b20be51b37a75cc54c2c55def3fa2c65bb94ba859dde241cd0a4fd302de5ae0a"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8c730dc3a83e5ac137fbc92dfcfe1511ce3b2b5d7578315b63dbbb76f7f51d90"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:7d33d2fae0e8b170b6a6c57400e077412240f6f5bb2a342cf1ee512a787942bb"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a8d65b38173085f24bc07f8b6c505cbb7418009fa1a1fcb111b1f4961814a442"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:015c6e863faa4779251436db398ae75051469f7c903b043a48f078e437656f83"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:d44ff19eea13ae4acdaaab0179fa68c0c6f2f45d66a4d8ec1eda7d6cecbcc15f"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:d3d8da4a631471dfaf94c10c85f5277b1f8e42ac42bade1ac67da4b4a7359b73"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:4637b88343166249fe8aa94e7c4a62a180c4b3898283bb5d3d2fd5fe10d8e4e0"}, + {file = "pillow-11.1.0.tar.gz", hash = "sha256:368da70808b36d73b4b390a8ffac11069f8a5c85f29eff1f1b01bcf3ef5b2a20"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=8.1)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage (>=7.4.2)", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout", "trove-classifiers (>=2024.10.12)"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] + +[[package]] +name = "platformdirs" +version = "4.3.6" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] + +[[package]] +name = "prometheus-client" +version = "0.21.1" +description = "Python client for the Prometheus monitoring system." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "prometheus_client-0.21.1-py3-none-any.whl", hash = "sha256:594b45c410d6f4f8888940fe80b5cc2521b305a1fafe1c58609ef715a001f301"}, + {file = "prometheus_client-0.21.1.tar.gz", hash = "sha256:252505a722ac04b0456be05c05f75f45d760c2911ffc45f2a06bcaed9f3ae3fb"}, +] + +[package.extras] +twisted = ["twisted"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.48" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "psutil" +version = "6.1.1" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "psutil-6.1.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:9ccc4316f24409159897799b83004cb1e24f9819b0dcf9c0b68bdcb6cefee6a8"}, + {file = "psutil-6.1.1-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ca9609c77ea3b8481ab005da74ed894035936223422dc591d6772b147421f777"}, + {file = "psutil-6.1.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:8df0178ba8a9e5bc84fed9cfa61d54601b371fbec5c8eebad27575f1e105c0d4"}, + {file = "psutil-6.1.1-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:1924e659d6c19c647e763e78670a05dbb7feaf44a0e9c94bf9e14dfc6ba50468"}, + {file = "psutil-6.1.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:018aeae2af92d943fdf1da6b58665124897cfc94faa2ca92098838f83e1b1bca"}, + {file = "psutil-6.1.1-cp27-none-win32.whl", hash = "sha256:6d4281f5bbca041e2292be3380ec56a9413b790579b8e593b1784499d0005dac"}, + {file = "psutil-6.1.1-cp27-none-win_amd64.whl", hash = "sha256:c777eb75bb33c47377c9af68f30e9f11bc78e0f07fbf907be4a5d70b2fe5f030"}, + {file = "psutil-6.1.1-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:fc0ed7fe2231a444fc219b9c42d0376e0a9a1a72f16c5cfa0f68d19f1a0663e8"}, + {file = "psutil-6.1.1-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:0bdd4eab935276290ad3cb718e9809412895ca6b5b334f5a9111ee6d9aff9377"}, + {file = "psutil-6.1.1-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b6e06c20c05fe95a3d7302d74e7097756d4ba1247975ad6905441ae1b5b66003"}, + {file = "psutil-6.1.1-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97f7cb9921fbec4904f522d972f0c0e1f4fabbdd4e0287813b21215074a0f160"}, + {file = "psutil-6.1.1-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33431e84fee02bc84ea36d9e2c4a6d395d479c9dd9bba2376c1f6ee8f3a4e0b3"}, + {file = "psutil-6.1.1-cp36-cp36m-win32.whl", hash = "sha256:384636b1a64b47814437d1173be1427a7c83681b17a450bfc309a1953e329603"}, + {file = "psutil-6.1.1-cp36-cp36m-win_amd64.whl", hash = "sha256:8be07491f6ebe1a693f17d4f11e69d0dc1811fa082736500f649f79df7735303"}, + {file = "psutil-6.1.1-cp37-abi3-win32.whl", hash = "sha256:eaa912e0b11848c4d9279a93d7e2783df352b082f40111e078388701fd479e53"}, + {file = "psutil-6.1.1-cp37-abi3-win_amd64.whl", hash = "sha256:f35cfccb065fff93529d2afb4a2e89e363fe63ca1e4a5da22b603a85833c2649"}, + {file = "psutil-6.1.1.tar.gz", hash = "sha256:cf8496728c18f2d0b45198f06895be52f36611711746b7f30c464b422b50e2f5"}, +] + +[package.extras] +dev = ["abi3audit", "black", "check-manifest", "coverage", "packaging", "pylint", "pyperf", "pypinfo", "pytest-cov", "requests", "rstcheck", "ruff", "sphinx", "sphinx_rtd_theme", "toml-sort", "twine", "virtualenv", "vulture", "wheel"] +test = ["pytest", "pytest-xdist", "setuptools"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +groups = ["main"] +markers = "(os_name != \"nt\" or sys_platform != \"win32\" and sys_platform != \"emscripten\") and (python_version <= \"3.11\" or python_version >= \"3.12\")" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pygments" +version = "2.19.1" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pygments-2.19.1-py3-none-any.whl", hash = "sha256:9ea1544ad55cecf4b8242fab6dd35a93bbce657034b0611ee383099054ab6d8c"}, + {file = "pygments-2.19.1.tar.gz", hash = "sha256:61c16d2a8576dc0649d9f39e089b5f02bcd27fba10d8fb4dcc28173f7a45151f"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pyparsing" +version = "3.2.1" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pyparsing-3.2.1-py3-none-any.whl", hash = "sha256:506ff4f4386c4cec0590ec19e6302d3aedb992fdc02c761e90416f158dacf8e1"}, + {file = "pyparsing-3.2.1.tar.gz", hash = "sha256:61980854fd66de3a90028d679a954d5f2623e83144b5afe5ee86f43d762e5f0a"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "python-json-logger" +version = "3.2.1" +description = "JSON Log Formatter for the Python Logging Package" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "python_json_logger-3.2.1-py3-none-any.whl", hash = "sha256:cdc17047eb5374bd311e748b42f99d71223f3b0e186f4206cc5d52aefe85b090"}, + {file = "python_json_logger-3.2.1.tar.gz", hash = "sha256:8eb0554ea17cb75b05d2848bc14fb02fbdbd9d6972120781b974380bfa162008"}, +] + +[package.extras] +dev = ["backports.zoneinfo", "black", "build", "freezegun", "mdx_truly_sane_lists", "mike", "mkdocs", "mkdocs-awesome-pages-plugin", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-material (>=8.5)", "mkdocstrings[python]", "msgspec", "msgspec-python313-pre", "mypy", "orjson", "pylint", "pytest", "tzdata", "validate-pyproject[all]"] + +[[package]] +name = "pytz" +version = "2024.2" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, +] + +[[package]] +name = "pywin32" +version = "308" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +groups = ["main"] +markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\" and (python_version <= \"3.11\" or python_version >= \"3.12\")" +files = [ + {file = "pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e"}, + {file = "pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e"}, + {file = "pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c"}, + {file = "pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a"}, + {file = "pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b"}, + {file = "pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6"}, + {file = "pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897"}, + {file = "pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47"}, + {file = "pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091"}, + {file = "pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed"}, + {file = "pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4"}, + {file = "pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd"}, + {file = "pywin32-308-cp37-cp37m-win32.whl", hash = "sha256:1f696ab352a2ddd63bd07430080dd598e6369152ea13a25ebcdd2f503a38f1ff"}, + {file = "pywin32-308-cp37-cp37m-win_amd64.whl", hash = "sha256:13dcb914ed4347019fbec6697a01a0aec61019c1046c2b905410d197856326a6"}, + {file = "pywin32-308-cp38-cp38-win32.whl", hash = "sha256:5794e764ebcabf4ff08c555b31bd348c9025929371763b2183172ff4708152f0"}, + {file = "pywin32-308-cp38-cp38-win_amd64.whl", hash = "sha256:3b92622e29d651c6b783e368ba7d6722b1634b8e70bd376fd7610fe1992e19de"}, + {file = "pywin32-308-cp39-cp39-win32.whl", hash = "sha256:7873ca4dc60ab3287919881a7d4f88baee4a6e639aa6962de25a98ba6b193341"}, + {file = "pywin32-308-cp39-cp39-win_amd64.whl", hash = "sha256:71b3322d949b4cc20776436a9c9ba0eeedcbc9c650daa536df63f0ff111bb920"}, +] + +[[package]] +name = "pywinpty" +version = "2.0.14" +description = "Pseudo terminal support for Windows from Python." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "(python_version <= \"3.11\" or python_version >= \"3.12\") and os_name == \"nt\"" +files = [ + {file = "pywinpty-2.0.14-cp310-none-win_amd64.whl", hash = "sha256:0b149c2918c7974f575ba79f5a4aad58bd859a52fa9eb1296cc22aa412aa411f"}, + {file = "pywinpty-2.0.14-cp311-none-win_amd64.whl", hash = "sha256:cf2a43ac7065b3e0dc8510f8c1f13a75fb8fde805efa3b8cff7599a1ef497bc7"}, + {file = "pywinpty-2.0.14-cp312-none-win_amd64.whl", hash = "sha256:55dad362ef3e9408ade68fd173e4f9032b3ce08f68cfe7eacb2c263ea1179737"}, + {file = "pywinpty-2.0.14-cp313-none-win_amd64.whl", hash = "sha256:074fb988a56ec79ca90ed03a896d40707131897cefb8f76f926e3834227f2819"}, + {file = "pywinpty-2.0.14-cp39-none-win_amd64.whl", hash = "sha256:5725fd56f73c0531ec218663bd8c8ff5acc43c78962fab28564871b5fce053fd"}, + {file = "pywinpty-2.0.14.tar.gz", hash = "sha256:18bd9529e4a5daf2d9719aa17788ba6013e594ae94c5a0c27e83df3278b0660e"}, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +description = "YAML parser and emitter for Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, +] + +[[package]] +name = "pyzmq" +version = "26.2.0" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "referencing" +version = "0.35.1" +description = "JSON Referencing + Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"}, + {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"}, +] + +[package.dependencies] +attrs = ">=22.2.0" +rpds-py = ">=0.7.0" + +[[package]] +name = "requests" +version = "2.32.3" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "rfc3339-validator" +version = "0.1.4" +description = "A pure python RFC3339 validator" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"}, + {file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"}, +] + +[package.dependencies] +six = "*" + +[[package]] +name = "rfc3986-validator" +version = "0.1.1" +description = "Pure python rfc3986 validator" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"}, + {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"}, +] + +[[package]] +name = "rpds-py" +version = "0.22.3" +description = "Python bindings to Rust's persistent data structures (rpds)" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "rpds_py-0.22.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:6c7b99ca52c2c1752b544e310101b98a659b720b21db00e65edca34483259967"}, + {file = "rpds_py-0.22.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be2eb3f2495ba669d2a985f9b426c1797b7d48d6963899276d22f23e33d47e37"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70eb60b3ae9245ddea20f8a4190bd79c705a22f8028aaf8bbdebe4716c3fab24"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4041711832360a9b75cfb11b25a6a97c8fb49c07b8bd43d0d02b45d0b499a4ff"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:64607d4cbf1b7e3c3c8a14948b99345eda0e161b852e122c6bb71aab6d1d798c"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e69b0a0e2537f26d73b4e43ad7bc8c8efb39621639b4434b76a3de50c6966e"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc27863442d388870c1809a87507727b799c8460573cfbb6dc0eeaef5a11b5ec"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e79dd39f1e8c3504be0607e5fc6e86bb60fe3584bec8b782578c3b0fde8d932c"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e0fa2d4ec53dc51cf7d3bb22e0aa0143966119f42a0c3e4998293a3dd2856b09"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fda7cb070f442bf80b642cd56483b5548e43d366fe3f39b98e67cce780cded00"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:cff63a0272fcd259dcc3be1657b07c929c466b067ceb1c20060e8d10af56f5bf"}, + {file = "rpds_py-0.22.3-cp310-cp310-win32.whl", hash = "sha256:9bd7228827ec7bb817089e2eb301d907c0d9827a9e558f22f762bb690b131652"}, + {file = "rpds_py-0.22.3-cp310-cp310-win_amd64.whl", hash = "sha256:9beeb01d8c190d7581a4d59522cd3d4b6887040dcfc744af99aa59fef3e041a8"}, + {file = "rpds_py-0.22.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d20cfb4e099748ea39e6f7b16c91ab057989712d31761d3300d43134e26e165f"}, + {file = "rpds_py-0.22.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:68049202f67380ff9aa52f12e92b1c30115f32e6895cd7198fa2a7961621fc5a"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb4f868f712b2dd4bcc538b0a0c1f63a2b1d584c925e69a224d759e7070a12d5"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bc51abd01f08117283c5ebf64844a35144a0843ff7b2983e0648e4d3d9f10dbb"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0f3cec041684de9a4684b1572fe28c7267410e02450f4561700ca5a3bc6695a2"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7ef9d9da710be50ff6809fed8f1963fecdfecc8b86656cadfca3bc24289414b0"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59f4a79c19232a5774aee369a0c296712ad0e77f24e62cad53160312b1c1eaa1"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1a60bce91f81ddaac922a40bbb571a12c1070cb20ebd6d49c48e0b101d87300d"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e89391e6d60251560f0a8f4bd32137b077a80d9b7dbe6d5cab1cd80d2746f648"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e3fb866d9932a3d7d0c82da76d816996d1667c44891bd861a0f97ba27e84fc74"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1352ae4f7c717ae8cba93421a63373e582d19d55d2ee2cbb184344c82d2ae55a"}, + {file = "rpds_py-0.22.3-cp311-cp311-win32.whl", hash = "sha256:b0b4136a252cadfa1adb705bb81524eee47d9f6aab4f2ee4fa1e9d3cd4581f64"}, + {file = "rpds_py-0.22.3-cp311-cp311-win_amd64.whl", hash = "sha256:8bd7c8cfc0b8247c8799080fbff54e0b9619e17cdfeb0478ba7295d43f635d7c"}, + {file = "rpds_py-0.22.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:27e98004595899949bd7a7b34e91fa7c44d7a97c40fcaf1d874168bb652ec67e"}, + {file = "rpds_py-0.22.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1978d0021e943aae58b9b0b196fb4895a25cc53d3956b8e35e0b7682eefb6d56"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:655ca44a831ecb238d124e0402d98f6212ac527a0ba6c55ca26f616604e60a45"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:feea821ee2a9273771bae61194004ee2fc33f8ec7db08117ef9147d4bbcbca8e"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:22bebe05a9ffc70ebfa127efbc429bc26ec9e9b4ee4d15a740033efda515cf3d"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3af6e48651c4e0d2d166dc1b033b7042ea3f871504b6805ba5f4fe31581d8d38"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e67ba3c290821343c192f7eae1d8fd5999ca2dc99994114643e2f2d3e6138b15"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:02fbb9c288ae08bcb34fb41d516d5eeb0455ac35b5512d03181d755d80810059"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f56a6b404f74ab372da986d240e2e002769a7d7102cc73eb238a4f72eec5284e"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0a0461200769ab3b9ab7e513f6013b7a97fdeee41c29b9db343f3c5a8e2b9e61"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8633e471c6207a039eff6aa116e35f69f3156b3989ea3e2d755f7bc41754a4a7"}, + {file = "rpds_py-0.22.3-cp312-cp312-win32.whl", hash = "sha256:593eba61ba0c3baae5bc9be2f5232430453fb4432048de28399ca7376de9c627"}, + {file = "rpds_py-0.22.3-cp312-cp312-win_amd64.whl", hash = "sha256:d115bffdd417c6d806ea9069237a4ae02f513b778e3789a359bc5856e0404cc4"}, + {file = "rpds_py-0.22.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:ea7433ce7e4bfc3a85654aeb6747babe3f66eaf9a1d0c1e7a4435bbdf27fea84"}, + {file = "rpds_py-0.22.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6dd9412824c4ce1aca56c47b0991e65bebb7ac3f4edccfd3f156150c96a7bf25"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20070c65396f7373f5df4005862fa162db5d25d56150bddd0b3e8214e8ef45b4"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0b09865a9abc0ddff4e50b5ef65467cd94176bf1e0004184eb915cbc10fc05c5"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3453e8d41fe5f17d1f8e9c383a7473cd46a63661628ec58e07777c2fff7196dc"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f5d36399a1b96e1a5fdc91e0522544580dbebeb1f77f27b2b0ab25559e103b8b"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:009de23c9c9ee54bf11303a966edf4d9087cd43a6003672e6aa7def643d06518"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1aef18820ef3e4587ebe8b3bc9ba6e55892a6d7b93bac6d29d9f631a3b4befbd"}, + {file = "rpds_py-0.22.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f60bd8423be1d9d833f230fdbccf8f57af322d96bcad6599e5a771b151398eb2"}, + {file = "rpds_py-0.22.3-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:62d9cfcf4948683a18a9aff0ab7e1474d407b7bab2ca03116109f8464698ab16"}, + {file = "rpds_py-0.22.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9253fc214112405f0afa7db88739294295f0e08466987f1d70e29930262b4c8f"}, + {file = "rpds_py-0.22.3-cp313-cp313-win32.whl", hash = "sha256:fb0ba113b4983beac1a2eb16faffd76cb41e176bf58c4afe3e14b9c681f702de"}, + {file = "rpds_py-0.22.3-cp313-cp313-win_amd64.whl", hash = "sha256:c58e2339def52ef6b71b8f36d13c3688ea23fa093353f3a4fee2556e62086ec9"}, + {file = "rpds_py-0.22.3-cp313-cp313t-macosx_10_12_x86_64.whl", hash = "sha256:f82a116a1d03628a8ace4859556fb39fd1424c933341a08ea3ed6de1edb0283b"}, + {file = "rpds_py-0.22.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3dfcbc95bd7992b16f3f7ba05af8a64ca694331bd24f9157b49dadeeb287493b"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59259dc58e57b10e7e18ce02c311804c10c5a793e6568f8af4dead03264584d1"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5725dd9cc02068996d4438d397e255dcb1df776b7ceea3b9cb972bdb11260a83"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99b37292234e61325e7a5bb9689e55e48c3f5f603af88b1642666277a81f1fbd"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:27b1d3b3915a99208fee9ab092b8184c420f2905b7d7feb4aeb5e4a9c509b8a1"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f612463ac081803f243ff13cccc648578e2279295048f2a8d5eb430af2bae6e3"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f73d3fef726b3243a811121de45193c0ca75f6407fe66f3f4e183c983573e130"}, + {file = "rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:3f21f0495edea7fdbaaa87e633a8689cd285f8f4af5c869f27bc8074638ad69c"}, + {file = "rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:1e9663daaf7a63ceccbbb8e3808fe90415b0757e2abddbfc2e06c857bf8c5e2b"}, + {file = "rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:a76e42402542b1fae59798fab64432b2d015ab9d0c8c47ba7addddbaf7952333"}, + {file = "rpds_py-0.22.3-cp313-cp313t-win32.whl", hash = "sha256:69803198097467ee7282750acb507fba35ca22cc3b85f16cf45fb01cb9097730"}, + {file = "rpds_py-0.22.3-cp313-cp313t-win_amd64.whl", hash = "sha256:f5cf2a0c2bdadf3791b5c205d55a37a54025c6e18a71c71f82bb536cf9a454bf"}, + {file = "rpds_py-0.22.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:378753b4a4de2a7b34063d6f95ae81bfa7b15f2c1a04a9518e8644e81807ebea"}, + {file = "rpds_py-0.22.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3445e07bf2e8ecfeef6ef67ac83de670358abf2996916039b16a218e3d95e97e"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7b2513ba235829860b13faa931f3b6846548021846ac808455301c23a101689d"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eaf16ae9ae519a0e237a0f528fd9f0197b9bb70f40263ee57ae53c2b8d48aeb3"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:583f6a1993ca3369e0f80ba99d796d8e6b1a3a2a442dd4e1a79e652116413091"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4617e1915a539a0d9a9567795023de41a87106522ff83fbfaf1f6baf8e85437e"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c150c7a61ed4a4f4955a96626574e9baf1adf772c2fb61ef6a5027e52803543"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2fa4331c200c2521512595253f5bb70858b90f750d39b8cbfd67465f8d1b596d"}, + {file = "rpds_py-0.22.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:214b7a953d73b5e87f0ebece4a32a5bd83c60a3ecc9d4ec8f1dca968a2d91e99"}, + {file = "rpds_py-0.22.3-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:f47ad3d5f3258bd7058d2d506852217865afefe6153a36eb4b6928758041d831"}, + {file = "rpds_py-0.22.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:f276b245347e6e36526cbd4a266a417796fc531ddf391e43574cf6466c492520"}, + {file = "rpds_py-0.22.3-cp39-cp39-win32.whl", hash = "sha256:bbb232860e3d03d544bc03ac57855cd82ddf19c7a07651a7c0fdb95e9efea8b9"}, + {file = "rpds_py-0.22.3-cp39-cp39-win_amd64.whl", hash = "sha256:cfbc454a2880389dbb9b5b398e50d439e2e58669160f27b60e5eca11f68ae17c"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:d48424e39c2611ee1b84ad0f44fb3b2b53d473e65de061e3f460fc0be5f1939d"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:24e8abb5878e250f2eb0d7859a8e561846f98910326d06c0d51381fed59357bd"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b232061ca880db21fa14defe219840ad9b74b6158adb52ddf0e87bead9e8493"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac0a03221cdb5058ce0167ecc92a8c89e8d0decdc9e99a2ec23380793c4dcb96"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb0c341fa71df5a4595f9501df4ac5abfb5a09580081dffbd1ddd4654e6e9123"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf9db5488121b596dbfc6718c76092fda77b703c1f7533a226a5a9f65248f8ad"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b8db6b5b2d4491ad5b6bdc2bc7c017eec108acbf4e6785f42a9eb0ba234f4c9"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b3d504047aba448d70cf6fa22e06cb09f7cbd761939fdd47604f5e007675c24e"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:e61b02c3f7a1e0b75e20c3978f7135fd13cb6cf551bf4a6d29b999a88830a338"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:e35ba67d65d49080e8e5a1dd40101fccdd9798adb9b050ff670b7d74fa41c566"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:26fd7cac7dd51011a245f29a2cc6489c4608b5a8ce8d75661bb4a1066c52dfbe"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:177c7c0fce2855833819c98e43c262007f42ce86651ffbb84f37883308cb0e7d"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:bb47271f60660803ad11f4c61b42242b8c1312a31c98c578f79ef9387bbde21c"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:70fb28128acbfd264eda9bf47015537ba3fe86e40d046eb2963d75024be4d055"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:44d61b4b7d0c2c9ac019c314e52d7cbda0ae31078aabd0f22e583af3e0d79723"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f0e260eaf54380380ac3808aa4ebe2d8ca28b9087cf411649f96bad6900c728"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b25bc607423935079e05619d7de556c91fb6adeae9d5f80868dde3468657994b"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fb6116dfb8d1925cbdb52595560584db42a7f664617a1f7d7f6e32f138cdf37d"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a63cbdd98acef6570c62b92a1e43266f9e8b21e699c363c0fef13bd530799c11"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b8f60e1b739a74bab7e01fcbe3dddd4657ec685caa04681df9d562ef15b625f"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:2e8b55d8517a2fda8d95cb45d62a5a8bbf9dd0ad39c5b25c8833efea07b880ca"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:2de29005e11637e7a2361fa151f780ff8eb2543a0da1413bb951e9f14b699ef3"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:666ecce376999bf619756a24ce15bb14c5bfaf04bf00abc7e663ce17c3f34fe7"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:5246b14ca64a8675e0a7161f7af68fe3e910e6b90542b4bfb5439ba752191df6"}, + {file = "rpds_py-0.22.3.tar.gz", hash = "sha256:e32fee8ab45d3c2db6da19a5323bc3362237c8b653c70194414b892fd06a080d"}, +] + +[[package]] +name = "seaborn" +version = "0.13.2" +description = "Statistical data visualization" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987"}, + {file = "seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7"}, +] + +[package.dependencies] +matplotlib = ">=3.4,<3.6.1 || >3.6.1" +numpy = ">=1.20,<1.24.0 || >1.24.0" +pandas = ">=1.2" + +[package.extras] +dev = ["flake8", "flit", "mypy", "pandas-stubs", "pre-commit", "pytest", "pytest-cov", "pytest-xdist"] +docs = ["ipykernel", "nbconvert", "numpydoc", "pydata_sphinx_theme (==0.10.0rc2)", "pyyaml", "sphinx (<6.0.0)", "sphinx-copybutton", "sphinx-design", "sphinx-issues"] +stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"] + +[[package]] +name = "send2trash" +version = "1.8.3" +description = "Send file to trash natively under Mac OS X, Windows and Linux" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9"}, + {file = "Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf"}, +] + +[package.extras] +nativelib = ["pyobjc-framework-Cocoa", "pywin32"] +objc = ["pyobjc-framework-Cocoa"] +win32 = ["pywin32"] + +[[package]] +name = "setuptools" +version = "75.8.0" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "setuptools-75.8.0-py3-none-any.whl", hash = "sha256:e3982f444617239225d675215d51f6ba05f845d4eec313da4418fdbb56fb27e3"}, + {file = "setuptools-75.8.0.tar.gz", hash = "sha256:c5afc8f407c626b8313a86e10311dd3f661c6cd9c09d4bf8c15c0e11f9f2b0e6"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.8.0)"] +core = ["importlib_metadata (>=6)", "jaraco.collections", "jaraco.functools (>=4)", "jaraco.text (>=3.7)", "more_itertools", "more_itertools (>=8.8)", "packaging", "packaging (>=24.2)", "platformdirs (>=4.2.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.7.2)", "jaraco.test (>=5.5)", "packaging (>=24.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib_metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.14.*)", "pytest-mypy"] + +[[package]] +name = "six" +version = "1.17.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274"}, + {file = "six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"}, +] + +[[package]] +name = "sniffio" +version = "1.3.1" +description = "Sniff out which async library your code is running under" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, + {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, +] + +[[package]] +name = "soupsieve" +version = "2.6" +description = "A modern CSS selector implementation for Beautiful Soup." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9"}, + {file = "soupsieve-2.6.tar.gz", hash = "sha256:e2e68417777af359ec65daac1057404a3c8a5455bb8abc36f1a9866ab1a51abb"}, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "terminado" +version = "0.18.1" +description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0"}, + {file = "terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e"}, +] + +[package.dependencies] +ptyprocess = {version = "*", markers = "os_name != \"nt\""} +pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} +tornado = ">=6.1.0" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] +typing = ["mypy (>=1.6,<2.0)", "traitlets (>=5.11.1)"] + +[[package]] +name = "tinycss2" +version = "1.4.0" +description = "A tiny CSS parser" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "tinycss2-1.4.0-py3-none-any.whl", hash = "sha256:3a49cf47b7675da0b15d0c6e1df8df4ebd96e9394bb905a5775adb0d884c5289"}, + {file = "tinycss2-1.4.0.tar.gz", hash = "sha256:10c0972f6fc0fbee87c3edb76549357415e94548c1ae10ebccdea16fb404a9b7"}, +] + +[package.dependencies] +webencodings = ">=0.4" + +[package.extras] +doc = ["sphinx", "sphinx_rtd_theme"] +test = ["pytest", "ruff"] + +[[package]] +name = "tomli" +version = "2.2.1" +description = "A lil' TOML parser" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version < \"3.11\"" +files = [ + {file = "tomli-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:678e4fa69e4575eb77d103de3df8a895e1591b48e740211bd1067378c69e8249"}, + {file = "tomli-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:023aa114dd824ade0100497eb2318602af309e5a55595f76b626d6d9f3b7b0a6"}, + {file = "tomli-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece47d672db52ac607a3d9599a9d48dcb2f2f735c6c2d1f34130085bb12b112a"}, + {file = "tomli-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6972ca9c9cc9f0acaa56a8ca1ff51e7af152a9f87fb64623e31d5c83700080ee"}, + {file = "tomli-2.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c954d2250168d28797dd4e3ac5cf812a406cd5a92674ee4c8f123c889786aa8e"}, + {file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8dd28b3e155b80f4d54beb40a441d366adcfe740969820caf156c019fb5c7ec4"}, + {file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e59e304978767a54663af13c07b3d1af22ddee3bb2fb0618ca1593e4f593a106"}, + {file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:33580bccab0338d00994d7f16f4c4ec25b776af3ffaac1ed74e0b3fc95e885a8"}, + {file = "tomli-2.2.1-cp311-cp311-win32.whl", hash = "sha256:465af0e0875402f1d226519c9904f37254b3045fc5084697cefb9bdde1ff99ff"}, + {file = "tomli-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2d0f2fdd22b02c6d81637a3c95f8cd77f995846af7414c5c4b8d0545afa1bc4b"}, + {file = "tomli-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4a8f6e44de52d5e6c657c9fe83b562f5f4256d8ebbfe4ff922c495620a7f6cea"}, + {file = "tomli-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8d57ca8095a641b8237d5b079147646153d22552f1c637fd3ba7f4b0b29167a8"}, + {file = "tomli-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e340144ad7ae1533cb897d406382b4b6fede8890a03738ff1683af800d54192"}, + {file = "tomli-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db2b95f9de79181805df90bedc5a5ab4c165e6ec3fe99f970d0e302f384ad222"}, + {file = "tomli-2.2.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40741994320b232529c802f8bc86da4e1aa9f413db394617b9a256ae0f9a7f77"}, + {file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:400e720fe168c0f8521520190686ef8ef033fb19fc493da09779e592861b78c6"}, + {file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:02abe224de6ae62c19f090f68da4e27b10af2b93213d36cf44e6e1c5abd19fdd"}, + {file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b82ebccc8c8a36f2094e969560a1b836758481f3dc360ce9a3277c65f374285e"}, + {file = "tomli-2.2.1-cp312-cp312-win32.whl", hash = "sha256:889f80ef92701b9dbb224e49ec87c645ce5df3fa2cc548664eb8a25e03127a98"}, + {file = "tomli-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:7fc04e92e1d624a4a63c76474610238576942d6b8950a2d7f908a340494e67e4"}, + {file = "tomli-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f4039b9cbc3048b2416cc57ab3bda989a6fcf9b36cf8937f01a6e731b64f80d7"}, + {file = "tomli-2.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:286f0ca2ffeeb5b9bd4fcc8d6c330534323ec51b2f52da063b11c502da16f30c"}, + {file = "tomli-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a92ef1a44547e894e2a17d24e7557a5e85a9e1d0048b0b5e7541f76c5032cb13"}, + {file = "tomli-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9316dc65bed1684c9a98ee68759ceaed29d229e985297003e494aa825ebb0281"}, + {file = "tomli-2.2.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e85e99945e688e32d5a35c1ff38ed0b3f41f43fad8df0bdf79f72b2ba7bc5272"}, + {file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ac065718db92ca818f8d6141b5f66369833d4a80a9d74435a268c52bdfa73140"}, + {file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:d920f33822747519673ee656a4b6ac33e382eca9d331c87770faa3eef562aeb2"}, + {file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a198f10c4d1b1375d7687bc25294306e551bf1abfa4eace6650070a5c1ae2744"}, + {file = "tomli-2.2.1-cp313-cp313-win32.whl", hash = "sha256:d3f5614314d758649ab2ab3a62d4f2004c825922f9e370b29416484086b264ec"}, + {file = "tomli-2.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:a38aa0308e754b0e3c67e344754dff64999ff9b513e691d0e786265c93583c69"}, + {file = "tomli-2.2.1-py3-none-any.whl", hash = "sha256:cb55c73c5f4408779d0cf3eef9f762b9c9f147a77de7b258bef0a5628adc85cc"}, + {file = "tomli-2.2.1.tar.gz", hash = "sha256:cd45e1dc79c835ce60f7404ec8119f2eb06d38b1deba146f07ced3bbc44505ff"}, +] + +[[package]] +name = "tornado" +version = "6.4.2" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "tornado-6.4.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e828cce1123e9e44ae2a50a9de3055497ab1d0aeb440c5ac23064d9e44880da1"}, + {file = "tornado-6.4.2-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:072ce12ada169c5b00b7d92a99ba089447ccc993ea2143c9ede887e0937aa803"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a017d239bd1bb0919f72af256a970624241f070496635784d9bf0db640d3fec"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c36e62ce8f63409301537222faffcef7dfc5284f27eec227389f2ad11b09d946"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bca9eb02196e789c9cb5c3c7c0f04fb447dc2adffd95265b2c7223a8a615ccbf"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:304463bd0772442ff4d0f5149c6f1c2135a1fae045adf070821c6cdc76980634"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:c82c46813ba483a385ab2a99caeaedf92585a1f90defb5693351fa7e4ea0bf73"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:932d195ca9015956fa502c6b56af9eb06106140d844a335590c1ec7f5277d10c"}, + {file = "tornado-6.4.2-cp38-abi3-win32.whl", hash = "sha256:2876cef82e6c5978fde1e0d5b1f919d756968d5b4282418f3146b79b58556482"}, + {file = "tornado-6.4.2-cp38-abi3-win_amd64.whl", hash = "sha256:908b71bf3ff37d81073356a5fadcc660eb10c1476ee6e2725588626ce7e5ca38"}, + {file = "tornado-6.4.2.tar.gz", hash = "sha256:92bad5b4746e9879fd7bf1eb21dce4e3fc5128d71601f80005afa39237ad620b"}, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "types-python-dateutil" +version = "2.9.0.20241206" +description = "Typing stubs for python-dateutil" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "types_python_dateutil-2.9.0.20241206-py3-none-any.whl", hash = "sha256:e248a4bc70a486d3e3ec84d0dc30eec3a5f979d6e7ee4123ae043eedbb987f53"}, + {file = "types_python_dateutil-2.9.0.20241206.tar.gz", hash = "sha256:18f493414c26ffba692a72369fea7a154c502646301ebfe3d56a04b3767284cb"}, +] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version >= \"3.12\" and python_version < \"3.13\" or python_version <= \"3.11\"" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.2" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, +] + +[[package]] +name = "uri-template" +version = "1.3.0" +description = "RFC 6570 URI Template Processor" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7"}, + {file = "uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363"}, +] + +[package.extras] +dev = ["flake8", "flake8-annotations", "flake8-bandit", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-modern-annotations", "flake8-noqa", "flake8-pyproject", "flake8-requirements", "flake8-typechecking-import", "flake8-use-fstring", "mypy", "pep8-naming", "types-PyYAML"] + +[[package]] +name = "urllib3" +version = "2.3.0" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "urllib3-2.3.0-py3-none-any.whl", hash = "sha256:1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df"}, + {file = "urllib3-2.3.0.tar.gz", hash = "sha256:f8c5449b3cf0861679ce7e0503c7b44b5ec981bec0d1d3795a07f1ba96f0204d"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "webcolors" +version = "24.11.1" +description = "A library for working with the color formats defined by HTML and CSS." +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "webcolors-24.11.1-py3-none-any.whl", hash = "sha256:515291393b4cdf0eb19c155749a096f779f7d909f7cceea072791cb9095b92e9"}, + {file = "webcolors-24.11.1.tar.gz", hash = "sha256:ecb3d768f32202af770477b8b65f318fa4f566c22948673a977b00d589dd80f6"}, +] + +[[package]] +name = "webencodings" +version = "0.5.1" +description = "Character encoding aliases for legacy web content" +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, + {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, +] + +[[package]] +name = "websocket-client" +version = "1.8.0" +description = "WebSocket client for Python with low level API options" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526"}, + {file = "websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da"}, +] + +[package.extras] +docs = ["Sphinx (>=6.0)", "myst-parser (>=2.0.0)", "sphinx-rtd-theme (>=1.1.0)"] +optional = ["python-socks", "wsaccel"] +test = ["websockets"] + +[[package]] +name = "widgetsnbextension" +version = "4.0.13" +description = "Jupyter interactive widgets for Jupyter Notebook" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "widgetsnbextension-4.0.13-py3-none-any.whl", hash = "sha256:74b2692e8500525cc38c2b877236ba51d34541e6385eeed5aec15a70f88a6c71"}, + {file = "widgetsnbextension-4.0.13.tar.gz", hash = "sha256:ffcb67bc9febd10234a362795f643927f4e0c05d9342c727b65d2384f8feacb6"}, +] + +[metadata] +lock-version = "2.1" +python-versions = ">=3.10,<4.0" +content-hash = "87f33994ad4002b4c000a579a55a765768aad142f0bedb0b4872007c0094bbe7" diff --git a/.ipynb_checkpoints/proposal-checkpoint.md b/.ipynb_checkpoints/proposal-checkpoint.md new file mode 100644 index 0000000..f1e7bc0 --- /dev/null +++ b/.ipynb_checkpoints/proposal-checkpoint.md @@ -0,0 +1,69 @@ +# Project proposal + +This planning document will also form the introduction of your argument. + +## Overaching question + +Which lifestyle factors most strongly influence sleep quality? + +### What central question are you interested in exploring? Why are you interested in exploring this question? + +Which lifestyle factors most strongly influence sleep quality? I want to see if the self reported factors (such as occupation or physical activity) influence sleep more, or if it is more so things that the person doesn't have control over, such as stress level or BMI. Although the rating for stress is subjective, I think I can compare all the different reports to see how heavily they affect sleep. I am interested in this because I have some sleep issues, and want to know what could be a cause of it, from this specefic data set. It will of course not be concrete and will differ with different data set, but It will help me understand. + +### What specific research questions will you investigate? + +*List 2-4 specific research questions. Each should be answerable +using your data set.* + +Who has more effect on sleep duration: stress and blood pressure or physical activity? +Which occupation gets the most sleep? least? +Does BMI effect the quality of sleep? duration of sleep? +Which combination of age, gender and occupation gets the best qualtiy of sleep? + +## Data source + +### What data set will you use to answer your overarching question? + +Sleep Health and Lifestyle Dataset +https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset + +### Where is this data from? + +*Describe the source of the data set--not just where you downloaded it, but the person or organization who gathered the data. Explain why you trust them.* + +I am using Kaggle to get the data set. I trust this because it was a reccomendation from the professor. I also looked up review at how legit kaggle is, and i was shown mostly postive sites that stated it is a good site to use as it is well regarded with data scientists. +Due to this, I feel comfortable using the data that is provided on this site to use for my project. + +### What is this data about? + +*Describe the nature of the data in the dataset, including the number of rows +and some of the columns which will be important to you.* + +There are 374 rows of data, and and 9 columns with information. The qualtiy of sleep, duration, occupation, and BMI columns will be most important to me. Overall, all of it will help me answer my questions. + + +## Methods + +### How will you use your data set to answer your quantitative questions? + +*For each research question, explain what you will do with the data set +to answer the question, and how you will present your answer (e.g. a chart or a table).* + +Who has more effect on sleep duration: stress and blood pressure or physical activity? + +I will find the average hours of sleep for each of hte cetagories. I will then create a chart to compare my findings visually. + +Which occupation gets the most sleep? least? + +I will find the total number of each occupation. I will then find the average amount of sleept that the occupation got. I will then create a table to compare ocupations and sleep duration. +I can then asnwer both, who gets the most and least. + + +Does BMI effect the quality of sleep? duration of sleep? + +I will find the average quality of sleep for each BMI. Then to the same for the duration of sleep. I may then create a visual of sort to compate the data. + +Which combination of age, gender and occupation gets the best qualtiy of sleep? + +This question seems a bit trickier. I will have to find the best qualtiy of sleep for each caterogry. I will then have to find a way to visually look at this data and find some intersection that could show me the best age, gender and occouaption. +If this ends up being too difficult, I will switch it to just age and gender to make it easier. \ No newline at end of file diff --git a/.ipynb_checkpoints/pyproject-checkpoint.toml b/.ipynb_checkpoints/pyproject-checkpoint.toml new file mode 100644 index 0000000..85318b8 --- /dev/null +++ b/.ipynb_checkpoints/pyproject-checkpoint.toml @@ -0,0 +1,23 @@ +[project] +name = "project-argument" +version = "0.1.0" +description = "" +authors = [ + {name = "Chris Proctor",email = "chris@chrisproctor.net"} +] +license = {text = "MIT"} +readme = "README.md" +requires-python = ">=3.10,<4.0" +dependencies = [ + "jupyter (>=1.1.1,<2.0.0)", + "seaborn (>=0.13.2,<0.14.0)", + "pandas (>=2.2.3,<3.0.0)" +] + + +[build-system] +requires = ["poetry-core>=2.0.0,<3.0.0"] +build-backend = "poetry.core.masonry.api" + +[tool.poetry] +package-mode = false diff --git a/argument.ipynb b/argument.ipynb index 4ed27b4..33db885 100644 --- a/argument.ipynb +++ b/argument.ipynb @@ -13,7 +13,7 @@ "id": "understanding-numbers", "metadata": {}, "source": [ - "*✏️ Write 2-3 sentences describing your research.*" + "My research will analyze a dataset to compare different lifestyle factors and their effects on sleep duration and sleep quality. I aim to determine whether self-reported factors, such as occupation and physical activity level, have a stronger influence on sleep, or if the factors that individuals have less control over, like stress level or BMI, play a larger role. Although the stress ratings in the dataset are subjective, they still provide valuable insight that can be compared across participants to understand how strongly stress and other variables impact sleep patterns." ] }, { @@ -21,7 +21,7 @@ "id": "greater-circular", "metadata": {}, "source": [ - "## Overarching Question: [✏️ PUT YOUR QUESTION HERE ✏️]" + "**Which lifestyle factors most strongly influence sleep quality?**" ] }, { @@ -29,7 +29,7 @@ "id": "appreciated-testimony", "metadata": {}, "source": [ - "*✏️ Write 2-3 sentences explaining why this question.*" + "I chose this topic because I’ve personally experienced some sleep issues and wanted to explore what factors might contribute to them using this specific dataset. While the results won’t be absolute and may differ with other datasets, this analysis can still help me better understand possible connections between lifestyle and sleep quality. It’s also simply a topic that interests me, and I was curious to learn more about how different habits and conditions can affect sleep." ] }, { @@ -42,26 +42,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 53, "id": "technical-evans", "metadata": {}, "outputs": [], "source": [ - "#Include any import statements you will need\n", "import pandas as pd\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 54, "id": "overhead-sigma", "metadata": {}, "outputs": [], "source": [ - "### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n", - "\n", - "file_name = \"YOUR_DATASET_FILE_NAME.csv\"\n", + "file_name = \"Sleep_health_and_lifestyle_dataset.csv\"\n", "dataset_path = \"data/\" + file_name\n", "\n", "df = pd.read_csv(dataset_path)" @@ -69,10 +66,159 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 55, "id": "heated-blade", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Person IDGenderAgeOccupationSleep DurationQuality of SleepPhysical Activity LevelStress LevelBMI CategoryBlood PressureHeart RateDaily StepsSleep Disorder
01Male27Software Engineer6.16426Overweight126/83774200NaN
12Male28Doctor6.26608Normal125/807510000NaN
23Male28Doctor6.26608Normal125/807510000NaN
34Male28Sales Representative5.94308Obese140/90853000Sleep Apnea
45Male28Sales Representative5.94308Obese140/90853000Sleep Apnea
\n", + "
" + ], + "text/plain": [ + " Person ID Gender Age Occupation Sleep Duration \\\n", + "0 1 Male 27 Software Engineer 6.1 \n", + "1 2 Male 28 Doctor 6.2 \n", + "2 3 Male 28 Doctor 6.2 \n", + "3 4 Male 28 Sales Representative 5.9 \n", + "4 5 Male 28 Sales Representative 5.9 \n", + "\n", + " Quality of Sleep Physical Activity Level Stress Level BMI Category \\\n", + "0 6 42 6 Overweight \n", + "1 6 60 8 Normal \n", + "2 6 60 8 Normal \n", + "3 4 30 8 Obese \n", + "4 4 30 8 Obese \n", + "\n", + " Blood Pressure Heart Rate Daily Steps Sleep Disorder \n", + "0 126/83 77 4200 NaN \n", + "1 125/80 75 10000 NaN \n", + "2 125/80 75 10000 NaN \n", + "3 140/90 85 3000 Sleep Apnea \n", + "4 140/90 85 3000 Sleep Apnea " + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "df.head()" ] @@ -84,7 +230,9 @@ "source": [ "**Data Overview**\n", "\n", - "*✏️ Write 2-3 sentences describing this dataset. Be sure to include where the data comes from and what it contains.*" + "The dataset contains 374 rows and 9 columns of information. The most important columns for my research are Quality of Sleep, Sleep Duration, Occupation, and Physical Activtiy Level, as these variables will provide the most insight into my research questions. However, all of the data contributes to building a fuller understanding of the relationships between lifestyle and sleep.\n", + "\n", + "I obtained the dataset from https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset, where the main collaborator is Laksika Tharmalingam." ] }, { @@ -95,22 +243,12 @@ "# Methods and Results" ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "basic-canadian", - "metadata": {}, - "outputs": [], - "source": [ - "#Import any helper files you need here" - ] - }, { "cell_type": "markdown", "id": "recognized-positive", "metadata": {}, "source": [ - "## First Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n" + "## First Research Question: What is the average measures of each of the cetegories?" ] }, { @@ -126,13 +264,7 @@ "id": "endless-variation", "metadata": {}, "source": [ - "*Explain how you will approach this research question below. Consider the following:* \n", - " - *Which aspects of the dataset will you use?* \n", - " - *How will you reorganize/store the data?* \n", - " - *What data science tools/functions will you use and why?* \n", - " \n", - "✏️ *Write your answer below:*\n", - "\n" + "I will be using each of the categories in the dataset and calculating the average value for each one using the mean function. This will provide a simple summary of the overall trends in the data and serve as a starting point for deeper analysis." ] }, { @@ -145,26 +277,31 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 56, "id": "negative-highlight", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Values for Key Categories:\n", + "Sleep Duration 7.132086\n", + "Quality of Sleep 7.312834\n", + "Physical Activity Level 59.171123\n", + "Stress Level 5.385027\n", + "Daily Steps 6816.844920\n", + "dtype: float64\n" + ] + } + ], "source": [ - "#######################################################################\n", - "### 💻 YOUR WORK GOES HERE TO ANSWER THE FIRST RESEARCH QUESTION 💻 \n", - "### \n", - "### Your data analysis may include a statistic and/or a data visualization\n", - "#######################################################################" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "victorian-burning", - "metadata": {}, - "outputs": [], - "source": [ - "# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON " + "Columns = [\"Sleep Duration\", \"Quality of Sleep\", \"Physical Activity Level\", \"Stress Level\", \"Daily Steps\"]\n", + "\n", + "mean_values = df[Columns].mean()\n", + "\n", + "print(\"Mean Values for Key Categories:\")\n", + "print(mean_values)" ] }, { @@ -172,7 +309,7 @@ "id": "collectible-puppy", "metadata": {}, "source": [ - "## Second Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n" + "## Second Research Question: Which occupation gets the most sleep?\n" ] }, { @@ -188,12 +325,7 @@ "id": "incorporate-roller", "metadata": {}, "source": [ - "*Explain how you will approach this research question below. Consider the following:* \n", - " - *Which aspects of the dataset will you use?* \n", - " - *How will you reorganize/store the data?* \n", - " - *What data science tools/functions will you use and why?* \n", - "\n", - "✏️ *Write your answer below:*\n" + "I will create a bar graph with the x-axis labeled by occupation and the y-axis showing the average hours of sleep for each group. To do this, I will first calculate the average sleep duration for each occupation and then use that data to build the visual. This bar graph will make it easy to compare which occupations tend to get the most and least sleep, providing a quick and clear overview of how sleep patterns vary across different professions." ] }, { @@ -206,32 +338,168 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 57, "id": "pursuant-surrey", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Occupation\n", + "Engineer 7.987302\n", + "Lawyer 7.410638\n", + "Accountant 7.113514\n", + "Nurse 7.063014\n", + "Doctor 6.970423\n", + "Manager 6.900000\n", + "Software Engineer 6.750000\n", + "Teacher 6.690000\n", + "Salesperson 6.403125\n", + "Scientist 6.000000\n", + "Sales Representative 5.900000\n", + "Name: Sleep Duration, dtype: float64\n" + ] + } + ], "source": [ - "#######################################################################\n", - "### 💻 YOUR WORK GOES HERE TO ANSWER THE SECOND RESEARCH QUESTION 💻 \n", - "###\n", - "### Your data analysis may include a statistic and/or a data visualization\n", - "#######################################################################" + "avg_sleep_by_occupation = df.groupby(\"Occupation\")[\"Sleep Duration\"].mean().sort_values(ascending=False)\n", + "print(avg_sleep_by_occupation)" ] }, { "cell_type": "code", - "execution_count": 15, - "id": "located-night", + "execution_count": 58, + "id": "c09f8668-6794-4d9a-b094-575d0a63fb1f", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAHqCAYAAAA+vEZWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaBFJREFUeJzt3QncVOP///FP6532olREq5KUNiQkbQqJZAstJMmaJX0psmUvkqLCNyJLCflakpQQKiJaiZIS0p6k5v94X7/Hmf+Zae77nrnvuTv3PfN6Ph5T95yZOXOd61znOud85loKhUKhkAEAAAAAAAD7WeH9/YUAAAAAAACAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAAAAAAIBIEpAAAAAAAABILAFAAAAAAAAAJBYAoAAAAAAACBIDAFAAAAAACAQBCYAgAgTf30009WqFCh8OOjjz4KOknIJf/+fO655yy/URnzp1FlEKnrlFNOCe/rXr16BZ0cAEA+RWAKAJBUDRs2jLjxrFq1qv37779BJystzJs3zy666CKrUaOGlShRwkqVKmXVq1e3Fi1a2GWXXWZPPfWUpQt/GdSjaNGiVrp0aTv00EPthBNOsGuvvdbmz59vBUl+DzoVRDt37rSxY8dap06drFq1apaRkWFly5a1evXqWZ8+fWzu3LlBJzHfIugEAEiWoklbEwAg7X355Zf23XffRSxbv369vfvuu3bGGWcElq50MH78eLviiissFApFLN+xY4f98ssvLggzZcoU69evn6WjPXv22Pbt291j7dq19tlnn9moUaPsnHPOcXlXoUIFSwUPPfRQ+G8FJJF1fdW9e3f7+eefI5b/888/tnXrVlu+fLk9++yzduGFF9q4ceNcoBeJ6d+/f7ju148WAADEQmAKAJA0mbXi0PL8GphSoOKAAw6wwoULbiPijRs3uhZAXlBKrYLOPfdcq1y5srvBXrx4sc2ZM8fSVfPmze388893QboVK1bYW2+9ZZs3b3avTZ061XUn+/jjj61kyZJ5mo4tW7a41jh56aabbsrT9aeKZcuWWfv27cPlQE4//XQ7/vjj3TGjcrFy5Uq3/KWXXrJt27bZG2+84VoHIX467gAAyFYIAIAk+Pvvv0MVKlRQZMQ9jjjiiPDfxYsXD/3xxx/h965YsSL8mh6zZs3aZ33HHnts+PXLL7884rWvv/461Lt371CtWrVCJUqUCJUqVSp0zDHHhO69997Qtm3b9lnX4YcfHl7XHXfcEfr4449Dbdu2DZUtW9Yt++uvv0K7d+8O3X777aFOnTq59ZYrVy5UtGjRUMWKFUMnnnhi6PHHHw/9888/Mbd93LhxoYYNG4YyMjJChx56aOjGG2906Yj+3miJbkdm3njjjYj8/Omnn/Z5j7bvvffei1i2atWqbPfDm2++GerSpUuoSpUqoWLFioXKly8fatOmTeiFF14I7d27N2Z6fvjhh9A111wTql+/fqhkyZJu24488sjQoEGDQr///vs+72/dunU4DT179gwtWbIkdM4557jydMABB4RatWoVmjFjRigR/u3SOv20v0877bSI9yht8eZLdHqz+tz48eNDTZo0cXnQuHFj974ff/wxdN1117lypfKiPNIxUq1atdAZZ5zh8jyz74v1UDmLtd3PPvvsPvnywQcfhLp16xY65JBD3HeWKVPGpW/o0KGhP//8c5/3R5fh+fPnh04//XR3fGjfaBt0PMVLeeJPo/LiiSeeCB111FHu+FEe3HDDDaEtW7aEP6O0ee9Xfu3ZsydinYsXL45Y57x587JNR/v27SM+8/zzz0e8vmvXrlCHDh0i3jN58uR91qOyetVVV7nyreNXeVKzZs3Q+eefH/ryyy8j3qvj5dVXXw2deeaZbjuV/yrjOua1zfrOZJe/iRMnhpo2berKX6VKlVx9s379+oj1JVr3qRxkVR71UFqySqtn2bJloSuvvNKdL5R3etStWzd0xRVXuLyNpnV469O6f/3111Dfvn1d/aT8VJ3z9NNPZ7v/AQD5C4EpAEBSvPzyyxE3Jp999pkLZHjPdXPjd9JJJ4Vf002I38qVKyPW9emnn4Zfe/LJJ91NU2Y3RA0aNAitW7cu05vrli1bhooUKRLxGQUqtm7dmu3NVrt27UL//vtvxLpvvfXWmO9VYO3ggw/ONDCVk+3IzJQpUyI+q0BVPLK6AdbN/yWXXJJlfnTv3n2f/Jg2bZoLtGT2GQVEvv/++4jP+G9emzVrFg4Y+h+FCxcOvfLKK6FkBKZE+9u/f0qXLp30wIC/jOvhBabeeuutbMvasGHDYn5fbgJTAwcOzHI92jcK8mR27KhM+49p76GAUvQ+jTcwpSBXrLS0aNEitHPnTvcZBR/83/v2229HrNMfuNJxk53o/aTgSywKjKjcee875ZRTIl5X0FHBkMzyc8SIEeH3alsy21Z/PZTM8nfqqafG/B4FnzZs2BD+XKJ1X7ICUzqeFTDLbB0qVy+99FKmgSltR9WqVWN+dsKECdmWAwBA/kFXPgBA0rvxNW3a1HWJadeunb3zzjvh16+55prwe3r37u26T8lrr71mTzzxhBUrVizcdcZTv359a9mypfv7008/tauvvtr27t3rnus7TjvtNNf15r///a/98ccf9v3339ull15q77//fsx0amwhddm6+OKL7ZBDDrGvvvrKihQp4rro1KpVy61TyzXm0O7du23p0qX26quvugHcP/jgAzdO03nnnRceo+aBBx4Ir1td53r27OnS88wzz7ixamJJxnb4HXPMMS79Xle+s846K7wt2hcnnXSSG28okW5IDz74oD3//PPub32uW7du1rhxY1u1apVbrrxRvui7//Of/7j36TWNx6MBpeWoo46ys88+223npEmT3Fg+Gt9J6/r2229dvkdbsGCBG4RaY9MoPyZMmGC7du1y69AYWh06dLBy5cpZbmkg9AsuuMAee+wx91xdtTQOlwZGTxaV78MPP9xtr8rchg0b3HINxK58UxfDSpUque596lL6ySef2KxZs9x77r77bjdgvcqiN07PzTffHNFFSp+XePJD++zRRx8NP/f2za+//urKnMbg0r7RmFsaJ05pjPbFF1+4bqI9evSwNWvW2IsvvuiWa/8oHzWIeKLefvttV15VtlRX6JgS/a8yOHToUDeBgvJw8uTJ7jWNCda5c+fwOlQO/fVKdrx6x6NxpmJR3dOoUSP7+uuvw8et8knlVhMNqDx6x7DyS+vRZzSmm8bV87vxxhvdtno0KYHyX/tO+T19+nRLtg8//NDatGnjjn+VrZkzZ7rlP/74ow0aNMjVUZJo3adjUMfPmDFj3Lr83WU9FStWzDJt6iZ5ySWXuLIjBx54oKs7lRavDtRrWtasWTOrW7fuPuvQd2uSBx0f6o6t9Hh1j8qOBq8HABQQQUfGAAAFn1o0+FshPfTQQ265upH4f8X+5ptvwp9RVzW1UvFeUysSj1o9eMsfeOCB8PKzzz47ovWCv0vPF198EfFdixYtitnqQ+lcsGBBptvy22+/uRZHatH08MMPu21RNz3v83369Am/t1+/fuHlalnhb22i1ir+9PhbTOV0O7Jy/fXXZ9mCQd2L1I3IL7OWGUrPQQcdFF6uFil+Dz74YPi1Aw88MJx+dUfylqtrjtfiJVYZ8bfq8reqUMsYr7WFTJo0KSKN6jYZj+xaTIn2sf99XousZLVYUZ57rWBiUTcmdQ8bNWpUuKz5W5vp+Mlsm2J108vqPWqt5S2vUaNGaMeOHZnmw+uvvx7z2FFXtbVr14Zf69q1a/g1dRfLSYspdcPyqLuYuvT5u+15Pvnkk4gy4nVH+/bbb8PL1QIxuptaLKpT/GlQK7/MnHXWWRHv9Voaqaup/9ifM2dOxOfU+m7NmjXu740bN0a0jlTXSbVS8lu9enW4u1yyyp+6InrdbfW/v2uiWnpt3749x3VfVumI5z3qyurPP+1Hj/72t1TTe2O1mIredyNHjox4zd8dFACQvxXckV4BAPmGWmOoJYHoF2/vl/OuXbu6X7Q9muHKoxmu/C0VvFZS33zzjWstJGqZoF/VPfrV3/PRRx+FWzrpceyxx0akSa0bYtG08GpFFE2/tKu1hVpnqAXHVVdd5QaSVisVDR7uUWsIj1rYePSrvlqheNQiK1ark2RtRzS1hnn66acj0uCn1kxq7eC1yMluYGi1WPDcdddd4fTpccstt4Rf+/PPP93sZdHbpWVqxeB9Rq2gvDKS1XapdUeNGjXCz1WWvJZ0XouqZImewTDZBgwYYOXLl99nuQZbb9WqldWrV8+12lJLQq+saYD2WGUtN7ROHVceHXfaNx61zItuVRiLjgvtR4/S7/nrr79ylDb/8a397LVG9Lb/t99+c3+rJZt33Ko1j9dC099aSq2oDj74YNsf5s6dG/67Y8eOrtz6FS9e3LUuE7WuUqsjz6233upaHPmpBZW/nCeD6iCvlaT+V0s3j1pzqtViTuu+3PKXMdWd/hn79LeWxXqvn8qi0hurPOamTAIA9j8CUwCApHbj0w2kbrKkTJkybqYrj7pz+W/Q/F0tNOOVbqC97kFeEEk3S/7Z5+L1+++/x1yurjaxDB482G2H1zUnM17XE9m0aVP47ypVqkS8T0Gpgw46KOY6krEd0XTj2bdvX3cjqW5Wr7zyil1//fWuK5k/EDNixIhs15VI+vxpTMZ2qTukn4J26uYTK89zywuoedSNKZ4Alr8MZCWzsqaAbTwBx3i/Jzu6QfdvQ3TwRkFif6Aksxt6f8BQMjIywn9nd9xkJnp/R6fNv78186RHXTyjA1Pxdt3y1ymiLqaZ8b+mYJPXRc1f1mvWrJnl90UfF9m9P1nlL968zUndl1v+PIkVTPQvy0l5zE2ZBADsf4wxBQDIlc8//9yWLFkSfq5WM5mNZaQxdv73v/9Zly5d3PMTTzzRjR2yYsUKN8aOglPeODKxxovRTaE3To8+6/+1PFpmYwXpJjyWl19+Ofz30Ucf7Vpw6Rd4BZjUisN/A+zxt4bx0uVRAM7f6ijZ25EVtdRQqxg9NAaWxjPy9pHyOjvR48NonBd/i4bMbhD9n1PLrV69emX6mczWF52PamWlVlmeWC2QckLlzb/PFUT1xmwqXDjydztv3BrvZveHH36I6ztilTW1Rlu0aFH4+UUXXeTGw1HrDx03CibEG4yMl8YM8o9B5rVC8ueFxtjyvz+W6BY9iYxZlhntb39Ll+i0+fe3WpepFY/yR+VY49J55Vr55g+CZyW6dZPGuPMHvfz7yt/STMeiNy6a/xhWa8REjie9X2O+ZSZZ5S/6WMosb3NS9+WWP0+i0xW9bH+WRwBAMAhMAQCS1loq3vd7gSkv+OQNnn3bbbeFWyiotdGZZ54Z8VndGE6bNs39vX79ejf4sAaOjr6J041UogEdf/BDAwZ7XeJ0E6zudrEokOF1LVO3Pg3oW6dOHff8hRdeiGgdlpfboTS8/vrr1q9fv3BrNY9uLv3dKeMJ7OimVK2UvDxRWtS1J9aNrwKR3ncqrRogW9atW+cGQo9uhaQ8eeutt+y4447LdGBqdXXzgl26aVbXLY+/i09ObdmyxQWElPceDUavFjGx8khdsbzBtseNG5erwJG/nMm5554bziOVs6zWrX3plSl/l7/saOB1DS7uDeKtcjVs2LBwd76JEydGvD+ZA8DH0w3YCxRpP6uln0f54m85oxYxahV43333uef+weDVJTCzrrPRVLbat29vM2bMCJc5BWNUXv1d3W644YaIVjdXXnll+G8FlKdOner+1gQFOg7UPdOj/aTgirZBg4r7952CxRrMXvvFo0HoNRC+gi3JKn+qg7zufApKqsWqR2VdQaic1n3RgaFEymN0XaH6SwPAe9+rVp/+Lrv7szwCAIJBYAoAkGN///13RAsndVGJHiNJNJaJN26UZp9SSyKvm5vGtxkyZIhrGeNveaAbquhfxDWzlVpV6SZLQSC1utEsYrp53bx5s/ue2bNnuxYg0ePmxBOM8cZT0c2fWi3oxlE3zpndCGrWNI3rpPQo/SeffLL7XgU+vK5GsSR7OzR73b333utu2BW4UdBHLXC0f3TzrZkHPZr9Lzva9oEDB7pAoShYoBmwdDOvlkUK6CgQp9ZyukHX7GKisZI0M5u+V1111FJLrbYUuFKLHJUB3eiqC5H2dayWEApO6AZfgQZvVj6PZjDLbAa1rOim9+GHH3bpUvc9Bcb8XcTUekVl0KMg4RFHHBHu6qe8VR4qQKeZznJDgUvlrxfwuO6661zASMEB/xhssSjI4QVuH3nkEfcZBZeaNGlibdu2zfKzKnPeeE4K/Gmb/bPyebTd8bY8SgYv0KLZ7zQrn/aVR0GoaJqBTS3MFOTR/kxkNj6/xx9/3AWMdLyJxl9ScEr1l8qqgk7+1oUKJPnHv1JQTMFl7Ucd+wro6HXVIzo+3nvvPRfsVHdalXMFn5988kn32YULF1qDBg1cl04FoVTOFFhWMFfPk1X+FDBTuVC9pDGxvFn5RIFZLzCWk7pP/EFnzTiosbNUr+uRVWtJb/w1zaLnzbjZunXriFn5vONDATS9FwCQ4oIefR0AUHC99NJLEbMgvfDCCzHfN3PmzIj3afYkv06dOu0zi5x/Bj+/0aNHR8xwldnDzz+zmH92vKy2xXtUrVo11L59+/BzzTLld+utt8b8nGYpO/jgg8PPhw0bluvtiHems8weSpN/pqqsZv/STHuXXHJJtuuMzg/N6KbZ27L7nH/mPf/MXccff3yoYsWK+7xfs3RpH8UrnvzQo3v37qFNmzbt8/nx48fHfH+tWrVC9evXj2tWtOjZ1DxXXnllzHW3bds2dMghh2RaVv2zHvofAwYMiGvmvoEDB2aZF9WqVYuYWTK7Y0fPvdf0vpyUVc1KGSstzZo1i5g50O/cc8+NeG+LFi1COaEZMA877LBsy8gFF1zgZhGNVUY0u11mnxsxYkT4vZqhsnPnzll+j38Gx2SUv9NPPz3mOjQro2bgy23dpxn8Yn1OMyvGM3OfZsEsUaJEpvmRkZGxzzHvn5UvOj3RZctfxwAA8jcGPwcAJKUbn1qzqNVPLGpN4B+oNrr7X3RrB7X68bqZRNOMUWo9oBYIalWgX/bVTUatjfSru1q++MfwiZfGr1HLIHV5UkstdWXTjHDqRuOfiSza8OHDw7Ph6dd9DayslhJqnaCWU57o7jnJ3A51ddH3qYXTKaec4lrlqNWF1qftUIuJkSNHugG31eIpHmo1oS5eagnRrVs3N26Vtk/dqTSgurpZap3ebIoetQJR6wu1uNI+1KDa3gDmLVu2dC1N1O0peuBij1pvqIuPurippYlaBGn7NDaZ9lFOaXu0Lu1LpUOtu9RdSPtcZTdWazi1HjnyyCPddmtwe7XWUdpyO/PbqFGj3EyHykeVtcMOO8zli1pyZdUdTS1n1MJK+8Ib6ygRamWlFnTan8oHfbf2j1q2qbxpPKXMZnXMK+PHj3czSiqfVbZ0/Ggb1TLIP3OgX/R4UPEOeh5NrcaWLl3qWjJpZj3tY+WJxgbT2Hdq9TNnzhxXxmONF6YyotZuKhca6F7HsLZBLQRVftWa0KPutGotqvKm1lfed+k41XGibfZ37UtG+VP3W6Vd9am+X8egWiWpHvAPjJ7Tuk9dsjXOl5fGRKn1o/JPXSRVZymNetSuXdu1llP9mJtjHgBQcBRSdCroRAAAUFCpe02sG2jdhPrHyFIwhrFSYlMwTV0XRTfOiY5bhvSiLm/qRqZLWB176o6YrEHxCzJ10fTP+Ddr1ix3bAEAkN8xxhQAALmggdv1q7+CULop1Ng3Gn/JG0/GGyRdrXQA5JzGJ9O4a4899lh4hkGNDUVQCgCAgo3AFAAAuaAbZN0wZzZ7lbqoaBY0pjIHckddgv3U1fOOO+4ILD0AACA5CEwBAJALGlNJ08JrhjrNYKWZwtSCQzPtadazyy+/PGLsGAC5o4CUWiDef//9brwtAABQsDHGFAAAAAAAAALBrHwAAAAAAAAIBIEpAAAAAAAABKJAjzG1d+9eN0VwmTJlGFQWAAAAAAAgH9CoUVu3brVq1apZ4cKFUzcwpaBU9erVg04GAAAAAAAAoqxZsybbyUoKdGBKLaW8DS1btmzQyQEAAAAAAEh7W7ZscQ2JvLhNygamvO57CkoRmAIAAAAAAMg/4hl2icHPAQAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAIEgMAUAAAAAAIBAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAAAAAAIBIEpAAAAAAAApF9gas+ePTZkyBCrWbOmHXDAAVa7dm27++67LRQKBZksAAAAAAAA7AdFLUAPPPCAjRkzxv773//aUUcdZfPnz7fevXtbuXLl7Nprrw0yaQAAAAAAAEjlwNSnn35qZ511lp1++unueY0aNeyll16yL774IshkAQAAAAAAINW78p1wwgk2c+ZMW758uXu+aNEimzt3rnXq1CnIZAEAAAAAACDVW0zdeuuttmXLFqtfv74VKVLEjTl17733Wo8ePWK+f9euXe7h0WcBAAAAAABQMAXaYuqVV16xSZMm2YsvvmgLFy50Y009/PDD7v9Yhg8f7saf8h7Vq1ff72kGAAAAAABAchQKBTgFngJLajU1YMCA8LJ77rnHXnjhBVu6dGlcLaa0js2bN1vZsmUtJcyeH3QKCpbWzYNOAQAAAAAA8FG8Rg2K4onXBNqVb8eOHVa4cGSjLXXp27t3b8z3Z2RkuAcAAAAAAAAKvkADU2eeeaYbU+qwww6zo446yr766it79NFHrU+fPkEmCwAAAAAAAKkemBo1apQNGTLErrrqKtuwYYNVq1bN+vXrZ0OHDg0yWQAAAAAAAEj1Mab2Z5/FAoMxphLDGFMAAAAAABTYeE2gs/IBAAAAAAAgfRGYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAACASBKQAAAAAAAASCwBQAAAAAAAACQWAKAAAAAAAAgSAwBQAAAAAAgEAQmAIAAAAAAEAgCEwBAAAAAAAgEASmAAAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAIEgMAUAAAAAAIBAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAAAAAAIBIEpAAAAAAAABKJoMF8L5EOz5wedgoKldfOgUwAAAAAAKOBoMQUAAAAAAIBAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAAAAAAIBIEpAAAAAAAABILAFAAAAAAAAAJBYAoAAAAAAACBIDAFAAAAAACAQBCYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAACASBKQAAAAAAAASiaDBfCwA+s+cHnYKCpXXzoFMAAAAAAAW/xVSNGjWsUKFC+zwGDBgQZLIAAAAAAACQ6i2mvvzyS9uzZ0/4+eLFi619+/bWvXv3IJMFAOmD1mqJo8UaAAAAkBqBqUqVKkU8v//++6127drWunXrwNIEAAAAAACANBtj6p9//rEXXnjBBg4c6LrzxbJr1y738GzZsmU/phAAAAAAAAApOSvftGnTbNOmTdarV69M3zN8+HArV65c+FG9evX9mkYAAAAAAACkYIupCRMmWKdOnaxatWqZvmfw4MGuRZW/xRTBKQBAgcUYX4lhfC8AAICUky8CUz///LN98MEHNnXq1Czfl5GR4R4AAAAAAAAo+PJFV75nn33WKleubKeffnrQSQEAAAAAAEC6BKb27t3rAlM9e/a0okXzRQMuAAAAAAAA7AeBR4LUhW/16tXWp0+foJMCAADSBeN7JYbxvQAAQKoGpjp06GChUCjoZAAAAAAAACDduvIBAAAAAAAgPRGYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAASM9Z+QAAAJBGZs8POgUFS+vmQacAAIA8RYspAAAAAAAABILAFAAAAAAAAAJBVz4AAAAgXdCVMjF0pQSAPEeLKQAAAAAAAASCwBQAAAAAAAACQWAKAAAAAAAAgSAwBQAAAAAAgEAQmAIAAAAAAEAgCEwBAAAAAAAgEASmAAAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAIEgMAUAAAAAAIBAFE3kzUuWLLHJkyfbxx9/bD///LPt2LHDKlWqZE2aNLGOHTtat27dLCMjI+9SCwAAAAAAgPQKTC1cuNBuueUWmzt3rrVq1cqOO+44O/vss+2AAw6wjRs32uLFi+22226za665xr3v+uuvJ0AFAAAAAJ7Z84NOQcHSunnQKQCQnwJTagl1880322uvvWbly5fP9H2fffaZPfbYY/bII4/Yf/7zn2SmEwAAAAAAAOkYmFq+fLkVK1Ys2/e1bNnSPXbv3p2MtAEAAAAAACDdBz/PLii1adOmhN4PAAAAAAAAJDwr3wMPPGAvv/xy+Pl5551nBx54oB1yyCG2aNGiZKcPAAAAAAAAKSrhwNTYsWOtevXq7u8ZM2a4xzvvvGOdOnVy41ABAAAAAAAASRtjym/9+vXhwNT06dNdi6kOHTpYjRo13Gx9AAAAAAAAQJ60mKpQoYKtWbPG/f3uu+9au3bt3N+hUMj27NmT6OoAAAAAAACQphJuMXXOOefYRRddZHXr1rU///zTdeGTr776yurUqZMXaQQAAAAAAEAKSjgwNWLECKtZs6atXr3aHnzwQStdurRbvm7dOrvqqqvyIo0AAAAAAABI98DU7t27rV+/fjZkyBAXnPK74YYbkp02AAAAAAAApLCExpgqVqyYTZkyJe9SAwAAAAAAgLSR8ODnXbt2tWnTpuVNagAAAAAAAJA2Eh5jSoOe33XXXfbJJ59Ys2bNrFSpUhGvX3vttclMHwAAAAAAAFJUwoGpCRMmWPny5W3BggXu4VeoUCECUwAAAAAAAMibwNSqVassmdauXWuDBg2yd955x3bs2GF16tSxZ5991po3b57U7wEAAAAAAEABD0wl019//WWtWrWyNm3auMBUpUqVbMWKFVahQoUgkwUAAAAAAID8GJjq06dPlq8/88wzca/rgQcesOrVq7sWUp6aNWsmmiQAAAAAAACkw6x8auXkf2zYsME+/PBDmzp1qm3atCmhdb355puuy1737t2tcuXK1qRJExs3blym79+1a5dt2bIl4gEAAAAAAIA0aTH1+uuv77Ns79691r9/f6tdu3ZC6/rxxx9tzJgxNnDgQPvPf/5jX375pRs8vXjx4tazZ8993j98+HAbNmxYokkGAAAAAKSr2fODTkHB0prxnpHPW0zFXEnhwi64NGLEiIQ+p4BW06ZN7b777nOtpa644grr27evjR07Nub7Bw8ebJs3bw4/1qxZk4zkAwAAAAAAoKAGpuSHH36wf//9N6HPVK1a1Ro0aBCx7Mgjj7TVq1fHfH9GRoaVLVs24gEAAAAAAIA06cqnllF+oVDI1q1bZ2+//XbM7ndZ0Yx8y5Yti1i2fPlyO/zwwxNNFgAAAAAAAFI9MPXVV1/t042vUqVK9sgjj2Q7Y1+0G264wU444QTXle+8886zL774wp5++mn3AAAAAAAAQGpLODA1a9aspH15ixYt3GDqGjvqrrvuspo1a9rIkSOtR48eSfsOAAAAAAAQAAaeT1zr9Bt8PuHAlOf3338Pd8OrV6+eazWVE2eccYZ7AAAAAAAAIL0kPPj59u3bXZc9DVx+8sknu0e1atXssssusx07duRNKgEAAAAAAJByCudk8PPZs2fbW2+9ZZs2bXKPN954wy278cYb8yaVAAAAAAAASDkJd+WbMmWKvfbaa3bKKaeEl3Xu3NkOOOAAN4D5mDFjkp1GAAAAAAAApKCEW0ypu97BBx+8z/LKlSvTlQ8AAAAAAAB5F5hq2bKl3XHHHfb333+Hl+3cudOGDRvmXgMAAAAAAADypCvfY489Zh07drRDDz3UGjdu7JYtWrTISpQoYe+9916iqwMAAAAAAECaSjgw1bBhQ1uxYoVNmjTJli5d6pZdeOGF1qNHDzfOFAAAAAAAAJAngSkpWbKk9e3bNycfBQAAAAAAAHIemFKLqVmzZtmGDRts7969Ea8NHTo0J6sEAAAAAABAmkk4MDVu3Djr37+/HXTQQValShUrVKhQ+DX9TWAKAAAAAAAAeRKYuueee+zee++1QYMGJfpRAAAAAAAAIKywJeivv/6y7t27J/oxAAAAAAAAIHeBKQWl3n///UQ/BgAAAAAAACTele/xxx8P/12nTh0bMmSIzZs3z44++mgrVqxYxHuvvfbaeFYJAAAAAACANBdXYGrEiBERz0uXLm2zZ892Dz8Nfk5gCgAAAAAAAEkLTK1atSqulQEAAAAAAAB5NsYUAAAAAAAAsN8CU/fff7/t2LEjrhV+/vnn9vbbb+c2XQAAAAAAAEhxcQWmvv/+ezv88MPtqquusnfeecd+//338Gv//vuvffPNN/bkk0/aCSecYOeff76VKVMmL9MMAAAAAACAdBljauLEibZo0SJ74okn7KKLLrItW7ZYkSJFLCMjI9ySqkmTJnb55Zdbr169rESJEnmdbgAAAAAAAKRDYEoaN25s48aNs6eeesq1kPr5559t586ddtBBB9kxxxzj/gcAAAAAAACSHpjyFC5c2AWi9AAAAAAAAAByiln5AAAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAAVjVr7t27fb/fffbzNnzrQNGzbY3r17I17/8ccfk5k+AAAAAAAApKiEA1OXX365zZ492y655BKrWrWqFSpUKG9SBgAAAAAAgJSWcGDqnXfesbfffttatWqVNykCAAAAAABAWkh4jKkKFSpYxYoV8yY1AAAAAAAASBsJB6buvvtuGzp0qO3YsSNvUgQAAAAAAIC0kHBXvkceecR++OEHO/jgg61GjRpWrFixiNcXLlyYzPQBAAAAAAAgRSUcmOratWvepAQAAAAAAABpJeHA1B133JE3KQEAAAAAAEBaSTgw5VmwYIEtWbLE/X3UUUdZkyZNkpkuAAAAAAAApLiEA1MbNmywCy64wD766CMrX768W7Zp0yZr06aNTZ482SpVqpQX6QQAAAAAAEC6z8p3zTXX2NatW+27776zjRs3usfixYtty5Ytdu211ya0rjvvvNMKFSoU8ahfv36iSQIAAAAAAEA6tJh699137YMPPrAjjzwyvKxBgwY2evRo69ChQ8IJUDdArS+coKI57l0IAAAAAACAAiThKNDevXutWLFi+yzXMr2WcAKKFrUqVaok/DkAAAAAAACkWVe+U0891a677jr79ddfw8vWrl1rN9xwg7Vt2zbhBKxYscKqVatmtWrVsh49etjq1aszfe+uXbtcl0H/AwAAAAAAAGkSmHriiSdcQKhGjRpWu3Zt96hZs6ZbNmrUqITWddxxx9lzzz3nugeOGTPGVq1aZSeddJIbwyqW4cOHW7ly5cKP6tWrJ5p8AAAAAAAAFNSufAoGLVy40I0LtXTpUrdM4021a9cu4S/v1KlT+O9GjRq5QNXhhx9ur7zyil122WX7vH/w4ME2cODA8HMFwwhOAQAAAAAAFEw5Gmlcs+e1b9/ePZKpfPnydsQRR9jKlStjvp6RkeEeAAAAAAAASJPA1OOPP25XXHGFlShRwv2dlWuvvTbHidm2bZv98MMPdskll+R4HQAAAAAAAEihwNSIESPcwOQKTOnvrFpSJRKYuummm+zMM8903fc0mPodd9xhRYoUsQsvvDDudQAAAAAAACCFA1MalDzW37n1yy+/uCDUn3/+aZUqVbITTzzR5s2b5/4GAAAAAABAakt4Vr677rrLduzYsc/ynTt3utcSMXnyZNdSateuXS5Ipeea5Q8AAAAAAACpL+HA1LBhw9xYUNEUrNJrAAAAAAAAQJ4EpkKhkBtLKtqiRYusYsWKia4OAAAAAAAAaSquMaakQoUKLiClxxFHHBERnNqzZ49rRXXllVfmVToBAAAAAACQroGpkSNHutZSffr0cV32ypUrF36tePHiVqNGDWvZsmVepRMAAAAAAADpGpjq2bOn+79mzZp2wgknWLFixfIyXQAAAAAAAEhxcQemPK1btw7//ffff9s///wT8XrZsmWTkzIAAAAAAACktIQHP9fse1dffbVVrlzZSpUq5cae8j8AAAAAAACAPAlM3Xzzzfbhhx/amDFjLCMjw8aPH+/GnKpWrZpNnDgx0dUBAAAAAAAgTSXcle+tt95yAahTTjnFevfubSeddJLVqVPHDj/8cJs0aZL16NEjb1IKAAAAAACA9G4xtXHjRqtVq1Z4PCk9lxNPPNHmzJmT/BQCAAAAAAAgJSUcmFJQatWqVe7v+vXr2yuvvBJuSVW+fPnkpxAAAAAAAAApKeHAlLrvLVq0yP1966232ujRo61EiRJ2ww03uPGnAAAAAAAAgDwZY0oBKE+7du1s6dKltmDBAjfOVKNGjRJdHQAAAAAAANJUQi2mdu/ebW3btrUVK1aEl2nQ83POOYegFAAAAAAAAPIuMFWsWDH75ptvEvsGAAAAAAAAIBljTF188cU2YcKERD8GAAAAAAAA5G6MqX///deeeeYZ++CDD6xZs2ZWqlSpiNcfffTRRFcJAAAAAACANJRwYGrx4sXWtGlT9/fy5csjXitUqFDyUgYAAAAAAICUlnBgatasWXmTEgAAAAAAAKSVhMeYAgAAAAAAAAJpMdWmTZssu+x9+OGHuU0TAAAAAAAA0kDCgaljjjkm4vnu3bvt66+/dmNP9ezZM5lpAwAAAAAAQApLODA1YsSImMvvvPNO27ZtWzLSBAAAAAAAgDSQtDGmLr74YnvmmWeStToAAAAAAACkuKQFpj777DMrUaJEslYHAAAAAACAFJdwV75zzjkn4nkoFLJ169bZ/PnzbciQIclMGwAAAAAAAFJYwoGpcuXKRTwvXLiw1atXz+666y7r0KFDMtMGAAAAAACAFJZwYOrZZ5/Nm5QAAAAAAAAgrSQcmFLXvQULFthPP/1khQoVslq1atkxxxzj/gYAAAAAAADyJDA1a9Ysu+yyy+znn392ASpRQKpmzZpuRr6TTz45kdUBAAAAAAAgjcU9K9/KlSvtjDPOsBo1atjUqVNtyZIl9v3339urr75qhx56qHXu3Nl+/PHHvE0tAAAAAAAA0q/F1MiRI+3444+3mTNnRiyvX7++nX322dauXTsbMWKEjRo1Ki/SCQAAAAAAgHRtMfXRRx/Z9ddfH/M1defTa+rqBwAAAAAAACQ1MLV69Wo7+uijM329YcOGbuwpAAAAAAAAIKmBqW3btlnJkiUzfV2v7dixI97VAQAAAAAAIM0lNCufBjtfv359zNf++OOPZKUJAAAAAAAAaSChwFTbtm0tFArFHGNKy/U/AAAAAAAAkNTA1KpVqywv3X///TZ48GC77rrr3AyAAAAAAAAASG1xB6YOP/zwPEvEl19+aU899ZQ1atQoz74DAAAAAAAABXTw87yiQdV79Ohh48aNswoVKgSdHAAAAAAAAKRLYGrAgAF2+umnW7t27bJ9765du2zLli0RDwAAAAAAAKTB4OfJNnnyZFu4cKHryheP4cOH27Bhw/I8XQAAAAAAAEjhFlNr1qxxA51PmjTJSpQoEddnNDj65s2bww+tAwAAAAAAAGnWYmrDhg22bNky93e9evWscuXKCX1+wYIFbh1NmzYNL9uzZ4/NmTPHnnjiCddtr0iRIhGfycjIcA8AAAAAAACkYWBq69atdtVVV7lueAokiQJI559/vo0ePdrKlSsX13ratm1r3377bcSy3r17W/369W3QoEH7BKUAAAAAAACQ5l35Lr/8cvv8889t+vTptmnTJvfQ3/Pnz7d+/frFvZ4yZcpYw4YNIx6lSpWyAw880P0NAAAAAACA1JZwiykFod577z078cQTw8s6duxo48aNs9NOOy3Z6QMAAAAAAECKSjgwpRZNsbrraVmFChVylZiPPvooV58HAAAAAABACnflu/32223gwIG2fv368DL9ffPNN9uQIUOSnT4AAAAAAACkqIRbTI0ZM8ZWrlxphx12mHvI6tWr3Wx5v//+uz311FPh9y5cuDC5qQUAAAAAAED6Bqa6du2aNykBAAAAAABAWkk4MHXHHXfkTUoAAAAAAACQVhIeY0o2bdpk48ePt8GDB9vGjRvD3fbWrl2b7PQBAAAAAAAgRSXcYuqbb76xdu3auVn4fvrpJ+vbt69VrFjRpk6d6saamjhxYt6kFAAAAAAAAOndYkoz8vXq1ctWrFhhJUqUCC/v3LmzzZkzJ9npAwAAAAAAQIpKODD15ZdfWr9+/fZZfsghh9j69euTlS4AAAAAAACkuIQDUxkZGbZly5Z9li9fvtwqVaqUrHQBAAAAAAAgxSUcmOrSpYvdddddtnv3bve8UKFCbmypQYMGWbdu3fIijQAAAAAAAEhBCQemHnnkEdu2bZtVrlzZdu7caa1bt7Y6depYmTJl7N57782bVAIAAAAAACDlJDwrn2bjmzFjhs2dO9fN0KcgVdOmTd1MfQAAAAAAAECeBaY8J554ojVv3tyNOaXufAAAAAAAAECeduXbu3ev3X333W4WvtKlS9uqVavc8iFDhtiECRMSXR0AAAAAAADSVMKBqXvuuceee+45e/DBB6148eLh5Q0bNrTx48cnO30AAAAAAABIUQkHpiZOnGhPP/209ejRw4oUKRJe3rhxY1u6dGmy0wcAAAAAAIAUlXBgau3atW4Wvlhd/Hbv3p2sdAEAAAAAACDFJRyYatCggX388cf7LH/ttdesSZMmyUoXAAAAAAAAUlzCs/INHTrUevbs6VpOqZXU1KlTbdmyZa6L3/Tp0/MmlQAAAAAAAEg5CbeYOuuss+ytt96yDz74wEqVKuUCVUuWLHHL2rdvnzepBAAAAAAAQMpJuMWUnHTSSTZjxozkpwYAAAAAAABpI+EWUwAAAAAAAMB+azFVoUIFK1SoUFwr3LhxY27TBAAAAAAAgDQQV2Bq5MiReZ8SAAAAAAAApJW4AlOahQ8AAAAAAAAIZPDzf//91/bs2WMZGRnhZb/99puNHTvWtm/fbl26dLETTzwxqYkDAAAAAABA6oo7MNW3b18rXry4PfXUU+751q1brUWLFvb3339b1apVbcSIEfbGG29Y586d8zK9AAAAAAAASLdZ+T755BPr1q1b+PnEiRNdC6oVK1bYokWLbODAgfbQQw/lVToBAAAAAACQroGptWvXWt26dcPPZ86c6QJV5cqVC49D9d133+VNKgEAAAAAAJC+gakSJUrYzp07w8/nzZtnxx13XMTr27ZtS34KAQAAAAAAkN6BqWOOOcaef/559/fHH3/sBj4/9dRTw6//8MMPVq1atbxJJQAAAAAAANJ38POhQ4dap06d7JVXXrF169ZZr1693KDnntdff91atWqVV+kEAAAAAABAugamWrdubQsWLLD333/fqlSpYt27d9+nRdWxxx6bF2kEAAAAAABAOgem5Mgjj3SPWK644opkpQkAAAAAAABpIO4xpgAAAAAAAIBkIjAFAAAAAACAQBCYAgAAAAAAQPoFpsaMGWONGjWysmXLukfLli3tnXfeCTJJAAAAAAAAyM+BqU2bNtn48eNt8ODBtnHjRrds4cKFtnbt2oTWc+ihh9r999/vZvubP3++nXrqqXbWWWfZd999l5NkAQAAAAAAIFVn5ZNvvvnG2rVrZ+XKlbOffvrJ+vbtaxUrVrSpU6fa6tWrbeLEiXGv68wzz4x4fu+997pWVPPmzbOjjjoq0aQBAAAAAAAglVtMDRw40Hr16mUrVqywEiVKhJd37tzZ5syZk+OE7NmzxyZPnmzbt293Xfpi2bVrl23ZsiXiAQAAAAAAgDQJTH355ZfWr1+/fZYfcsghtn79+oQT8O2331rp0qUtIyPDrrzySnv99detQYMGMd87fPhw11LLe1SvXj3h7wMAAAAAAEABDUwpgBSrpdLy5cutUqVKCSegXr169vXXX9vnn39u/fv3t549e9r3338f870a02rz5s3hx5o1axL+PgAAAAAAABTQwFSXLl3srrvust27d7vnhQoVcmNLDRo0yLp165ZwAooXL2516tSxZs2auRZRjRs3tsceeyzToJg3g5/3AAAAAAAAQJoEph555BHbtm2bVa5c2Xbu3GmtW7d2gaUyZcq4wctza+/evW4sKQAAAAAAAKS2hGfl09hOM2bMsLlz57oZ+hSkatq0qZupL1HqmtepUyc77LDDbOvWrfbiiy/aRx99ZO+9917C6wIAAAAAAECKB6Y8J554onvkxoYNG+zSSy+1devWuYBXo0aNXFCqffv2uVovAAAAAAAAUjAw9fjjj8dcrrGmSpQo4br1nXzyyVakSJFs1zVhwoREvx4AAAAAAADpGpgaMWKE/f7777Zjxw6rUKGCW/bXX39ZyZIlrXTp0q4VVK1atWzWrFlWvXr1vEgzAAAAAAAA0nHw8/vuu89atGhhK1assD///NM9li9fbscdd5ybTU8z9FWpUsVuuOGGvEkxAAAAAAAA0rPF1O23325Tpkyx2rVrh5ep+97DDz9s3bp1sx9//NEefPBB9zcAAAAAAACQtBZTGqj833//3We5lq1fv979Xa1aNTfLHgAAAAAAAJC0wFSbNm2sX79+9tVXX4WX6e/+/fvbqaee6p5/++23VrNmzURXDQAAAAAAgDSScGBKM+lVrFjRmjVrZhkZGe7RvHlzt8ybZU+DoD/yyCN5kV4AAAAAAACk6xhTGth8xowZtnTpUjfoudSrV889/K2qAAAAAAAAgKQGpjz169d3DwAAAAAAAGC/BaZ++eUXe/PNN2316tX2zz//RLz26KOP5ighAAAAAAAASC8JB6ZmzpxpXbp0sVq1arnufA0bNrSffvrJQqGQNW3aNG9SCQAAAAAAgJST8ODngwcPtptuusnNvFeiRAmbMmWKrVmzxlq3bm3du3fPm1QCAAAAAAAg5SQcmFqyZIldeuml7u+iRYvazp073Sx8d911lz3wwAN5kUYAAAAAAACkoIQDU6VKlQqPK1W1alX74Ycfwq/98ccfyU0dAAAAAAAAUlbCY0wdf/zxNnfuXDvyyCOtc+fOduONN7pufVOnTnWvAQAAAAAAAHkSmNKse9u2bXN/Dxs2zP398ssvW926dZmRDwAAAAAAAHkTmNqzZ4/98ssv1qhRo3C3vrFjxyayCgAAAAAAACDxMaaKFCliHTp0sL/++iuRjwEAAAAAAAC5H/y8YcOG9uOPPyb6MQAAAAAAACB3gal77rnHbrrpJps+fbqtW7fOtmzZEvEAAAAAAAAA8mTwc83EJ126dLFChQqFl4dCIfdc41ABAAAAAAAASQ9MzZo1K9GPAAAAAAAAALkPTLVu3TrRjwAAAAAAAAC5H2NKPv74Y7v44ovthBNOsLVr17plzz//vM2dOzcnqwMAAAAAAEAaSjgwNWXKFOvYsaMdcMABtnDhQtu1a5dbvnnzZrvvvvvyIo0AAAAAAABIQTmalW/s2LE2btw4K1asWHh5q1atXKAKAAAAAAAAyJPA1LJly+zkk0/eZ3m5cuVs06ZNia4OAAAAAAAAaSrhwFSVKlVs5cqV+yzX+FK1atVKVroAAAAAAACQ4hIOTPXt29euu+46+/zzz61QoUL266+/2qRJk+ymm26y/v37500qAQAAAAAAkHKKJvqBW2+91fbu3Wtt27a1HTt2uG59GRkZLjB1zTXX5E0qAQAAAAAAkHISDkypldRtt91mN998s+vSt23bNmvQoIGVLl06b1IIAAAAAACAlJRwV74XXnjBtZQqXry4C0gde+yxBKUAAAAAAACQ94GpG264wSpXrmwXXXSR/e9//7M9e/Yk/q0AAAAAAABIewkHptatW2eTJ092XfrOO+88q1q1qg0YMMA+/fTTvEkhAAAAAAAAUlLCgamiRYvaGWec4Wbi27Bhg40YMcJ++ukna9OmjdWuXTtvUgkAAAAAAICUk/Dg534lS5a0jh072l9//WU///yzLVmyJHkpAwAAAAAAQEpLuMWUaPBztZjq3LmzHXLIITZy5Eg7++yz7bvvvkt+CgEAAAAAAJCSEm4xdcEFF9j06dNdaymNMTVkyBBr2bJl3qQOAAAAAAAAKSvhFlNFihSxV155xQ2C/sQTT0QEpRYvXpzQuoYPH24tWrSwMmXKuJn+unbtasuWLUs0SQAAAAAAAEiHwJTXhU8BKtm6das9/fTTduyxx1rjxo0TWtfs2bPdjH7z5s2zGTNm2O7du61Dhw62ffv2RJMFAAAAAACAdBn8fM6cOTZhwgSbMmWKVatWzc455xwbPXp0Qut49913I54/99xzruXUggUL7OSTT85p0gAAAAAAAJBqgan169e74JECUlu2bHFjTO3atcumTZtmDRo0yHViNm/e7P6vWLFirtcFAAAAAACAFOnKd+aZZ1q9evXsm2++cbPw/frrrzZq1KikJWTv3r12/fXXW6tWraxhw4Yx36MgmAJi/gcAAAAAAABSvMXUO++8Y9dee63179/f6tatm/SEaKwpDZ4+d+7cLAdLHzZsWNK/GwAAAAAAAPm4xZQCRhrovFmzZnbccce5Gfn++OOPpCTi6quvtunTp9usWbPs0EMPzfR9gwcPdt39vMeaNWuS8v0AAAAAAADIx4Gp448/3saNG2fr1q2zfv362eTJk92g5+qCpxn1FLRKVCgUckGp119/3T788EOrWbNmlu/PyMiwsmXLRjwAAAAAAACQ4oEpT6lSpaxPnz6uBdW3335rN954o91///1uNr0uXbok3H3vhRdesBdffNHKlCnjBlfXY+fOnYkmCwAAAAAAAKkemPLTYOgPPvig/fLLL/bSSy8l/PkxY8a4LnmnnHKKVa1aNfx4+eWXc5MsAAAAAAAApNLg51kpUqSIde3a1T0S7coHAAAAAACA9JSrFlMAAAAAAABAThGYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAACASBKQAAAAAAAASCwBQAAAAAAAACQWAKAAAAAAAAgSAwBQAAAAAAgEAQmAIAAAAAAEAgCEwBAAAAAAAgEASmAAAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAIEgMAUAAAAAAIBAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAAAAAAIBIEpAAAAAAAABILAFAAAAAAAAAJBYAoAAAAAAACBIDAFAAAAAACAQBCYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAACASBKQAAAAAAAASCwBQAAAAAAAACQWAKAAAAAAAAgSAwBQAAAAAAgEAQmAIAAAAAAEAgCEwBAAAAAAAgEASmAAAAAAAAEAgCUwAAAAAAAEi/wNScOXPszDPPtGrVqlmhQoVs2rRpQSYHAAAAAAAA6RKY2r59uzVu3NhGjx4dZDIAAAAAAAAQgKIWoE6dOrkHAAAAAAAA0g9jTAEAAAAAACD9WkwlateuXe7h2bJlS6DpAQAAAAAAQJq0mBo+fLiVK1cu/KhevXrQSQIAAAAAAEA6BKYGDx5smzdvDj/WrFkTdJIAAAAAAACQDl35MjIy3AMAAAAAAAAFX6CBqW3bttnKlSvDz1etWmVff/21VaxY0Q477LAgkwYAAAAAAIBUDkzNnz/f2rRpE34+cOBA93/Pnj3tueeeCzBlAAAAAAAASOnA1CmnnGKhUCjIJAAAAAAAACAgBWrwcwAAAAAAAKQOAlMAAAAAAAAIBIEpAAAAAAAABILAFAAAAAAAAAJBYAoAAAAAAACBIDAFAAAAAACAQBCYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAACASBKQAAAAAAAASCwBQAAAAAAAACQWAKAAAAAAAAgSAwBQAAAAAAgEAQmAIAAAAAAEAgCEwBAAAAAAAgEASmAAAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAIEgMAUAAAAAAIBAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAAAAAAIBIEpAAAAAAAABILAFAAAAAAAAAJBYAoAAAAAAACBIDAFAAAAAACAQBCYAgAAAAAAQCAITAEAAAAAACAQBKYAAAAAAAAQCAJTAAAAAAAACASBKQAAAAAAAASCwBQAAAAAAAACQWAKAAAAAAAA6RuYGj16tNWoUcNKlChhxx13nH3xxRdBJwkAAAAAAACpHph6+eWXbeDAgXbHHXfYwoULrXHjxtaxY0fbsGFD0EkDAAAAAABAKgemHn30Uevbt6/17t3bGjRoYGPHjrWSJUvaM888E3TSAAAAAAAAkKqBqX/++ccWLFhg7dq1+/8JKlzYPf/ss8+CTBoAAAAAAADyWFEL0B9//GF79uyxgw8+OGK5ni9dunSf9+/atcs9PJs3b3b/b9myxVLG9m1Bp6BgSea+J+8TQ94Hh7wPFvkfHPI+OOR9cJJ9nUv+J4ayHxzyPjjkfbC2pEZ8w4vThEKh/B2YStTw4cNt2LBh+yyvXr16IOkBAAAAAABAbFu3brVy5cpZvg1MHXTQQVakSBH77bffIpbreZUqVfZ5/+DBg91A6Z69e/faxo0b7cADD7RChQrtlzSnI0U6Ffxbs2aNlS1bNujkpBXyPjjkfbDI/+CQ98Eh74ND3geL/A8OeR8c8j445P3+oZZSCkpVq1Yt2/cGGpgqXry4NWvWzGbOnGldu3YNB5v0/Oqrr97n/RkZGe7hV758+f2W3nSng5YDNxjkfXDI+2CR/8Eh74ND3geHvA8W+R8c8j445H1wyPu8l11LqXzTlU8toHr27GnNmze3Y4891kaOHGnbt293s/QBAAAAAAAgdQUemDr//PPt999/t6FDh9r69evtmGOOsXfffXefAdEBAAAAAACQWgIPTIm67cXquof8Qd0n77jjjn26USLvkffBIe+DRf4Hh7wPDnkfHPI+WOR/cMj74JD3wSHv859CoXjm7gMAAAAAAACSrHCyVwgAAAAAAADEg8AUAAAAAAAAAkFgCvt47rnnrHz58kEnAwAAFGBPP/20Va9e3QoXLuxmXUZsd955p5v8B/uqUaMGZYdr8wJjf+6nU045xa6//vo8/x7KXsHy008/WaFChezrr7+2gobAVAHTq1cvV9iiH6eddlpSZ0pcvnx50taXDvuka9euQScjJXz22WdWpEgRO/30062g+eijj9yxuGnTprS+KPDqqPvvvz9i+bRp09xy5N05oVixYm5G2/bt29szzzxje/fuTdr3pOvNoZe/V1555T6vDRgwwL2m96QazZbcv39/O+yww9zAsFWqVLGOHTvaJ598Evc6tmzZ4ia2GTRokK1du9auuOKK/XYjlSxKb6xrrljlITduuukmmzlzpuVHsbbf/1BQDfvnmEL+31d5cQ+V2fXl1KlT7e67745rW0qUKGFFixbNl+VO17hefaIfMapWrerycfXq1ZYucnpu7BXjHlQ/Bq1bt84aNmxoBU2+mJUPiVEQ6tlnn41YlswZBQ444AD3CNo///xjxYsXDzoZKU1zH+zZs8edrPKDCRMm2DXXXOP+//XXX61atWpBJwk5oAugBx54wPr162cVKlRIyjqpD7I/J+hY/u233+zdd9+16667zl577TV78803883xXVD3oy7yJk+ebCNGjAifG//++2978cUX3Y1LKlDZ8W4KpFu3bm5f/fe//7VatWq5cqXAyZ9//hn3OnVTsXv3bvdDg240Cup5rm/fvnbXXXdFLCtZsqQlU+nSpd0jPx6fusHxvPzyyzZ06FBbtmxZeFl+SHdBqIeScUzldwWxfk/2vtqf91AVK1aMe1vq1atnzZo1c0H1/FjuypYt6+oV1derVq2yq666yrp3726ff/55nn6vzlH6US+VFClSxAUgCyTNyoeCo2fPnqGzzjor09e1S8eNGxfq2rVr6IADDgjVqVMn9MYbb0S8R8+1PCMjI3TKKaeEnnvuOfe5v/76y73+7LPPhsqVKxd+/x133BFq3LhxaOLEiaHDDz88VLZs2dD5558f2rJlS/g9e/bsCd13332hGjVqhEqUKBFq1KhR6NVXX4343m+//TZ02mmnhUqVKhWqXLly6OKLLw79/vvv4ddbt24dGjBgQOi6664LHXjggS5tBX2fPPLII6GGDRuGSpYsGTr00END/fv3D23dutW9tnfv3tBBBx0UkU/K5ypVqoSff/zxx6HixYuHtm/fHurdu3fo9NNPj1j/P//8E6pUqVJo/Pjxce2HWbNmuX39v//9L9S0adNQsWLF3LL8QPlSunTp0NKlS135uvfeeyNef/PNN0PNmzd35VblQ2Xc8/fff4duueUWl8fKr9q1a4fzRD766KNQixYt3GvK30GDBoV2794dfl3lesSIERHfp32hsh/PsbVq1Sr3uv+hciHvvPNOqFWrVu6YqlixotuHK1euDK/X++yUKVNcmde6td8+/fTTiH3mf/jTld9ou88444xQ/fr1QzfffHN4+euvv+7S7q9T/JT/2g/Rx9U999wTqlq1qivTMnr06HD9pXqkW7duCdVDqSaz+mfmzJnhMis///xzqEuXLq7+LVOmTKh79+6h9evXx3WMqW6OLoOe1157LdSgQQN3bGn/PfzwwxHr1LK77rordMkll7jv9Y6Lgpa/qsdfeOGF8PJJkya58qXXknWsyx9//BG64IILQtWqVXOv63tffPHFiDTp3HvRRRe584rqs0cffdTtI507/XXijTfe6Naj9x177LERdb13nlcdduSRR4aKFCni0ie6FlA6VW9mJasypfXHqhOjl+k7mzVrFnrooYfC61WeFi1aNHyuXLNmjXvvihUr3HNdi+gzOl8cfPDBoQsvvDD022+/ZXuey0n9EJ2v0eLZp/L000+785Ne13Gla4NY11nR5U75on2s8nTVVVe5c368+9i7hjjxxBPd9ur7r7nmmtC2bdtyfHxGXx+K6hjV96o36tWr5+poP52b69at67a9Zs2aodtvvz1iO7I7vyuNuh7QNZD2efXq1UNPPfVUxOdXr17typ/SVqFCBVcuvfKc1flkf4nnmMrqejGzvJ82bVqoSZMmLt+Ut3feeWf42kbXmCpXyi/Vz9pu7f/ofa/6Rt+pcvTEE0/sk+7LLrvMXauqfLRp0yb09ddf71NuVQaUp4UKucne3XGlbVG5U9lt27ZtuNzpOBw2bFjokEMOcenS51V3JnpMBbmv9J4rrrjCXYMo74866qjQW2+9laP9lJvry+j6Kfr66Mwzz3Tv79ixY8y6N6iyFy3W+h9//HGXzs2bNyeUj08++aS711TZ03v8dbyXl5MnTw6dfPLJbj367uzqsV27drn7U9XFev2www5z55JEj5PM7qMzOzf++++/oT59+oTPWUcccURo5MiREeuN/pzOAd52fvXVV+5407GmfPFbuHChO15/+umnuLZhfyEwlYKBKVUqupDVRdy1117rTuR//vmne/3HH390F2k33XSTCwC89NJLrsBmF5jSOs455xwXXJozZ447OP/zn/+E36OTvQ7od999N/TDDz+4dejg9Sp2rVsBlMGDB4eWLFniDoj27du7gu9RBavv0c2s0qZHQd8nutn+8MMPXSWhG0VVdqrwPcpTVXayceNGV4Er75VHXr7qRkc++eQTd/Pw66+/hj8/depUd1PgnUCy2w/eBbtO8u+//767afLKRtAmTJjgLkxFJ3gFl3Ryk+nTp7ttHzp0aOj77793laX/pHDeeee5E6DyQ9v9wQcfuBOP/PLLL+5kq4t65asCJKp4/cGdeANTmR1bOnnoIkrvWbZsWWjdunWhTZs2hW/c9Zo+o5OELhSOPvpod7IQ7wSi/abt1OfPPfdclyadcHVC1IlIJzKtVw//BUN+PR60L3Qi1U1lTgNTyl/dMC1evNg9vvzyS1cOtA90MlU98thjj4U/k135T0VZ1T/K406dOrmydswxx7gb1Pnz54fmzZvnbuxV53qyOsZUxlX2dRPjlUHRugoXLuyWq9wqv3VR7V3oiXcRpoCV6ht/oKYg5a+CP7q58uhvlVl/YCq3x7pXXykYoc+rDOviXPvl888/D3/35Zdf7j6jek7n5LPPPttdSPpvUPSeE044wZ2vledap46F5cuXu9e1j3QtoPfo3KLzrX4AEaVFx97111/vgh+xZFemduzY4dKn7f3iiy/CdWLLli1Dffv2DZcj1Z0DBw4M/+iiOl83sqqjvZtVBQR1neI/VyjopPz57LPP3DpVzj2ZnedyUj/EG5jKap/OnTvXHSfaB3pdNzzaxuwCUzpurrzySnfe0jlR5zEFuOLdx1qm6wOVUy3TftZNXa9evXJ8fEZfH2rf6KZT5V7Xl/pf26YfPD133323+27llQJQCiY+8MAD4dezO78rjVqn8k3H1vDhw11+eteICnIpuKobuG+++catQ4FbXW/p/JnZ+WR/iueYyu56MTrvtd+175TXKs8q67qB1c266IZcr+tYURBZdYi//ChfVW8oP1UuvbpG6/G0a9fO1WM696oMKRCqwKF33ahyqzKmQIDOx4sWLXLXqAosq87UtmifaN951y1arnTp/kP7UIFL1UVeuY3nmApyX6nuO/74410wSnmlvNfxqXzOyX7KzfWlv36KdX2kvNZ6VI6OO+64fereoMpetOj164cG3R9qe7yAZrz5qPKpIJPySkFwrUN1gr9s6XNenaXyml09prpV9xhKg/JWAX//D0bxHCdZ3Udndm78559/XL2o9SpdSqfOAy+//LL7nI4p3f/o+PM+pzrPH5gS3fPrXO2nNPqXZbcN+wuBqQJGJ1cdZDoR+B9e6xIVRB2IHh3QWuZd4KmliKLifrfddlu2gSkdCP4WUgoeqZITVdx6PfrXDEVe9Uumd2HSoUOHiNe9X0FVeXgVrC6aUi1Y6KfKWge6RxcCOrl5vwQoT7WuMWPGhCsKfwBQLRP8F3SqRLyLzHj2g3fBru/Kb3SB7f0SoAsD3Zh4v/6qwu7Ro0fMz6n8aJtmzJgR83Xln06yXpBLdJGkk4R3wxhvYCqrY8vLW+84yoxaCep9OjmJdwLxt/D67rvv3DIvQBnr16SCcDzo4k03CzkNTOkGxruxEF0s6MLEXxd54in/qSir+ke/yOmGTRdwOm+oVUF0GVPQILtjLLNjRDd/+oHBT+cG1VP+z/lbPxTU/N2wYYO76ddFqR4KuupY9gemknGsx6KgjS4SRWVfN3H+X4F1Uauy792g6EZA+3vt2rUR61EwTT8O+Vs0ZfaLqIJsanmi7VTdrM/pptMTT5nSRXH0L/OxAj0KVqh+04W40qMLdr1H1yteAEZlLTO6kNb3eDe+sc5zOa0flF7ld/Q1l9d6Lp59quMwurWzjrXsAlM6dvw3j2oRpHXFu4+1bWrV4acbKgV1du7cmaPjM/pcpB+Qolv06XpP9UlmdJOnIKYnnrpHLew9OperNYh3nfT888/vc47XeUNB8vfeey/T88n+lt0xld31YnTea1/7A3heXugG22sFoxYW0a3T/PmqG1o/lS8vyKuyovNtdHBG+9xrsaZyq+ND9aNnwYIFrvx7LTGiqWVWdIt4tWjXj4e5qSf3175SmdIx5N27REt0P+Xm+tJfn2Z2feRti9Ks78yu3O2PshfNOx+pblU97bX+UYAu3u8UfUbBfD/dV3lBNq9s+VsdxVOPqbXXqaeeGlHHeOI9TrK6j47nRxCPGjP4ewrEugaMDkzpf7WO0nlDvFZUXh0azzbsLwx+XgC1adPGjbTvf/gH4mzUqFH471KlSrl+uxs2bHDP1X+3RYsWEes79thj4xr4tkyZMuHnGi/CW+fKlSttx44dbsBdb5wEPSZOnGg//PCDe8+iRYts1qxZEa/Xr1/fvea9R9T/OZV88MEH1rZtWzvkkENc/l1yySWuX7fyS1q3bm3ff/+9G5xw9uzZbvA7PTTQofo9f/rpp+655/LLLw+PL6Y+7++884716dMn7v3gad68ueUnKpdffPGFXXjhhe65xgLRwIcaa0pUxpWPseg19adWXsayZMkSa9myZcTA261atbJt27bZL7/8klA6szq2MrNixQq3XRqnQO/XsSTRgzr61+2Nx5LduvM7jTOlMRq0D3Li6KOPjhivQmX78MMPd3mpY2nSpEnhYymR8p8udJ2mcq/81zhJengaNGjgBtT39k1Wx1hm9FkdS356rjKvMX3ya32TE5UqVXJjJWmQVtXB+vuggw5K+rGufNNgtir7Gj9EZfi9994Lr+PHH3905wb/ebtcuXJu/BDPt99+69ZzxBFHRBwLOsf4jwUdW/60RI9LonH+NEaZxjDTOalp06Zu+yWeMhWvk046ybZu3WpfffWVS6Pqcu88KN650bNgwQI788wz3fheOq96dX90PvvLXW7qhx49euxzzdWlS5e496nOb9HXWfFcdx111FHu3OZfr7fOePaxrru0v/yva9BjTYqgMVxi5VMitm/f7r7rsssui/iOe+65JyJPNS6V6gWNeaLXb7/99oh9FU/d489f1Wlal5cX2k7tX5UFLw06djQOnD8d0eeT/S27Yyq768Vo2m6NfebPe42HpjHB9BmNz7Nz505XH2n566+/bv/++2/EOnRtFP3cO361fl0nHXjggRHfobLjz1edk1U/eho3buy2Q/mtNIwbN87++uuv8IQIyoNY543oeiPIa6Ks9pXK66GHHuqOvXhkt59yc33pl9n1kbctqk/0enS5C6rsRdP3Km/nz59vjzzyiEvjvffem3A+ZlWmY9V58dRjGmBcadN59tprr7X3338/Il3xHCdZ3UdnZfTo0e7eWMeY1quZbhMdFF4zvh555JFuXEzReULfrf2UyDbsD/lnRFTETRVWnTp1Mn09ehA3ncRzOztTVutUYZa3337bVWqxBmXXe3QhqRvVaP5BUbVtqTRd5xlnnOFmw1DlqguluXPnuspPAxFq8FTv5kOVhB56ny64lE9ffvmluwE54YQTwuu89NJL7dZbb3Wz1yloVbNmTXdRH+9+yK/5rACUTlr+wc51U610P/HEE1kOJJmMQSY14O///djy/ynvk3FsqdzrYkAXZ9o+vV8zZagMZLZuL4iWzFnVgnDyySe7G6HBgwdHzFwWb35Hl1Od1BcuXOgurHRhoEF4NSOUjpVEyn+60MWY6oh45OVgrfmtvskp/QigWea8i8W8ONYfeughe+yxx9wMiDo/KO80U0/0OrKiY0EBDQVw/IGN6IGqtc+zmilTkxjoZkePIUOGuB9G7rjjjqTPQqhglm5mdVzr3KbvU93hzW6lgJ8XfNJNhOoUPXTjpYt1XaTreXQe+ctdbuoHBf6yuubKq/o7u+uu7Pax3qMJKHQjFc0/aH9Oj08vT1XejzvuuIjXvDRpfyqwN2zYMLePlJeaSEA3nonUPdnlhW7cVB6i+QMm+aEeyuyYUuA1u+vFaNpu5es555wT83sUNFZQVEGHGTNmuMGkVb/oWjOewZ61fl2fewFiP/8swdH5qn2v79M1qs7To0aNsttuu80NYq0b33gFfU2U2b7SDJqJyG4/JeveLavrI+0vlSkFKHRu8dfl8dyr7I+yp+tCr55VEEUBEaXp+eefTygf4xHr3JBVPaYgmYI0agygbTrvvPOsXbt2boKZeI+TnOzfyZMnu/Km+lIBNu1j5WNOBoRXPazAlO4h9b8Crt7xGO827A8EptKMor3/+9//Ipap0soN/UqqCztdHGbWakUH9ZQpU1zEOD/NEJWXdMGoSkcVijfT0SuvvLJPxaTA0htvvGHfffednXjiie4ksGvXLnvqqadcVN9fgaoS0bSg+sVeF3y9e/dOaD/kRwpI6Vdr5VOHDh0iXtO2vvTSS+6XJM0i4t9ej27elM864elEEU0nOJU9r/WIaJpcVfD61cu7ePXPPKRf9fy/KMfD+yXW31JEvzjp5KwTnhdA1Ak/UVq3f70Fyf333+8uhvwtOpTf69evj9gn+jUqHqo/tJ/10IWVTpoffvihu3gsiOU/ryhP1KrihhtucOV8zZo17uG1cFFLTU09rXpDsjrGMiuDOraip5zWc/2SHH2znAp0IacLdZVZ3WT7JetYV/6dddZZdvHFF7vnqtsUnPH2k36B1gWuzttecGHz5s3uPQrmSJMmTdy+0i+iXlqSQWmYNm1aeN9nV6YSqct0zKpVtVrOejdH+g79rQtmr3XC0qVLXV6rXvG+V7+wx5P2oOoH1X3R11m5ve6KZx/rukv7JLugWk4dfPDBLgCrVny66YlFwQkFaxWY8Pz8888R78mu7smOtlOtsipXruxamRQk3jEVz/VirO1WnZPV/lXQTwFzPQYMGOB6Kui8oM/KvHnzIt6v5zruvPXrPK1zrtf6M16qI9UKSg8FSFQG1Gpm4MCBrsyonvMfh3oeTyvC/LCvVF7V2l51bjytpuLZTzm5vkzk+kjBHH/d66/Lgyp72VEApXbt2u4aRp+JNx9VhvUjvv+56svc1GOiukU/luhx7rnnuuuBjRs35uo4ye7c+Mknn7jGCQrseaJbMMV7f3DRRRe51qra3wqojR07NvxasrYhGdIjQpBiFLRQAfJTYYruVhCLfj179NFHbdCgQS4arptBrzlnVr+cZkU3+IroqvJQ5abgii6UdUDpQO7Zs6erlHTBrm4Ot9xyi7voVNNrRYPHjx9f4G9itL3RN9baH2oFol+LVDErP/wVgUe/lN14440uCOX90qkbDP36d/PNN+/zfv3SoV83VBEpbxPZD/nR9OnTXTNvlUf9muqnJshqTaVfCNTMWCepCy64wAWzFGBVOVYlqm1Ta4bHH3/c/fKuC19dsOtXDVXo+oXommuuca0ddGLTCVsXSN5J+NRTT3XHgfaTTuS6kEq0TOrCS8eQtqdz587upFyhQgUXTFTTW91c6aZIJ9tEaRv1i4Yu3rV9Cl4me7ryvKLAoU722jf+Mq/uqw8++KA7wb/77rvul6jsbiqUt7p40PGhvFUZUFnXjV9BLf/JPCeoTlAXX+Xn8OHDXT2hCzSVc28/6FjQ8aPjQjcGXpN2HROZHWNeGZwzZ457TTf4qt9Ub6lruLqe6WJNwXK1cHzyySctFalO8LoERNcPyTrW69at6y4adUOvdep8rX3qBXtUzlWWdW7QeVQ349p32sfeOVw3S9rX2ve62dBFuY431R+6qVI3xKwo8KMm/qpT9X59p4I/Ol4VNBPd+GRXpmJROdKvvfqV3utypbSrTtC5UkFrr5u/lqk8ed0NRME4XYjrvRrCYPHixa78ZSc39YO6iURfc+kY0P6Jh849qrO0L3WO0Y2i6rucXnPFu4917B5//PHuvKfrBv3IpUCVWjAoX5NBLRjUIkvnbt2oqS5SWdE5XedYlWcdC7rWU12hFmsKUPhlV/dkR/mgawSVTXX1USBe1wBTp05115veD1BByu6Y0s12PNeLfrpOUR2vY0LnUR1H6pKjY0LdkHRNo3OCWoHoeuGFF15w1yW6VvHoe5QG/QiocvHqq6+6feQd42qlodf0HpU5dQnT62effXamx7mOb5VD/dCo+knPVTa9gJfqLu1z7W/9aKUfWnX9HKvFW37cV6rjdDzr+lTHtPadAuY6nnUMJLqfcnp96W/9mtn1kfa/emCoDtN26Byu1r4K7HvdkYMqe9nRDw8qZ/oubVu8+agyrLKpOl5lSj92eMOC5LQe037WeV31rL5X36HeLbpfyOlxEs+5sW7duu6He3XnV+t3tR7Tjxr+lvD6nF7XvY2uQaLvo/zvU5BL91raN/7u6MnahqTYryNaIddiTSmphwZ+FP2tQYb9NGCdf5YkTUHqTSeqqVg1+Jk+5w2GGWvw8+wGKtaAcBpMTunQQIiagU/Tk86ePTv8Ho3yr9mDypcv7wal1IwbmvXCG0wu3oHfCso+0cCjmhFDA/Npe5Ufmio0egBDb4BYb6BXL3+1TLMHRVN+Ke87d+4c87Ws9kO8A3TvT2eccUbMbRHN5KH0aqBGDeyoWaA0c6EGRtfsFh6V3RtuuMHltV5X+X7mmWfCr2vWJQ2uqdc0sK7y2j+7i6aj1aCfGvxPM29oJo5Yg59nd2xpdjKtX4MMegMia1B2DUCt402zRCkt/nVFD1Lon67YP/W3BnTUYJRa7k9XfpPZQIzKe/8pR/WO8lqDXV566aVuMNTowc+j16MBGlVPaCBPbwppb3aSeOuhVOOvfzQTkrZZkyao/HuD+4sGvdQU6spvzcSkgZTXr18fsa6sjjHNfqb8Vjn270cNrKrBzpXfmkJZAxtnN2h6Kk1u4R/8PBnHumbA0To1OYMGeNaAuDo+/GnQAKoaDFyDqaq+0Xnm2GOPDd16663h93iz+Wj2Ie0b1Y06/2qGrOwmVNAAqFpX06ZN3Xv0PTqmlBbNthdvmYo1+LkGDNakCDp+/a9pu1VveoN7+ydMGDt2bET6NEittkv5rMFpNXi6P18zO8/lpH5QfRPr/K7PxbtPRTNSabBZbbcGG9cMgdp3WQ1+Hl3udH3kn0kzu30sGoheExSoPGk/qVz6B55O9PiMVW4mTZoUrjdUN2sads3K6h/kV+cupUH7V98XvY6s6p54JifRbFQ6TvRZlYtatWq5Ga68qeYTmaQmL8RzTGV3vRgr73WNqMG59Rldv6ge8GY/0/GjwZW1XPtex51myvTn67Bhw9xx69Ul/lluvbpGAz9rwHKVMZ2zNVC9N+lBrPsDzYCm9Ov40r7QINijRo0Kv67zkmZS0/Ggderz3iDfiRxTQe4r1Ve9e/d25VoDpGtSKc0gmJP9lJvrS/99U6zrI03S4G2L6mgNgK7PRw8kv7/LXrTMzke67lA6vFlp48lHTW6kOk9lT3Wj/xoxVtmKpx7Td+g1bYu+VwOxa9bD3Bwn0ffRsc6Nf//9t5vgSnmje2cN4q796V+XJh7w6njvGMlsO5988km3XHVltOy2YX8ppH/2XxgM+ZGayis6rib5yP/UckZjZOhXplh9rQEA6UPjLumcoJYz+jUU+Z8G7VUri48//jjopCBNqQWFxq/TA0gFalWmFplq+YOCia58aUjdLNSkWk3+1GRTTaC9AV2Rf6n7wR9//OFuPtR8NHpWIABA6tPsdQpqaEwWdUdT9yXxutkh/3n44YfdOHjqTqdufJqtNFW7vAIAkBMEptKQZrhRf1wN2qa+uhonRLNmIX/TOA3qV6zxEtR/O10GkQcA7Bvo0JgSGm9JM5Kp5U0840wiGBrnRGN3bN261Q1grzH3NO4TAAD4P3TlAwAAAAAAQCD+b0oqAAAAAAAAYD8jMAUAAAAAAIBAEJgCAAAAAABAIAhMAQAAAAAAIBAEpgAAAAAAABAIAlMAAAApqEaNGjZy5MigkwEAAJAlAlMAACAtrVmzxvr06WPVqlWz4sWL2+GHH27XXXed/fnnn1aQPPfcc1a+fPl9ln/55Zd2xRVXBJImAACAeBGYAgAAaefHH3+05s2b24oVK+yll16ylStX2tixY23mzJnWsmVL27hxoxV0lSpVspIlSwadDAAAgCwRmAIAAGlnwIABrpXU+++/b61bt7bDDjvMOnXqZB988IGtXbvWbrvtNve+Xbt22aBBg6x69eqWkZFhderUsQkTJoTX891339kZZ5xhZcuWtTJlythJJ51kP/zwg3vtlFNOseuvvz7ie7t27Wq9evWK6G53991324UXXmilSpWyQw45xEaPHh3xmUcffdSOPvpo97rScdVVV9m2bdvcax999JH17t3bNm/ebIUKFXKPO++8M2ZXvtWrV9tZZ51lpUuXduk977zz7Lfffgu/rs8dc8wx9vzzz7vPlitXzi644ALbunVrknMfAADg/yMwBQAA0opaQ7333nsuwHPAAQdEvFalShXr0aOHvfzyyxYKhezSSy91Laoef/xxW7JkiT311FMusCMKYJ188skuYPXhhx/aggULXNfAf//9N6H0PPTQQ9a4cWP76quv7NZbb3XdCWfMmBF+vXDhwu77FQT773//677rlltuca+dcMIJLvikQNO6devc46abbtrnO/bu3euCUtr22bNnu/Wr1dj5558f8T4F1aZNm2bTp093D733/vvvT2h7AAAAElE0oXcDAAAUcOq+p6DTkUceGfN1Lf/rr7/cGE2vvPKKC+K0a9fOvVarVq3w+9SySa2KJk+ebMWKFXPLjjjiiITT06pVKxeQ8j7/ySef2IgRI6x9+/Zumb/VlVoy3XPPPXbllVfak08+6Vp9KQ1qKaWgWmbURfHbb7+1VatWuVZXMnHiRDvqqKPcdrZo0SIcwNKYVWr9JZdccon77L333pvwdgEAAMSDFlMAACAtKTiVlZ9++smKFCniuvrF8vXXX7uue15QKqc0plX0c7XO8qh7Ydu2bV03PwWMFCzSAO07duyI+zu0PgWkvKCUNGjQwA2a7v8uBb68oJRUrVrVNmzYkIutAwAAyBqBKQAAkFY0TpRaGPkDMn5aXqFChX26+UXL7nV1wYsOfu3evTuhtCo4pjGsGjVqZFOmTHHdBb0xqP755x9Ltuggm/JJragAAADyCoEpAACQVg488EDXTU5d4Xbu3Bnx2vr1623SpElu7CUNOK6gjMZZikXBoo8//jjTYJNmxdOYT549e/bY4sWL93nfvHnz9nnudTNUIEppeOSRR+z44493Xf1+/fXXiPerO5/WnRWtb82aNe7h+f77723Tpk2u5RQAAEBQCEwBAIC088QTT7gZ9zp27Ghz5sxxAZt3333XBazUZU5jKqlbW8+ePd2A5hoQXOMzaRY8jTslV199tW3ZssXNXDd//nw3dpVmtFu2bJl7/dRTT7W3337bPZYuXWr9+/d3gaBoGlPqwQcftOXLl7vWUK+++qobAN1r3aXA16hRo9xg5Vr/2LFjIz6vdGqWPo0F9ccff8Ts4qcxshRo08DuCxcutC+++MIN7K5uis2bN8+jXAYAAMgegSkAAJB26tat64JJGsz8vPPOs9q1a9sVV1xhbdq0sc8++8wqVqzo3jdmzBg799xz3Qx+9evXt759+9r27dvDLa80Q56CQgrwNGvWzMaNGxfuDqeAlgJbXgBI36X1R7vxxhtdWpo0aeIGNn/00UddwEw0W5+eP/DAA9awYUPXmmv48OERn9fMfBoMXa281EpLQa5o6pL3xhtvuC6KmklQgSqlR7MPAgAABKlQKLuRPwEAAJAn1NpJs+75Z94DAABIJ7SYAgAAAAAAQCAITAEAAAAAACAQdOUDAAAAAABAIGgxBQAAAAAAgEAQmAIAAAAAAEAgCEwBAAAAAAAgEASmAAAAAAAAEAgCUwAAAAAAAAgEgSkAAAAAAAAEgsAUAAAAAAAAAkFgCgAAAAAAAIEgMAUAAAAAAAALwv8D9gG/J2e9YrcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON " + "plt.figure(figsize=(12,5))\n", + "plt.bar(avg_sleep_by_occupation.index, avg_sleep_by_occupation.values, color='pink')\n", + "\n", + "plt.title(\"Average Sleep Duration by Occupation\", fontsize=14, fontweight='bold')\n", + "plt.xlabel(\"Occupation\", fontsize=10)\n", + "plt.ylabel(\"Average Sleep Duration (hours)\", fontsize=10)\n", + "plt.tight_layout()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "c7d81599-3128-4f57-9821-a9b53ecdc27f", + "metadata": {}, + "source": [ + "## Third Research Question: Who has more effect on sleep duration: Stress leve Physical Activity Level?" + ] + }, + { + "cell_type": "markdown", + "id": "557961a6-ddf9-4744-b1af-10b9536e8884", + "metadata": {}, + "source": [ + "### Methods" ] }, { "cell_type": "markdown", "id": "infectious-symbol", "metadata": {}, + "source": [ + "I will create two graphs to compare how stress and physical activity affect sleep. The first graph will plot sleep quality and sleep duration for each stress level, and the second will show the same relationship for physical activity levels. These visuals will help the reader clearly see how both stress and physical activity influence the number of hours slept and the overall quality of sleep." + ] + }, + { + "cell_type": "markdown", + "id": "faa9b939-f80f-4342-a442-cd132aeb293f", + "metadata": {}, + "source": [ + "### Results" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "d98295fb-d13b-41e9-82b5-25ba5b0e90fa", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAGGCAYAAADmRxfNAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAnGBJREFUeJzt3QV0VNcWBuA/HqJAIMGDS3B3d3dKoTgUbaFQWmhLcSg16MOd4lDcXYO7a3AIDgkeSOatfYYJk5CEhMidzPzfWrdh/MzMTXr33XufY6XT6XQgIiIiIiKKBevYPJiIiIiIiEgwsCAiIiIiolhjYEFERERERLHGwIKIiIiIiGKNgQUREREREcUaAwsiIiIiIoo1BhZERERERBRrDCyIiIiIiCjWGFgQEREREVGsMbAgomjbsGEDypcvD3d3d1hZWaktadKkobc/e/YMPXv2RMaMGWFvbx96nzFjxsDcvX37FgMHDkSOHDng4OAQ+t579eql9dDIhO3YsSN0X5Ht2rVrsAQVKlQIfc9t27bVejhEFEcYWBBZ+IFMZFv4/9mfOnUK9evXx65duxAYGBjhc3fu3Bn/+9//cP36dXWgbUkHLBJUDBkyBBcvXkRQUFCMH79x40Y0bNgQadOmVUGZq6srvL29UapUKXTt2hWLFi366DESwBne66BBg2ApotpPKeE9fvwYv/zyCwoWLKj2W9l/PT09kStXLrVPDx48GDdv3tR6mESUAGwT4kWIKPFbtmxZ6AGznJGXM/EpUqSAo6Ojuk4CiSVLloTev0yZMqhTpw5sbGxQrlw5mLsFCxaE/jtPnjxo0aIF7OzsULhw4U8+9tdff8XQoUPDXCef5/Pnz3Hjxg3s27dPbV988UW8jJ3oc8lJBPldv3XrVpjrHzx4oLbz589jxYoVyJ8/P9KnT6/ZOIkoYTCwILJwcrBapEiRj66Xg+PwBxAGRYsWxW+//Rbmdn9//zBZCjmDXrlyZVgK489Hgq4OHTpE63Fnz57FsGHDQi9LKZVkhpIlS6bOBJ84cQK+vr7xMuYXL14gSZIksLZm8po+z48//hgaVNja2qJp06bw8fGBTqfDlStXsHfvXpXFIyILoSMii7J9+3ad/OobtpkzZ0Z5f7nd+P7htzZt2ui8vb2jvM/Vq1dDn8/Pz0/3zTff6HLmzKlzcnLSOTo66nLlyqX78ccfdQ8ePIhwDG/fvtVNnz5dV7VqVZ2np6fOzs5OlyJFCl3x4sV1gwYNUvcZOHBglGMIP46o3Lp1S/f999/r8uTJo3N2dtY5ODio99iyZUvdgQMHwty3fPnyUb6mfN5R+eeff0LvK6/1/Pnzj+7z8uVL3bZt20Ivy2f+qfdqYPzdyGe0e/duXeXKlXVubm7quidPnoTe9/jx47p27drpMmfOrL4XGU+BAgV0w4cPj3Bc165d03399de6rFmzqvvL55QmTRpdqVKldN99953u7NmzH+1L8nl5eHjobG1tdUmTJtVlz55d16xZM9348eN10RV+/4uO169f68aOHasrW7asLlmyZGofSpUqla5Jkya6vXv3hrnvL7/8Evr8GTNm/Oi5zp07F2YMvr6+obcFBwfrZs+erfbVlClThu6rtWrV0q1du/aTv4/R3UfF48ePdYMHD9YVLlxYfZ/yWvL5N2zYULdp06ZP/i7LZzJs2DBdtmzZdPb29rq0adPq+vTpo66PLvksDc9n+F0MT/aD8O/L+Pcmou/wc/5OxOQ7jujzePXqle7XX39V+798HpkyZVKf75s3b6L9eRBZOgYWRBZGy8BixYoV6iAhsvvJgU34g9FHjx7pihYtGulj3N3d4zSw2LlzZ5iDpfCbtbW17q+//oqzwEKey3BfORA6dOjQJ8f4uYFFyZIldTY2NmHuZwgsJkyYoA72I3s+Hx8fnb+/f+jz3rt3Tx04RzWGiRMnht7/U9+Pl5eXLr4Ci/v376sAKarvdMyYMaH3v3z5cpjbwx+UDhgwIPQ2CYyMA8AqVapE+T579+4dJ4GF/J6kS5cuytfq2bNnlL/LZcqUifBxrVq10kWXq6tr6OOaN28e7aAkqsDic/5OxPQ7jujzqFSpUoSPrVevni4kJCTanwmRJWMpFJGFk5meHj58GGGJlNRES9nTH3/8oZqHDx8+rG7LnDmzaig2lEyVLl1azWYzYsSI0Md36dIFWbJkUf9Onjw5rl69ii+//BKvXr1S1+XOnVs1doaEhGDevHmqlOj27dto3LixahSX3gzRqlUrHDp0KPR5pSG0Vq1aqs/j2LFjOHDggLq+WrVqcHFxwcSJE1UJhpASL+O+BBlHVJ4+fYpGjRrhyZMn6rKUCbVr1w5ubm6qh0LGKOP9/vvvVe+EzJAln4P0kvTt2zfC8jLDZxCZQoUKhf5bSsnk85ZSkmLFioW+Rt68ecM8pnnz5upzl8/bMNaqVauqzyAq0qfh5OSEr776SjWJy+cnn7OUq/To0UO9N1GiRAnUqFFDzfL177//qv1DSrZat26NTZs2qfssXbpU1dALKduSz8nDwwN37txRdfW7d+8O89ryvRhUqVJFNdlLKZY09Uqpl2G/iA+yDx0/flz9W5qLpf8lXbp02LNnj9r/5X1/99136juTfVm+M+kLkokKxPz581GyZMkI+2nkfRvIc2zZskX9WxqY5XvKli2b2p//++8/VR70999/q+9VxvC53r17p353DCVI8h3Ke5T3JP0Mp0+fVtf/888/av+S7y0i8rnL88j+Jr+Dhhmp5N9S6pgmTZpPjkWef+fOnerfCxcuxLp169RnJdcXL14clSpVUp95dMXm70RMvuOIbN++XT1PhgwZ1P4t+7FYtWoV5syZE+nnSERGtI5siChhhT9DGt0z7cZnyeVsY3hypjWqx0tpjPFZXik7MLhz506YM+krV65U1588eTLMc0o5SVBQ0EclEzEpsYjK6NGjw7zeunXrwpyhd3FxCb2tfv36YR4bkyxQeA0aNIjyu8iXL1+YUqjIypwiYnwf+YyPHDny0X2kdMZwnwoVKqhyHoODBw+GGcuJEyfU9X///XfodZ07d/7oOaV06u7du6GXDaVXshlnPiL7HuMqYyHjNb5/+M9R9inDbfI5GMyaNStMNuXdu3cffR7yed6+fTs0s2ac8ZkxY0aY1+nWrVvobQULFoxVxmL58uVhHiPZJuOsifF3nj9//kjP0Pfq1StMGZzxbatWrdJFh5QGStlQZPuulDB9++23uhcvXkTr9/Rz/k587ncc/vOQkj+DgIAAVcJmuK106dLR+jyILB079ogoQciZQwNp5pRsgGHKUDkzGhwcHHq7nEEX4ZuWZUpXmWnJmGRP4oqc0TdImTIlatasGXpZps80vmx839havHgxRo0apaaPjcjJkydVlsZwBvVzyfiNMyQRfTcyHbGcBTZ8N5I5MWb4buSsr9wuJk+erM7Cy9leaUSXM8TSyOvl5RX6uLJly4b+W7IttWvXVk3uU6dOxeXLl+P0e4zsvQk5g248Xa2cYQ//3kSTJk1Cz7Tfu3cP27Zt+yhbUb169dCz+pI5k0yCQfv27cO8zoQJE0JvkzPrL1++/Oz3FH7fMz6TLr9XzZo1C7PvRPZa3bp1CzNpgDFDJuxTZP+Q9y4TDoT/3RSvX79WU1Abv1Zc/5343O84PNl/DSRLWbdu3dDLR48ejdb4iSwdAwsiCzdz5kxVohF+k1KVuCQzHEWXocQm/GMyZcqE+GT8esYHxRFdF90Dr+iQA7IffvhBlYFcunRJlV3ImiAS3BgfoBkfnH6OnDlzxtl3IweUUtYj5WeGA6+5c+diwIABKoCRMhQJUoxLoaTESjx69Egd7Empztdff63KhaR8zFCKFZc+570JZ2fnMAfoUg4l4zNeT0SCh895Hfn9ks/gcxm/lnz+MtbI9lN5LSnxi4hxICulhcZi8l0UKFBAlWDJ60g50ciRIz/6+yElddH5jOLi70R0HhMROXkQ2ecopVlv3ryJ9usQWSr2WBBRgjDub5C66agWNjNMdRu+J0IOvI0PtuNzjHKWOjzj66SvID5kzZpVbdIHIXXu8m/DQagEHbER/gDU+H3fv39f/VvWJJCzz5GRBfsMJOMggcH+/ftx5swZNT7JVshP6cto06ZN6DS80q8jZ9olO3Hw4EF1H6mRX7lypTrTL1kb6esw7lmIC+H3IVnEUM6CR4eMZfr06erfy5cvV4GG9JAIWcPF+Ix2+NeRev6oehRk9frPZfxastaJ9KoYf7fG+6mcsU+aNGmEz2OcYTBkn2JD+nckoJCtX79+am0WWaPFQL5z6buI778TMfmOjcnvgPFaG8afo6zXEz74IqKPMbAgogQhB6RyQGlY80IaNKWB2JgcYK5evTr04EMOco3JgYoc4EmZjYEcuMoK1REdLMW03ETGKAe4hjOb69evDy1/koMOuWx837ggZ+6l2VYOYsMHTXIwY/xewx8gxua9GpP3Imecxd27d1WwIKUgxuSMrTQgG963HGBLyZSc1ZXSE9mENIQbyq1kcT8JiqSpW9bjkCZ0Q+BkIEGMNMcash5xHViE/54kIDBMPGBMAqPwWSgp98qePbsqyQkICED37t1Db2vZsqVq0DaQfVY+D0Opjnw30uQfnjRIX7hw4aPPNzbvafbs2aHvSb4nwz4sZGE6OeCPL998841qpJZJBsIHJ4ZslkFkAU5s/07E5js2JpnCn376Sf07MDBQvYZBdBa6JCIGFkQWL7JZoeSMaqdOneL0AGTSpEmqpEdKF6R8QhbTkjOEctZVZh2S0hkpp5DMhGQE5EBUegsMNdJr1qxRB0pynRx0y4GCzNxjPH7jg5C1a9eqM6dyoCFbVGc/hZxhl+DFkCGQAyYpd5GDQCmFkXEKOYCSs/VxQQIWWWTs559/VrPpyAGMlGQYDmyMz5rKGX1j8l4lAyBmzZqlztJKX4DMaiQz6URXnz59VOZAymbk+eRMsMyOJUGDHFBLZkFm/pEz44Z6fvnc5eBagj+ZqctQ/y4rtBvIgbfhoFZKneS5KlasqMYtZ5n9/PzC1L9H58AzPNknIlrgUcjnJ/uLzJi1efNmdZ3MfiUBonzOsjCgBKZSd3/u3DnVwxM+mJVAp3///urfsl8aX29M3o/sK9IzIn7//Xc1i5oc9Mq+KjMZSWZHAi/Zz6Q/43NJf4r0REiAYvjdkpnT5HOVANF4sUbJnMQn+YzHjRunvn8JLqSsTb53GZtx2ZiUMUqQFh9/J2L7HRv88ssvqo9JTlQsWbIkzN+VuPxbSGTWtO4eJyLTnBVKZpaJy1mhDLPZyKJrn3pt45lxHj58GK11LAxkppiI7pc7d+5ofT6yjoUs3BbVfPh//vnnR4/73FmhPrVOiGGrWbNm6MxEES2uZ7zVrl07RjNHCVmgLqp1LAybwYIFCz55X+M1G3LkyBHlfZMnT64W3IuO6HxexvuRzOgV1RoHUX0+MutT+LU/ChUqFOG4ZOajT61jEX4WpPhcx0JmY4pqX4uLffhTa9gYZobaunVrtGdv+5y/E5/zHYf/POT3JrLfJ65jQRQ9zFgQUYJp0KCBKvsZO3asOrsoZxyldEPOVMvZTDmTKPcxbiqVMhqZ9UXKPWSefCmpkXIGOTMvMwnJGhLG6tWrp86gjh8/Xp0RDwoKitEYZf0CGePo0aNVNkfGKKUXqVKlUjMbyRnVT9WJx4TU7UuGYuvWreqMtpR/SBZDxi1nwfPly6fKQeQst5x9NSalOfJZyGcjZUfGsxLFlMzaI+9dvhs5IyxrJMgY5POXpm+5TWZKMpDvavjw4epMsJzllTHLdylnkGXMMsOOjNlAGnplDQw5sy5n7yUrJOVCsmaAlFHJOiDGJW1xST5fmbloxowZqpxLZkqSz00yCXImXDIeUvIWUW+JnImX7IJxZiWyci3JzmzcuFGdqZdG9iNHjoS+T3meggULqrVGJBMWW5Ilkt8F+b6klEzKteQsv5TTSZO8rCPzqXVN4oK8X1m7Q2bNkjHIfiCZBulHkO9TMlSS3TMuf4uPvxOx+Y4NJNsms7NJo7msryLfmezDkrGKix4UIktgJdGF1oMgIiIiSkhSPmgcJPJwiCj2ON0sERERERHFGgMLIiIiIiKKNQYWREREREQUa+yxICIiIiKiWGPGgoiIiIiIYo2BBRERERERxZrFrWMREhKCO3fuqDnwOS81EREREVHkpGvi2bNnam2X8OspwdIDCwkqZLEcIiIiIiKKHlk4Ml26dFHex+ICC8lUGD4cNzc3Tcbw9u1btQKtrIoqK7KS5eK+QIL7ARlwXyAD7gtkKvtBYGCgOilvOIaOisUFFobyJwkqtAwsnJyc1Ovzj4Vl475AgvsBGXBfIAPuC2Rq+0F0WgjYvE1ERERERLHGwIKIiIiIiGKNgQUREREREcWaxfVYEBERkfkKDg5WdemJnbwHW1tbvH79Wr0nskxvE2A/kN4NGxubxB9YyJy4AwYMwPLly3H//n0ULFgQ//zzD4oWLRrpY3bs2IHevXvjzJkzqkP9l19+Qdu2bRN03ERERGR6c+3fvXsXT58+hbm8n1SpUqlZLLnuluXSJdB+kDRpUvU6sX0NTQOLjh074vTp05gzZ45adGPu3LmoUqUKzp49i7Rp0350/6tXr6J27dro0qUL5s2bh61bt6rnSJ06NapXr67JeyAiIiLtGYIKT09PNYtOYj8YlwV9nz9/DhcXl08uSkbmKySe9wMJXF6+fKlO8As5pk6UgcWrV6+wdOlSrFy5EuXKlVPXDRo0CKtXr8bEiRMxbNiwjx4zadIkZMqUCX/99Ze6nCtXLvj6+mL06NGJJ7AICYbVdV+kfbwPVtfdgMzlAOu4ST8RERFZIikRMQQVHh4eMJcDyqCgIDg6OjKwsGAhCbAfJEmSRP2U4EJ+h2JTFqVZYPHu3Tv1h0A+qPBvToKFiOzbt09lNIxJQNGrVy8kCmdXARt+hG3gHRSRy9cnAm5pgBqjAJ96Wo+OiIgoUTL0VEimgohizvC7I79LiTKwkNX7SpYsiaFDh6rMg5eXFxYsWKCCh6xZs0aa5pT7GZPLsiKgZEAMEZexN2/eqM1A7mv44BKyucvq/BrYLG0nSScYJ2d1gf7A4tYIbjwTupx1Emw8ZBoM+6A5NBrS5+N+QAbcFz6PfF5S0iGbnOE1B/JeDD/N5T2R6e4Hht+fiAKLmPw90rTHQnor2rdvr/op5E0UKlQIX375JY4cORJnrzFy5EgMHjz4o+tlefQEO7OhC0G1M71hEy6oEFbQQXaZoFW9sdlPrmC60xJt3rxZ6yGQCeB+QAbcF2JGZs2RxlOpRZeyEXMiE90QPYvn/UB+b+Qk/a5du1RVkTHpwUgUgUWWLFmwc+dOvHjxQmUSpGHkiy++QObMmSO8v/zRuHfvXpjr5LIscx5RtkL0799fzSJlIK8js0lVq1ZNPS4hSE+F7fHHkd8uKai3j1E7T1LovMskyJjINMhZADmAqFq1qprujSwT9wMy4L7weWQqTpk1Rxpcw5dYJ1Zy9lgOJpMlS6Z6Uhs0aKD1kEyWnECWnt2jR4/G+2vJxEHffvstTp48qU6Kx/dr697vB1LpE9MJCeQYWI6x//e//0Xrd0iOpaXvOfzvkKHaJ9GsY+Hs7Ky2J0+eYOPGjfj9998jvJ+UTq1bty7MdfIHWK6PjIODg9rCkz/YCfZH+9WjaN3NVu7H/5FYpATdH8lkcT8gA+4LMSM9m3LQJc2tsWlwDQ7R4eDVx7j/7DU8XR1RLFNy2FjH3+xSDx48wK+//oq1a9eqE6USROTPn19dZ3xsE9v3FRcqVKigTgYLe3t7pEiRQlWatGvXDo0aNUqwccj3LMsUGAdaffv2VQf7CfEZ9evXTy11YPj9NBzsx9drh7wvfzLs3zEhn4ucrJcT7JGdtDeQ55bXiOhvT0z+FmkaWEgQIZFYjhw5cPnyZfUB5MyZU+2khkjr9u3bmD17tros08yOGzcOP/zwgyqh2rZtGxYvXqx+IU2ai1fc3o+IiIji1IbT/hi8+iz8A16HXpfa3RED6/qgRp7YTcEZmcaNG6sSlH///Vcd+ElwIWfEHz2K3gnJhNapUycMGTJElcrcunVLHeA3b95crSc2ZcqUOAkMP4dkqmSLbzK5kJ+fn/retBYUFKQCvKhI8CeTHMlsq3/88UeCjEvT8DcgIADdu3dXwUTr1q1RpkwZFWwYIiN/f3/cuHEj9P4y1awEEZKlkIhepp2dNm2a6U81611KP/vTRx0WRpw89PcjIiKiBA8qus49GiaoEHcDXqvr5fa4JtPj7t69G6NGjULFihXh7e2NYsWKqZOq9epFPlOklHw1a9ZMLWiWPHly1K9fH9euXQtzHzk2kolxpKRFjrEmTJgQepvcVw7iFy5ciFKlSqn75MmTJzQbERXpTZWy9HTp0qFEiRJq7JMnT8bUqVOxZcuW0IWM5fmNFyo8fvy4us4wzlmzZqnxr1q1Cj4+PqqyRI73Dh06pMoA5YDY3d0d5cuXD1NilDFjRvWzYcOG6vkMl2W5ggIFCoQ5yy8BkIxTnltu27Bhw0efwbJly9RnL+9LjitlAqGoyGcm44uo3E76hjNmzKjGLcGWcU+ETCIkGRWZylUeK8e78l4NDJ+HsRUrVoQpfZKSK3kf8t3K8bBhDEuWLEHevHlVGZNMtSyzp0r5k0HdunXVuBOKpoGF/GJI5CcfuAQRko2QL8T4g5YdNHwq7tixY+ox8thEseq2rFMhU8oqkQQXL58AJxYk5KiIiIjMklr0K+hdtLZnr99i4KozaiKVj57n/c9Bq86q+0Xn+Qyz+ET3LLscQBrPXvmpHhw5mSr19hKU7NmzRz1HjRo1QpvWZQFhKaUaPnw4zp07hxEjRmDAgAEqK2JMqkT69Omjjqmk7EoOQD8nU9KmTRtVwiUH6TEhDcESmMiB8pkzZ9RBtxyMy/NJZmD//v3Ili0batWqFXqQbjgYnzlzpjpuND44N/bPP/+ok89//vmn6oWQz0yCtUuXLoW5388//4zvv/9eBT7Zs2dXEwiFb1w2Jp95kSJqwYAw5HhUvsc1a9aoTYK03377LfR2qbSRPhn5DiRQktlPZUyPH0fefxsRqe6R55HPWsYsn4GMWap45LuWY2YpSzPeByVYlexS+OAzvphEj4VFkHUqms1W61gg8M6H693SAkm9gRt7gZXdgYBbQPkfpZhOy9ESERElWq/eBsPn141x8lxyiHY38DXyDtoUrfufHVIdTva20ZrJSk6gSnmRLAAs/Qpyhl7OdufLly/CxyxatEidjZeDccPZbDnIlrPdclApE9MMHDhQHVQb+h7k7PbZs2dVZkEO2g169OgRWtIjpTJyRn/69OnqIDgmpHxJDspjeuAqQZJkUiRTYFCpUqUw95HyKnlvcqBep04dpEyZUl0v10nmJDISUPz444/qsxQSwGzfvh1jxozB+PHjQ+8nQUXt2rVDMwK5c+dWB++S5YnI9evXkSaNVKCEJd+JfJeurq7qcqtWrVRJmwR3kj2Qz1dur1mzprpdMjxSfSOftwR40SXBo7QHGD4HCVIkEJLvWjJeQrIXxgzjlbEbMjzxiXObJnRw0es03n21Aoe9u6qf6HUKaLcOKPN+5qodI4FVPYBgzmFORERkzuTA/s6dO6okSLIOEhxIgCEHoRE5ceKEOvCVA1hDxkPKoWRGHzlrLgex8rNDhw6ht8s2bNgwdb0x4+ZwCXLkTLyc9f4ccoY8pjMWSX9A+ABKekwk0JJMhVSwyOydMoWwcVn8p8gMRvKZli5dOsz1cjn8+zN+fZmZ1LD6dGRkOtaIyqDkgN0QVBiey/A88rlLEGU8Hin5l0xCTD9vCR4MQYWQoKxy5coqmGjatKkKWGQiJGOGWVNjMmVsbDBjkdCsbdSUsrfPBCK/TC0rZVKiykDAPR2w7nvg2Fzg2V2g6SzA4cOOSkRERJ+WxM5GZQ6iQ2aBajsz4pIaY7PaFVWzREXntWNCDlSlbl82KVnq2LGjyjpI72l4cpBduHBhVe4Unhxwyu1CDjCLFy8e5vbYrKb8qcZrKTEqWrSoumxowDYux4logTU54A0fjEhGRcqxpJRJDqKlP0ICoPham8R4tiPDWKJahE56P8IfuId/HsNzxWQxO/nMwpfQRfSZyQyq4b9TyXzs3btXrc82duxYVd514MABlakShnIr44AkPjFjYUqKdgCazwdskwCXtwAza+kDDCIiIoo2ObCTcqTobGWzpVSzP0V2vl2ul9vlftF5vpieuQ9PmpmNm2+NSTZDDuKlH0Hq9I03OcPv5eWlSl+uXLny0e2GA00D6WEwkHIaWZxYGr5jSvoG5GDbUFZlOICV+n8D6QeIDukZkSZn6auQsiQJLB4+fPjRQbwEM5GRLId8BvJc4Z9bPtvYKFiwoCori+mabfb29mHGI0GD9IcYxiOfmfSRGH/v0f3MZH+TbIiUckm/jLyWzNZlcPr0afWZyeeZEBhYmJocNYG2awGnFMDdk8C0qsCDC1qPioiIyCzJOhUypawIHxIYLsvtcb2ehZyZl56CuXPnqgbjq1ev4r///lNreclMTxFp2bKlOmsut0sjsTxGyqfkYFwadIUcYI4cOVItinbx4kWcOnVK9WH8/fffYZ5Leg3kAPT8+fNqhk4JDqQJOCpSTnP37l31WhKYSB+DLAXQtWtXNbuSkCBGFiKWmZokCJLZPKXnIzqkBEpmV5ISITnrLu83/ALIUnYk/QsyjoiyB0L6FqSvQnpSLly4oNaekAP1nj17Ijak4Voay2PC2dlZfT4yJuljkcBEyr3ks5SSNSHZJZmZ6qefflKlU/Pnz4+0HM6YfEbSnH/48GFVLiZN3bI2inGAKPtJ2bJlI11IOq4xsDBF6QoDHTcDyTMDATeA6dWA63u1HhUREZFZknUqJn5VCKncw9bPy2W5Pj7WsZDeBzmgHD16tFrtWKZ8lVIoOeiUWTIjIgefu3btQoYMGVTDrhxAysGp9FjImXohpVTS3C3BhNTeS0O4HKSGz1jIrEWySZ2+HCxLn4cELVGREivpH5Cz8PL6cpAsB+/G09nK2fEFCxaogEV6GOQAX3o8okOamSVYkMyMNEAbpmg1JkGKlP9I8CIZhIjI42RROJn1Sj4DOaCX9yeBS2xIoCMzWEmwEhO//fabyujIe5L3Jn0ysryCzKYlpE9GAkxZBFrGK5+fBGafIt+57A+S4ZEGelm4Tz4fQ5O4kKlmZZ9KKFa66M6LZiakqUfShbKGhuGXMKFJCkx2HtkRolzN8MVDYEFz4NYhwMYBaDQZyN0wIYdKprIvkFnjfkAG3Bc+jxxYy9l74/n9E8PK21GRGn05ZpFjlbhc1Vlmb5LPScpmjNd+oOiRzIN8LzLLlqnvB+vXr1fBlWTEpEH/c3+HYnLszIyFKXNOAbReBeSsAwS/Af5rC+z7ME0aERERxR0JIkpm8UD9AmnVT62CCjJd0hwtjeUxac7WivRsSObqU0FFXGJgYersnfTrXxT7Wn9540/A+n5ASOSNS0REREQU92QNDemFiMssUnxp0qTJR7ODxTdON5sYyJS0NX8H3NMDmwcAByYCgbeBRlMAu4RpxiEiIqLET5qfLawKnhKQ6YdbpCfT15X+Fmg8HbCxB86tAmbXB17GbDl4IiIiIqL4wMAiscnbBGi1HHB0B24eAKZXBZ5c03pURERERGThGFgkRhnLAO03Am7pgEeXgWlVgNtHtR4VEREREVkwBhaJlWcuoOMWwCsv8OIBMKs2cHGT1qMiIiIiIgvFwCIxc0sNtFsHZK4IvH2pX/PiyKdXaiQiIiIiimsMLBI7Rzeg5X9AgZaALhhY3RPYNgzgjA9ERERElIAYWJgDGzug/nig/I/6y7v+AFZ0Bd4FaT0yIiIiMhGDBg0Ks9p227Zt0aBBA03Gcv78eZQoUUKt8hybFcCtrKywYsUKmIILFy4gVapUePbsGUxFUFCQmmL48OHDCfJ6DCzMaTraij8B9cYCVjbAiQXA/KbA60CtR0ZERJQ4yOKzV3cDp5bofybAYrQ3b95E+/btkSZNGtjb26tVnXv27IlHjx7F+2v/888/mDXrQwl1hQoV0KtXLySEgQMHwtnZWR2Mb926NcL7PHjwAF27dkWGDBng4OCgDtqrV6+OPXv2wBT1798f33zzDVxdXdXl169fq+Atb968avXrmAZxZ86cUYvc5cuXDzY2NhgzZkyE9xs/frwKHiRIkwXxDh48GHqb7FPff/89fvzx/cnneMbAwtwUag20WATYOQNXdgAzawKBd7QeFRERkWk7uwoYkwf4tw6wtIP+p1yW6+PJlStXUKRIEVy6dAkLFizA5cuXMWnSJHWgXbp0aTx58gTxyd3dXa0krQU/Pz+UKVNGBVIeHh4R3qdx48Y4duwY/v33X1y8eBGrVq1SwU9CBF0xdePGDaxZs0YFEgbBwcFIkiQJvv32W1SpUiXGz/ny5UtkzpxZBWESVEVk0aJF6N27t7rP0aNHkT9/fhV83b9/P/Q+LVu2hK+vrwpU4hsDC3OUrSrQbi3g7AncO62fjvbeWa1HRUREZJokeFjc+uMTcYH++uvjKbjo3r27OqO8adMmlC9fXp2Zr1mzJrZs2YLbt29j6NChUZb8SFBgnHGQs9LZs2eHk5OTOiAdMGAA3r59G+nrG5dCyb937typshjyWrJdvXoVWbNmxZ9//hnmccePH1e3SyAUkZCQEAwZMgTp0qVTmQYpddqwYUOY93LkyBF1H/m3lGiF9/TpU+zevRujRo1CxYoVVQBSrFgxlRWoV69elBmgZs2aqc8mefLkqF+/Pq5dC7ve17Rp05ArVy51hj9nzpyYMGFC6G1yXxnTwoULUapUKXWfPHnyqM8mKosXL1YH9WnTpg29TjIyEydORKdOnSINDKJStGhR/P777yrAks8xIn///bd6/nbt2sHHx0cFpvL9z5gxI/Q+yZIlU4GqvKf4xsDCXKUpCHTcDHhkAwJvAzNqAFd3aT0qIiKi+CcTmAS9iN4mJcPrf5AHRfRE+h8bftTfLzrPF83JUx4/foyNGzeiW7du6qy2MTkIbdGiBZYvXw5dDCZjkRIcCTTOnj2rAoSpU6di9OjR0Xqs3L9kyZLqINXf319tEuhImdbMmTPD3FculytXTgUdkT3XX3/9pQKSkydPqjPoEgxIZkbIc+fOnRt9+vRR/5ZSnfBcXFzUJsHUmzdvovUeJIiS15LPQYISKZmS56hRo4bqNRDz5s3Dr7/+iuHDh+PcuXMYMWKECsAkK2Ksb9++anySMZHPpW7dulFmSuT1ihQpgoQk70kCNONsiLW1tbq8b9++MPeVoEzGGN9s4/0VSDvJMgIdNgELvgRu7gfmNAIaTATyNdV6ZERERPFHpmAfkSaOnkynz2T8lj56d//pDmDv/Mm7yUG2BA1y5jwicr2ctZc+g+ie7f7ll19C/y0193LALmepf/hBAqdPl0VJ9kTOdhu/nmQy5EBc6vbl4FQO3ufPn/9RFsOY3CbZk+bNm6vLknXYvn276hGQfgB5fuk5kIP+yN6b3C5BkgQ6cha+UKFCKqsjzyk9B5GVBUm2RDISknUwBEGSvdixYweqVaumSoYk6GnUqJG6PVOmTCoQmzx5Mtq0aRP6XD169FCZAiFZB8m4TJ8+PdLP8vr16wkeWDx8+FCVW3l5eYW5Xi5Lc7wx6eGRMcY3ZizMnVNyoPVKwKc+EPIWWNYR8B3N6WiJiIhMwKcyEnKwH11yYC0lL3KwLgftEmhI7X9syAFp7dq1Q0trVq9erTIITZtGfJIyMDAQd+7cUeMwJpclQxATcmAvzyW9FZJ1kOBAAgzj8i9jJ06cUOVZkrEwZDykHEqaqKWn48WLF+pnhw4dQm+XbdiwYep6Y5KlMA5yJGiIavyvXr1SZVMxId+N8TgMm2RR4ppkxaRnI74xY2EJ7ByBJrOATb8A+8cDWwYBAbeAmr8D1jZaj46IiChu2TnpMwfRcX0vMK/Jp+/XcgngXSp6rx0NUkYkZ9XlYLVhw4Yf3S7Xp0iRIrS5Wu4bPggx7p+Q0hdp0h08eLAqB5IMhGQr5Ox8bHXs2BGtWrVSZVWSAfjiiy9UZiMhyMF61apV1SYlSzIWyToYN0kbPH/+HIULF1blTuGlTJlS3S6kRExmTzImsy7FhnxXT2LYbC9Bm/SrhCfBUHRfU8Z97969MNfL5fCZICm9k88gvjGwsBTW1kCNEYB7OmDjT8ChafqmtMbTAPuE+eNARESUIKQMJhrlSEqWSoBbGv3/EyPss7DS3y73i8OTcTITkhwsS+Pwd999F6bP4u7du6rcSM6sG8hBofQjGJdSGZ+B3rt3r2pw/vnnn0Ovi2npi2RHpLQmvFq1aoU2IktJ0K5dkfdsurm5qQNm6W+Q0iUDuSylVLElDcqRrVsh2QzJ2nh6eqpxhCfBloxNZuOSICwq+/fvV30k4t27d6qXQcqjIlOwYEFVUhUTkgmJrE8lut+XBFIyi5ihCV9KweRy+LGePn1ajTG+sRTK0pTsBjSdBdg4ABfWAv/WBV481HpURERE2pBgocao9xf0dfkfvL9c47d4yfCPGzdOlRVJhkEO1mVGIzlwl4BDZncyruevVKmSur80E8tiZ126dIGdnV3o7dmyZVOlNZKlkLKe//3vf6r5OyakL+PAgQNqZiSp35eDVCFnxSVDIDMyyesYlwlFRBqfpa9CDvJlnYp+/fqpM/OyPkd0SaO0vOe5c+eqBnCZoeq///5TsyTJTE8RkWBBzuLL7dKoLI+R8imZ7vXWrVvqPpLRGTlypPp8ZArbU6dOqSyMzK5kTHpB5POTXgWZvUuyEdLIHhn5Dvft2/dRYCbBhrx3yRgEBASof0eUpYisOVvuK2OUf8tMYXLZeDYumWpWMjDSfC5ZLln3Q0q+ZJYoY/J5SI9JvNNZmICAADkdoX5qJSgoSLdixQr1UzPX9up0v3nrdAPddLp/Cuh0Dy9rNxYLZhL7AmmO+wEZcF/4PK9evdKdPXtW/fxsZ1bqdH/l1P9/0bD9lUt/fTy6evWqrk2bNjovLy+dlZWVOkZp1KiR7tmzZ7onT57ogoOD1f1u376tq1atms7Z2VmXLVs23bp163Tu7u66mTNnhj5X3759dR4eHjoXFxfdF198oRs9erS6j8HAgQN1+fPnD70sr1u/fv3QyxcuXNCVKFFClyRJEjUOGZuBn5+fuu7333//5HuSMQ8aNEiXNm1anZ2dnXrN9evXh7mPXCfjiczr1691/fr10xUqVEi9BycnJ12OHDl0v/zyi+7ly5eh95MxLV++PPSyv7+/rnXr1roUKVLoHBwcdJkzZ9Z16tQpzHHfvHnzdAUKFNDZ29vrkiVLpitXrpxu2bJlod+HPOf8+fN1xYoVU/fx8fHRbdu2Lcr3/PbtW12aNGl0GzZsCHO9t7e3er7wW3QYxhJ+K1++fJj7jR07VpchQwY1Vhnz/v37w9y+d+9eXdKkScN8bjH5HYrJsbOV/AcWRJqKJBUmUWNEabKEIDWR69atU6lF47MNCe7BRWBeY+DpDcDJA2ixGEiXsDMaWDqT2RdIU9wPyID7wueR5lw5Oy0z/MS0gTYMWWlbei6e3wNcvPQ9FQnciyj9A3L2XKailbIfOVaRKUS1Jme8K1eurLIq4WchMieSrZH9SDJDsv5GTIwfP141mst3F1ckayTHrrHZD6QnRtbY+Omnnz7rdygmx87ssbBkKbMDHbYA85sB/seBWXWAJtOBnLW1HhkREVHCkyAiU1lNhyClOoaSJFm8TWtSqiVT3soidjITlDkHFbHVuXNnNUXws2fP1MxUpkBKqPLmzav6eBKC9iEwacvVC2i7FshaFXj3Clj0FXBwqtajIiIislhSHy/9CKaQqViwYIFqCpcDZulvoKibsX/++WeTCSoMDd4y7XD4RRjji/Z7LGnPwQX4ciFQqDWgCwHWfQ9sHij5N61HRkRERBqSpm1pSJZZkdKmTQtzJ9ki6RKIaRkU6TGwID0bW6Du/4CK71ft3DMGWNYJePdG65ERERERUSLAwILCzvtdvi/QYCJgbQucXgLMbQy8eqr1yIiIiIjIxGkaWEhqTVZRlA50qf3KkiULhg4dGuXy9jIfsaw+GX6TxWQojhRoAbT8D7B3Ba7tBmbUAJ7e1HpUREREUTKsu0BE2vzuaDorlCyeIqs4yqIeuXPnVgu+SMOSTGkli5lERRZcMZ7ySlZZpDgkK4y2WwfMawo8OAdMr6oPNlLl1XpkREREHzWoSqPznTt31ArVcllOOib2Az2Z0UemATWFJm4yz/1Ap9Op55eZv+T55Xcn0QYWsvy8rI5Yu3bt0IYZmX3g4MGDn3ysBBJJkyZNgFFasNT5gI5bgHlNgAfngRk1gS9m64MOIiIiEyEHRFL94O/vr4ILcyAHfK9evVIVHYk9SCLT3w+cnJyQIUOGWAcvmgYWpUqVwpQpU9SS6rJ0/YkTJ+Dr6/vRsuoRkW59mVs5T548am7l0qVLJ8iYLU7S9ED7DcDCr4DrvvoMRr1xQIEvtR4ZERFRKDnTKgdG7969U6XW5rBY4q5du1CuXDkulmjB3ibAfmBjY6Omyo2LwEXTwKJfv35qNT9ZAEbelPwhGD58OFq2bBnpY1KnTo1JkyahSJEiKrCYNm0aKlSooBaSKVSo0Ef3l/vIZiCvZ/iiZNOC4XW1ev0Ys3UBmi+CzeoesD67HFjRBcFPriOkdG99wzdZzr5A8YL7ARlwX4gbckxhDiUwEiTJezGH90OmvR/Ia0QmJn+PrHRRdUrHs4ULF6Jv3774448/VI/F8ePH0atXL5WxaNOmTbSfp3z58uosxZw5cz66TbIZsoplePPnz1dpH4oBXQh87vyHbPfXqovXPCrgZPo20FnxDx4RERGROXr58iVatGiBgICAMP3NJhdYpE+fXmUtunfvHnrdsGHDMHfuXJw/fz7azyPBiZRQ7du3L1oZC3ndhw8ffvLDiS8S+W3evBlVq1ZNlOlN68PTYb2xH6ygQ0iWKghuNA2wd9F6WIlSYt8XKG5wPyAD7gtkwH2BTGU/kGPnFClSRCuwsNU6AgrfJCJpnphOeSWZDimRioiDg4PawpMvR+tfVFMYw2cp2QVImg5Y2gHWfltgPbeBfsYoF87MZXH7AsUp7gdkwH2BDLgvkNb7QUxeV9PAom7duqqnQsqYpBTq2LFjqgyqffv2offp378/bt++jdmzZ6vLY8aMUTM/yP1l6i3psdi2bRs2bdqk4TuxQLnqAG3WAAu+APyPA9OqAF8tBVJk03pkRERERKQBTQOLsWPHqgXyunXrhvv37yNNmjTo3Lkzfv3119D7yNRxN27cCL0sc+326dNHBRvSI5EvXz5s2bIFFStW1OhdWLD0RYEOm/Wrcz+5ql/r4suFQIYSWo+MiIiIiCwpsHB1dVUZCNkiM2vWrDCXf/jhB7WRifDIog8uJHNx+wjwbz2g8VTAp77WIyMiIiKiBMSlHCn2XFICbVYD2WsCwW+AxW2A/RO1HhURERERJSAGFhQ37J2BL+YCRTrIvLTAhn7Ahp9kAmatR0ZERERECYCBBcUdG1ug9l9A5YH6y/vHA0vaAW9faz0yIiIiIopnDCwobslK3GV7A42mAtZ2wNkVwJwGwMvHWo+MiIiIiOIRAwuKH/ma6aefdXADbuwDZlQHnlzXelREREREFE8YWFD8yVweaL8BcEsLPLyon472znGtR0VERERE8YCBBcUvr9z66Wi98gDP7wEzawGXNms9KiIiIiKKYwwsKP65pwXarQMylQfevgDmfwEc1a+kTkRERETmgYEFJQxHd6DlEiBfc0AXDKz6Btg+AtDptB4ZEREREcUBBhaUcGztgYaTgLLf6y/vHAWs7AEEv9V6ZEREREQUSwwsKOGno608AKgzBrCyBo7PBeY3A94803pkRERERBQLDCxIG0XaAc0XAHZOgN82YGZNINBf61ERERER0WdiYEHayVEDaLsGcE4J3D2ln472/nmtR0VEREREn4GBRQILDtHhwNXHOPLQSv2UyxYtbWH9dLTJswABN4EZ1YBrvlqPioiIiIhiiIFFAtpw2h9lRm3DVzMOY/YlG/VTLsv1Fi15Jn1wka4Y8DoAmNMQOL1U61ERERERUQwwsEggEjx0nXsU/gGvw1x/N+C1ut7igwtnD6DNKiBnHSA4CFjSHtjzP05HS0RERJRIMLBIAFLuNHj1WUR0iGy4Tm63+LIouyRAs9lA8S76y5sHAOt/BEKCtR4ZEREREX0CA4sEcPDq448yFcYknJDb5X4Wz9oGqPEbUG24/vLBycDi1sDbV1qPjIiIiIiiwMAiAdx/9jpO72cRa12U6gE0mQHY2APn1wD/1gNePNJ6ZEREREQUCQYWCcDT1TFO72cx8jQGWq0AHN2BWwf109E+vqL1qIiIiIgoAgwsEkCxTMmR2t0RVlHcx9nBBoUyJE3AUSUSGUsD7TcB7umBx37AtKrA7SNaj4qIiIiIwmFgkQBsrK0wsK6P+ndkwcWLN8HoOPswnr4MStCxJQqeOYGOW4BU+YCXD4FZdYALG7QeFREREREZYWCRQGrkSY2JXxVCKvew5U6SyehUNhOS2Nlg96WHqD9+Dy7ee6bZOE2Wayqg3TogS2Xg7Utg4ZfA4Rlaj4qIiIiI3rM1/IMSJrio6pMK+y7fx6bdB1CtbHGUzOqpMhoNC6bD13MO4/qjl2g4fg9Gf1EA1XKn0nrIpsXBFWixCFjdCzg+F1jzHfD0JlD5V33DNxERERFphhmLBCZBRPFMyVE4hU79lMvCJ40bVvUog5KZPfAiKBhfzzmCf7ZcQoilr20Rno0dUH8cUKG//rLv38Cyr4F3LCEjIiIi0hIDCxOS3NkeszsUQ9tSGdXl0Vsuotu8o3jx5p3WQzMtkp2o0A+oNw6wsgFOLQbmNQZeB2g9MiIiIiKLxcDCxNjZWGNQvdz4vXE+2NtYY8OZu2g0YS9uPHqp9dBMT6FWQIvFgL0LcHUXMKMmEHBb61ERERERWSQGFiaqWdH0WPB1CaR0dcCFe89Qb7wvfC891HpYpidbFaDtWsDFC7h/BphWBbh3RutREREREVkcBhYmrLB3MqzuUQb50yfF05dv0XrGAUz3vQqdjn0XYaQpAHTYDKTIATy7A8yoAVzZofWoiIiIiCwKAwsTJ9PTLvq6BBoXSgfp4x665iy+/+8kXr8N1npopiWZN9B+A5ChFPAmEJjbBDixSOtREREREVkMBhaJgKOdDf5smg+/1vFRs0gtPXoLX0zZj7sBr7UemmlxSg60Wg7kbgiEvAWWfw3s/gtghoeIiIgo3jGwSCSsrKzQvkwmzG5fDEmd7HDi5lPUHeeLI9efaD0002LnCDSeAZTsob+8dQiwtjcQzJm1iIiIiOITA4tEpnTWFFjVvQxyeLniwbM3+HLKfiw+dFPrYZkWa2ug+nCgxigJyfQrdC9qCQS90HpkRERERGaLgUUilMHDCcu6lUKN3KkQFByCH5aexMCVp/E2OETroZmWEl2AZrMBW0fg4gZgVh3g+QOtR0VERERkljQNLIKDgzFgwABkypQJSZIkQZYsWTB06NBPznq0Y8cOFCpUCA4ODsiaNStmzZoFS+PsYIsJLQuhd9Xs6vK/+66j1fQDePyCK1CH4VMPaL0KSJIMuHMUmF4FeHhZ61ERERERmR1NA4tRo0Zh4sSJGDduHM6dO6cu//777xg7dmykj7l69Spq166NihUr4vjx4+jVqxc6duyIjRs3wtJYW1vh28rZMKVVYTjb22D/lceoN84XZ+8Eaj0005KhuH462qTewJNrwPSqwM2DWo+KiIiIyKxoGljs3bsX9evXV4FCxowZ0aRJE1SrVg0HD0Z+0Ddp0iSV4fjrr7+QK1cu9OjRQz1u9OjRsFTVcqfC8u6l4e3hhFtPXqHxxL1Ye9Jf62GZlhTZgI5bgDQFgVePgX/rAudWaz0qIiIiIrNhq+WLlypVClOmTMHFixeRPXt2nDhxAr6+vvj7778jfcy+fftQpUqVMNdVr15dZS4i8ubNG7UZBAbqz+a/fftWbVowvG5cvn6m5I5Y8nVxfPffSfhefoTu84/i9K1M6FU5q8psEACHZEDLFbBZ3hHWlzdDt6gVQqqNREjRjpoNKT72BUp8uB+QAfcFMuC+QKayH8Tkta10Gi7jHBISgp9++kmVP9nY2Kiei+HDh6N///6RPkYCkHbt2oW5z7p161TW4+XLl6pXw9igQYMwePDgj55n/vz5cHJygrkJ1gFrrltjm78+GZU7WQhaZQ1BEk1DSNNipQtGvpuzkfHRdnX5kmdNnE3zBWDFuQyIiIiIjMnxdYsWLRAQEAA3NzdERdPDzcWLF2PevHnqID937tyhPRNp0qRBmzZt4uQ1JADp3bt3mIxF+vTpVcnVpz6c+Iz8Nm/ejKpVq8LOzi7On78ugJXH7+CnlWdx5gkw5aorJrUsgEwpnOP8tRItXR0E7x0Dmx3Dke3+emRJ4YDguuMBWwez2hcoceB+QAbcF8iA+wKZyn5gqPaJDk0Di759+6Jfv35o3ry5upw3b15cv34dI0eOjDSwSJUqFe7duxfmOrksQUL4bIWQmaNkC0++HK1/UeNzDE2KeiN7and0nnMEVx6+QOPJB/C/LwuiYg7PeHm9RKnCD0CyDMDK7rA+uwLWLx4AzefpZ5BKYKawP5L2uB+QAfcFMuC+QFrvBzF53VjVfrx+/TrWqRVrWczMiJRESYlUZEqWLImtW7eGuU4iObmewsqXLilW9iiNIt7J8Oz1O7SfdQiTdvp9cjpfi5K/OdByCWDvClzfA0yvDjy9ofWoiIiIiBKdGAcWctAva02kTZsWLi4uuHLlirpe1qOYPn16jJ6rbt26qqdi7dq1uHbtGpYvX64atxs2bBimlKl169ahl7t06aJe84cffsD58+cxYcIEVVL13XffxfStWARPV0fM71QCXxZLD4knflt/Hj0XHseroGCth2Y6slQE2q8HXFMDDy8A06oC/ie1HhVZipBgWF33RdrH+9RPuUxERGQRgcWwYcPUgnTScG1vbx96fZ48eTBt2rQYPZesVyFTxXbr1k1NHfv999+jc+fOKnAx8Pf3x40bH84gy1SzEohIliJ//vxq2ll5XZkZiiJmb2uNEQ3zYmiDPLC1tsKqE3fQZNJe3H76SuuhmY5UefXT0abMBTy/C8ysCVwOmxkjinNnVwFj8sB2bgMUuT5R/ZTL6noiIiJzDyxmz56tpoht2bKlKlsykIN8ySDEhKurK8aMGaP6Kl69egU/Pz8VuBgHLBLEyErbxipUqIBjx46paWTlMW3bto3p27A4VlZWaFXCG/M6FoeHsz3O3AlEvbG+OHDlkdZDMx3u6YD2G4CMZYGg58D8ZsCxeVqPisyVBA+LWwOBd8JeH+ivv57BBRERmXtgcfv2bWTNmjXCEinOtWz6imf2UH0XPqnd8OhFEFpOO4C5+69rPSzTkSQp8NVSIG9TIOQdsLIbsGMUVB0ZUVyRcqcNP8r0ZBHc+P66Df1YFkVEROYdWPj4+GD37t0fXb9kyRIULFgwrsZF8ShdMics7VoKdfKlxrsQHX5ZcRr9l51C0LvIm+Ytikw523AKUOZ9386OEcCqb4BgBs4UR67v/ThTEYYOCLytvx8REVEiEePpZn/99Vc1FaxkLiRLsWzZMly4cEGVSK1ZsyZ+RklxLom9DcZ+WRC507jj943nseDgDVy69wwTvyqMlK4Ju5aDSZLZyqoMAtzSAut/AI7NAZ75A03/BRxctB4dJRaScXh6HXh4GXh0CXh4CXh0Gbh7KnqPfx52am0iIiKzCizq16+P1atXY8iQIXB2dlaBRqFChdR1sngHJa6+i64VsiBnKld8u/AYDl9/gnrjfDG5VWE1VS0BKNZJH1wsaQ9c3gLMqgW0+A9w9dJ6ZGRKXj5+HzQYBQ+yPb4CBAd9/vO6cD8jIqLE47MWyCtbtqyalYnMQ8WcnljZvTQ6zj6MKw9eoOmkfRjVOB8aFEyr9dBMQ85aQNs1+mZu/xPAtCrAV0uAlDm0HhklpHdvgMdXjYIHvw//fvU48sfZOgLJswAeWYAU2QCPbEDyzMB/bYBndyPps3jv6Gz9fubChS2JiMj0abryNpmOzCldsKJ7afRaeBzbzt9Hr0XHcdY/ED/WyAkbayuth6e9dEWADpuBeU30Z6GnVwO+XAB4l9J6ZBSXpElfDvYlYJCMg3EJk5Q06aLoQ5LMlkfWD8FDiqz6n+7p9aV14dX8XT/7E6zCBRdGl08tBi5uBCoPAIq0B6w/zMRHRESU6AMLWSlbSmgiExzMWUwSKzdHO0xtXQR/b76A8dv9MGXXFZy/+wxjmxeEu5M2y8ibFDnjLMHF/C+A24eB2Q2ARpOB3B8WdKREIuiFUcbBuP/BDwh6Fvnj7F0iDh5k37B3jtkYfOoBzWbrZ4cybuR2SwPU+E0fqKz9Tp8lW/e9vs+n9t/6IJeIiMgcAgtZHduYTDEra0r8+++/GDx4cFyOjTQg2Ym+1XMiV2o39P3vJHZdfID6431VwJHNy1Xr4WnPOQXQZjWwtCNwYS3wXzv9QWHJ7lqPjMILCQECbkYQPFzWz7gUGStrIKl3BMFDVsA1lTQnxd0YJbjIWRvvruzC8d0bUaBsddhmLvchM9FpO3B4BrB16IcyvMJtgMoDAafkcTcOIiIirZq3w5PVs3Pnzo1FixahQ4cOcTEu0lidfGmQKYUzvp59BNcevUSD8XswpnlBVPVhMynsnYAv5uhnizo0Ddj4E/D0JlB9OEtVtPDq6fuypfDN035A8JvIH5ckebjg4X0AkTyTfsrhhGJtA513Gdw+E4j83mXC7kPyb5lAwKc+sPlX4MQC4Mgs4NxqoMpgoEDLiMusiIiIEnOPRYkSJfD111/H1dORCZCpaFf1KI3u849i/5XH6DT7MHpXzY4eFbPC2tL7LuSAr9af+vr5LQOBAxP1Z8EbTQHskmg9OvMja4g8uRbxzEsvHkT+OBt7faO0ChqMS5iyJa4z/tK83XASULAVsLYP8OAcsKrH+/Kov4BUebUeIRERUdwEFq9evcL//vc/pE3LWYTMjYeLA+Z0KI5ha87i333X8ffmizjnH4g/m+aHs4OF9/5LSUyZXoB7OmB5F+DcKmD2fX1Td2I6aDWlxmkJEsIED+/7ICSokJXQI+OaOoLgISvgngGwMaP9NGNpoMtu4MAkYMdvwM0DwORyQLHOQMWfAEc3rUdIREQWLMb/x02WLFmY5m2dTodnz57ByckJc+fOjevxkQmws7HG4Pp54JPGTa3Svf70XVx9+AJTWhVBBg8nrYenvbxN9OsNLGwJ3NyvnzFKpqNNllHrkZmmt6/eBwyGvgejn28CIn+cnZO+SdqQcTAuYXKwoP4fGzug1DdA7kb6MryzK/QZszPLgOojgDyN47YPhIiIKL4Ci9GjR4cJLGSWqJQpU6J48eIq6CDz9UXRDMjq6Youc4+o2aLqjffF+BaFUDprCq2Hpr1MZYEOG4G5TfQHydJk22IxkLYQLLZx+tmdDyVLoVmIy/qG6kjXbrACkqY3Ch6MMhAyWxIPmD9wTws0+xe4vBVY1xd47Acs7aDvwZDyKK6zQkREph5YtG3bNn5GQolCYe9kWN2jDDrPOYwTtwLQesZB/FwrF9qVzhjlNMQWwTMX0FHWumgK3DsNzKoNNP0XyF4NZut14IdeB+PgQQ5y376M/HGO7hEHD9I4zR6VmMlaGei2D9jzP2D3n8C13cDE0vqZysr/EPNpcImIiOIzsDh58mS0nzBfvnyfOxZKJFK5O2JR55L4afkpLDt6G0PWnMWZO4EY3jAPHO0sfFYkOavebj2wuBVwZQewoDlQ52+gcCIOyIPf6ReHCx88yM/n9yJ/nLUtkCxTuODh/cxLMm2vpQeicUlmsSrfF8jXFFjfD7i4HtgzBji9FKgxEshZh583ERGZRmBRoEABdTZa+imiIvfhAnmWQQKIv5rmVzNHDV97FkuP3sLlB88xpVVheLk5wqJJA22L/4DV3+qnB13dEwi4BVT82bQP7l48MmqaNgQPkn24AoS8jfxxzp4RBw/JvPX9AJRwpK+nxULg/Dpg/Y9AwA1g0VdAtmr6lb4lI0RERKRlYHH16tX4en1KxCSQ7FAmE3J4uaopaU/cfIq6Y30xqVVhFMpg4f02tvZAg4n66Wh3/Q7s+kMfXNT9n/42rbx7ow8UDMGDNFEb/v3qSeSPs3X8MOuScemSNFMnSZqQ74CiI2ctIHMFYPdfwJ5/gEubgCs7gbJ9gNI9ATsLD/6JiEi7wMLb2zt+Xp3MQplsKdR6F7LOxcV7z9F88n4Ma5gHzYqkh0WT7ESln/VNtmt667MXz/yBZnP0WY2QYFhd90Xax/tgdd0NMF5xOTYksyivY7zWgyF4eHoD0IVE/lgJhMLMvPQ+iHBLx4XYEuNCjpUHAPmbA+u+15fm7Rih3w9lDZZsVbQeIRERmZnPnuD97NmzuHHjBoKCgsJcX69evbgYFyUy3h7OWNatNPosPo6NZ+7hhyUncfZOIH6unUtNV2vRpL/CNQ3wXxv9wd3MmvrVlHeOgm3gHRSR+1yfqO/PqDEK8Inm79Cb5x8CB+PgQbIQQc8jf5y96/tpWsMFD8mz6A9GybzId9tqhX462o0/A0+uAvMaA7nqAjV+06/DQkREpEVgceXKFTRs2BCnTp0K03dhmBGIPRaWy8XBFhNbFsbYbZcxestFzNp7DRfuPsP4loWQ3FnD8h9TIDNDtV0LzG+mnzFK+i7CC/QHFrcGms3+EFyEBOunZw1d68Go/0Gmc42MlY2+xyGimZdkFWdT7vWguCfft6xvIb0WsrDe/onAudXA5W36maNKdNO2RI+IiCwzsOjZsycyZcqErVu3qp8HDx7Eo0eP0KdPH/z555/xM0pKNKytrdCzSjbkTO2K3ouOY9+VR6g3zhdTWxdBrtQWviqwrGnRfiMwvlgkq0i/nxxhRTfg5CJ95kH6IYLfRP6cTh5GC8UZLRwnTbw8UKTwZCHB6sOBAi2AtX2AG/uALQOB4/P1a1/IeixEREQJFVjs27cP27ZtQ4oUKdTieLKVKVMGI0eOxLfffotjx4597ljIjFTPnQrLu+v7Lq4/eolGE/bir2b5UStvali0wDuRBBVGgp4B59d8uGxjry9TCl++JJtT8ngfMpkhr9z6aZGl32LTAODhBeDfOkDeZkC1YYCrl9YjJCIiSwgspNTJ1dVV/VuCizt37iBHjhyqwfvChQvxMUZKpLJ7uWJl99L4ZsEx7L70EN3mHcU3lbLiuyrZVWbDIkW17oOxfF8AeZvqg4ekGeKmqZsofHmUZC5y1AS2DgUOzwBOLQYubgAq/QIU6QDYfHYbHhERWaAYd9XmyZMHJ06cUP8uXrw4fv/9d+zZswdDhgxB5syZ42OMlIgldbLHzLZF0amsfv586b/4es5hPHsdxboI5swlmmeCC7YCslXVrzvAoILiU5Jk+kUcO20D0hQE3gQC638AplYAbh7SenRERGTOgcUvv/yCkBD9dJUSTMgaF2XLlsW6devwv//9Lz7GSImcrY01fq7tg7+b5Ye9rTW2nLuPhhP24urDF7A43qX0sz8hsoyNFeCWVn8/ooTuAeq4Faj9N+DoDtw9BUyvAqz6Bnj5WOvRERGROQUWRYoUwaRJk1CyZEk0atRIXZc1a1acP38eDx8+xP3791GpUqX4HCslco0KpcN/nUsilZsjLt9/jvrjfLHjwn1YFMk+yJSySvjg4v1lmQKUWQrSgux3RTsAPY4ABVrqrzs6GxhbCDjyL/D+pBIREVGsAov8+fPjhx9+QOrUqdG6dWvs2LEj9LbkyZOHTjdLFJX86ZNi1TelUdg7GQJfv0P7WYcweadf6LTFFkGmkpUpZd3CNbJLJsN4qlkirbikBBpMANptADxz61dlX/0tMKMa4K8vhSUiIvrswGL69Om4e/cuxo8frxbGq1y5sspYjBgxArdv347u0xDB09UR8zsVR/Oi6RGiA0auP49ei47j9VsLWgNFgodep/HuqxU47N1V/USvUwwqyLR4lwQ67wKqjwDsXYBbh4ApFYB1PwCvA7QeHRERJeYeCycnJ7Rt21ZlKy5evIjmzZtj8uTJyJgxI2rXro1ly5bF30jJrDjY2mBko7wYWj83bK2tsPL4HTSZtBe3n76CxbC2gc67DG4nL6l+svyJTJLMDFWyO9DjsH6RPV0IcHAyMLYIcGIRYEnZRiIiitvmbYMsWbJg2LBhuHbtGhYsWID9+/ejadOmn/t0ZIGkfK5VyYyY27G4Wpn79O1A1Xdx8CobRYlMjpTuNZkBtF6pX0/lxX1g+dfArDrA/fNaj46IiBJzYCEkcyEZDNlkfYtOnTrF3cjIYpTI7IFVPUrDJ7UbHj4PQoup+zF3/3Wth0VEEclcAei6B6j8K2CbBLjuC0wqDWz+FXjzXOvRERFRYgosbt26pTIV0l8hs0BJxmLChAnw9/dXs0YRfY50yZywtGsp1MmXGu9CdPhlxWn8tPwUgt5xFhoik2PrAJTtA3Q/AOSorV9Nfs8/wPhiwNmVLI8iIrJQ0Q4sFi9ejBo1aiBTpkyYOHEimjVrpvosdu7cqWaJSpIkSfyOlMxeEnsbjP2yIH6okUMtCjz/wA20nLYfD5690XpoRBSRZN7Al/OBLxfpV4gPvA0sbg3MawI88tN6dEREZKqBxVdffaWCh+XLl+PmzZtqNijJWsSGNH1LnX34rXv37hHef9asWR/d19HRMVZjINMi32m3ClkxvU0RuDrY4tC1J6g3zhenbnEGGiKTlaMG0P0gUO4HwMYeuLwFmFAS2D4CeGtBEzIQEVk465iUQElQUadOHVhbx6o1I9ShQ4dUCZVh27x5s7o+qiZwNze3MI+5fp21+OaoUk4vrOhRGplTOsM/4LWaMWrlcU5rTOYnOESHA1cf48hDK/VTLidKdkmASj8D3fYDWSoBwW+AnaOACSWAi5u0Hh0RESUA2+je0dPTM85fPGXKlGEu//bbb2q2qfLly0d5RjtVqlRxPhYyPVlSumBF99LoueAYtl94gJ4Lj+PsnUD8UCMnbKy5ICMlfhtO+2Pw6rMqeAZsMPvSYaR2d8TAuj6okSfcAoqJhUcW4Ktl+l6LDf2BJ9eA+U2BnHWAGiP1JVNERGTZgUV8CwoKwty5c9G7d+8oV/F+/vw5vL29ERISgkKFCqmSrNy5c0d6/zdv3qjNIDAwUP18+/at2rRgeF2tXj8xSWIDTGxRAGO2XsakXVcxedcVnPMPwN9N88E9iR0SO+4LlmvjmXv4ZuEJhM9P3A14ja5zj2Js8/yontsLiVb22oB3OVj7/gnrg5NhdX4NdJe3IqTs9wgp3lVfMkVhSLZqv98Dlb1yv3QfJbKk5EkUC8b/P5Cp7AcxeW0rnc40pu+Q5vAWLVqoVb3TpEkT4X327duHS5cuIV++fAgICMCff/6JXbt24cyZM0iXLl2Ejxk0aBAGDx780fXz589XC/5R4nH0oRXm+1njbYgVUjjq0ClHMFLxK6RESKqdBh+1wdMguRTRgaMO7vbAT/mDYWejr1mN4nyLyXN9dQv5bv6LFC8uqMvPHFLjZPo2eOjqo/XQTMaJR1ZYds0aT4M+fNFJ7XVolDEE+T1M4n/TRGShXr58qY7R5dhbWhISRWBRvXp12NvbY/Xq1TGKoHLlyoUvv/wSQ4cOjXbGIn369Hj48OEnP5z4IuOWfpKqVavCzi7xn3VPSGf9A9F13nHcCXgNZwcb/NUkLyrnjPsyvYTCfcEySS/FVzMOx+gxdjZWsLOxVivV28q/ra3VT9v3P+3U9Ybr9Pe1C3P7+9veX6e/Tf8Y/WON7vvRY98/t+G1IxlH6Bgjem4rKzicWwKbbYNg9eKBek8huRshuPIQwNWyy1sjy14ZQoxEn72iz8L/P5Cp7Ady7JwiRYpoBRafVQr19OlTLFmyBH5+fujbty+SJ0+Oo0ePwsvLC2nTpo3x80kD9pYtW7Bs2bIYPU4+4IIFC+Ly5cuR3sfBwUFtET1W619UUxhDYpM/gwdWf1MGXecdVSt0d51/HL2rZEePSlmjLKEzddwXLMP9wNfYfO4e5n3GApBvg3V4GxyMxC0ZklqPxPe2i/Gl1WbYnFmGl2fWY5rNl1hpXxtWtrZGAdCHoORDIPMh4AkNfowDpdDHhA+m9Ncbgh7D830Igj483vh6w+M/vNaH2+OqREnKn4avv/BRUCHkOnkVub1mvrQsi7JQ/P8Dab0fxOR1YxxYnDx5ElWqVIG7u7taHE9W25bAQoICKWOaPXt2TJ8SM2fOVM3htWvXjtHjZLXvU6dOoVatWjF+TUq8PFwcMK9jcQxdcxaz913HX5sv4tzdQPzRJD+cHUymbYgIkhC+eO85Np+9i83n7uPEzacxevyMNkVQMEMyvA0JwbtgndoM/34bHKIWk3wXHKKCjnch8vP9v0Mvv7/9/f2MH2+4/u07/fO8DX+70ePD3m54TNj7G8ZgPLaIZrh6GuKEX4LaYoFVeQy3m4EC1n7oFTwD1V5sxS9v2+GoLjsSAzmP8SFbE3GQ8iHzEz4o+pANevry7fvm/YjJJyi3y4mUklk8EvQ9EhHFVIyPwqS5um3btvj999/h6uoaer0c3Ev9VUxJE7YEFm3atIGtbdjhyMJ7kgEZOXKkujxkyBCUKFFCrZ8hWZM//vhDZTs6duwY49elxE3+hz2kfh74pHbDgJWnse7UXVx58AJTWxdB+uRsvCDtyIG4rL+y+ew9bDl3Dzcevwxze4H0SVE5lyf+3XsNj54HRXimWs5Lp3J3RPkcnon6LHWIBDRqC8Hbd+GDogp4964V7pyZD8+DI+Hz5jqWOQzCvSxNcTlfH7yyS64PlCIIiiIKqgzBjf62yIKqiJ/rw/N9eG5DIGV4rvCkiDgoOARBCZREuv8s8uCDiCjRBhay9sTkyZM/ul4CgLt378Z4AFICJZmO9u3bf3SbXG+8ZsaTJ09UhkReJ1myZChcuDD27t0LHx82AFqq5sUyIJuXCzrPOYrzd5+pxfTGtyiEUllTaD00siDP37zDrosPsOXsPWy7cF+dhTawt7VGmawpUNXHSwUUnq76RT2zebqo2Z8kbDA+bDWEETLlbGIOKoS1tRXsZZP288gmgUrVFSjRDNgyEDg2B15+/8Hr9magykCgUFt5EphC5kmyL2EyN0ZBS0TZmvCBycdBjP56vwfPMO/AzU+OwbDfEBGZVWAh/QqGKVuNXbx48aN1KaKjWrVq6o92RHbs2BHm8ujRo9VGZKywd3Ks/qY0Os85gpO3AtBqxkEMqJ0LbUrpV3Ynig/3pF/ifVZi7+VH6uy1QTInO7XIowQT5bKngJP9x39qZZ2KiV8VMlrHQi9VYl/H4nM4ewD1xwEFWwFr+wD3TgFrvgOOzQVq/wWkKajp8OTviL5XA3CUabrikAQs284/UNMMRzaTioOtNdImSxKnr0tEZBKBRb169VRJkkwPa/iDK5mFH3/8EY0bN46PMRJ9Umr3JFjcuSR+WnYKy47dxqDVZ3HmTiCGNcwDBzkaIIolOQFy4d4zbD6jDyZO3AoIc3tGDycVSFT1SYXC3smilW2Q4EHuv+/yfWzafQDVyhZHyayJu/wpVjIUB77eARyaBmwbBtw+AkypCBTtCFT6BUiSFOZGvmsJJCPKXhm8eReCWv/sxs+1c6F50fQ8YUJE5hNY/PXXX2jSpIlqtn716pVaJVtKk0qWLInhw4fHzyiJokHOJP7VLD980rhhxLpz+O/ILVy6/xyTWxWGlxvLCCjmpFzl4LXHoZmJm49fhd4mx3YF0ydFFR8vVPPxUivFf84BnxxYFs+UHI/O6dRPiw0qDGxsgRJdgNwNgE2/AKf+Aw5NBc6uAKoOBfI3T9yLekQgsuyVrMLepXwWrD5xB4evP0H/Zaew7pQ/fmucD2mTMoNBRGYQWMhsUDKfrq+vr5ohSlbClhWwZaYoIq3JgV3HspmRI5Uresw/huM3n6LuWF8VXMjsOkTR6ZfYeeGBmslp+4UHCHj1NkxJStlsKVAllxcqGfVLUDyQtS0aT9OXR637Hnh4EVjRRfVhoNafgJd59dZFlb36qoQ3Zu65ij82XsDuSw9RffQu/FI7F75g9oKITMxnz81ZpkwZtRGZorLZUmJVj9LoNPuwmu7zi8n7MbxhHjQtkl7roZEJkvp2WV9CMhP7/cL2SyR3tkelnJ6qzEmCioj6JSgeZS4PdNkD7B8P7PwduL4HmFQGKNEVqNAPcPgwO2FiF1n2Sn7KCZOKOT3R978TOHrjKfpJ9uL0XfzWKC/SMHtBRCYixv+H/N///hfh9XLWxNHRUU0FW65cOdjYsK6dtOXt4Yxl3Uqj96Lj2HT2HvouOalW7v65Vi41pzxZdr+EzCImgYRsp26H7ZfIlML5fb+EFwpliF6/BMUjW3ugzHdAnibAhn7A+TXAvnHA6WVAjRGATwOzK4+KiJTb/delFGb4XsWfmy6omchU9qJOLjQrwuwFESXCwEJmZXrw4AFevnyppnw1TAPr5OQEFxcX3L9/H5kzZ8b27duRPj3PDpO2XBxsMemrwvhn6yW1zdxzDRfuPlNT0iZzjmz+SzJHMs3noauPVZAp/RK3noTtl5AAQkqcJJjI6umi6VgpEknTA83nARc3Aev7Ak+uAf+1BTJX1JdHpcgKcydBbqdymVUp3vf/ncCxG0/x41LpvbiL3xrnVRNZEBFpJcanbUeMGIGiRYvi0qVLePTokdpkqtnixYvjn3/+UTNEpUqVCt999138jJjoM+bS/65qdhVgONnbYK/fI9Qb74vzdz+eNpnMy7PXb7Hm5B30XHgMhYduRotpBzBr7zUVVEi/hAQSoxrnxcGfqmBp11LoWiELg4rEIHs1oNt+oHw/wMYBuLIdmFhSP5NUUNgFCc05e7GkSyn8VCunWitl58UHqDZ6FxYfvhnpFO5ERCaXsfjll1+wdOlSZMmSJfQ6KX/6888/1XSzV65cUatyc+pZMjU18qRCphT6vgtZDbnRhL34q2l+1MxrQesFWAD/gFdqoTrJTOy/8ijMqskezvZqkToJKKQPJ4k9SzYTLbskQMX+QL5mwPofgMtbgF1/ACcXATX/AHLUgCVkL74ul0WtmSLZC5ms4oclJ7H+lD9GNsqn1kQhIjLpwMLf3x/v3r376Hq5zrDydpo0afDs2bO4GSFRHJLZoqSpW2aM8r38EF3nHcW3lbKiV5XsKrNBiY+cnT3n/75f4txdnL4dNhOVOaUzqr4vcZKZwdgvYWY8sgAtlwDnVuv7L57eABZ8AeSoBdT4DUjmDXMnWTbJuE3dfQV/b76oZjOrOnonfq3jgyaF07H3gohMN7CoWLEiOnfujGnTpqFgQf1qqMeOHUPXrl1RqVIldfnUqVPIlClT3I+WKA4kdbLHrHZFMXL9eUz3vYr/bbuMs/7PMPqL/HB1tNN6eBTNfomDV/XrS8h2+2nYfonC0i/xvvlaSkbIzMmX7lMPyFIJ2PU7sG88cGEd4LcdKPc9UOobwNYB5kwCZlnzokouT/T57yRO3HyqJqxYf/ouRjTMy+wFEZlmYDF9+nS0atUKhQsXhp2dXWi2onLlyuo2IU3cspAekamSWaEG1PGBT2o39F9+SjXzNpywF1NbF1EzApHpCXz99v36Evew/cJ9PHv9IXPqaGeNMllTqoXqpKk1hYt5H0RSJBxcgKpDgPwtgLV9gOu+wLahwIkF+ubuLBVh7rJ6umJpl5KYuvsqRm++iG3n76OaZC/q5kbjQmmZvSAi0wospDFbFsg7f/68atoWOXLkUJtxVoMoMWhcOB2yeLqg85zDuHz/OeqP88XYFoVQPntKrYdGAO48faWCvs1R9EvIomJlsqZgvwR94JkTaLtGv2r3xp+BR5eBOQ2A3I2A6sMBtzQw9xMnMhGBZC+k9+LErQD1U1btHtkoL7zcmL0govjx2Ss95cyZU21EiV2B9EmxukcZdJl7RC081W7mQfSrmROdymbm2T0N+iVkrRFDidOZO2H7JbKkdFYlTpKZKJCe/RIUBfndlcbu7NWB7SOAg1OAM8uAS5uACv2B4p0BG/Mufczm5ap6L6bsvoIxmy+p7EXVv3diYN3caMTsBRGZSmBx69YtrFq1Sk0tGxQUFOa2v//+O67GRpRgPN0cseDrEvh1xRksOnwTI9adx9k7gfitcT442vFMeHwKemfol7iLLefuf9QvUcT7w/oSmdkvQTHl6A7UHAUUeF8edesQsOln4Ph8oPZfgHdJmHv2oluFrOp3SLIWJ28FoM/77MUIZi+ISOvAYuvWrahXr55aBE/KofLkyYNr166pM42FChWK6/ERJRgHWxu1wJRPGjcMWXMWK47fgd+DF5jcqjDSJOWiU3Ep4NVbNe++ZCV2RNAvUS5bSpWZqJzTEx7sl6C4kDo/0H4TcHwusHkgcP8MMLMGUKAlUGUw4GLe5Y/ZvVyxrGspTN51BWO2XMTW99mLQfVyo2FBZi+ISKPAon///vj+++8xePBguLq6qjUtPD090bJlS9SoYf7zhpN5k/+5timVUf1PuPv8ozh1OwD1xvli4leFUTRjcq2Hl6hJJkLWlzD0S7wL+dAvIc3WUg8uZ1XLZEvBLBHFD2troFBrIGcdYMsg4Oi/wPF5wPk1QOVfgcLtAGsbs85edK/4IXshf996L5bshcwclUdlbomIEjSwOHfuHBYsWKB/sK0tXr16pWaBGjJkCOrXr6+mnSVK7Epm8cDK7qXx9ZwjOOcfiBZT92NwvTxoUTyD1kNLNCSLKT0Shn4J6Z0IP/e+lDfJQU7B9Em5jgglHKfkQL3/AQVbAWt7A3dP6sukjs0Fav8NpC1k9uv5LOtWCpN3+uGfrZfUBAmHrj3G4Hq5Ub9AGmYviCjhAgtnZ+fQvorUqVPDz88PuXPnVpcfPnz4+SMhMjHpkzthadeSai74tSf98dPyUzhzJ0A1PtrbWms9PJPtl5BshByoSHbiTsDr0NskbijinRxVfPQzOXFaX9Jc+qLA1zuAQ9P109LeOQZMrQQUaafPYCRJBnNlZ2ONHpWyqZJDyV7IwpK9Fh3H2lP+GC7ZC1dmL4goAQKLEiVKwNfXF7ly5UKtWrXQp08ftSDesmXL1G1E5sTJ3hbjviyo1rv4c9MFzDtwA5fuPceErwpxrQSjfgnpk5CshKwz8ezNh36JJHY2KJc9hcpKVGK/BJkiKX0q/jXgUx/YPAA4uQg4PAM4u+r9mhhf6kuozFTOVG5Y3q00Ju3ww/+2XVK/x4bsRb38zF4QUTwHFjLr0/Pnz9W/pc9C/r1o0SJky5aNM0KRWZL/sUpdcq7Urui54DgOXnuMemN9MaV1EeRJ6w5LdOvJS3UAIpmJA1cef9QvUdVH3y9ROiv7JSiRcPUCGk3Rl0et+x54cB5Y2Q04Ols/e1SqPDDn7MU3lT9kL6SEsefC4ypTO7xhXqR05QkBIoqHwCI4OFhNNZsvX77QsqhJkybF5CmIEq1KOb2wXPouZh/GlYcv0GTSXoxqnA/1C6SFJfRLSKmETAm7+dx91XdiLJuhX0LWl0jHfglKxDKVBbr4AvsnADtGATf3A5PLAcW7ABX6AY5uMFe5UrthRffSmLDdD2O3XcKms/fUiRRmL4goXgILGxsbVKtWTTVwJ02aNCYPJTIL0nAswUXPhcew48IDdVbvnP8z9K2ew+wWa3vzLhj7r7xfX+LsfdwNDNcvkTG5WqhOMhMZ2S9B5kQWzivdE8jTGNjQHzi3Ctg/Hji9VL9yt1xvpgfZkr3oWSWbOlEg2QuZdEH+zq0/dRdDG+Rh9oKI4rYUStatuHLlCjJlyhTThxKZBfckdpjepqjquZi4ww+Tdvrh/N1A/NO8oLotMQt4+RbbDf0SFx/guVG/hJO9jVpfQg44Kub0RHJne03HShTv3NMBX8wBLm8B1vUFHl8Blnb4UB6VIhvMlazns7JHaYzffhnjtl3GhjN3ceDqIwypnwd18qVm9oKI4iawGDZsmFrHYujQoShcuLAqhzLm5ma+aWIiA8lO/Fgjpyod+GHJCZW9aDB+D6a2Loysnq5ITG4+1vdLbH5f9hBs1C8hZyf1q157olQW9kuQhcpaBei6D9jzD7D7L+DqTmBCSaD0t0DZ7wF7J5hr9qJXlezvsxcnVQnkNwuOqVW7JXvBCSyIKNaBhcwEJWT1beMzFlKDLZelD4PIUkjdceYUzug85wiuPnyBBuP34p/mBVA5lxdMlfyuysJYhmDi/N1nYW7P7vVhfYn87Jcg0rNzBCr8CORrCqz/Ebi0SR9knPwPqDkKyKn/f6M5yp3GXa3rI9kL2dafluzFYwypnxt18qXRenhElJgDi+3bt8fPSIgSKZkZSkoGus07ioNXH6Pj7MP4vloOdKuQxWTKBaRfYp/fo9CZnO4Fvgm9TeIGWVVcggnZvD3YL0EUqeSZgRaLgfNrgQ39gIAbwMIvgew19AFGsowwR7J2z3dVDdmLE+qERI/577MX9fNwKmki+rzAonz58jF9CJHZk5KAeR2LY8jqs5iz/zr+2HgBZ+8E4o+m+dRaGFp4+jJI9UtI43VE/RLls6cMXV8iGfsliKJPThjkqgNkqQjs+gPYOw64uAG4sgMo20ff+G3rYLYnUlb1KINx2y5h/A4/rDt1V03yIMFF7XyptR4eEWnss454du/ejcmTJ6sm7v/++w9p06bFnDlzVEN3mTJl4n6URImkHlnqjqXp8deVp9UKtn4PnmNq6yJqFe+E6peQKSK3RNAv4Sn9EpKVyOWFklk82C9BFFv2zkCVQUD+FsC6PsDVXcD24cCJhUCtP4CslWGu2Yve1XKgWu5UodmL7vOPYt3p1BhSLzezF0QWLMaBxdKlS9GqVSu0bNkSR48exZs3+pKKgIAAjBgxAuvWrYuPcRIlGl8Wy6DWdegy96j6H269cb4Y37KQan6OayEhH/olpMQpfL9EDi/X0PUl8qV1Z78EUXxImR1ovUo/He3Gn4HHfsDcRvrVvKuPBNzTmnX2Qta8mLDDTy2ot9/vEYY1yIOaeZm9ILJEnzUrlCyK17p1ayxcuDD0+tKlS6vbiEi/xsOqHqVVU7cc+LeafhADaudCm1IZY913If0Se9/3S2wN1y8hs1UVzZgMVX1SqcxEBg/znK2GyOTI73XeJkC2asCOkcCBycDZlcClLfqF9Up01a+PYYbZiz6SvfDRZy8u3HuGrvOOqilpZWpaTktNZFliHFhcuHAB5cqV++h6d3d3PH36NK7GRZTopUmaBP91KYn+y05h+bHbGLT6rFpsSsqlHGxtVJmSzKxy5KEVPK4+RsmsnpEusif9EtvO69eX2HXxAV4EfZh9zVn6JXK8X18ihyeSOvF/5ESakZW5a4wECrQA1vYBbh4ANg8Ajs/Xr32RsTTMUd507lj1TWmM3XoZE3f6YY1kL67osxc18jB7QWQpYhxYpEqVCpcvX0bGjGFnvvD19UXmzJnjcmxEiZ70MfzdLD98Urth5PpzWHz4Fi7df47mRdJjzNZL8A+Q1axtMPvSYaR2d8TAuj6h/xO+8Uj6Je6qYOLw9Sdh+iW83PTrS0iJU6ksHipQISITkiov0G4DcHwesGUg8OAcMKsWkK85UG0o4OIJcyN/h76vLr0X+pmjLt57rkpC6+ZPo3ovOEkEkfmLcWDRqVMn9OzZEzNmzFAlHXfu3MG+ffvUonkDBgyIn1ESJWLye9KpXGbkSOWKHvOP4tiNp2oL727Aa/U/4Rp5vHDlwQv1P2VjOVO975fI5YW87JcgMn3W1kChVkDO2sDWIcCRWcDJhcCF9UDlAUCR9oC1+Z0UyJcuKVZ/Uwb/bLmESTv9sPrEHezze4hhDfKiRp5UWg+PiOKRdUwf0K9fP7Ro0QKVK1fG8+fPVVlUx44d0blzZ3zzzTcxei7JeshBV/ite/fukT5GZqHKmTMnHB0dkTdvXjaLU6JRLntKLO9WGraRBASGfMSG0/dUUCFlUSUze+DXOj7Y1bciNvQqp2qZ86fnonVEiYpTcqDuGKDjViB1fuBNALDue2BqReDW4Q/3CwmG1XVfpH28T/2Uy4k5e/FDjZzqb55MZvHweRC6zD2CnguP4cmLIK2HR0SmkrGQA/+ff/4Zffv2VSVRElz4+PjAxcUlxi9+6NChMCt1nz59GlWrVkXTpk0jvP/evXvx5ZdfYuTIkahTpw7mz5+PBg0aqNmp8uTJE+PXJ0po95+9wTujkqbIdK+YBZ3KZma/BJE5SVcY6LQdODwD2DoU8D8BTKsCFG4DpC8ObBsK28A7KCL3vT4RcEsD1BgF+NRDYiUnQlT2YuslTN7ph5XH72DP5UcY0TCPmq6WiCw8YzF37ly8fPkS9vb2KqAoVqzYZwUVImXKlKpnw7CtWbMGWbJkiXQRvn/++Qc1atRQQU2uXLkwdOhQFCpUCOPGjfus1ydKaPefSU/Fp2X3cmVQQWSOpPSpWCfgm8NA/i/1uUopkVrRFQi8E/a+gf7A4tbA2VVI7L1mP9bIiWXdSiOryl68wddzjqDXwmNqYgoisuDA4rvvvoOnp6cqh5IyJOOMQ2wEBQWpoKV9+/aRTscpvRxVqlQJc1316tXV9USJgaerY5zej4gSKWnebjgJaLMGsI6seOB9dnNDv0RdFmVQIH1SrPmmDLqUzwKp5lxx/A6qjt6lJqggIgsthfL398eGDRuwYMECNGvWDE5OTqp0SRbMK1Wq1GcPZMWKFWq62rZt20Z6n7t378LLyyvMdXJZro+MLOBnWMRPBAYGqp9v375VmxYMr6vV65N2CqZzRSo3B7X2REQFURJSp3J3UPfj/mE5+DfBclkFv4NtyLso7qEDAm/j3ZVd0HmXQWInrep9qmRB5Rwe+HHZGVx5+AKdZh9G/fyp8UutnEjqZH5rfXwu/l0gU9kPYvLaMQ4sbG1tVX+DbFIStXz5ctXrULFiRaRLlw5+fn74HNOnT0fNmjWRJk0axCXpxxg8ePBH12/atEkFRVravHmzpq9P2qiVygozAg3JQuPsnE4FGzW9XmLjhvUajY60xL8JlkcatVVPxScc370Rt8/oT4yZi25ZgHX21th+xworT/hj+9k7+CJzCPIk/3QfmiXh3wXSej+Q4/14CyyMyYG5lCI9efIE169fx7lz5z7reeSxW7ZswbJly6K8n/Rh3LsXNmUql+X6yPTv3x+9e/cOk7FInz49qlWrBjc3N2gV+ckOIo3qdnY8O2NpagEodOYehq07j7tGq2bLOhY/18yJ6rnDZuXI/PFvguWyuu6mb9T+hAKlqyJ/po8Xp03s6gM4dvMp+i07jSsPX2LqBRs0LJAaP9fKCfcklv27wL8LZCr7gaHaJ94CC0OmYt68edi6das6UJfZmpYsWfI5T4eZM2eqvo3atWtHeb+SJUuq1+vVq1fodfJhy/WRcXBwUFt48uVo/YtqCmMgbdQpkA4186XFvsv3sWn3AVQrWzzKlbfJMvBvggXKXE4/+5M0akdYIKlnu3MkkNwbSJEV5qZY5pRY17Mc/t58EVN3X8Hy4/7Ye+UxRjbKi0o5eaKFfxdI6/0gJq8b4+bt5s2bqyBAmrhlpe0dO3aoaWdlhiZZXyKmQkJCVGDRpk0bVWZlrHXr1irjYCAL80l/x19//YXz589j0KBBOHz4MHr06BHj1yXSmgQRxTMlR+EUOvWTQQWRhc4SJVPKKuH/Bry/bOsI3D4ETCoD7J8k/+OEuZGZo36qlQtLupRC5hTOqg+t/azD6LP4BAJesceAKLGIcWBhY2ODxYsXqyZumebVOFsg61DElJRA3bhxQ80GFZ5cL69jIM3h0s8xZcoU5M+fX2VIpOmba1gQEVGiJetUNJsNuKUOe71kMprNAXocBjJXAN69Ajb8CMyuBzy5DnNU2DsZ1vUsi05lM0EmiFx69Baqjd6J7efvaz00IoqPUigpfzL27NkzNUPUtGnTcOTIkRhPPyu9DjpdxOlfyYaEJzNQRbaAHhERUaINLnLWVrM/SaN2gbLVYStlUpLREK1WAIenA5sGANd2AxNLAdWGAYXbysq1MLfsxc+1fVA9dyr0XXISVx++QLtZh9CkcDoMqONj8b0XRKYsxhkLg127dqnypdSpU+PPP/9EpUqVsH///rgdHRERkaWwtlFTyt5OXlI/tawhqBASPBTtCHTdA2QoBQQ9B9b0AuY2BgJuwxwVyZgc674tiw5l9NmLJUduofroXdh+gdkLIrMILGS9iN9++w3ZsmVTWQOZVUnWiJByJLm+aNGi8TdSIiIiS5c8M9B2DVBtOGDjAPhtBSaUBE4sBCLJ/idmSextVJZiceeSyOjhhLuBr9Fu5iH8sOQEAl+z94Io0QYWdevWRY4cOXDy5EmMGTMGd+7cwdixY+N3dERERBSWZDJK9QC67AbSFALeBADLOwMLWwLPzfNsftGMybG+Zzm0L63PXiw+rM9e7Lz4QOuhEdHnBBbr169Hhw4d1GJzMi2sNHETERGRRlLmADpsBioNAKztgAtrgfHFgTPLYY4ke/FrXR8s+lqfvfAPeI02Mw7ixyUnmb0gSmyBha+vr2rULly4MIoXL65mhHr48GH8jo6IiIgiZ2MLlPse+Ho74JUXePUY+K8tsKQ98PIxzFGxTPrsRbvSGVX2YtHhmyp7sYvZC6LEE1iUKFECU6dOVdO/du7cGQsXLkSaNGnUOhSySJ0EHURERKSBVHmBTtuAcn0BKxvg9FJgQgngwnqYa/ZiYN3cWNipBDIk12cvWs84iH5LT+IZsxdEiWdWKGdnZ7XmhGQwTp06hT59+qjGbVk0r169evEzSiIiIoqarT1Q6Reg42YgRQ7g+T1gQXNgRTfgdQDMUfHMHtjQqyzalsqoLi88xOwFUaKcblZIM/fvv/+OW7duqbUsiIiISGNpCwOddwGlvtGv3n18HjChFOC3DebIyd4Wg+rlxsKv9dmLO++zF/2XMXtBlKgCCwNp5G7QoAFWrVoVF09HREREsWHnqF9Ar916IFkmIPAWMKchsKY38OY5zFGJ99mLNiW91eUFB2+ixpjd2H2J2QuiRBVYEBERkQnyLqlfVK/Y1/rLsnr3pNLAtT0w1+zF4Pp5sKBTCaRPngS3n75Cq+mSvTiF52/eaT08IrPHwIKIiMic2TsDtf4AWq8E3NMDT64Bs2oDG34C3r6COSqZxQMbepZD69DsxQ3Ve+F7ibNZEsUnBhZERESWIHMFoOteoGArADpg/3hgUlng1mGYI2cHWwypnwfzOxVHumT67MVX0w/g5+XMXhDFFwYWRERElsLRDag/DmjxH+CSCnh0CZheFdgyGHj3BuaoVJYU2NirHL4qkUFdnndAn73Ye5nZC6K4xsCCiIjI0mSvBnTbB+RtBuhCAN+/gSkVAf+TMNfsxbAGeTG/Y3GkTarPXrSYdgC/rDiFF8xeEMUZBhZERESWyCk50Hgq0GwO4JQCuH8GmFoR2Pk7EGye07SWypoCG78rh5bF9dmLuftvoPqYXdjrx+wFUVxgYEFERGTJfOoB3fYDueoCIe+A7cOBaVWA++dgjlwcbDG8YV7Me5+9uPXkFVpMPYABK04ze0EUSwwsiIiILJ1LSn3motE0wDEp4H8cmFwO2PMPEBIMc1T6ffaixfvsxZz911Hjn13Y5/dI66ERJVoMLIiIiAiwsgLyNdVnL7JVA4KDgM2/AjNrAo/8YK7ZixEN82JOh2JI4+6Im49f4cup+zFw5Wm8DGL2giimGFgQERHRB26pgRaLgXpjAXtX4OYBYGJp4MAUICQE5qhstpQqe/FlsfTq8r/7rqtVu/dfYfaCKCYYWBAREdHH2YtCrYFue4FM5YB3r4D1fYHZ9YAn12GOXB3tMLJRPsxur89e3Hj8Es2n7MegVWeYvSCKJgYWREREFLGkGYBWK4FafwJ2TsC13cDEUsCRfwGdTuvRxYty2VNiw3fl0LyoPnsxa+811PxnNw4we0H0SQwsiIiIKHLW1kCxTkAXXyB9CSDoObD6W2BeUyDwDsyRm6MdfmucD/+2L4bU7o64/uglmk9l9oLoUxhYEBER0ad5ZAHarQOqDgVsHIDLm4EJJYATi8w2e1E+u7734osi6dVbNGQvDl59rPXQiEwSAwsiIiKKHmsboPS3QOddQJqCwOsAYPnXwKKvgOcPYK7Zi1FN8mFmu6JI5abPXnwxZR+GrD6LV0HmORUv0ediYEFEREQx45kT6LAFqPgLYG0HnF8DTCgOnFkBc1Uxh6fKXjQtnE5lL2bsuYpa/9uNw9eYvSAyYGBBREREMWdjC5TvC3TaBnjlAV4+Av5rAyzpALw0z4Nt9yR2+KNpfsxsWxRebg64+vAFmk7eh6FrmL0gEgwsiIiI6POlzgd02g6U/R6wsgZOL9H3XlzcCHNVMacnNn1XHk3eZy+m++qzF0eum2dARRRdDCyIiIgodmztgcoD9OVRKbIDz+8B85sBK7vr+zDMNHvxZ7jsRZNJ+zBszVm8fsvsBVkmBhZEREQUN9IV1jd2l+whq+wBx+YCE0oBftth1tmLXuXRuJA+ezFNshf/SPbiidZDI0pwDCyIiIgo7tglAaoP109NmywjEHgLmNMAWNsHePMc5sjdyQ5/NcuPGW2LwNPVAVek92LSXoxYd47ZC7IoDCyIiIgo7nmXArrsAYp21F8+NA2YVBq4vhfmqlJOL2z+rjwaFUqLEB0wZdcV1Xtx9AazF2QZGFgQERFR/HBwAWr/BbRaAbilA55cA2bWAjb+DLx9BXPNXvzdrACmtX6fvXjwAk0m7sVIZi/IAjCwICIioviVpSLQbS9Q4CsAOmDfOGByOeDWEZirKj5e2PRdOTQqqM9eTN51BbX/txvHmL0gM8bAgoiIiOKfozvQYDzw5SLAxQt4eBGYXhXYOhR4FwRzlNTJHn9/UQBTWxdBSlcH+D14gcaSvVjP7AWZJ80Di9u3b+Orr76Ch4cHkiRJgrx58+Lw4cOR3n/Hjh2wsrL6aLt7926CjpuIiIg+Q44aQLf9QJ4mgC4Y2P0nMLUicPcUzFVVH+m9KIcGBdLosxc7r6DOWF8cv/lU66ERmU9g8eTJE5QuXRp2dnZYv349zp49i7/++gvJkiX75GMvXLgAf3//0M3T0zNBxkxERESx5JQcaDIdaDYbcPIA7p0GplQEdv4BBL+DuWYvxjQviCmtCiOFiwMu33+ORhP2YNSG83jzjtkLMg+2Wr74qFGjkD59esycOTP0ukyZMkXrsRJIJE2aNB5HR0RERPHKpz6QoRSwphdwfg2wfRhwYR3QcBKQMgfMUbXcqVA0Y3IMWn0GK4/fwcQdfthy9p5abC9/ev1xTXCIDgeuPsaRh1bwuPoYJbN6wsbaSuuhE5l2YLFq1SpUr14dTZs2xc6dO5E2bVp069YNnTp1+uRjCxQogDdv3iBPnjwYNGiQynxERO4jm0FgYKD6+fbtW7VpwfC6Wr0+mQ7uCyS4H5BF7wsOSYFGM2F1+j/YbOoPqztHoZtUFiEVfkJIsS6AtQ3MjYu9Ff5snAfVc3liwKqzuCTZi4l70alMRuRI5YpRGy7gbqAcu9hg9qXDSOXmgF9q5UT13F5aD50s8G/C2xi8tpVOJ+tEasPR0VH97N27twouDh06hJ49e2LSpElo06ZNpCVQ0mdRpEgRFTBMmzYNc+bMwYEDB1CoUKGP7i9Bx+DBgz+6fv78+XBycoqHd0VERESfwzHoMQrcmAGvZyfV5UfO2XDM+2u8cDDfA+oXb4ElV61x9JGhOt1wWGacodBf1z57CPJ7aHbYRhbq5cuXaNGiBQICAuDm5ma6gYW9vb0KEPbu/bBYzrfffqsCjH379kX7ecqXL48MGTKoACM6GQspv3r48OEnP5z4jPw2b96MqlWrqv4SslzcF0hwPyAD7gtyDK2D1fG5sNnyC6yCXkBn54SQSgMRUrgdYKX5nDPxZv2pu+j130nV3B0RCTNSuTtge+9yLIuyIG9N4G+CHDunSJEiWoGFpqVQqVOnho+PT5jrcuXKhaVLl8boeYoVKwZfX98Ib3NwcFBbePLlaP1H2xTGQKaB+wIJ7gdkYPH7QrH2QLbKwMrusLq2GzYbf4TNxbVA/fFA0gwwRyndnSINKoTc5B/wBsduPUPJLB4JOTSy8L8JdjF4XU1Df+mLkNImYxcvXoS3t3eMnuf48eMqSCEiIiIzkcwbaL0KqPkHYJsEuLoLmFAKODpHZTXMzf1nr6N1v3HbLmHz2Xt48cY8Z8+ixE3TjMV3332HUqVKYcSIEWjWrBkOHjyIKVOmqM2gf//+aq2L2bNnq8tjxoxRM0flzp0br1+/Vj0W27Ztw6ZNmzR8J0RERBTnrK2B4l8DWSsDy7sAtw4Cq3oA51YBdf8HuJnPSUVPV33f6afs8XukNjsbKzW7VPnsKVEhhyeye7modb2ILDawKFq0KJYvX66ChyFDhqiAQQKHli1bht5H1qi4ceNG6OWgoCD06dNHBRvSfJ0vXz5s2bIFFStW1OhdEBERUbzyyAK03wDsGwdsGwZc2gRMKAHU+hPI2wQwgwPqYpmSI7W7I+4GvA5t3zYm7zCZkx1q5UuNXRcf4sbjl9jr90htI9efV4+VIEO20tlSwM3RgkvpyDIDC1GnTh21RWbWrFlhLv/www9qIyIiIgsi086W7glkq6bPXvgfB5Z1BM6tBGqPBlxSIjGThuyBdX3Qde5RFUQYBxeGsGlEo7yokSc1ZN6da49eYseF+9h58QH2+T2Cf8BrLDx0U23yXIUzJEP5HPpAI3caN2YzyDICCyIiIqJo88wFdNwC+I4Gdo4Czq0Gru8D6owGfOohMZOgYeJXhTB49VkVKBikcndUQYfcLiRIyJTCGZlSZEK70pnw+m2wWlDPEGhcefACB689VtsfGy8gpasDymWTkqmUKJsthVoFnCg+MLAgIiKixMXGDij/A5C9OrC8K3D/DLC4FZC3GVDrdyBJMiRWEjxU9UmFfZfvY9PuA6hWtvgnV952tLMJLYMSNx69xM5LD7Dzwn1VKvXg2RssPXpLbfI0BdInRfnsnirQyJvWHdacvpbiCAMLIiIiSpxS5we+3g7s+A3YMwY4tVg/e1S9sUD2akisJIgonik5Hp3TqZ8xXbcig4cTWnl4o1UJb7x5F4zD156oTIZkNC7ee46jN56qbfSWi0jubI9y2VKosinJani4fDxFP1F0MbAgIiKixMvWAagyEMhZW9978egSML8pULAVUH0E4KjNYrimwsHWBqWzplDbT7Vy4c7TVyrI2HnhAXwvP8TjF0FYcfyO2qQNQzIYFST7kcNTZTa4GB/FBAMLIiIiSvzSFQG67Aa2DgX2TwCOzQGu7ADqjwMyV9B6dCYjTdIk+LJYBrW9DQ7B0etPsENlMx7gnH8gTt4KUNv/tl2GexI71ZOhyqxypIz2lLhkuRhYEBERkXmwSwLUGKHPXqzoCjy9DsyuDxTtBFQdDNg7az1Ck2JnY43imT3U9mONnLgX+Fqfzbj4ALsvPkDAq7dYc9JfbcIntZvqy5BAo5B3MvV4ImMMLIiIiMi8ZCwNdN0LbP4VODwdODQVuLwFaDgJyFBC69GZLC83RzQrkl5t74JDcOLWU5XJkEBDshhn/QPVNmGHH1wdbFV5lQo0cqREavckWg+fTAADCyIiIjI/Di5Anb/12YtV3wBPrgIzagClegAVfwHsWNYTFVsbaxT2Tq62PtVy4OHzN9h9SV8yteviAzx5+RYbztxVm8jh5aoCDOnPKJwxmertIMvDwIKIiIjMV9bK+uzFxp+A4/OAvWOBi5uAhhOBtIW1Hl2ikcLFAQ0LplNbcIgOp24HqAbwHRfv48TNp7hw75napuy6Aid7G5TKkiI00Eif3Enr4VMCYWBBRERE5i1JUqDBBCBXXWDVt8DDC8C0qkDZ3kC5HwBbLhgXEzJTlMwYJVvPKtnw5EUQdl9+qAINKZuS7MaWc/fUJjKndEaF7J4q0JDpc2XdDTJPDCyIiIjIMuSoCXQ/AKz7Hji9FNj1B3Bhg773IlUerUeXaCVztke9/GnUFhKiU30Yhiltj9x4olYCv/LgKmbsuQpHO2uUyOwROqWtrCBO5oOBBREREVkOp+RAkxlAzjrA2j7AvVPAlApAhX5A6V6ADQ+NYkNW8c6T1l1t3StmVTNL7b38MLQJ/G7ga/Vv2bD6LLw9nNQsU9IELgGHkz0//8SM3x4RERFZnjyNgIxlgNW9gAtrgW1DgQvrgAaTgJTZtR6d2ZC1MGrmTa02nU6n+jBUb8aFBzh8/TGuP3qJ2fuuq83e1lqVShkCjSwpXWAlq/ZRosHAgoiIiCyTiyfQfB5wchGw7gfg9hFgclmg0gCgRFfAmr0AcUmChJyp3NTWuXwWPH/zTmUzJJMhgcbtp6+w+9JDtQ1bew5pkyYJbQAvlTUFXBx42Grq+A0RERGR5ZIz4vmbAxnL6qel9dsKbPoZOL9G3/CdPLPWIzRbEihUy51KbZLN8HvwAjsu3FeBxoGrj1WgMf/ADbXZ2VihiHdyfaCRI6Wa3pbZDNPDwIKIiIjIPS3w1VLg6L/Axp+BG/uAiaWBqkOAIh2keUDrEZo1CRKyerqorWPZzHgZ9A4HrjxWgcaOiw9UydS+K4/U9tv680jl5qhKpiTQkIX6pOSKtMfAgoiIiEjIGfDCbYHMFYAV3YHrvvoZpCR7UW8ckDS91iO0GNLEXTGnp9rEtYcv3pdM3VfBhTSBLzp8U20y/W2hDElRIYenCjZ8UrupJnJKeAwsiIiIiIwlywi0WQ0cnAJsGQRc2QFMLAXUGAkUaKkPQChBZUzhrLY2pTLi9dtgHLz6ODTQkBKqQ9eeqO2PjRfUYn7lsqdQgUbZrCnUdLiUMBhYEBEREYUnpU8lugBZqwArugC3DgEruwPnVgN1/wFcU2k9QoslC+yVy55SbQPq+ODm45f6dTMuPlDN4LJA37Kjt9UmiYv86ZO+n2nKE3nTuqsMB8UPBhZEREREkUmRFWi/Edg7Ftg+HLi4ARhfHKj9F5CnMbMXJiB9cid8VcJbbUHvQtQ0toZVwM/ffYZjN56qbcyWS0jmZKcCEgk05KdkNyjuMLAgIiIiiopMO1umF5Ctmj574X8CWNoBOLcKqP034JxC6xHSe7IWRqksKdTWv1Yu+Ae8wq7309n6XnqIJy/fYuXxO2oTksGQWaYk0CiQPilsbdikHxsMLIiIiIiiw8sH6LgV2P0XsOsP4OxK4NoefWlUrjpaj44ikNo9Cb4omkFtb4NDVObCMKXtmTuBOHU7QG1jt12Gm6MtymbTzzQlgYaXm6PWw090GFgQERERRZeNHVChH5C9BrC8C/DgHLCoJZDvC6DmKCBJMq1HSJGws7FGsUzJ1fZDjZy4H/gauy49VIGGLMoX8Oot1p7yV5vIldotdBXwwt7J1OMpagwsiIiIiGIqTQGg805gx0hgzz/61buv7tJPS5utitajo2jwdHNEk8Lp1BYcosPxm0/1TeAX7uPk7QCc8w9U26Sdfmoxv9JZPVA+u6cKNNIkTaL18E0SAwsiIiKiz2HrAFQZBOSore+9eHQZmNcYKNQaqDYccHTTeoQUTTJTlGQlZOtdNTsePX+jshgSaEiPxqMXQdh45p7aRDZPl/e9GZ4omikZHGxttH4LJoGBBREREVFspC8KdN4NbB0CHJgIHJ0N+O0AGowHMpXTenT0GTxcHNCgYFq1hYTocPpOgGoAl0Dj2I0nuHT/udqm7r6KJHY2KJXFQwUaMqWtzFJlqRhYEBEREcWWvRNQ8zcgZ21gZTfg6Q3g37pAsc76rIbcTomSrOKdL11StX1bORuevgyC7+WHoYHGg2dvsPX8fbUBZ5A5hXNoA3iJzB5q3Q1LwcCCiIiIKK5kKgt03QtsGgAcmQkcnAxc3gI0mAhkKK716CgOJHWyR518adSm0+lw1j/w/SrgD3Dk+hNcefhCbTP3XIODrbUKLgxT2mZK4QwrM177hIEFERERUVxycAXqjtFPQbvyG+CxHzCzBlCyB1DxZ8CO05iaCwkScqdxV1u3ClkR+PqtWv3bEGj4B7wOXRVcZEjuFDrTVMksHnCyj/xQXBrKD1x9jCMPreBx9TFKZvU0+VXDGVgQERERxYesVYBu+4AN/YET84G9/wMubQIaTgLSFNR6dBQP3BztUCNParVJNkP6MAzrZhy8+hg3Hr/EnP3X1Wb/fvpbQ6CR1dMlNJux4bQ/Bq8+qwITwAazLx1GandHDKzro57bVDGwICIiIoovSZICDSfqsxerewIPzgNTKwPlvgfKfg/Y2ms9QoonVlZWyO7lqravy2XBizfvsM/vEXZcvK+yGbeevFK9GrINX3cOaZMmQbnsKdVCfVN2XYEu3PPdDXiNrnOPYuJXhUw2uGBgQURERBTfpKk7fQlgXR/gzHJg5yjgwjqg4WTAK7fWo6ME4Oxgiyo+XmqTbIb0Yey88AA7Lj7A/iuPcPvpKyw4eCPSx0ugIfkMyWRU9UllkmVRXEKQiIiIKCE4ewBNZwFNZuhX6L57CphcHtj9FxD87sP9QoJhdd0XaR/vUz/lMplfNiNLShe0L5MJs9sXw4lfq2Fmu6KontsrysdJcCHlUVJWZYo0Dyxu376Nr776Ch4eHkiSJAny5s2Lw4cPR/mYHTt2oFChQnBwcEDWrFkxa9asBBsvERERUazkaQx0OwDkqAWEvNWvfzGjOvDwEnB2FTAmD2znNkCR6xPVT7msriezlcTeBhVzeKJW3uiVON1/Jr0XpkfTwOLJkycoXbo07OzssH79epw9exZ//fUXkiVLFuljrl69itq1a6NixYo4fvw4evXqhY4dO2Ljxo0JOnYiIiKiz+bqBTSfr5+G1sEduH0YmFASWNwKCLwT9r6B/sDi1gwuLICnq2Oc3s+ieixGjRqF9OnTY+bMmaHXZcqUKcrHTJo0Sd1HAhCRK1cu+Pr6YvTo0ahevXq8j5mIiIgoTsgMQAVa6FfnXtEduLoj6ur6Df30vRrWlrPgmqUplim5mv1JGrXDN28L6apI5e6o7meKNA0sVq1apYKBpk2bYufOnUibNi26deuGTp06RfqYffv2oUqVKmGuk+eQzEVE3rx5ozaDwMBA9fPt27dq04LhdbV6fTId3BdIcD8gA+4LFsrJC1alesE20sBC6IDA2wg+OAMh2aoDLikBa87BY45+rpkD3yw8oYII4+DCyuj2kOB3CdZ6E5O/R1Y6aUvXiKOjPo3Tu3dvFVwcOnQIPXv2VFmJNm3aRPiY7Nmzo127dujfv3/odevWrVPlUS9fvlR9GsYGDRqEwYMHf/Q88+fPh5OTU5y/JyIiIqKYkkZt6amILh2sEGTrgte2SfHaLine2MlPd7x5f1n+ra63TYpgG4d4HTvFvROPrLDsmjWeBn2Y+SmpvQ6NMoYgv0fCHrrL8XWLFi0QEBAANze3KO+raagbEhKCIkWKYMSIEepywYIFcfr06SgDi5iSAEQCF+OMhZRfVatW7ZMfTnxGfps3b0bVqlVVfwlZLu4LJLgfkAH3Bctldd0NiEZgoXNMBrwJhJUuGA7vnqnN/fXNqB9j7wK4eEHn4vX+p+f7n6k+XO/sqZ+p6v0CbaStWgB+CNFhv98DbNt3BJVKFkaJLCk1mWLWUO0THZoGFqlTp4aPj0+Y66RnYunSpZE+JlWqVLh3716Y6+SyBAnhsxVCZo6SLTz5g631H21TGAOZBu4LJLgfkAH3BQuUuRzglkbfqB1Zdb1bGlj1OqW/+PIR8Owu8Pw+8Pzu+3/f02/P7r2/7h7w7hWsgp4Dj5/D6rFf1GOwsVeBRugmDeYSfBh+SkDimkofhNiwDCu+2QEonc0TAZd06qdWfxNi8rqa7hUyI9SFCxfCXHfx4kV4e3tH+piSJUuq0idjcnZHriciIiJKlKQhu8Yo/exPkVXX1/jtQ+O2yjp4Rv2cUu3+JlAffBgCD/Xz7sfXvX4KBAcBATf1W5SsAOcUYYMNFYi8v2wcjNiz7NySaBpYfPfddyhVqpQqhWrWrBkOHjyIKVOmqM24lEnWupg9e7a63KVLF4wbNw4//PAD2rdvj23btmHx4sVYu3athu+EiIiIKJZ86gHNZgMbfgw75axkMiSokNtjQsqaHN31W4psUd/33Ztw2Q7jbMj769Tl+4AuGHjxQL+FLSL5mIPbx8HGR8GIF8uwzISmgUXRokWxfPlyFTwMGTJETSM7ZswYtGzZMvQ+/v7+uHHjw/Lmch8JIiQo+eeff5AuXTpMmzaNU80SERFR4ifBQ87aeHdlF47v3ogCZavDVsqk4nuKWVsHIGkG/RYVmYootAzLUHplnA0xKsd690qfMZHt0eXol2EZgo2PyrHe94KwDMtkaf7N1KlTR22RiWhV7QoVKuDYsWPxPDIiIiIiDVjbQOddBrfPBCK/dxnTWrdCxhKTMiyV7TAOQO5+fN3nlmEZgg3jYMS4HItlWJYXWBARERGRmTEuw0qZPer7vn0NvLgfrgwrgkZ0uY8uxKgM630je5RlWJ9oRGcZVpxiYEFERERE2rFz/LwyrKjKsd69NirDuhT188o6HyoA+UQjunPKhC3DCgmG1XVftcaJmo44IUriYomBBRERERGZvs8qwzKeAStcI3poGdYbIOCGfotRGVYk5VguXrEvwzq7SjXx2wbeQRG5LGucqCb+UTFv4k9ADCyIiIiIyHLLsAxZj48yH/djX4blGkUjemRlWBJUqGmHw61nImucyPUyc5iJBhcMLIiIiIjIcsuwknnrt0+VYb14+HEj+kdrhNz7vDKs0FmvUgKnl0SySKJcZwVs6KdmDjPFsigGFkREREREUZGDeDn4ly0mZVjPDNmQux9fF6MyrNAXAAJvA9f3ApnKwtQwsCAiIiIiMoUyrCs7gPNrPv06cn8TxMCCiIiIiMgUyrBS5oxeYCFlUybIWusBEBERERERAO9S+tmfpJciQlaAW1r9/UwQAwsiIiIiIlPp5agx6v2F8MHF+8s1fjPJxm3BwIKIiIiIyFT41NNPKeuWOuz1kskw4almBXssiIiIiIhMiU89NaXsuyu7cHz3RhQoWx22iWDlbWYsiIiIiIhMjbUNdN5lcDt5SfXT1IMKwcCCiIiIiIhijYEFERERERHFGgMLIiIiIiKKNQYWREREREQUawwsiIiIiIgo1hhYEBERERFRrFncOhY6nU79DAwM1GwMb9++xcuXL9UY7OzsNBsHaY/7AgnuB2TAfYEMuC+QqewHhmNmwzF0VCwusHj27Jn6mT59eq2HQkRERESUaI6h3d3do7yPlS464YcZCQkJwZ07d+Dq6gorKyvNIj8JbG7evAk3NzdNxkCmgfsCCe4HZMB9gQy4L5Cp7AcSKkhQkSZNGlhbR91FYXEZC/lA0qVLB1MgOwj/WJDgvkCC+wEZcF8gA+4LZAr7wacyFQZs3iYiIiIiolhjYEFERERERLHGwEIDDg4OGDhwoPpJlo37AgnuB2TAfYEMuC9QYtwPLK55m4iIiIiI4h4zFkREREREFGsMLIiIiIiIKNYYWBARERERUawxsEhAEydORL58+ULnIi5ZsiTWr1+v9bBIY7/99ptarLFXr15aD4US2KBBg9R3b7zlzJlT62GRRm7fvo2vvvoKHh4eSJIkCfLmzYvDhw9rPSxKQBkzZvzob4Js3bt313polMCCg4MxYMAAZMqUSf09yJIlC4YOHaoWqzNlFrdAnpZkYT45iMyWLZvaMf7991/Ur18fx44dQ+7cubUeHmng0KFDmDx5sgo4yTLJ7/6WLVtCL9va8s+yJXry5AlKly6NihUrqhNOKVOmxKVLl5AsWTKth0YJ/P8EOaA0OH36NKpWrYqmTZtqOi5KeKNGjVInpOVYUf4/IScZ2rVrpxaq+/bbb2Gq+H+wBFS3bt0wl4cPH652mv379zOwsEDPnz9Hy5YtMXXqVAwbNkzr4ZBGJJBIlSqV1sMgEziISJ8+PWbOnBl6nZypJMsiAaUxORkpZ6rLly+v2ZhIG3v37lUnn2vXrh2azVqwYAEOHjwIU8ZSKI3IGYmFCxfixYsXqiSKLI+ktuUPRpUqVbQeCmlIzkqnSZMGmTNnVoHmjRs3tB4SaWDVqlUoUqSIOjPt6emJggULqpMOZLmCgoIwd+5ctG/fXpVDkWUpVaoUtm7diosXL6rLJ06cgK+vL2rWrAlTxoxFAjt16pQKJF6/fg0XFxcsX74cPj4+Wg+LEpgElUePHlVpb7JcxYsXx6xZs5AjRw74+/tj8ODBKFu2rCp/cHV11Xp4lICuXLmiMti9e/fGTz/9pP42SLmDvb092rRpo/XwSAMrVqzA06dP0bZtW62HQhro168fAgMDVd+djY2NOiEtlS5yAsqUcYE8Dc5AyBnJgIAALFmyBNOmTcPOnTsZXFiQmzdvqjOTmzdvDu2tqFChAgoUKIAxY8ZoPTzSkBxEeHt74++//0aHDh20Hg4lIAkg5O+ClD8YSGAhAca+ffs0HRtpo3r16mq/WL16tdZDIY1OQPbt2xd//PGHKpc/fvy4muRF/v9gyicbmLFIYPJHImvWrOrfhQsXVv/T+Oeff1QDL1mGI0eO4P79+yhUqFDodXImYteuXRg3bhzevHmjzk6Q5UmaNCmyZ8+Oy5cvaz0USmCpU6f+6ARTrly5sHTpUs3GRNq5fv26mtRh2bJlWg+FNNK3b1+VtWjevLm6LLPEyX4xcuRIBhYUuZCQEHUgSZajcuXKqiTOmMz0IOnOH3/8kUGFhTf0+/n5oVWrVloPhRKYzAh14cKFMNdJbbVksMjySBO/9NoYGnfJ8rx8+RLW1mFboeX4QI4bTRkDiwTUv39/1XSTIUMGPHv2DPPnz8eOHTuwceNGrYdGCUhq5/PkyRPmOmdnZzV3ffjrybx9//33arY4OXi8c+cOBg4cqP7H8eWXX2o9NEpg3333nWrWHDFiBJo1a6ZmfpkyZYrayLLIgaMEFnJWmtNPW666deuqngo5ZpRSKFmaQMqgpJnflHGPTUBS/tK6dWvVpCnzEEt9vQQVMkc1EVmeW7duqSDi0aNHaprJMmXKqOmnw085SeavaNGiajIPOQE1ZMgQNdWs9FyZeqMmxT0pgZJeTFM/gKT4NXbsWLVAXrdu3dTxo8we2LlzZ/z6668wZWzeJiIiIiKiWOM6FkREREREFGsMLIiIiIiIKNYYWBARERERUawxsCAiIiIiolhjYEFERERERLHGwIKIiIiIiGKNgQUREREREcUaAwsiIiIiIoo1BhZERESfcO3aNVhZWeH48eNaD4WIyGQxsCAishAPHjxA165dkSFDBjg4OCBVqlSoXr069uzZE3ofOXhesWIFTE2FChXQq1cvrYdBRERRsI3qRiIiMh+NGzdGUFAQ/v33X2TOnBn37t3D1q1b8ejRoxg9jzyHvb19vI2TiIgSJ2YsiIgswNOnT7F7926MGjUKFStWhLe3N4oVK4b+/fujXr166j4ZM2ZUPxs2bKgyF4bLgwYNQoECBTBt2jRkypQJjo6Ooc/ZsWNHpEyZEm5ubqhUqRJOnDgR+pryb3ktV1dXdXvhwoVx+PBhddv169dRt25dJEuWDM7OzsidOzfWrVv32e/P19cXZcuWRZIkSZA+fXp8++23ePHihbrtp59+QvHixT96TP78+TFkyJDQy/L+cuXKpd5fzpw5MWHChM8eDxGRJWJgQURkAVxcXNQmZU5v3ryJ8D6HDh1SP2fOnAl/f//Qy+Ly5ctYunQpli1bFtpn0LRpU9y/fx/r16/HkSNHUKhQIVSuXBmPHz9Wt7ds2RLp0qVTzyO39+vXD3Z2duq27t27q3Hs2rULp06dUgGPjO9z+Pn5oUaNGiojc/LkSSxatEgFGj169Agdx8GDB9X9DM6cOaPu26JFC3V53rx5+PXXXzF8+HCcO3cOI0aMwIABA1R2h4iIoklHREQWYcmSJbpkyZLpHB0ddaVKldL1799fd+LEiTD3kf8tLF++PMx1AwcO1NnZ2enu378fet3u3bt1bm5uutevX4e5b5YsWXSTJ09W/3Z1ddXNmjUrwrHkzZtXN2jQoGiPvXz58rqePXtGeFuHDh10X3/9dZjrZHzW1ta6V69eqcv58+fXDRkyJPR2ee/FixcPM+758+eHeY6hQ4fqSpYsqf599epV9dkcO3Ys2mMmIrI0zFgQEVkIOaN/584drFq1Sp3h37Fjh8oyzJo165OPldIpKXkyLnN6/vw5PDw8QrMhsl29ejU0M9C7d29VKlWlShX89ttvYTIGUqo0bNgwlC5dGgMHDlTZg88lY5H3YDwOaUoPCQlR4zFkLebPn6/+LfHTggUL1HVCSqZkbB06dAjzHDI+4zETEVHUGFgQEVkQ6R+oWrWqKvPZu3cv2rZtqw7sP0X6IIxJUJE6dWpVFmW8XbhwAX379g3tzZCSo9q1a2Pbtm3w8fHB8uXL1W0ScFy5cgWtWrVSpVBFihTB2LFjP+s9yVg6d+4cZhwSbFy6dAlZsmRR9/nyyy/V2I4ePare982bN/HFF1+EPl5MnTo1zHOcPn0a+/fv/6wxERFZIs4KRURkweRg33h6WemBCA4O/uTjJNNx9+5d2NrahjZ5RyR79uxq++6779TBvfRvSHO4kCbrLl26qE2ayOXA/ptvvonxe5CxnD17FlmzZo30PtLrUb58edVL8erVKxVceXp6qtu8vLyQJk0aFegYshhERBRzDCyIiCyATCkrzdbt27dHvnz51ExNMkPT77//jvr164feT4IEmYJWSpRkrQuZtSkiUt5UsmRJNGjQQD2HBA9SZrV27VoVOMgsT5K5aNKkiZpJ6tatW6qJW8qxhKxJUbNmTfW4J0+eYPv27WpGpk+twxF+gTrJmvz4448oUaKEataWTIhkVyTQ2Lx5M8aNGxd6XwkaJDsj0+WOHj06zPMMHjxYlWe5u7urMjFpLJfPR8YmJV1ERBQNWjd5EBFR/JMm6379+ukKFSqkc3d31zk5Oely5Mih++WXX3QvX74Mvd+qVat0WbNm1dna2uq8vb1Dm7el+Tm8wMBA3TfffKNLkyaNau5Onz69rmXLlrobN27o3rx5o2vevLm6zt7eXt2nR48eoc3U8m9pmHZwcNClTJlS16pVK93Dhw+jbN6W/2WF36TBWhw8eFBXtWpVnYuLi87Z2VmXL18+3fDhw8M8x5MnT9TryXt/9uzZR68xb948XYECBdR4pcm9XLlyumXLlqnb2LxNRPRpVvKf6AQgREREREREkWHzNhERERERxRoDCyIiIiIiijUGFkREREREFGsMLIiIiIiIKNYYWBARERERUawxsCAiIiIiolhjYEFERERERLHGwIKIiIiIiGKNgQUREREREcUaAwsiIiIiIoo1BhZERERERBRrDCyIiIiIiAix9X8lkpQbvaAOZwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "stress_group = df.groupby(\"Stress Level\")[[\"Sleep Duration\", \"Quality of Sleep\"]].mean()\n", + "\n", + "plt.figure(figsize=(8,4))\n", + "\n", + "plt.plot(stress_group.index, stress_group[\"Sleep Duration\"], marker='o', label=\"Sleep Duration (hours)\")\n", + "plt.plot(stress_group.index, stress_group[\"Quality of Sleep\"], marker='o', label=\"Quality of Sleep (1–10)\")\n", + "\n", + "plt.title(\"Effect of Stress Level on Sleep\", fontsize=14, fontweight='bold')\n", + "plt.xlabel(\"Stress Level\")\n", + "plt.ylabel(\"Average Value\")\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "c04a03e1-a8b2-4c02-aab3-917be005d327", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAGGCAYAAAANcKzOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAqpdJREFUeJzsnQV0FFcbht+4J4SgCRDc3d2tUKDQQltcapT+daGKtLRAXWlpKa6lQCktVtzd3TUQgkSA+Pznu5MNm7BJNrqS9zlnszuyM3fn7mzuez9z0DRNAyGEEEIIIYRkEcesvpEQQgghhBBCBIoKQgghhBBCSLagqCCEEEIIIYRkC4oKQgghhBBCSLagqCCEEEIIIYRkC4oKQgghhBBCSLagqCCEEEIIIYRkC4oKQgghhBBCSLagqCCEEEIIIYRkC4oKQrLAihUr0KpVK/j5+cHBwUE9ChQokLw9MjISr7zyCkqXLg1XV9fkfb755hvYO3FxcRg1ahQqVaoENze35M/+6quv5sr5zp8/n3wOeaxfvx7WgnG7pk2blqfnHjx4cPK5W7duDVskp/tWroPhWHJ9SM4h32/jvsovyG+84TOPHj3a0s0hxKJQVJB8iwxQjP8JpvVIPfg4dOgQevTogY0bNyIiIsLksZ9//nl89913uHDhghpkWwJLDaBEUIwdOxYnT55EbGxslgeQxg9PT0+UL18eQ4cOxYEDB3K1/eQBjz76aIp+EJF469YtuxSDeX2/pP78HJBansuXL6vJj2rVqsHLy0t934sVK4YaNWrgySefxGeffYbbt29bupmEWC3Olm4AIbbGokWLkgfL8k9H/gkVKlQI7u7uap2IiIULFybv37x5czU4c3JyQsuWLWHvzJ07N/l19erV0bdvX7i4uKBevXpZPub9+/dx5swZ9Zg5cyamTJmCgQMHwtr5/PPPk183aNAAtsS1a9eURc4Y+d7PmTMHL730Up60oWDBgimuYbly5bJ1vOHDh6t70fDdJMTA3r170bZtW4SHh6dYf/36dfU4fPgwFixYgEceeQT+/v4Waych1gxFBSFJyExU/fr1H1qfevAh1gfjgeL48eNTbA8JCUlhnZAZyHbt2iG/YHx9RHANGzYsS8fp0KEDOnbsiISEBGWdmD9/PhITExEfH48XXnhBbS9evDismTfffBO2iog3ufam3FzySlT4+vrm6DWUe5wQU7z44ovJgkKsFPJdKVu2rPotP3XqFDZt2oRLly5ZupmEWDcaIfmUdevWaXILGB5Tp05Nd3/Zbrx/6segQYO04ODgdPc5d+5c8vHOnDmj/e9//9MqV66seXp6au7u7lqVKlW0d955R7tx44bJNsTFxWlTpkzROnTooBUpUkRzcXHRChUqpDVq1EgbPXq02mfUqFHptiF1O9Lj8uXL2ptvvqlVr15d8/Ly0tzc3NRn7Nevn7Zjx44U+7Zq1Srdc8r1Tg9pk/H+8jmMef/991Nsl+tg6n1ynkWLFmmNGzfWPDw8tAIFCmhPPPGEdvHixeRj/f7778n7yz537txJca7bt2+ra2vYZ968ecnX/+uvv1bH9vPz05ycnLSCBQtqVatW1QYMGKDNnTs3xXEy+n7t3LlTGzx4sFauXDnVDrnGFSpUUOtOnz6dvJ98pqFDh2p16tTRihUrprm6uqr95X2y78GDBx86tnwfDeeWvsks8pkM769YsWKKz3Lo0KE033fp0iXt7bff1mrXrq35+Pio70zJkiW1Hj16aKtWrVL7ZHSfGNprqm+F/v37p/vZ/v333+Ttjo6OyX1v/B2V62Pu/SL3apkyZZKX33333YfOKfeJYbvcxxmR0fc9LcLDw7VPP/1Ua9iwoebr66u+p3J95fMcPnw4xb5ZvU5CdHS09v3332stWrTQ/P391Xnkuyf30tatWzP8fcwMmfmdSd1nsp/cv/L+UqVKqXZKX40bN05LTEw0+5oat33atGkm95P7NfVvs/F32VQf7t+/XxsyZIhWtmxZ9Rsvn0/uDWlfVFRUtvvY1PWQ36+XX35ZCwoKUr8V8n2UvjT3ehCSVSgqSL7FkqJiyZIlSkiktZ/8Mzh69GiK89+8eVNr0KBBmu+RQW5OiooNGzaowURax5BByJdffplnomLZsmUptss/ZVPv69Spk8nzy2D9/v376j3yHBAQkLztxx9/THEuY9Eh10AGWKkH6qYeIu6MSe/7NWbMGM3BwSHNYy1evDh53zfeeCPd88rAYfXq1TkmKmQgZ3z85cuXa4ULF05efv31102+759//lFCIq12vvLKKzkiKtasWZPieyiDUmNE4Bm2d+zYMXl9VkWFtOPzzz9PXg4MDNTi4+NTnNP4M02cODFXRMXJkye10qVLp9lOGYwvWLAgef+sXqfQ0FA18E3v3v/mm29yRFRk9ncmdZ/JfSyDZlPv/fDDD81qg/y2Gr9PBErq/k2L9ETFTz/9pDk7O6f52US4h4SEZKuPU18PuU9FnJl6r0xiEZKb0P2JkCTEfzwsLOyh9WIGL1mypHJ1Ev9uccPZvXu32ibmcfHTNrhJNWvWTAVgfvrpp8nvF1cdgy+4+IifO3cOTz/9tIoTECQosGfPnsq1Z/bs2cp96MqVK3j88cdVULjEYggDBgzArl27ko9bpUoVdOnSRcV17Nu3Dzt27FDrxWXI29sbkyZNwtmzZ9U6cesydv2QdqTHnTt30KtXr+SgRA8PDwwZMkS5o0jMhLRR2iuuKRIrIZmwDP7qb731lkmXsuz6w2/bti3FsgRQmmLlypWqrzp16oR169Zhy5Ytar24MCxZsgRPPfWUin959tlnk13XfvvtN+X+YOCPP/5Ifi0xIXKNo6KiMGvWrOT10j9169ZVLhNyPTZs2GD2Z5HjS0C7AQlEl3YFBwer78fff/+dYn9xx5BrLAGj0nfSHzdv3sQ///yDY8eOqViHl19+GUePHkVOYJypqkiRIsrV7IknnlDfKUG+pxMmTICz84N/IXINevfujXv37qllCT7u3r07ateujRs3bmDt2rXJ+77//vvp3idyv6VHmzZtVNYdOYZ8D+fNm4c33nhDbZP7SvrZgHxv08Pc+0Xc+KTP5PNdvXpVXXv5fMLOnTuT3f7kmsi9mtOIK5r8TshnFgoXLqy+m9I2+c5v3boVMTExKtZI7kn5bcrqdZL279+/X7328fFR5ylRooS6l+R3Uo712muvqeskv3lZJSu/M6mR+0DeL587MDBQ3cuG3/Fvv/0WH3zwgcrAlx5yDeXeM/ThF198galTp6rPVqdOHTRp0kQF8svvgLlIf4iboLRfaNy4MTp37qwyA06fPl21Ue5XafeqVauy3MepkXtNEojI/SQZCeU3SwLQhe+//179bpm6joTkCLkqWQixIUuFuTPsGc0ApzW7auC1115L4VZimD0Xrl69qlxqDNv/+usvtV7cW4yP2aVLFy02NjbFccVFwxhTs7LmIi4+xucTNwkD169f17y9vZO3iVuLMZmx/qR33cTFS2aHx48fr/Xt21fNWBq2ieuPXCtT7xOXAcO1kWdxEzM1w37hwoUU13rPnj1q/a1bt1K4PhmvN6wTl4SYmJgU7RfXgrNnz5p1LerWrZu8XtwhTpw4keJ94hYh19mYhIQEZUEQ1wyZJZZrI5/H+BzG7itZtVSIVcZ45njEiBFq/caNG1Oca+nSpSnel7ots2fPfqj9xhayjO6TjPYRdz/D+nr16iWvl1lcU1amjO4Jc+6XZ599Nnmfbt26mbQkGa/PSUuF/BYY9pXvrcxoG5BZ9Ro1aiRvl9+YrF6nAwcOpGjX2rVrU7RDfnsM23r27JktS0VWf2dSW5eMrSZiBTbeZso10BTiMpme5VAswWJdTM9CZdyHcm0M61u3bq2+/8ZuVMbHlmuenT5OfT2M7z35nhn/nolLGSG5BVPKEpLHGGbOBUm7KrNzhrSSMtNmHBwrM1PC5s2bUxxDZkwlo5IxpmatcsIqILNlkvHEeObaeDm1BSGnWL16tbJ6jBw5UmUcMsz4ieXmxx9/TDNI+5lnnkm+NvJcpkyZ5G3G6SBLlSqlUgMb+PXXX9WzzN4aAu1r1qyprBGCZHwRq5IgM4Fy3Mcee0y1ccaMGWr22vhcaSEz3WJZMiCzjhUrVnzIMiHX2fhayLEbNWqk0p1KALyc96uvvkrxPsOMZHb466+/UlwnsaAYspjJbLUBmck1xvg7KlY0mWE1xtHRUc2a53QdDmHPnj3KEpU6+5hYBDMzu5wR//vf/5Jf//vvv6rPBeNsbxlZRnLid0N+I+Q7Y/jdEOuIWDVT/25k5ToZn0eQjEjGqW/lc5s6j6V+Z+T3QFJ4G5D6OMaYmwJWLARiTZPPK9/V1IhFUn53P/74Y7OOZ3wdJV2ytNNwDRs2bJhiX8N1zGofGyO/ecZWNrnn5N41IN8BQnILigpCjAZJSXFGKR45XTgsM3n+xZRt6j3mDF6zg/H5ihYt+tB243V5kbddBjwimgYNGqRcwNIbuKUeuBoPKg3CxIC4DBmQQZYM+CVtpAGpi2GMiJuqVauq1zKglAG4uEpIu0SkvP766xl+FrleuhHDvL6U84h4uXjxYobHFteI7GIsFsQNyeDeIgMb48GKuP+I64mp70xufz8FcVeRAaBx38jAz3jQm7r/sou4nxl+D2TQJ9dK3A4NbjMyMDakrM1psvK7kZXrlNXzWOp3RvYxpPMWUovI1Pd8ekjfrlmzRrVr+fLlKnNf6oyAX3/9dZ79zpvzntQEBAQku8yauo7ickZIbsGYCkLyGON4Bpn5Tq/QliGdbeoYCPG7lwFMXrRRcrSnxnhdbuVsl1nBrBQES23BSa+6ryFOQWYAZaD1yy+/qEGFIH7Y/fr1S7G/WC6OHDmi9pe89jLrK88yAJHBiww4unXrpnzZ00Kul7TJICykL9ND4isMcQrCl19+qfz7pZq7+GQbrCc5gQgYsYoYkBSapmZtBYnjkNgKgzAz/s5k9JlyChGXhv4SUSjCziCspK+yUxslPWuFoVDf77//nkJY9e/f/6HvX05hfH1lEJ3ejLl8N7J6nVL/1kghS7Gm5gY58TuTmfvdXOT6SfyDPOR3SO436WuDlVLaZUoEpf5soaGh6rVYCoytoqlp2rRp8nuy2scG5PsogtdYWBhfR4mzICS3oKggJI+RfyAS2GmoaSGuB0FBQSn2kVoMMpgUdxfB2HwtyD+bxYsXPxQoK7OSpv7ZGg9KzW2jYcZeZsRk0GxwRZB/lLJsvK8tI4PE5557Tr1+7733kl2fRBxIUUNjJHhVAo9FiMjDQK1atXDw4EH1WkRGeqJCgrIl+FP2M9SDEAuHVAw3IEG0EtApLiDGg1bDANEwoDC2quRmbYr0AroNokK+o4bvtQSPS1CwwXVKEBElIkUGtKYGg5n9jgoS5CvXQgThiRMnUgzCMuuGZO79IoND+QxiOZLAbkPwem5YRowxvs+io6OVmDR2DzIglpPUs/WZuU6p72e5BwzJKIwRcZ1dK6U1/c6ItVG+y6aEqATyGxCRLcHrGSHtNQTCSyFJ+Y2RAHRj5D6XpA2Gz5adPjYgv1+STMTgfihB38auibkhtAkxQFFBSAbZn+SfsWQKyslB7M8//6z+aYi5WwapkjVHXE0kw5DMPstMqJipZcZXZuhkACuZngwuC8uWLVMDWVknM1ryD37jxo0p2m8sVMRVRWITZIAgj/SsI4Z/sDLwMAxoJWOIDJjkn6K4T0g7DbOC4t9vy4g14p133lEDJOmT9AalksFF4l5atGihnuV6SGE+g6AwdyZQ+qJPnz7qtVxL+Q4Ysj/JwFv696efflJuT6l9xLt27aoGGnJOY1/+3Mj6ZEocyUDakIVMYkOkHTLbLQMyGWAbsprJoEYGN/LZ5NrKd1rcS7755hu1XSxtMpA3iDjJCCXXUtbJfqYKUaZGZtDluomFydhCIsdIbWXKCHPvF5kBlkH2u+++q5YN3xlpb3aqdE+ePFn1uykk25z0u8SqiGAT5LshYkHc8cRKJtXm5TdAJhfELUuue1auk/yuSLYvg8VKMhjJ4F4GozKgluOLP7+0Q2bxU094ZAZr+p2RuCh5SAYy+Uzibinnle/kokWLkvdr2bKlmhjICMmyJe6RIqZPnz6tvhvSX2LhEHEn1k7JGHf37l0VVyVkp4+NkWsoxfoM2Z+Mi7FKzBkhuUauhYATYifZnyS7R05mfxKkBoFk/cno3MbZcsLCwsyqU2HAOJOI8aNatWpm54+XwnFpnU+yMX3xxRcPvS+nsj+ZWwwso+ttTlYf48Jl8ihevLjJPPWSIz69/pKiW8aF9NK7FpKVx5w6FZLByjjri/Ejdd0M48+e2exP27ZtS3GsTz75xOR+UpTPeL9XX30103UqTGXIMX5IZitz76XUNTXk0atXL5NtT++7kJn7Re5FKWRmvF/qWicZkfqzpfcwIFnC0qthkN59l5nrJJmX0qtTYeoezU6disz+zqQu9pbedc2oPo4Bc/pBCl2mLvyYXp0K+U6kV6fC1LXKSh8bX4+iRYuqLF+m3vPiiy+a3S+EZAUGahNiAWQG6vDhw8rtRawQYl6XGVAJspOc6JLZRzKBGAcdyzZZJ3nY27dvr2Z6xf1JLBkyi5h6Jk9y6P/www9q5iujPO2mkBk5aaPMuIkZXmbn5Dji+iGzmzJbach5b+uMGDEiReyAzBymDnYUZCZeLBgyM2+4/tJ3svz2228rt4S0fJ1TI7O827dvV7O1MisqFie5xvJa6gQYZr1lNlmy0shsuXwHxO1BtsnMdlZiTsyxUsi1kHaZQmZy5bthQOIqDDOhYjkTq5l8f+WayLWR9otVR2ZhZbsxknFLziOzt2nFbmSEZNJJHVeSlQxMmblfpB+Ms1tJ36XOdpUbSDYgsQxNnDhRucrIvS/fU3HHkests9DiFmmqLZm5TmKlku+yfN8lyFusNXIeyUpWuXJlFTsi/W5ckyarWMvvjLgjSh0ig7XAEPAs11bcFeX+lu92ZqxRUvtGrHni+iR9J59NfjPk+y7xXB9++KGyhORUHxu+i1KfR+qISLY2uZZi7ZSaHfL9JiQ3cRBlkatnIIQQK0dcWKSYnrglCMePH3/I7YgQY6RwosEFSlyLjFO0EpKXyOTCmDFj1GtxoTQUzyMkr2FMBSEk3yKWAoldEV9qg6AQKxAFBTGFBNyKv7v4tEsqYQMSd0AIIfkdigpCSL5FZpgNNQYEcRUQtwNC0krmkNplSJIsGGp5EEJIfoYxFYSQfI/4K4tv93///af8pwlJD4n/EJ9/yRo2ffp0SzeHEEKsAsZUEEIIIYQQQrIFLRWEEEIIIYSQbEFRQQghhBBCCMm/gdpSYfLq1avKH1oqXxJCCCGEEEJyDomUiIyMVDWH0qspZNOiQgRFyZIlLd0MQgghhBBC7JpLly6poop2KSrEQmH4kL6+vhZpg1SSXbVqFTp27KgqxxLbgX1nu7DvbBf2ne3CvrNd2He2S5wV9F1ERISaxDeMu+1SVBhcnkRQWFJUeHp6qvPzRrUt2He2C/vOdmHf2S7sO9uFfWe7xFlR32UUasBAbUIIIYQQQki2oKgghBBCCCGEZAuKCkIIIYQQQki2sOmYCnNJSEhQPmm5gRzX2dkZ0dHR6jzEdmDfpY34bTo5OVm6GYQQQgixEZztPa/utWvXcOfOnVw9R7FixVQGKtbKsC3Yd+lToEABdX14bQghhBCSr0WFQVAUKVJERc7nxuBICvBFRUXB29s73YIgxPpg36Uttu7du4fQ0FC1XLx4cUs3iRBCCCFWjt2KCnFnMQiKgICAXB2YxsbGwt3dnQNTG4N9lzYeHh7qWYSF3EN0hSKEEBslMQEOFzYj6NY2OFzwBcq2BBzt5Dc9MQG4sBWIug54FwWCm9rPZ7NBLCoqpOT3hx9+iMWLF6vBS506dfDtt9+iQYMG2T62IYZCLBSEkMxjuHfkXqKoIIQQG+ToUmDFO3COuIr6snxhEuAbCHSeAFTtDnv4bIi4+mCdvXw2G8Wi07PPPPMMVq9ejZkzZ+LQoUOqWmD79u1x5cqVHDsH/cEJyRq8dwghxMYH3QsGphx0CxEh+nrZbqvY82ezYSwmKu7fv48///wTEydORMuWLVG+fHmMHj1aPU+aNMlSzSKEEEIIsX23IJnFh2ZiY9K6FSP1/WwNe/5sNo7F3J/i4+NV3IP4s6f25d68ebPJ98TExKiHgYiIiGT3jNQpY2VZAk7Fb14euYWcw/Ccm+dJjbijiCh77LHH8uyctsaYMWPw119/Ye/evbned2vWrMHLL7+MgwcPqr7J6NyW5N1338Xdu3fx3XffpbufXBO5Ntbo/mS433MrVTTJPdh3tgv7znaQGApxeUobDYi4Am1CacDJBTZFQhwcYvTxX3qfLf7sRmjBzWHrxFnBfWfuuR00w8jKAjRt2hSurq6YM2cOihYtirlz52LQoEHKWnHixImH9hdLhgzWUiPvTx07IfUHJB1myZIl1TmyQ0Kihr2XIhB2NxaFvFxRt6QvnBxzzzUkLCwMn376KVatWoUbN26o1J7Vq1fHW2+9hcaNG6t9/P39MWvWLHTt2hWW5NFHH8WWLVvUa7nOEhRfs2ZN9OvXD926dcuzdpi6HpLZSQKxCxYsmOvnb926NV588UX06dNHLY8fPx7//PMPNm3aBGvj5s2bKn5p48aNKF26dJr7ybWTdLuSRU0mAQghhNgGEpRdX+In8jG7g4fjSsEmlm6GXSAZIfv27Yvw8HD4+vpaZ6C2xFIMHToUQUFBaia0bt26ePrpp7Fnz540Z1hff/31FJYKEQ0Si5H6Q0pBMxkQSbrQ1NaQzLDi8DWMXXYM1yKik9cV83XHR49WQefqxdRMrgSc+/j45JgPevfu3dWAbvr06ShbtiyuX7+OtWvXqs9k/DnFqpNe5+YFIt4kNkbEngw8L1++jCVLlmDYsGFKIP7yyy9ZPrZYsuSampuZKfX1yOja5FTfiWXt/Pnz6N+/f/J3zc3NTX2n87p/5HuTkYiWNsk9IyJM3A/TQr5vck3FPTE791BuzZpIPFaHDh1UoT5iO7DvbBf2ne2gsjyZISriH/0eWmBd2BIOV/fCedn/MtyvdotOqGUnlorVFr7vDJ5BGaJZAVFRUdrVq1fV6z59+mhdunQx633h4eFiZVHPqbl//7529OhR9ZxVlh+6qpV+Z5kWnOpROukh2xMSErTbt2+r55xAjiWfaf369enuJ/ssXrw4efnixYta7969NT8/P83f31/r3r27du7cuRTv+fXXX7XKlStrbm5uWqVKlbQff/wxeZvsK8ecO3eu1qRJE7VPtWrVMmxHq1attFdeeeWh9b///rs63urVq9XyunXr1LJ8PgP79u1T6wztnDp1qmr/X3/9pVWpUkVzcnJS23bu3Km1b99eCwgI0Hx9fbWWLVtqe/bsST5OcHCwOo7hIcvCqFGjtFq1aiXvJ300ZswYLSgoSHN1dVXb/vjjj+S+M1yDP//8U2vdurXm4eGh1axZU9u6dWu612DEiBHaE088kWKd4dwzZsxQ7ZF2P/nkk1pERETyPtHR0dr//vc/rXDhwup6N2vWTH1WA4brYYz0ufFtaziP9G3p0qU1BwdlfFSfq3r16pq7u7tWsGBBrV27duo+MzB9+nStRIkS6X6unLiHcovY2FhtyZIl6pnYFuw724V9Z0OEHNa00QU0bZRvGg8/TfuyiqYlxGs2h7T5y8r6Z7C3z2al9116421jrCI5v5eXlyqwdfv2baxcuRI9evTIvaJesfFmPSKj4zBq6ZH0woAweulRtd/92IR0j5UZDzOxrMhDZvuN40cyUrGdOnVSM+7ibiPuSHKMzp07q5lrYfbs2fjoo48wbtw4HDt2TLlXSTpfsYYYIy5Wb7zxBvbt24cmTZooFyZxl8ksYqUQl6RFixZl2sQ2YcIE/Pbbbzhy5IiqkSDWBDmeWAS2b9+OChUqoEuXLmq9sGvXLvU8depUhISEJC+nRtIVf/nll/jiiy9U7IPM1os579SpUyn2e//99/Hmm29i//79qFixorKepef+I9e8fn2VrC8FZ86cUf24bNky9diwYYNyizLw9ttvq7gY6QOJvRC3P+nHW7duZeqanT59Wh1HrrW0Wa6BtFmsgNLX69evR69evVJ8Dxs2bKisSmJhIYQQYkdcPwLM6A5ohljB1Jb4pOXO422zpoO0WdLGKkx5GWi2+9lsHIu6P4mAkIFOpUqV1MBIBrSVK1fGkCFDcuV89+MSUPWjlTlyLBmeiUtUrbH/Zbjv0bGd4OnqbLY70bRp0/Dss8/i559/Vi5hrVq1wlNPPaViFUwxf/58FVQrA3GDG48MsCUWQwaUMngeNWqUGlDL4FIoU6YMjh49qtyTZMBu4KWXXsLjjz+uXksWrhUrVmDKlClqAJwZxGVJBuSZHbSKQPrpp59Qq1at5HVt27ZNsc/kyZPVZ5NBusR0FC5cWK2XdRJHkxYiJt555x11LQUZ4EuAtYgNOacBERSG2Axx66pWrZr6fsp30xQXLlxAYGDgQ+ulT6QvRewJAwYMUOcTYSeB0nJ9Zfsjjzyitv/666/KxCnXW+4FcxHhOGPGjOTrIAJFRJD0dXBwsFpXo0aNFO8xtFfanl5cBSGEEBsi5CAwowdw/xZQvBbQ6AVg7ccmajmMt+1aDtL2PjMerlMhFK4MVMm7mE7yAItaKiTgY8SIEWqwNnDgQDRv3lwJjfzuqymD+qtXr2Lp0qXK2iDCQMSFDEBNceDAATXolcGrwdIhwcniEy+z5TKAlWeJczBsl8cnn3yi1hsj1gljgSMz8DLbnRVEMGY2VkHiAVKLJ4kpEZElFgo/Pz8VEyBB2BcvXsyUP6Bc02bNmqVY36hRIxw/fjzFOuPziwVNkOKM6aVHNhVzIIN1g6AwHMtwHLnuIqCM2yPfe7EgZPZ6i3AwCApBBFm7du2UkOjdu7cSK2IFNFUxWyxDhBBC7ICr+4Dp3XRBEVQPGLgUqN0XePUw4vsvUYHL8oxXD9m2oDAgn+HVw8CgZcDjU4AnpgKOrsCN48CZtZZuXb7EopYKyZRjyJaTF3i4OCmrgTnsPHcLg6eadqMx5vdB9VAlwAU+vj5pBhTLeTOLDFIlKEce4qYkwdBibRg8ePBD+8oAu169esrFKTUy2JTtggwuZRBtTG6lCpUga3ErMlRHN1wbYxccUynKZLCbWoiIJUVcsMSiIANoCYIW8WNw7cppjEWtoS3ppZwtVKjQQ4P21McxHCszqWvlmqV2nTN1zcR9MHWfisVj69atKoPY999/r1y6duzYoSxUgsHFyliMEEIIsVEu7wZm9gJiwoESDYH+CwF3P32bo5NKrXrlSIQeuGxPbkHyWcq0eLB8eRew/SfdOlOurfzjtWTr8h1WEVORV8igTtyQzHm0qFAYxf3cTXrrqWPJzLOfu9rPw9Up3WPlRFaoqlWrKouDKcSKIQN4iT8Qv3zjh8zsS7pecXc5e/bsQ9sNg0wDErNgQFxoJBNXlSpVMt1eiROQgbbBlcoweBV/fwPi/28OEiMiNSAkjkJckURUSNrd1AN4ETJpIdYNuQaG9LcGZKCdlc9njKRnFVeyzFCuXDlllTFujwgGiQeRvjZcM4kbMe53c6+ZfOfECiLuWxIfI+davHhx8vbDhw+raybXkxBCiA1zcQcw4zFdUJRqCgxY9EBQ5Deavw64eOlWm+PLLN2afEe+EhWZQepQjOpWNb0QJ7U9p+tVyIy8xBBIuk8JJj537hz++OMPlfozrQB2qQkhs+WyXYKG5T3iMiUDcQnGFWRw+dlnn6mCZydPnsShQ4dU3MVXX32V4lg//vijGnyKS5C4pokwkIDf9BAXGqllIOcSUSJxCy+88AKGDx+ONm3aqH1EwEj6X6k1IgJIajhIjIc5iNuTpB8WtyARAfJ5De47xq5GEq8g7TBlNRAkTkGCwCUGReqgSIpiuQ5ynbKDBFenVbAxLcS6INdH2iRxKyJKxMVLrqW4qQliVZL6K++9955yl5J6LGm5wBkj10gC8Xfv3q1cxCSAW+qdGIsn+Z60aNHioetICCHEhji/BZjVC4iNBEq30C0Ubg/cbvMd3oWBJi/qr9d+wqraeQxFRTp0rl4ck/rXRTG/lP7ysizrZXtOI7EOMpj8+uuvVX0AKXon7k8y4Pzhhx9MvkcGnlLIrFSpUio4VwaPMjA1rmsh7lMSyC1CQnztJfhbBqipLRUSvCwP8cuXgbLEdYhgSQ9xq5J4AZl9l/PLAFkG7sbBzzIrLsUNRaxIzIIM7iWmwxwkcFmEglhkJNhZRIBYZYwRgSIuPyJcxHJgCnmf1DmR7FZyDSR+RwbqIlqyg4gcyVRlqmBjesh1FkuOfCb5bBIXI22SrFmCxMWIuPz3339Ve+X6iSjLCOlz+T6IZUeC5T/44AN1fQwB4cK8efPUd4oQQoiNcnYDMPsJIDYKKNsa6LsAcE3pDpsvafKSbqmR2IpDCy3dmnyFRStqZxcJvhX3HlMV/mRALTP2MmjObuEuqagtMRahkdEo4uOOhmUKJlsoxEde2iHnN7dImzUiWZrkWomrTO3atZEfyMm+E4uDHCs7xf7yiuXLlythJZYwCcZPi5y8h3IacRUTsSXCKb8ndrA12He2C/vOipBA5LlPA/HRQPn2wJOzAJe0Lc/5ru82fQWsGQP4lwZG7AKc0y8Ka83EWUHfpTfeNsZ2R8F5iAiIJuUC0KN2kHrOaZcnYvtIILQEkWcmENtSSIyGWKzSExSEEEKslFOrgTlP6YKiYmfgqTnpCop8SaPnAa8iwO3zwL6Zlm5NvoGigpAcQGpkSOyDLVirnnjiiYeygBFCCLEBTiwH5vUFEmKAyo8CfWYCzm6WbpX1IW5gLd/UX2/8HIi7b+kW5QusfwRE8gQJdBZPuPzi+kQIIYTYFMf+Bub3BxJigao9gN7TbNqtJ9epNxjwKwlEhgC7frN0a/IFFBWEEEIIIdbMkcXAgkFAYjxQ/XHg8d8Bp3wQG5EdxILTeuSDGIvoCEu3yO6hqCCEEEIIsVYkg9HCYYCWANR8Cug5GXBiTJxZyPUKqKBXGd8+ydKtsXsoKgghhBBCrJED84BFz+qConZ/4LGfKCgyg1yrNu/pr7d+D9y7ZekW2TUUFYQQQggh1sbemcDiFwAtUY8P6P494Ohk6VbZHlUfA4rW0AsEbvnG0q2xaygqCCGEEEKsid2/A0tfAqABDZ4Bun4N2EB2QatErlu7D/XXOyYDESGWbpHdwm8oIYQQQoi1sPNXYNlr+utGw4EuX1BQZJcKHYGSjYD4+8CmLyzdGruF31KC0aNHp0glO3jwYDz22GMWacvx48fRuHFjVcE5O+ltHRwcsGTJElgDJ06cQLFixRAZGQlrITY2VqUR3r17t6WbQgghxMC2n4B/k+orNP0f0Pkz+Ydm6VbZPnIN2yZZK/ZM14vikRyHosIcEhOAc5v0DAzyLMu5zKVLlzB06FAEBgbC1dVVVWt+5ZVXcPPmzVw/97fffotp06YlL7du3Rqvvvoq8oJRo0bBy8tLDcTXrFljcp8bN25g+PDhKFWqFNzc3NSAvVOnTtiyZQuskXfffRf/+9//4OPjo5ajo6OVcKtRo4aqap1ZAXfkyBE8/vjjShSIePrmG9M+oj/++KPaRwSaFLvbuXNn8jb5Tr355pt45513svnpCCGE5AhbvgVWvqu/bvEG0OFjCoqcpEwLoGwbIDEOWD/B0q2xSygqMuLoUuCb6sD0R4E/h+nPsizrc4mzZ8+ifv36OHXqFObOnYvTp0/j559/VoPsJk2a4Nat3M1e4OfnpypEW4IzZ86gefPmSkQFBASY3EcG1Pv27cP06dNx8uRJLF26VAmfvBBcmeXixYtYtmyZEhEGEhIS4OHhgZdffhnt27fP9DHv3buHsmXLYvz48UpQmWL+/Pl4/fXXlUjbu3cvatWqpYRXaGho8j79+vXD5s2blUghhBBiQaTq8+qP9NetRuqz6hQUOY8htuLgPODGCUu3xu6gqEgPEQ4LBgIRV1OulyAfWZ9LwmLEiBFqJnnVqlVo1aqVmpF/5JFH8N9//+HKlSt4//3303XzEUFgbGmQ2eiKFSvC09NTDUY//PBDxMXFpXl+Y/cneb1hwwZlvZBzyePcuXMoX748vvgipV/i/v371XYRQaZITEzE2LFjUaJECWVhEPemFStWpPgse/bsUfvIa3HLSs2dO3ewadMmTJgwAW3atFHio2HDhsoa0L1793QtP3369FHXpmDBgujRowfOn09p/vztt99QpUoVNbNfuXJl/PTTT8nbZF9p07x589C0aVO1T/Xq1dW1SY8FCxaoAX1QUFDyOrHETJo0Cc8++2yaoiA9GjRogM8//xxPPfWUuo6m+Oqrr9TxhwwZgqpVqypRKv3/+++/J+/j7++PZs2aqc9ECCHEAmgasH48sPYTfbnNB0CbdykocougekDlR/WMWuvGWbo1dodjvrt5Y++a95DKi8vf1jMvPHwg/WnFO/p+cffSP5ac10zECrFy5Uq8+OKLajbbGBmAyuyyzEJrmTimuN2IyDh69KgSB7/++iu+/vprs94r+4t1RAaoISEh6iEiR1yzpk6dmmJfWW7ZsqUSHGkd68svv1Ri5ODBg2rmXISAWGQEOXa1atXwxhtvqNfinpMab29v9RAhFRMTY9ZnEAEl55LrIIJE3KTkGF26dFGxBcLs2bPx0UcfYdy4cTh27Bg+/fRTJb7EGmLMW2+9pdonlhK5Lt26dUvXQiLnE6tTXiKfScSZsRXE0dFRLW/bti3FviLIpI2EEELyGPk/LmJi/Wf6cvvRQKu3LN0q+6eNTMw6AEf/Aq7ut3Rr7Ir8VUFFBv+fBubQwTRlwXCcGIwMHYXeuwq4epl1VBlgi2CQGXNTyPrbt2+ruIIiRYqYdcwPPvgg+bX42MtgXWan335bRFPGrlBiNZFZbuNZdbFgyCBc/PRlYCoD9zlz5jxkvTBGtonVRGbYBbE2rFu3TsUEiP+/HF9iDGTAn9YMvmwXgSQiR2bf69atq6w5csyaNWuafI+IMLGSiCVCrA0GASRWC3H/EauMuAmJ4OnVq5faXqZMGSXCfvnlFwwaNCj5WC+99JJyvxLE2iCWlilTpqR5LS9cuJDnoiIsLEy5WBUtWjTFelmWQHhjJGZH2kgIISSPBcV/o/Q4CqHjOKCppJAluU7RqkDNPsDB+bqo67/Q0i2yG/KXpcKGyMgSIQN9c5FBtbi5yEBdBuwiMsTXPzvIYLRr167J7jR///23shz07t3b5P4RERG4evWqaocxsiyWgcwgg3o5lsRSdO7cGevXr1fiwtjly5gDBw4olyyxVBgsHeICJQHT4sp19+5dFcsxbNiw5O3y+OSTT9R6Y8Q6YSxwRDCk1/779+8rV6nMIH1j3A7DQ6wnOY1YwyRGgxBCSB4h/99Xvv9AUDwykYIir2k9EnB0Bk6vBi5stXRr7Ib8Zalw8dStBuYgX7LZT2S4W+LTCxBRsAZ8fXyUi0ma5zUTcR2S2XQZqPbs2fOh7bK+cOHCyYHUsm9qAWIcLyHuLuIyNWbMGOUCJJYHsVLIrHx2eeaZZzBgwADlSiUz/08++aSyaOQFMlDv0KGDeoibkrRFrA3GAdEGoqKiUK9ePeXiZIxYLyQmQbYL4hYmWZKMcXLKXvXSQoUKKctSZgWbxKekRoSQueeUdl+/fj3FellObQESdzv5PhFCCMkD5P+1uFbvnKwvd/0KaDDM0q3KfxQsC9QZAOyZCqz5GBjyL+NYcoD8ZamQL4y4IZnzKNcW8BVXqbS+ZA6Ab5C+n4iG9I6ViS+qZDySgbIECcsstzHXrl1TA2PjgbMMCCX+wNh9ynjmeevWrSqYWYK7ZVa9QoUKmXZ3EauIuNOkRmISDEHH4gYkcRZp4evrqwbLqdO+yrIEEmcXOYZYHEwhVgy5LuIuJqLN+CEiS9yCpG2SdSv1dnGDMmb79u3Jr+Pj41XsQlquakKdOnWUG1VmEAtI6nbIw1xRIf0lIso4Ja8IKEP2MGMOHz6s2kgIISSXSUzUi9opQeEAdPuOgsKStHwLcHIDLm4FzphOYU8yR/4SFZnB0QnobMhjnFoUJC13Hq/vl8P88MMPypVILAsbN25UmYtk0C5iQ7I4SSyDgbZt26r9JXBYCpm98MILcHFxSd4uIkLcacQ6Ia483333HRYvXpyp9kgcxo4dO1QGJPHXlwGqILPhInAk85KcJ/WANTUS5CxxFOKOJXUoRo4cqWbkpf6GuUhQtHzmWbNmqWBvcV/6448/MHHiRJXRyRRiqZHZe9kuQcnyHnGZkvNKNi1BLDmfffaZuj6SpvbQoUPK+iJZlIyR2A+5fhKbIFm6xAqRnpiSPhRrUWpRJkJDPrtYCsLDw9VrU9aJtAKxDfvLa/kM8to465akkxXLiwSai3VL6nqI6JJsUMbI9ejYsaNZ5yWEEJJF5P/m3y/rM+MyhnjsJ6Deg3g9YgH8goCGz+qv14zNVFIdkgaaDRMeHi7fAPWcmvv372tHjx5Vz9niyF+a9mVlTRvl++DxZRV9vaZpCQkJ2u3bt9VzTnLu3Dlt0KBBWtGiRTUHBwf1OXv16qXdvXs3xX5XrlzROnbsqHl5eWkVKlTQ/v33X83Pz0+bOnVq8j5vvfWWFhAQoHl7e2tPPvmk9vXXX6t9DIwaNUqrVatW8rKct0ePHsnLJ06c0Bo3bqx5eHiodkjbDJw5c0atmzhxYoafSa7R6NGjtaCgIM3FxUWdc/ny5Sn2kXXSnrSIjo7WRo4cqdWtW1d9Bk9PT61SpUraBx98oN27dy95P2nT4sWLk5dDQkK0gQMHaoUKFdLc3Ny0smXLas8884x24cKF5L6bPXu2Vrt2bc3V1VXz9/fXWrZsqS1atCi5P+SYc+bM0Ro2bKj2qVq1qrZ27dp0P3NcXJwWGBiorVixIsX64OBgdbzUD3MwtCX1o1WrVin2+/7777VSpUqptkqbt2/fnmL71q1btQIFCqS4brlyD+UCsbGx2pIlS9QzsS3Yd7YL+y6LJMRr2qLn9fHD6AKadmB+njeBfZcGUTc0bVyg3jdHlmjWSKwV9F16421jHOQPbBQJ/hX3FZnpFfcaYwxBuOK+ktlA2YeQCtoSYxF1HfAuCgQ3TbZQyKy9tEPOn2ZMRQ4g8QIya7569Wo0btwY1oLMdLdr105ZU1JnG7J2MtN3YqWR75JYhKS+RmYQ64YElUuqYGtCYmCkhsZ7771ncnuO3kM5jMQN/fvvv8oFz9gyR6wf9p3twr7LAgnxwJIXgEN/AA5OwOO/AdX1LIN5CfsuHdaOAzZOBApVAl7cliseKLbed+mNt/NvoHZWkS+YlHe3IOKeI25I4tMvKVxzU8CYg7hnSVpbKVAnGZ9sTVDkJc8//7wq2hcZGakyUFkD4jZVo0YNvPbaa5ZuCiGE2CcJccCfzwBHl+iZhp74Hahq2k2XWBDJvCVxLmEngIMLgNpPW7pFNgtjKmwI8Yd/9dVXLS4ohLlz56oAcBksSzwDST/wWgLlrUVQGIK5JbVw6gKLhBBCcoD4WOCPwUmCwgXoM4OCwlpx9wOaJ02wrf9U7zuSJSw/OiU2iQRoS/CxZD8KCgqCvSNWIvEUzKzrEyGEkHxGfAywYCBwfBng5Ao8NRuo3NXSrSLp0fA53b39zkVg3wxLt8ZmoagghBBCCMkJ4qKBef2Ak8sBZ3fg6blAxU6WbhXJCFdPPcWssOFzIJZFYbMCRQUhhBBCSHaRgejcp/Qqzc4eQN/5QPn2lm4VMZe6g4ACpYCoa8Cu3yzdGpvE7kWFoaYCISRz8N4hhBAzib0LzOkDnF0HuHgB/RcCZVtbulUkMzi7Aq1G6q83fwVER1i6RTaH3WZ/kkBUCWi+evWqqjotyw65UIJdBl6SSUfSb1pDADUxH/adaSR2RK6LZPeS6yL3DiGEkDSIiQTmPAlc2AK4egP9FgLB6ReDJVZKzSeBLd8AYSeBbT8Cbd61dItsCrsVFTIYkvz6ISEhSljk5gDs/v37KotObogWknuw79LH09MTpUqVouAihJC0kNns2U8Al3YAbr5A/0VAyQaWbhXJKk7OQJv3gT8G6aJCAri9AizdKpvBbkWFIDOsMiiKj49XmYpyqyjJxo0b0bJlSxaUsTHYd2nj5OSkUuFSbBFCSBrcvwPMehy4sltPSzpgMRBUz9KtItmlSnegWE3g2kFgy9dAx08s3SKbwa5FhSCDIhkw5tagUQZfIlqk4jAHprYF+44QQkiWuHcLmNkTCNkPePgDA/8CiteydKtITiDW+XYf6Raonb8CjUcAvsUt3SqbgH4NhBBCCCHmcvcmMKO7Lig8A4BBf1NQ2BuStatkYyA+Gtj4uaVbYzNQVBBCCCGEmEPUDWB6N+DaIcCrMDBoGVCshqVbRXIacf0Va4Wwdzpw65ylW2QTUFQQQgghhGRE5HVg+qNA6BG9+vLgf4CiVS3dKpJblG4GlGsHJMYD68dbujU2AUUFIYQQQkh6RIQA07oCN44DPoHA4H+BwpUs3ap8T0Kihm1nbuKv/VfUsyznKG0/0J8PzgdCj+Xsse0Quw/UJoQQQgjJMuGXdZenW2cBv5LAoKVAwbKWblW+Z8XhEIz5+yhCwqOT1xX3c8eoblXRuXoOBVYH1QWqdAOO/Q2sGwc8OStnjmun0FJBCCGEEGKKOxeBqV10QVGglO7yREFhFYJi+Ky9KQSFcC08Wq2X7TlGG7FWOOjC4srenDuuHUJRQQghhBCSGgnOndoVuHMB8C+juzz5B1u6VfkecXESC4UpRyfDOtmeY65QRSrrlbaFtaxZkR50fyKEEEJI/iUxAbiwFYi6rgdgBzcFbp/XXZ4irgAFywGDlwG+gZZuab4gPiERYVGxuB4RjdDImOTnG5HRuB4Rg7NhUQ9ZKIwRKSHbd567hSblcqgaduuRwOGFwJk1wPktehA3eQiKCkIIIYSkT2ICHC5sRtCtbXC44AuUbQk4OsHmOboUWPEOEHH1wTrvIkB8LBB9ByhUUa9D4VMMtorM2O84dwt7whwQIAPt8kXg5OiQ5+2IU2JBREIMQiOicV2EgjzLcpJgEPFw824MtBwwMsgxc4yCZYC6g4DdU4C1HwNDlutpZ4n1iIqEhASMHj0as2bNwrVr1xAYGIjBgwfjgw8+UJWwCSGEEGIdA2/niKuoL8sXJumz9p0nAFW7w6Y/14KBRk4zSUSF6s++JfQYChEZdhHM7IQZp3bneDBzbHwibkQlCYWIBxYFY6Eg627ejTVbLIjoKezthqK+bijs466eiyQ937obg4krT2Z4DNk/R2n5FrB/NnBxG3D6P6BCh5w9vh1gUVExYcIETJo0CdOnT0e1atWwe/duDBkyBH5+fnj55Zct2TRCCCGEpDXwlhSrsr7PDNsUFuLyJBYKk575SWgJesVsGw9mTv0JDcHMk/rXTVdYxMQn4EakLgpCjV2RImKUlcGw7tbdWLPb5OzogCI+bijs646iPm4oYiQW5NmwHODlCsc0rClieZm5/aL6HGn1XmEfNzQsUxA5im9xoOGzwNbvgTVj9RoWjgxNthpRsXXrVvTo0QNdu3ZVy6VLl8bcuXOxc+dOSzaLEEIIIekOvGWdA7BiJFC5q/muUImJ+mBdCoolPxJTLccDWup18p7U70tIdSzDaxPrUu8n2ZyMXZ5MERmix1qUaQF7DGZ+f8lhJCRoupVBCQbdunAjSTzcvhdn9vlcnEQsuKvBfNE0hIIs+3umLRbMRawYYmkRYSRHMvUZ5XPdjIpBEd8ctlY0ew3YPQ24dhA4thSo9ljOHt/GsaioaNq0KSZPnoyTJ0+iYsWKOHDgADZv3oyvvvrK5P4xMTHqYSAiIkI9x8XFqYclMJzXUucnWYd9Z7uw72wX9p3tIDEU4vKUNpoKZNa+qQ44uaUczKtB/MODfIf0LANWSHz4FWg28F29Fxuv3ItuRsWq593nb6cbzCzIviPm7jNDLIgoEDcktxSvixqtK+DhYpZYSEiIR0ICsk27SoXw/VO18Mm/x3Et4sG4UNqUqIlQisWQaTsxa2gDeLvl4FDX1ReOjV6A06bPoa39BPHlOwGOznb/mxln5rkdNC0nwmGyRmJiIt577z1MnDgRTk5OKsZi3LhxePfdd03uL/EXY8aMeWj9nDlz4OnpmQctJoQQkmW0RAREnYB73B1EuxTATe9KgAPdB6wVCcquL/ETeYAmcsPBEYlwUs+aQ9Iz9NeJhnVq+cHrRMN+al/9dWLq/VJs09e5xd5BYETGNQc2l38XN32qIK9J0IC7cUBkHBAV56A/x8uyA6LUOv21vh2ITcza7H9hdw2Bnhr8XAFfVw1+LvL84LWns3XHI0vW2DMRDoiIA3xdgHK+Gm7FAF8fckJUvAOqFEjEs5US4ZSDPzPOCffR4cjrcE24i72lnsWlANuzZGWWe/fuoW/fvggPD4evr691iop58+bhrbfewueff65iKvbv349XX31VWSoGDRpklqWiZMmSCAsLS/dD5rZ6W716NTp06AAXFxeLtIFkDfad7cK+sz0cji+D06r34BD5YOZb8wlEQsdPoVV+1KJtI+lYKmZl7N6R0GEctMA6gAzgxQ1KZm7Vw0mtS7Esz2pd6v3yWFwmJsD5hzrKxcmU9UREjgSjx4/YmyNZrmSoFRmdZE0wsijI45aJ5cy4Hhlwc3ZUsQiFvF2VEDhwWffmSI9ZQ+ujUU7HHlgBBy6Ho//vuxAdl4gn6gbh08eq5mgCIMdt38Np7RhofiUR/8J2wNkN9vz/TsbbhQoVylBUWNT9SQTFyJEj8dRTT6nlGjVq4MKFC/jss89Migo3Nzf1SI1cZEsPLKyhDSRrsO9sF/adDQX7/jnkIe9nh8gQOMt6Ww32tXdKNtTdmhIeTOalRB94OzUZboPpZV2wr/pI1Nr6svpWGnvu6DXTNByo9g7quKXtkx8dl5AsCMLuxujCIEpSosaq1KlhhmUlGGIQJ+aHTCBtKujligAvNwR4uyLA2y1ZNBhey7Nh2cvVKXngLDEVzSesTTOYWfYq5udusfSyuU39MoXww9N18dzM3Vi49wpKFvTCK+0r5NwJGr8A7PwFDuGX4HJorh7Abcf/78w9r7OlzSmOqSLnxQ1K3KIIIYTYAbkR7Etyn7hoYMGA9AWF0Hm8TfabDLpf3FsCNeNexSiXGQjEreRt1xCAMXEDsGNHcbzsdVZZDZIFwt0HQiEyJj7T5/Vxc04hEJJFQdJr2VYoaVsBT9csD/jTC2Y2HFG226OgMNC+alGM7VEdHyw5jK//O4niBdzRp37JnDm4qyfQ6i3gnzeAjZ8Dtfvp6/I5FhUV3bp1UzEUpUqVUu5P+/btU65PQ4cOtWSzCCGE5BSSPceMYF9bzbJjl8TdB+b1Bc6sBVw8geavAnumpexHVadivM1amKTasgQyh6AhVsfUR0PH4yiCOwhFAexMrIxEOAL34jB22bEMA5mNLQmFlDgwtiqktDK4u+SdAJN0sZI29kGdCp1iOVynwprp3zgYV+/cx0/rz+C9RYdQ1NcdrSoWzpmD1xkIbPkWuHMR2DlZv0/yORYVFd9//z0+/PBDvPjiiwgNDVXF755//nl89NFHlmwWIYSQnCLqes7uR3JfUMx9Gji7DnDxAvr9AZRuBrR4E/FnN2L/ppWo3aITnG20orakSt1w8gbm7riYvE4ExPbEqib3r12yAGqW8EsWDqldj3zdna26WK8Ihw5Vi2Hb6VCs2rQDHVs0sluXp7R4q1MlJaoW77uCF2ftwfznm6B6kF/2D+zsCrR+D1jyArD5a6D+EMA9B45rw1hUVPj4+OCbb75RD0IIIXZGdDhw7G/z9vUumtutIRkRew+YJ4JivS4o+i8Egpvq2xydoAU3x5UjEagV3NxmBIUUcJP0qiIkNp68gePXIjP1/nc6V0aTcrZbAE8QASHB2DePaeo5PwkKQUTfhMdrKkG59cxNDJm2C4tfbIoS/jngrlSzjy4owk4A234E2ryH/IxFRQUhhBA7jaPYN0uvOnsvLOP9PfwfDF6J5QTF3KeAcxseFhQ2hGRZOhd2VwkIERLbz97C/bgHhRHEqFCzRAG0KB+AuTsvqUDr9AKZc7wqM7EIrs6O+HlAPfT5eZsSloOn7sKfLzSFn2c2A59FXLd9X68uv+1HoOFzgFch5FcoKgghhOQcEhux/B294qwQUAGo2gPY9GXSDiaGcPdvA1u/A5q9at1J8e1aUDwJnNsIuHoD/URQNIGtEBkdp2agDULi8u37KbZLcbaWFQurR/PyhVRGJUFcYPJzIHN+w9fdBVOHNEDPH7fidGgUnp25GzOGNsx+nEuV7kDx2kDIft1q0Wkc8isUFYQQQrLPnUvA6o+AI4v0ZTc/oPVIPdWikwtQvJaeBSpFsG+Qvv7Ev8B/o4GoG0DHT4BUWQFJLhJ7F5jzJHB+ky4o+v8JlGoMayYxUcPRkAglIOSx98JtxOt5YBWuTo6oX9pfBeSKkKhczMdk3AMDmfMfxf08MG1oA/SetE0F67/xxwF8/1Qds6qBp4l8t9p9CMx6HNj5K9D4RcAvCPkRigpCCCHZm+WWDChbvgHio/UiZnUHAW0/SOkGIFmCKnc1Hey79Xtg1QfA9h91d6keP+pChOShoPBJEhSNYI1I3YdNp25gw4kb2HQqTKV2NaZMIS+0rFAIrSoVRuOyAfB0dc5UILMMMEMjo1HER3d5ooXCfqlczBe/DKiHQVN34p+DIQgq4IH3umSzanq5dkCppsDFrXqK2W75M1aYooIQQkjm0TTg8J+6dUJSwgoSwNv5M6B4TdPvSSvYt+n/AK/CwF8jgIPzgXs39YJ4rl5593nyo6CY3Qe4sFkXFAMW6cXurITY+ETsvfggwPrI1ZTVoaXQW9PyhZQlolWFwigVkPWgWxEQth6MTTKHfHc+f6IWXp2/H5M3nkVxP3cMaVYm+9aKqY8A+2YCzV4GCpZFfoOighBCSOa4ug9YPhK4tF1f9isFdPxYj53IakxEracAzwBg/gDg9H/A9O56OlNPBsrmODFRwBwRFFsAN1+gvwiKBpZuFS7evIcNp3QRsfV0GO7GPgiwFqoH+aJlBd2lqW4pfxV8S0hWeaxOEK7cuY/PV57A2GVHlbDIlstbcFOgfHv992v9eKDXZOQ3KCoIIYSYR1SontFJMjtJaKsqjPY60PQlwMUj+8ev0AEYtBSY3Ru4shv4vZM+4C2QQ1VwiS4o5PqKm4YIigGLgRL1LdKUuzHx2H5WD7DeeCpMZW0yRmpB6AHWhdC8fGEU9nGzSDuJ/fJi63KqON7sHRfxyrz9mPOsG+oFZ2Mio+0Huqg4uEBPPFHUdP0Te4WighBCSPrExwI7fgY2TARik/L81+gDtB+d8wGJ4oIzdCUwqxcQdhKY0lF3zSmSTZ9nAsREJgmKbRYRFJLuVdJ5GlyapH5EbEJi8nZnRwfUDdYDrOVRtbhv9gJoCckACeAf070aroVHY83xUAybvht/Dm+KcoW9s3bAwDq6xfboX8C6ccBTs5GfoKgghBCSdtzEyZXAyveAW2ce/NPsPCF3A3qLVAaGrQJmirA4AfzeGei7wGqDiG1GUMx6QndZk8xcSlDUy/XT3r4bi02nw5ICrG8gNDImxfaSBT2SXZqalguAjzsD9Ene4uzkiO/71sHTk7fjwOVwDJ66E4uGN8u6ZazN+3rRz+PLgCt7gKDcv8+sBYoKQgghD3PjBLDiXeDMmgcVr8UyUfOpvEn56lcCGLpC9/2/vAuY0QPoMx2o2Cn3z23vgmLg4kwPdBISNew4dwt7whwQcO4WmpQvYjJDUnxCIvZfupNcM+LglXClTQ14uDipoGg9U1MRlA7wNJnulZC8RLKFTRncAL1+2oqLt+5h2PRdmPdcY7OziKWgcCX9d/LAHGDNx8DAJcgvUFQQQghJWYhu/QRg52RASwCcXIEmI4AWbwBuPnnbFgnSHvgXsGAQcHo1MPdpoMcPQO2+edsOWyY6ApgtgmIH4C4WiiVAUN1MHWLF4RCjWg5OmHFqtwpqNdRykGBXFRdx8gY2nw5DZHR8ivdLnQhDzQipH+HmnM1iY4TkAoW83TB9aEP0+mkLDl4Ox0tz9mHygHrKkpFpWr8DHPoDOLsOOLcJKNMC+QGKCkIIIUBCPLB3GrB2HHD/lr6u8qN6VidLpkaUtLJPzwX+egk4OA9YMhy4ewNo9orl2mRLgkIKcl3eCbgX0GdMxX0tk4JCqk6nroMuAuOFWXtRzNcd1yIeFI4TCni6qMrVBiFR1Nc9Bz4MIbmP1Dv5bVAD9P11O9YeD8WHfx3Bpz2rZ96a5l8aqDcI2PUbsPZjPU4sH1jkKCoIISS/c26j7up0/bC+XLiKXm+iXBtYBVII77FJgHdhvVCe1MaQTFQdPmb17bSIDk8SFLuSBMVfQGDtTLs8iYUitaAwRgSFDJUkwFpiI6T4XI0gPxaPIzZLvWB/fPd0Hbwwaw/m7ryIEv4eGNGmfOYP1PItYN9s3Up4alW+cN2kqCCEkPzK7fPAqg+BY0v1ZRl8SkrEekMAJyv79yDioeMngFcRYPWHwLYfgLtSffsHVt82JSgkyF3S8mZRUAjLD4UkuTylz68D66N91aJZbCwh1kenasUwuls1jFp6RNWxEHe/XnVLZO4gPsWARs8BW77VrRXlO9j9JIiV/dcghBCSJ7UKNn+tz/onxAAOTkCDYUDrd62/2JxUqk2uvj0vqfr2dFbfNnD/jp6OV7LOePjrgqJ4LbPfLvERIib+ORSCfRfvmPWeu7EpYygIsQcGNS2talj8svEs3l54EEV83NG8QqHMHaTZq8DuqcC1Q8DRJUD1XrBnKCoIISS/kJioBw/+NwqIDNHXlWkFdB5vW0Waaj+tix9DALdkhpKUs9YuiPJCUMzsCVzdmyQolgLFa2b4tsu372H5oWtKSEjmpswigy1C7JF3OlfG1fBo/H3gqnKHWvB8E1QN9DX/AJ4FgSYvAes/1etWVOlufVbgHMS+7TCEEEJ0Lu8Bfu8ILH5OFxQSSPjUHH0m25YEhQHxT5a2i3uPxA1ILYvwy8i3pBAUBYFBf6crKC7duodfNpxBjx82o/mEdRj37zElKCSWtFGZghjboxq2jWyr3D7Sio6Q9bK9YZl8LuaI3SLFF7/oXVPdE1Ex8RgybaeyXmSKxsP1e/Lmad26asfYr1wihBACRIQAa8YAB+bqy67eQMs3gcYvAs5ZLO5kLUgxPKllYSiSJ9W3+0v17crId2mAlaDYB3gG6BaKYtVNCgmxRvx7KESlzDQgMdUiDLrWKI5O1YulsDxI2ljJ/iQCwjhg28FoO4OyiT0jKZAnD6iPJ37eilOhUao43h8vNIWfh5mxXO6+QIvXgVUfAOvHAzV62/5vbxpQVBBCiD0SFw1s/xHY+CUQd1dfV7sf0O4jPYDQXihSRa++LXEEYSeB3zsB/f4ASjZEvhEUMx4DQvbrgkIsFEWrJW++ePOBkDh0JaWQaFQmAF1qFkfnasXSrB4sdSgm9a9rVKdCp5hRnQpC7B0/TxdMG9oQPX/cgpPXo/D8zN2qpoXZNVcaPANs+xEIvwTsmQY0eh72CEUFIYTYE1K++PgyYOX7wJ0L+roSDYBHJmS6irLNUKCkngd+dm8949H07kCfGUDFjrBr7t0CZoqgOJBCUJwPu5ssJI5cjUghJKSadRexSFQrpop9mYMIhw5Vi2Hb6VCs2rQDHVs0SrOiNiH2SlABD0wd0gB9ft6G7WdvqeDtr/vUVi5SGeLioaeY/ed1YOMXQJ3+dplcgqKCEELshetHgBUj9boTgk9xoMNY3dxu74WXJCBy0FKj6ttPAT1+1IO67VVQSID6tYOAZyFc7rEAfx11wz/zNuFoyAMhIQP/JmUNQqIoAswUEqmR44hf+c1jmnqmoCD5kWqBfpjUvx6GTtuFv/ZfRWABDxXMbRZ1BgBbv9NTee/4RXeJsjMoKgghxB4GmJJZZPfvgJYIOLnpqVclnaGbN/INydW3Jd3sfGDJC0nVt1+G/QmK7ipN5T2XgnjNeQxWTr0mpejUZhnwNzWySBT0crV0iwmxG6RK/Ge9auCthQcxaf0ZBPq5Y0CT0hm/0dkVaP2enixDalfUHwp4FIA9QVFBCCG2SkKcLiTWfQpEJ6UCrdpDrzTtH4x8iaq+/bNey0IK5EmhvLuhQPuxdlF46uzFi/CZ/zgK3z2JG5ovno4aidOR/nAWIVG+ELrWKKZclSgkCMk9etcvqWKMvlp9UhXIK+bngQ7mFICs8QSw+SvgxnH990mKjdoRFBWEEGKLnFkLrHhX/+ckFK0BPDIeKN3c0i2zPCIeOo0DvKX69kd6kT+pvt39e5usvn06NBL/HLyGzQeOY0z4+yjreAE3ND8MiPsAQRVq47kaEvNQFP4UEoTkGf9rW16ll5236xL+N3cv5j7bGHVK+af/JkcnXUjM7w9s+wlo+DzgXRj2AkVFdkhMgMOFzQi6tQ0OF3yBsi31LwwhhOQWN8/oqQlP/KsvS/7zdh8CdQfx9yc1zV5R8QZY+j89pa5U3+49zSYCJE9dj0wOtpZsM/6IwBzXT1HF8SLCHf2xu8U0zGvUFAU8KSQIsQQODg745LHquBYRjfUnbmDY9N1YNLwpShfK4Pel8qNAYB09BfTmr4HOn8JeoKjIKkeXAivegXPEVdSX5QuTAN9AoPMEoGp3S7eOEGKrJCYAF7YCUdcB76JAcFNdLERHAJu+0Ge3EuMAR2eg4XNAq7f16snENHX66ZmR/hgMnFpltdW3NU1T4sEgJE6HRiVvK+oUiYWeE1Ay7iISvYrAb/A/eKRwRYu2lxACODs54se+dfHk5G04fCVC1bD4c3jT9BMiSNKMth/qabB3/QY0eRHwKwF7gKIiq4JiwcBUpYCSikzJekllSGFBCMniZAUirj5YJ5MVlboCR//SYwOEcu2Azp8BhStZrKk2RaXOevXtOb0fVN8esMji/8hFSJy4Hol/D4YoMXHmxt0HMedOjmhRoRAeq+iGLvueh9ONc0pkOg5aBlBQEGI1eLk54/fBDdDrp604f/OesliIK5SHazqW43JtgeDmwIXNwIaJQPfvgPwuKqKjo+Hu/qDyZr6ZRZR/+qkFhULWOegpHSt3pSsCISQHJiuuArt+1V8XLKeLiQod7T9FbK5U316Zsvr2gMU5KswSEjXsPHcLoZHRqip1QxOpV0VIHL8WqawRIiTOphISLSsWUlmb2lctCt/4O3qWpxtHAe9iwOBlQKEKOdZeQkjOIPf7tCEN8fikrdh/6Q5enrcPP/evl3bqZfn9FrdVKda5b5buqhlQDvlOVCQmJmLcuHH4+eefcf36dZw8eRJly5bFhx9+iNKlS2PYsGGwa8QtwXgW8SE0IOKKvl+ZFnnYMEKIfU5WJOHmB7ywBXD1yMuW2ReG6tszewI3T+n/0PtK9e0G2T70isMhD1WdLp5UdVrSukrtCBESyw9dw9kwIyHh7IiWFQqja81iaFelKHzdkwLJo24A07sBN47p9UbEQlGofLbbSQjJHcoX8cZvg+qj3287sProdYxeegRje1RTsRcmKdVYnyASt8z1nwGP/wZbJ9P59T755BNMmzYNEydOhKvrgwCx6tWr47ffbP+CZIj4OefkfoQQkuFkBYCYcL1aNMmZ6ttSXfz+bd0ScGp1tgXF8Fl7UwgKQZZfmLUXDcf9h67fbcaP684oQSFComPVovj2qdrY80F7NRDpWaeEkaAIBaY/+kBQDP6HgoIQG6BB6YL49snayhAxc/sF/LLxbPpvMKSUPbRQL16a30TFjBkzMHnyZPTr1w9OTg/ce2rVqoXjx5NSG9ozEjiZk/sRQkikXrQsQzhZkTN4BQCD/tZjU+Lu6dW3D8zPssuTWCjSsTHhRlQsXJ0cVEVrERJ7P+yAyQPro0ftIPgYhISByOvANBEUxwGfQF1Q2IFbBCH5hUdqFMcHXauq1+OXH8df+6+kvXPxWkDVx3Qr9dpxyHfuT1euXEH58uVNukXFxcXB7pFMLBI4KUHZJv+NOOjbZT9CCMmIa4f16qrmwMmKHK6+PQ/460Xg0B96lVupvt30pYd2lTiI8PtxKnWkWB+uGT2OXYt4yEJhip8H1EfbykXS30kEhVgowk4CvkG68KGgIMTmGNa8jKphMWXzObz5xwEU9nFD03KFTO/c5n3g2FLgxD/A5d1ACZVTNH+IiqpVq2LTpk0IDk5ZrXXhwoWoU6cO7B4Jvpa0sSqg0iGVsEjym+s8nkHahJD0uXcLWPsJsGcqoCVmsDMnK3IFZ1ckPPYLYlz84bl3MrDqfRw+eQr/FH0B1yJiEBJ+H9eTnqPjMuqj9ImMjsvYWiUxFAZBIUHZBctm65yEEMvxfpcqauJBEjI8P3MPFr7QFJWK+Ty8o2Rzq9UX2D8LWPuxnqkuv4iKjz76CIMGDVIWC7FOLFq0CCdOnFBuUcuWLUO+QNLF9pkBbcU7cDDyg9Z8A+EggoLpZAkhaZEQB+z+HVj3KRB9R19XrSdQpiWw7PWknexzskJchXacu4U9YQ4IOHcLTcoXSTs7Sg4QG5+I6xHRysJgsCyIVUHWiVCQ5dDIGMQntsILThEY6TIP1c9Pw/EzZ/Fr3DOIT/UvsqCXK4r6uqsA7GLy8HXH3Zj4jP2mk7LDpCsoxOVJgsd9SwCD/6agIMTGcXR0wJd9aqlscLvO31Y1LBa/2Ez9djyE1Bs6OB84ux44uwEo2wr5QlT06NEDf//9N8aOHQsvLy8lMurWravWdejQAfmFFYkN8HH0tygZux8zXcbDxSEBve+/h2cSG6CzpRtHCLFOzqzTU06Lv7xQtAbwyHigdHN9Wao/m6pTYQeTFSmzIzlhxqndydmROlcvnunjyWDeWCxcSxYKMbgWoQuGsKhYs47l6OCAJV594OlWDCMiv8MTThvRoEgiDjX5FoUL+qtBgIgJdxcnk0Jp6YGr6nxpOMSq90t6WZOIK624PN08DfiV1F2eCpbJ7OUghFgh7i5O+HVgfZVqVurQiLD444UmD8dS+QcD9YcAOyfr1gqZZLLBtOFZqlPRokULrF6dvWwZtowh04f8A7mCarikFUZZh2twvquvn9S/bpb+SRJC7JRbZ4GVH+g+s4JHQT1Hed1BKa0PIhykxo2pitp28ptpjAzEU/9mSvzCnXt6/ILBsqC/vm9kZYhGZHS8WeeW2g8Gq4I8i5BJYW3wc0dhbzdVGRdoB5xorKpvB9/cjOADL+pxF55eaR5fLC0ijORzpOEQq7abtMikFhTi8uRf2qzPRQixDQp4uqoaFj1/2qpq1MhvhRTLkyxwKWjxJrB3pl6g8+RKvWinjcGK2jmQ6eOKVghlcQ2BCFPLsr1D1WK5atYnhNgAMVHApi+BbT8ACbGAgxPQ8Dmg9TuAh7/p94iAsKMaN+llRzKse23+fvy++ZxyRRLBEBNvXvyCt5tz+oLB1125LKWZJ94UlR4BBiwB5j4JXNoBTO0C9P8T8AtK8y0iiEQYpa5TUSw9S4xYo8Tl6dYZwK+U7vJEQUGIXVKyoCemDm6AJydvw+bTYRi56CC+7F0r5W+TT1Gg0fPAlm90a4XUsHDMdJJW2xIVjo6O6f5AJyQkwJ6RaqmpM32IqBCCHMLUP0nZLvs1KRdgoVYSQixKYiJwaAGwehQQlZQutmwb3Y2pSGXYExK3cPNuDMIiYxEWFYMbkTG4ERWjXov70enQyAyzI92PS8TO87dTrBMxIKJACQURDEnCwVg8PORCkFMENwGGrABm9dJrRSRX366Y5ltEOMhkUkYVtRXhV3QLhViwCpTSC9uJ+wMhxG6pUcIPP/ari2em78aivVcQVMADb3SslHInqawtMXfXDwNHFgE1noBdi4rFixenWJY0svv27cP06dMxZswY2DvyzyI1V41ERXr7EULyAZf36HERYsIW/MsAnT7VZ8DNmDGXmX2zBqZ5KRSSxIJBKNyI1OMVZFlclXKCgU2C0bVGcRT380ARXzeT8Qt5StGqSdW3ez2ovt3vj3TTPUo/ZTiZJIJiWlfg9jldUEgdCnkmhNg9bSoVwac9q+OdPw/h+7Wn1e9d30ZG979nQaDpy8C6T/RkHqqGhZ0HaqfmiSeeQLVq1TB//nwMGzYM9oypDB4GS0Wgw8109yOE2DGSwWfNWGD/bH3Z1Rto+SbQ+EXA2S0Lwcw62QlmNiYuIRE3lSDQxYHBmqAvxyLMyMKQWaEgg+lC3q4o5O2W/JC87LLuzr1Y/LDuTIbHeKR6cTQqa2XWXRnsS/Xt2U8AV/fqKV/7zAQqtM/a8cIv6y5PSlAE6zEUFBSE5CuebFAKV+5E47s1p/DBkkMo5ueGtpWNahA1fgHYMUl3jdw/Cw5+wQi6tQ0OF3yBsi2tOsYux2IqGjdujOeeew72jswayj9540wfV/DAUpFhpg9CiH0RHwNsnwRs/ByIjdLXSc7x9qMAn2K5EsycWiikdjsyFgoGAZEVoRDg5ZokDlIKBcM6w3MBDxeVPjEty8ufe69kPTuStVTfXjAAOLNWj7V4bBJQs0/mjnPnku7ydPt8kqAQC0XJ3Go1IcSKea19BVUcb+Geyxgxex/mP98YNUsU0De6+QAt3gBWvqfSjDtrCVD20QuTkrIBTrDabIA5Iiru37+P7777DkFBaQey2QumMn1cTuH+pKWd6YMQYj9oGnByhf7DL77xQlA94JGJma6Iak4w8xsLDmDZwZAHIiKHhEIhH1eV/Si1eEhPKGT2nFnOjmQtuHkDT88HlgwHDi8EFj2rV99uMsJ8QSEuT3cu6MHYIij8SuR2qwkhVoqDgwM+61VDZbPbdCoMQ6ftwqLhzVAqwFPfwTtpQkpLeDhjnBRf7jPDKoVFpkWFv79/ikBtSf8XGRkJT09PzJo1C/mB1Jk+rmsFkag5wN0hDlOeKI22TCdLiH1z44Reb0JmrgVJ/dp+DFDzySxl6zCVACI1d2MTlKhISygYWw5yWyhklixlR7I2nF2BXr8CXoV11wQRk1GhQPvR6cfK3LmouzwpQVFGd3mioCAk3+Pi5Iif+tXFk79sx9GQCFXD4s/hTeHv4QSs/iCNd8m0jIP+/0fSj1uZK1SmRcXXX3+dQlRINqjChQujUaNGSnDkFwyZPradDsXCNTtw/Zo/iuMWGgbctXTTCCG5xf07wPrxeoEimUFyctVnq8VULSbrLCATMxtP3jBr38dqB6JN5SJGsQuu8Pd0tYhQyM5v5qpNO9CxRaNcr6id44hg7PwZ4F0EWDNGT/14Nwzo9i3g5AwkJqSsMeIbBMzsoQsLJSjEQmH/Fn1CiHlIBrupQxqg109bcTbsLp6ZsRtzO8TB1bgA6kNoQMQV/bfGytKPZ1pUDB48OMdOXrp0aVy4cOGh9S+++CJ+/PFHWDvyz7BRmYK4Gajh5o0iKJ54C6eOH0WdMo0s3TRCSE4ig8W9M/Tc4feSEjJU6gp0/BgIKJelQ4rL08oj1zBp/RkcuhJudoCfLaeqTv7NPKapZ5sSFAZkUq3F64BXIeDvV1QgpfpOVH8c+O+jlNXQpS6JiM+CZXVBIf7QhBBihKTHnjakgaq6vefCbcxYdQTPwAxk8sLKMEtUHDx40OwD1qxZ0+x9d+3alaKuxeHDh9GhQwf07t0btoYm5uzbx3HlwknUsXRjCCE5x/kteorYa4f05UKVgEfGA+XaZjld65J9V/DzhjNqZkpwc3aAk6Mj7sWarvNj9cHM+ZG6AwHPQsDCIcDJ5fojNQZ/aMk9T0FBCEmDCkV9MHlgfQycshP/XXbAM67IGLGG2qKoqF27tnJ5EjN9esg+mSl+J25TxowfPx7lypVDq1atYGv4FSsD3BYX2/PqOmWqgishxPqQ4NrVHwJHkmrzuPsBrd8DGgwDnDJfdO1ebDzm7ryE3zadTY4r8HV3xuCmpTG4WRnsPHdTBTPDVoOZ8yOVuwD9FuqpZk2G2QsOwIaJQJ0BVuf/TAixHhqXDcCXfWrhlbnxuKoVRHGH23BIK2eeTFIEN4VNiopz587lekNiY2NVoPfrr7+e5oA8JiZGPQxEREQkF+CThyUwnLdQYBngGFAw7joOXLyFaoG+FmkPyXzfWeq7Q6y07+LuwXHbD3Dc9j0c4u9Dc3BEYp2BSGw5Und5SRR3KPPPKxmaZu64iJnbL+J2UramIj5uGNI0GE81KAFvN/1nuF2lQvj+qVr45N/juBbx4HdOcpi//0hltd0evqv2dt85JMTDOU1B8cD/Of7sRmjBzWHL2Fvf5SfYd7ZB56qF8VanyhizeiAmuXwDzQEwTv0h/35khJzQYRy0hETxo82Tdpn7vXHQMjI/5BELFixA3759cfHiRQQGmjYTjx492mTV7jlz5qjsU5akaPh+ND77FY4kBuPHop+gUwmruKyEEHPRNATe2YlqV+bBM06PmwjzroRDQf0R4Rmc6cOFxwLrrjpi63UHxCTqEyWF3DS0C0pEg8IaXNJIEpWoAWciHBARB/i6AOV8NdBAYb1IUar6kj8+A3YHD8eVgk3ypE2EENtF04DJxx1RMmI3RrnMQKDDreRtYsEYEzcQQeXroVZA3o0z7927p8bo4eHh8PX1zXlRcfToUSUAxMJgTPfuWcub26lTJ7i6uuLvv/9Ocx9TloqSJUsiLCws3Q+Z2+pt9erV6Fi7JDymtsFtzRtDi8zHgucYrG3tGPpO4nhcXDLvzpIfkeDi3RduIzQyRs221w/2t4hLTo733bWDcFr1HhwvbVeLmm8JJLQfA61y9/TThZrgws17+HXzOSzadxVxCfrPa+Wi3ni+ZRl0rlYUzk6ZTzlrT9jbfedwYTOcZz2W4X7x/ZfYhaXCnvouP8G+s63/s62/3Kgs1o5IREPH4yiCOwhFAexMrAwNjsqCve71lnn2/1fG24UKFcpQVGQ6+9PZs2fRs2dPHDp0KEWchcFlKTMxFQYkA9R///2HRYsWpbufm5ubeqRGbhBL3yTOAaXVs79DFE5evo7IWA0FvcyJtCGWxhq+P7aAVHxOXWeguIXrDGS77yQdqGR02jNdd1Nx9gCavwaHpv+Ds2vmrJ9HroarTE7/HgpR1gahQWl/vNi6PFpXKsw4K3u978q21P2bpShVOv7PzrKfncRU2E3f5UPYd9bP7jM3k11gE+GI7YlVH9onJDwG+y5H5lk2QHO/M5meMnvllVdQpkwZhIaGKpejI0eOYOPGjahfvz7Wr1+flbZi6tSpKFKkCLp27QqbRXLUSyAngECEmZ13nhBbERQSRJy6QNu18Gi1XrbbFAlxwLafgO/qAnum6YNBSQn60i6g9TtAJgSFFK6TokVdv9usitOJoGhTqTD+eKEJ/nihqaorQUFhx4hQ6DwhaSF1Pyctdx5vN4KCEJK7hEZG5+h+eUmmLRXbtm3D2rVrlRlECt/Jo3nz5vjss8/w8ssvY9++fZk6XmJiohIVgwYNgrNzpptjXfiVAqIPIcghDOtOhOKxOixyROzDFCsWCi3t2p5quxQ2s4nsRKfXACveBcJO6MvFagKPTMhUJg2x0Mo9/tO6M8odTJCP3rVmIIa3KoeqTNSQv6jaHegzQ089bFynQiwYIihkOyGEmEERH/cc3S8vyfQoXtybfHz0yrEiLK5evYpKlSohODgYJ04k/ZPOBOL2JLEZQ4cOhc1ToCRwXRcV/5y8oQZjNjHIIiSDmfjUForUwkK2y35WXZjt5hlg5fsP6gl4BgDtPspUqs/4hET8cyhEuTkdvxap1rk6OeLxeiXwfMuyKF3IKzc/AbFmRDhU7pqyorYIVVooCCGZQOoRiWuxeAJoNla3KNOionr16jhw4IBygWrUqBEmTpyoAqwnT56MsmXLZroBHTt2zLD+hc3gV1I9lXG5pdJI7r90G/WCra/TCckvplhFTCSw8XPd3UlSwTo6Aw2fB1q9DXgUMOsQ0XEJ+HPvZfyy4Swu3rqn1nm5OqFf42AMa15GVUQlRAmIMi0s3QpCiA3j5OigYhXFtdjBxuoWZVpUfPDBB7h7V68CO3bsWDz66KNo0aIFAgICMH/+fORrpKq2FAv0iQCigXXHb1BUEJvHXBPrgl2XUL6IN6oF6rFFFicxETgwF1gzRp85Fsq1Azp/BhSuZNYhomLiMXv7Bfy2+RxuROqBc/6eLhjSrAwGNSkNP08GPBJCCMlZJPnJpP51H0qOUszCyVFyTFRIIPYzzzyj8tQa0kmVL18ex48fx61bt+Dv789gRHF/AlDaRfexFp/rNzuZN3ghxFo5Gaq7+WTEljM3VbBy8/KF8FzLsmhRoZDlfhMu7QKWvw1c1StUo2BZoNNnQMVOZqWIvRkVg2lbz2P61vOIiI5X68Qc/WyLsniqYUl4utp4/BchhBCrpnP14ipWcdvpUKzatAMdWzRCk/JFrNJCYcDs/4y1atXC22+/jTfeeAOPP/64ioFo3bq12lawIGfjkwO1ZSYz7roatxy5GoHrEdF0jSA2ibglfrfmNL7+72TyurRMse8+UhmHr0aoeIPNp8PUo0pxXzzXsgwerRkIl5yszZCYoGoDSNExhwu+ekpPg9+6pPX8bzRwcJ6+7OoDtHoLaPQC4PxwOurUXLlzH79uPIt5uy4iOk6vVFq2sBdeaFUOj9UOgqtz/q4xQQghJO9wcnRAozIFcfOYpp6tWVBkSlRMmTIF33//vap8PW3aNLRr107FVYi4kMxNQUHMdGRwf3KKuoY6Qd7YezkK60+E4skGutggxFZITNQw+u8jmLHtglp+pV0FVC7mg7HL0jfFvtWpEn7fcg7zd13CsZAIvDb/ACauOIGhzcqoGX4f92y6Cx1dqjLsOEdcRX1ZlkrGkmGnwyfAnfPAxi+BON09E7X764HYPkUzPOzp0Cj8vOEMluy7gvikIhM1gvzwYuty6FjNRrJaEUIIIRYkUzZ8qUsxePBg9Thz5oxKBfvLL79g1KhRKuB62LBh6NWrF/ItXoUBJzcgIQaPlgb2XtbjKigqiC0RG5+I1xfsVzUXxOI2uls1DGqqF3eUAbZkeZKgbIm1kOwTxgPukgU9MapbNbzariJm7bigXIhEhIz79xi+W3MKfRuXwpCmZZQYyZKgWDDw4QJjksLzT6PscSUa6Clig+pleMiDl++otLArj16DIV9Ek7IBeLFNOeXGle9dOgkhhBAzybJjcLly5fDJJ5/g448/xp9//onnn38eK1asyFJFbbvB0VG3Vtw6g1ZF76tV4gYigzS6TRBb4G5MPF6YtQebToXBxckBX/apje61ApO3i4AwJ22sBDCPaFMez7Qoo2b/J288izM37qrsSb9vPofutYJU3EWlYnp66gxJTNBrAJhMsJeEgyPQ4yeg5pP6vZiOW9e2Mzfx0/oz6v400KFqUWWZqFPK37w2EUIIISSZbEUbSgVtsVaIqJDCdc8++2x2DmcfJImKMs63UMi7MMKiYrH7/C00LV/I0i0jJF1u3Y3FkKk7ceByODxdnfBz/3poWbFwto7p5uykLHW965VUiQt+2XhWWTokPas8WlUsrOo7iFBJ1yoguf+Ni4qZQkvU7780BIW4dK0+dl2JiQOX7iSLpB61A1XMRMWiZgocQgghhGRfVFy+fFnFVMjj7NmzKp3sTz/9hN69e8PDwyOzh7PbDFCOEVfQqmI1NXCSwRRFBbFmJEB5wJQdOHvjrkqZOnVIQ9QuaV4NB3NwdHRAuypF1WP/pTuYvPEMVhy+hg0nb6hH9SBflVmpa43icDYV1G1ICZsRJvaLS0jE0v1XVczEqdAotc7N2RFPNiipzikuW4QQQgjJI1EhAdq///471qxZgyJFiqjgbAnSlrSy5OEMUAi/iLaViyhRsfZ4KN7vWtXSLSPEJKeuR2Lg7ztV7EOgnztmDGuk6k3kFiJWfupXDxdu3sWUzeewYPclHL4SgVfm7VdB3VJMTgb8Xm5GP09SndgcjPa7H5ugji2uVyKaBB83ZwxoEqzqTBT2yTgbFCGEEEJyWFT0798fXbt2xeLFi9GlSxc4puOznK9JygCFO5fQvEIh5V4hvuQXb95DqQDOiBLrYu/F2xg6bZeqAC9CYuawhijulzcWx+AAL4ztUR2vtq+ImdsuYMa282rwLxmmvvnvJPo3DsbgZqX14nvBTQHvYkDUtTSO5qBngQpuivD7cZi1/YKK3bh5N1ZtLeTtpsRKv8al4JvdDFSEEEIIybqoELcnsVAQ89yfEH4Jfh4uqBfsr3zI158MxcAmegYdQqwBSXc8fNZe3I9LQJ1SBfD7oAbw93LN83YU9HLFK+0r4PlWZZVl77dN53Au7K6KfZDXPesE4dlmJVDeo4ASFRKqbRx9kZi0HNH6Y/y08iRmb7+oKmELJfw98HyrcuhdrwTcXZJqWRBCCCHEcqKCgsJM/Ayi4rKkmVEuUCIq1h2nqCDWw1/7r+CNBQdUTQYJxv65f12LV4mWQX+/RsF4qkEprD56XcVd7L14B/N3X0KV/R+jvPNx3NdcEQkPFHEIT37fNS0AY+IGYM1CD8QnnlXrKhb1xvDW5dCtZqDpGA1CCCGE5CiWHUXYI75SBNABiI8G7oahTaUiGL/8OLaeual8vD1cOVtKLMvULecw5u+j6rVkPvr8iVpWlfJYXAY7Vy+mHnsu3MLhv3/EoLBVattLcf/DusQ6aOh4HEVwB6EogJ2JlZEIab+GOiX9MKJNBSXmJTicEEIIIXkDRUVO4+wK+BQDIkNUsHbFwLoq+PVqeDS2n72JNpVp8SGWQeozfLnqJH5Yd1otD25aGh89WtWqB9/1nM6i3u3v1Osv457AmkS9oN32RNOJD97uXBlNyjHTGiGEEJLXWM/0pJ26QEnu/dZJQkJSyxLrICFRw45zt7AnzEE9y7I9kRAfjyNb/sHuZZPVc2xsHN5bfChZULzVqRJGdbNuQYHI68D8/kBCLEKKt8MPCY9l+JbQyJg8aRohhBBCcsBScefOHSxcuBBnzpzBW2+9hYIFC2Lv3r0oWrQogoLE/SefI8Hal3eqDFBC20pFMGfHRZVadkx3Lf0iXyTXWXE4RLn/SApVwAkzTu1GcT93NcjuXL04bJ19K6cjcNsYVMPN5HUhqwriVtxAODo0xLieNfB0w6TUx9ZKfCywYIBu8StcGRdbfQ3t3OEM36YyRRFCCCHE+i0VBw8eRMWKFTFhwgR88cUXSmAIixYtwrvvvpsbbbTdtLLhuqhoWj4Ark6OuHz7Ps7c0Itv2QIye7/tzE0V1CvP9jCbL4JCMh7pguIB18Kj1XrZbuuCotbWl1FYeyAohKK4hUku3+DzahesX1AIy98GLu0A3PyAp+agfsVSSvilJcdlvWxvWKZgHjeUEEIIIVkSFa+//joGDx6MU6dOwd39wayg1K7YuHEjr2rqDFCAyqrTqKw+2Fl3/AZsARlcN5+wFk//ul0VJZNnWbblQbeIIrFQmJJGhnWy3VbFk7g8iYVCSO3VZFhudvoLtZ9Vs/t3YM9UXSo8MQUIKKeCt8WSJKQWFoZl2S77EUIIIcQG3J927dqFX3755aH14vZ07VpahanyGQWSZoLvXExeJdloNp0KUy5Qz7YsC1uYzU89tDbM5k/qXzfX3YQkqDgmPhExcYmIiU9AdDaf5Tgh4fcfslCkOKe4CYVHqxTATcoFwNY4vmOl7vKUxrhaxtvFcBNHZL9mXWGVXNwO/Pu2/rrdR0CFDsmb5Dsn370Hrms6xezIdY0QQgjJN6LCzc0NERERD60/efIkChcunFPtsiv3J0FSy8pgaNf5W4iMjoOPlVb1NWc2/8MlR1DU113VOIiO0wfs0fHpPxsG9hntp44nYiJeSppZhtDItIWHNXP/9pUc3S/PibgKzB8AJMYBVR8Dmr/20C4iHDpULYZtp0OxatMOdGzRCE3KF6GFghBCCLE1UdG9e3eMHTsWCxYsUMsSdHzx4kW88847ePzxx3Ojjbbr/nT/NhATBbh5o3QhL5Qp5KUqBW85HWa1s6oyS5/ebL5wIyoGPX/ammdtkvGiFEZzc3Z86NktjfWmni/fvodfN52z22DfRE/z0hV7+FthMoW4aD3T091QoEg14LGf5MfF5K4iIBqVKYibxzT1TEFBCCGE2KCo+PLLL/HEE0+oCtv3799Hq1atlNtTkyZNMG7cuNxppa3h7gu4+wHR4XpcRZHKanXrSoWVqBAXKGsVFebO0hfwcEFBL1dVNE0G9u4mnx3h7uyU8jkLosDZ0SFHMmaJFWbZwRDlxpVW1ERRXzebDPaVdMWLNh1Hfe3heAoDEioS6hCAyo06warQNOCfN4ArewD3AsBTswFXL0u3ihBCCCG5KSr8/PywevVqbN68WWWCioqKQt26ddG+ffvMHsq+8SsFRB/SXaCSRIXEVUzdch7rTtxQMQPWmFrW3Fn6Sf3r2VzcgSHYV+JC5MqbEhbebs6IjU+0mcrn4i42YcVxRG2fhq+df1OCQsbo8tlSiwtZDGkyCsWcrazm5a7fgP2zAAdHoPdUoGAZS7eIEEIIIXlV/K558+Z48cUX8fbbb1NQpBdXYRSsLTPgHi5OuBEZgyNXH45LsQYalPaHu0vaXwtbT91pCPaV4F5jCnm7qc995sZdvDh7D+ISLBfTYS4nr0fisR82o8COL/C5y2Q4OyQioXof7G/8FW44PCz4NEcn1KlRC1bF+c3AipH66w5jgXJtLd0iQgghhGSBTE9ZfvfddybXy6y7pJgtX748WrZsCScn25jpzdUCeEZpZQU3Zyc0K18I/x27jvUnQlE9yA/WxndrTqmMSaawl9SdaQX77r14GwOm7FCWpDf/OICv+9S2yorTYuWateMiJiw7iNEOk/GEc1Iq5xZvwqntB6jj4ICEDoNUlicJyvYoEIiqF2bC8dQK4I9BwHMbAI8Clv4YenHIBYOAxHigRm+gyUuWbhEhhBBC8kpUfP3117hx4wbu3bsHf39/te727dvw9PSEt7c3QkNDUbZsWaxbtw4lSyYNrPN1rYoHGaAMLlAiKiSu4qW2FWBNLNxzGd+tPa1eD2gcrNppr6k7TQX7NihdULl1PTt9N/7afxV+Hi4Y072aVbmp3bobi7cXHsT2Y+dUMbsWToehOTjBoeuXQP0hyfs5OTunTBtbrxnwS0vg9nngrxHAk+JuZMHPFXcfmN8PuBcGFKsJdPvOsu0hhBBCSN66P3366ado0KCBKn538+ZN9ZB0so0aNcK3336rMkEVK1YMr732cDrI/On+lFJUSLC2sO/SHTVAtBa2ngnDu4sOqtcj2pTDx49Vx+Z32mLus43x7VO11bMs24OgSA9J/ftln1pqfDtj2wV8vfokrIXNp8LQ+ZuNOHTsGBa6jdUFhYsXHJ6el0JQmMTDH+g9HXByBY4vA7b/BIshQR9/vwKEHAA8A5ICsz0t1x5CCCGE5L2o+OCDD5S1oly5csnrxOXpiy++wLvvvosSJUpg4sSJ2LJlC/I1hgJ4Ru5PQmABD1Qu5qPGVZtOWUd17dOhkXhhpsQRaHi0ZnG80aGSWi+z9xKM3aN2kHq2ZZenzCCfd2yP6uq1WG6mbM44DW1uIjU+xv1zFP2n7IB/1Cn87TEalR0uAl5F4DDkH6BiR/MOFFQX6PSp/nr1R8DFHbAIImgOzgccnIDe0x7cK4QQQgjJP6IiJCQE8fHxD62XdYaK2oGBgYiMjES+xuD+FHkVSIhLsal1Jb2egLhAWZqwqBgMmbYLEdHxqBfsjy9617LKOIK8Rty/3uxYUb3+eNlR/LknpTjMK06HRqHXT1tVfY2mjofxl8fHKKKFAYUqAs/8BwTWydwBGzwDVOulxzEsHALcvYk85ex6YNWH+msROGVa5u35CSGEEGIdoqJNmzZ4/vnnsW/fvuR18nr48OFo21bP3HLo0CGUKZPP00J6FdZdTbREvVJwqrgKYcPJG6p2giXTkT4zfTcu3bqP4ABP/DqwvqoLQXRGtCmPYc317/Hbfx7EqiO6aM6rYOy5Oy/i0e83qUxh/T22Ypbb53BPvAuUagoMXQn4B2f+wOLX1f07IKA8EHEFWPwckJhHma4knuOPIYCWANTqCzR6Pm/OSwghhBDrExVTpkxBwYIFUa9ePbi5ualH/fr11TrZJkjAthTJy9c4Oj6Iq0jlAlW3VAH4uDvjzr047L90xyLNS0zU8Nr8/er8EpA8dXADVcyOPEACtN/vUgVP1CuhxN9Lc/dh25ncn9m/fTcWL8zag3cXHVLCb2KRlfhE+wGOWhxQrScwYDHgmY2Uvm4+QJ8ZgLM7cPo/YHMe3Kuxd4F5/YH7t4DAusCjXzMwmxBCCMnP2Z8kCFuK3x0/flwFaAuVKlVSD2NrBklygbp19qEMUM5OjmhZsTD+ORiCdcdDldtRXjNh5XEsP3wNrk6OmDygHsoW9s7zNtgC4go2vlcNRNyPw6qj1/HsjN2Y82wj1CxRINcC5l+ffwDXIqLh7pSIxcF/osrVxfrGpi8D7cfogjW7FK0GSMYoyQS17lOgZKPcc0WSAKK/XgKuH9IteJJ5ysW8IouEEEIIsQ2yPDqpXLkyunfvrh7GgoKYiKtIlQFKaJsUV7HuRN7HVczZcRG/bDirXk98oiYalbWtyth5jYjA756ugyZlAxAVE4/BU3epWIecRIrtSWXsfr/tUIKiaoAjdpWdogsKqTTd5Qug48c5IygM1OkP1O6nu+gtHAZE5pJ715ZvgSOLAEdn3ULiF5Q75yGEEEKI7VgqhMuXL2Pp0qUqfWxsbMq0qF999VVOtc2OCuA9qKptoFVSalnxl78eEY2ivnkzcytF9z7867B6/Vr7inisDgd45iCxJr8Oqo++v27HwcvhqkjewuFNEVTAI9vHPh92F6/M24cDl8PV8jO1PfHenVFwvHQAcPYAnpgCVDaqOZGTiFi5ug8IPaoLi4F/SZGLnDu+uFf9N1p//cgEILhpzh2bEEIIIVZDpqc916xZoywTkyZNUnETUuRu6tSp+P3337F///7caaXNF8B7OHNQIW831CqhV9TecCJvUsseC4nAS3P2qfiAXnWD8HK78nlyXnvB280Z04Y0RLnCXqoo4IDfdqjsWdkJxv5j9yV0+W6TEhQS2zKjmx8+CHkZjtekhkMhYPCy3BMUgtSHEOuBqzdwYTOw/rOcO/bNM8DCofJJgboDgfrDcu7YhBBCCLFtUSG1KN58802V4cnd3R1//vknLl26hFatWqF3796500pbt1SYcH8S2lTOu9SyYg0ZOm2Xct9pXLYgxveqaVWVom0FCWaf9UwjZaE4G3YXg37fiYjolCmDzSH8fpwK/H5r4UHci01QfbLmcWe03NRXt2wVLAs8sxooUR+5TqEKekYoYdMXwKnV2T9mTBQwrx8QHQ6UaKBbRPh9I4QQQuyWTIuKY8eOYeDAgeq1s7Mz7t+/r7I9jR07FhMmTMiNNtouxtmfJFjVRPVmYfPpMMTG515az7sx8UpQyOx62cJe+KV/fbg656Bvfj6juJ8HZg5riAAvV+W+Jml5JUuTuew8dwtdvt2kAvWdHR3wVqdKmNP4CgotfjJpEN4QGPafLizyiuqP6zUshEXPmrSumY1815e8ANw4BngXA/rMBJzdcqyphBBCCLE+Mj2y9PLySo6jKF68OM6cOZO8LSwsLGdbZ+v4iqhwAOLvA/ceTkVaI8hPDUzFerD7wq1caYK4Oom/vgx+5VzTBjeEn6dLrpwrPyHZsqYPbQgfN2clEl6as1cFW6dHfEIivlp1Ak9N3oYrd/TaIAtfaIIRrv/AcdEwICEWqPwoMGgp4GWB4HkpRle8NnD/NvDHYCA+ZbyU2Yi149jfep0WyfTkWzynW0oIIYQQWxcVjRs3xubNm9XrLl264I033sC4ceMwdOhQtY0Y4ewK+BTTX9+5aDJdqSFgW1LL5gZSDfq/Y6Fwc3ZUgcalAjxz5Tz5kepBfpgyuIG6tnKN3154EHHxiaqWxV/7r6hnQ3HDS7fuoc8v2/Dd2tOQVY/XLYF/XmqK2oc+AVZ/pB+w0XA9vsEl+8HfWUKsCX2mA25+wOVdDwKsM8OJFcDacfprcXkq2SDHm0kIIYQQ6yPTaV4ku1NUlJ5Oc8yYMer1/PnzUaFCBWZ+SssFKjJEr1URVPehzVJde9HeK1h34gbez+F43KlbzmHa1vPq9ddP1kbdUnlfD8PeaVimICb1r4vnZuzB4n1XsPLINRUjYaC4nzs6Vy+KP3ZfURYpKXo4rmcNdK9SAPhzMHDiX92a1Wkc0GQELI5/aaDnJGBeX2D7j0CpxkDV7ua9N+yU7jolgdkSlF1vUG63lhBCCCG2KCoSEhJUOtmaNWsmu0L9/PPPudU2+8kAJbO+afiotyhfGE6ODqrugcxmlyyYM5aE1UevY+yyo+r1yEcqo0sNuqDkFm0rF8WAJsGYuuV8CkEhSBzL1C0X1OsGpf2VuCvhcheY/ihwZQ/g5Ab0mgxUewxWg2Sbavo/YOv3enG8YtUzju+IjtCFSEwEUKoJ0Hl8XrWWEEIIIbbm/uTk5ISOHTvi9u3budeifJYBSuIb6iVZEHKqEN6hy+F4ee4+FS/7dMNSeL5lHgb85kPExWnF4fQLx0nsxaxhjVAi4Sowpb0uKDz89fgJaxIUBtqN0qtsi0hYMAiIi05738REYPHzQNhJwCdQd+ES1z9CCCGE5BsyHVNRvXp1nD2rV2MmmalVYVpUGKeWzYm4CgkAHjp9F+7HJaBFhUIY26MaU8fmMhKoLRaJ9IiMicfJ3WuAKR2A2+eBAsHAsNW6e5E14uQCPDEV8AwArh0EVoxMe98NE3Q3LrG6PDUL8Na/z4QQQgjJP2RaVHzyySeqTsWyZcsQEhKCiIiIFA+ShqgwEahtoE1lPVh765mbmUpNmprI6DgMnboLNyJjULmYD37qVxcuTkwdm9uERqYvKIROjjtRdXV/4P4tILAO8Mx/en0Ia8YvCOj1qx7zsWcqcHDBw/scWwZsSHJ16vYNEFQvz5tJCCGEEMuT6RGnZHw6cOAAunfvjhIlSsDf3189ChQooJ4zy5UrV9C/f38EBATAw8MDNWrUwO7du2F37k/p5P2vVNRHBfTGSOagsw+nnjUHSWf64uy9OHE9EoV93FRWIh93po7NC4r4uCe/dkQiGjseRXfHrepZloc4Lcckl2/hlBgDVOwMDP7Hdmbzy7cDWr6lv/77VeD6UeDcJuDQQmDfbGDRc/q2Ri8AtftatKmEEEIIsaHsT+vWrcuxk0tsRrNmzdCmTRssX74chQsXxqlTp7IkTqzeUiEz1LF3AVevh3YR96TWlYpg7s6LygXKUBTPXDRNw0d/HcamU2HwcHHC74MaqIrPJO8yQIkorBW5ER+5zECgw4OaI1GaO7wddEtGYv1hcHxkIuCU6dvOsrQeCVzaDpzbCPzSAkiMT7m9cBWg4yeWah0hhBBCrIBMj25atWqVYyeXCtwlS5bE1KlTk9eVKVMGdoW7r573PyZcD9YuUtnkbpJaVkTF2uOhGNNdy1QcxC8bz2LuzkuQt3z3dB3UKOGXgx+AZIRk7/qp7mXU2vrNQ9sMguJKye4I6vqlKEjYHI5OQI0+uqhILSiEG8eBE8vNTz1LCCGEELsjSw73mzZtUi5LTZs2Ve5LwsyZM5OL4pnL0qVLUb9+ffTu3RtFihRBnTp18Ouv4sNtZ5jhAtW0XABcnRxx+fZ9nLlx1+xD/3soBOOXH1evP3q0KjpULZr99pLMkZiAOkfGK73gaEIzSPm7oPA9gJZ+xW2rJTEBWP9p+vtIILfsRwghhJB8SaYtFX/++ScGDBiAfv36Ye/evYiJiVHrw8PD8emnn+Lff6WYl3lIFqlJkybh9ddfx3vvvYddu3bh5ZdfhqurKwYNerhwlpzLcD7BEBgeFxenHpbAcN70zu/kGwTH64eRcOscEtPYz9VRr2Ow5cxN/Hc0BMFShCwD9l26g9fm71evBzQuhf4NS1jsOtgi5vSdOThc2AzniKsSzmx6u/yJuIL4sxuhBTeHrWH4fGmj5fnny6m+I3kP+852Yd/ZLuw72yXOCvrO3HM7aOKQnwnEmvDaa69h4MCB8PHxUUHbZcuWxb59+/DII4/g2rX08/UbI+JBLBVbt25NXieiQsTFtm3bHtp/9OjRqop3aubMmQNPz5wpGpcb1Lg0A2XD/sPJot1wLLB3mvutD3HA4vNOqOCbiJeqpT+rHRYNfH3ICVHxDqjun4hhlRJNzpKT3MU1PhLVL81EyTvbM9x3d/BwXCnYBLZG0K1tqH9hkt1+PkIIIYSkzb1799C3b19lQPD19c05S8WJEyfQsmXLh9b7+fnhzp07mTpW8eLFUbVq1RTrqlSpoqwhpnj33XeVVcPYUiExGVKQL70PmdvqbfXq1ejQoQNcXExnW3LcdgZY+x/KF3ZDmS5d0jxW1Zt3sfibLTh/1wkt2raHj7vp7gm/H4c+k3ciKv4uqhb3waxhDeDlZmPBv1aAOX1nEk2Dw9W9cNzzOxyOLoFDwgPrWXrUbtEJtWzSUuELmCEq8vLzZbnviMVh39ku7DvbhX1nu8RZQd+ZWzIi0yPRYsWK4fTp0yhdOqV7jsRTiMUiM0jmJxEpxpw8eRLBwcEm93dzc1OP1MhFtvRNkm4bCurXyjHiChzTaWeFYgVQOsAT52/ew84Ld9C5evGH9omNT8RL83bjbNhdBPq5Y+qQhijg/SClKck8Zn9/Yu8BhxcCu34DQg48WF+spl6HJDo8KYIiNQ6AbyCcy7bUg55tDWm3byAQEWJ1n88a7n2SNdh3tgv7znZh39kuLhbsO3PPm+lA7WeffRavvPIKduzYoTIUXb16FbNnz1YF8YYPH56pY4kb1fbt21UshggVcWOaPHkyRowYAfssgJd2VW0DklpWWHf8xkPbxFNt5KKD2H72FrzdnFUtiqK+FBS5TthpYMV7wFeVgaX/0wWFVI+u1Rd4Zi3w/Eag+/dJO6f2QUta7jzeNgWFIO3uPMF+Px8hhBBCsk2mLRUjR45EYmIi2rVrp3ysxBVKrAciKv73v/9l6lgNGjTA4sWLlVvT2LFjVTrZb775RgWB22X2p8irQEIc4JS24pPUstO2nse6E6FKRBinlv1uzWks2ntFpTD9sV9dVCluGZcvuyAxQQUgS7yAcu9JPcueEA+cXKFbJc4a1WYpEAw0GAbUGQB4FnywXtKp9pkBrHgHMA5qlhl+GXDberpVe/98hBBCCMlbUSGD3Pfffx9vvfWWsi5ERUWpuAhvb+8sNeDRRx9VD7vGqwjg5AokxAKRIUCBUukWUpMCdqGRMTgaEoFqgXrNicX7LuPr/06q1x/3qI5WFQvnWfPtjqNL1eBYMhrVl2WJF1CD4wlAyUbA3hnAnqkqo5GOA1CxE9DgGaBcO8AxDQOfDKwrdwUubAWirgPeRYHgpvYzg2/vn48QQggheScqZs2ahV69eqlsS6mDrEkayCDUNwi4fU53gUpHVLi7OKFZ+QD8dywU07eeR7PyhXAzKgaf/avXoni+ZVn0bZT2+4kZgmLBwIdjA2T2fcEAwMEJ0JLqLXgGAHUHAvWGAP6m43weQgbYZVrAbrH3z0cIIYSQvBEVEgfxwgsvoHv37qoAXqdOneDkxJlKs1ygRFSEZxxXUcRHD0ZfsPuyehioU7IA3ulsuiI3MQMpzibuOyaDjZMQQRHUAGj0HFC1B+D8cGIAQgghhBCSzUDtkJAQzJs3T7lB9enTR6WFlcBq41oTxAR+SdaFDETFisMhmLPT9D77L93BqqPm1wEhqRC3nXSLuCXRfhRQsw8FBSGEEEJIbokKZ2dnFQMhGZ9CQ0Px9ddf4/z582jTpg3KlSuX2cPlHwpknAEqIVHDmL+PpnsY2S77kSwgcQA5uR8hhBBCCFFkq2KaxFWI+9Pt27dx4cIFHDt2LDuHs2/8SmRoqdh57hZCwqPT3C5SQrbLfk3KBeRGK+0bCSzOyf0IIYQQQkjWLBWCpJIVS0WXLl0QFBSk0sD27NkTR44cycrh8geGWhXhD2IkUhMambagyMp+BClTxB79K4OdpIhbkJ7RiBBCCCGE5J6l4qmnnsKyZcuUlUJiKj788EM0adIks4fJ3+5Pmia5eR/apYiPeYXszN2PJHH/NvDHYODseqOVcv2N3chYxI0QQgghJM9EhWR6WrBggcmsT4cPH0b16tWz3Bi7RmbAhfj7wL2bgFchkzUqivu541p4tMn8RDLsLebnrvYjmaiGPfdJ4OZpwMUL6PWLLupYxI0QQgghxHKiQtyejImMjMTcuXPx22+/Yc+ePUhISMrxT1IimYS8iwFR14A7F02KCqmUPapbVQyftTeteXS1XfYjZnBmrW6hiA7X3c+engsUq6Fvq9wV8Wc3Yv+mlajdohOcU1fUJoQQQgghuRtTIWzcuBGDBg1SKWW/+OILtG3bFtu3b8/q4fKXC1Q6cRWdqxfHpP51lUXCGFmW9bKdZIBYInb8Asx6QhcUJRsDz657ICgERydowc1xpWAT9UxBQQghhBCSR5aKa9euYdq0aZgyZQoiIiJUTEVMTAyWLFnC6trmZoC6vCvDWhUiHDpULaayPElQtsRQiMsTLRRmkBAH/PsmsGeavlyrL9DtG9acIIQQQgixBlHRrVs3ZZ3o2rWryvbUuXNnFVPx888/52b77DMDVDq1KgyIgGDa2Exy7xawYCBwfpPuMNZhLND0fyaD4gkhhBBCiAVExfLly/Hyyy9j+PDhqFChQg42IR9RwLyq2iQLhB4D5j4F3D4PuPoAT0wBKnaydKsIIYQQQvIFZsdUbN68WQVl16tXD40aNcIPP/yAsLCw3G2d3daqoKjIUU6uBH7roAuKAsHAM6spKAghhBBCrFFUNG7cGL/++itCQkLw/PPPY968eQgMDERiYiJWr16tBAcxs6q2Ge5PxMyA7C3fAXOeBGIjAQm4loDsIlUs3TJCCCGEkHxFprM/eXl5YejQocpycejQIbzxxhsYP348ihQpgu7dmePfrOxP928BsXct3RrbJj4G+GsEsPpDPflu3UHAgMWAF+NQCCGEEEJsJqWsUKlSJUycOBGXL19WtSpIBrj7AW5+GaaVJRkQdQOY3g3YPxtwcAQemQh0+xZwdrV0ywghhBBC8iXZEhUGJAvUY489hqVLl+bE4ewbukBlj2uHgF/bAJd26AKt30Kg0fPM8EQIIYQQYuuigmSlAN5FS7fE9ji2DJjSSQ90L1gOeHYNUL6dpVtFCCGEEJLvyVTxO5KTGaDo/pSpgOxNXwJrP9aXy7YGek8DPPwt3TJCCCGEEEJRYQHo/pQ54u4DS/8HHPpDX274PNDpU8CJX11CCCGEEGuBIzOLuT9RVGRI5DVgXl/gyh7A0Rno8jlQf6ilW0UIIYQQQlJBUZHX+BmqatP9KV2u7gPm9gUir+puTn1mAGVaWrpVhBBCCCHEBBQVlnJ/irgKJMTTjccUhxcBS14E4u8DhSoBfecBBctaulWEEEIIISQNmP0pr/EuCji5AlqCPgtPHpCYCKz7FFg4RBcUFToCz6ymoCCEEEIIsXIoKvIaR0fAN0h/TReoB0iF8YWDgQ0T9OUmLwFPz9MLBhJCCCGEEKuGvjeWCta+fU7PABVs6cZYASKu5j4NXDsIOLoA3b4B6vS3dKsIIYQQQoiZUFRYtFYFC+Dh0i49w9PdUMCzEPDkLCC4iaVbRQghhBBCMgFFhSVgATydA/P1GhQJMUCRasDTcwF/mm4IIYQQQmwNigpL1qrIrwXwJCB77Vhg89f6cqWuQK/JgJu3pVtGCCGEEEKyAEWFJdPK5scCeDGRwKLngBP/6svNXwfafqgHsBNCCCGEEJuEosKS7k9iqdA0wMEB+YLbF/SA7NAjgJMb0OMHoGYfS7eKEEIIIYRkE4oKS1oqpBbDvVuAVwDsngtbgfn9gXs39VodT80BStS3dKsIIYQQQkgOQJ8TS+Dspg+s80sGqL0zgenddUFRrCbw7FoKCkIIIYQQO4KiwhpcoOyVxARg5fvA0peAxDigag9g6IoHlhpCCCGEEGIXUFRYOgOUvaaVjQ4H5vQBtv2gL7d+F3hiGuDqZemWEUIIIYSQHIYxFRavVWGHloqbZ4C5TwFhJwFnD6DnJKBaT0u3ihBCCCGE5BIUFRZ3f7KzmIqzG4AFA4HoO4BPIPD0HCCwjqVbRQghhBBCchGKCkthj+5Pu6YAy98GEuOBoHp6hiefYpZuFSGEEEIIyWUoKiyFPbk/JcQBK94Fdv2qL9foA3T/DnDxsHTLCCGEEEJIHkBRYSkMGZAkzWrsXdsNYJY6G38MBs5t0JfbfaRXyc4vBf0IIYQQQghFhcXwKAC4+QIxEboLVOFKsDlunATmPgncOgu4eAG9JgNVHrV0qwghhBBCSB7DlLKWxJZdoE7/B/zWXhcU8jmGraSgIIQQQgjJp1BUWIMLlC0VwNM0YPskYHZvICYcKNkYeHYdUKyGpVtGCCGEEELyo6gYPXo0HBwcUjwqV66M/JcB6pL1VsQ+twk4tFB/jr0P/P0ysGIkoCUCtfsBg5YC3oUt3VJCCCGEEJKfYyqqVauG//77L3nZ2dniTbKA+5MVppU9uhRY8Q4QcfXBOidXICEWgAPQ8WOgyUsMyCaEEEIIIZYXFSIiihXLp7UMrNX9SQSFFLCDlnK9EhQAWrwBNP2fRZpGCCGEEEKsD4vHVJw6dQqBgYEoW7Ys+vXrh4sX7azCdHoUKGV97k/i8iQWitSCwpgDc/X9CCGEEEIIsbSlolGjRpg2bRoqVaqEkJAQjBkzBi1atMDhw4fh4+Pz0P4xMTHqYSAiIkI9x8XFqYclMJw3S+f3KgYXGb5HXEV8zH3A0eKGIzhc2AxnY5cnU0RcQfzZjdCCm8OWyVbfEYvCvrNd2He2C/vOdmHf2S5xVtB35p7bQdMknY91cOfOHQQHB+Orr77CsGHDTAZ2i/BIzZw5c+Dp6QmbQ0tEtwPD4KglYFW1r3DftZClW4SgW9tQ/8KkDPfbHTwcVwo2yZM2EUIIIYQQy3Dv3j307dsX4eHh8PX1tQ1RITRo0ADt27fHZ599ZpalomTJkggLC0v3Q+a2elu9ejU6dOgAFxexO2QO5x/rw+HOecQP+BtaqSbWYamY9ViG+8X3X2IXlors9B2xHOw724V9Z7uw72wX9p3tEmcFfSfj7UKFCmUoKizvb2NEVFQUzpw5gwEDBpjc7ubmph6pkYts6Zsky22QtLJ3zsM5KkQOAotTtiXgXQyIupbGDg6AbyCcZT9HJ9gD1vD9IVmDfWe7sO9sF/ad7cK+s11cLNh35p7XooHab775JjZs2IDz589j69at6NmzJ5ycnPD0008j32BtwdoiFApXSmNjUvrYzuPtRlAQQgghhJDsY1FLxeXLl5WAuHnzJgoXLozmzZtj+/bt6nW+SytrLaLi0i7g3Ab9tWch4F7Yg22+gbqgqNrdYs0jhBBCCCHWh0VFxbx58yx5eusqgGcNtSokTew/r+uva/UFevwAXNgKRF0HvIsCwU1poSCEEEIIIdYdU5EvkZgKa6mqvft34NpBwM0P6DBWFxBlWli6VYQQQgghxMqxePG7fI/BUiHuT5ZMxBV1A1jzsf663YeAdz5yQSOEEEIIIdmCosLS+Abpz3H3gHu3LNeO1R8BMeFAsZpA/aGWawchhBBCCLE5KCosjYu7Hq9gyWDtC9uAA3P0112/YtwEIYQQQgjJFBQV1uYCldckxAP/vqm/rjMAKNkg79tACCGEEEJsGooKa0ora4kMULt+Ba4fBtwLAO3H5P35CSGEEEKIzUNRYVUZoPJYVEReA9Z9qr9uPwrwCsjb8xNCCCGEELuAosIa8LNQVe1VHwIxEUBgHaDuoLw9NyGEEEIIsRsoKvKr+9P5zcChBQAcgK5fMjibEEIIIYRkGYqK/Oj+lBAH/JMUnF1vMBBUL2/OSwghhBBC7BKKCmvK/nTvJhB7L/fPt+Nn4MYxwKMg0O6j3D8fIYQQQgixaygqrAF3P8DVR38dfjl3zxVxFVg/Xn/dYQzgWTB3z0cIIYQQQuweigprwMHByAXqYu6ea9UHQGwUUKIBULt/7p6LEEIIIYTkCygqrK4AXi5aKs6uBw7/CTg4Al2+ABzZ/YQQQgghJPtwVJlfMkDFxwL/vqW/rj8MCKydO+chhBBCCCH5DoqK/JIBavuPQNhJwLMQ0PaD3DkHIYQQQgjJl1BU5Af3Jznmhon6644fAx4Fcv4chBBCCCEk30JRYS0UKJV77k8r3wPi7gElGwM1n8r54xNCCCGEkHwNRYW1xVREXAES4nPuuKfXAEf/Ahyckipns8sJIYQQQkjOwhGmteBdDHB0AbQEIDIkZ44ZH/MgOLvhc0Cx6jlzXEIIIYQQQoygqLAWxILgF5SzcRVbvwdunQG8iwJt3s2ZYxJCCCGEEJIKigqrDNbOgbiK2xeAjV/orzt+olftJoQQQgghJBegqLBGUXHnYs4EZ8ffB4KbAzV6Z/94hBBCCCGEpAFFhVXWqsim+9PJVcDxZUnB2V8ADg450jxCCCGEEEJMQVFhjRmgsuP+FBcNLE8Kzm48HChSJWfaRgghhBBCSBpQVFil+1M2RMWWb4Hb5wGf4kDrkTnWNEIIIYQQQtKCosIaC+CJ+5OmZf79t84Bm7/SX3caB7j55Gz7CCGEEEIIMQFFhTXhm5RSNu4ucP925t+/YiQQHw2UaQlU65XjzSOEEEIIIcQUFBXWhIs74FUkaxmgTiwHTq7QC+h1+ZLB2YQQQgghJM+gqLDaDFCZiKuIvQcsf1t/3WQEULhi7rSNEEIIIYQQE1BUWG0BvEykld38tW7Z8C0BtEoSF4QQQgghhOQRFBXWmlbW3AxQN88AW77RX3f+FHD1yr22EUIIIYQQYgKKCqvNAGVGTIVkiPr3LSAhFijXFqjSPdebRwghhBBCSGooKmzZ/UmqZp9ZAzi5Al1YOZsQQgghhFgGigpbdX+KvQssTypu1/RlIKBc7reNEEIIIYQQE1BUWGv2p3thelantNj4BRBxGfArBbR4I8+aRwghhBBCSGooKqwN9wKAa1Il7IgrpvcJOwVs/V5//ch4wNUz79pHCCGEEEJIKigqrA2Ji0h2gbqYRnD2m0BiHFChI1CpS543kRBCCCGEEGMoKmytAN7RJcDZ9YCTG/DIBAZnE0IIIYQQi0NRYc0ZoFIHa8dEAive0183fw0oWDbv20YIIYQQQkgqKCqs2lKRKq3sholA5FXAvzTQ/FWLNI0QQgghhJDUUFRYda0KI0tF6HFg+0/660cmAi4elmkbIYQQQgghqaCosAX3p+Tg7Hg9MLtiJ4s2jxBCCCGEEGOcUywR63J/kpSyiQnAkcXA+U2AszvQebylW0cIIYQQQoh1WirGjx8PBwcHvPoqYwXgXRRwcAK0BGDbD8A/b+rrW7wJ+AdbunWEEEIIIYRYn6Vi165d+OWXX1CzZk1LN8U6OP7Pg9erP9KfRWQEMNsTIYQQQgixPixuqYiKikK/fv3w66+/wt/f39LNsTxHlwILBupWCmNkeeEwfTshhBBCCCFWhMVFxYgRI9C1a1e0b9/e0k2xPBI/seIdURBp77NipL4fIYQQQgghVoJF3Z/mzZuHvXv3Kvcnc4iJiVEPAxEREeo5Li5OPSyB4bw5cX6HC5vhHHE1nT00Fbwdf3YjtODm2T5fficn+47kLew724V9Z7uw72wX9p3tEmcFfWfuuR00TfKV5j2XLl1C/fr1sXr16uRYitatW6N27dr45ptvTL5n9OjRGDNmzEPr58yZA09PT9g6Qbe2of6FSRnutzt4OK4UbJInbSKEEEIIIfmXe/fuoW/fvggPD4evr6/1iYolS5agZ8+ecHJySl6XkJCgMkA5Ojoqi4TxtrQsFSVLlkRYWFi6HzK31ZsIow4dOsDFxSX7lopZj2W4X3z/JbRUWFnfkbyFfWe7sO9sF/ad7cK+s13irKDvZLxdqFChDEWFxdyf2rVrh0OHDqVYN2TIEFSuXBnvvPPOQ4JCcHNzU4/UyEW29E2SI20o2xLwDQQiQtKIq3BQ251lP8eHrw/JGtbw/SFZg31nu7DvbBf2ne3CvrNdXCzYd+ae12KiwsfHB9WrV0+xzsvLCwEBAQ+tzzeIUOg8Qc/+JAIihbCQZejF7ygoCCGEEEKIFWHx7E8kFVW7A31mAL7FU64XC4asl+2EEEIIIYRYEVZR/M7A+vXrLd0E60CEQ+WuwIWtQNR1vcJ2cFNaKAghhBBCiFViVaKCGCECokwLS7eCEEIIIYSQDKH7EyGEEEIIISRbUFQQQgghhBBCsgVFBSGEEEIIISRbUFQQQgghhBBCsgVFBSGEEEIIISRbUFQQQgghhBBC8m9KWU3TK05HRERYrA1xcXG4d++eaoOlyqeTrMG+s13Yd7YL+852Yd/ZLuw72yXOCvrOMM42jLvtUlRERkaq55IlS1q6KYQQQgghhNgtMu728/NLc7uDlpHssGISExNx9epV+Pj4wMHBwWLqTUTNpUuX4Ovra5E2kKzBvrNd2He2C/vOdmHf2S7sO9slwgr6TqSCCIrAwEA4Ojrap6VCPliJEiVgDUhH80a1Tdh3tgv7znZh39ku7DvbhX1nu/hauO/Ss1AYYKA2IYQQQgghJFtQVBBCCCGEEEKyBUVFNnFzc8OoUaPUM7Et2He2C/vOdmHf2S7sO9uFfWe7uNlQ39l0oDYhhBBCCCHE8tBSQQghhBBCCMkWFBWEEEIIIYSQbEFRQQghhBBCCMkWFBVmMmnSJNSsWTM5T3CTJk2wfPny5O3R0dEYMWIEAgIC4O3tjccffxzXr1+3aJvJw4wfP14VSnz11VeT17HvrJfRo0er/jJ+VK5cOXk7+856uXLlCvr376/6xsPDAzVq1MDu3buTt0s430cffYTixYur7e3bt8epU6cs2mYClC5d+qF7Th5ynwm856yXhIQEfPjhhyhTpoy6p8qVK4ePP/5Y3WsGeN9ZL5GRkWpsEhwcrPqmadOm2LVrl031HUWFmUiRPRmQ7tmzR/1jbNu2LXr06IEjR46o7a+99hr+/vtv/PHHH9iwYYOq9N2rVy9LN5sYITfnL7/8osShMew766ZatWoICQlJfmzevDl5G/vOOrl9+zaaNWsGFxcXNfly9OhRfPnll/D390/eZ+LEifjuu+/w888/Y8eOHfDy8kKnTp3UoJVY9nfS+H5bvXq1Wt+7d2/1zHvOepkwYYKaAP3hhx9w7NgxtSz32ffff5+8D+876+WZZ55R99vMmTNx6NAhdOzYUQkHmaCxmb6T7E8ka/j7+2u//fabdufOHc3FxUX7448/krcdO3ZMpga0bdu2WbSNRCcyMlKrUKGCtnr1aq1Vq1baK6+8otaz76ybUaNGabVq1TK5jX1nvbzzzjta8+bN09yemJioFStWTPv8889T9Kebm5s2d+7cPGolMQf5rSxXrpzqM95z1k3Xrl21oUOHpljXq1cvrV+/fuo17zvr5d69e5qTk5O2bNmyFOvr1q2rvf/++zbTd7RUZNHEOG/ePNy9e1e5QYn1Ii4uTilKA+KiUapUKWzbts2ibSU6Yq7v2rVrij4S2HfWj5h3AwMDUbZsWfTr1w8XL15U69l31svSpUtRv359NbtdpEgR1KlTB7/++mvy9nPnzuHatWsp+s7Pzw+NGjVi31kRsbGxmDVrFoYOHapcoHjPWTfiLrNmzRqcPHlSLR84cEBZdh955BG1zPvOeomPj1djS3d39xTrxc1J+tBW+s7Z0g2wJcQcJSJCTE3iS7p48WJUrVoV+/fvh6urKwoUKJBi/6JFi6ovAbEsIgD37t2bwjfRgPQP+856kR/MadOmoVKlSsoVY8yYMWjRogUOHz7MvrNizp49q9wwXn/9dbz33nvq3nv55ZdVfw0aNCi5f6SvjGHfWRdLlizBnTt3MHjwYLXMe866GTlyJCIiIpTQc3JyUoPUcePGqckYgfed9eLj46PGlxIDU6VKFdUnc+fOVYKhfPnyNtN3FBWZQAY2IiDCw8OxcOFC9c9RfEqJ9XLp0iW88soryk8x9QwAsX4MM2yCxMKIyJAgtgULFqgZHGKdJCYmKkvFp59+qpbFUiFCUHyB5XeT2AZTpkxR96BYCon1I7+Ls2fPxpw5c1QsmoxXJPBX+o/3nfUzc+ZMZRUMCgpSorBu3bp4+umnlYXQVqD7UyaQGRpRjPXq1cNnn32GWrVq4dtvv0WxYsWUmVhmdIyRjBiyjVgOuRlDQ0PVzens7KweIgQl2Elei8pn39kOMkNasWJFnD59mvedFSPZScSKa4zMvhlc1wz9kzprEPvOerhw4QL+++8/FTxqgPecdfPWW28pa8VTTz2lsq0NGDBABdbLeEXgfWfdlCtXTo1PoqKi1ITozp07lbuhuP7aSt9RVGRzNi4mJkaJDMlyIr6MBk6cOKH+gYo5i1iOdu3aKbc1mbExPGQGVczBhtfsO9tBfmzPnDmjBq2876wXyfwkfWGM+HmLlUmQlJfyj9C478RtQzKasO+sg6lTp6p4GIlFM8B7zrq5d+8eHB1TDutkxlvGKgLvO9vAy8tL/Y+TLHorV65UmUZtpu8sHSluK4wcOVLbsGGDdu7cOe3gwYNq2cHBQVu1apXa/sILL2ilSpXS1q5dq+3evVtr0qSJehDrwzj7k8C+s17eeOMNbf369eq+27Jli9a+fXutUKFCWmhoqNrOvrNOdu7cqTk7O2vjxo3TTp06pc2ePVvz9PTUZs2albzP+PHjtQIFCmh//fWX+k3t0aOHVqZMGe3+/fsWbTvRtISEBHVfSRav1PCes14GDRqkBQUFqQxC8pu5aNEi9Xv59ttvJ+/D+856WbFihbZ8+XLt7NmzamwpmQ8bNWqkxcbG2kzfUVSYiaRpCw4O1lxdXbXChQtr7dq1SxYUgnTqiy++qNLMyj/Pnj17aiEhIRZtMzFPVLDvrJcnn3xSK168uLrv5J+lLJ8+fTp5O/vOevn777+16tWrq5SHlStX1iZPnpxiu6RI/PDDD7WiRYuqfeQ39cSJExZrL3nAypUrVZpYU/3Be856iYiIUP/bRPS5u7trZcuWVelIY2JikvfhfWe9zJ8/X/WZ/L+T9LEjRoxQaWNtqe8c5I+lrSWEEEIIIYQQ24UxFYQQQgghhJBsQVFBCCGEEEIIyRYUFYQQQgghhJBsQVFBCCGEEEIIyRYUFYQQQgghhJBsQVFBCCGEEEIIyRYUFYQQQgghhJBsQVFBCCGEEEIIyRYUFYQQkstMmzYNBQoUyLXjr1+/Hg4ODrhz506OHO/8+fPqePv370deM3r0aNSuXdtqrq0lGTx4MB577DFLN4MQQsyCooIQQnJg8CeDcHm4urqifPnyGDt2LOLj4/Pk/E2bNkVISAj8/PyQ18ydOxdOTk4YMWJEpt8r12vJkiUp1r355ptYs2aN2cd48skncfLkySyLkrwSaoQQYu9QVBBCSA7QuXNnNbA/deoU3njjDTW4/fzzz/Pk3CJkihUrpgbBec2UKVPw9ttvK3ERHR2d7eN5e3sjICDA7P09PDxQpEiRbJ+XEEJI9qCoIISQHMDNzU0N7IODgzF8+HC0b98eS5cuTbHPypUrUaVKFTVwNogQYePGjXBxccG1a9dS7P/qq6+iRYsW6vWFCxfQrVs3+Pv7w8vLC9WqVcO///6b5qz6li1b0Lp1a3h6eqr3dOrUCbdv31bbVqxYgebNmyu3IRnAP/roozhz5kymP/O5c+ewdetWjBw5EhUrVsSiRYse2uf3339XbZXrU7x4cbz00ktqfenSpdVzz549VdsNy8aWhlWrVsHd3f0ha8Err7yCtm3bPuT+JK/HjBmDAwcOJFuOZN3QoUPVZzQmLi5OiRERRVkhJiZGWVWCgoJUfzRq1Ej1gxAREaHEzvLly1O8Z/HixfDx8cG9e/fU8qVLl9CnTx/V/oIFC6JHjx7K9YwQQmwRigpCCMkFZFAZGxubvCwDyS+++AIzZ85UIuLixYtqUCq0bNkSZcuWVduMB72zZ89WA2JB3ItkICvvPXToECZMmKDEiSkkFqJdu3aoWrUqtm3bhs2bNytBkpCQoLbfvXsXr7/+Onbv3q1cjRwdHdXgPjExMVOfcerUqejatatyu+rfv/9DA/RJkyapdj/33HOqzSKyxDVM2LVrV/IxRFwZlo2RzyAD7j///DN5nXyG+fPno1+/fiZdocRKJCJGjikPWffMM88oIWUQccKyZctUn8j2rCDiSK7tvHnzcPDgQfTu3VsJRbFU+fr6KhEzZ86cFO+R/pQYCRF60r8i9ERkbNq0SYlAg9g0/t4QQojNoBFCCMkWgwYN0nr06KFeJyYmaqtXr9bc3Ny0N998U62bOnWqJj+3p0+fTn7Pjz/+qBUtWjR5ecKECVqVKlWSl//880/N29tbi4qKUss1atTQRo8ebfL869atU8e/ffu2Wn766ae1Zs2amd3+GzduqPcfOnRILZ87d04t79u3L833JCQkaCVLltSWLFmSfAxXV1ft7NmzyfsEBgZq77//fprHkHMsXrw4xbpRo0ZptWrVSl5+5ZVXtLZt2yYvr1y5Ul1bw2eVa+vn55fm+w1UrVpVXWMD3bp10wYPHpxm21JfU2MuXLigOTk5aVeuXEmxvl27dtq7776rXsvnkv67e/euWg4PD9fc3d215cuXq+WZM2dqlSpVUt8XAzExMZqHh4f6jKm/V4QQYu3QUkEIITmAzHzLTLO46zzyyCNqBlxceQzI7HS5cuWSl8UVKDQ0NEWw9+nTp7F9+3a1LG474hojrjXCyy+/jE8++QTNmjXDqFGj1Ox4WhgsFWkhs+lPP/20so7IrLrB9UisJ+ayevVqZfHo0qWLWi5UqBA6dOig3J0E+WxXr15Ntx3mIBYJcSuSYxlm+8U6ktmMT/9v7/5VGomiAIzPgq9gIxqwsvEPGhQsfQELtbBSxEYEC8s8gFgFUlnoU1jYKraCpYWPIGpA9AGW78iVOEzUyQQS5ftBkN1NZm4mspwz55wbqhVURfDw8BCtSakKVBZVFyomtHzxmafH9fX1RxsZ14WWttQCR7WFa01bHGjR4vOmUpFeTwsUcym9tKJJ0qCNDHoBkvQXrKysRLsPQ9NjY2PZyMjn/14JMDvR7/9+s/4d/f20KBH4Tk5ORtCbevRTUEy7zMXFRcwaHB8fZ81mMzs4OChsvfoK52H24+zsLNZK29P09HSpthtandrt9qdzcRySHeYavlvDTy0uLkYyRpsRsyrMJZBwlbW1tRWzH7QsMQfCNU7zKmW9vb3Fjle3t7fxs1NqSeP3YGNjI1qgNjc34yeJZvq94Bj1ej2SpLzR0dGe1iVJg2RSIUl9QEUhzQv0isSBCsL4+HgE0lQlOk1MTGR7e3vxaDQakRQUJRWzs7MxK0Fwn/f8/Jzd39/Ha1NQzcxFGRzj/Pw8An3mFxLu3jMATtLDbAAVENZBwlWERCvNeXxXrSD45row/0GlohuC+aJjMpDOPANJG4nFzs5O1qv5+fk4B9WYrxIT1k315u7uLru8vIxKU7KwsBCzISSTVDAk6bczqZCkIUElggCT4JPvucjvBEVbFS037OJ0dXUVO0kVIeGYmZnJ9vf3IwEh0Ob5DBPTYkOAfXp6Gi1YtDxxB78MBso5Bu1Z+W1safuhikFSQfsX5ydwZu2vr68xkJwSoZR0kDyxOxS7VHULzjnW0dFR3P3nud1wTHalogWMJIT2ovR8kjYGqEkItre3f9zqxDES3u/c3FysieoH1SKSjMfHx3gvJHQp6WEAnx3BeC6VEXaI6nxPbDnMjk981qyVHb7YQYstevmzJP0mzlRI0pDgLjyzFQS9BKyd+Dt2UiKRIGAnuTg5OSk8Dv9GtYC+/aWlpWx5eTkqC7TecA4qDLTu0PJ0eHhY+vs0mJtIW8Hmra+vxxzB09NTBO6tVivWSUWDgJ55joSAnNkMKjAE5t1QAeJ90FpVtOtT/vxcH6ojtBHx/RkJ8wwkUiRvtH39BIkBa0sPWpZAxYPPiN2mpqamogrCDla1Wu3jtVwfKk98Dvl1M2PDTl48f21tLT7X3d3dmKmwciHpN/rHtPagFyFJekdgyV3v/HdcqDrmGPheCRICAnlJUv/Y/iRJQ+Dl5SVabRjoNaHoLwbIqZxQGWHXqNXV1UEvSZL+HJMKSRoC9Nbf3NzEDALDveof5kaYaWBOgZ2j8jtzSZKqs/1JkiRJUiUOakuSJEmqxKRCkiRJUiUmFZIkSZIqMamQJEmSVIlJhSRJkqRKTCokSZIkVWJSIUmSJKkSkwpJkiRJlZhUSJIkScqq+A8jYoOlNlp5cQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "activity_group = df.groupby(\"Physical Activity Level\")[[\"Sleep Duration\", \"Quality of Sleep\"]].mean()\n", + "\n", + "plt.figure(figsize=(8,4))\n", + "\n", + "plt.plot(activity_group.index, activity_group[\"Sleep Duration\"], marker='o', label=\"Sleep Duration (hours)\")\n", + "plt.plot(activity_group.index, activity_group[\"Quality of Sleep\"], marker='o', label=\"Quality of Sleep (1–10)\")\n", + "\n", + "plt.title(\"Effect of Physical Activity Level on Sleep\", fontsize=14, fontweight='bold')\n", + "plt.xlabel(\"Physical Activity Level\")\n", + "plt.ylabel(\"Average Value\")\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6bf97684-cdbf-443f-8229-8b4a01e134af", + "metadata": {}, "source": [ "# Discussion" ] @@ -251,14 +519,7 @@ "id": "bearing-stadium", "metadata": {}, "source": [ - "*It's important to recognize the limitations of our research.\n", - "Consider the following:*\n", - "\n", - "- *Do the results give an accurate depiction of your research question? Why or why not?*\n", - "- *What were limitations of your datset?*\n", - "- *Are there any known biases in the data?*\n", - "\n", - "✏️ *Write your answer below:*" + "My results provided clear visual representations that allowed me to effectively compare different aspects of the data. They directly answered my research questions, which was expected since the questions were straightforward and focused. However, I recognize that the simplicity of my questions was partly due to my current coding limitations. As I continue to improve my programming skills, I hope to design more complex and detailed research questions that explore deeper relationships within the data. Overall, there did not appear to be any bias in the dataset that could have influenced my results.\n" ] }, { @@ -274,15 +535,20 @@ "id": "about-raise", "metadata": {}, "source": [ - "*Summarize what you discovered through the research. Consider the following:*\n", + "Through this project, I learned a lot about how lifestyle factors such as stress and physical activity influence sleep. By analyzing and visualizing the data, I could clearly see patterns showing that higher stress levels generally corresponded with shorter and lower-quality sleep, while higher physical activity levels were associated with longer and better-quality sleep. This helped me better understand the balance between rest, activity, and stress management. When comparing occupations, it became clear that some professions tend to get significantly less sleep on average, likely due to longer work hours or higher daily stress, while others maintained more consistent and healthier sleep patterns\n", "\n", - "- *What did you learn about your media consumption/digital habits?*\n", - "- *Did the results make sense?*\n", - "- *What was most surprising?*\n", - "- *How will this project impact you going forward?*\n", + "The results made sense overall and supported what I expected: stress tends to disrupt sleep, while physical activity can improve it. What surprised me most, however, was how strong the effect of occupation and stress seemed to be compared to other factors. Some groups showed noticeable differences in sleep duration simply based on their line of work, suggesting that job demands and lifestyle balance play a big role in sleep health.\n", "\n", - "✏️ *Write your answer below:*" + "Going forward, this project will make me more aware of how interconnected daily habits, work routines, and stress management are with getting quality sleep. I plan to pay closer attention to how my own schedule and responsibilities impact my rest and find ways to maintain a healthier balance between productivity and recovery. Understanding these patterns gives me a clearer picture of how small changes in lifestyle can lead to better overall well-being." ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bb832499-95a8-478a-ab91-2d4c0d1c5d1f", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -310,7 +576,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.13.7" }, "toc": { "base_numbering": 1, diff --git a/data/Sleep_health_and_lifestyle_dataset.csv b/data/Sleep_health_and_lifestyle_dataset.csv new file mode 100644 index 0000000..b7e16bd --- /dev/null +++ b/data/Sleep_health_and_lifestyle_dataset.csv @@ -0,0 +1,375 @@ +Person ID,Gender,Age,Occupation,Sleep Duration,Quality of Sleep,Physical Activity Level,Stress Level,BMI Category,Blood Pressure,Heart Rate,Daily Steps,Sleep Disorder +1,Male,27,Software Engineer,6.1,6,42,6,Overweight,126/83,77,4200,None +2,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None +3,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None +4,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea +5,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea +6,Male,28,Software Engineer,5.9,4,30,8,Obese,140/90,85,3000,Insomnia +7,Male,29,Teacher,6.3,6,40,7,Obese,140/90,82,3500,Insomnia +8,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +9,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +10,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +11,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None +12,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +13,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None +14,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None +15,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None +16,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None +17,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Sleep Apnea +18,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,Sleep Apnea +19,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Insomnia +20,Male,30,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +21,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +22,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +23,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +24,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +25,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +26,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None +27,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +28,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None +29,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None +30,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None +31,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Sleep Apnea +32,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Insomnia +33,Female,31,Nurse,7.9,8,75,4,Normal Weight,117/76,69,6800,None +34,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +35,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +36,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +37,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +38,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +39,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +40,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +41,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +42,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +43,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +44,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +45,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +46,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +47,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +48,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None +49,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +50,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,Sleep Apnea +51,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None +52,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None +53,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +54,Male,32,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None +55,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +56,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +57,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +58,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +59,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +60,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None +61,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +62,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None +63,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None +64,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None +65,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None +66,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None +67,Male,32,Accountant,7.2,8,50,6,Normal Weight,118/76,68,7000,None +68,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,Insomnia +69,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None +70,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None +71,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +72,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +73,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +74,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None +75,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +76,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +77,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +78,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +79,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +80,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None +81,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea +82,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea +83,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None +84,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None +85,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None +86,Female,35,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +87,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None +88,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None +89,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None +90,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None +91,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None +92,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None +93,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None +94,Male,35,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea +95,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,Insomnia +96,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +97,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +98,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +99,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None +100,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None +101,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None +102,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None +103,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None +104,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Sleep Apnea +105,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,Sleep Apnea +106,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Insomnia +107,Female,37,Nurse,6.1,6,42,6,Overweight,126/83,77,4200,None +108,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None +109,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None +110,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None +111,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +112,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None +113,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +114,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None +115,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +116,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +117,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +118,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +119,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +120,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +121,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +122,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +123,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +124,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +125,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None +126,Female,37,Nurse,7.5,8,60,4,Normal Weight,120/80,70,8000,None +127,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +128,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +129,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +130,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +131,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +132,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +133,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +134,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +135,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +136,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None +137,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +138,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None +139,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +140,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None +141,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +142,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None +143,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +144,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None +145,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,Sleep Apnea +146,Female,38,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea +147,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,Insomnia +148,Male,39,Engineer,6.5,5,40,7,Overweight,132/87,80,4000,Insomnia +149,Female,39,Lawyer,6.9,7,50,6,Normal Weight,128/85,75,5500,None +150,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None +151,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None +152,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +153,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +154,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +155,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +156,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +157,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +158,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +159,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +160,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +161,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None +162,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None +163,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None +164,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None +165,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None +166,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,Insomnia +167,Male,41,Engineer,7.3,8,70,6,Normal Weight,121/79,72,6200,None +168,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None +169,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None +170,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +171,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +172,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +173,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +174,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None +175,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None +176,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None +177,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None +178,Male,42,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +179,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +180,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +181,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +182,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +183,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +184,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None +185,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea +186,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea +187,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia +188,Male,43,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +189,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia +190,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +191,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia +192,Male,43,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +193,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +194,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +195,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +196,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +197,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +198,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +199,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +200,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +201,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia +202,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia +203,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia +204,Male,43,Engineer,6.9,6,47,7,Normal Weight,117/76,69,6800,None +205,Male,43,Engineer,7.6,8,75,4,Overweight,122/80,68,6800,None +206,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +207,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +208,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +209,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +210,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +211,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None +212,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +213,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +214,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +215,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +216,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +217,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +218,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None +219,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Sleep Apnea +220,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Sleep Apnea +221,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +222,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +223,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +224,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +225,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +226,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +227,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +228,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +229,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +230,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +231,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +232,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +233,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +234,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +235,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +236,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +237,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +238,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +239,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +240,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +241,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +242,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +243,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia +244,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +245,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +246,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +247,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia +248,Male,44,Engineer,6.8,7,45,7,Overweight,130/85,78,5000,Insomnia +249,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,None +250,Male,44,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,None +251,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia +252,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia +253,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +254,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +255,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +256,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia +257,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +258,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +259,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +260,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +261,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia +262,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None +263,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None +264,Female,45,Manager,6.9,7,55,5,Overweight,125/82,75,5500,None +265,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia +266,Female,48,Nurse,5.9,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +267,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia +268,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,None +269,Female,49,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +270,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +271,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +272,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +273,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +274,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +275,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +276,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +277,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea +278,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea +279,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Insomnia +280,Female,50,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None +281,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,None +282,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +283,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +284,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +285,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +286,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +287,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +288,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +289,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +290,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +291,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +292,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +293,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +294,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +295,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +296,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +297,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +298,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +299,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +300,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +301,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +302,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +303,Female,51,Nurse,7.1,7,55,6,Normal Weight,125/82,72,6000,None +304,Female,51,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +305,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +306,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea +307,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia +308,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia +309,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia +310,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia +311,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia +312,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia +313,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +314,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +315,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +316,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,Insomnia +317,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +318,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +319,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +320,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +321,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +322,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +323,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +324,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +325,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None +326,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +327,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None +328,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +329,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None +330,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +331,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +332,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +333,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +334,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +335,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +336,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +337,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +338,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None +339,Female,54,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None +340,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea +341,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea +342,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None +343,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None +344,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None +345,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +346,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +347,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +348,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +349,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +350,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +351,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +352,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +353,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +354,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +355,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +356,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +357,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +358,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +359,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,None +360,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None +361,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +362,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +363,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +364,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +365,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +366,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +367,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +368,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +369,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +370,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +371,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +372,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +373,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea +374,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea \ No newline at end of file diff --git a/proposal.md b/proposal.md index e34b3af..f1e7bc0 100644 --- a/proposal.md +++ b/proposal.md @@ -31,7 +31,7 @@ https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset *Describe the source of the data set--not just where you downloaded it, but the person or organization who gathered the data. Explain why you trust them.* -I am using Kaggle to get the data set. I trust this because it was a reccomendation from the proffesor. I also looked up review at how legit kaggle is, and i was shown mostly postive sites that stated it is a good site to use as it is well regarded with data scientists. +I am using Kaggle to get the data set. I trust this because it was a reccomendation from the professor. I also looked up review at how legit kaggle is, and i was shown mostly postive sites that stated it is a good site to use as it is well regarded with data scientists. Due to this, I feel comfortable using the data that is provided on this site to use for my project. ### What is this data about?