generated from mwc/project_argument
	I am proud of being able to figure out how to correctly add the bar charts for the best offensive and defensive players. I was stuck on this as I had to change the data series into a data frame. I figured this out and am very excited that I was able to complete this. I am very close to finishing this project.
		
			
				
	
	
		
			1598 lines
		
	
	
		
			164 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			1598 lines
		
	
	
		
			164 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
{
 | 
						||
 "cells": [
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "worldwide-blood",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "# Introduction"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "understanding-numbers",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "I will research 3 different questions I had while looking at the NBA data.  I will first find who the better player is between LeBron James and Kevin Durant and then find who the best players are on offense and defense.  All of the data I will be using will come from the 2014-2022 NBA seasons.  This project will be able to give valuable insight to an NBA front office telling them who they should try to acquire in the offseason."
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "greater-circular",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "## Overarching Question: Who are some of the best players in the NBA from 2014-2022?"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "appreciated-testimony",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "I want to look at this because I have played basketball most of my life and enjoy watching the NBA.  I enjoy looking at NBA players' stats in my free time, so this was very interesting to me.  I want to see who some of the best players are on offense and defense in the NBA."
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "permanent-pollution",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "# Data"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 23,
 | 
						||
   "id": "technical-evans",
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [],
 | 
						||
   "source": [
 | 
						||
    "import pandas as pd\n",
 | 
						||
    "import matplotlib.pyplot as plt\n",
 | 
						||
    "import seaborn as sns"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 24,
 | 
						||
   "id": "overhead-sigma",
 | 
						||
   "metadata": {
 | 
						||
    "scrolled": true
 | 
						||
   },
 | 
						||
   "outputs": [],
 | 
						||
   "source": [
 | 
						||
    "file_name = \"modern_RAPTOR_by_player.csv\"\n",
 | 
						||
    "dataset_path = \"data/\" + file_name\n",
 | 
						||
    "df = pd.read_csv(dataset_path)"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 25,
 | 
						||
   "id": "heated-blade",
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "text/html": [
 | 
						||
       "<div>\n",
 | 
						||
       "<style scoped>\n",
 | 
						||
       "    .dataframe tbody tr th:only-of-type {\n",
 | 
						||
       "        vertical-align: middle;\n",
 | 
						||
       "    }\n",
 | 
						||
       "\n",
 | 
						||
       "    .dataframe tbody tr th {\n",
 | 
						||
       "        vertical-align: top;\n",
 | 
						||
       "    }\n",
 | 
						||
       "\n",
 | 
						||
       "    .dataframe thead th {\n",
 | 
						||
       "        text-align: right;\n",
 | 
						||
       "    }\n",
 | 
						||
       "</style>\n",
 | 
						||
       "<table border=\"1\" class=\"dataframe\">\n",
 | 
						||
       "  <thead>\n",
 | 
						||
       "    <tr style=\"text-align: right;\">\n",
 | 
						||
       "      <th></th>\n",
 | 
						||
       "      <th>player_name</th>\n",
 | 
						||
       "      <th>player_id</th>\n",
 | 
						||
       "      <th>season</th>\n",
 | 
						||
       "      <th>poss</th>\n",
 | 
						||
       "      <th>mp</th>\n",
 | 
						||
       "      <th>raptor_box_offense</th>\n",
 | 
						||
       "      <th>raptor_box_defense</th>\n",
 | 
						||
       "      <th>raptor_box_total</th>\n",
 | 
						||
       "      <th>raptor_onoff_offense</th>\n",
 | 
						||
       "      <th>raptor_onoff_defense</th>\n",
 | 
						||
       "      <th>...</th>\n",
 | 
						||
       "      <th>raptor_offense</th>\n",
 | 
						||
       "      <th>raptor_defense</th>\n",
 | 
						||
       "      <th>raptor_total</th>\n",
 | 
						||
       "      <th>war_total</th>\n",
 | 
						||
       "      <th>war_reg_season</th>\n",
 | 
						||
       "      <th>war_playoffs</th>\n",
 | 
						||
       "      <th>predator_offense</th>\n",
 | 
						||
       "      <th>predator_defense</th>\n",
 | 
						||
       "      <th>predator_total</th>\n",
 | 
						||
       "      <th>pace_impact</th>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "  </thead>\n",
 | 
						||
       "  <tbody>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>0</th>\n",
 | 
						||
       "      <td>Alex Abrines</td>\n",
 | 
						||
       "      <td>abrinal01</td>\n",
 | 
						||
       "      <td>2017</td>\n",
 | 
						||
       "      <td>2387</td>\n",
 | 
						||
       "      <td>1135</td>\n",
 | 
						||
       "      <td>0.745505</td>\n",
 | 
						||
       "      <td>-0.372938</td>\n",
 | 
						||
       "      <td>0.372567</td>\n",
 | 
						||
       "      <td>-0.418553</td>\n",
 | 
						||
       "      <td>-3.857011</td>\n",
 | 
						||
       "      <td>...</td>\n",
 | 
						||
       "      <td>0.543421</td>\n",
 | 
						||
       "      <td>-1.144832</td>\n",
 | 
						||
       "      <td>-0.601411</td>\n",
 | 
						||
       "      <td>1.249008</td>\n",
 | 
						||
       "      <td>1.447708</td>\n",
 | 
						||
       "      <td>-0.198700</td>\n",
 | 
						||
       "      <td>0.077102</td>\n",
 | 
						||
       "      <td>-1.038677</td>\n",
 | 
						||
       "      <td>-0.961575</td>\n",
 | 
						||
       "      <td>0.326413</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>1</th>\n",
 | 
						||
       "      <td>Alex Abrines</td>\n",
 | 
						||
       "      <td>abrinal01</td>\n",
 | 
						||
       "      <td>2018</td>\n",
 | 
						||
       "      <td>2546</td>\n",
 | 
						||
       "      <td>1244</td>\n",
 | 
						||
       "      <td>0.317549</td>\n",
 | 
						||
       "      <td>-1.725325</td>\n",
 | 
						||
       "      <td>-1.407776</td>\n",
 | 
						||
       "      <td>-1.291727</td>\n",
 | 
						||
       "      <td>-0.049694</td>\n",
 | 
						||
       "      <td>...</td>\n",
 | 
						||
       "      <td>-0.020826</td>\n",
 | 
						||
       "      <td>-1.502642</td>\n",
 | 
						||
       "      <td>-1.523468</td>\n",
 | 
						||
       "      <td>0.777304</td>\n",
 | 
						||
       "      <td>0.465912</td>\n",
 | 
						||
       "      <td>0.311392</td>\n",
 | 
						||
       "      <td>-0.174621</td>\n",
 | 
						||
       "      <td>-1.112625</td>\n",
 | 
						||
       "      <td>-1.287247</td>\n",
 | 
						||
       "      <td>-0.456141</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>2</th>\n",
 | 
						||
       "      <td>Alex Abrines</td>\n",
 | 
						||
       "      <td>abrinal01</td>\n",
 | 
						||
       "      <td>2019</td>\n",
 | 
						||
       "      <td>1279</td>\n",
 | 
						||
       "      <td>588</td>\n",
 | 
						||
       "      <td>-3.215683</td>\n",
 | 
						||
       "      <td>1.078399</td>\n",
 | 
						||
       "      <td>-2.137285</td>\n",
 | 
						||
       "      <td>-6.158856</td>\n",
 | 
						||
       "      <td>4.901168</td>\n",
 | 
						||
       "      <td>...</td>\n",
 | 
						||
       "      <td>-4.040157</td>\n",
 | 
						||
       "      <td>1.885618</td>\n",
 | 
						||
       "      <td>-2.154538</td>\n",
 | 
						||
       "      <td>0.178167</td>\n",
 | 
						||
       "      <td>0.178167</td>\n",
 | 
						||
       "      <td>0.000000</td>\n",
 | 
						||
       "      <td>-4.577678</td>\n",
 | 
						||
       "      <td>1.543282</td>\n",
 | 
						||
       "      <td>-3.034396</td>\n",
 | 
						||
       "      <td>-0.268013</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>3</th>\n",
 | 
						||
       "      <td>Precious Achiuwa</td>\n",
 | 
						||
       "      <td>achiupr01</td>\n",
 | 
						||
       "      <td>2021</td>\n",
 | 
						||
       "      <td>1581</td>\n",
 | 
						||
       "      <td>749</td>\n",
 | 
						||
       "      <td>-4.122966</td>\n",
 | 
						||
       "      <td>1.359278</td>\n",
 | 
						||
       "      <td>-2.763688</td>\n",
 | 
						||
       "      <td>-4.050779</td>\n",
 | 
						||
       "      <td>-0.919712</td>\n",
 | 
						||
       "      <td>...</td>\n",
 | 
						||
       "      <td>-4.347596</td>\n",
 | 
						||
       "      <td>0.954821</td>\n",
 | 
						||
       "      <td>-3.392775</td>\n",
 | 
						||
       "      <td>-0.246055</td>\n",
 | 
						||
       "      <td>-0.246776</td>\n",
 | 
						||
       "      <td>0.000721</td>\n",
 | 
						||
       "      <td>-3.817713</td>\n",
 | 
						||
       "      <td>0.474828</td>\n",
 | 
						||
       "      <td>-3.342885</td>\n",
 | 
						||
       "      <td>0.329157</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>4</th>\n",
 | 
						||
       "      <td>Precious Achiuwa</td>\n",
 | 
						||
       "      <td>achiupr01</td>\n",
 | 
						||
       "      <td>2022</td>\n",
 | 
						||
       "      <td>3802</td>\n",
 | 
						||
       "      <td>1892</td>\n",
 | 
						||
       "      <td>-2.521510</td>\n",
 | 
						||
       "      <td>1.763502</td>\n",
 | 
						||
       "      <td>-0.758008</td>\n",
 | 
						||
       "      <td>-1.687893</td>\n",
 | 
						||
       "      <td>3.103441</td>\n",
 | 
						||
       "      <td>...</td>\n",
 | 
						||
       "      <td>-2.517372</td>\n",
 | 
						||
       "      <td>2.144151</td>\n",
 | 
						||
       "      <td>-0.373221</td>\n",
 | 
						||
       "      <td>2.262658</td>\n",
 | 
						||
       "      <td>2.309611</td>\n",
 | 
						||
       "      <td>-0.046953</td>\n",
 | 
						||
       "      <td>-2.483956</td>\n",
 | 
						||
       "      <td>2.024360</td>\n",
 | 
						||
       "      <td>-0.459596</td>\n",
 | 
						||
       "      <td>-0.728609</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "  </tbody>\n",
 | 
						||
       "</table>\n",
 | 
						||
       "<p>5 rows × 21 columns</p>\n",
 | 
						||
       "</div>"
 | 
						||
      ],
 | 
						||
      "text/plain": [
 | 
						||
       "        player_name  player_id  season  poss    mp  raptor_box_offense  \\\n",
 | 
						||
       "0      Alex Abrines  abrinal01    2017  2387  1135            0.745505   \n",
 | 
						||
       "1      Alex Abrines  abrinal01    2018  2546  1244            0.317549   \n",
 | 
						||
       "2      Alex Abrines  abrinal01    2019  1279   588           -3.215683   \n",
 | 
						||
       "3  Precious Achiuwa  achiupr01    2021  1581   749           -4.122966   \n",
 | 
						||
       "4  Precious Achiuwa  achiupr01    2022  3802  1892           -2.521510   \n",
 | 
						||
       "\n",
 | 
						||
       "   raptor_box_defense  raptor_box_total  raptor_onoff_offense  \\\n",
 | 
						||
       "0           -0.372938          0.372567             -0.418553   \n",
 | 
						||
       "1           -1.725325         -1.407776             -1.291727   \n",
 | 
						||
       "2            1.078399         -2.137285             -6.158856   \n",
 | 
						||
       "3            1.359278         -2.763688             -4.050779   \n",
 | 
						||
       "4            1.763502         -0.758008             -1.687893   \n",
 | 
						||
       "\n",
 | 
						||
       "   raptor_onoff_defense  ...  raptor_offense  raptor_defense  raptor_total  \\\n",
 | 
						||
       "0             -3.857011  ...        0.543421       -1.144832     -0.601411   \n",
 | 
						||
       "1             -0.049694  ...       -0.020826       -1.502642     -1.523468   \n",
 | 
						||
       "2              4.901168  ...       -4.040157        1.885618     -2.154538   \n",
 | 
						||
       "3             -0.919712  ...       -4.347596        0.954821     -3.392775   \n",
 | 
						||
       "4              3.103441  ...       -2.517372        2.144151     -0.373221   \n",
 | 
						||
       "\n",
 | 
						||
       "   war_total  war_reg_season  war_playoffs  predator_offense  \\\n",
 | 
						||
       "0   1.249008        1.447708     -0.198700          0.077102   \n",
 | 
						||
       "1   0.777304        0.465912      0.311392         -0.174621   \n",
 | 
						||
       "2   0.178167        0.178167      0.000000         -4.577678   \n",
 | 
						||
       "3  -0.246055       -0.246776      0.000721         -3.817713   \n",
 | 
						||
       "4   2.262658        2.309611     -0.046953         -2.483956   \n",
 | 
						||
       "\n",
 | 
						||
       "   predator_defense  predator_total  pace_impact  \n",
 | 
						||
       "0         -1.038677       -0.961575     0.326413  \n",
 | 
						||
       "1         -1.112625       -1.287247    -0.456141  \n",
 | 
						||
       "2          1.543282       -3.034396    -0.268013  \n",
 | 
						||
       "3          0.474828       -3.342885     0.329157  \n",
 | 
						||
       "4          2.024360       -0.459596    -0.728609  \n",
 | 
						||
       "\n",
 | 
						||
       "[5 rows x 21 columns]"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "execution_count": 25,
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "execute_result"
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "df.head()"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "continental-franklin",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "**Data Overview**\n",
 | 
						||
    "\n",
 | 
						||
    "This dataset comes from FiveThirtyEight and contains different data from NBA players from 2014-2022.  It includes the players' names, players' ids, and the season year.  It also includes number of possessions played and minutes played which both indicate how much time the player was on the court that season.  Also, the data includes raptor stats for offense, defense, and total which shows how effective a player was on that side of the court.  The data also shows predator stats for offense, defense, and total which is a prediction of how effective the player was.  Also, WAR (wins above replacement) stats were shown in the data which show how many more wins that player got their team over the season compared to if a replacement level player was playing instead.  Lastly, pace impact stats were shown which state the overall impact a player had on their team.  The pace impact stat for each player was shown as if each player played 48 minutes which is the length of the whole game."
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "infinite-instrument",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "# Methods and Results"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "recognized-positive",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "## First Research Question: Who is better offensively, defensively, and all around, LeBron James or Kevin Durant?\n"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "graduate-palmer",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "### Methods"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "endless-variation",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "**For the LeBron James Data:**  \n",
 | 
						||
    "I will first need to get the data to only show LeBron James' seasons from 2014-2022.  I will do this by setting player_name equivalent to LeBron James and call this data Lebron_df.  I will then use the raptor_offense data and take the mean of all of his seasons.  This will give me a good representation of how effective he has been on offense.  I will then use the raptor_defense data and take the mean of all of his seasons.  I will then use the raptor_total data and take the mean of all of his seasons.  Doing all of this will give numerical numbers that represent how good LeBron James is offensively, defensively, and all around.  This can be done for other players and these numbers can be compared to see who is more impactful.\n",
 | 
						||
    "\n",
 | 
						||
    "**For the Kevin Durant Data:**  \n",
 | 
						||
    "I will first need to get the data to only show Kevin Durant's seasons from 2014-2022.  I will do this by setting player_name equivalent to Kevin Durant and call this data Durant_df.  I will then use the raptor_offense data and take the mean of all of his seasons.  This will give me a good representation of how effective he has been on offense.  I will then use the raptor_defense data and take the mean of all of his seasons.  I will then use the raptor_total data and take the mean of all of his seasons.\n"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "portuguese-japan",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "### Results "
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "372a5883-7746-4932-9353-489eed28878e",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "#### LeBron James Data"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 26,
 | 
						||
   "id": "9e6b2020-4df8-4e45-8b00-fbc398964376",
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [],
 | 
						||
   "source": [
 | 
						||
    "Lebron_df = df[df.player_name==\"LeBron James\"]"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 27,
 | 
						||
   "id": "b57dfb5b-f725-43d7-bfaa-76e7d86ec69f",
 | 
						||
   "metadata": {
 | 
						||
    "scrolled": true
 | 
						||
   },
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "text/plain": [
 | 
						||
       "np.float64(5.958565647986926)"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "execution_count": 27,
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "execute_result"
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "Lebron_df.raptor_offense.mean()"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 28,
 | 
						||
   "id": "496218f8-6823-4570-b97f-bdf2461e3e06",
 | 
						||
   "metadata": {
 | 
						||
    "scrolled": true
 | 
						||
   },
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "text/plain": [
 | 
						||
       "np.float64(0.3291714363332999)"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "execution_count": 28,
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "execute_result"
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "Lebron_df.raptor_defense.mean()"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 29,
 | 
						||
   "id": "247b1e93-df57-4b13-a22f-656e6740e715",
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "text/plain": [
 | 
						||
       "np.float64(6.2877370843202245)"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "execution_count": 29,
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "execute_result"
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "Lebron_df.raptor_total.mean()"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "f1ea090f-a39c-40ba-85a7-bb55f5216130",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "#### Kevin Durant Data"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 30,
 | 
						||
   "id": "c0a35626-5356-4b7b-8e2b-eb83cc42b8f8",
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [],
 | 
						||
   "source": [
 | 
						||
    "Durant_df = df[df.player_name==\"Kevin Durant\"]"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 31,
 | 
						||
   "id": "08415fc5-0f02-4e13-906a-c9dee9f8118e",
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "text/plain": [
 | 
						||
       "np.float64(5.66912563466798)"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "execution_count": 31,
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "execute_result"
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "Durant_df.raptor_offense.mean()"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 32,
 | 
						||
   "id": "f37fb84f-4861-4e14-b6dc-502c180dcb4b",
 | 
						||
   "metadata": {
 | 
						||
    "scrolled": true
 | 
						||
   },
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "text/plain": [
 | 
						||
       "np.float64(0.20101735750424538)"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "execution_count": 32,
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "execute_result"
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "Durant_df.raptor_defense.mean()"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 33,
 | 
						||
   "id": "a60e7ec7-27fb-47df-ba2a-94a84c7926e5",
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "text/plain": [
 | 
						||
       "np.float64(5.870142992047225)"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "execution_count": 33,
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "execute_result"
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "Durant_df.raptor_total.mean()"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "05e10133-bfb8-4c85-82e0-4d118082eb53",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "#### Data Explained\n",
 | 
						||
    "LeBron James is better on average, offensively, defensively, and all around than Kevin Durant is.  LeBron's raptor offense, defense, and total rating is higher than Durant's.  This does not account for individual seasons but uses the data from all seasons from 2014-2022.  I will graph LeBron James' and Kevin Durant's individual seasons below. "
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "2564b4db-58dd-4886-b1e3-261f7ae1b357",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "#### LeBron James and Kevin Durant Graphed"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 34,
 | 
						||
   "id": "79e1f833-833a-4a75-b41d-eeab580bf713",
 | 
						||
   "metadata": {
 | 
						||
    "scrolled": true
 | 
						||
   },
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "text/plain": [
 | 
						||
       "Text(0.5, 1.0, 'LeBron James vs Kevin Durant')"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "execution_count": 34,
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "execute_result"
 | 
						||
    },
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHHCAYAAACRAnNyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUb1JREFUeJzt3Xl4TGf/BvB7sk3WmSCJCJFEiK1iCYq0lCCUWIqmKbWrt6J2StVWWlupFlWqlrYUQUu1KLG1SmtJrLHva6SYSUQmkTy/P/LL1JjIMpnJORn357rmes1ztu+TTN+5c85zzqMQQggQERERyZCN1AUQERERPQ+DChEREckWgwoRERHJFoMKERERyRaDChEREckWgwoRERHJFoMKERERyRaDChEREckWgwoRERHJFoMKEZEF+fv7o3fv3lKXQVRiMahQibJixQooFAocPny4yPu6cuUKFAqFwUulUqFOnTpYsGABMjMzzVCx+Ziz7y8ihUKBwYMHG7V/+umnUCgU6Nu3L7KysiSorHAmT55s8Jl1dnZGxYoVERERgeXLl0On00ldYoGtXr0a8+bNk7oMkjk7qQsgklpUVBRef/11AIBGo8Fvv/2G999/H1evXsXs2bMlro4sacaMGRg/fjx69eqFpUuXwsbG/H+7nT171iL7XbRoEVxdXaHT6XDz5k1s374dffv2xbx587Blyxb4+vqa/Zjmtnr1apw8eRLDhg2TuhSSMQYVeuHVq1cPPXr00L8fNGgQXn75ZaxevTrPoCKEQFpaGpycnIqjTDKz2bNnY9y4cejZsyeWLVtmkTABAEql0iL77dq1Kzw8PPTvJ06ciFWrVqFnz57o1q0bDh48aJbjpKWlwcHBwWI/H6L88JNHVunmzZvo27cvypYtC6VSiZo1a2LZsmUF2lahUKBs2bKwszPM8f7+/mjfvj22b9+O+vXrw8nJCYsXLwYAXLp0Cd26dUPp0qXh7OyMRo0a4ddffzXYfs+ePVAoFFi3bh0++eQTVKhQAY6OjggLC8OFCxdM6ufx48fRu3dvVKpUCY6OjvD29kbfvn3x77//GqyXc7ng3Llz6NGjB9RqNTw9PTFhwgQIIXD9+nV07NgRKpUK3t7emDNnjtGxdDodJk2ahMqVK0OpVMLX1xdjxowxutSwY8cOvPLKK3B3d4erqyuqVq2KDz/8MM9+vPTSS2jevLlRe1ZWFsqXL4+uXbvq29asWYOQkBC4ublBpVKhVq1a+OKLLwrzY8PcuXMxZswY9OjRA8uXLzf4Es7KysK8efNQs2ZNODo6omzZshg4cCAePHigX6d9+/aoVKlSrvtu3Lgx6tevr3//7BiVnEt4+/fvx4gRI+Dp6QkXFxd07twZ9+7dK1Q/ntW9e3f0798ff//9N3bs2PHcGnK89tpreO211/Tvcz6ja9aswUcffYTy5cvD2dkZWq0W9+/fx6hRo1CrVi24urpCpVKhbdu2OHbsmME+C/o5f+211/Drr7/i6tWr+stY/v7+Reo/WSeeUSGrc/fuXTRq1Eg/JsHT0xNbt25Fv379oNVqjU4zp6amIikpCQCg1WqxdetWbNu2DePGjTPa99mzZxEVFYWBAwdiwIABqFq1Ku7evYsmTZogNTUVQ4YMQZkyZbBy5Up06NAB69evR+fOnQ32MWPGDNjY2GDUqFHQaDSYNWsWunfvjr///rvQfd2xYwcuXbqEPn36wNvbG6dOncKSJUtw6tQpHDx4EAqFwmD9yMhIVK9eHTNmzMCvv/6KadOmoXTp0li8eDFatGiBmTNnYtWqVRg1ahQaNGiApk2bAsj+8u7QoQP+/PNPvPvuu6hevTpOnDiBzz//HOfOncPPP/8MADh16hTat2+P4OBgfPzxx1Aqlbhw4QL279+fZz8iIyMxefJk3LlzB97e3vr2P//8E7du3cJbb72l729UVBTCwsIwc+ZMAEBCQgL279+PoUOHFuhn9sUXX2DkyJF4++23sWLFCqMzBQMHDsSKFSvQp08fDBkyBJcvX8aCBQsQFxeH/fv3w97eHpGRkejZsycOHTqEBg0a6Le9evUqDh48WKBLhu+//z5KlSqFSZMm4cqVK5g3bx4GDx6MtWvXFqgfz/POO+9gyZIl+P3339GqVSuT9jF16lQ4ODhg1KhR0Ol0cHBwwOnTp/Hzzz+jW7duCAgIwN27d7F48WI0a9YMp0+fho+Pj8E+8vucjx8/HhqNBjdu3MDnn38OAHB1dS1S38lKCaISZPny5QKAOHTo0HPX6devnyhXrpxISkoyaH/rrbeEWq0WqampQgghLl++LADk+nrvvfdEVlaWwfZ+fn4CgNi2bZtB+7BhwwQA8ccff+jbkpOTRUBAgPD39xeZmZlCCCF2794tAIjq1asLnU6nX/eLL74QAMSJEycK3fecvjztxx9/FADEvn379G2TJk0SAMS7776rb3vy5ImoUKGCUCgUYsaMGfr2Bw8eCCcnJ9GrVy992/fffy9sbGwM+iiEEF9//bUAIPbv3y+EEOLzzz8XAMS9e/fy7Muzzp49KwCI+fPnG7QPGjRIuLq66vs5dOhQoVKpxJMnTwq1fyGEAKD/HUZFReW6jz/++EMAEKtWrTJo37Ztm0G7RqMRSqVSjBw50mC9WbNmCYVCIa5evapv8/PzM/hZ5vweW7ZsafAZGz58uLC1tRUPHz7Msx85v8vn/YwfPHggAIjOnTs/t4YczZo1E82aNdO/z/mMVqpUyeizlZaWpv8s57h8+bJQKpXi448/NtpHQT7n7dq1E35+fnn2l4iXfsiqCCGwYcMGREREQAiBpKQk/Ss8PBwajQZHjx412Obdd9/Fjh07sGPHDmzYsAHR0dFYvHgxRowYYbT/gIAAhIeHG7T99ttvaNiwIV555RV9m6urK959911cuXIFp0+fNli/T58+cHBw0L9/9dVXAWRfPiqsp8fHpKWlISkpCY0aNQIAo34CQP/+/fX/trW1Rf369SGEQL9+/fTt7u7uqFq1qkE9MTExqF69OqpVq2bwM23RogUAYPfu3fptAWDTpk2FuoMmKCgIderUMTibkJmZifXr1yMiIkLfT3d3dzx69MjgskZh3L17F0D279HW1tZoeUxMDNRqNVq1amXQz5CQELi6uur7mXPZY926dRBC6Ldfu3YtGjVqhIoVK+Zby7vvvmtwxuvVV19FZmYmrl69alLfcuSclUhOTjZ5H7169TIae6VUKvVnnzIzM/Hvv//qL+3l9lkz5+ecXmwMKmRV7t27h4cPH2LJkiXw9PQ0ePXp0wcAkJiYaLBNlSpV0LJlS7Rs2RJvvPEGFixYgEGDBmHevHk4ceKEwboBAQFGx7x69SqqVq1q1F69enX98qc9+yVWqlQpADAYA1FQ9+/fx9ChQ1G2bFk4OTnB09NTX6NGozFa/9ljq9VqODo6GgzKzGl/up7z58/j1KlTRj/ToKAgAP/9TCMjIxEaGor+/fujbNmyeOutt7Bu3boChZbIyEjs378fN2/eBJA91iExMRGRkZH6dQYNGoSgoCC0bdsWFSpUQN++fbFt27aC/KgAZH8BR0RE4NNPP9Vfbnja+fPnodFo4OXlZdTXlJQUg89OZGQkrl+/jgMHDgAALl68iCNHjhjUmxdzfg6elpKSAgBwc3MzeR+5fc6zsrLw+eefo0qVKlAqlfDw8ICnpyeOHz9eoM+aufpHLx6OUSGrkvOF2KNHD/Tq1SvXdYKDg/PdT1hYGBYsWIB9+/ahVq1a+nZz3OGT21/yAAz+Mi+oN998E3/99RdGjx6NOnXqwNXVFVlZWWjTpk2u4SC3YxeknqysLNSqVQtz587Ndd2cW2GdnJywb98+7N69G7/++iu2bduGtWvXokWLFvj999+feywg+4t/3LhxiImJwbBhw7Bu3Tqo1Wq0adNGv46Xlxfi4+Oxfft2bN26FVu3bsXy5cvRs2dPrFy58rn7zmFnZ4d169ahTZs2GDlyJNzd3fUBNqefXl5eWLVqVa7be3p66v8dEREBZ2dnrFu3Dk2aNMG6detgY2ODbt265VsHYN7PwdNOnjwJAKhcubK+7dmxSjkyMzNzrSO3z/mnn36KCRMmoG/fvpg6dSpKly4NGxsbDBs2rMCfNaDo/aMXD4MKWRVPT0+4ubkhMzMTLVu2NHk/T548AfDfX6d58fPzw9mzZ43az5w5o19uCQ8ePEBsbCymTJmCiRMn6tvPnz9v9mMFBgbi2LFjCAsLe+6XXg4bGxuEhYUhLCwMc+fOxaefforx48dj9+7def5OAgIC0LBhQ6xduxaDBw/Gxo0b0alTJ6Pbex0cHBAREYGIiAhkZWVh0KBBWLx4MSZMmGDw5fw8jo6O2Lx5M5o3b44BAwbA3d1dP+A5MDAQO3fuRGhoaL6h1MXFBe3bt0dMTAzmzp2LtWvX4tVXXzUaVFrcvv/+ewAwuERZqlQpPHz40Gjdq1evPvfupWetX78ezZs3x7fffmvQ/vDhQ6MzcgWV32eJCOClH7Iytra26NKlCzZs2KD/y/JpBb3985dffgEA1K5dO991X3/9dfzzzz/6SwAA8OjRIyxZsgT+/v6oUaNGAasvnJy/WJ/9C9UST/p88803cfPmTXzzzTdGyx4/foxHjx4ByL4U9aw6deoAQIGemBoZGYmDBw9i2bJlSEpKMrqM8uxt1zY2NvozZIV5IqtKpcK2bdtQuXJlREVFITY2FkB2PzMzMzF16lSjbZ48eWL0ZR8ZGYlbt25h6dKlOHbsWIEv+1jK6tWrsXTpUjRu3BhhYWH69sDAQBw8eBDp6en6ti1btuD69esF3retra3RZy0mJkZ/qc4ULi4uuV42Inoaz6hQibRs2bJcxyYMHToUM2bMwO7du/Hyyy9jwIABqFGjBu7fv4+jR49i586dRl+mR48exQ8//AAgewBibGwsNmzYgCZNmqB169b51jJ27Fj8+OOPaNu2LYYMGYLSpUtj5cqVuHz5MjZs2GCxB2WpVCo0bdoUs2bNQkZGBsqXL4/ff/8dly9fNvux3nnnHaxbtw7/+9//sHv3boSGhiIzMxNnzpzBunXr9M+W+fjjj7Fv3z60a9cOfn5+SExMxFdffYUKFSoYDDZ+njfffBOjRo3CqFGjULp0aaMzMP3798f9+/fRokULVKhQAVevXsX8+fNRp04d/ZiggvL09MSOHTsQGhqKTp06ITY2Fs2aNcPAgQMxffp0xMfHo3Xr1rC3t8f58+cRExODL774wuCZLq+//jrc3NwwatQofUguLuvXr4erqyvS09P1T6bdv38/ateujZiYGIN1+/fvj/Xr16NNmzZ48803cfHiRfzwww8IDAws8PHat2+Pjz/+GH369EGTJk1w4sQJrFq1qsBnZHITEhKCtWvXYsSIEWjQoAFcXV0RERFh8v7ISkl1uxGRKXJu7Xze6/r160IIIe7evSuio6OFr6+vsLe3F97e3iIsLEwsWbJEv6/cbk+2s7MTlSpVEqNHjxbJyckGx/bz8xPt2rXLta6LFy+Krl27Cnd3d+Ho6CgaNmwotmzZYrBOzm2bMTExBu05dSxfvjzPvi9btkwAEEePHtW33bhxQ3Tu3Fm4u7sLtVotunXrJm7duiUAiEmTJunXe94trb169RIuLi5Gx2rWrJmoWbOmQVt6erqYOXOmqFmzplAqlaJUqVIiJCRETJkyRWg0GiGEELGxsaJjx47Cx8dHODg4CB8fHxEVFSXOnTuXZ9+eFhoaKgCI/v37Gy1bv369aN26tfDy8hIODg6iYsWKYuDAgeL27dv57heAiI6ONmpPSEgQHh4eonTp0uLkyZNCCCGWLFkiQkJChJOTk3BzcxO1atUSY8aMEbdu3TLavnv37vrbjXPzvNuTn73FPufzsXv37jz7kfO7zHk5OjqKChUqiPbt24tly5aJtLS0XLebM2eOKF++vFAqlSI0NFQcPnz4ubcnP/sZFSL79uSRI0eKcuXKCScnJxEaGioOHDhQ4H3k9jlPSUkRb7/9tnB3d9ffPk70LIUQHNlEVBJ8+eWXGDp0KC5cuFCov4SJiEoyjlEhKiEOHToEFxcXiw3OJSKSI45RIZK5DRs2YM+ePVi1ahX69+9vNAcREZE146UfIpkLCAhAcnIyOnfujHnz5sHFxUXqkoiIio3kl36Sk5MxbNgw+Pn5wcnJCU2aNMGhQ4ekLotINi5fvoykpCR88803DClE9MKRPKj0798fO3bswPfff48TJ06gdevWaNmyZZHuzSciIiLrIOmln8ePH8PNzQ2bNm1Cu3bt9O0hISFo27Ytpk2bJlVpREREJAOSjsp78uQJMjMz4ejoaNDu5OSEP//802h9nU5n8PTJrKws3L9/H2XKlOGjmImIiEoIIQSSk5Ph4+OT/0MxJXyGixBCiMaNG4tmzZqJmzdviidPnojvv/9e2NjYiKCgIKN1n33QEV988cUXX3zxVXJfOQ/pzIvkd/1cvHgRffv2xb59+2Bra4t69eohKCgIR44cQUJCgsG6z55R0Wg0qFixIq5fvw6VSlXcpRMREZEJtFotfH198fDhQ6jV6jzXlfyBDIGBgdi7dy8ePXoErVaLcuXKITIyMtf5I5RKpdFMqkD2nCcMKkRERCVLQYZtSH7XTw4XFxeUK1cODx48wPbt29GxY0epSyIiIiKJSX5GZfv27RBCoGrVqrhw4QJGjx6NatWqoU+fPlKXRkRERBKT/IyKRqNBdHQ0qlWrhp49e+KVV17B9u3bYW9vL3VpREREJDHJB9MWhVarhVqthkaj4RgVIiKiEqIw39+Sn1EhIiIieh4GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLQYVIiIiki0GFSIiIpItBhUiIiKSLTupCyCyBE1qOpJS0qFNy4DKyR4eLg5QOztIXRYRERUSgwpZnVsPH+ODDcfxx/kkfVvTKh6Y0SUYPu5OElZGRESFxUs/ZFU0qelGIQUA9p1PwtgNx6FJTZeoMiIiMgWDClmVpJR0o5CSY9/5JCSlMKgQEZUkDCpkVbRpGXkuT85nORERyQuDClkVlaN9nsvd8llORETyImlQyczMxIQJExAQEAAnJycEBgZi6tSpEEJIWRaVYB6uDmhaxSPXZU2reMDDlXf+EBGVJJIGlZkzZ2LRokVYsGABEhISMHPmTMyaNQvz58+XsiwqwdTODpjRJdgorDSt4oGZXYJ5izIRUQkj6e3Jf/31Fzp27Ih27doBAPz9/fHjjz/in3/+kbIsKuF83J0wP6ouklLSkZyWATdHe3i48jkqREQlkaRBpUmTJliyZAnOnTuHoKAgHDt2DH/++Sfmzp2b6/o6nQ46nU7/XqvVFlep1uXxA+DRPSBNCziqARcPwKmU1FWZldqZwYSIyBpIGlTGjh0LrVaLatWqwdbWFpmZmfjkk0/QvXv3XNefPn06pkyZUsxVWhnNTWDTYODSrv/aAsOADvMBdXnp6iIiIsqFpGNU1q1bh1WrVmH16tU4evQoVq5cic8++wwrV67Mdf1x48ZBo9HoX9evXy/miku4xw+MQwoAXIwFNr+fvZyIiEhGJD2jMnr0aIwdOxZvvfUWAKBWrVq4evUqpk+fjl69ehmtr1QqoVQqi7tM6/HonnFIyXExNnu5lV0CIiKikk3SoJKamgobG8OTOra2tsjKypKoIiuXls+YnvyWExEVECcGJXORNKhERETgk08+QcWKFVGzZk3ExcVh7ty56Nu3r5RlWS9HVdGWk2zwS4DkjBODkjkphIRPV0tOTsaECRPw008/ITExET4+PoiKisLEiRPh4JD//+lqtVqo1WpoNBqoVPySzdfjB8D6ftmXeZ4VGAZ0/ZaXfkoAfgmQnGlS0zH4x7hc59xqWsUD86PqMlRTob6/JQ0qRcWgYgLNzeyBs0+HFd71U2LwS4Dk7mJiCsLm7n3u8tgRzRDo5VqMFZEcFeb7W9JLPyQBdfnsMyf656ioABdPnkkpIQoyOzSDCkmJE4OSuTGovIicSjGYlFD8EiC548SgZG6cPZmoBOGXAMkdJwYlc2NQISpB+CVAcseJQcncOJiWqIS59fAxxm44jn3P3PUzs0swyvGuH5KJnFvoOTEo5YaDaYmsGGeHppKAE4OSuTCoEJVA/BIgohcFx6gQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWzZSV0AEZng8QPg0T0gTQs4qgEXD8CplNRVERGZHYMKUUmjuQlsGgxc2vVfW2AY0GE+oC4vXV1ERBbASz9EJcnjB8YhBQAuxgKb389eTkRkRSQNKv7+/lAoFEav6OhoKcsikq9H94xDSo6LsdnLiYisiKSXfg4dOoTMzEz9+5MnT6JVq1bo1q2bhFURyViatmjLiYhKGEmDiqenp8H7GTNmIDAwEM2aNZOoIiKZc1QVbTkRUQkjmzEq6enp+OGHH9C3b18oFIpc19HpdNBqtQYvoheKi2f2wNncBIZlLycisiKyCSo///wzHj58iN69ez93nenTp0OtVutfvr6+xVcgkRw4lcq+u+fZsJJz1w9vUSYiK6MQQgipiwCA8PBwODg44JdffnnuOjqdDjqdTv9eq9XC19cXGo0GKhVPedMLxOA5KqrsMykMKURUQmi1WqjV6gJ9f8viOSpXr17Fzp07sXHjxjzXUyqVUCqVxVQVkYw5lWIwIaIXgiwu/SxfvhxeXl5o166d1KUQERGRjEgeVLKysrB8+XL06tULdnayOMFDREREMiF5Mti5cyeuXbuGvn37Sl3KfziPChERkSxIHlRat24NmYznzcZ5VIiIiGRD8ks/ssJ5VIiIiGSFQeVpnEeFiIhIVhhUnsZ5VIiIiGSFQeVpnEeFiIhIVhhUnsZ5VIiIiGSFQeVpnEeFiIhIViS/PVl21OWBrt9yHhUiIiIZYFDJDedRISIikgVe+iEiIiLZ4hkVIiKiQtKkpiMpJR3atAyonOzh4eIAtbOD1GVZJQYVIiKiQrj18DE+2HAcf5xP0rc1reKBGV2C4ePuJGFl1omXfoiIiApIk5puFFIAYN/5JIzdcBya1HSJKrNeDCpEREQFlJSSbhRScuw7n4SkFAYVc2NQISIiKiBtWkaey5PzWU6Fx6BCRERUQCpH+zyXu+WznAqPQYWIiKiAPFwd0LSKR67LmlbxgIcr7/wxNwYVIiKiAlI7O2BGl2CjsNK0igdmdgnmLcoWwNuTiYiICsHH3Qnzo+oiKSUdyWkZcHO0h4crn6NiKQwqREREhaR2ZjApLrz0Q0RERLLFoEJERESyxaBCREREssWgQkRERLLFoEJERESyxaBCREREssWgQkRERLLFoEJERESyxaBCREREssWgQkRERLLFoEJERESyJXlQuXnzJnr06IEyZcrAyckJtWrVwuHDh6Uui4iIiGRA0kkJHzx4gNDQUDRv3hxbt26Fp6cnzp8/j1KlSklZFhEREcmEpEFl5syZ8PX1xfLly/VtAQEBElZEREREciLppZ/Nmzejfv366NatG7y8vFC3bl188803z11fp9NBq9UavIiIiMh6SRpULl26hEWLFqFKlSrYvn073nvvPQwZMgQrV67Mdf3p06dDrVbrX76+vsVcMRERERUnhRBCSHVwBwcH1K9fH3/99Ze+bciQITh06BAOHDhgtL5Op4NOp9O/12q18PX1hUajgUqlKpaaiYiIqGi0Wi3UanWBvr8lPaNSrlw51KhRw6CtevXquHbtWq7rK5VKqFQqgxcRERFZL0mDSmhoKM6ePWvQdu7cOfj5+UlUEREREcmJpEFl+PDhOHjwID799FNcuHABq1evxpIlSxAdHS1lWURERCQTkgaVBg0a4KeffsKPP/6Il156CVOnTsW8efPQvXt3KcsiIiIimZB0MG1RFWYwDhGVHJrUdCSlpEOblgGVkz08XBygdnaQuiwiMpPCfH9L+sA3IqJn3Xr4GB9sOI4/zifp25pW8cCMLsHwcXeSsDIikoLkc/0QEeXQpKYbhRQA2Hc+CWM3HIcmNV2iyohIKgwqRCQbSSnpRiElx77zSUhKYVAhetEwqBCRbGjTMvJcnpzPciKyPgwqRCQbKkf7PJe75bOciKwPgwoRyYaHqwOaVvHIdVnTKh7wcOWdP0QvGgYVIpINtbMDZnQJNgorTat4YGaXYN6iTPQC4u3JRCQrPu5OmB9VF0kp6UhOy4Cboz08XK3vOSp8VgxRwTCoEJHsqJ2t+0ubz4ohKjhe+iEiKkZ8VgxR4TCoEBEVIz4rhqhwGFSIiIoRnxVDVDgco0LW6fED4NE9IE0LOKoBFw/AqZTUVRHxWTFEhcSgQtZHcxPYNBi4tOu/tsAwoMN8QF1eurqI8N+zYvblcvmHz4ohMsZLP2RdHj8wDikAcDEW2Px+9nIiCfFZMUSFwzMqZF0e3TMOKTkuxmYv5yUgktiL8qwYInNgUCHrkqYt2nKiYmLtz4ohMhde+iHr4qgq2nIiIpKVAp9ReeONNwq8040bN5pUDFGRuXhmD5y9GGu8LDAsezkREZUYBQ4qarXaknUQmYdTqey7eza/bxhWcu764fgUIqISRSGEEFIXYSqtVgu1Wg2NRgOViqf06SkGz1FRZZ9JYUghIpKFwnx/czAtWSenUgwmRERWwOSgsn79eqxbtw7Xrl1Derrh3BRHjx4tcmFEREREJt318+WXX6JPnz4oW7Ys4uLi0LBhQ5QpUwaXLl1C27ZtzV1jsdOkpuNiYgrirj3AxXspnM2UiIhIIiadUfnqq6+wZMkSREVFYcWKFRgzZgwqVaqEiRMn4v79++ausVjdevjYaAr2plU8MKNLMHzcnSSsjOgFwrmaiOj/mXRG5dq1a2jSpAkAwMnJCcnJyQCAd955Bz/++KP5qitmmtR0o5ACZE+9PnbDcZ5ZISoOmptATF9gQQNgaRiwoD6wvl92OxG9cEwKKt7e3vozJxUrVsTBgwcBAJcvX0YJvokISSnpRiElx77zSUhKYVAhsijO1UREzzApqLRo0QKbN28GAPTp0wfDhw9Hq1atEBkZic6dO5u1wOKkTcvIc3lyPsuJqIgKMlcTEb1QTBqjsmTJEmRlZQEAoqOjUaZMGfz111/o0KEDBg4caNYCi5PK0T7P5W75LCeiInqR5mriOByiAjEpqNy4cQO+vr7692+99RbeeustCCFw/fp1VKxY0WwFFicPVwc0reKBfblc/mlaxQMerpxAjMiiXpS5mjQ3jS9x5Tw9WV1eurqIZMikSz8BAQG4d8/4FOz9+/cREBBQ4P1MnjwZCoXC4FWtWjVTSjILtbMDZnQJRtMqHgbtTat4YGaXYKuZ6ZS3X5Ns5czVlBtrmauJ43CICsWkMypCCCgUCqP2lJQUODo6FmpfNWvWxM6dO/8ryE7ah+X6uDthflRdJKWkIzktA26O9vBwtZ7p2Hn7NcnaizBXU0HG4VhDP60dL90Vm0KlghEjRgAAFAoFJkyYAGdnZ/2yzMxM/P3336hTp07hCrCzg7e3d6G2sTS1s/UEk6fld/v1/Ki6VtlvKmHU5YGu31rvXE0v0jgca8VLd8WqUEElLi4OQPYZlRMnTsDB4b8vNQcHB9SuXRujRo0qVAHnz5+Hj48PHB0d0bhxY0yfPv25Y1x0Oh10Op3+vVbL/6ALoyC3XzOokCxY81xNL8o4HGuV36W7rt9a72dXIoUKKrt37waQfUvyF198UeQZi19++WWsWLECVatWxe3btzFlyhS8+uqrOHnyJNzc3IzWnz59OqZMmVKkY77IePs1kQzkjMN5+tJWDmsZh2PNeOmu2Jk0mHb58uX6kHLjxg3cuHHDpIO3bdsW3bp1Q3BwMMLDw/Hbb7/h4cOHWLduXa7rjxs3DhqNRv+6fv26Scd9UfH2ayIZyBmH8+ygYWsah2PNeOmu2Jk0cjUrKwvTpk3DnDlzkJKSAgBwc3PDyJEjMX78eNjYmJR/4O7ujqCgIFy4cCHX5UqlEkql0qR9E2+/JpINax+HY8146a7YmZQoxo8fjwULFmDGjBmIi4tDXFwcPv30U8yfPx8TJkwwuZiUlBRcvHgR5cqVM3kf9Hwvyu3XRCWCUynAIwioUD/7fxlSSoYX4RZ6mVEIEybn8fHxwddff40OHToYtG/atAmDBg3CzZsFmzxs1KhRiIiIgJ+fH27duoVJkyYhPj4ep0+fhqdn/r9srVYLtVoNjUZT5PEyLxJNarrV3n5NRGRxmpvPv4Wed/0USGG+v0269HP//v1cH8xWrVo1/WSFBXHjxg1ERUXh33//haenJ1555RUcPHiwQCGFTGett18TERULXrorViYFldq1a2PBggX48ssvDdoXLFiA2rVrF3g/a9asMeXwRERE0rLmW+hlxqSgMmvWLLRr1w47d+5E48aNAQAHDhzA9evX8dtvv5m1QCIiIip+OcMEtGkZUDnZw8NFmrPxJgWVZs2a4dy5c1i4cCHOnDkDAHjjjTcwaNAg+Pj4mLVAIiIiKl5ymm7FpMG0165dg6+vb67z/Vy7dq3YZk/mYFoiIiLz0qSmY/CPcbk+ybxpFQ+zTLdSmO9vs86e/O+//xZq9mQiIiKSl4JMt1KcTAoq5pw9mYiIiORDbtOtSD57MhEREcmH3KZbkXz2ZCIiIpIPuU23YtJg2oLOnnzjxg34+PiYPPdPfjiYloiIyPxuPXyMsRuOG4SVnOlWypnhrp/CfH+bFFQKSqVSIT4+HpUqVbLI/hlUiIiILMOS061Y/BH6BWXBDEREREQWJJfpViwaVIiIiKiEevzgqfmM1ICLhyTTBjCoEBERkSHNTWDTYODSrv/aJJoh2jKjXImIiKhkevzAOKQAwMVYYPP72cuLkUWDSm4PhSMiIiIZe3TPOKTkuBibvbwYWTSocDAtERFRCZOmLdpyMyt0UMnIyICdnR1OnjyZ77qnT5+Gn5+fSYURERGRBBzzedxHfsvNrNBBxd7eHhUrVkRmZma+6/r6+sLW1takwoiIiEgCLp7ZA2dzExiWvbwYmXTpZ/z48fjwww9x//59c9dDREREUnIqlX13z7NhJeeun2K+RdmkJ9PWrVsXFy5cQEZGBvz8/ODi4mKw/OjRo2YrMC98Mi0REZGFGDxHRZV9JsVMIcXiT6bt1KmTKZsRERFRSeFUSpIHvD3LonP9WBrPqBAREZU8xTbXz5EjR5CQkAAAqFmzJurWrVuU3REREREZMCmoJCYm4q233sKePXvg7u4OAHj48CGaN2+ONWvWwNOzeEcEExERkXUy6a6f999/H8nJyTh16hTu37+P+/fv4+TJk9BqtRgyZIi5ayQiIqIXlEljVNRqNXbu3IkGDRoYtP/zzz9o3bo1Hj58aK768sQxKkRERCVPYb6/TTqjkpWVBXt7e6N2e3t7ZGVlmbJLIiIiIiMmBZUWLVpg6NChuHXrlr7t5s2bGD58OMLCnvM0OyIiIqJCMimoLFiwAFqtFv7+/ggMDERgYCACAgKg1Woxf/58c9dIRERELyiT7vrx9fXF0aNHsXPnTpw5cwYAUL16dbRs2dKsxREREdGLzaTBtN999x0iIyOhVCoN2tPT07FmzRr07NnTbAXmhYNpiYiISh6LD6bt06cPNBqNUXtycjL69Oljyi4BADNmzIBCocCwYcNM3gcRERFZD5OCihACCoXCqP3GjRtQq9UmFXLo0CEsXrwYwcHBJm1PRERE1qdQY1Tq1q0LhUIBhUKBsLAw2Nn9t3lmZiYuX76MNm3aFLqIlJQUdO/eHd988w2mTZtW6O2JiIjIOhUqqOTMmhwfH4/w8HC4urrqlzk4OMDf3x9dunQpdBHR0dFo164dWrZsmWdQ0el00Ol0+vdarbbQxyIiIqKSo1BBZdKkSQAAf39/REZGwtHRscgFrFmzBkePHsWhQ4fyXXf69OmYMmVKkY9JREREJYNJd/3kOHz4sH725Bo1aiAkJKRQ21+/fh3169fHjh079GNTXnvtNdSpUwfz5s0zWj+3Myq+vr6864eIiKgEKcxdPyYFlZs3b+Ktt97C/v37DWZPbtKkCdasWYMKFSoUaD8///wzOnfuDFtbW31bZmYmFAoFbGxsoNPpDJY9i7cnExERlTwWvz25X79+yMjIQEJCgn725ISEBGRlZaF///4F3k9YWBhOnDiB+Ph4/at+/fro3r074uPj8wwpREREZP1MejLt3r178ddff6Fq1ar6tqpVq2L+/Pl49dVXC7wfNzc3vPTSSwZtLi4uKFOmjFE7ERERvXhMOqPi6+uLjIwMo/bMzEz4+PgUuSgiIiIiwMQzKrNnz8b777+PhQsXon79+gCyB9YOHToUn332WZEK2rNnT5G2JyIiIuth0mDaUqVKITU1FU+ePNE/9C3n3y4uLgbr3r9/3zyV5oKDaYmIiEqewnx/m3RGJbdbh4mIiIjMzaSg0qtXL3PXQURERGTEpKDytLS0NKSnpxu08TIMERERmYNJd/08evQIgwcPhpeXF1xcXFCqVCmDFxEREZE5mBRUxowZg127dmHRokVQKpVYunQppkyZAh8fH3z33XfmrpGIiIheUCZd+vnll1/w3Xff4bXXXkOfPn3w6quvonLlyvDz88OqVavQvXt3c9dJRERELyCTzqjcv38flSpVApA9HiXnFuRXXnkF+/btM191RERE9EIzKahUqlQJly9fBgBUq1YN69atA5B9piVnkkIiIiKiojIpqPTp0wfHjh0DAIwdOxYLFy6Eo6Mjhg8fjtGjR5u1QCIiInpxFXqMSkZGBrZs2YKvv/4aANCyZUucOXMGR44cQeXKlREcHGz2IomIiOjFVOigYm9vj+PHjxu0+fn5wc/Pz2xFEREREQEmXvrp0aMHvv32W3PXQkRERGTApNuTnzx5gmXLlmHnzp0ICQkxmohw7ty5ZimOiIiIXmwmBZWTJ0+iXr16AIBz584ZLFMoFEWvioiIiAgmBpXdu3ebuw4iIiIiIyaNUSEiIiIqDgwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFuSBpVFixYhODgYKpUKKpUKjRs3xtatW6UsiYiIiGRE0qBSoUIFzJgxA0eOHMHhw4fRokULdOzYEadOnZKyLCIiIpIJhRBCSF3E00qXLo3Zs2ejX79++a6r1WqhVquh0WigUqmKoToiIiIqqsJ8f9sVU035yszMRExMDB49eoTGjRtLXQ4RERHJgORB5cSJE2jcuDHS0tLg6uqKn376CTVq1Mh1XZ1OB51Op3+v1WqLq0wiIiKSgOR3/VStWhXx8fH4+++/8d5776FXr144ffp0rutOnz4darVa//L19S3maomIiKg4yW6MSsuWLREYGIjFixcbLcvtjIqvry/HqBAREZUgJXKMSo6srCyDMPI0pVIJpVJZzBURERGRVCQNKuPGjUPbtm1RsWJFJCcnY/Xq1dizZw+2b98uZVlEREQkE5IGlcTERPTs2RO3b9+GWq1GcHAwtm/fjlatWklZFhEREcmEpEHl22+/lfLwREREJHOS3/VDRERE9DwMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkW5IGlenTp6NBgwZwc3ODl5cXOnXqhLNnz0pZEhEREcmIpEFl7969iI6OxsGDB7Fjxw5kZGSgdevWePTokZRlERERkUwohBBC6iJy3Lt3D15eXti7dy+aNm2a7/parRZqtRoajQYqlaoYKiQiIqKiKsz3t6zGqGg0GgBA6dKlJa6EiIiI5MBO6gJyZGVlYdiwYQgNDcVLL72U6zo6nQ46nU7/XqvVFld5REREJAHZnFGJjo7GyZMnsWbNmueuM336dKjVav3L19e3GCskIiKi4iaLMSqDBw/Gpk2bsG/fPgQEBDx3vdzOqPj6+nKMChERUQlSmDEqkl76EULg/fffx08//YQ9e/bkGVIAQKlUQqlUFlN1REREJDVJg0p0dDRWr16NTZs2wc3NDXfu3AEAqNVqODk5SVkaERERyYCkl34UCkWu7cuXL0fv3r3z3Z63JxMREZU8JerSDxEREdHzyOauHyIiIqJnMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFs2UldQHHIzMxERkaG1GVQCWJvbw9bW1upyyAieuFZdVARQuDOnTt4+PCh1KVQCeTu7g5vb28oFAqpSyEiemFZdVDJCSleXl5wdnbmFw4ViBACqampSExMBACUK1dO4oqIiF5cVhtUMjMz9SGlTJkyUpdDJYyTkxMAIDExEV5eXrwMREQkEasdTJszJsXZ2VniSqikyvnscHwTEZF0rDao5ODlHjIVPztERNKz+qBCREREJReDigz17t0bnTp1KtL2CoVC/ypTpgzatGmD48ePm6/IQvL398e8efMkOz4REZVMkgaVffv2ISIiAj4+PlAoFPj555+lLMeqtGnTBrdv38bt27cRGxsLOzs7tG/fPs9tOBaDiIjkRtKg8ujRI9SuXRsLFy6UsowS5+TJk2jbti1cXV1RtmxZvPPOO0hKSjJYR6lUwtvbG97e3qhTpw7Gjh2L69ev4969ewCAK1euQKFQYO3atWjWrBkcHR2xatUqZGVl4eOPP0aFChWgVCpRp04dbNu2Tb/fnO02btyI5s2bw9nZGbVr18aBAwcK1Ye5c+eiVq1acHFxga+vLwYNGoSUlBT98hUrVsDd3R1btmxB1apV4ezsjK5duyI1NRUrV66Ev78/SpUqhSFDhiAzM1O/nU6nw6hRo1C+fHm4uLjg5Zdfxp49e/TLr169ioiICJQqVQouLi6oWbMmfvvtt0LVTkRExUfSoNK2bVtMmzYNnTt3lrKMfGlS03ExMQVx1x7g4r0UaFLTJavl4cOHaNGiBerWrYvDhw9j27ZtuHv3Lt58883nbpOSkoIffvgBlStXNrpVe+zYsRg6dCgSEhIQHh6OL774AnPmzMFnn32G48ePIzw8HB06dMD58+cNths/fjxGjRqF+Ph4BAUFISoqCk+ePClwP2xsbPDll1/i1KlTWLlyJXbt2oUxY8YYrJOamoovv/wSa9aswbZt27Bnzx507twZv/32G3777Td8//33WLx4MdavX6/fZvDgwThw4ADWrFmD48ePo1u3bmjTpo2+/ujoaOh0Ouzbtw8nTpzAzJkz4erqWuC6iYiomAmZACB++umnQm2j0WgEAKHRaIyWPX78WJw+fVo8fvy4SHXdfJAqeiw9KPw+2KJ/vbP0oLj5ILVI+81Lr169RMeOHXNdNnXqVNG6dWuDtuvXrwsA4uzZs/rtbW1thYuLi3BxcREARLly5cSRI0f021y+fFkAEPPmzTPYl4+Pj/jkk08M2ho0aCAGDRpksN3SpUv1y0+dOiUAiISEhOf2yc/PT3z++efPXR4TEyPKlCmjf798+XIBQFy4cEHfNnDgQOHs7CySk5P1beHh4WLgwIFCCCGuXr0qbG1txc2bNw32HRYWJsaNGyeEEKJWrVpi8uTJz63jaeb6DBERkaG8vr+fVaIG0+p0Omi1WoOXJWlS0/HBhuP447zhZZV955MwdsNxSc6sHDt2DLt374arq6v+Va1aNQDAxYsX9es1b94c8fHxiI+Pxz///IPw8HC0bdsWV69eNdhf/fr19f/WarW4desWQkNDDdYJDQ1FQkKCQVtwcLD+3zlPbs15kmtB7Ny5E2FhYShfvjzc3Nzwzjvv4N9//0Vqaqp+HWdnZwQGBurfly1bFv7+/gZnQMqWLas/7okTJ5CZmYmgoCCDn8/evXv1P5shQ4Zg2rRpCA0NxaRJkyQdYExERPkrUUFl+vTpUKvV+pevr69Fj5eUkm4UUnLsO5+EpJTiDyopKSmIiIjQh5Cc1/nz59G0aVP9ei4uLqhcuTIqV66MBg0aYOnSpXj06BG++eYbg/25uLiYVIe9vb3+3znPG8nKyirQtleuXEH79u0RHByMDRs24MiRI/pxSunp//1Mnz5GznFya8s5bkpKCmxtbXHkyBGDn01CQgK++OILAED//v1x6dIlvPPOOzhx4gTq16+P+fPnF7L3RERUXEpUUBk3bhw0Go3+df36dYseT5uW910wyfkst4R69erh1KlT8Pf31weRnFdeoUOhUMDGxgaPHz9+7joqlQo+Pj7Yv3+/Qfv+/ftRo0YNs/XhyJEjyMrKwpw5c9CoUSMEBQXh1q1bRd5v3bp1kZmZicTERKOfjbe3t349X19f/O9//8PGjRsxcuRIo/BGRETyUaLm+lEqlVAqlcV2PJWjfZ7L3fJZXhQajQbx8fEGbWXKlEF0dDS++eYbREVFYcyYMShdujQuXLiANWvWYOnSpfo5aXQ6He7cuQMAePDgARYsWKA/G5OX0aNHY9KkSQgMDESdOnWwfPlyxMfHY9WqVWbrW+XKlZGRkYH58+cjIiIC+/fvx9dff13k/QYFBaF79+7o2bMn5syZg7p16+LevXuIjY1FcHAw2rVrh2HDhqFt27YICgrCgwcPsHv3blSvXt0MvSIiIkuQNKikpKTgwoUL+veXL19GfHw8SpcujYoVK0pYWTYPVwc0reKBfblc/mlaxQMerg4WO/aePXtQt25dg7Z+/fph6dKl2L9/Pz744AO0bt0aOp0Ofn5+aNOmDWxs/jtBtm3bNv3YETc3N1SrVg0xMTF47bXX8jzukCFDoNFoMHLkSCQmJqJGjRrYvHkzqlSpUqT+ZGVlwc4u++NWu3ZtzJ07FzNnzsS4cePQtGlTTJ8+HT179izSMQBg+fLlmDZtGkaOHImbN2/Cw8MDjRo10j9DJjMzE9HR0bhx4wZUKhXatGmDzz//vMjHJSIiy1AIIYRUB9+zZw+aN29u1N6rVy+sWLEi3+21Wi3UajU0Gg1UKpXBsrS0NFy+fBkBAQFwdHQ0ucZbDx9j7IbjBmGlaRUPzOwSjHLuTibv90WSmZkJlUqFlStXomvXrlKXU2Dm+gwREZGhvL6/nyXpGZXXXnsNEuakAvFxd8L8qLpISklHcloG3Bzt4eHqALWz5c6mWJMbN27gu+++Q2ZmJl555RWpyyEiohKmRI1RkYramcHEVHXq1EGZMmXw/fffGwxoJSIiKggGFbKoZx/tT0REVBgl6vZkIiIierEwqBAREZFsMagQERGRbDGoEBERkWwxqBAREZFsMagQERGRbDGovKBee+01DBs2TOoyiIiI8sSgIkO9e/dGp06dDNrWr18PR0dHzJkzxyzH2LhxI6ZOnVqkffTu3RsKhQIKhQL29vYoW7YsWrVqhWXLliErK8ssdZrDlStXoFAojCZ5JCIi+WNQKQGWLl2K7t27Y9GiRRg5cqRZ9lm6dGm4ubkVeT9t2rTB7du3ceXKFWzduhXNmzfH0KFD0b59ezx58sTk/QohirQ9ERFZBwYVmZs1axbef/99rFmzBn369NG3b9q0CfXq1YOjoyMqVaqEKVOm6L/Y3377bURGRhrsJyMjAx4eHvjuu+8AGF/68ff3x6effoq+ffvCzc0NFStWxJIlS/KtT6lUwtvbG+XLl0e9evXw4YcfYtOmTdi6dat+Ysnczmg8fPgQCoUCe/bsAZA9QaVCocDWrVsREhICpVKJP//8ExcvXkTHjh1RtmxZuLq6okGDBti5c6dBDfnVHhAQAACoW7cuFApFvjNIExGRfDCoFMTjB0DSOeDGYSDpfPb7YvDBBx9g6tSp2LJlCzp37qxv/+OPP9CzZ08MHToUp0+fxuLFi7FixQp88sknAIDu3bvjl19+QUpKin6b7du3IzU11WA/z5ozZw7q16+PuLg4DBo0CO+99x7Onj1b6LpbtGiB2rVrY+PGjYXeduzYsZgxYwYSEhIQHByMlJQUvP7664iNjUVcXBzatGmDiIgIXLt2rcC1//PPPwCAnTt34vbt2ybVRURE0mBQyY/mJhDTF1jQAFgaBiyoD6zvl91uQVu3bsWsWbOwadMmhIWFGSybMmUKxo4di169eqFSpUpo1aoVpk6disWLFwMAwsPD4eLigp9++km/zerVq9GhQ4c8L/e8/vrrGDRoECpXrowPPvgAHh4e2L17t0n1V6tWDVeuXCn0dh9//DFatWqFwMBAlC5dGrVr18bAgQPx0ksvoUqVKpg6dSoCAwOxefPmAtfu6ekJAChTpgy8vb1RunRpk/pERETFj0ElL48fAJsGA5d2GbZfjAU2v2/RMyvBwcHw9/fHpEmTDM6MAMCxY8fw8ccfw9XVVf8aMGAAbt++jdTUVNjZ2eHNN9/EqlWrAACPHj3Cpk2b0L1793yPmUOhUMDb2xuJiYkm1S+EgEKhKPR29evXN3ifkpKCUaNGoXr16nB3d4erqysSEhKMzqiYs3YiIpIPzp6cl0f3jENKjoux2cudSlnk0OXLl8f69evRvHlztGnTBlu3btWfDUlJScGUKVPwxhtvGG3n6OgIIPvyT7NmzZCYmIgdO3bAyckJbdq0yfOY9vb2Bu8VCoXJd+8kJCTox4bY2GTnYSGEfnlGRkau27m4uBi8HzVqFHbs2IHPPvsMlStXhpOTE7p27Yr09HSL1U5ERPLBoJKXNG3RlheRn58f9u7dqw8r27Ztg5ubG+rVq4ezZ8+icuXKz922SZMm8PX1xdq1a7F161Z069bN6MvcUnbt2oUTJ05g+PDhAP679HL79m3UrVsXAAp8q/D+/fvRu3dv/dialJSUQl9ScnBwAABkZmYWajsiIpIeg0peHFVFW24Gvr6+2LNnD5o3b47w8HBs27YNEydORPv27VGxYkV07doVNjY2OHbsGE6ePIlp06bpt3377bfx9ddf49y5cyaPNcmPTqfDnTt3kJmZibt372Lbtm2YPn062rdvj549ewIAnJyc0KhRI8yYMQMBAQFITEzERx99VKD9V6lSBRs3bkRERAQUCgUmTJhQ6DMlXl5ecHJywrZt21ChQgU4OjpCrVYXuq9ERFT8OEYlLy6eQGBY7ssCw7KXF4MKFSpgz549SEpKQnh4OBo3bowtW7bg999/R4MGDdCoUSN8/vnn8PPzM9iue/fuOH36NMqXL4/Q0FCL1LZt2zaUK1cO/v7+aNOmDXbv3o0vv/wSmzZtgq2trX69ZcuW4cmTJwgJCcGwYcMMAlVe5s6di1KlSqFJkyaIiIhAeHg46tWrV6ga7ezs8OWXX2Lx4sXw8fFBx44dC7U9ERFJRyGeHjhQwmi1WqjVamg0GqhUhmc30tLScPnyZQQEBOjHbZhEczN74OzF2P/aAsOADvMBdXnT90uyZ7bPEBERGcjr+/tZvPSTH3V5oOu32QNn07TZl3tcPC02iJaIiIj+w6BSEE6lGEyIiIgkwDEqREREJFsMKkRERCRbDCpEREQkW1YfVErwTU0kMX52iIikZ7VBJecprKmpqRJXQiVVzmenuJ7oS0RExqz2rh9bW1u4u7vrJ6ZzdnY2aZI8evEIIZCamorExES4u7sbPLiOiIiKl9UGFQDw9vYGAM6iSyZxd3fXf4aIiEgaVh1UFAoFypUrBy8vr+fO1kuUG3t7e55JISKSAVkElYULF2L27Nm4c+cOateujfnz56Nhw4Zm27+trS2/dIiIiEogyQfTrl27FiNGjMCkSZNw9OhR1K5dG+Hh4bxcQ0RERNIHlblz52LAgAHo06cPatSoga+//hrOzs5YtmyZ1KURERGRxCQNKunp6Thy5Ahatmypb7OxsUHLli1x4MABCSsjIiIiOZB0jEpSUhIyMzNRtmxZg/ayZcvizJkzRuvrdDrodDr9e41GAyB7umgiIiIqGXK+twvyYE1ZDKYtqOnTp2PKlClG7b6+vhJUQ0REREWRnJwMtVqd5zqSBhUPDw/Y2tri7t27Bu13797N9fkV48aNw4gRI/Tvs7KycP/+fZQpU8bsD3PTarXw9fXF9evXoVKpzLpvObD2/gHW30f2r+Sz9j6yfyWfpfoohEBycjJ8fHzyXVfSoOLg4ICQkBDExsaiU6dOALLDR2xsLAYPHmy0vlKphFKpNGhzd3e3aI0qlcpqP4CA9fcPsP4+sn8ln7X3kf0r+SzRx/zOpOSQ/NLPiBEj0KtXL9SvXx8NGzbEvHnz8OjRI/Tp00fq0oiIiEhikgeVyMhI3Lt3DxMnTsSdO3dQp04dbNu2zWiALREREb14JA8qADB48OBcL/VISalUYtKkSUaXmqyFtfcPsP4+sn8ln7X3kf0r+eTQR4UoyL1BRERERBKQ/Mm0RERERM/DoEJERESyxaBCREREssWgQkRERLJltUFl+vTpaNCgAdzc3ODl5YVOnTrh7NmzBuukpaUhOjoaZcqUgaurK7p06WL0lNwhQ4YgJCQESqUSderUyfOYFy5cgJubm8UfQpejuPp45coVKBQKo9fBgwct2b1i/R0KIfDZZ58hKCgISqUS5cuXxyeffGKprgEovv5Nnjw519+fi4uLJbsHoHh/h9u3b0ejRo3g5uYGT09PdOnSBVeuXLFQz7IVZ//WrVuHOnXqwNnZGX5+fpg9e7alumXAHH08duwYoqKi4OvrCycnJ1SvXh1ffPGF0bH27NmDevXqQalUonLlylixYoWlu1ds/bt9+zbefvttBAUFwcbGBsOGDbN434Di69/GjRvRqlUreHp6QqVSoXHjxti+fbtZ+mC1QWXv3r2Ijo7GwYMHsWPHDmRkZKB169Z49OiRfp3hw4fjl19+QUxMDPbu3Ytbt27hjTfeMNpX3759ERkZmefxMjIyEBUVhVdffdXsfXme4u7jzp07cfv2bf0rJCTE7H16WnH2b+jQoVi6dCk+++wznDlzBps3b0bDhg0t0q8cxdW/UaNGGfzebt++jRo1aqBbt24W61uO4urj5cuX0bFjR7Ro0QLx8fHYvn07kpKSct2PORVX/7Zu3Yru3bvjf//7H06ePImvvvoKn3/+ORYsWGCxvuUwRx+PHDkCLy8v/PDDDzh16hTGjx+PcePGGdR/+fJltGvXDs2bN0d8fDyGDRuG/v37m+3LTur+6XQ6eHp64qOPPkLt2rUt2icp+rdv3z60atUKv/32G44cOYLmzZsjIiICcXFxRe+EeEEkJiYKAGLv3r1CCCEePnwo7O3tRUxMjH6dhIQEAUAcOHDAaPtJkyaJ2rVrP3f/Y8aMET169BDLly8XarXa3OUXiKX6ePnyZQFAxMXFWar0ArFU/06fPi3s7OzEmTNnLFZ7QVj6M5ojPj5eABD79u0zW+0FZak+xsTECDs7O5GZmalv27x5s1AoFCI9Pd38HXkOS/UvKipKdO3a1aDtyy+/FBUqVBBZWVnm7UQ+itrHHIMGDRLNmzfXvx8zZoyoWbOmwTqRkZEiPDzczD3Im6X697RmzZqJoUOHmrXugiqO/uWoUaOGmDJlSpFrttozKs/SaDQAgNKlSwPITogZGRlo2bKlfp1q1aqhYsWKOHDgQKH2vWvXLsTExGDhwoXmK9gEluwjAHTo0AFeXl545ZVXsHnzZvMUXQiW6t8vv/yCSpUqYcuWLQgICIC/vz/69++P+/fvm7cD+bD07y/H0qVLERQUVKxn/3JYqo8hISGwsbHB8uXLkZmZCY1Gg++//x4tW7aEvb29eTuRB0v1T6fTwdHR0aDNyckJN27cwNWrV81QecGZq48ajUa/DwA4cOCAwT4AIDw8vEifdVNYqn9yUVz9y8rKQnJysll+Bi9EUMnKysKwYcMQGhqKl156CQBw584dODg4GI0nKVu2LO7cuVPgff/777/o3bs3VqxYIemkVJbso6urK+bMmYOYmBj8+uuveOWVV9CpU6diDSuW7N+lS5dw9epVxMTE4LvvvsOKFStw5MgRdO3a1ZxdyJMl+/e0tLQ0rFq1Cv369StqyYVmyT4GBATg999/x4cffgilUgl3d3fcuHED69atM2cX8mTJ/oWHh2Pjxo2IjY1FVlYWzp07hzlz5gDIHvtQXMzVx7/++gtr167Fu+++q2+7c+eO0dQpZcuWhVarxePHj83bkeewZP/koDj799lnnyElJQVvvvlmkeuWxSP0LS06OhonT57En3/+afZ9DxgwAG+//TaaNm1q9n0XhiX76OHhgREjRujfN2jQALdu3cLs2bPRoUMHsx8vN5bsX1ZWFnQ6Hb777jsEBQUBAL799luEhITg7NmzqFq1qtmP+SxL9u9pP/30E5KTk9GrVy+LHic3luzjnTt3MGDAAPTq1QtRUVFITk7GxIkT0bVrV+zYsQMKhcLsx3yWpf9/5uLFi2jfvj0yMjKgUqkwdOhQTJ48GTY2xff3pjn6ePLkSXTs2BGTJk1C69atzVhd0bF/+StI/1avXo0pU6Zg06ZN8PLyMvlYOaz+jMrgwYOxZcsW7N69GxUqVNC3e3t7Iz09HQ8fPjRY/+7du/D29i7w/nft2oXPPvsMdnZ2sLOzQ79+/aDRaGBnZ4dly5aZqxt5snQfc/Pyyy/jwoULRdpHQVm6f+XKlYOdnZ0+pABA9erVAQDXrl0rWvEFUJy/v6VLl6J9+/bFPumnpfu4cOFCqNVqzJo1C3Xr1kXTpk3xww8/IDY2Fn///be5uvFclu6fQqHAzJkzkZKSgqtXr+LOnTv6wd6VKlUySx/yY44+nj59GmFhYXj33Xfx0UcfGSzz9vY2uhvq7t27UKlUcHJyMm9ncmHp/kmtuPq3Zs0a9O/fH+vWrTO6lGeyIo9ykamsrCwRHR0tfHx8xLlz54yW5wwgWr9+vb7tzJkzJg3EPHHihP41bdo04ebmJk6cOCHu379v1j49q7j6mJv+/fuLunXrmlx7QRRX/7Zv3y4AiAsXLujbcgacnj171jydyUVx//4uXbokFAqF+OWXX8xSf0EUVx9HjBghGjZsaNB269YtAUDs37+/6B15Din/G3znnXdE48aNTa69oMzVx5MnTwovLy8xevToXI8zZswY8dJLLxm0RUVFWXwwbXH172nFOZi2OPu3evVq4ejoKH7++Wez9sFqg8p7770n1Gq12LNnj7h9+7b+lZqaql/nf//7n6hYsaLYtWuXOHz4sGjcuLHRf/jnz58XcXFxYuDAgSIoKEjExcWJuLg4odPpcj1ucd71U1x9XLFihVi9erVISEgQCQkJ4pNPPhE2NjZi2bJlVtG/zMxMUa9ePdG0aVNx9OhRcfjwYfHyyy+LVq1aWUX/cnz00UfCx8dHPHnyxKL9elpx9TE2NlYoFAoxZcoUce7cOXHkyBERHh4u/Pz8DI5VUvt37949sWjRIpGQkCDi4uLEkCFDhKOjo/j7778t1jdz9vHEiRPC09NT9OjRw2AfiYmJ+nUuXboknJ2dxejRo0VCQoJYuHChsLW1Fdu2bbOK/gkh9L/XkJAQ8fbbb4u4uDhx6tQpq+jfqlWrhJ2dnVi4cKHBOg8fPixyH6w2qADI9bV8+XL9Oo8fPxaDBg0SpUqVEs7OzqJz587i9u3bBvtp1qxZrvu5fPlyrsctzqBSXH1csWKFqF69unB2dhYqlUo0bNjQ4Fa2kt4/IYS4efOmeOONN4Srq6soW7as6N27t/j333+tpn+ZmZmiQoUK4sMPP7Ron55VnH388ccfRd26dYWLi4vw9PQUHTp0EAkJCVbRv3v37olGjRoJFxcX4ezsLMLCwsTBgwct2jdz9nHSpEm57sPPz8/gWLt37xZ16tQRDg4OolKlSgbHsIb+FWSdktq/532Ge/XqVeQ+KP6/I0RERESyY/WDaYmIiKjkYlAhIiIi2WJQISIiItliUCEiIiLZYlAhIiIi2WJQISIiItliUCEiIiLZYlAhIiIi2WJQISIiItliUCEiIiLZYlAhoiJbv349atWqBScnJ5QpUwYtW7bEo0ePAABLly5F9erV4ejoiGrVquGrr74y2PaDDz5AUFAQnJ2dUalSJUyYMAEZGRn65ceOHUPz5s3h5uYGlUqFkJAQHD58WL98w4YNqFmzJpRKJfz9/TFnzhyD/fv7++PTTz9F37594ebmhooVK2LJkiUW/GkQkTnZSV0AEZVst2/fRlRUFGbNmoXOnTsjOTkZf/zxB4QQWLVqFSZOnIgFCxagbt26iIuLw4ABA+Di4oJevXoBANzc3LBixQr4+PjgxIkTGDBgANzc3DBmzBgAQPfu3VG3bl0sWrQItra2iI+Ph729PQDgyJEjePPNNzF58mRERkbir7/+wqBBg1CmTBn07t1bX+OcOXMwdepUfPjhh1i/fj3ee+89NGvWDFWrVi32nxcRFVKRpzUkohfakSNHBABx5coVo2WBgYFi9erVBm1Tp041mEL+WbNnzxYhISH6925ubmLFihW5rvv222+LVq1aGbSNHj1a1KhRQ//ez89P9OjRQ/8+KytLeHl5iUWLFuXdMSKSBV76IaIiqV27NsLCwlCrVi1069YN33zzDR48eIBHjx7h4sWL6NevH1xdXfWvadOm4eLFi/rt165di9DQUHh7e8PV1RUfffQRrl27pl8+YsQI9O/fHy1btsSMGTMMtk1ISEBoaKhBPaGhoTh//jwyMzP1bcHBwfp/KxQKeHt7IzEx0RI/DiIyMwYVIioSW1tb7NixA1u3bkWNGjUwf/58VK1aFSdPngQAfPPNN4iPj9e/Tp48iYMHDwIADhw4gO7du+P111/Hli1bEBcXh/HjxyM9PV2//8mTJ+PUqVNo164ddu3ahRo1auCnn34qVI05l4pyKBQKZGVlFbHnRFQcOEaFiIpMoVAgNDQUoaGhmDhxIvz8/LB//374+Pjg0qVL6N69e67b/fXXX/Dz88P48eP1bVevXjVaLygoCEFBQRg+fDiioqKwfPlydO7cGdWrV8f+/fsN1t2/fz+CgoJga2tr3k4SkSQYVIioSP7++2/ExsaidevW8PLywt9//4179+6hevXqmDJlCoYMGQK1Wo02bdpAp9Ph8OHDePDgAUaMGIEqVarg2rVrWLNmDRo0aIBff/3V4GzJ48ePMXr0aHTt2hUBAQG4ceMGDh06hC5dugAARo4ciQYNGmDq1KmIjIzEgQMHsGDBAqM7i4io5GJQIaIiUalU2LdvH+bNmwetVgs/Pz/MmTMHbdu2BQA4Oztj9uzZGD16NFxcXFCrVi0MGzYMANChQwcMHz4cgwcPhk6nQ7t27TBhwgRMnjwZQPZlpX///Rc9e/bE3bt34eHhgTfeeANTpkwBANSrVw/r1q3DxIkTMXXqVJQrVw4ff/yxwR0/RFSyKYQQQuoiiIiIiHLDwbREREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRbDCpEREQkWwwqREREJFsMKkRERCRb/wfDOlPnRTS7dwAAAABJRU5ErkJggg==",
 | 
						||
      "text/plain": [
 | 
						||
       "<Figure size 640x480 with 1 Axes>"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "display_data"
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "sns.scatterplot(data=Lebron_df,x=\"season\",y=\"raptor_total\")\n",
 | 
						||
    "sns.scatterplot(data=Durant_df,x=\"season\",y=\"raptor_total\")\n",
 | 
						||
    "plt.ylim([0,9])\n",
 | 
						||
    "plt.legend(labels=[\"LeBron James\",\"Kevin Durant\"])\n",
 | 
						||
    "plt.title(\"LeBron James vs Kevin Durant\")"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "db4cba31-c730-4111-8d78-0190d5ac86ec",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "#### Results from Graph\n",
 | 
						||
    "This shows that Kevin Durant was better in 2014 and 2015 and LeBron James was better from 2016-2022.  This is the case because the data point for Kevin Durant was higher than LeBron James' for the seasons of 2014 and 2015 and LeBron James' data point was higher for the seasons of 2016-2022."
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "collectible-puppy",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "## Second Research Question: Who is the best offensive player in the NBA?\n"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "demographic-future",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "## Methods"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "64e47d9c-d4af-4c02-87af-d0087597d629",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "I will use the player_name, raptor_offense, and predator_offense for each player.  \n",
 | 
						||
    "  \n",
 | 
						||
    "**Initial Problem:**  \n",
 | 
						||
    "I first completed this without excluding players who played less than 3000 minutes in a season and was finding that the data was showing me the best offensive NBA players were players who only played one game.  This was happening because a few players played great offensively in one game and never played again.  Obviously, those are not the best NBA players as they only played 1 or a few games in the NBA.\n",
 | 
						||
    "\n",
 | 
						||
    "**How I fixed this:**  \n",
 | 
						||
    "I fixed this by removing all NBA players who played less than 3000 minutes throughout the 82 game season.  This only allowed the players who were good enough to play many minutes for their teams throughout the season.  This means that these were some of the best NBA players.  There are 48 minutes in an NBA game so I chose 3000 minutes since 3000/48 = 62.5 and that is about three quarters of the NBA season.\n",
 | 
						||
    "\n",
 | 
						||
    "**What I did:**  \n",
 | 
						||
    "I first removed all players who played less than 3000 minutes.  I then grouped the data by the players' names as I called these the eligible players.  I then took all of the offensive stats in this dataset which were the raptor offense and predator offense data and took the averages of them which I called the offense stats.  I then added all of the offense stats together and sorted them by highest to lowest number.  The higher the number correlates with the better the offensive player which gives us a list ranking the best to worst offensive players that have all played over 3000 minutes.  I then turned the data back into a data frame, renamed the number column to be offense_stat and showed the new data frame containing a player’s name and the offensive value associated."
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 35,
 | 
						||
   "id": "e40a1730-6c77-425c-81b2-55f2bcd7d5d2",
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "text/html": [
 | 
						||
       "<div>\n",
 | 
						||
       "<style scoped>\n",
 | 
						||
       "    .dataframe tbody tr th:only-of-type {\n",
 | 
						||
       "        vertical-align: middle;\n",
 | 
						||
       "    }\n",
 | 
						||
       "\n",
 | 
						||
       "    .dataframe tbody tr th {\n",
 | 
						||
       "        vertical-align: top;\n",
 | 
						||
       "    }\n",
 | 
						||
       "\n",
 | 
						||
       "    .dataframe thead th {\n",
 | 
						||
       "        text-align: right;\n",
 | 
						||
       "    }\n",
 | 
						||
       "</style>\n",
 | 
						||
       "<table border=\"1\" class=\"dataframe\">\n",
 | 
						||
       "  <thead>\n",
 | 
						||
       "    <tr style=\"text-align: right;\">\n",
 | 
						||
       "      <th></th>\n",
 | 
						||
       "      <th>offense_stat</th>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>player_name</th>\n",
 | 
						||
       "      <th></th>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "  </thead>\n",
 | 
						||
       "  <tbody>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Stephen Curry</th>\n",
 | 
						||
       "      <td>17.720458</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Chris Paul</th>\n",
 | 
						||
       "      <td>17.330227</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>James Harden</th>\n",
 | 
						||
       "      <td>15.526875</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Isaiah Thomas</th>\n",
 | 
						||
       "      <td>14.996093</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>LeBron James</th>\n",
 | 
						||
       "      <td>12.947326</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Kevin Durant</th>\n",
 | 
						||
       "      <td>12.235575</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Russell Westbrook</th>\n",
 | 
						||
       "      <td>11.888737</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Kyrie Irving</th>\n",
 | 
						||
       "      <td>11.735169</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Nikola Jokic</th>\n",
 | 
						||
       "      <td>10.950040</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Damian Lillard</th>\n",
 | 
						||
       "      <td>10.012836</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Kyle Lowry</th>\n",
 | 
						||
       "      <td>9.180744</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Karl-Anthony Towns</th>\n",
 | 
						||
       "      <td>8.111974</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Bradley Beal</th>\n",
 | 
						||
       "      <td>7.866275</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Jimmy Butler</th>\n",
 | 
						||
       "      <td>7.821279</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Paul George</th>\n",
 | 
						||
       "      <td>6.961966</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Devin Booker</th>\n",
 | 
						||
       "      <td>6.766783</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Kemba Walker</th>\n",
 | 
						||
       "      <td>6.752003</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Kevin Love</th>\n",
 | 
						||
       "      <td>6.741710</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>JR Smith</th>\n",
 | 
						||
       "      <td>6.593562</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Blake Griffin</th>\n",
 | 
						||
       "      <td>6.389779</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Giannis Antetokounmpo</th>\n",
 | 
						||
       "      <td>6.112044</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>John Wall</th>\n",
 | 
						||
       "      <td>5.753245</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Khris Middleton</th>\n",
 | 
						||
       "      <td>5.306315</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>CJ McCollum</th>\n",
 | 
						||
       "      <td>5.276419</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Jalen Brunson</th>\n",
 | 
						||
       "      <td>5.237223</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Klay Thompson</th>\n",
 | 
						||
       "      <td>4.973756</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Jrue Holiday</th>\n",
 | 
						||
       "      <td>4.947378</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Draymond Green</th>\n",
 | 
						||
       "      <td>4.784848</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Wesley Matthews</th>\n",
 | 
						||
       "      <td>4.769245</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Chandler Parsons</th>\n",
 | 
						||
       "      <td>4.669383</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>DeAndre Jordan</th>\n",
 | 
						||
       "      <td>4.652438</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>DeMar DeRozan</th>\n",
 | 
						||
       "      <td>4.455351</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Nicolas Batum</th>\n",
 | 
						||
       "      <td>4.372284</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Jayson Tatum</th>\n",
 | 
						||
       "      <td>4.184372</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Otto Porter Jr.</th>\n",
 | 
						||
       "      <td>4.088359</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Anthony Davis</th>\n",
 | 
						||
       "      <td>4.076098</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Jaylen Brown</th>\n",
 | 
						||
       "      <td>4.026351</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Joe Johnson</th>\n",
 | 
						||
       "      <td>3.184046</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Mikal Bridges</th>\n",
 | 
						||
       "      <td>3.180401</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Donovan Mitchell</th>\n",
 | 
						||
       "      <td>2.917105</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Marcus Smart</th>\n",
 | 
						||
       "      <td>2.869965</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Pascal Siakam</th>\n",
 | 
						||
       "      <td>2.734799</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Monta Ellis</th>\n",
 | 
						||
       "      <td>2.503306</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Tyrese Maxey</th>\n",
 | 
						||
       "      <td>2.304135</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Ben Simmons</th>\n",
 | 
						||
       "      <td>2.176836</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Joakim Noah</th>\n",
 | 
						||
       "      <td>2.092434</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Dorian Finney-Smith</th>\n",
 | 
						||
       "      <td>2.053527</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Paul Millsap</th>\n",
 | 
						||
       "      <td>1.773395</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Trevor Ariza</th>\n",
 | 
						||
       "      <td>1.711537</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Chris Bosh</th>\n",
 | 
						||
       "      <td>1.506055</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Tobias Harris</th>\n",
 | 
						||
       "      <td>1.468812</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>David West</th>\n",
 | 
						||
       "      <td>0.994692</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Andrew Wiggins</th>\n",
 | 
						||
       "      <td>0.938364</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Bam Adebayo</th>\n",
 | 
						||
       "      <td>0.618696</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Serge Ibaka</th>\n",
 | 
						||
       "      <td>0.557475</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Marc Gasol</th>\n",
 | 
						||
       "      <td>0.541082</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Lance Stephenson</th>\n",
 | 
						||
       "      <td>-0.108353</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Marcin Gortat</th>\n",
 | 
						||
       "      <td>-0.148795</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>George Hill</th>\n",
 | 
						||
       "      <td>-0.353735</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>PJ Tucker</th>\n",
 | 
						||
       "      <td>-1.726914</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "  </tbody>\n",
 | 
						||
       "</table>\n",
 | 
						||
       "</div>"
 | 
						||
      ],
 | 
						||
      "text/plain": [
 | 
						||
       "                       offense_stat\n",
 | 
						||
       "player_name                        \n",
 | 
						||
       "Stephen Curry             17.720458\n",
 | 
						||
       "Chris Paul                17.330227\n",
 | 
						||
       "James Harden              15.526875\n",
 | 
						||
       "Isaiah Thomas             14.996093\n",
 | 
						||
       "LeBron James              12.947326\n",
 | 
						||
       "Kevin Durant              12.235575\n",
 | 
						||
       "Russell Westbrook         11.888737\n",
 | 
						||
       "Kyrie Irving              11.735169\n",
 | 
						||
       "Nikola Jokic              10.950040\n",
 | 
						||
       "Damian Lillard            10.012836\n",
 | 
						||
       "Kyle Lowry                 9.180744\n",
 | 
						||
       "Karl-Anthony Towns         8.111974\n",
 | 
						||
       "Bradley Beal               7.866275\n",
 | 
						||
       "Jimmy Butler               7.821279\n",
 | 
						||
       "Paul George                6.961966\n",
 | 
						||
       "Devin Booker               6.766783\n",
 | 
						||
       "Kemba Walker               6.752003\n",
 | 
						||
       "Kevin Love                 6.741710\n",
 | 
						||
       "JR Smith                   6.593562\n",
 | 
						||
       "Blake Griffin              6.389779\n",
 | 
						||
       "Giannis Antetokounmpo      6.112044\n",
 | 
						||
       "John Wall                  5.753245\n",
 | 
						||
       "Khris Middleton            5.306315\n",
 | 
						||
       "CJ McCollum                5.276419\n",
 | 
						||
       "Jalen Brunson              5.237223\n",
 | 
						||
       "Klay Thompson              4.973756\n",
 | 
						||
       "Jrue Holiday               4.947378\n",
 | 
						||
       "Draymond Green             4.784848\n",
 | 
						||
       "Wesley Matthews            4.769245\n",
 | 
						||
       "Chandler Parsons           4.669383\n",
 | 
						||
       "DeAndre Jordan             4.652438\n",
 | 
						||
       "DeMar DeRozan              4.455351\n",
 | 
						||
       "Nicolas Batum              4.372284\n",
 | 
						||
       "Jayson Tatum               4.184372\n",
 | 
						||
       "Otto Porter Jr.            4.088359\n",
 | 
						||
       "Anthony Davis              4.076098\n",
 | 
						||
       "Jaylen Brown               4.026351\n",
 | 
						||
       "Joe Johnson                3.184046\n",
 | 
						||
       "Mikal Bridges              3.180401\n",
 | 
						||
       "Donovan Mitchell           2.917105\n",
 | 
						||
       "Marcus Smart               2.869965\n",
 | 
						||
       "Pascal Siakam              2.734799\n",
 | 
						||
       "Monta Ellis                2.503306\n",
 | 
						||
       "Tyrese Maxey               2.304135\n",
 | 
						||
       "Ben Simmons                2.176836\n",
 | 
						||
       "Joakim Noah                2.092434\n",
 | 
						||
       "Dorian Finney-Smith        2.053527\n",
 | 
						||
       "Paul Millsap               1.773395\n",
 | 
						||
       "Trevor Ariza               1.711537\n",
 | 
						||
       "Chris Bosh                 1.506055\n",
 | 
						||
       "Tobias Harris              1.468812\n",
 | 
						||
       "David West                 0.994692\n",
 | 
						||
       "Andrew Wiggins             0.938364\n",
 | 
						||
       "Bam Adebayo                0.618696\n",
 | 
						||
       "Serge Ibaka                0.557475\n",
 | 
						||
       "Marc Gasol                 0.541082\n",
 | 
						||
       "Lance Stephenson          -0.108353\n",
 | 
						||
       "Marcin Gortat             -0.148795\n",
 | 
						||
       "George Hill               -0.353735\n",
 | 
						||
       "PJ Tucker                 -1.726914"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "execution_count": 35,
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "execute_result"
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "players_over_3000 = df[df.mp>3000]\n",
 | 
						||
    "eligible_players = players_over_3000.groupby(\"player_name\")\n",
 | 
						||
    "offense_stats= eligible_players[[\"raptor_offense\",\"predator_offense\"]].mean()\n",
 | 
						||
    "off_stat = offense_stats.sum(axis=1).sort_values(ascending=False)\n",
 | 
						||
    "df_offense = pd.DataFrame(off_stat)\n",
 | 
						||
    "df_offense.columns = [\"offense_stat\"]\n",
 | 
						||
    "df_offense"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 36,
 | 
						||
   "id": "8ea17bc0-35b9-4378-a35d-90f9cfd71064",
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAIKCAYAAADLWfA8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfI9JREFUeJzt3XVYVOn7BvB76BAwUBFFMDAwQDHW7u7WNbHWWrtY211jLewO1LV7d22xu3stFBsRlFQRh+f3h785X0bAwIEB5/5cF5fOOe8588yciXvec857VCIiICIiIjIgRvougIiIiCilMQARERGRwWEAIiIiIoPDAEREREQGhwGIiIiIDA4DEBERERkcBiAiIiIyOAxAREREZHAYgIiIiMjgMADRD+vcuXMoW7YsrK2toVKpcPnyZQDAnj174OHhAQsLC6hUKoSGhuqlvoCAAKhUKvj6+url/r+GSqXC2LFj9V1Gmle5cmVUrlw5ycuPHTsWKpUKwcHBOqupU6dOcHFx0dn6vtaHDx8wdOhQODk5wcjICI0bNwYAREZGomvXrnBwcIBKpUL//v1TvDYNfT03lLIYgH5gKpXqq/4OHz6st1omT5781eu4ceMG2rVrh+zZs8Pc3ByOjo5o27Ytbty4Ea9tTEwMWrRogVevXsHHxwerV6+Gs7MzQkJC0LJlS1haWmLevHlYvXo1rK2tdflQUz1N8NL8GRsbI2fOnGjSpIkSEkk/Jk6ciO3bt+u7jG8SExOD2bNno2TJkrCxsUG6dOlQsmRJzJ49GzExMfHaL1++HFOnTkXz5s2xcuVKDBgwAMDHx+7r64uePXti9erVaN++fUo/lFThn3/+QaVKlZAlSxZYWVkhd+7caNmyJfbs2aO0efbsGcaOHftd79ddu3YZ/I8bE30XQMln9erVWrdXrVqF/fv3x5tesGDBFKmnRo0a6NChg9a0YsWKfdWyW7duRZs2bZAxY0Z06dIFuXLlQkBAAJYtW4bNmzdj/fr1aNKkidLe398fDx8+xJIlS9C1a1dl+p49exAREYHff/8d1atX180DSyJnZ2e8ffsWpqamern/Nm3aoG7dulCr1fjvv/+wYMEC7N69G6dPn4aHh4deajJ0EydORPPmzZVekeS0ZMkSxMbGftc6oqKiUK9ePRw5cgT169dHp06dYGRkhD179qBfv37YunUrdu7cqfUj4+DBg8iePTt8fHy01nXw4EH89NNPGDNmzHfVpAu6eG6SYtq0aRgyZAgqVaoEb29vWFlZ4d69ezhw4ADWr1+P2rVrA/gYgMaNGwcXF5ckv1d37dqFefPmGXQIYgD6gbVr107r9unTp7F///5401NKvnz5knTf/v7+aN++PXLnzo2jR48ic+bMyrx+/fqhQoUKaN++Pa5evYrcuXMDAIKCggAA6dOn11pXYtP1QaVSwcLCQm/3X7x4ca3tUa5cOTRs2BALFizAokWL9FbX13r37h3MzMxgZMSO7KT4muD94cMHxMbGwszMLMH5AwcOxJEjRzBnzhz06dNHmd6zZ0/MmzcPffr0weDBg7FgwQJlXlBQUILvv6CgILi5uX37A0kG+vhR8uHDB/z++++oUaMG9u3bF2++5rOLdEjIYPTu3Vs+3eSRkZEycOBAyZEjh5iZmUm+fPlk6tSpEhsbq9UOgPTu3Vv++usvyZcvn5ibm0vx4sXlyJEjX3XfmuXfvHkjb9++/aa6f/nlFwEgR48eTXD+kSNHBID88ssvIiLSsWNHAaD1V6lSJalUqVK86R07dlTWc/r0aalVq5bY2tqKpaWlVKxYUY4fP651X2PGjBEAcvfuXenYsaPY2dmJra2tdOrUSaKiorTa7tu3T8qVKyd2dnZibW0t+fLlE29vb2X+gwcPBICsWLFCRESmTp0qACQgICDeYxw+fLiYmprKq1evvqnehGjud+rUqVrTIyMjBYDUqFFDmQZAxowZo9wOCAiQnj17Sr58+cTCwkIyZswozZs3lwcPHiht/P39BYDMmDEj3n2fOHFCAMjatWuVaU+ePBEvLy/JkiWLmJmZiZubmyxbtkxruUOHDgkAWbdunYwYMUIcHR1FpVLJ69ev5f379zJ27FjJmzevmJubS8aMGaVcuXKyb9++zz4PISEhMmjQIClcuLBYW1uLjY2N1K5dWy5fvpzgfW/YsEH++OMPyZ49u5ibm0vVqlXl7t278da7aNEiyZ07t1hYWEjJkiXl6NGjyuvvcz59bcZ9fX7L605EZPXq1VK8eHGxsLCQDBkySKtWreTRo0dabTp27CjOzs7K7bivCx8fH8mdO7cYGRnJpUuXEqz38ePHYmxsLFWrVk30MVWpUkVMTEzk8ePHyvo//dM8v5/+aV5T7969k9GjR0uePHnEzMxMcuTIIUOGDJF3797Fe/569+4t27Ztk0KFCimvpd27d2u1Cw8Pl379+omzs7OYmZlJ5syZpXr16nLhwoUEn5v3799LhgwZpFOnTvEeX1hYmJibm8ugQYOUaV9b76eeP38uAGTs2LGfbZfY86X5HDl69Kg0b95cnJyclPvv37+/vHnzRuvxJbQOQ2N4j9iAfRqAYmNjpWrVqqJSqaRr164yd+5cadCggQCQ/v37ay0LQAoXLiz29vYyfvx4+fPPP8XZ2VksLS3l2rVrX7xvAGJtbS0qlUoASMGCBWXNmjVfVbejo6O4uLh8to2Li4vkyJFDREROnjwpv/32mwCQvn37yurVq2Xfvn2yb98+6d69uwCQ8ePHy+rVq+XkyZMiIuLn5ydmZmZSpkwZmT59uvj4+EjRokXFzMxMzpw5o9yP5ouoWLFi0rRpU5k/f7507dpVAMjQoUOVdtevXxczMzMpUaKEzJo1SxYuXCiDBw+WihUrKm0+DUAPHz4UlUolU6ZMiff4cufOLfXq1VNuf229CUksAF25ckUASOvWrZVpnwagTZs2ibu7u4wePVoWL14sv/32m2TIkEGcnZ21vojLlSsnnp6e8e67V69eYmNjo7QNDAyUHDlyiJOTk4wfP14WLFggDRs2FADi4+OjLKf50HdzcxMPDw+ZMWOGTJo0SaKiouS3334TlUol3bp1kyVLlsj06dOlTZs2Mnny5M8+D+fOnZM8efLI8OHDZdGiRTJ+/HjJnj272NnZydOnT+Pdd7FixcTT01N8fHxk7NixYmVlJaVKldJa59KlSwWAlC1bVmbPni39+/eX9OnTS+7cub8YgFavXi3m5uZSoUIFWb16tdbr82tfdyIif/zxh6hUKmnVqpXMnz9fxo0bJ/b29uLi4iKvX79W2iUWgNzc3CR37twyefJk8fHxkYcPHyZY7+LFiwWA+Pr6JvqYVqxYIQBkyZIlEhkZKatXr5YCBQpIjhw5lMcYGBgoq1evFnt7e/Hw8FCmR0ZGilqtlpo1a4qVlZX0799fFi1aJH369BETExNp1KiR1n0BEHd3d8mWLZv8/vvvMnPmTMmdO7dYWVlJcHCw0u7nn38WMzMzGThwoCxdulT+/PNPadCggfz111+JPjedO3eW9OnTS3R0tNZ9rly5UgDIuXPnRES+qd5PqdVqsbS0FE9PTwkJCUm0XWBgoIwfP14ASPfu3ZXny9/fX0REfv31V6lbt65MnDhRFi1aJF26dBFjY2Np3ry5so6TJ09KjRo1BICy/OrVqz9b34+IAciAfBqAtm/fLgDkjz/+0GrXvHlzUalUcu/ePWWa5hfC+fPnlWkPHz4UCwsLadKkyRfvu2zZsjJz5kzZsWOHLFiwQAoXLiwAZP78+Z9dLjQ0VAB88cND86UZHh4uIv/70tq0aZNWO80HsuYDS+RjEHR1dZVatWpp9Xy9efNGcuXKpdUjovki6ty5s9Z6mzRpIpkyZVJu+/j4CAB5+fJlojV/GoBERMqUKRMvOJw9e1YAyKpVq7653s/d77hx4+Tly5cSGBgohw8flmLFigkA2bJli9L20wAU91ekxqlTp7TqE/nYCwJA/vvvP2Xa+/fvxd7eXqvXrUuXLpItWzatLygRkdatW4udnZ1yf5rtmTt37ng1uLu7a4XDr/Xu3TtRq9Va0x48eCDm5uYyfvx4ZZrmvgsWLKj1BThr1iwBoPwAeP/+vWTJkkU8PDy02mmCwpcCkIiItbW11vOj8bWvu4CAADE2NpYJEyZotbt27ZqYmJhoTU8sANna2kpQUNAXa+3fv78ASLSHSETk4sWLAkAGDhyoTKtUqZIUKlQoXltnZ+d423H16tViZGQkx44d05q+cOFCASAnTpxQpgEQMzMzrc8tTaifM2eOMs3Ozk569+792cf26XOzd+9eASD//POPVru6detK7ty5k1RvQkaPHq38WKxTp45MmDBBq2dK49y5c/E+OzQSeo9OmjRJVCqVVphNaI+AoeHOcwO2a9cuGBsbo2/fvlrTBw0aBBHB7t27taaXKVMGnp6eyu2cOXOiUaNG2Lt3L9Rq9Wfv68SJE+jXrx8aNmyIHj164MKFCyhcuDB+++03vH37NtHlIiIiAAA2NjafXb9mfnh4+GfbJeTy5cu4e/cufv75Z4SEhCA4OBjBwcGIiopCtWrVcPTo0XgHRPbo0UPrdoUKFRASEqLcv+YYhx07dnzTwZStWrXChQsX4O/vr0zbsGEDzM3N0ahRoyTXm5AxY8Ygc+bMcHBwQOXKleHv748///wTTZs2TXQZS0tL5f8xMTEICQlB3rx5kT59ely8eFGZ17JlS1hYWGDNmjXKtL179yI4OFg57khEsGXLFjRo0AAiojyO4OBg1KpVC2FhYVrrBICOHTtq1QB8fK5v3LiBu3fvfvExx2Vubq4cP6RWqxESEoJ06dIhf/788e4XALy8vLSOhalQoQIA4P79+wCA8+fPIygoCD169NBq16lTJ9jZ2X1TbYn50utu69atiI2NRcuWLbWeTwcHB7i6uuLQoUNfvI9mzZppHWeXmK95b37P+xIANm3ahIIFC6JAgQJaj6dq1aoAEO/xVK9eHXny5FFuFy1aFLa2tso2Aj6+Xs6cOYNnz559dR1Vq1aFvb09NmzYoEx7/fo19u/fj1atWiW53k+NGzcOa9euRbFixbB3716MGDECnp6eKF68OP7777+vqjXu+yMqKgrBwcEoW7YsRASXLl366sdsCBiADNjDhw/h6OgY7wNMc1bYw4cPtaa7urrGW0e+fPnw5s0bvHz58pvu28zMDH369EFoaCguXLiQaDtNbZoP28R8bVBKiOaLs2PHjsicObPW39KlSxEdHY2wsDCtZXLmzKl1O0OGDAA+figCH4NMuXLl0LVrV2TNmhWtW7fGxo0bvxhMWrRoASMjI+WDVkSwadMm1KlTB7a2tkmuNyHdu3fH/v374efnhwsXLiAoKAhDhw797DJv377F6NGj4eTkBHNzc9jb2yNz5swIDQ3Vus/06dOjQYMGWLt2rTJtzZo1yJ49u/Jl8PLlS4SGhmLx4sXxHoeXlxeA+Ad+5sqVK15N48ePR2hoKPLly4ciRYpgyJAhuHr16hcff2xsLHx8fODq6qr1WK5evZrg8/elba55v3z6PjE1NVUOzv9eX6rh7t27EBG4urrGe07/+++/rzqQNqHnOCFf8978nvcl8PHx3LhxI95jyZcvH4D4r49Pnx/g43OkeX4AYMqUKbh+/TqcnJxQqlQpjB07VisgJcTExATNmjXDjh07EB0dDeBj2IyJidEKQN9ab0LatGmDY8eO4fXr19i3bx9+/vlnXLp0CQ0aNMC7d+++uPyjR4/QqVMnZMyYEenSpUPmzJlRqVIlAPiqzwVDwrPASG+cnJwAAK9evUq0jZ2dHbJly/bFL7SrV68ie/bsSkj4FppQMnXq1ERPKU2XLp3WbWNj4wTbiQiAj7/Cjh49ikOHDmHnzp3Ys2cPNmzYgKpVq2Lfvn2JLu/o6IgKFSpg48aN+O2333D69Gk8evQIf/7553fVmxBXV9dvHgrg119/xYoVK9C/f3+UKVMGdnZ2UKlUaN26dbxw16FDB2zatAknT55EkSJF8Pfff6NXr15Kr4umfbt27dCxY8cE769o0aJatz/t/QGAihUrwt/fHzt27MC+ffuwdOlS+Pj4YOHChVpDIHxq4sSJGDVqFDp37ozff/8dGTNmhJGREfr3759gUP3SNk8JX6ohNjYWKpUKu3fvTrDt17wuEnqOE6L5oXT16tVEX4ea921Sz+6KjY1FkSJFMGPGjATnaz5DNL5mG7Vs2RIVKlTAtm3bsG/fPkydOhV//vkntm7dijp16iRaS+vWrbFo0SLs3r0bjRs3xsaNG1GgQAG4u7snud7PsbW1RY0aNVCjRg2Ymppi5cqVOHPmjBJmEqJWq1GjRg28evUKw4YNQ4ECBWBtbY2nT5+iU6dOejm1PzVjADJgzs7OOHDgACIiIrR+od26dUuZH1dCuxju3LkDKyurr+oy/5TmV9eXlq1fvz6WLFmC48ePo3z58vHmHzt2DAEBAfjll1++uQYASpe5ra2tTscGMjIyQrVq1VCtWjXMmDEDEydOxIgRI3Do0KHP3k+rVq3Qq1cv3L59Gxs2bICVlRUaNGiQ7PV+jc2bN6Njx46YPn26Mu3du3cJjqZdu3ZtZM6cGWvWrEHp0qXx5s0brcHtMmfODBsbG6jV6u9+HBkzZoSXlxe8vLwQGRmJihUrYuzYsZ8NQJs3b0aVKlWwbNkyremhoaGwt7f/5ho075e7d+8qvVzAx12FDx480PqiTIxKpfrm+40rT548EBHkypVL6XVILnXq1IGxsTFWr14db3wvjVWrVsHExEQZv+Zb5cmTB1euXEG1atW++7mJK1u2bOjVqxd69eqFoKAgFC9eHBMmTPhsAKpYsSKyZcuGDRs2oHz58jh48CBGjBiRIvWWKFECK1euxPPnzwEk/jq5du0a7ty5g5UrV2ptk/3798drq8v60iruAjNgmkHw5s6dqzXdx8cHKpUq3ofBqVOntI6NePz4MXbs2IGaNWsm+ssLQIK7xyIiIjBz5kzY29trHVeUkCFDhsDS0hK//PILQkJCtOa9evUKPXr0gJWVFYYMGfLZ9STG09MTefLkwbRp0xAZGflV9X9JQr1aml/Jmi70xDRr1gzGxsZYt24dNm3ahPr162sNJJcc9X4tY2PjeD0ec+bMSfAYMBMTE7Rp0wYbN26Er68vihQpotWjY2xsjGbNmmHLli24fv16vOW/9nF8+ppIly4d8ubN+8XnOaHHsmnTJjx9+vSr7vdTJUqUQObMmbFw4UK8f/9eme7r6/vVl1uxtrb+rkuzNG3aFMbGxhg3bly8xyYi8Z6r7+Hk5AQvLy8cOHBAa5wfjYULF+LgwYPo0qULcuTIkaT7aNmyJZ4+fYolS5bEm/f27VtERUV90/rUanW83UBZsmSBo6PjF18vRkZGaN68Of755x+sXr0aHz580Nr99b31vnnzBqdOnUpwnuZ4zPz58wOA8nnw6WtF8zkcd9uLCGbNmhVvnYmtw5CwB8iANWjQAFWqVMGIESMQEBAAd3d37Nu3Dzt27ED//v21DiYEgMKFC6NWrVro27cvzM3NMX/+fAAfD9z7nHnz5mH79u1o0KABcubMiefPn2P58uV49OgRVq9eneggaxqurq5YuXIl2rZtiyJFisQbCTo4OBjr1q2LV+/XMjIywtKlS1GnTh0UKlQIXl5eyJ49O54+fYpDhw7B1tYW//zzzzetc/z48Th69Cjq1asHZ2dnBAUFYf78+ciRI0eCvVhxZcmSBVWqVMGMGTMQERER70M2Oer9WvXr18fq1athZ2cHNzc3nDp1CgcOHECmTJkSbN+hQwfMnj0bhw4d0tqNpzF58mQcOnQIpUuXRrdu3eDm5oZXr17h4sWLOHDgwGd3j2q4ubmhcuXK8PT0RMaMGXH+/Hls3rxZa2C+xB7L+PHj4eXlhbJly+LatWtYs2ZNko/XMTU1xR9//IFffvkFVatWRatWrfDgwQOsWLHiq9fp6emJAwcOYMaMGXB0dESuXLlQunTpr64hT548+OOPP+Dt7Y2AgAA0btwYNjY2ePDgAbZt24bu3btj8ODBSXp8CfHx8cGtW7fQq1cv7NmzR+np2bt3L3bs2IFKlSpp9RZ+q/bt22Pjxo3o0aMHDh06hHLlykGtVuPWrVvYuHEj9u7dixIlSnz1+iIiIpAjRw40b94c7u7uSJcuHQ4cOIBz5859VZ2tWrXCnDlzMGbMGBQpUiTeKPrfU++bN29QtmxZ/PTTT6hduzacnJwQGhqK7du349ixY2jcuLEycn6ePHmQPn16LFy4EDY2NrC2tkbp0qVRoEAB5MmTB4MHD8bTp09ha2uLLVu2aB0DpaH54dm3b1/UqlULxsbGaN269Vc/lz+EFD/vjPQmodMeIyIiZMCAAeLo6Cimpqbi6ur6xYEQXV1dxdzcXIoVKyaHDh364v3u27dPatSoIQ4ODmJqairp06eXmjVrip+f3zfVf/XqVWnTpo1ky5ZNTE1NxcHBQdq0aZPgOETfchq8xqVLl6Rp06aSKVMmMTc3F2dnZ2nZsqVWnZrTkT89vV2zXs3gbX5+ftKoUSNxdHQUMzMzcXR0lDZt2sidO3eUZRI6DV5jyZIlAkBsbGwSHTjya+pNSGLjACUEn5wG//r1a/Hy8hJ7e3tJly6d1KpVS27duiXOzs4Jnr4tIlKoUCExMjKSJ0+eJDj/xYsX0rt3b3FyclK2a7Vq1WTx4sVKm8S2p8jHcW9KlSol6dOnF0tLSylQoIBMmDBB3r9//9nH9u7dOxk0aJBky5ZNLC0tpVy5cnLq1Kl4gxYmdt+Jbb/58+dLrly5xNzcXEqUKPHVAyGKiNy6dUsqVqwolpaWCQ6E+KXXncaWLVukfPnyYm1tLdbW1lKgQAHp3bu33L59W2nzuYEQv0V0dLT4+PiIp6enWFtbi5WVlRQvXlxmzpyZ4Db4ltPgRT4OL/Dnn39KoUKFxNzcXDJkyCCenp4ybtw4CQsLU9ppPqMSWq/meYyOjpYhQ4aIu7u72NjYiLW1tbi7u8cbjuPT50YjNjZWnJycEhw+5Fvr/VRMTIwsWbJEGjduLM7OzmJubi5WVlZSrFgxmTp1arwxiHbs2CFubm5iYmKi9Tq8efOmVK9eXdKlSyf29vbSrVs3ZTiAuK/VDx8+yK+//iqZM2dWxmczNCqRFDyCj9IslUqF3r17x9tdRvQlxYoVQ8aMGeHn56fvUoiIFDwGiIiSzfnz53H58uVED5IlItIXHgNERDp3/fp1XLhwAdOnT0e2bNniHcdERKRv7AEiIp3bvHkzvLy8EBMTg3Xr1un1qvdERAnhMUBERERkcNgDRERERAaHAYiIiIgMDg+CTkBsbCyePXsGGxsbDhdORESURogIIiIi4OjoqFx3MDEMQAl49uzZN120joiIiFKPx48ff/ESLAxACdBcGPTx48dJuro4ERERpbzw8HA4OTlpXeA7MQxACdDs9rK1tWUAIiIiSmO+5vAVHgRNREREBocBiIiIiAwOAxAREREZHAYgIiIiMjgMQERERGRwGICIiIjI4DAAERERkcFhACIiIiKDwwBEREREBocBiIiIiAwOAxAREREZHAYgIiIiMjgMQERERGRwGICIiIjI4DAAERERkcEx0eedHz16FFOnTsWFCxfw/PlzbNu2DY0bN1bmq1SqBJebMmUKhgwZkuC8sWPHYty4cVrT8ufPj1u3bums7rg8h6xKlvUaggtTO+i7BCIiMlB67QGKioqCu7s75s2bl+D858+fa/0tX74cKpUKzZo1++x6CxUqpLXc8ePHk6N8IiIiSqP02gNUp04d1KlTJ9H5Dg4OWrd37NiBKlWqIHfu3J9dr4mJSbxliYiIiDTSzDFAL168wM6dO9GlS5cvtr179y4cHR2RO3dutG3bFo8ePfps++joaISHh2v9ERER0Y8rzQSglStXwsbGBk2bNv1su9KlS8PX1xd79uzBggUL8ODBA1SoUAERERGJLjNp0iTY2dkpf05OTroun4iIiFKRNBOAli9fjrZt28LCwuKz7erUqYMWLVqgaNGiqFWrFnbt2oXQ0FBs3Lgx0WW8vb0RFham/D1+/FjX5RMREVEqotdjgL7WsWPHcPv2bWzYsOGbl02fPj3y5cuHe/fuJdrG3Nwc5ubm31MiERERpSFpIgAtW7YMnp6ecHd3/+ZlIyMj4e/vj/bt2ydDZZSacEiC78NhCYjIkOh1F1hkZCQuX76My5cvAwAePHiAy5cvax20HB4ejk2bNqFr164JrqNatWqYO3eucnvw4ME4cuQIAgICcPLkSTRp0gTGxsZo06ZNsj4WIiIiSjv02gN0/vx5VKlSRbk9cOBAAEDHjh3h6+sLAFi/fj1EJNEA4+/vj+DgYOX2kydP0KZNG4SEhCBz5swoX748Tp8+jcyZMyffAyEiIqI0Ra8BqHLlyhCRz7bp3r07unfvnuj8gIAArdvr16/XRWlERET0A0szZ4ERERER6QoDEBERERkcBiAiIiIyOAxAREREZHAYgIiIiMjgMAARERGRwWEAIiIiIoPDAEREREQGhwGIiIiIDA4DEBERERkcBiAiIiIyOAxAREREZHAYgIiIiMjgMAARERGRwWEAIiIiIoPDAEREREQGhwGIiIiIDA4DEBERERkcBiAiIiIyOAxAREREZHAYgIiIiMjgMAARERGRwWEAIiIiIoPDAEREREQGhwGIiIiIDA4DEBERERkcBiAiIiIyOAxAREREZHAYgIiIiMjgMAARERGRwWEAIiIiIoPDAEREREQGx0TfBRDRj8dzyCp9l5CmXZjaQd8lEP3w2ANEREREBocBiIiIiAwOAxAREREZHAYgIiIiMjgMQERERGRw9BqAjh49igYNGsDR0REqlQrbt2/Xmt+pUyeoVCqtv9q1a39xvfPmzYOLiwssLCxQunRpnD17NpkeAREREaVFeg1AUVFRcHd3x7x58xJtU7t2bTx//lz5W7du3WfXuWHDBgwcOBBjxozBxYsX4e7ujlq1aiEoKEjX5RMREVEapddxgOrUqYM6dep8to25uTkcHBy+ep0zZsxAt27d4OXlBQBYuHAhdu7cieXLl2P48OHfVS8RERH9GFL9MUCHDx9GlixZkD9/fvTs2RMhISGJtn3//j0uXLiA6tWrK9OMjIxQvXp1nDp1KiXKJSIiojQgVY8EXbt2bTRt2hS5cuWCv78/fvvtN9SpUwenTp2CsbFxvPbBwcFQq9XImjWr1vSsWbPi1q1bid5PdHQ0oqOjldvh4eG6exBERESU6qTqANS6dWvl/0WKFEHRokWRJ08eHD58GNWqVdPZ/UyaNAnjxo3T2fqIiFITXpok6XhZkh9Xqt8FFlfu3Llhb2+Pe/fuJTjf3t4exsbGePHihdb0Fy9efPY4Im9vb4SFhSl/jx8/1mndRERElLqkqQD05MkThISEIFu2bAnONzMzg6enJ/z8/JRpsbGx8PPzQ5kyZRJdr7m5OWxtbbX+iIiI6Mel1wAUGRmJy5cv4/LlywCABw8e4PLly3j06BEiIyMxZMgQnD59GgEBAfDz80OjRo2QN29e1KpVS1lHtWrVMHfuXOX2wIEDsWTJEqxcuRL//fcfevbsiaioKOWsMCIiIiK9HgN0/vx5VKlSRbk9cOBAAEDHjh2xYMECXL16FStXrkRoaCgcHR1Rs2ZN/P777zA3N1eW8ff3R3BwsHK7VatWePnyJUaPHo3AwEB4eHhgz5498Q6MJiIiIsOl1wBUuXJliEii8/fu3fvFdQQEBMSb1qdPH/Tp0+d7SiMiIqIfWJo6BoiIiIhIFxiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHBMdF3AURERIbCc8gqfZeQZl2Y2kGn62MPEBERERkcBiAiIiIyOAxAREREZHD0GoCOHj2KBg0awNHRESqVCtu3b1fmxcTEYNiwYShSpAisra3h6OiIDh064NmzZ59d59ixY6FSqbT+ChQokMyPhIiIiNISvQagqKgouLu7Y968efHmvXnzBhcvXsSoUaNw8eJFbN26Fbdv30bDhg2/uN5ChQrh+fPnyt/x48eTo3wiIiJKo/R6FlidOnVQp06dBOfZ2dlh//79WtPmzp2LUqVK4dGjR8iZM2ei6zUxMYGDg4NOayUiIqIfR5o6BigsLAwqlQrp06f/bLu7d+/C0dERuXPnRtu2bfHo0aPPto+OjkZ4eLjWHxEREf240kwAevfuHYYNG4Y2bdrA1tY20XalS5eGr68v9uzZgwULFuDBgweoUKECIiIiEl1m0qRJsLOzU/6cnJyS4yEQERFRKpEmAlBMTAxatmwJEcGCBQs+27ZOnTpo0aIFihYtilq1amHXrl0IDQ3Fxo0bE13G29sbYWFhyt/jx491/RCIiIgoFUn1I0Frws/Dhw9x8ODBz/b+JCR9+vTIly8f7t27l2gbc3NzmJubf2+pRERElEak6h4gTfi5e/cuDhw4gEyZMn3zOiIjI+Hv749s2bIlQ4VERESUFuk1AEVGRuLy5cu4fPkyAODBgwe4fPkyHj16hJiYGDRv3hznz5/HmjVroFarERgYiMDAQLx//15ZR7Vq1TB37lzl9uDBg3HkyBEEBATg5MmTaNKkCYyNjdGmTZuUfnhERESUSul1F9j58+dRpUoV5fbAgQMBAB07dsTYsWPx999/AwA8PDy0ljt06BAqV64MAPD390dwcLAy78mTJ2jTpg1CQkKQOXNmlC9fHqdPn0bmzJmT98EQERFRmqHXAFS5cmWISKLzPzdPIyAgQOv2+vXrv7csIiIi+sGl6mOAiIiIiJIDAxAREREZHAYgIiIiMjgMQERERGRwGICIiIjI4DAAERERkcFhACIiIiKDwwBEREREBocBiIiIiAwOAxAREREZHAYgIiIiMjgMQERERGRwGICIiIjI4DAAERERkcFhACIiIiKDwwBEREREBocBiIiIiAxOkgJQ1apVERoaGm96eHg4qlat+r01ERERESWrJAWgw4cP4/379/Gmv3v3DseOHfvuooiIiIiSk8m3NL569ary/5s3byIwMFC5rVarsWfPHmTPnl131RERERElg28KQB4eHlCpVFCpVAnu6rK0tMScOXN0VhwRERFRcvimAPTgwQOICHLnzo2zZ88ic+bMyjwzMzNkyZIFxsbGOi+SiIiISJe+KQA5OzsDAGJjY5OlGCIiIqKU8E0B6FM3b97Eo0eP4h0Q3bBhw+8qioiIiCg5JSkA3b9/H02aNMG1a9egUqkgIgAAlUoF4OMB0URERESpVZJOg+/Xrx9y5cqFoKAgWFlZ4caNGzh69ChKlCiBw4cP67hEIiIiIt1KUg/QqVOncPDgQdjb28PIyAhGRkYoX748Jk2ahL59++LSpUu6rpOIiIhIZ5LUA6RWq2FjYwMAsLe3x7NnzwB8PEj69u3buquOiIiIKBkkqQeocOHCuHLlCnLlyoXSpUtjypQpMDMzw+LFi5E7d25d10hERESkU0kKQCNHjkRUVBQAYPz48ahfvz4qVKiATJkyYf369TotkIiIiEjXkhSAatWqpfw/b968uHXrFl69eoUMGTIoZ4IRERERpVZJOgaoc+fOiIiI0JqWMWNGvHnzBp07d9ZJYURERETJJUkBaOXKlXj79m286W/fvsWqVau+uygiIiKi5PRNu8DCw8MhIhARREREwMLCQpmnVquxa9cuZMmSRedFEhEREenSNwWg9OnTK1eDz5cvX7z5KpUK48aN01lxRERERMnhmwLQoUOHICKoWrUqtmzZgowZMyrzzMzM4OzsDEdHR50XSURERKRL3xSAKlWqBAB48OABcubMyTO+iIiIKE1K0kHQ//33H06cOKHcnjdvHjw8PPDzzz/j9evXOiuOiIiIKDkkKQANGTIE4eHhAIBr165h4MCBqFu3Lh48eICBAwfqtEAiIiIiXUtSAHrw4AHc3NwAAFu2bEGDBg0wceJEzJs3D7t37/7q9Rw9ehQNGjSAo6MjVCoVtm/frjVfRDB69Ghky5YNlpaWqF69Ou7evfvF9c6bNw8uLi6wsLBA6dKlcfbs2W96fERERPRjS1IAMjMzw5s3bwAABw4cQM2aNQF8HAxR0zP0NaKiouDu7o558+YlOH/KlCmYPXs2Fi5ciDNnzsDa2hq1atXCu3fvEl3nhg0bMHDgQIwZMwYXL16Eu7s7atWqhaCgoG94hERERPQjS9KlMMqXL4+BAweiXLlyOHv2LDZs2AAAuHPnDnLkyPHV66lTpw7q1KmT4DwRwcyZMzFy5Eg0atQIALBq1SpkzZoV27dvR+vWrRNcbsaMGejWrRu8vLwAAAsXLsTOnTuxfPlyDB8+/FseJhEREf2gktQDNHfuXJiYmGDz5s1YsGABsmfPDgDYvXs3ateurZPCHjx4gMDAQFSvXl2ZZmdnh9KlS+PUqVMJLvP+/XtcuHBBaxkjIyNUr1490WUAIDo6GuHh4Vp/RERE9ONKUg9Qzpw58e+//8ab7uPjo3V78uTJ6NGjB9KnT//N9xEYGAgAyJo1q9b0rFmzKvM+FRwcDLVaneAyt27dSvS+Jk2axAEciYiIDEiSeoC+1sSJE/Hq1avkvAud8Pb2RlhYmPL3+PFjfZdEREREyShZA5CIJHlZBwcHAMCLFy+0pr948UKZ9yl7e3sYGxt/0zIAYG5uDltbW60/IiIi+nElawD6Hrly5YKDgwP8/PyUaeHh4Thz5gzKlCmT4DJmZmbw9PTUWiY2NhZ+fn6JLkNERESGJ0nHAOlKZGQk7t27p9x+8OABLl++jIwZMyJnzpzo378//vjjD7i6uiJXrlwYNWoUHB0d0bhxY2WZatWqoUmTJujTpw8AYODAgejYsSNKlCiBUqVKYebMmYiKilLOCiMiIiLSawA6f/48qlSpotzWjCLdsWNH+Pr6YujQoYiKikL37t0RGhqK8uXLY8+ePbCwsFCW8ff3R3BwsHK7VatWePnyJUaPHo3AwEB4eHhgz5498Q6MJiIiIsOl1wBUuXLlzx4npFKpMH78eIwfPz7RNgEBAfGm9enTR+kRIiIiIvpUsh4DVKFCBVhaWibnXRARERF9syQHIH9/f4wcORJt2rRRLjOxe/du3LhxQ2mza9cuZMuW7furJCIiItKhJAWgI0eOoEiRIjhz5gy2bt2KyMhIAMCVK1cwZswYnRZIREREpGtJCkDDhw/HH3/8gf3798PMzEyZXrVqVZw+fVpnxRERERElhyQFoGvXrqFJkybxpmfJkkXrjCwiIiKi1ChJASh9+vR4/vx5vOmXLl1SLoxKRERElFolKQC1bt0aw4YNQ2BgIFQqFWJjY3HixAkMHjwYHTp00HWNRERERDqVpAA0ceJEFChQAE5OToiMjISbmxsqVqyIsmXLYuTIkbqukYiIiEinkjQQopmZGZYsWYLRo0fj2rVriIyMRLFixeDq6qrr+oiIiIh07rtGgnZycoKTkxPUajWuXbuG169fI0OGDLqqjYiIiChZJGkXWP/+/bFs2TIAgFqtRqVKlVC8eHE4OTnh8OHDuqyPiIiISOeSFIA2b94Md3d3AMA///yD+/fv49atWxgwYABGjBih0wKJiIiIdC1JASg4OBgODg4APl7uomXLlsiXLx86d+6Ma9eu6bRAIiIiIl1LUgDKmjUrbt68CbVajT179qBGjRoAgDdv3sDY2FinBRIRERHpWpIOgvby8kLLli2RLVs2qFQqVK9eHQBw5swZFChQQKcFEhEREelakgLQ2LFjUbhwYTx+/BgtWrSAubk5AMDY2BjDhw/XaYFEREREupbk0+CbN28eb1rHjh2/qxgiIiKilJDkAOTn5wc/Pz8EBQUhNjZWa97y5cu/uzAiIiKi5JKkADRu3DiMHz8eJUqUUI4DIiIiIkorkhSAFi5cCF9fX7Rv317X9RAREREluySdBv/+/XuULVtW17UQERERpYgkBaCuXbti7dq1uq6FiIiIKEUkaRfYu3fvsHjxYhw4cABFixaFqamp1vwZM2bopDgiIiKi5JCkAHT16lV4eHgAAK5fv641jwdEExERUWqXpAB06NAhXddBRERElGKSdAyQxr1797B37168ffsWACAiOimKiIiIKDklKQCFhISgWrVqyJcvH+rWrYvnz58DALp06YJBgwbptEAiIiIiXUtSABowYABMTU3x6NEjWFlZKdNbtWqFPXv26Kw4IiIiouSQpGOA9u3bh7179yJHjhxa011dXfHw4UOdFEZERESUXJLUAxQVFaXV86Px6tUr5crwRERERKlVkgJQhQoVsGrVKuW2SqVCbGwspkyZgipVquisOCIiIqLkkKRdYFOmTEG1atVw/vx5vH//HkOHDsWNGzfw6tUrnDhxQtc1EhEREelUknqAChcujDt37qB8+fJo1KgRoqKi0LRpU1y6dAl58uTRdY1EREREOvXVPUBNmzaFr68vbG1tsWrVKrRq1QojRoxIztqIiIiIksVX9wD9+++/iIqKAgB4eXkhLCws2YoiIiIiSk5f3QNUoEABeHt7o0qVKhARbNy4Eba2tgm27dChg84KJCIiItK1rw5ACxYswKBBg7Bz506oVCqMHDkywQufqlQqBiAiIiJK1b46AJUrVw6nT58GABgZGeHOnTvIkiVLshVGRERElFy++higpk2bIjw8HACwYsUK2NjYJFtRcbm4uEClUsX76927d4LtfX1947W1sLBIkVqJiIgobfjqHiDNQdC2trbo3Lkz6tSpA0tLy+SsDQBw7tw5qNVq5fb169dRo0YNtGjRItFlbG1tcfv2beV2QrvqiIiIyHCl+oOgM2fOrHV78uTJyJMnDypVqpToMiqVCg4ODjqrgYiIiH4sXx2AFi5ciIEDB+r1IOj379/jr7/+wsCBAz/bqxMZGQlnZ2fExsaiePHimDhxIgoVKpQsNREREVHa89UBqGzZsloHQd++fRtZs2ZNtsISsn37doSGhqJTp06JtsmfPz+WL1+OokWLIiwsDNOmTUPZsmVx48aNeFev14iOjkZ0dLRyW3OsExEREf2YknQtsAcPHsDMzAzTp0/Hf//9BwAoVKgQunTpkuhuMV1YtmwZ6tSpA0dHx0TblClTBmXKlFFuly1bFgULFsSiRYvw+++/J7jMpEmTMG7cOJ3XS0RERKlTkq4F9vLlS+TNmxc+Pj549eoVXr16hRkzZiB37ty4cOGCrmsEADx8+BAHDhxA165dv2k5U1NTFCtWDPfu3Uu0jbe3N8LCwpS/x48ff2+5RERElIolqQdowIABaNiwIZYsWQITk4+r+PDhA7p27YoBAwbg6NGjOi0S+HjqfZYsWVCvXr1vWk6tVuPatWuoW7duom3Mzc1hbm7+vSUSERFRGpGkAHT+/Hmt8AMAJiYmGDp0KEqUKKGz4jRiY2OxYsUKdOzYUes+gY9nnGXPnh2TJk0CAIwfPx4//fQT8ubNi9DQUEydOhUPHz785p4jIiIi+nElKQDZ2tri0aNHKFCggNb0x48fJ8sAiQcOHMCjR4/QuXPnePMePXoEI6P/7cl7/fo1unXrhsDAQGTIkAGenp44efIk3NzcdF4XERERpU1JCkCtWrVCly5dlDOsAODEiRMYMmQI2rRpo9MCAaBmzZoQkQTnHT58WOu2j48PfHx8dF4DERER/TiSFICmTZumjPfz4cMHAB8PNu7ZsycmT56s0wKJiIiIdC1JAcjMzAyzZs3CpEmT4O/vDwDIkycPrKysdFocERERUXJIUgDSsLKyQpEiRXRVCxEREVGKSNI4QERERERpGQMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcFJ9ABo7dixUKpXWX4ECBT67zKZNm1CgQAFYWFigSJEi2LVrVwpVS0RERGlBqg9AAFCoUCE8f/5c+Tt+/HiibU+ePIk2bdqgS5cuuHTpEho3bozGjRvj+vXrKVgxERERpWZpIgCZmJjAwcFB+bO3t0+07axZs1C7dm0MGTIEBQsWxO+//47ixYtj7ty5KVgxERERpWZpIgDdvXsXjo6OyJ07N9q2bYtHjx4l2vbUqVOoXr261rRatWrh1KlTiS4THR2N8PBwrT8iIiL6caX6AFS6dGn4+vpiz549WLBgAR48eIAKFSogIiIiwfaBgYHImjWr1rSsWbMiMDAw0fuYNGkS7OzslD8nJyedPgYiIiJKXVJ9AKpTpw5atGiBokWLolatWti1axdCQ0OxceNGnd2Ht7c3wsLClL/Hjx/rbN1ERESU+pjou4BvlT59euTLlw/37t1LcL6DgwNevHihNe3FixdwcHBIdJ3m5uYwNzfXaZ1ERESUeqX6HqBPRUZGwt/fH9myZUtwfpkyZeDn56c1bf/+/ShTpkxKlEdERERpQKoPQIMHD8aRI0cQEBCAkydPokmTJjA2NkabNm0AAB06dIC3t7fSvl+/ftizZw+mT5+OW7duYezYsTh//jz69Omjr4dAREREqUyq3wX25MkTtGnTBiEhIcicOTPKly+P06dPI3PmzACAR48ewcjofzmubNmyWLt2LUaOHInffvsNrq6u2L59OwoXLqyvh0BERESpTKoPQOvXr//s/MOHD8eb1qJFC7Ro0SKZKiIiIqK0LtXvAiMiIiLSNQYgIiIiMjgMQERERGRwGICIiIjI4DAAERERkcFhACIiIiKDwwBEREREBocBiIiIiAwOAxAREREZHAYgIiIiMjgMQERERGRwGICIiIjI4DAAERERkcFhACIiIiKDwwBEREREBocBiIiIiAwOAxAREREZHAYgIiIiMjgMQERERGRwGICIiIjI4DAAERERkcFhACIiIiKDwwBEREREBocBiIiIiAwOAxAREREZHAYgIiIiMjgMQERERGRwGICIiIjI4DAAERERkcFhACIiIiKDwwBEREREBocBiIiIiAwOAxAREREZHAYgIiIiMjgMQERERGRwGICIiIjI4DAAERERkcFhACIiIiKDwwBEREREBifVB6BJkyahZMmSsLGxQZYsWdC4cWPcvn37s8v4+vpCpVJp/VlYWKRQxURERJTapfoAdOTIEfTu3RunT5/G/v37ERMTg5o1ayIqKuqzy9na2uL58+fK38OHD1OoYiIiIkrtTPRdwJfs2bNH67avry+yZMmCCxcuoGLFiokup1Kp4ODgkNzlERERURqU6nuAPhUWFgYAyJgx42fbRUZGwtnZGU5OTmjUqBFu3LiRaNvo6GiEh4dr/REREdGPK00FoNjYWPTv3x/lypVD4cKFE22XP39+LF++HDt27MBff/2F2NhYlC1bFk+ePEmw/aRJk2BnZ6f8OTk5JddDICIiolQgTQWg3r174/r161i/fv1n25UpUwYdOnSAh4cHKlWqhK1btyJz5sxYtGhRgu29vb0RFham/D1+/Dg5yiciIqJUItUfA6TRp08f/Pvvvzh69Chy5MjxTcuampqiWLFiuHfvXoLzzc3NYW5urosyiYiIKA1I9T1AIoI+ffpg27ZtOHjwIHLlyvXN61Cr1bh27RqyZcuWDBUSERFRWpPqe4B69+6NtWvXYseOHbCxsUFgYCAAwM7ODpaWlgCADh06IHv27Jg0aRIAYPz48fjpp5+QN29ehIaGYurUqXj48CG6du2qt8dBREREqUeqD0ALFiwAAFSuXFlr+ooVK9CpUycAwKNHj2Bk9L/OrNevX6Nbt24IDAxEhgwZ4OnpiZMnT8LNzS2lyiYiIqJULNUHIBH5YpvDhw9r3fbx8YGPj08yVURERERpXao/BoiIiIhI1xiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHBYQAiIiIig8MARERERAaHAYiIiIgMTpoIQPPmzYOLiwssLCxQunRpnD179rPtN23ahAIFCsDCwgJFihTBrl27UqhSIiIiSgtSfQDasGEDBg4ciDFjxuDixYtwd3dHrVq1EBQUlGD7kydPok2bNujSpQsuXbqExo0bo3Hjxrh+/XoKV05ERESpVaoPQDNmzEC3bt3g5eUFNzc3LFy4EFZWVli+fHmC7WfNmoXatWtjyJAhKFiwIH7//XcUL14cc+fOTeHKiYiIKLVK1QHo/fv3uHDhAqpXr65MMzIyQvXq1XHq1KkElzl16pRWewCoVatWou2JiIjI8Jjou4DPCQ4OhlqtRtasWbWmZ82aFbdu3UpwmcDAwATbBwYGJno/0dHRiI6OVm6HhYUBAMLDw79Yozr67RfbUMK+5vn9FtwW30eX24Pb4vvwvZF6cFukHl+zLTRtROSLbVN1AEopkyZNwrhx4+JNd3Jy0kM1hsNuTg99l0BxcHukHtwWqQe3RerxLdsiIiICdnZ2n22TqgOQvb09jI2N8eLFC63pL168gIODQ4LLODg4fFN7APD29sbAgQOV27GxsXj16hUyZcoElUr1HY9Av8LDw+Hk5ITHjx/D1tZW3+UYNG6L1IPbIvXgtkhdfoTtISKIiIiAo6PjF9um6gBkZmYGT09P+Pn5oXHjxgA+hhM/Pz/06dMnwWXKlCkDPz8/9O/fX5m2f/9+lClTJtH7MTc3h7m5uda09OnTf2/5qYatrW2afTH/aLgtUg9ui9SD2yJ1Sevb40s9PxqpOgABwMCBA9GxY0eUKFECpUqVwsyZMxEVFQUvLy8AQIcOHZA9e3ZMmjQJANCvXz9UqlQJ06dPR7169bB+/XqcP38eixcv1ufDICIiolQk1QegVq1a4eXLlxg9ejQCAwPh4eGBPXv2KAc6P3r0CEZG/zuZrWzZsli7di1GjhyJ3377Da6urti+fTsKFy6sr4dAREREqUyqD0AA0KdPn0R3eR0+fDjetBYtWqBFixbJXFXqZ25ujjFjxsTbvUcpj9si9eC2SD24LVIXQ9seKvmac8WIiIiIfiCpeiBEIiIiouTAAEREREQGhwGIiIiIDA4DEFEaExUVpe8SiIjSPAYg0qnY2Fjl/zy+XvcmT56MLl264NmzZ/ouhYgoyeJ+V+gLAxDplGZMpuXLl+PUqVMAGIR0ycPDAxs3bsS4cePw/PlzfZdDX/Dpa5/vhdRBsx3u3LmDx48fc7uksNjYWOW74urVq/EuX5VSGIBIp0QEarUaY8aMwcqVKwEgTV9PLTWJjY1F7dq14efnh+XLl2P06NEMQalYbGys8tp/8uQJ3rx5wy/aVEBEoFKpsH37dtSqVQu7d+9GSEiIvssyGHHDz8iRI9GjRw+cO3cOb9++TfFaGIBIp0QExsbGmDp1Kk6fPo2LFy/qu6QfhkqlgoigSpUq2LVrF1asWMEQlIppPuRHjx6Nhg0bonDhwpgyZQru3Lmj58oMm0qlwr///ot27dph0KBBaNCgAezt7fVdlsGIG36WLl2KkSNHokKFCrC0tEz5WlL8HumH8ukvWs2Lu2jRovjw4QPOnDkDIHXs703rVCoVHj9+jIiICNSoUQO7d+9mCEqF4r7W//rrLyxatAiDBg1C7dq1sWXLFvzxxx+4fv26His0bJGRkZg5cyb69euHPn36IEOGDHj+/DkWLVqEv//+Wy89EYbm6tWr2LBhA9auXYu6detCpVLh9u3b8PX1xaFDh1KsDgYgSjJNVzIAbNmyBb6+vsp0Nzc3tGnTBhMmTMDTp0+1rtdGSXPt2jU0bNgQy5cvZwhKxTSv9ZMnT+LcuXOYOXMm2rZti/nz56NPnz64f/8+Jk+ejBs3bui5UsMVExOD9OnT486dOxg1ahTatWuHYcOGYdy4cZgwYQJ3VSYzExMTWFlZISYmBidPnoS3tzeaNGmCP/74A507d8bff/+dInXwW4mSJG74Wb16NbZu3Yo+ffqgSZMmmD17Nt6/f48OHTogX758SqJnL9D3KVSoEPLmzYu1a9fir7/+iheCxo0bh6dPn+q7TAJw4sQJtG/fHn/99Rc+fPigTO/YsSO6deuGhw8fYsqUKbh8+bL+ijRQ6dKlg5ubG6ZPn47ixYvjwYMHaNeuHZ4+fYoCBQrg0aNHPG5RhxL63Le3t4e5uTlGjBiBSpUqQaVS4c8//8S+ffuQOXPmFDsoOk1cDJVSl7jhZ9SoUdi3bx9WrFiBsWPHYsKECVi7di1mz56NkSNHIjAwEJs3b0a7du3YC/SN4j7PwMeehY0bN6Jjx45YsmQJAKBdu3aoUaMG9uzZg5o1a8Lc3BwzZsyAsbGxvso2SJ9uq3LlyqFXr16YOXMmduzYgYoVK8LZ2RnAxxBkZGSEP/74A3///Tc8PDz0VPWPT7Ndnj59ipiYGIgIcuXKhQULFqB+/fowMjJCnTp1oFarYWxsDGtra3z48AExMTEwMTFhEPpOcQ94PnDgAAIDA2FjY4OaNWviwIEDOHr0KGxtbVGhQgXludYc65gihCiJzp49Kw0aNJATJ04o06KjoyU8PFwGDRokrVu3lkyZMolKpZINGzbosdK069SpU7Jt2zaJiYlRpqnVamnXrp0UKFBAFi1aJBERESIicvDgQbl586a+SjVYarVa+f/79++V7SEiMmPGDClatKgMGjRIHj16pLXcrl275MOHDylWp6GJjY0VEZHt27dLiRIlJHv27FKpUiXx9vaO1/bp06fy22+/iZ2dndy4cSOlS/3hDR06VHLkyCGVKlWSAgUKSPny5WX37t3K/KioKHny5InUrl1bihUrlmLvCwYg+mpxP+hXrVoltWvXlkqVKkl4eLiISLwX7aNHj2TPnj2SP39+6dKlS4rW+iNQq9VSuXJlKViwoOzYsUMrBImIlC1bVtzc3GTatGnKNqCUFfc9MWPGDKlXr5789NNP0qVLFwkJCRERkSlTpkixYsUSDEEi8d83pDs7d+4Ua2trmTVrlly8eFHGjx8vKpVK+vXrp7TZt2+fVKpUSfLnzy+XLl3SW60/quXLl4ujo6OcOnVKRESmTp0qFhYW8u+//4rIx6A6depUKV++vFSoUEHev38vIinzvmAAoq+i+TUlInL+/HmZPn26uLq6Svr06ZUX9qdtNf8eOHBALC0t5erVqylX8A8iIiJCatasKSVLlpRt27YpHw4iIsOGDZOMGTNKzZo15dWrV3qskry9vcXBwUGmT58ue/bsESMjI2nYsKFERUWJiMiff/4pJUqUkC5dusiLFy/0XK1hePr0qdSoUUNmzZolIiIvX74UJycnqVy5smTIkEH69u2rtN2wYYM8ePBAT5X+2Pr37y+9e/cWEZHNmzeLra2tLFiwQEQ+9vy8fv1aXr58KcuXL1dCz6c/9pILAxB9UdxfuYMGDZLs2bNLWFiYbN68Wdzc3KRly5aJ/nJSq9USHBwsHh4ecvz48RSqOG3SBMaYmBitwBkRESFVqlSRUqVKydatWyU6OlpEPgagLVu2yLNnz/RSL310/fp1cXNzEz8/PxEROXz4sFhZWcnixYu12nl7e0unTp20ti0ln5iYGJk4caLcvn1bnj9/LgULFpQePXrI69evpXv37qJSqaRz5876LvOHpfne6NatmyxatEhOnDgh6dKlU8LPhw8fZPHixbJkyRKt5VKyR5QBiL7ay5cv5ddff5V9+/Yp09asWSOenp7i5eUlly9fTnC5OXPmiEqlkocPH6ZUqWmO5ktx79698ssvv0ilSpVk8eLFcuXKFRH5GIJq1KghJUuWlPr160vHjh3F2tqav1pTWPfu3eXs2bNa006cOCFubm4i8vF4k3Tp0snChQtFRCQ0NFTr+DfNdo77o4KSj+bLdMqUKVKvXj15+fKliIhMmzZN3N3dpXDhwvL06VOGUh1I7DXt4+MjKpVKTE1NZf369cr0sLAwqVatmowaNSqlSoyHp+XQV1m1ahWyZMkCPz8/ZMuWTZn+888/Y8CAAbh27RrmzJmD8+fPx1u2VKlSuHz5MnLmzJmSJacpmqH5mzRpAgsLC7i5ucHX1xdjx47FmTNnkC5dOmzfvh316tWDpaUlQkNDcerUKbi4uOi7dIMRHR2Nc+fOoUWLFlqnrzs5OcHU1BSjR49Ghw4dMG3aNPzyyy8AgFu3bmHOnDm4cOECgP+d4cIzInVL/v+soVu3bsHPz085jVpzNuS1a9cQHh6ujPj8/PlztGrVCqdOnYKjoyPP9vpOn57ttXPnTmXE8/79+8PLywtmZmbIly8fXr58iQcPHqBly5YICwvD6NGj9Ve43qIXpWqfpvnbt29LgwYNxNTUVNmVFfd4lDVr1oiTk5NMmDAhRetMixL6tXnp0iXJkyeP0h0cHh4u6dOnlzx58kjdunWVXgfNdnn37l3KFUyKqKgoqVmzpuTIkUMuXboksbGxEhoaKu3btxdra2vp37+/0vbdu3dSv359adKkCXt8UsDWrVvF1tZWnJ2dxc7OThYsWCDPnz8XEZG1a9eKk5OTtG/fXry8vMTOzk5u376t54p/PIMHD5asWbOKjY2NlC1bVqZOnSoiIv7+/tKkSRMxNzcXFxcXKVasmJQrVy5FD3hOCAMQfdbBgwclMjJSRETu3bsnlStXFicnJ3n8+LGIaIegvXv38oyWL9B8EYaGhoq/v7/yPF66dEl69uwpMTExEhAQILlz55YePXrIunXrJFOmTFK/fn05efKkPks3aHFf148fPxZ3d3cpXry4cuzbiRMnpGzZslK2bFkZO3as+Pj4SLVq1aRw4cLKe4QhKHmo1WoJCQmRihUrysKFC+Xp06cybNgwyZ49u0ycOFGCg4Pl9evX4uPjI+XKlZO6desmuruevk3cH3O3b9+WsmXLyqVLl+TmzZvSu3dvKVWqlIwfP15ps3v3btm2bZscOnRIeT+k1AHPCWEAokTdvHlTVCqVDBo0SDmb5f79+1K+fHlxcXGRJ0+eiIh2CBLhab2J0bzhr1+/LqVKlRIXFxextLSU0aNHy/379+XZs2cSGxsrLVq0kA4dOijPa4UKFcTBwUFatWolb9++1edDMHjDhg2TunXrSunSpcXU1FRy5cqlhKCjR4/KkCFDxMXFRerUqSPdunVTPtz1+SH/o9J8+b59+1bev38vAwYMkKCgIGX+2LFjJUeOHDJhwgQJDQ1Vpms+y+j7xA30UVFRcvv2bWnZsqVykkZISIgMHjxYSpYsKWPGjPniOvSBAYg+a+3atWJmZiZDhw7VCkEVKlSQPHny8MDmr6QJhVeuXBFra2vp16+frFu3Tvr37y8qlUo5Vff169dStGhR5SDaqKgoad++vfz555/y9OlTvdVPIgsXLhRbW1s5ffq0BAQEyIULF6RixYrK7jANTY+pBsNP8tm+fbtUq1ZNChQoIEWKFIm3W2vs2LHi4uIiI0eO5NmSyWTs2LHi7u4upUqVknLlymnN04SgMmXKaO0eTi0YgOiL1q1bJ0ZGRvFCUP78+aVZs2Z6ri7tuH79ulhZWcnQoUO1ptevX1/c3NwkIiJCQkJCpFq1atKlSxc5fPiwjBo1Stzc3Dh2jB58+ut08ODB0rRpU61pL1++lNKlS0uBAgUS3K3Cs4uSz8WLF8XKykoGDBggLVu2lEyZMkm3bt3k/v37Wu2GDh0qhQsXluDgYD1V+mOJ+75YsWKFZMiQQaZMmSJNmzaV9OnTS48ePbTav3r1Srp16ybdunVLde8HBiDSMnHiROXAtbjWrl0rRkZGMnLkSAkLCxMRkWfPnnF31zeYNGmSqFQq2bRpk7x580Z57oYOHSrlypVTuunnz58vnp6eki1bNsmVK5dcuHBBn2UbvEWLFkl0dLQMGDBA8ufPr0zX9OwsXbpUVCqVZMiQQe7cuaOvMg3K9evX5Y8//tA66WLGjBlSvHhx6devX7zhITSnv5Pu7NixQxYvXiybNm0SkY+ntU+bNk2KFi2qDHyoER4eHm+A3NSAAcjA3b9/X06fPq10248dO1ZUKpXMnz9faaN5wfbq1UtMTEykX79+WseiMAR9vX79+omFhYUsW7ZMRERevHghdnZ2MmnSJK12t2/flitXrrDbXg/ifkDPnDlTzM3N5fr163LhwgVxdXWVkSNHarXfuXOn9OrVSwYNGsT3Qgp4/PixVKtWTezt7eNti+nTp0uxYsVk4MCBcu/ePT1V+OO7ceOGpE+fXoyNjbXG9nn16pUSgn799dd4y6Wm8CPCAGTQ1q1bJ+XKlZOSJUtq9fpMmzZNjIyMZO7cuVrtx40bJ9WrV5fy5cunuhdyahf3i/HXX38VKysrmT59ujg7O0uvXr2UeTxeJPU4fvy49O3bV7lmUXh4uIwaNUp++ukn6d+/v4SGhsq9e/ekbt26WteWYghKfosWLRJ3d3cpUqSI+Pv7a83z8fERFxcX8fb25vspmYSHh8vq1avFxcVFGjVqpDXv9evXMmPGDMmSJYtMnz5dPwV+JQYgA7V8+XKxsbGRVatWJXgg85QpU8TY2Fhmz54tz549k5iYGGnatKkcOHBAacMQ9G3ifjH27dtXVCqVVK5cWbl6OJ/P1GPnzp1SuHBhyZEjh5w/f16Z/uLFC5k8ebK4urqKlZWVuLi4iLu7e7wzIUl3EntfrFq1SsqUKSOtWrWSu3fvas2bO3duvGOBKGkSO1MrLCxM1qxZI1mzZpW2bdtqzQsJCZF169al+h8DKpH/H0KTDMbZs2fRunVrjBkzBh07dlSmi4jWiKhz5sxB//794ebmhujoaJibm+PSpUswMTGJ15a+jlqtVkanHTZsGGbPno3FixejRYsWsLCw0HN1pHH37l1MnjwZGzZsQL9+/TBhwgRl3vv376FWq7F//37Y2NigYsWKMDY2xocPH2BiYqLHqn88ms+Zw4cP4++//0ZMTAzy5MmD/v37AwBWrlyJZcuWIVu2bJg4cSLy5Mmj34J/MHFHeN66dSsePnwIlUqFli1bwtHREREREfjnn38wdOhQVKlSBatXr463jrifeamOXuMX6cXixYulRIkSyrgzn4o7bc+ePTJ9+nSZNm2a0p2c2lN9ahf3+evTp4/Y2NjIokWLOMaPniT2CzcgIEC6desmHh4eMnv2bGV6QrtV+J5IPlu3bhVLS0tp0qSJ1K1bV6ytraVGjRrKOGRLly6VqlWrSu3atdnro0NxvweGDh0qLi4uUrZsWalatarkyJFDbt26JSIfd4etXbtWcubMKXXr1tVXuUnCAGSA2rZtK6VLl/5sm9u3b0t4eHi86fyg/zLNB8fdu3e1BmCLK+7z2KlTJ3FwcEi0LSWfuOHnxIkTsm3bNjl79qyyLe7evStdu3aVn376SebMmZPgcpR8nj59Kvny5RMfHx9l2p07dyRnzpxSq1YtZdrcuXOlXr16Sigi3ZkzZ444OjrKuXPnROTjqe8qlUrs7e2VM1TDw8Nl6dKl0qhRozT13mAAMkBjx44VR0fHRE/ZVavV0qxZM/n9999TuLK0TxN+tm/fLrlz55YlS5Yox/h8Km4ICgwMTJH66H/i/sIdNmyYuLq6iqOjo5QrV05+/vlnZZvcuXNHunXrJuXKlYt3th4lr4CAAMmVK5ecOnVKRP7X+/bff/+JtbW1LFq0SGnLHxC6ERISovw/KChIevXqJX/99ZeIiPzzzz9iY2MjkydPltq1a0vWrFnl2rVrIqI9wnZaCUG8JLEBKly4MJ4/f45t27YhIiIi3vyQkBCICNzc3PRQXdqkVqsBfLza9z///IOff/4Z/fv3R/Xq1ZEuXTqttvL/h90ZGxsjNjYWAJAlS5aULZiUY9imTJmCVatWYdmyZXj69ClKly6NrVu3omPHjnj27BlcXV0xdOhQZMuWDQ8ePFC2HyW/dOnSISQkBBcvXgQAmJiYQK1WI0+ePPDw8MCzZ8+UtnZ2dvoq84exe/dutG/fHidPngQAZM6cGa1atUK5cuVw/fp19OvXD5MnT8awYcPw888/IygoCEWLFsWtW7dgZWWlrEdz3FCqp+cARnrSs2dPsbS0lJkzZyqXWNBcVLB+/fpStWpV7u76Cjt27NC6HRYWJhUrVpRx48aJyMcrggcHB4uvr6+cOHEi0d4g0o/79+9L5cqVZevWrSLy8Zi3dOnSSZcuXaRo0aJSt25dpSfo8ePHyi9bnrGnW2q1WnlONdeS0hg8eLB4eHjItm3btKZXrVqVvdQ6du7cOcmRI4c0b95cTpw4oTVv1apVUrVqVaWnbefOndK9e3eZMGFCmh1ugAHIwGg+ZF68eCFeXl6iUqmkYsWKMnr0aOnevbtUrFhR67RehqDE7d+/X0qUKKF1ja7AwEBxc3OTFStWyNOnT8Xb21sqVaokVlZW4u7uLvPmzZPY2Fh+gerJxo0bZciQIVof2H///bc8fvxYTp8+LY6Ojsp12Hr27CkqlUqKFSumdSmStNK9nxZcvnxZGVle5OPVwr28vKR58+Zy+PBheffundy+fVvatGkjhQoVkqlTp8rOnTtlwIABYmdnx5G3dUjzur548aLky5dPmjRpoux6FPk4PpyZmZkEBQVJWFiYNGzYUPr27avMT4shiAHIwM2dO1eqV68uOXLkkHr16smoUaN4BeuvFBwcrHwx/vfff8r0jh07iq2trWTIkEGaNm0qCxculHfv3kmNGjWkS5cu+iqX5OOvWJVKJaNGjYrX0zBixAhp166dMn3GjBlSu3Zt8fb25g+BZLB9+3axt7eXJUuWiMjHgSdNTU2lU6dO4uHhITlz5pTJkyfL27dv5e7duzJixAjJmDGjFCpUSEqUKKF1AVrSDU0IunDhghKCTp48KSIfjwcqU6aMGBsbS/78+aVQoUJp/juC4wD9gOKO3fC17d++fQtra2tlWqoeuyEViPsc379/H/Xr10elSpWwYMECAMCGDRtgYmKC+vXrw9jYGCYmJujatSusrKzg4+MDIyMjjqOkJ2vWrEGnTp0wZMgQjBkzBubm5gCAX375BefOncOJEydgaWmJZs2aoUKFCsqYM3xP6Ebc906fPn2wf/9+/Pbbb7h58yZy5syJ3r17AwC8vb2xY8cOtG3bFn369IGdnR3Cw8MRExMDU1NT2Nra6vNh/LA02+fixYto06YN3Nzc4O3tjVKlSuHVq1fYvn07jI2N0bZtW5iYmKTt8a/0ncBIt+J2zx89elS2b98uQUFBSlKPu+slNV6cLq3QPGcXLlyQc+fOyZgxY8Td3V0GDhwYr21gYKCMGDFC7Ozs5ObNmyldKonE69Xctm2bqFQqmTRpktLjs2HDBilZsqS4ublJiRIlpECBAgm+byjpNJ9PZ8+ela5du4qISLt27aRw4cJSpEgRretKiYh4e3tLgQIFZOLEifL48eMUr9dQfdoT1KhRIzl9+nS8dmm9Z5QB6Ac1ePBgyZw5s2TIkEFy5colCxculNevX4sIP8y/R9znbteuXaJSqeT06dPy7NkzmTRpkri5ucmgQYOUNvv375fatWuLq6sru+z14OzZs8r/4w402aZNG8mcObMYGRnJ8OHDRUTk/fv3smnTJhk+fLgMHz6cA3/qmOZL9fLly2JlZSUDBgxQ5mmOtxoyZIhyYWaNkSNHioODg0ybNo3HX+nI13wHfBqCmjZtqnVZmB8BA9APIu4L+uDBg1KyZEk5cuSIBAYGSrdu3aRw4cIydepUefXqVbz29O1evHghy5Yt07qI7MuXL5UQNHjwYBH5+OX5119/cYRaPbh7967kz59ffv75Z60Q06xZMylcuLC8ePFCNmzYIMbGxjJs2LAE18HwoxuaL9MbN26IlZWVchX3uNdQ69Kli+TJk0eWLVsW72zJ8ePH8+ruOhI3RKrVauU1ntB3gqbt+fPnJVeuXNKhQ4eUKTKFMAD9YP766y/p37+/DBkyRGv6r7/+KoULF5Zp06YpIYiS5vbt26JSqcTR0VGWLl0qIv/78NCEoKJFi0qPHj30WabBi4iIEB8fHylRooR0795dREQ5myggIEBpt2bNGjE3N5fevXvzoqbJQPMlevXqVcmcObPkz59fq5cn7nPeoUMHyZcvnyxdupRDRiSDuCFnypQp0qZNG6lbt65cvHgx0WU02+/kyZOiUqlk//79yV5nSkkjoxXR1/L19cWsWbNw7do1fPjwQZk+e/ZsVK1aFatXr8asWbMSHACRvk7WrFnx22+/ITg4GI8fPwbwcXBDEYG9vT26deuGRo0a4fLlywgKCtJztYZJRJAuXTp07doVnTp1wtmzZ+Ho6Ihr167hyJEjcHZ2Vtr+/PPPmDdvHq5evZp2D+ZMpTQH1F6+fBmlS5dG2bJlERAQgGHDhiEwMBAAYGpqipiYGAAfL276008/wcfHBytXrkRUVJQ+y/+hxMbGKideTJgwAVOmTEH69OkRERGBChUqYP369VrfGRpGRkaIjY2Fu7s7SpUqhXfv3qV06clHzwGMvkNi+8Pbt28vTk5O4uvrK2/evNGa16FDB2nXrh13gX2luAO0xfX69Wvx9vYWIyMjWbt2rYiI1vg+ISEhEhwcnKK1kjbNtoiIiJC5c+eKm5ubNG/eXJmf2Cm8fG/o1s2bN8XExETZzfjvv/+KkZGR9O7dW+sSMHF7gpo0aSIlS5bk5S2SwdOnT6V///5y7NgxZVr//v3FwsJC1q5dm+hu30WLFompqak8fPgwpUpNdgxAaVTc8HPlyhW5du2acrE6kf8d5/DXX3/Fu8o4R7P9spcvX2o9P0ePHpUZM2bItGnTlK75d+/eyZAhQ8TIyEg5e4WDHKYun4YgDw8P8fLyUuan9XFM0gLN+0bkf589iYWguNsj7gCjpBtbtmwRlUolefLk0RrkUORjCLK0tJR169Yl+L54+fKl1nhnPwIGoDQo7hfsiBEjpEiRIuLq6irZs2fXOg27adOmUqRIEVm7dm28niCeTZG42bNnS5EiReT69esi8nHId2NjY6lYsaKYmppKiRIl5OjRoxIbG6uEIHNzc/H19dVz5Ybrc6Hz0xBUrFgx5RRsSn5xt41arf6mEES6FR0dLV27dhWVSiUbN24UEe3tM2jQIFGpVLJv3z6t5X7UkwEYgNKwSZMmScaMGeX48eMSHh4uAwYMEJVKFa8nKEuWLLJ37149Vpq2PHv2TLJkySIVK1aUy5cvS+vWrWX58uUSGxsrERER4unpKcWLF5dDhw4pIahXr16SMWNGCQ8P13f5BidumA8KCkqwTdwQNG/ePHF0dJSJEyemSH0U36chqG/fvvLs2TM9V/VjSexHrlqtlpYtW0rGjBnl6NGj8ebPmjXLYEIoA1AaFRMTIy1atJDVq1eLiMjWrVslffr0ynWM4p5lwaH8v0zzBal5np4/fy4ODg5SuXJlqVOnjly5ckVpGxkZKSVLlpRixYrJ4cOHJTY2VqKjo7WuF0UpI+6H/JQpU+SXX36Ry5cvJ9hWs43Dw8Nl8+bNfE/omWbb7dy5UxkDiNtEN+K+L7Zv3y5z5swRX19frfdG06ZNJVOmTAmGIBHD6IljAEqjwsPDxdHRUXbt2iWHDh2SdOnSyYIFC0TkYzfnyJEjxc/PT2sZfrgkTPNhERQUJOfOnVP2jQcGBoqrq6uoVCr5999/ReR/X6JRUVFSpkwZcXFx0TqYkPRjyJAhYm9vL5s2bYp3kGZCo59r8D2hX5r33t69ezlKejIYPHiw2NvbS/ny5SVjxoxSsmRJmTRpkjK/efPmkiVLlh/q1PZvwQCUBiTWlTlw4ECpV6+eWFlZKePRiHzsvahdu7bWNEpY3AHaypUrJ7Vr15amTZsqB46/fPlScubMKWXKlJEbN25oLRsZGSlVq1blIId6tnnzZnFyctIayyQqKkqr147HvCW/xE4A+NJzz5MGksfmzZvFwcFB+UH36NEjGTJkiHh6esrMmTNF5OMPgOrVq0udOnX0WarecBygVE5EtC66eefOHWVeiRIlcPHiRVSpUgV16tQBALx8+RJdunRBZGQkOnXqpI+S0wzNc3vjxg2UK1cOlSpVwqJFi7Bp0yZYWFjgw4cPsLe3x7lz5/Do0SP06NEDN2/eVJa3traGn58fcuXKpcdHQUFBQXBwcECxYsVw+/ZtTJkyBR4eHqhatSp69OgBAN90cWD6Nm/evAEAfPjwASqVCqdPn8bChQuxbds2vHjxQhlHJjG8KLBufPocBwQEwNnZGaVKlQIAODk54ddff4W7uzt2796N6OhoGBsbY8+ePfj333/1UbL+6TuBUcJGjx6tdRro8OHDJWfOnJI1a1apXr26cmHAmTNniqurqxQtWlQqVaokpUuXluLFiytjarCL//NCQkKkfPny0rdvX63pml+lmv3ggYGBkj17dqlSpYpWzwKlrIR6C7Zu3Sr58+eX2rVrS968eaVdu3by559/yvr168XIyEjremCkW6tXr5ZSpUrJ8+fPRURk48aNYmtrK/nz55c8efJI5cqV5e7duyLCz6KUsnLlSrl27ZosWrRIPDw8lO8RzXvn0KFDolKp4n2OGWIvKX8WpULPnz/HlClT0L59ewQHB2PTpk1Yv349pk+fjgULFiAoKAg1a9bEf//9h379+mHx4sXo1q0bSpcujR49euDMmTMwNTXFhw8fYGxsrO+Hk6oFBgbi+fPnaNasmdYvKM2vUmNjY4gIsmbNivPnz+PkyZPw9vbG+/fv9VWywYo7km1AQADu3r2LkJAQNGzYECNGjIC9vT1Gjx6NCRMmYOjQoShcuDBKlCgBOzs7PVf+4xIRmJiYwMvLC/fu3cP+/fsxZ84cXLlyBTNmzIClpSWaNm2Ku3fvwtjY+LM9QZQ0cZ/TKVOmoG/fvrC0tETRokVx+/ZtLF++HNHR0cp7x87ODkWLFoWFhYXWegyxl1QlIqLvIii+u3fvonbt2sifPz8aNWoEEVG68yMjI1GpUiW8efMGW7ZsgZubW7zl1Wo1w89XWLt2LTp27Ij3799DpVIpQ/fH9ebNG1y5cgVlypRBUFAQwsLC4OrqqqeKDZOIKB/go0aNwv79++Hv74/ixYujQoUKGDlypNJWrVYjMjIS7du3R0REBPz8/Azywz0liAi2bNmCuXPnIjY2Fubm5liwYAHy5s0LADhy5AgmT56Mp0+fYuvWrcibN2+C7zH6fv/99x82bNgAd3d3NGnSBACwfPlydO3aFUOHDkW1atXg5OSE/v37IzIyEkePHuV20GPvE33BnTt3JE+ePKJSqWTUqFEi8r9uzMjISPH09JQiRYrIhQsX9FlmmnbixAmxsLCQzZs3J9pmzpw5UqNGDYmKikrByighv//+u2TKlEn8/Pzk7t270qFDB1GpVMrpvVFRUbJixQqpVq2aFCtWTNkVbIjd+8lN81kUGxsr69evlypVqki6dOnkyZMnWu0OHz4s9evXlxw5cvCK7slArVbL4cOHRaVSiZWVVbzPsjVr1kjevHklS5YsUqBAASlXrhzfF//PwONf6iKfdMa5urpiz549cHNzw+7du/H06VOoVCqICKytrXHkyBG8fv0aPj4+eqo47XN2doatrS1WrVqFhw8fKtPjbouAgAB4enrC0tJSHyXS/3v9+jWOHz+OpUuXomrVqrh37x62bduGxYsXw93dHTExMTA3N8fbt2/x008/4ezZs8quYIP/pZsMND1yKpUKLVu2RM+ePeHi4oI2bdooFzoFgEqVKqFfv3746aefeMCzjkRHRyMyMhLAx11XlSpVwpQpU/D27VtcvXpV66KmP//8Mw4dOoRDhw5h9erVOHr0KN8XGnoOYPT/4ibxqKgoeffunXL7zp07kjNnTqlSpYoyZLzm19fbt295cOF32rJli5ibm0v79u21TnWPiooSb29vcXZ2ltu3b+uxQhIRCQ0NlXz58snZs2fl33//jTf21ezZs+XKlSta7yW+N3Qv7gV/IyIiJCQkRJm+fv16qVixotSoUUPr8hYiEu9yPJQ0mzdvlkaNGom7u7v89ttvWvPGjx8vxsbGsnz58s+uw9B7fjQYgFKBuGe2jB8/XmrVqiUFCxaU33//XY4fPy4iIrdv3xYnJyepWrVqvBAkwg/676FWq2XhwoViYmIiBQoUEC8vL+nZs6c0bNhQsmTJojW+DKWMhD6gQ0NDpW7dutKhQwfJkCGDEn5ERO7evSv169f/7K5M+n6az5x///1XqlevLgULFpSmTZsqz3tsbKysW7dOKlSoIHXq1OHlLXRs4cKFYmNjI4MHD5ahQ4eKqampMqaPxsiRI8XY2FhWrFihnyLTEAYgPft0KP+MGTPK5MmTpUePHlK2bFkpU6aM7Nq1S0Q+9gTlzp1bihQpIq9evdJXyT+sM2fOSPPmzcXDw0MqVKggw4YNkzt37ui7LIMT9z3x6NEjCQ0NVaYtW7ZMVCqVtGjRQhmiQBOMKleuzB8CKeDvv/8WKysrmTx5sqxfv166du0qNjY28tdff4nIxxC0YcMGKVq0qDRt2pTbREeWLFkipqamsm3bNmVahw4dZMaMGfLs2TOtS1eMHDlSzM3NZe7cuXqoNO1gAEol7ty5I927d5e///5bmXb06FFp27atVK5cWf777z8REbl586Y0a9aMHyrJhM9r6jFy5EjJlSuXeHp6SufOnSU6OlpEPl4E2MjISOrXry9169aVihUrStGiRTn2VTIICAjQ6mm+d++e/PTTTzJ//nwR+Xj5mBw5ckjhwoUlXbp0smrVKhH5GGK3bNkiAQEBeqn7R3PkyBFRqVQycuRIrenFihUTNzc3sbGxkRIlSsj8+fOV7TVw4ECpUKECR9r+DAM/Aip1+Oeff5A/f35s2bJF6yDBChUqoHPnznj48CHu378PAChYsCA2b94MY2NjqNVqfZX8w4p7UKBwhAi92bp1K1atWoWJEyeidu3auHr1KipXroz3799j+PDh2LRpEwoXLgxnZ2c0b94cFy5c4NhXOjZt2jQ0bdoU7969U6ZZWFigdOnSaN68OZ4+fYoKFSqgXr162L59O0qVKoXu3btj2bJlMDIyQtOmTeHs7KzHR/DjiImJQeXKlXHp0iWcOHECANC8eXNERERg/Pjx+PvvvyEimDFjBm7fvg0AmD59Oo4cOaKcOEPxcRygVKJfv36YM2cORowYgWHDhiFdunTKPA8PD9SoUQNTp07VY4VEyefTsWG2bNmCwMBA9O7dGx8+fMChQ4cwZMgQWFhY4PDhw7CwsEBMTAxMTU2VZTj2lW6JCO7cuYP8+fMjLCwM6dKlg7GxMV69eoWMGTNi8ODBePDgAXx9fWFjY4M+ffpgy5YtMDc3x+XLl2FnZ8ezvnTIz88PPj4+UKvVCAsLw7t377Bt2zYlZN68eROFCxfGpk2b0KxZM2U5iTOGFmljD1AK+3QkVM3tWbNmoUuXLpg6dSq2bt2qnOIYHh6ODx8+IFu2bCleK1FKkDjXu1u4cCH++OMPzJs3D69evQIAmJiYoEqVKpg2bRrev3+PatWqITo6Wiv8AGD40SHNdb3y58+PEydOoGTJkjh16hRiY2ORMWNGxMTE4PLly8iaNStsbGwAfDwdfty4cbh06RLSp0/PL93vpOmb0PT0V6tWDX369IGI4L///sOgQYPg7OwM+XgoC2JiYlCwYEHY29trrYfbIXHsAUpBcX/lLlmyBGfOnIFarUa+fPng7e0NAOjatSt8fX3RqFEjFClSBJcuXYK/vz8uXboU7wOfKK2L+54YNWoUZs+ejSJFiuDZs2cwMzPDyZMnkTFjRgAfvwgOHz6MDh06oH79+li0aJE+Szco+fPnh5mZGZYsWYKSJUvC2NgYI0eOxJo1a9C3b1/4+/tj8+bNOHnyJHLnzq3vctO8uO+L8PBwqNVqZMiQAQBw+PBhTJkyBWq1GkOGDEH16tUBAA0aNEBERAQOHjzI8X2+lj4OPDJ0Q4cOFQcHBxk2bJiMGzdOVCqVeHl5KfP79u0rKpVKmjRpIvPmzVOmxz3Kn+hH8vz5c2nXrp1cvHhR3r59KxcuXJCiRYuKu7u7hIWFKe1iYmLk3LlzPNA5hcQ9I69YsWKSP39+OXnypIiI3LhxQ3755RfJkyePlC5dmsNF6Ejc53zy5MnKQf7Vq1dXxik7cOCA1KtXT2rVqiV+fn7StGlTyZcvH08E+EYMQCns+PHjkidPHmV8n23btomVlZXWmCYiIj179pT06dPL+vXr9VEmUYpZunSp2NjYiKenp9aAk9euXZOiRYuKh4eHhIeHx1uOH/K6pzlj6OnTp3L//n1lkEONYsWKSb58+eTMmTPKtJCQEAkNDU3ROg3ByJEjJWvWrLJ8+XK5cuWKODg4SKlSpeTFixciIrJ//35p2LChmJiYSP78+ZXwwx/KX48BKJlp0rzmg2X9+vVSokQJERHZunWrpEuXThYuXCgiIuHh4VqnwXft2lXs7OzE19dXa2Rooh/JixcvpFq1amJiYiLHjh3Tmnf9+nUpVqyYZMuWjddiS2aaz6jt27dLgQIFxNXVVTJlyiTz58/XOp1dc+r10aNHGUKTSUBAgBQvXlwZA27fvn1ia2urfFdo/PPPP9K/f38l9DD8fBsGoGT09u1b5f83b94UEZFjx45JgwYNZNGiRVrhR0TEz89POnTooDX4XqtWrSR79uwJ/gImSmsSG4I/KChISpUqJQULFpS7d+9qzbt06ZJ06NCBX7YpYNeuXWJnZyfTp0+XkJAQGTp0qGTKlElGjx4t9+/fV9q5uLhIyZIltT7jSHeuXr0qzs7OIiKyc+fOeD+UP91jIMLwkxQMQMlkw4YN8scff4iISL9+/SRv3rwSEREhN27ckAIFCohKpZIpU6Yo7d+8eSN16tSR9u3bxxu4isPJ048gbvi5evWqXLx4UevK4S9fvhRPT08pVKhQvBCkwRCUfIKCgqRevXoyYcIEERF58uSJ5M2bV4oXLy62trbi7e2tFYLi/p90Kzo6WsqWLSs9e/YUGxsbWbx4sTLvxo0bUqZMGTl48KAeK/wxMAAlk+nTp4tKpZKKFStKhgwZ5Nq1a8q8f//9V0xMTKRbt27i6+sr//zzj1SrVk2KFi2qpPjY2Fjlw54jeVJaFzf8jBo1SnLnzi25c+eWdOnSyYoVK5RLuwQHB0uJEiWkaNGiyujnlDJevXolq1evlsePH0tQUJAULFhQunbtKiIfT8ywt7eXwYMHM/gkg7jvD7VaLW/fvpX+/ftLhgwZlG0g8nGvQr169aRevXq8oKkOMADpWNwu4YoVK4qRkZH07ds3XojZvHmzVKtWTTJlyiTly5eX5s2b8wh++uGNGzdOsmXLJvv27RMRkXbt2omtra1MmTJFXr9+LSIfQ1DOnDmlXbt2eqz0x6f5TIobaF6+fCkiHy83Ur16deUg6MmTJ0uOHDmkaNGiEhQUlPLF/oAOHDggv//+u3L700Bz584dqVu3rhQvXlw6d+4so0aNkkqVKkmRIkWU7wqGoO9jou/T8H8k+/btw5UrV1C2bFmUK1cORYoUQenSpTFt2jRkzZoVvXv3hp2dHWJjY9GsWTPUqFEDkZGRsLS0VAYO+/DhA0xMuFnox3Dq1ClkypQJ+fLlw/Xr13Hs2DEsXrwYNWrUwI4dO7Bz505UqVIFw4YNAwB07twZmTJlwtWrV7VGQyfdkv8fHfjvv//G4MGDMXToUHTp0kUZRO/ly5cwNTVVxpMJCQnBrFmzULlyZWVcJkq66OhobNy4EadOnYK5uTmGDBkCIyMjZfwfEYGrqyt8fHzwzz//YMuWLXj9+jWKFy+OKVOmwMTEhN8VuqDvBPajWL58uWTPnl169uwpp0+f1prn4+MjKpVKJkyYoDWmyfnz57XacVcX/UgePHggpUuXloYNG4q/v7+8e/dOli5dKtHR0XL06FFxdHSUOXPmiIhIy5YtJX369DJ69GitA/7ZG5p8tm/fLlZWVjJ79ux4uxtnzZoltra20rVrV2nevLlYW1vLrVu39FTpj+np06fSr18/KV26tEyePFmZrlartb4LYmJi4n038H2hGwxAOrBu3TqxsrKSDRs2aAWcuKZPny5GRkYyduxYuXjxojRo0EB++uknEWHwoR/X4sWLpWrVqtKyZUt5/PixMr1bt27i5eWldOX36dNHihUrJuXKleP7Qcc+3U2iVqslJCREypQpI3/++aeIiLx//17CwsJk3bp14u/vLyIiEyZMkPr160u9evXkypUrKV63IXj+/Ln06dMnwRAkIhIYGCht27aVNWvWiAi/K3SNAeg7BQUFSeXKlWXu3Lla0yMiIuTMmTPKgIciH3uCMmbMKG5ubuLp6al8+BP9aOJ+UK9YsUIqVKggLVu2VAY6rFixovTu3Vtp06RJE7l8+bKyHD/odevhw4cya9Ysrdu5cuWSnTt3Snh4uIwePVoqVKggZmZmkjdvXtm9e7eIiLx7906io6P1VbZBiBuCJk2apEx/9uyZlCtXTlxdXXmKezLhDkQdCAoKQvbs2ZXbCxYswMGDB7FlyxY4OjrC2dkZx48fR//+/VG5cmW8ffsWpUqVgrGxMffj0g9JpVIpx5l06tQJAODr64tRo0Zh/vz5aNmyJfr27YtXr17h1q1biI6ORqFChbSWI91Qq9WYP38+tm3bhujoaAwZMgQ5c+ZEiRIl8PPPP8Pc3Bxly5ZFixYtcPDgQZQuXRrbtm1D7dq1YW5uru/yf3gODg4YMWIEJkyYgO3bt8PY2BidO3dG27Zt8fr1a9y4cQMmJiZQq9W84K+O8WKo3+nly5coXrw4ateujTZt2mD+/Pm4c+cOypcvjyZNmiAsLAzDhg1Dx44dMXr0aK1l+YKmH13cMOPr64tly5Yhe/bsmDlzJv7++2/4+fkhQ4YMmDNnDkxNTfmeSCZPnz7F1KlTcfr0aTRq1Aje3t6IjY2Fr68vTExM0KRJE1haWsLExAQdO3aEk5MTxo8fz4tqpqDAwEBMnDgRZ8+exa1bt+Do6IgrV67A1NSUP5STCQOQDvj5+aFZs2bIlCkTbGxsMGPGDLi7uyNTpkx4/fo1qlatikaNGmHs2LH6LpUoxcUNQStWrMDy5cuRPXt2zJo1C1mzZlXOfOGHfPIKDAzEhAkTcPbsWTRt2lQ5804jODgYs2fPxty5c3Hy5EkUKFBAT5UarsDAQAwbNgwvX77Ejh07GH6SGQOQjrx8+RKRkZHIlSuX1vTXr1+jUaNGaNeuHbp3766n6oj069MQtGLFCri4uGDixInIkSMHd3ulEE0IOnfuHBo3bozhw4cDAA4cOIB58+bhypUr2LJlC4oVK6bnSg3X69evYWdnxx8FKYABKBm9fPkSXl5eCA4OxokTJ9i1TwYtbshZvnw5Fi9ejO7du6Nz584MQCkobghq0qQJhg0bhhcvXuDff/9FlSpVkDt3bn2XSIDSM0rJhwEoGQQHB2Pp0qU4fvw4goKCcOLECR7fQATtEFS/fn2YmJhg+/bt+i3KAGlC0MWLF1GrVq14xycSGQLGy2Tw5MkTnDhxAnnz5sXJkyeV/bgMP2ToNGd5AYCzszMsLS3x/v17PVdleDRnHuXLlw9Hjx5FSEiIvksiSnHsAUomoaGhsLOzg0qlYs8P0SeCg4PRuHFjLFy4EIULF9Z3OQbrxYsXAICsWbPquRKilMcAlMx4bANRwt69ewcLCwt9l0FEBooBiIiIiAwOjwEiIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiCjZubi4YObMmfoug4hIwQBEREREBocBiIgMAq85RkRxMQAR0XerXLky+vTpgz59+sDOzg729vYYNWoUEhtofsaMGShSpAisra3h5OSEXr16ITIyEgAQFRUFW1tbbN68WWuZ7du3w9raGhEREQCAx48fo2XLlkifPj0yZsyIRo0aISAgQGnfqVMnNG7cGBMmTICjoyPy58//xcfh4uKCiRMnonPnzrCxsUHOnDmxePFirTbDhg1Dvnz5YGVlhdy5c2PUqFGIiYlR5o8dOxYeHh5Yvnw5cubMiXTp0qFXr15Qq9WYMmUKHBwckCVLFkyYMEFrvaGhoejatSsyZ84MW1tbVK1aFVeuXPlizUSUNAxARKQTK1euhImJCc6ePYtZs2ZhxowZWLp0aYJtjYyMMHv2bNy4cQMrV67EwYMHMXToUACAtbU1WrdujRUrVmgts2LFCjRv3hw2NjaIiYlBrVq1YGNjg2PHjuHEiRNIly4dateurdXT4+fnh9u3b2P//v34999/v+pxTJ8+HSVKlMClS5fQq1cv9OzZE7dv31bm29jYwNfXFzdv3sSsWbOwZMkS+Pj4aK3D398fu3fvxp49e7Bu3TosW7YM9erVw5MnT3DkyBH8+eefGDlyJM6cOaMs06JFCwQFBWH37t24cOECihcvjmrVquHVq1dfVTcRfSMhIvpOlSpVkoIFC0psbKwybdiwYVKwYEEREXF2dhYfH59El9+0aZNkypRJuX3mzBkxNjaWZ8+eiYjIixcvxMTERA4fPiwiIqtXr5b8+fNr3V90dLRYWlrK3r17RUSkY8eOkjVrVomOjv7qx+Hs7Czt2rVTbsfGxkqWLFlkwYIFiS4zdepU8fT0VG6PGTNGrKysJDw8XJlWq1YtcXFxEbVarUzLnz+/TJo0SUREjh07Jra2tvLu3TutdefJk0cWLVr01fUT0dcz0XcAI6Ifw08//QSVSqXcLlOmDKZPnw61Wh2v7YEDBzBp0iTcunUL4eHh+PDhA969e4c3b97AysoKpUqVQqFChbBy5UoMHz4cf/31F5ydnVGxYkUAwJUrV3Dv3j3Y2Nhorffdu3fw9/dXbhcpUgRmZmbf9DiKFi2q/F+lUsHBwQFBQUHKtA0bNmD27Nnw9/dHZGQkPnz4AFtbW611uLi4aNWWNWtWGBsbw8jISGuaZr1XrlxBZGQkMmXKpLWet2/faj0eItIdBiAiSlEBAQGoX78+evbsiQkTJiBjxow4fvw4unTpgvfv38PKygoA0LVrV8ybNw/Dhw/HihUr4OXlpQSsyMhIeHp6Ys2aNfHWnzlzZuX/1tbW31yfqamp1m2VSoXY2FgAwKlTp9C2bVuMGzcOtWrVgp2dHdavX4/p06d/cR2fW29kZCSyZcuGw4cPx6snffr03/wYiOjLGICISCfiHs8CAKdPn4arqyuMjY21pl+4cAGxsbGYPn260iOycePGeOtr164dhg4ditmzZ+PmzZvo2LGjMq948eLYsGEDsmTJEq/3JTmdPHkSzs7OGDFihDLt4cOH373e4sWLIzAwECYmJnBxcfnu9RHRl/EgaCLSiUePHmHgwIG4ffs21q1bhzlz5qBfv37x2uXNmxcxMTGYM2cO7t+/j9WrV2PhwoXx2mXIkAFNmzbFkCFDULNmTeTIkUOZ17ZtW9jb26NRo0Y4duwYHjx4gMOHD6Nv37548uRJsj1GV1dXPHr0COvXr4e/vz9mz56Nbdu2ffd6q1evjjJlyqBx48bYt28fAgICcPLkSYwYMQLnz5/XQeVE9CkGICLSiQ4dOuDt27coVaoUevfujX79+qF79+7x2rm7u2PGjBn4888/UbhwYaxZswaTJk1KcJ2a3WKdO3fWmm5lZYWjR48iZ86caNq0KQoWLIguXbrg3bt3ydoj1LBhQwwYMAB9+vSBh4cHTp48iVGjRn33elUqFXbt2oWKFSvCy8sL+fLlQ+vWrfHw4UNkzZpVB5UT0adUIokM1EFE9JUqV64MDw8PnV/uYvXq1RgwYACePXv2zQczExF9Do8BIqJU582bN3j+/DkmT56MX375heGHiHSOu8CIKNWZMmUKChQoAAcHB3h7e+tknceOHUO6dOkS/SMiw8JdYERkEN6+fYunT58mOj9v3rwpWA0R6RsDEBERERkc7gIjIiIig8MARERERAaHAYiIiIgMDgMQERERGRwGICIiIjI4DEBERERkcBiAiIiIyOAwABEREZHB+T9DUe3WIGugkgAAAABJRU5ErkJggg==",
 | 
						||
      "text/plain": [
 | 
						||
       "<Figure size 640x480 with 1 Axes>"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "display_data"
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "plt.title(\"Top 5 Offensive Players and their Offensive Stat\")\n",
 | 
						||
    "off_plot = sns.barplot(data=df_offense.head(), x=\"player_name\",y=\"offense_stat\",errorbar=None)\n",
 | 
						||
    "plt.xticks(df_offense.head().index,rotation=45)\n",
 | 
						||
    "plt.show()"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "c60d07cf-bc4a-4151-bf70-7724cca89628",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "### Results\n",
 | 
						||
    "I found that the best offensive player is Stephen Curry.  This makes sense as he is known as one of the best offensive players in the NBA and has been for years.  The next best offensive players are Chris Paul, James Harden, Isaiah Thomas, and LeBron James.  These are all guards, and LeBron James who has pretty much played every position in his career that are best on offense so this also makes sense.  I think that using the data points of raptor offense and predator offense were useful as it outputted a list of some of the best offensive players from 2014-2022."
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "9abb60c3-4aa0-45cf-bf6f-dbc2302ed7ea",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "#### Results from Graph\n",
 | 
						||
    "This graph shows the difference between Stephen Curry, Chris Paul, and everyone else.  This shows the top 5 offensive players in the NBA from 2014-2022.  The offense_stat is the value of raptor_offense and predator_offense stats added together.  It is interesting to note that the majority of the best offensive players play point guard or shooting guard."
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "702dbab9-27e7-4214-9639-ab2391a15bb6",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "## Third Research Question: Who is the best defensive player in the NBA?"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "ade012cc-5381-4dee-8fde-d66de63fcbc2",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "## Methods"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "b7036e91-71f5-415b-8752-460b28529d25",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "**What I did:**  \n",
 | 
						||
    "This is very similar to the best offensive stats.  I only allowed players with 3000 minutes played which is the same pool of players that I included in seeing who the best offensive player was by making the players_over_3000 dataframe.  This time I looked at the data for raptor defense and predator defense.  I took the average of these two data points and added the number together.  This gives a good representation of how effective a player is on defense.  These are good data values to see who the best defensive players are."
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 37,
 | 
						||
   "id": "5aca0be4-035f-4de2-a955-b9584221eccd",
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "text/html": [
 | 
						||
       "<div>\n",
 | 
						||
       "<style scoped>\n",
 | 
						||
       "    .dataframe tbody tr th:only-of-type {\n",
 | 
						||
       "        vertical-align: middle;\n",
 | 
						||
       "    }\n",
 | 
						||
       "\n",
 | 
						||
       "    .dataframe tbody tr th {\n",
 | 
						||
       "        vertical-align: top;\n",
 | 
						||
       "    }\n",
 | 
						||
       "\n",
 | 
						||
       "    .dataframe thead th {\n",
 | 
						||
       "        text-align: right;\n",
 | 
						||
       "    }\n",
 | 
						||
       "</style>\n",
 | 
						||
       "<table border=\"1\" class=\"dataframe\">\n",
 | 
						||
       "  <thead>\n",
 | 
						||
       "    <tr style=\"text-align: right;\">\n",
 | 
						||
       "      <th></th>\n",
 | 
						||
       "      <th>defense_stat</th>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>player_name</th>\n",
 | 
						||
       "      <th></th>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "  </thead>\n",
 | 
						||
       "  <tbody>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Draymond Green</th>\n",
 | 
						||
       "      <td>10.787943</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Joakim Noah</th>\n",
 | 
						||
       "      <td>9.358453</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Anthony Davis</th>\n",
 | 
						||
       "      <td>7.895150</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Marc Gasol</th>\n",
 | 
						||
       "      <td>6.534351</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Paul George</th>\n",
 | 
						||
       "      <td>6.408697</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Paul Millsap</th>\n",
 | 
						||
       "      <td>5.699113</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>George Hill</th>\n",
 | 
						||
       "      <td>5.241234</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Giannis Antetokounmpo</th>\n",
 | 
						||
       "      <td>4.803693</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>PJ Tucker</th>\n",
 | 
						||
       "      <td>4.780241</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Serge Ibaka</th>\n",
 | 
						||
       "      <td>4.703840</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Marcin Gortat</th>\n",
 | 
						||
       "      <td>4.511971</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Jrue Holiday</th>\n",
 | 
						||
       "      <td>4.421153</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Chris Paul</th>\n",
 | 
						||
       "      <td>4.249789</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Nikola Jokic</th>\n",
 | 
						||
       "      <td>4.021482</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Marcus Smart</th>\n",
 | 
						||
       "      <td>3.850867</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Bam Adebayo</th>\n",
 | 
						||
       "      <td>3.707044</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Jimmy Butler</th>\n",
 | 
						||
       "      <td>3.183364</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>DeAndre Jordan</th>\n",
 | 
						||
       "      <td>3.154674</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Kyle Lowry</th>\n",
 | 
						||
       "      <td>3.141026</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Otto Porter Jr.</th>\n",
 | 
						||
       "      <td>2.968337</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Pascal Siakam</th>\n",
 | 
						||
       "      <td>2.750881</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Mikal Bridges</th>\n",
 | 
						||
       "      <td>2.670235</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>David West</th>\n",
 | 
						||
       "      <td>2.666690</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Stephen Curry</th>\n",
 | 
						||
       "      <td>2.582205</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Donovan Mitchell</th>\n",
 | 
						||
       "      <td>2.433277</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Kevin Love</th>\n",
 | 
						||
       "      <td>2.424493</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Jaylen Brown</th>\n",
 | 
						||
       "      <td>2.380194</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Jayson Tatum</th>\n",
 | 
						||
       "      <td>2.100925</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Dorian Finney-Smith</th>\n",
 | 
						||
       "      <td>2.022662</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Chris Bosh</th>\n",
 | 
						||
       "      <td>1.673919</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Blake Griffin</th>\n",
 | 
						||
       "      <td>1.627615</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Trevor Ariza</th>\n",
 | 
						||
       "      <td>1.546710</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Kemba Walker</th>\n",
 | 
						||
       "      <td>1.342204</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Andrew Wiggins</th>\n",
 | 
						||
       "      <td>1.244490</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Nicolas Batum</th>\n",
 | 
						||
       "      <td>0.968720</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>James Harden</th>\n",
 | 
						||
       "      <td>0.769140</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Klay Thompson</th>\n",
 | 
						||
       "      <td>0.543766</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Russell Westbrook</th>\n",
 | 
						||
       "      <td>0.523426</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Ben Simmons</th>\n",
 | 
						||
       "      <td>0.456007</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>LeBron James</th>\n",
 | 
						||
       "      <td>0.354197</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Wesley Matthews</th>\n",
 | 
						||
       "      <td>0.299899</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>CJ McCollum</th>\n",
 | 
						||
       "      <td>-0.060706</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Bradley Beal</th>\n",
 | 
						||
       "      <td>-0.200945</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Khris Middleton</th>\n",
 | 
						||
       "      <td>-0.477710</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Jalen Brunson</th>\n",
 | 
						||
       "      <td>-0.508995</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>John Wall</th>\n",
 | 
						||
       "      <td>-0.695989</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Chandler Parsons</th>\n",
 | 
						||
       "      <td>-0.873292</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Kevin Durant</th>\n",
 | 
						||
       "      <td>-0.913675</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Devin Booker</th>\n",
 | 
						||
       "      <td>-0.916546</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Lance Stephenson</th>\n",
 | 
						||
       "      <td>-1.036529</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Monta Ellis</th>\n",
 | 
						||
       "      <td>-1.169090</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Tobias Harris</th>\n",
 | 
						||
       "      <td>-1.576114</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Karl-Anthony Towns</th>\n",
 | 
						||
       "      <td>-1.776151</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Damian Lillard</th>\n",
 | 
						||
       "      <td>-2.258608</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Tyrese Maxey</th>\n",
 | 
						||
       "      <td>-2.419741</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>JR Smith</th>\n",
 | 
						||
       "      <td>-2.516657</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Kyrie Irving</th>\n",
 | 
						||
       "      <td>-3.997132</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>DeMar DeRozan</th>\n",
 | 
						||
       "      <td>-4.334230</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Joe Johnson</th>\n",
 | 
						||
       "      <td>-4.882167</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "    <tr>\n",
 | 
						||
       "      <th>Isaiah Thomas</th>\n",
 | 
						||
       "      <td>-6.412895</td>\n",
 | 
						||
       "    </tr>\n",
 | 
						||
       "  </tbody>\n",
 | 
						||
       "</table>\n",
 | 
						||
       "</div>"
 | 
						||
      ],
 | 
						||
      "text/plain": [
 | 
						||
       "                       defense_stat\n",
 | 
						||
       "player_name                        \n",
 | 
						||
       "Draymond Green            10.787943\n",
 | 
						||
       "Joakim Noah                9.358453\n",
 | 
						||
       "Anthony Davis              7.895150\n",
 | 
						||
       "Marc Gasol                 6.534351\n",
 | 
						||
       "Paul George                6.408697\n",
 | 
						||
       "Paul Millsap               5.699113\n",
 | 
						||
       "George Hill                5.241234\n",
 | 
						||
       "Giannis Antetokounmpo      4.803693\n",
 | 
						||
       "PJ Tucker                  4.780241\n",
 | 
						||
       "Serge Ibaka                4.703840\n",
 | 
						||
       "Marcin Gortat              4.511971\n",
 | 
						||
       "Jrue Holiday               4.421153\n",
 | 
						||
       "Chris Paul                 4.249789\n",
 | 
						||
       "Nikola Jokic               4.021482\n",
 | 
						||
       "Marcus Smart               3.850867\n",
 | 
						||
       "Bam Adebayo                3.707044\n",
 | 
						||
       "Jimmy Butler               3.183364\n",
 | 
						||
       "DeAndre Jordan             3.154674\n",
 | 
						||
       "Kyle Lowry                 3.141026\n",
 | 
						||
       "Otto Porter Jr.            2.968337\n",
 | 
						||
       "Pascal Siakam              2.750881\n",
 | 
						||
       "Mikal Bridges              2.670235\n",
 | 
						||
       "David West                 2.666690\n",
 | 
						||
       "Stephen Curry              2.582205\n",
 | 
						||
       "Donovan Mitchell           2.433277\n",
 | 
						||
       "Kevin Love                 2.424493\n",
 | 
						||
       "Jaylen Brown               2.380194\n",
 | 
						||
       "Jayson Tatum               2.100925\n",
 | 
						||
       "Dorian Finney-Smith        2.022662\n",
 | 
						||
       "Chris Bosh                 1.673919\n",
 | 
						||
       "Blake Griffin              1.627615\n",
 | 
						||
       "Trevor Ariza               1.546710\n",
 | 
						||
       "Kemba Walker               1.342204\n",
 | 
						||
       "Andrew Wiggins             1.244490\n",
 | 
						||
       "Nicolas Batum              0.968720\n",
 | 
						||
       "James Harden               0.769140\n",
 | 
						||
       "Klay Thompson              0.543766\n",
 | 
						||
       "Russell Westbrook          0.523426\n",
 | 
						||
       "Ben Simmons                0.456007\n",
 | 
						||
       "LeBron James               0.354197\n",
 | 
						||
       "Wesley Matthews            0.299899\n",
 | 
						||
       "CJ McCollum               -0.060706\n",
 | 
						||
       "Bradley Beal              -0.200945\n",
 | 
						||
       "Khris Middleton           -0.477710\n",
 | 
						||
       "Jalen Brunson             -0.508995\n",
 | 
						||
       "John Wall                 -0.695989\n",
 | 
						||
       "Chandler Parsons          -0.873292\n",
 | 
						||
       "Kevin Durant              -0.913675\n",
 | 
						||
       "Devin Booker              -0.916546\n",
 | 
						||
       "Lance Stephenson          -1.036529\n",
 | 
						||
       "Monta Ellis               -1.169090\n",
 | 
						||
       "Tobias Harris             -1.576114\n",
 | 
						||
       "Karl-Anthony Towns        -1.776151\n",
 | 
						||
       "Damian Lillard            -2.258608\n",
 | 
						||
       "Tyrese Maxey              -2.419741\n",
 | 
						||
       "JR Smith                  -2.516657\n",
 | 
						||
       "Kyrie Irving              -3.997132\n",
 | 
						||
       "DeMar DeRozan             -4.334230\n",
 | 
						||
       "Joe Johnson               -4.882167\n",
 | 
						||
       "Isaiah Thomas             -6.412895"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "execution_count": 37,
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "execute_result"
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "players_over_3000 = df[df.mp>3000]\n",
 | 
						||
    "eligible_players = players_over_3000.groupby(\"player_name\")\n",
 | 
						||
    "defense_stats= eligible_players[[\"raptor_defense\",\"predator_defense\"]].mean()\n",
 | 
						||
    "def_stat = defense_stats.sum(axis=1).sort_values(ascending=False)\n",
 | 
						||
    "df_defense = pd.DataFrame(def_stat)\n",
 | 
						||
    "df_defense.columns = [\"defense_stat\"]\n",
 | 
						||
    "df_defense"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 38,
 | 
						||
   "id": "afe7a597-ce41-45f5-89f1-b82064088890",
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAIXCAYAAABpb9/iAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAdmVJREFUeJzt3XVYVOn7BvB7aEFCRMAEO7Gwuzuwu3XtXgNdO7A7MNbWFVvXXRULXcXWtdduRbEoBYnn94e/OV9GQBGR4cD9uS4unRMzz5w5M3PPe973HI2ICIiIiIhUykDfBRARERH9CIYZIiIiUjWGGSIiIlI1hhkiIiJSNYYZIiIiUjWGGSIiIlI1hhkiIiJSNYYZIiIiUjWGGSIiIlI1hhlStTt37qBWrVqwtraGRqPBrl279FaLs7MzOnfurLfH/5YqVaqgSpUq+i5D9caPHw+NRpPg9X18fKDRaLBt27ZEq2nNmjXQaDR4+PBhot1nYtu/fz+KFi0KMzMzaDQavH//Xi91PHz4EBqNBmvWrNHL49PPwTCTTGk0mnj9+fj46K2WadOmfXNd7Yes9s/MzAyZMmVC7dq1sWDBAgQFBf1QbZ06dcLVq1cxZcoUrF+/HiVKlPih+1MjZ2dnnW1sb2+PihUrYufOnfouLVXbtGkT5s2bp+8y4q1z5846+1HatGmRI0cONG/eHNu3b0dUVFSC7/vNmzdo2bIl0qRJg8WLF2P9+vWwsLBIxOrVwd/fHwMHDkS+fPmQJk0a2Nvbo1SpUhgxYgSCg4OV5X503/nw4QPGjx+fJN8PyYWRvgug2K1fv17n9rp163Dw4MEY0/Pnz58k9dSsWRMdO3bUmVasWLF4rz9x4kRkz54d4eHh8PPzg4+PDwYNGoQ5c+Zgz549KFy48HfX9PHjR5w6dQqjR49Gv379vnv9xHbr1i0YGOjn90HRokUxdOhQAMDz58+xbNkyNG3aFEuXLkWvXr30UlNqt2nTJly7dg2DBg366Y/VoUMHtG7dGqampj90P6ampli5ciWAz++vR48e4c8//0Tz5s1RpUoV7N69G1ZWVt99v+fOnUNQUBAmTZqEGjVq/FCNP8rJyQkfP36EsbFxkj7u27dvUaJECQQGBqJr167Ily8f3rx5gytXrmDp0qXo3bs30qZNC+DH950PHz5gwoQJAJBqWmMZZpKp9u3b69w+ffo0Dh48GGN6UsmTJ88PPXbdunV1Wk3c3d1x5MgRNGjQAI0aNcLNmzeRJk2a77pPf39/AICNjU2C60pMP/pF8iMyZ86s8/p07NgRuXLlwty5c1URZqKiovDp0yeYmZnpuxRVMjQ0hKGh4VeXERGEhoZ+9X1mZGQU430+efJkTJs2De7u7ujRowe8vLy+u75Xr14BSB7vVW0LcVL7/fff8fjxY5w8eRLlypXTmRcYGAgTE5Mkrykl4WEmFQsJCcHQoUORNWtWmJqaIm/evJg1axa+vBC6RqNBv379sHHjRuTNmxdmZmZwdXXF8ePHv+vxPn78iNDQ0ESrv1q1ahgzZgwePXqEDRs26Mz777//0Lx5c9ja2sLMzAwlSpTAnj17lPnjx4+Hk5MTAGDYsGHQaDRwdnZW5j979gxdu3aFg4MDTE1NUbBgQaxatUrnMbR9F7Zs2YIpU6YgS5YsMDMzQ/Xq1XH37l2dZe/cuYNmzZrB0dERZmZmyJIlC1q3bo2AgABlmeh9Zs6fPw+NRoO1a9fGeN4HDhyARqPB3r17v6ve7+Ho6Ij8+fPjwYMHcS7z6dMnjB07Fq6urrC2toaFhQUqVqyIo0ePKsuICJydndG4ceMY64eGhsLa2ho9e/ZUpoWFhWHcuHHIlSsXTE1NkTVrVgwfPhxhYWE660bfJwsWLAhTU1Ps378fALB582a4urrC0tISVlZWcHFxwfz587/5nGfNmoVy5cohffr0SJMmDVxdXWPtl6J97F27dqFQoULK9tY+fnQnTpxAyZIlYWZmhpw5c2LZsmXfrAP4/Gv4r7/+wqNHj5TDNtH3T+BzgPvWfgcAZ86cQZ06dWBtbQ1zc3NUrlwZJ0+e1Fkmtj4zzs7OaNCgAQ4cOIASJUogTZo08a7/SyNHjkStWrWwdetW3L59W2fevn37ULFiRVhYWMDS0hL169fH9evXdbZFp06dAAAlS5aERqPR6VsWn+en7ad09+5ddO7cGTY2NrC2tkaXLl3w4cMHnWUPHjyIChUqwMbGBmnTpkXevHkxatQoZf6XfWZmzZoFjUaDR48exXje7u7uMDExwbt3776r3tjcu3cPhoaGKFOmTIx5VlZWSsD62r4Tn/fsw4cPkSFDBgDAhAkTlPsYP378N2tUNSFV6Nu3r0R/uaKioqRatWqi0Wike/fusmjRImnYsKEAkEGDBumsC0AKFSokdnZ2MnHiRJk+fbo4OTlJmjRp5OrVq998bABiYWEhGo1GAEj+/Pll48aN8ap79erVAkDOnTsX6/wnT54IAGnevLky7dq1a2JtbS0FChSQ6dOny6JFi6RSpUqi0Whkx44dIiJy+fJlmTt3rgCQNm3ayPr162Xnzp0iIuLn5ydZsmSRrFmzysSJE2Xp0qXSqFEjASBz585VHufo0aMCQIoVKyaurq4yd+5cGT9+vJibm0upUqWU5cLCwiR79uySKVMmmTx5sqxcuVImTJggJUuWlIcPHyrLOTk5SadOnZTbOXLkkHr16sV4zl26dJF06dLJp0+fvqveuDg5OUn9+vV1pn369EkcHBzE0dFRmVa5cmWpXLmyctvf318yZswoQ4YMkaVLl8qMGTMkb968YmxsLJcuXVKWGz16tBgbG8ubN290HmPLli0CQI4fPy4iIpGRkVKrVi0xNzeXQYMGybJly6Rfv35iZGQkjRs31llXux9lyJBBJkyYIIsXL5ZLly6Jt7e3AJDq1avL4sWLZfHixdKvXz9p0aLFN7dDlixZpE+fPrJo0SKZM2eOlCpVSgDI3r17Yzx2kSJFJGPGjDJp0iSZN2+e5MiRQ8zNzeX169fKcleuXJE0adJItmzZxMPDQyZNmiQODg5SuHBh+dZHp7e3txQtWlTs7Oxk/fr1OvtnfPc7EZHDhw+LiYmJlC1bVmbPni1z586VwoULi4mJiZw5c0ZZTvs+e/DggTLNyclJcuXKJenSpZORI0eKp6enHD16NM6aO3XqJBYWFnHOX79+vQCQRYsWKdPWrVsnGo1G6tSpIwsXLpTp06eLs7Oz2NjYKLV4e3vLL7/8IgBk4sSJsn79evH19f2u5zdu3DhlmzVt2lSWLFki3bt3FwAyfPhwZblr166JiYmJlChRQubPny+enp7y66+/SqVKlZRlHjx4IABk9erVIiLy6NEj0Wg0MmPGjBjPOUeOHDrvrfjWG5upU6cKAFmzZs1Xl/vavhOf92xwcLAsXbpUAEiTJk2U+7h8+fJXH1ftGGZU4ssws2vXLgEgkydP1lmuefPmotFo5O7du8o0AAJAzp8/r0x79OiRmJmZSZMmTb752OXKlZN58+bJ7t27ZenSpVKoUCEBIEuWLPnmut8KMyIi1tbWUqxYMeV29erVxcXFRUJDQ5VpUVFRUq5cOcmdO7cyTfuhNHPmTJ3769atm2TMmFHni0lEpHXr1mJtbS0fPnwQkf99qeTPn1/CwsKU5ebPny8AlKB36dIlASBbt2796nP9Msy4u7uLsbGxvH37VpkWFhYmNjY20rVr1++u92uPW6tWLfH39xd/f3+5fPmytG7dWgBI//79leW+DDMRERE6z1tE5N27d+Lg4KBT361btwSALF26VGfZRo0aibOzs0RFRYnI5y87AwMD+eeff3SW8/T0FABy8uRJZRoAMTAwkOvXr+ssO3DgQLGyspKIiIivPufYfLmdPn36JIUKFZJq1arpTAcgJiYmOu+Ry5cvCwBZuHChMs3NzU3MzMzk0aNHyrQbN26IoaHhN8OMiEj9+vXFyckpxvT47ndRUVGSO3duqV27trKNtc8ze/bsUrNmTWVaXGEGgOzfv/+btYp8O8xo3weDBw8WEZGgoCCxsbGRHj166Czn5+cn1tbWOtNj+xz4nuenDTPR90sRkSZNmkj69OmV29ofOP7+/nE+jy/DjIhI2bJlxdXVVWe5s2fPCgBZt27dd9cbGz8/P8mQIYMAkHz58kmvXr1k06ZN8v79+xjLxrXvxPc96+/vLwBk3LhxX60pJeFhJpX6+++/YWhoiAEDBuhMHzp0KEQE+/bt05letmxZuLq6KrezZcuGxo0b48CBA4iMjPzqY508eRIDBw5Eo0aN0KtXL1y4cAGFChXCqFGj8PHjxx9+LmnTplVGNb19+xZHjhxBy5YtERQUhNevX+P169d48+YNateujTt37uDZs2dx3peIYPv27WjYsCFERFn/9evXqF27NgICAnDx4kWddbp06aJzvLpixYoAgPv37wMArK2tAXw+PPRlk/bXtGrVCuHh4dixY4cyzdvbG+/fv0erVq0SXG9svL29kSFDBmTIkAFFihTB1q1b0aFDB0yfPj3OdQwNDZXnHRUVhbdv3yIiIgIlSpTQecw8efKgdOnS2LhxozLt7du32LdvH9q1a6cMU966dSvy58+PfPny6TyPatWqAYBOUzgAVK5cGQUKFNCZZmNjg5CQEBw8ePCbz/lL0fuCvHv3DgEBAahYsWKs269GjRrImTOncrtw4cKwsrJSXvPIyEgcOHAAbm5uyJYtm7Jc/vz5Ubt27e+uLTbf2u/+/fdf3LlzB23btsWbN2+U7RkSEoLq1avj+PHj3xxhlD179kSrV9s5VftePXjwIN6/f482bdrovN6GhoYoXbp0jNf7Swl5fl/2/6pYsSLevHmDwMBAAP/rk7N79+7vGn3VqlUrXLhwAffu3VOmeXl5wdTUVDnE+qOvh4ODAy5fvoxevXrh3bt38PT0RNu2bWFvb49JkybF6B4Qm/i+Z1MjhhmVevToETJlygRLS0ud6drRTV8e/82dO3eM+8iTJw8+fPigdKSNLxMTE/Tr1w/v37/HhQsXvrPymIKDg5XncffuXYgIxowZo3w5a//GjRsH4H+dCWPj7++P9+/fY/ny5THW79KlS6zrR/+yAoB06dIBgHKcPHv27BgyZAhWrlwJOzs71K5dG4sXL9bpLxObIkWKIF++fDodJr28vGBnZ6d8wSek3tiULl0aBw8exKFDh+Dr64vXr19j3bp13+xUvXbtWhQuXBhmZmZInz49MmTIgL/++ivGc+vYsSNOnjyp7Fdbt25FeHg4OnTooCxz584dXL9+PcbzyJMnT6zPI3v27DHq6dOnD/LkyYO6desiS5Ys6Nq1a6x9WWKzd+9elClTBmZmZrC1tUWGDBmwdOnSWF+nL19z4PPrrn3N/f398fHjx1jfN3nz5o1XPd/yrf3uzp07AD6ffuDLbbpy5UqEhYV9cx+MbRsnlHbosPa9qq2vWrVqMerz9vb+5n6bkOf3rW3WqlUrlC9fHt27d4eDgwNat26NLVu2fDPYtGjRAgYGBsp7VUSwdetW1K1bVxm9lRivR8aMGbF06VK8ePECt27dwoIFC5AhQwaMHTsWv//++1fX1Yrveza14WgmSpCsWbMC+PwL/Uc8ffoUAQEByJUrFwAoHzq//vprnL8otcvGRrt++/btlU6HX/pyGHhco0Ci/1KaPXs2OnfujN27d8Pb2xsDBgyAh4cHTp8+jSxZssRZT6tWrTBlyhS8fv0alpaW2LNnD9q0aQMjI6ME1xsbOzu77x7yumHDBnTu3Blubm4YNmwY7O3tYWhoCA8PD51fqADQunVrDB48GBs3bsSoUaOwYcMGlChRQueLPSoqCi4uLpgzZ06sj6fdZ7RiC1r29vb4999/ceDAAezbtw/79u3D6tWr0bFjx1g7U2v9888/aNSoESpVqoQlS5YgY8aMMDY2xurVq7Fp06YYy8fnNf/ZvlWDdt+YOXMmihYtGuuy2taSuHzvCMGvuXbtGgDEeK+uX78ejo6OMZbX7uNxScjz+9Y2S5MmDY4fP46jR4/ir7/+wv79++Hl5YVq1arB29s7zvUzZcqEihUrYsuWLRg1ahROnz6Nx48f67RsJsbroaXRaJAnTx7kyZMH9evXR+7cubFx40Z07979q+t9z3s2tWGYUSknJyccOnQIQUFBOq0z//33nzI/Ou2viuhu374Nc3Nzpef799A2hSdk3ei0583RBpccOXIAAIyNjRN0PooMGTLA0tISkZGRiX4+CxcXF7i4uOC3336Dr68vypcvD09PT0yePDnOdVq1aoUJEyZg+/btcHBwQGBgIFq3bp0k9X7Ltm3bkCNHDuzYsUPnjLbaFrDobG1tUb9+fWzcuBHt2rXDyZMnY5zUK2fOnLh8+TKqV6/+Q2fINTExQcOGDdGwYUNERUWhT58+WLZsGcaMGRNnkN2+fTvMzMxw4MABnSHyq1evTlANGTJkQJo0aWJ939y6dSte9/Ej2wCAchjMyspK7+dmAT6/VzUaDWrWrAngf/XZ29snqL6f9fwMDAxQvXp1VK9eHXPmzMHUqVMxevRoHD169KuP06pVK/Tp0we3bt2Cl5cXzM3N0bBhw59eb44cOZAuXTq8ePFCmRbXvhPf9+yP7ntqxMNMKlWvXj1ERkZi0aJFOtPnzp0LjUaDunXr6kw/deqUzjHVJ0+eYPfu3ahVq9ZXz08R2yGooKAgzJs3D3Z2djr9cL7XkSNHMGnSJGTPnh3t2rUD8PmDsUqVKli2bJnOm/tr9URnaGiIZs2aYfv27covye9ZPzaBgYGIiIjQmebi4gIDA4MYQ46/lD9/fri4uMDLywteXl7ImDEjKlWq9FPrjS/t6x69NeLMmTM4depUrMt36NABN27cwLBhw2BoaKgTygCgZcuWePbsGVasWBFj3Y8fPyIkJOSbNb1580bntoGBgdIy9bVtbWhoCI1Go9P/6+HDhwm+vIWhoSFq166NXbt24fHjx8r0mzdv4sCBA/G6DwsLix9q+nd1dUXOnDkxa9YsnbPDav3MfeNL06ZNg7e3N1q1aqUceqtduzasrKwwdepUhIeHf3d9P+P5xdZSrG1F+dZ7tVmzZjA0NMQff/yBrVu3okGDBjpnKf7Res+cORPre+Ds2bN48+aNTitnXPtOfN+z5ubmAKC3S0boA1tmVKphw4aoWrUqRo8ejYcPH6JIkSLw9vbG7t27MWjQIJ3OjQBQqFAh1K5dGwMGDICpqSmWLFkCAMpZIuOyePFi7Nq1Cw0bNkS2bNnw4sULrFq1Co8fP8b69evjfaKnffv24b///kNERARevnyJI0eO4ODBg3BycsKePXt0TmK1ePFiVKhQAS4uLujRowdy5MiBly9f4tSpU3j69CkuX7781ceaNm0ajh49itKlS6NHjx4oUKAA3r59i4sXL+LQoUPffWjsyJEj6NevH1q0aIE8efIgIiIC69evV4LIt7Rq1Qpjx46FmZkZunXrFuMswYldb3w1aNAAO3bsQJMmTVC/fn08ePAAnp6eKFCgQKwf1vXr10f69OmVvgT29vY68zt06IAtW7agV69eOHr0KMqXL4/IyEj8999/2LJli3K+k6/p3r073r59i2rVqiFLlix49OgRFi5ciKJFi371bNf169fHnDlzUKdOHbRt2xavXr3C4sWLkStXLly5ciVB22fChAnYv38/KlasiD59+iAiIgILFy5EwYIF43Wfrq6u8PLywpAhQ1CyZEmkTZtW55f+txgYGGDlypWoW7cuChYsiC5duiBz5sx49uwZjh49CisrK/z5558Jem5xiYiIUM75FBoaikePHmHPnj24cuUKqlatiuXLlyvLWllZYenSpejQoQOKFy+O1q1bI0OGDHj8+DH++usvlC9fPsaPrZ/9/CZOnIjjx4+jfv36cHJywqtXr7BkyRJkyZIFFSpU+Oq69vb2qFq1KubMmYOgoCClk35i1bt+/Xps3LgRTZo0gaurK0xMTHDz5k2sWrUKZmZmOufCiWvfie97Nk2aNChQoAC8vLyQJ08e2NraolChQihUqNB3bU9V0ccQKvp+Xw7NFvk8NHLw4MGSKVMmMTY2lty5c8vMmTN1hg2KfB6K2rdvX9mwYYPkzp1bTE1NpVixYl8954SWt7e31KxZUxwdHcXY2FhsbGykVq1acvjw4XjVrR2Sqf0zMTERR0dHqVmzpsyfP18CAwNjXe/evXvSsWNH5XEzZ84sDRo0kG3btinLxDU0W0Tk5cuX0rdvX8maNasYGxuLo6OjVK9eXZYvX64sox0i++WQ6y+Hbt6/f1+6du0qOXPmFDMzM7G1tZWqVavKoUOHdNb7cmi21p07d5Tnf+LEiVifb3zqjUts55mJzZdDs6OiomTq1Kni5OSk7BN79+6VTp06xTosVESkT58+AkA2bdoU6/xPnz7J9OnTpWDBgmJqairp0qUTV1dXmTBhggQEBCjLaffJL23btk1q1aol9vb2YmJiItmyZZOePXvKixcvvvn8fv/9d2X/zpcvn6xevVoZ0htdXI8d2+t37NgxcXV1FRMTE8mRI4d4enrGep+xCQ4OlrZt24qNjY0AULZpfPc7rUuXLknTpk0lffr0YmpqKk5OTtKyZUud92BcQ7Pjs19oderUSee9am5uLs7OztKsWTPZtm2bREZGxrre0aNHpXbt2mJtbS1mZmaSM2dO6dy5s86pIL52iob4PD/tNv9yyPWXz/vw4cPSuHFjyZQpk5iYmEimTJmkTZs2cvv2bWWduLaziMiKFSsEgFhaWsrHjx9jfb7xqTc2V65ckWHDhknx4sXF1tZWjIyMJGPGjNKiRQu5ePGizrJx7Tvf85719fVV9l2kgmHaGpEk7PFGeqHRaNC3b9+v/koiio/Bgwfj999/h5+fn9KUTUSkb+wzQ0TxEhoaig0bNqBZs2YMMkSUrLDPDBF91atXr3Do0CFs27YNb968wcCBA/VdEhGRDoYZIvqqGzduoF27drC3t8eCBQviPMcGEZG+sM8MERERqRr7zBAREZGqMcwQERGRqqX4PjNRUVF4/vw5LC0tU+UpnomIiNRIRBAUFIRMmTLFONnol1J8mHn+/HmMC9wRERGROjx58uSrF/QFUkGY0V6E8cmTJ8ql3ImIiCh5CwwMRNasWXUuphyXFB9mtIeWrKysGGaIiIhUJj5dRNgBmIiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUzUjfBSQnrsPW6bsE1bows6O+SyAiolSKLTNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqeg0zx48fR8OGDZEpUyZoNBrs2rVLZ76IYOzYsciYMSPSpEmDGjVq4M6dO/oploiIiJIlvYaZkJAQFClSBIsXL451/owZM7BgwQJ4enrizJkzsLCwQO3atREaGprElRIREVFyZaTPB69bty7q1q0b6zwRwbx58/Dbb7+hcePGAIB169bBwcEBu3btQuvWrZOyVCIiIkqmkm2fmQcPHsDPzw81atRQpllbW6N06dI4depUnOuFhYUhMDBQ54+IiIhSrmQbZvz8/AAADg4OOtMdHByUebHx8PCAtbW18pc1a9afWicRERHpV7INMwnl7u6OgIAA5e/Jkyf6LomIiIh+omQbZhwdHQEAL1++1Jn+8uVLZV5sTE1NYWVlpfNHREREKVeyDTPZs2eHo6MjDh8+rEwLDAzEmTNnULZsWT1WRkRERMmJXkczBQcH4+7du8rtBw8e4N9//4WtrS2yZcuGQYMGYfLkycidOzeyZ8+OMWPGIFOmTHBzc9Nf0URERJSs6DXMnD9/HlWrVlVuDxkyBADQqVMnrFmzBsOHD0dISAh++eUXvH//HhUqVMD+/fthZmamr5KJiIgomdGIiOi7iJ8pMDAQ1tbWCAgI+Gb/Gddh65KoqpTnwsyO+i6BiIhSkO/5/k62fWaIiIiI4oNhhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFSNYYaIiIhUjWGGiIiIVI1hhoiIiFTNSN8FEMXGddg6fZegahdmdtR3CURESYYtM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGoMM0RERKRqDDNERESkagwzREREpGrJOsxERkZizJgxyJ49O9KkSYOcOXNi0qRJEBF9l0ZERETJhJG+C/ia6dOnY+nSpVi7di0KFiyI8+fPo0uXLrC2tsaAAQP0XR4RERElA8k6zPj6+qJx48aoX78+AMDZ2Rl//PEHzp49q+fKiIiIKLlI1oeZypUrh8OHD+P27dsAgMuXL+PEiROoW7dunOuEhYUhMDBQ54+IiIhSrmTdMjNy5EgEBgYiX758MDQ0RGRkJKZMmYJ27drFuY6HhwcmTJiQhFUSERGRPiXrlpktW7Zg48aN2LRpEy5evIi1a9di1qxZWLt2bZzruLu7IyAgQPl78uRJElZMRERESS1Zt8wMGzYMI0eOROvWrQEALi4uePToETw8PNCpU6dY1zE1NYWpqWlSlklERER6lKxbZj58+AADA90SDQ0NERUVpaeKiIiIKLlJ1i0zDRs2xJQpU5AtWzYULFgQly5dwpw5c9C1a1d9l0aUargOW6fvElTtwsyO+i6BKMVL1mFm4cKFGDNmDPr06YNXr14hU6ZM6NmzJ8aOHavv0oiIiCiZSNZhxtLSEvPmzcO8efP0XQoRERElU8m6zwwRERHRtzDMEBERkaoxzBAREZGqMcwQERGRqjHMEBERkaoxzBAREZGqMcwQERGRqjHMEBERkaoxzBAREZGqMcwQERGRqjHMEBERkaoxzBAREZGqMcwQERGRqjHMEBERkaoxzBAREZGqMcwQERGRqjHMEBERkaoxzBAREZGqMcwQERGRqjHMEBERkaoxzBAREZGqMcwQERGRqjHMEBERkaoxzBAREZGqMcwQERGRqjHMEBERkaoxzBAREZGqMcwQERGRqiUozHTt2hVBQUExpoeEhKBr164/XBQRERFRfCUozKxduxYfP36MMf3jx49Yt27dDxdFREREFF9G37NwYGAgRAQigqCgIJiZmSnzIiMj8ffff8Pe3j7RiyQiIiKKy3eFGRsbG2g0Gmg0GuTJkyfGfI1GgwkTJiRacURERETf8l1h5ujRoxARVKtWDdu3b4etra0yz8TEBE5OTsiUKVOiF0lEREQUl+8KM5UrVwYAPHjwAFmzZoWBAQdDERERkX59V5jRcnJyAgB8+PABjx8/xqdPn3TmFy5c+McrIyIiIoqHBIUZf39/dOnSBfv27Yt1fmRk5A8VRURERBRfCTpONGjQILx//x5nzpxBmjRpsH//fqxduxa5c+fGnj17ErtGIiIiojglqGXmyJEj2L17N0qUKAEDAwM4OTmhZs2asLKygoeHB+rXr5/YdRIRERHFKkEtMyEhIcr5ZNKlSwd/f38AgIuLCy5evJh41RERERF9Q4LCTN68eXHr1i0AQJEiRbBs2TI8e/YMnp6eyJgxY6IWSERERPQ1CTrMNHDgQLx48QIAMG7cONSpUwcbN26EiYkJ1qxZk5j1EREREX1VgsJM+/btlf+7urri0aNH+O+//5AtWzbY2dklWnFERKTLdRivf5dQF2Z21HcJ9JMk6DDTxIkT8eHDB+W2ubk5ihcvDgsLC0ycODHRiiMiIiL6lgSFmQkTJiA4ODjG9A8fPvDaTERERJSkEhRmRAQajSbG9MuXL+tcr4mIiIjoZ/uuPjPp0qXTuWp29EATGRmJ4OBg9OrVK9GLJCIiSm7YfynhErv/0neFmXnz5kFE0LVrV0yYMAHW1tbKPBMTEzg7O6Ns2bKJWiARERHR13xXmOnUqRMAIHv27ChfvjyMjBI0GIqIiIgo0SSoz4ylpSVu3ryp3N69ezfc3NwwatSoGFfQJiIiIvqZEhRmevbsidu3bwMA7t+/j1atWsHc3Bxbt27F8OHDE7VAIiIioq9JUJi5ffs2ihYtCgDYunUrKleujE2bNmHNmjXYvn17YtZHRERE9FUJHpodFRUFADh06BDq1asHAMiaNStev36deNURERERfUOCwkyJEiUwefJkrF+/HseOHUP9+vUBAA8ePICDg0OiFkhERET0NQkKM/PmzcPFixfRr18/jB49Grly5QIAbNu2DeXKlUvUAomIiIi+JkFjqwsXLoyrV6/GmD5z5kwYGhoqt//44w80atQIFhYWCa+QiIiI6CsS1DITFzMzMxgbGyu3e/bsiZcvX/7QfT579gzt27dH+vTpkSZNGri4uOD8+fM/WioRERGlED/1rHci8kPrv3v3DuXLl0fVqlWxb98+ZMiQAXfu3EG6dOkSqUIiIiJSu2R9Ct/p06cja9asWL16tTIte/bsX10nLCwMYWFhyu3AwMCfVh8RERHpX6IeZkpse/bsQYkSJdCiRQvY29ujWLFiWLFixVfX8fDwgLW1tfKXNWvWJKqWiIiI9CFZh5n79+9j6dKlyJ07Nw4cOIDevXtjwIABWLt2bZzruLu7IyAgQPl78uRJElZMRERESS1ZH2aKiopCiRIlMHXqVABAsWLFcO3aNXh6eioXvfySqakpTE1Nk7JMIiIi0qOf2jLj5OSkM7rpe2XMmBEFChTQmZY/f348fvz4R0sjIiKiFCLBYeb9+/dYuXIl3N3d8fbtWwDAxYsX8ezZM2WZa9eu/VCflfLly+PWrVs6027fvg0nJ6cE3ycRERGlLAk6zHTlyhXUqFED1tbWePjwIXr06AFbW1vs2LEDjx8/xrp16xKluMGDB6NcuXKYOnUqWrZsibNnz2L58uVYvnx5otw/ERERqV+CWmaGDBmCzp07486dOzAzM1Om16tXD8ePH0+04kqWLImdO3fijz/+QKFChTBp0iTMmzcP7dq1S7THICIiInVLUMvMuXPnsGzZshjTM2fODD8/vx8uKroGDRqgQYMGiXqfRERElHIkqGXG1NQ01pPR3b59GxkyZPjhooiIiIjiK0FhplGjRpg4cSLCw8MBABqNBo8fP8aIESPQrFmzRC2QiIiI6GsSFGZmz56N4OBg2Nvb4+PHj6hcuTJy5coFS0tLTJkyJbFrJCIiIopTgvrMWFtb4+DBgzh58iQuX76M4OBgFC9eHDVq1Ejs+oiIiIi+6ofOAFy+fHmUL18ewOfzzhAREREltQQdZpo+fTq8vLyU2y1btkT69OmROXNmXL58OdGKIyIiIvqWBIUZT09P5cy+Bw8exMGDB7Fv3z7UrVsXw4YNS9QCiYiIiL4mQYeZ/Pz8lDCzd+9etGzZErVq1YKzszNKly6dqAUSERERfU2CWmbSpUuHJ0+eAAD279+vdPwVEURGRiZedURERETfkKCWmaZNm6Jt27bInTs33rx5g7p16wIALl26hFy5ciVqgURERERfk6AwM3fuXDg7O+PJkyeYMWMG0qZNCwB48eIF+vTpk6gFEhEREX1NgsKMsbExfv311xjTBw8e/MMFEREREX2PBJ9n5s6dOzh69ChevXqFqKgonXljx4794cKIiIiI4iNBYWbFihXo3bs37Ozs4OjoCI1Go8zTaDQMM0RERJRkEhRmJk+ejClTpmDEiBGJXQ8RERHRd0nQ0Ox3796hRYsWiV0LERER0XdLUJhp0aIFvL29E7sWIiIiou+WoMNMuXLlwpgxY3D69Gm4uLjA2NhYZ/6AAQMSpTgiIiKib0lQmFm+fDnSpk2LY8eO4dixYzrzNBoNwwwRERElmQSFmQcPHiR2HUREREQJkqA+M1qfPn3CrVu3EBERkVj1EBEREX2XBIWZDx8+oFu3bjA3N0fBggXx+PFjAED//v0xbdq0RC2QiIiI6GsSFGbc3d1x+fJl+Pj4wMzMTJleo0YNeHl5JVpxRERERN+SoD4zu3btgpeXF8qUKaNz9t+CBQvi3r17iVYcERER0bckqGXG398f9vb2MaaHhITohBsiIiKiny1BYaZEiRL466+/lNvaALNy5UqULVs2cSojIiIiiocEHWaaOnUq6tatixs3biAiIgLz58/HjRs34OvrG+O8M0REREQ/U4JaZipUqIB///0XERERcHFxgbe3N+zt7XHq1Cm4uromdo1EREREcYp3y8yQIUMwadIkWFhY4Pjx4yhXrhxWrFjxM2sjIiIi+qZ4t8wsXLgQwcHBAICqVavi7du3P60oIiIioviKd8uMs7MzFixYgFq1akFEcOrUKaRLly7WZStVqpRoBRIRERF9TbzDzMyZM9GrVy94eHhAo9GgSZMmsS6n0WgQGRmZaAUSERERfU28w4ybmxvc3NwQHBwMKysr3Lp1K9ZzzRARERElpe8emp02bVocPXoU2bNnh5FRgkZ2ExERESWaBA3Nrly5Mh49eoTffvsNbdq0watXrwAA+/btw/Xr1xO1QCIiIqKvSVCYOXbsGFxcXHDmzBns2LFDGeV0+fJljBs3LlELJCIiIvqaBIWZkSNHYvLkyTh48CBMTEyU6dWqVcPp06cTrTgiIiKib0lQmLl69Wqso5ns7e3x+vXrHy6KiIiIKL4SFGZsbGzw4sWLGNMvXbqEzJkz/3BRRERERPGVoDDTunVrjBgxAn5+ftBoNIiKisLJkyfx66+/omPHjoldIxEREVGcEhRmpk6dinz58iFr1qwIDg5GgQIFULFiRZQrVw6//fZbYtdIREREFKcEnSjGxMQEK1aswNixY3H16lUEBwejWLFiyJ07d2LXR0RERPRV33XV7K+JPoppzpw5Ca+IiIiI6DvEO8xcunRJ5/bFixcRERGBvHnzAgBu374NQ0NDuLq6Jm6FRERERF8R7zBz9OhR5f9z5syBpaUl1q5dq1w5+927d+jSpQsqVqyY+FUSERERxSFBHYBnz54NDw8PJcgAQLp06TB58mTMnj070YojIiIi+pYEhZnAwED4+/vHmO7v74+goKAfLoqIiIgovhIUZpo0aYIuXbpgx44dePr0KZ4+fYrt27ejW7duaNq0aWLXSERERBSnBA3N9vT0xK+//oq2bdsiPDz88x0ZGaFbt26YOXNmohZIRERE9DUJCjPm5uZYsmQJZs6ciXv37gEAcubMCQsLi0QtjoiIiOhbEhRmtCwsLFC4cOHEqoWIiIjouyWozwwRERFRcsEwQ0RERKrGMENERESqpqowM23aNGg0GgwaNEjfpRAREVEyoZowc+7cOSxbtowdjomIiEiHKsJMcHAw2rVrhxUrVuhcQoGIiIhIFWGmb9++qF+/PmrUqPHNZcPCwhAYGKjzR0RERCnXD51nJils3rwZFy9exLlz5+K1vIeHByZMmPCTqyIiIqLkIlm3zDx58gQDBw7Exo0bYWZmFq913N3dERAQoPw9efLkJ1dJRERE+pSsW2YuXLiAV69eoXjx4sq0yMhIHD9+HIsWLUJYWBgMDQ111jE1NYWpqWlSl0pERER6kqzDTPXq1XH16lWdaV26dEG+fPkwYsSIGEGGiIiIUp9kHWYsLS1RqFAhnWkWFhZInz59jOlERESUOiXrPjNERERE35KsW2Zi4+Pjo+8SiIiIKBlhywwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREakawwwRERGpGsMMERERqRrDDBEREalasg8zHh4eKFmyJCwtLWFvbw83NzfcunVL32URERFRMpHsw8yxY8fQt29fnD59GgcPHkR4eDhq1aqFkJAQfZdGREREyYCRvgv4lv379+vcXrNmDezt7XHhwgVUqlRJT1URERFRcpHsw8yXAgICAAC2traxzg8LC0NYWJhyOzAwMEnqIiIiIv1I9oeZoouKisKgQYNQvnx5FCpUKNZlPDw8YG1trfxlzZo1iaskIiKipKSqMNO3b19cu3YNmzdvjnMZd3d3BAQEKH9PnjxJwgqJiIgoqanmMFO/fv2wd+9eHD9+HFmyZIlzOVNTU5iamiZhZURERKRPyT7MiAj69++PnTt3wsfHB9mzZ9d3SURERJSMJPsw07dvX2zatAm7d++GpaUl/Pz8AADW1tZIkyaNnqsjIiIifUv2fWaWLl2KgIAAVKlSBRkzZlT+vLy89F0aERERJQPJvmVGRPRdAhERESVjyb5lhoiIiOhrGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNUYZoiIiEjVGGaIiIhI1RhmiIiISNVUEWYWL14MZ2dnmJmZoXTp0jh79qy+SyIiIqJkItmHGS8vLwwZMgTjxo3DxYsXUaRIEdSuXRuvXr3Sd2lERESUDCT7MDNnzhz06NEDXbp0QYECBeDp6Qlzc3OsWrVK36URERFRMmCk7wK+5tOnT7hw4QLc3d2VaQYGBqhRowZOnToV6zphYWEICwtTbgcEBAAAAgMDv/l4kWEff7Di1Cs+2/d78LX4MYn5evC1+DF8byQffC2Sj/i8FtplROTbdyjJ2LNnzwSA+Pr66kwfNmyYlCpVKtZ1xo0bJwD4xz/+8Y9//ONfCvh78uTJN/NCsm6ZSQh3d3cMGTJEuR0VFYW3b98iffr00Gg0eqzsxwQGBiJr1qx48uQJrKys9F1OqsbXIvnga5F88LVIPlLKayEiCAoKQqZMmb65bLIOM3Z2djA0NMTLly91pr98+RKOjo6xrmNqagpTU1OdaTY2Nj+rxCRnZWWl6p0zJeFrkXzwtUg++FokHynhtbC2to7Xcsm6A7CJiQlcXV1x+PBhZVpUVBQOHz6MsmXL6rEyIiIiSi6SdcsMAAwZMgSdOnVCiRIlUKpUKcybNw8hISHo0qWLvksjIiKiZCDZh5lWrVrB398fY8eOhZ+fH4oWLYr9+/fDwcFB36UlKVNTU4wbNy7GITRKenwtkg++FskHX4vkIzW+FhqR+Ix5IiIiIkqeknWfGSIiIqJvYZghIiIiVWOYISIiIlVjmCEiIiJVY5ghIqJkK/q19ojiwjBDRPSdOAg0aaxduxbdu3fH+/fv9V0KJXMMM/Td+EH+80RFRcWYxu2dvERFRSnXeYuMjATA1+hnEBHcv38ft27dwm+//YaAgAB9l0T/T7u/R9/v9f0e4Hlm6LtERUXBwOBzBn779i0iIyORIUMGPVeVMoSHh8PY2BgA4OvrC0NDQzg4OMDZ2RkiouoLpaYU0ff/uXPn4uHDh5gxY0aqOjlZUoqMjMScOXOwY8cOFCtWDB4eHvG+Vg/9HNHfA35+fjAwMED69OlhaGio17rYMkPfRbsTjx07FjVq1EDp0qUxduxYfPz4Uc+VqVfbtm3h4+OjBJkRI0agQYMGaNmyJVxdXbF//34GGT3T/ubT7v/Dhw/HnDlzkCNHDrx48SLGcvTjoqKiYGhoiCFDhsDNzQ2XLl2Cu7s7W2j0SESU98DkyZPRqFEjVKlSBcWKFcPhw4f1+z0gRPEQGRmp/H/JkiWSKVMmWbBggUycOFHMzc2lffv28vLlSz1WqE4BAQFSr149sbS0lFOnTsnNmzclV65ccvLkSTlx4oQMHDhQjIyMZPPmzfouNdUKCQnRub1hwwZxcHCQc+fOKdMiIiIkMDAwqUtLNSIiImTq1KlSpkwZ6d27t7x//17fJaVq48aNE3t7e9m2bZs8ffpUihcvLrly5ZKHDx/qrSaGGfoup06dkrlz58rWrVuVab6+vpI2bVpp27atvHr1So/VqdOrV6+kQ4cOYmlpKTNmzJCxY8cq8z59+iQjRowQIyMj8fLy0mOVqVPXrl1l5cqVIiISFRUlIiKjR4+W1q1bi4jI1atXZcGCBVKoUCHJli2brFixQm+1phTa7fzixQvx9/dXviAjIiJk+vTpUrp0aQYaPfL395cKFSrIjh07RERk7969YmNjI0uXLtVZTvs6JhWGGYq3GzduiEajEY1GI7///ruI/G+HPXXqlFhaWkqHDh3kxYsX+ixTlV69eiWdO3cWjUYj7dq1E5H/bVttoDEzM5PVq1frscrUZ/r06fLp0ycREQkNDRURkWXLlolGo5FBgwZJgQIFpHnz5jJ79mwZPHiwpE2bVvz8/PRZsqpp9/mdO3dK0aJFJWfOnJIjRw4ZN26cREVFSWRkpEyfPl3KlCkj/fr1k7dv3+q54tTn3r17kjFjRgkMDBRvb29JmzatEmSCgoJk+vTp8vHjxySvi2GG4hRbst65c6dYWlpKt27dlB1Wu9zp06dFo9HI+PHjk7RONdJus+jb+OnTp9KzZ09JkyaNHD9+XGd+eHi49OrVSypVqpT0xaZC0Q+rioisWLFCRo0aJQEBAfLhwwfx8PCQ0qVLy+LFi+X27dsiInL9+nUpV66cPHr0SB8lpxgHDx4UMzMzWbBggWzevFkWLVokxsbG0rFjRxH5XwtNvnz5ZOjQoUneApCaxLVt69SpI61bt5a0adMqLZciIvfv35dy5crJnj17kqpEBcMMxSr6h3lISIhEREQov1D/+OMPMTIykuHDhyvTtDv9tWvXJDw8POkLVpHo2zYqKkrCwsKU235+ftKuXTuxsLAQX19fZRmRzx/i/OBOGl+GmR49ekjhwoVl2rRpEhQUJCL/60ujfQ3r1q0rtWrV4mv0g/r3768cxtP6559/xNDQUKZMmSIin8P9vHnz5MGDB3qoMHWI/h6YOnWqzJkzR8LCwiQiIkImTpwo9vb20qZNG2WZkJAQqVevntSqVUsiIiKSvF4j/XU9puQq+tC72bNn49SpU3jx4gVKliyJvn37onXr1tBoNGjfvj2Az73ajY2NISIoWLAgACAiIgJGRty9vhR92y5atAjHjx9HUFAQatWqhcGDB8PBwQHz5s2DiKB27drw9vZGmTJlICLK0EfhMO2fTvsabdy4EVWqVMHy5csxcOBAbNmyBREREejXrx+sra0RHByMP//8E8uXL8f79+9x9uxZaDQandeZ4i8iIgL37t2DpaUlgM/7enh4OCpUqICpU6di/fr16Nq1KxwdHTFw4EA9V5tyRd9/7969i8uXL2Pr1q2wsrJCt27d0LdvX9y+fRuXL19GnTp1kCtXLvz7778ICgrC+fPnYWhomOTvAb7bKAbtDuju7o5p06ahTp06aNu2LQ4dOoSmTZsiODgYrVq1wqZNm7BgwQL0798fkZGROl+wDDKxi75tPTw84OTkhKpVq2Lo0KEYNWoUPnz4ADs7O8yfPx9ubm4oV64crl27prNtGWR+PhFBYGAgunfvjmXLlgEA5s+fjwoVKmDnzp1YvHgxgoKCEBoaCj8/PxQoUADnzp2DsbExIiIiGGTiSf5/KPvr168RFhYGIyMj1KtXDz4+Pjhz5gw0Go1yygIbGxtoNBpYWVnps+RUIfopCJo1awYjIyPkyZMHPXv2xIIFC2Bra4t58+ZhyJAhsLCwQHBwMKpXr44LFy7o7z2Q5G1BpArXrl2TwoULy4kTJ0Tkc491S0tLWbZsmYj8rwly1apVUqlSJTatf4ctW7ZIzpw55dSpUyIi4u3tLYaGhmJgYCDdu3eXDx8+iMjnQ07jx4/nYTs90O7fixYtksKFC8ulS5eUeQMGDJASJUrItGnTJDg4WKc5Xh/N62ql/cz4888/pVmzZrJ9+3YJDw+XK1euSOPGjaVOnTpy+vRpZflff/1VKlWqxCHwSWTbtm2SNm1aOXv2rHz69EnevHkj48aNEwMDA1mwYEGc6+nrPcAwQ7Hy9fWVrFmziojIrl27dHqsBwcHy7p162IMjWSg+baIiAhZu3atLFy4UERE/vrrL7G2tpaVK1fKzp07xcDAQEaMGCHBwcE66zHQ/Fxx7bsXLlyQokWLyqpVq3SmDxo0SLJmzSrr1q375n1Q3Hbs2CFp0qQRDw8PuXv3rjL9wIED0qBBA7G1tZXatWtLzZo1xcrKSidUUuL6sp/Y0qVLxdXVVcLDw3X27eHDh4uRkZGsXr06xjr6xDBDOjuqdue8evWq1KxZUxYtWiSWlpbi6empLHPq1Clp166dXL58OclrVZvYvuBev34t9+/fl1evXknx4sVlxowZIiJy584dyZAhg2g0Gpk6dWpSl0ryuZVAO5JMa8iQIZIlSxYJCAjQmT5v3jy2xPyA27dvS65cuZTRMJGRkfLx40e5dOmSfPz4UQICAmTlypXSuXNnGTt2rNy8eVPPFacOY8eOlXPnzsn27dvF2NhYHj9+LCL/a3E5ceKEaDQaMTExUcJ8cgjyDDOp3Jcja7QjNCIjI6VSpUoxvlg/fvwodevWFTc3t2SVypOj6NsnMDBQIiIidEYuXblyRfLmzav82nzy5In06dNHTpw4wZYYPbhy5YqUK1dOLCwsZOjQoeLt7S0in8Nn+fLlZf78+RIVFaWM4NNioEmYmzdvSqFCheTcuXMSFhYms2fPlvLly4uDg4Pkzp1bnjx5ou8SU4XoQWTTpk1ibW0tPj4+4ufnJ9WqVZPGjRvrjBr777//pH///jJmzBhJkyaNXL9+XQ9Vx8ReaqlY9N7mc+bMQfPmzVG2bFmMHDkSr169wp9//okCBQpg+/btmDZtGhYsWID69evj8ePH2LJlCwwMDGK9yjPpbtsZM2agZcuWKFu2LHr37o0bN24AAIyNjXHnzh3s2bMHp06dwi+//ILbt2+jXLlyMDIyQkREhD6fQoonX1xHycXFBV5eXvjjjz9w9OhRjB49Gm5ubnj+/DkyZMiA48eP63RI1dL3BfbUJPo2j4iIQJo0aTBhwgTkyJEDx48fR82aNbF161YYGBhg8+bNeqw09dAOKPD29sbp06cxe/ZsVK5cGQ4ODujatSuCg4PRuXNn+Pj44OTJkxg8eDCePXuGzp07I126dLh48aKen8H/03eaIv1zd3cXR0dHmTFjhuzYsUM0Go00b95cQkJCxN/fX1q0aCGlS5eWatWqSc+ePZVfpmw9+LZRo0ZJ+vTpZf78+TJo0CCpXbu2WFtby9mzZ0Xk83FpIyMjyZMnj5QqVSrGeXvo54jeavb06VO5deuWzvxnz56Jt7e3lC5dWsqVKydlypQRjUYju3btSupSUwTt/hwaGqqzb+/cuVMmTZokU6dOladPnyrTq1SpopxlnH4+X19fKVKkiKRLl07Wr1+vM2/Hjh3StGlT0Wg0kitXLilZsqRERkbKhw8fpECBArJz5079FP0FhplU7uLFi5I3b16ln8DZs2fF2Ng4RofHkJAQ5XTuIgwysdF+QWr/ffjwobi4uMju3buVZR4+fCht27YVR0dH5ZozDx8+lKtXryrrcdv+XNGDzPjx48XFxUXs7e2lTJkysn///hidr9etWycDBgxQOkPS99GGlwMHDkiTJk2kTp060r59+1gDe1hYmIwZM0YyZ86s0yGYfq6oqCiZOXOmODk5SZUqVcTf3z/GMteuXZNHjx4pr9vw4cMlT548yeZwIMNMKvNlP5czZ85I8eLFReR/Q/G0o5YCAgJk3759Me6DrQax+/LD99q1a2Jqaio+Pj7KtKioKLl+/bq4urrqnAZci/2Qks64ceMkY8aMsnnzZnn16pUUKVJEihcvLuvXr1eGx0cX/dIS9H127twpVlZWMmDAAFmyZIk4OTlJ9erVdd4zGzZskG7duomjo6NcvHhRj9WmbF9+xmhvR0VFybx588TV1VV69Oghr1+/FpGYfcJOnjwpffr0EVtb22T1OrHPTCoT/WRIXl5esLGxwZs3bzB9+nR069YNM2bMQK9evQAA//77L+bMmaP08dDiSdtiunnzJnLnzo358+cr05ydnVGiRAkcOHAAHz58APB52+XLlw+RkZG4d+9ejPvhydaSxtmzZ7F3716sXbsWrVq1wvXr13Hv3j18+vQJo0aNws6dO/Hx40cA/+vnodFoICI8IeR3unnzJkaPHo0pU6Zg/vz5aNKkCaKiouDr64tmzZop74MMGTLAzs4Ox44dQ7FixfRcdcoUvS/f8uXL8csvv6Bbt25YuXIlNBoNBg4ciLZt2+Lq1asYNWoU3r59C0NDQ52+TjY2NsiSJQt8fX2T1+uk5zBFSSR6a8qePXvE0dFRDh8+LB8/fpRu3bqJqampDB06VFkmNDRUGjZsKE2aNGFrQTy8e/dOxo4dK8bGxrJ48WIR+bzNBw0aJK6urrJ69WrlF05ISIiULVtW5s2bp8+SU43YWhJv3bql9Mk4fPiwZMiQQbmdP39+KV68uHh6euocWqWvi+tz4uTJk/Lbb7+JyOf+STly5JCePXvKnTt3JHPmzFKzZk3lYp3RR/vRzzNs2DDJkCGDtG/fXpo3by4ajUbat2+vXHds5syZUqFCBWnRokWMUxKIJM/WSY3IF136KUXbu3cv/v77b+TKlQtDhgwBAPj4+GDatGl4+vQpfvnlF0RGRmLfvn148eIFLl68CGNjY15rJh7ev3+PRYsWYezYsZg/f75ymYf27dvj5s2byJIlC4oXLw4fHx+8ffsW//77L3/lJ4GPHz8iJCQEQUFBMDMzQ8aMGSEiePPmDWxsbNCyZUvkzJkT06dPh4GBARo2bAhfX180atQIq1ev1nf5qqD9fHj+/Dl8fX0RGBiImjVrImvWrACA69evo2DBgmjbti1EBGvXroVGo0HdunVx5MgRlC1bFseOHeP7IQmcPn0azZo1w5YtW1C+fHkAwMmTJ1G3bl20adMGy5Ytg4hgwoQJ8PPzw5IlS1Tx2c89JxW5fPkyJk6ciNu3b8Pd3V2ZXqVKFWg0Gvz555+YPn06ChUqBCcnJ/z999/KEGF+yMT04MEDGBsbI0uWLAA+N7/26dMHADBw4EBERERg8ODB2LhxI5YuXQpfX1+cPXsWBQoUwMKFC2FkZITIyEgO7f2J/v77b2zYsAFHjx5FQEAA7OzsMHToUAwcOBB2dnb49OkT/P39Ubx4ceUD29bWFocOHUKRIkX0XL06aIPM9evX0aFDB+TLlw958uRRggwAFCxYEB8+fMCjR4/QoUMHmJiYAADy5cuH8ePHI2vWrPyMSSJBQUEwMTFB3rx5AQCRkZEoX748tmzZAjc3N7Rq1QrVqlXD+PHjlYvaquLHrD6bhejnunbtmhw+fFj27NmjTNu0aZMUK1ZM8ufPL1euXImxzpdNismxOTE52Llzp5iYmEimTJnkt99+k8WLF0toaKhyKGnKlCliYGAgs2fP1lkvejM6t+3P9fvvv0vGjBnF3d1dNm/eLJs3b5Z27dqJRqORgQMHSkhIiERGRkrdunXFxcVFufZPoUKFYoxMo9hpD+Fdu3ZN0qVLJ2PGjJG3b98q83fv3q3TAb5IkSJSo0YNOXHihAwaNEgyZcokz549S/K6U4vYDrFeuHBBDA0N5eDBgyLyv3386dOn4uzsLNu2bfvmfSRHDDMp1MaNG6V8+fLSqVMnZXRS9HkVK1aUpk2byo0bN0Tk8w4bGRmps+OqZSdOapGRkTJ69Gixs7OTrFmzSpUqVaRQoULKCI1NmzbJvn37ZNasWaLRaGTNmjUx7oPb9udatmyZGBkZiZeXl85ojDdv3sisWbPEwMBAJkyYICKfz2rt5uYm9erVk2bNminn+mGQiR/tGZL79OmjM33atGliamoqlSpVkgMHDojI51NBODk5ibOzs+TIkSNZjYZJaaLvvx8+fJDIyEjlx1SrVq2kYsWK8s8//yjLvHv3TvLnzx8jzKgFw0wKtGrVKrG0tJTNmzcr5zIR+Xzla601a9ZIlSpVpFmzZkqgofgLDg6WMWPGSMOGDWXAgAHy9u1b2b59u/Tu3Vty584tWbNmlaJFi4qFhYVoNBrlw5x+vj179ohGo5FDhw6JiMQI6QEBATJkyBAxNTVVrlz+5WUK2GoWf+fPn5fcuXPLyZMnlWlLly4VW1tbmTp1qri5uUnNmjXl8OHDIvI5PN64cUMZ+kuJL3qQmT17tjRv3lwqVqwoQ4cOlRcvXihXJi9QoIAsWLBANm7cKLVq1ZKiRYuq9vIcDDMpzLFjxyRTpkwxzp7Zpk0b0Wg08uuvvyrT1qxZI9WrV5cqVaroXHuDvk77QREYGCju7u5SokQJGT9+vPIF+PjxY7l69aoMHDhQ6tWrJwULFuSXYxKJjIyU9evXi0ajkUmTJinTv2wJO3XqlKRNm1b++uuvGPfBVrPvs3TpUrGystKZ9s8//8iJEydERMTHx0caNmwoxYsX58Uik9jIkSPFzs5Oli1bJvPnz5e8efOKq6uriHy+YOSvv/4q6dKlk9KlS0vDhg2VQK/GQMMwk0Jov2AnTpwojRs3lnfv3inzunbtKjlz5pSJEyeKnZ2dzhBsT09P6devH5vUv5N2ewUFBcno0aOlVKlSMmzYsBgXIRThydaSWlhYmKxdu1aMjY1lxIgRyvSoqCjltfjw4YOkSZNGNm7cqK8yUwxvb28xMjKK9QSbWjNmzJBy5crp9Kehn+vKlSvi4uKihMq9e/eKpaVljG4H/v7+EhQUpPrPKXYfTyG0Pc19fHxgZ2cHGxsbREVFITAwEPnz54eHhwcsLCyQKVMmDBw4EBqNBjNnzkTPnj2V+1BFj/VkQnuRzbRp02LkyJEAgEOHDmHMmDGYPHmyzkglnmwtaZmYmChDgHv06AGNRgMPDw9lVIZGo4GPjw9cXFxQokQJfZereg4ODkiXLh02bNiAPHnyIEeOHMo8+f/RMH5+fsiWLVuMi3TSzxMYGIiAgACUL18eu3fvRvv27TFz5kz06tULwcHB2LVrFxo1agQ7OztlHTV/TqmzaoqTubk5Xr58CeDzF66NjQ2GDBmihJRGjRph+/btCAwMjLEug8z3iS3QHD16FP3798eiRYt0hlzzrMlJy8jICO3atQMA9OjRAyKCadOmwcDAAKGhoViyZAly586N3Llz67lS9StcuDDGjBmDgQMHwsrKCn379kXBggUBfB4GPHnyZKxZswb//PMP0qZNq+dqU6b79+/j/fv30Gg0yll5bWxskC9fPixZsgQjR47ErFmzlB+vV69exYEDB1CkSBG4uLgo96PmzymGmRRC26pSr149uLu7Y+nSpejduzeAz+cR0AYVY2NjREZG8hwa8RCflqovA01gYCBCQ0MZDJOI9pd/bL4MNEZGRpg8eTKaN2+Ox48f4+LFi+o5h0Yypd3+/fv3R2BgIMaMGYPTp0+jTp06+PDhA549e4Z//vkHhw4dQoECBfRdbork5eWFlStXws7ODtWqVVPCTJ48efDu3Tv069cPU6dOVYJMaGgoJk2aBDMzMyV0pgQ8A7CKxfZBfvfuXbRp0wYhISH49ddf0bVrV2Wev78/OnXqhICAABw/fpwna/uK6Nt28+bNePjwIYoUKYLKlSvD3Nw8xvLaL8SPHz/CzMxMObSk5l86avL69Wud5vLoIiIisHHjRiXcOzk54cqVK0qw5/vg+8W1b2/btg2bNm3ChQsX4ODggAoVKqBXr17IkyePHqpM+VatWoUhQ4Zg8eLFcHV1Rb58+QAAly5dQrFixfD69WuUKVMG6dOnR7NmzWBhYYEdO3bg1atXuHTpEoyMjFJOmNdLTx36IXGNCNB24Dp9+rQULFhQHB0dpWPHjuLl5SXjx4+XihUrSuHChVXdYz2pjRkzRiwsLKRs2bKi0Wikb9++cv369ViX5Tl69GPevHkyaNAgEYn73DDh4eGycuVKnREbau3oqA/a/fnmzZvy5MmTOOeLfH4NtNe04sCCn8fb21syZMgg69at05muHbm6fv16ERF58eKFNG7cWEqWLClVq1aVHj16pMj3AMOMykycOFFKlCihc06H6LQfKleuXJHBgwdLjhw5xMbGRsqXLy+DBg1Sdt6UtBMnJu2Hb1RUlAQEBEijRo2Ubb13717JkiWLdOvWTa5du6asw+CiXwsXLhRzc3O5f//+V5eLftFI7v/xp92/d+zYIfnz55cRI0bEevHBL5f/8v+UOLSfUYMGDZJOnTpJcHCwMq9NmzaSPXt26datm1hbWytBJzIyUoKCguTjx4/KsintPcAwozJbt26VunXrSt26dXXO3hid9gPk06dPEhoaKvfv39c5jT5bZGIX/VfknTt35NatW9K3b1+d4aR79uyRrFmzSvfu3eNsoaGfJ7YvyhcvXkj16tWVS0ewNSDx7d+/X8zMzGT58uXy9OlTfZdDIlK4cGHp16+fiHx+Lzx48ECGDx8uz58/l+fPn4u7u7uYmZnFevqBlBgyU8CBstSlefPmGDRoEMzNzTF16lScPXs2xjLaY9lGRkYwNTVF9uzZlQu7iQj7CMRCRJTjxsOGDUPt2rXh4uICLy8vnDt3TlmuYcOGWLJkCQ4dOoSxY8fiwYMH+io5VdLu26Ghocr/HR0dkTdvXvz+++8AOCovMYkIPn36hPXr16Nv377o0aMHMmXKBODzwALSj/DwcGg0GoSHhwP4/L5wdnbGpEmTkDFjRmTMmBFdu3ZFnjx5cPny5Rjrp8S+fHzXq0RUVJTyfxMTE9ja2uLs2bMYNWpUrIEGiH2HTYk78Y+IiorS6cx4+PBh7Ny5E7Nnz8acOXOQIUMGeHp64sSJE8o6DRo0wMyZMxEVFQUnJyd9lZ5qrV69Gg0aNMCpU6fw7t07AMD06dMRHh6OWbNm6bm6lEH+f1xIcHAwjI2N8d9//ynztJ3btT+K3r59q5caU6uoqCgYGxujdu3a2LFjB7y9vZV5BgYGymtnYWGBDBkyoGjRonqqNGkxzKiE9tfmkCFD0L17d1hbW6Nu3bq4ceMGxo4dC19fXz1XqE4GBgZKkNm5cyc2bdqE7t27w83NDX379sWcOXPw4sULLFiwACdPnlTWa968OXbs2KEMzaafR/vhrP33w4cPsLW1Rf369dG9e3csWrQIBgYGqFq1Km7duqXPUlMMjUaD7du3Y/Dgwbh37x4yZ86Md+/e4ePHj0r4FxHcu3cPU6ZMwYsXL/RdcoolXww41n4X1K1bFxYWFpgyZQqOHDkC4HNrvEajwfv379G9e3dERESgZcuWSV6zXujn6BYlxNmzZyVz5sxy7NgxZdrWrVulatWqUrNmTTl37pweq1OXDh06yOTJk0Xk8/Hje/fuSdWqVcXa2loZGaO1b98+KVOmjLRu3Vq5WB4ljej9X0JCQnTm/f333/Lbb7+JjY2NtG7dWmrXri0ajUYOHjyY1GWmGNq+FI8fP5Zs2bLJsmXLRERk/fr1YmBgIEuWLNF5HX777TcpUaKE+Pn56aXelE57Mc64+oGtWbNGMmXKJLly5ZLp06fL0aNHZenSpVKpUiUpVKhQqhq5yjCjIhcuXJB06dLFGMm0adMmMTMzk1q1asnRo0f1U5yKBAcHy/r162NcR+nIkSNSt25dyZ49e4wLEO7fv19y5MghY8aMScpSU7XonRTnzp0rTZo0kV9++UW8vb11lnv27Jn89ttv0qJFC9FoNNKhQwcJDg5OkZ0ck8LBgwdl/vz50rNnT53RL9OmTRMDAwNp27atdOnSRdq3by9WVlZy6dIl/RWbgo0aNUrq1asnjx8/FhHdQBN93969e7c0a9ZMLC0txczMTEqWLCndunVLdSNXGWaSqdg+iK9duyZ58+ZVzh8QfZlixYpJjhw5dK6KTd/m6ekpbdq0UW4fPXpUGjZsKNWrV49x4bzTp0+nil84yUH0fXv69OliZWUlgwYNkty5c0vFihVl3rx5OstHRkZKRESETJs2TRwcHOTRo0dJXXKKMXDgQNFoNJI3b17x9/fXmbd161b55ZdfpHr16tK7d2+dUxRQ4po5c6ZUqlRJOnTo8M1AExQUJE+ePJELFy7ImzdvlHmp6fOKYSYZir7Dvn//Xj58+KDc7ty5s9jZ2cnx48eVHfbly5fSokULWbNmDYelfkP07RMZGSlTp06V/PnzS+/evZXpBw8elEaNGkn16tXlwIEDMe4jNX1A6NuFCxfkl19+kSNHjoiIyJs3b6RLly5Srlw5nUAT/denq6urjB07NslrTSmioqJk4sSJotFoZNWqVTHma99DqeUXf1KLHlI8PT2lQoUK0r59+1gDTWzrfG1aSsYwk4xNmjRJXF1dpWrVqjqHNxo1aiS2trby66+/yqxZs6Rq1apSsWJFZSdnoIld9Df3pk2b5OnTp/Lu3TuZN2+euLi4yC+//KLMP3TokLi5uUnhwoXl9OnT+ig31fvjjz/E1dVVChYsKHfu3FGm+/n5SZcuXaR8+fIyf/58Zbp2v69UqZJMnDgxyetVI+17IioqKsbnxuDBg8XU1FS2bt0a6zr0c3z5OixcuDBegSa1Y5hJRqLvoIsXL5b06dPL9OnTpVevXmJvby/t2rVT5o8aNUrq1q0rxYsXlyZNmij9P7iTx3T+/Hnl/xEREXLx4kVJnz69PHv2TEQ+t37NnTs3RqDZu3evjBgxgttUT/777z+pW7euWFpayqJFi3TmvXz5Urp37y558uQRLy8vEfn8JXv69GnRaDRy5coVfZSsKtpQcvDgQenatas0aNBAPDw8dDr4Dhw4UExNTWXbtm36KjPVOnPmjPL/RYsWMdB8A8NMMnT06FFZuXKl7N69W0REPnz4IFu3bhVLS0tp27atslxQUJBOR0c2+8Y0bdo0KVSokOzdu1eZdunSJcmZM6cEBAQo204baAoXLiy9evWKcT88tPRzxfXBfPfuXalXr55UqlRJNm/erDPv+fPnMnXq1BivzYsXL35anSnNzp07xdraWjp27CiTJ08WMzMz6dmzp9y+fVtZZsiQIaLRaGTXrl16rDR1OXr0qJiZmcncuXOVaWyh+TqGmWTm/PnzYmRkJObm5vL3338r00NDQ2Xbtm1ibW0t7du3j7Eem35jd/jwYWnSpIlUq1ZN9uzZIyIiN27ckOLFi8e42Jr2kJO9vb1Mnz5dbzWnNtE/kPfs2SNLliyR1atXK9daun37ttStW1eqVasWI9BoMWx+XWyXgbhy5YrkyJFDli5dKiKffzSlT59eDAwMpHHjxjqH9tzd3eO8wC0lvnv37smwYcMkW7ZsOodSFy5cKBUrVpSOHTvKgwcP9FdgMsQwk8y8evVKFi5cKOnTp5e+ffvqzAsLC5MdO3aIRqNhn4DvcOLECXFzc5MqVarI33//LWfOnJGiRYvqdKzWCg4Olq1bt/LLUQ+GDh0qmTJlkkKFCkn+/PnF3NxcaZ28deuW1KtXT2rWrBlrp1SKmzYs+vv7y7t370Tkc/g7cuSIjBs3TkREnjx5Is7OzjJ48GA5c+aMmJmZSbdu3eTGjRt6qjr1iOuH6KNHj2TkyJGSOXNmnc7uS5YskXz58smECROSqkRVYJjRo7iaCN+/fy/z58+XtGnTyogRI3TmhYaGio+PDw8pxUP0D4l//vlHGjduLLVq1ZJevXpJrly5ZMiQITJq1Cj57bffZMyYMdKrVy+di3cy0CQdLy8vSZ8+vZw7d05CQkLk2bNn0r9/fzE1NVVOVHjr1i0pVaqUDBgwQM/Vqs+dO3cke/bs0rNnT3n16pWIfB4ZduXKFYmIiJCmTZtKp06d5OPHjxIZGSklSpQQjUYj7dq1i3E+Jvo5li1bJhs2bNCZpg00Dg4O4unpqUzfvn07P5++YKTvMxCnVlFRUcppqVevXo27d+/i2bNn6N69O4oWLYo+ffoAAMaPHw+NRgMPDw8AgKmpKSpXrgwAiIiIgJERX8Ivabdt9OtQVahQAREREViwYAG8vb3x5s0bfPr0CVevXoWhoSHMzc0RFRWFMmXKKOvwgpxJ5/HjxyhRogRKlCgBADA3N8fcuXMRFBSEXr16wdfXF3ny5MGOHTuQMWNGPVerLlFRUVi/fj0ePnyIu3fvYvLkyRg1ahQcHBxga2uL4OBgPH/+HD169ICZmRmioqJQoUIFTJ48Gc7OzjA2Ntb3U0jxXr16hcOHD+PixYswMzNDs2bNAADZsmXDL7/8gmPHjmHYsGEICAjA8OHD0bRpUwCfL/bJz6nP+E2oJ9og8+uvv2Lt2rWoWLEinj17hiZNmqBHjx7o378/evbsCQMDA0ycOBEBAQFYsmSJzn0wyMQUPSReuXIFISEhyJAhA3LlyoUqVarAwMAACxYswLt379CqVStUqFAhxn3wAyLpRUVF4dKlSwgLC4OpqanyGjRv3hyHDx/G+/fvYWdnh8yZMyvL8+rY8WNgYIAmTZpgwYIF0Gg0uHXrFqZNm4bRo0fDzs4OISEhePDgAS5evAgXFxfs3LkT27dvx7hx42BjY6Pv8lMkiXZxWwCwt7fHiBEjsGzZMvz2228QETRv3hwAkD17dhQsWBDh4eE4d+6ccq0mjUbDz6no9NwylKodPHhQMmfOLBcvXlSmzZw5U1xcXJTrBr1+/Vo8PDykTp067OT7DdG3z6hRo6RgwYJiZWUl1atXl+HDhyvzjhw5onQK3rRpk8763MY/V1yHRy9evChFixYVd3d3efv2rTL9/PnzkjdvXp5p9jt82dlXezhizJgxMnToUBkzZoy4urrKoEGDlGsq7dmzR4yNjSVHjhwxPpMocUXvXhAcHCyhoaHK7fPnz0u3bt2kQIECsn37dmWZ9u3by+bNm3XOC0S6GGb0aNeuXZIrVy55+vSpzvHPiRMnSvr06ZVj20FBQdyJv8PkyZPF3t5eDh8+LK9fv5YuXbqIlZWVzjlkfHx8pFKlStKvXz89Vpp6RA8oIiIbNmyQqVOnyqpVq5SAM27cOClbtqz07NlTbt68KVevXpW6detKlSpVOAQ1nrTb6c2bN/Ly5UsR+d9nxsqVK6V06dISFBQk8+bNkxIlSugEmvv378u///7Loe0/UfT9eO7cuVKrVi2pUaOGzukgLly4ID179hRLS0upVauWFC9eXIoVK6Z8R/A7IHYMM0kktqGRmzdvFltbW+XDQzu6Jjg4WNKnTy87duyI8z4odleuXJFSpUopFyM8ePCgWFhYSMuWLSVnzpw6I8QuXrzIL8kk0KJFC3Fzc5Pnz5+LyOcrLZubm0uVKlVEo9FIkyZN5MGDBxIVFSUzZsyQMmXKiEajERcXFylTpgxPCPmdbt++LTlz5pSCBQvK7t275b///lPmVa1aVWmlnDRpkpQqVUqGDh2qvDb080T//B45cqQ4OjqKh4eHLF26VOzs7KRRo0ZKYHn8+LFs3LhR2rVrJ8OHD1cCP98DcWOYSQJfXg8oumLFiknp0qV1pt2/f19y584tPj4+SVJfSuPp6Sn+/v7i4+Mjjo6OsmLFChERqV+/vpiYmEjz5s11lucHxM914MABMTU1lc6dO8v58+elVq1acu7cORERuX79umTMmFHq168vd+/eFZHPo8iOHTsmV65c4XWAvlNkZKSMGjVKLCwsxNHRUYoVKyYtWrSQ3r17S2BgoPz+++/SpUsXCQsLE5HPrZh58uSRUaNG8X2QRLZv3y4FChQQX19fEfl81WsLCwsxNzeXChUq6Ozr0V8Tvge+TiPy/72J6KdbuHAhTp48iQIFCqBatWqoUKECzp8/j3bt2sHExARTpkyBiGDFihV4+fIlTp8+zQ5eX/GtTqB9+vSBgYEB5s6dC2NjY4wYMQJnz55FgQIFsHDhQnYgTQLh4eEwNjbGsWPHUKNGDdStWxeGhoZYt24dLC0tAQBXr15FnTp14OrqismTJ6Nw4cI698HOvt/nxYsXmD59Oh49egRbW1u0adMG7u7uyJQpE0JCQnDkyBH8/vvv6NKlCwBg1qxZaN68OZydnfVbeAp1+/ZtvHv3DkZGRnB1dYW3tzdOnz6NsWPH4u+//0aHDh0wadIk5M+fH7Vr10aDBg2wefNmmJiY6Lt0ddFzmEo1pk2bJra2ttKpUyfJmTOnVK9eXTmb6e3bt6VOnTqSLVs2KVCggNSpU0dpWue5BGIX/RfL6dOnZf/+/XL16lV5//69Mr1WrVrSsGFDEfm8HVu0aCErVqxQmnv5SzRpnTp1SszMzMTW1lauX78uIv9rer969apky5ZNKlSooHPmWUqYZ8+eSd++faVcuXLKGX7/+usvGTp0qGg0mhgXj6SfY82aNZI/f36xsrKSTJkySf/+/UXk88CO9+/fS5kyZWTSpEki8vnyHHnz5hWNRqPTv4/ih2HmJ/nyi7J///7Kyb/+/fdfadOmjZQrV042btyoLHP37l3x8/PjtZa+Ifqx5+HDh0umTJnE2dlZTExMpHXr1rJ//34REZk/f74UKVJEatWqJeXLl5eCBQuyE10SOXDggJw9e1ZERIYNGybTpk0TERFfX18xNjaWDh06KBf61L4WFy9elMaNGzNkJpLnz59Lv379xNXVVecaP/fu3dNfUamIp6enmJqaiqenpxw8eFD69u0rjo6Oynvh5s2b4uzsrIwce/HihXTo0EHOnTvHH7EJwDDzE0T/MPbx8ZFz585Js2bN5PLly8r0y5cvS5s2baRChQqydu3ar94H6dJ++S1btkwyZMggx44dk3fv3snevXuldu3aUq9ePblw4YK8fftW5s2bJ23btpVevXop4ZAfFD+Xn5+f1K9fX1xcXKR9+/ZibGws//77rzLfx8dHjI2NpXPnzjECjRb3/8Tx4sUL6devn5QqVUqmTJmiTOd74OfauXOnaDQa5XpwIiIBAQFStGhRadq0qYh8PtN75syZpUWLFnLs2DGpUaOGVK9eXdn3+Rp9H4aZRBb9Q3nIkCFiY2MjNjY2YmxsLLNmzdJZ9sqVK9K+fXvJmzev0ppAcfP19ZVbt24pt7t27SodO3bUWcbHx0dcXV1l6NChIhLzS5GtXUnj3Llz4uTkJEZGRsop2j99+qRs/2PHjomJiYl07dpVHj16pM9SUzxtoClfvryMHTtW3+WkeKGhodKrVy/JmTOnLFy4UGdehw4dxM3NTT5+/ChRUVGyc+dOcXJykrx580rFihU5cu8HMMz8JPfv35eiRYvKmTNn5NChQ9KjRw/JmTOncvxa6/z58zJ+/Him8G948OCBlC5dWho1aqQEmq5du0qTJk1ERPfNP2vWLLG1tZV3797pTOehpZ9Pu41v3LghlSpVksqVK0uJEiXk1KlTIvL516b2A/v48eOi0WiUPgP087x48UI6d+4sNWrUkNevX+u7nBTv+fPnMnDgQClVqpRMnTpVRET+/vtv0Wg0SncDrcDAQPnvv/84cu8HcTTTTzB79mycPn0aDg4OWLhwITQaDe7cuYMlS5Zg3759GDx4MHr27BljPZ5G/+tWrFgBLy8v2NraYt68efD19UXLli1x/PhxncsSbNmyBXPnzoW3t7cyYoZ+ri9HHEVGRkJEcPr0acyaNQuPHz/GkiVLlGtfyf+fzv3GjRvIkycPL82RBF6+fAkAcHBw0HMlqYOfnx+mTJmCS5cuwcnJCX/++ScWLlyITp06xTlCjyP3Eo5bLRF8mQdfvXoFb29v3Lp1S7n+Ru7cudGnTx/Uq1cPCxYswOzZs2PcD4NM7LTbt0ePHmjfvj38/PwwZMgQlCtXDgMGDECDBg3w999/49GjR3j//j1WrlwJOzs7pE2bVs+Vpw4ionwAe3l5YeXKlfjjjz9gZGSEChUqYODAgXByckL//v1x6tQpAECLFi2waNEiFChQAEZGRoiIiNDnU0gVHBwcGGSSkKOjI0aNGoXixYvj8OHDqFatGjp16gQg5neGFoPMD9Bfo1DK8/vvv8vt27fl3bt3MnnyZDEwMJA5c+boLHPnzh3p0qWLtG7dmoc9vkP0bbVq1SqpWLGitGzZUs6ePSsjR46UNGnSSJYsWaRAgQJStGhR5VAGt/HPFX37Dhs2TKysrKRw4cJiZmYmbdq0UeYdPXpUmjdvLlZWVlKyZElxcnJSXiOilMzPz0/69+8vZcqUUUYyifCzKbHxMFMiefToERo2bIjevXujd+/eeP78OVasWIHZs2dj0qRJGDhwoLLs06dPkSlTJhgYGMS4eirFLfq2Wr16NdauXQtHR0csXboUT548wZ07dyAiaNKkCQwNDREREcHDF0nE398fLVu2xIIFC+Dg4IBr164pVyXfuXMnAODmzZs4c+YMnjx5And3d6VFhq8RpXR+fn6YOnUqLly4gKpVq2Ly5Mn6LinFYZhJRN27d8fZs2dx5coVAJ934OXLl2POnDmYNGkS+vfvr7M8j49+vy8DzapVq5A5c2Z4eHgge/bsynLsf5R0pk+fjgMHDsDR0RHLly9XDu+dPHkSbm5uqFixIrZt2xZjX+drRKmJn58fhg8fDjMzMyxbtow/YhMZw0wCxNbZ0dDQEE+ePEHt2rUxcOBApYPvy5cvsWLFCowdOxZeXl5o0aKFvspOMb4MNGvWrEG2bNng4eGBLFmy6Lm61EVEsGHDBgwZMgR2dna4cuUKjI2Nldfo5MmTaN68OfLly4eDBw+yFYZStbdv38LGxoat8j8BmwUSQBtkNm/eDH9/f4SFhQEArK2tUbRoURw9elRZ1sHBAd26dcPvv/+OJk2a6KXelEaj0Sgd6Lp06YJOnTrhzp078Pb2BhB35zr6cVFRUTr/ajQatGrVCsuWLcOTJ08waNAgZToAlC9fHps2bYK5uTlbISnVs7W1hYGBAaKiohhkEhlbZhLo0aNHKFOmDGxsbFC0aFH0798f5cqVw7Vr11C2bFls2rQJDRs2jLEe+wgknui/bBo0aAAjIyPs2rVLv0WlYJs3b4a3tzdGjhyJzJkzw8LCQpkXHh6OHTt2oEuXLujevTsWLFgQ633w0CoR/Qz8Vo2nL5sEnZyc8OLFCyxfvhwnTpxAtWrV0KZNG7i6uqJDhw44ePAg6tWrB0B3yDWDTOLRttBoNBo4OTnh7du3+PTpE682+xMEBgbit99+Q2BgIM6fP49SpUqhYsWKylBTY2NjuLm5AfjcWmZgYIB58+bFuB8GGSL6GdgyEw/Rf00+ffoUhoaGMDU1ha2trbLMX3/9BR8fH2zduhWPHz9GunTpcOXKFWTOnJnHRn+y169fw83NDZ6enihUqJC+y0mRIiMjMWbMGDg5OaFkyZI4cuQIpkyZgnr16qFgwYIYNmwYjI2NAXxuwWnbti1mz56NwYMH67lyIkoNGGa+IXqQmTBhAg4cOIC7d++idu3acHNzQ7NmzZRlIyMj8e7dO3h6emLz5s2oXLkyFi5cyF+jSSA0NBRmZmb6LiNF27dvH1q1aoUTJ06gcOHCCA0NxdSpUzF58mQULVoUrVu3Rr169VCoUCEcOXIElSpVYkskESUJhpl4Gjt2LJYsWYKVK1fC3Nwc8+bNw3///YcJEyagQ4cOAD73GzA2NkZkZCRmzZqF3bt34/Dhw0iTJo2eqydKHH379gUALF68GABQsGBB5MmTB7ly5cLly5dx6NAhrF69Wjn8xD5iRJQU2GQQh+gZz8fHB9u3b8eff/4JNzc3GBkZwcfHB9myZcOECRPwxx9/APjcbyAiIgKGhoZo3bo17t27h5s3b+rrKRAluuLFi+Py5ct49+4dihcvjnTp0mHt2rWYOXMmVq9ejU2bNqFdu3bK8gwyRJQUGGZiEX3Y3IsXL1CkSBE0adIEJUuWxIEDB9C6dWssXLgQy5Ytg5GREYYPHw5PT08A//vw3rp1KwAgY8aM+nkSRD9Bt27d8OnTJ6RPnx5WVlbYs2cPrKysAACZM2dG69atea0lIkpyDDOx0PZxGTlyJEaOHIk0adJg9OjRMDAwwLJly/DLL7+gS5cuyJs3LwoUKABbW1v4+vpCRJQWnfDwcHh7ezPMUIqh3bcHDBiAggULYvbs2bC1tY31vD5skSGipMQwE030D+VTp07hzz//RN++fWFmZoY0adLgw4cPuH79OkxNTWFgYIDAwECYmJhg9OjRWLt2LTQajXIyMXd3dxQpUkRfT4Uo0WlbK6tWrYo3b97g4MGDOtOJiPSFP5+i0X4oz507F48fP0aVKlVQqlQpAJ+DjoGBASpXroy//voL4eHhOHnyJIKDg9G8eXMlyPBaM5TSZc6cGe7u7pgwYQIaNWqEAgUK6LskIkrlUn3LjLYlBfhfy8ylS5cwf/58XLhwAe/fvwfwOeiYm5ujY8eOKFy4MPbt2wcbGxucOHFCOT01h2BTalGvXj3Ur18f+fLl03cpREQcmh0eHo6IiAi8ffsW9vb2yom/hg8fjlmzZsHT0xMdOnTQGV4dHh6OyMhImJqaQqPRcPgppUrak0Hy6tdEpG+p+hvY29sbu3btwt69exEUFITy5cujYcOG6NmzJ2bMmIHAwEAMHDgQ5ubmaN68uXJSNkNDQyX0iAiDDKVK2sOyDDJEpG+ptmVm1apVGDt2LFq1agUHBwfY2Nhg4cKFePPmDdq3b48ZM2YAAHr16oX169dj+fLlaNq0KU+AR0RElMykyiaFZcuWYcCAAVi7di2aNWumtLJUrVoVU6ZMwbp162BnZ6ecP8bY2BgdOnSAnZ0dateurefqiYiIKLpU1zKza9cuNG3aFLt370bDhg2V/i7a4/737t1D9+7dERISgq1bt8LJyQkAMHv2bAwcOJCHlIiIiJKZVDX8JiwsDAcOHECOHDnw6NEjANAJMiKCnDlzwt3dHRcuXMCTJ0+UdYcOHcozmxIRESVDqaqZwdTUFGPHjoWpqSk2bNiAkJAQjBgxAoaGhjqXMHB2doaJiQlCQkJi3AdbZoiIiJKXVNUyA3y+VtLIkSNRsmRJ7Ny5E9OnTwfw+RIGkZGRAICrV6/C1dWVJwMjIiJSgVQXZgDA0dERo0ePjhFojIyMEBQUhFWrViFfvnzIkiWLnislIiKib0l1HYCj8/Pzw5QpU3Du3Dk0b94cv/76K9zc3PDw4UOcP38eRkZGyonBiIiIKHlK1WEG+Bxopk6digsXLuDu3buwsbHBtWvXYGxszDObEhERqUCqDzPA50AzYsQI+Pv7Y/fu3TA2NuYlCoiIiFSCYeb/vXv3DtbW1jAwMGCQISIiUhGGmS/w6tdERETqwjBDREREqsYmCCIiIlI1hhkiIiJSNYYZIiIiUjWGGSIiIlI1hhkiIiJSNYYZIiIiUjWGGSL6Ls7Ozpg3b56+yyAiUjDMEBERkaoxzBCR6nz69EnfJRBRMsIwQ0Q6qlSpgn79+qFfv36wtraGnZ0dxowZg7hOFj5nzhy4uLjAwsICWbNmRZ8+fRAcHAwACAkJgZWVFbZt26azzq5du2BhYYGgoCAAwJMnT9CyZUvY2NjA1tYWjRs3xsOHD5XlO3fuDDc3N0yZMgWZMmVC3rx5v/k8nJ2dMXXqVHTt2hWWlpbIli0bli9frrPMiBEjkCdPHpibmyNHjhwYM2YMwsPDlfnjx49H0aJFsWrVKmTLlg1p06ZFnz59EBkZiRkzZsDR0RH29vaYMmWKzv2+f/8e3bt3R4YMGWBlZYVq1arh8uXL36yZiBKGYYaIYli7di2MjIxw9uxZzJ8/H3PmzMHKlStjXdbAwAALFizA9evXsXbtWhw5cgTDhw8HAFhYWKB169ZYvXq1zjqrV69G8+bNYWlpifDwcNSuXRuWlpb4559/cPLkSaRNmxZ16tTRaYE5fPgwbt26hYMHD2Lv3r3xeh6zZ89GiRIlcOnSJfTp0we9e/fGrVu3lPmWlpZYs2YNbty4gfnz52PFihWYO3euzn3cu3cP+/btw/79+/HHH3/g999/R/369fH06VMcO3YM06dPx2+//YYzZ84o67Ro0QKvXr3Cvn37cOHCBRQvXhzVq1fH27dv41U3EX0nISKKpnLlypI/f36JiopSpo0YMULy588vIiJOTk4yd+7cONffunWrpE+fXrl95swZMTQ0lOfPn4uIyMuXL8XIyEh8fHxERGT9+vWSN29enccLCwuTNGnSyIEDB0REpFOnTuLg4CBhYWHxfh5OTk7Svn175XZUVJTY29vL0qVL41xn5syZ4urqqtweN26cmJubS2BgoDKtdu3a4uzsLJGRkcq0vHnzioeHh4iI/PPPP2JlZSWhoaE6950zZ05ZtmxZvOsnovgz0neYIqLkp0yZMtBoNMrtsmXLYvbs2YiMjIyx7KFDh+Dh4YH//vsPgYGBiIiIQGhoKD58+ABzc3OUKlUKBQsWxNq1azFy5Ehs2LABTk5OqFSpEgDg8uXLuHv3LiwtLXXuNzQ0FPfu3VNuu7i4wMTE5LueR+HChZX/azQaODo64tWrV8o0Ly8vLFiwAPfu3UNwcDAiIiJgZWWlcx/Ozs46tTk4OMDQ0BAGBgY607T3e/nyZQQHByN9+vQ69/Px40ed50NEiYdhhogS7OHDh2jQoAF69+6NKVOmwNbWFidOnEC3bt3w6dMnmJubAwC6d++OxYsXY+TIkVi9ejW6dOmihKXg4GC4urpi48aNMe4/Q4YMyv8tLCy+uz5jY2Od2xqNBlFRUQCAU6dOoV27dpgwYQJq164Na2trbN68GbNnz/7mfXztfoODg5ExY0b4+PjEqMfGxua7nwMRfRvDDBHFEL3/BwCcPn0auXPnhqGhoc70CxcuICoqCrNnz1ZaKrZs2RLj/tq3b4/hw4djwYIFuHHjBjp16qTMK168OLy8vGBvbx+jVeRn8vX1hZOTE0aPHq1Me/To0Q/fb/HixeHn5wcjIyM4Ozv/8P0R0bexAzARxfD48WMMGTIEt27dwh9//IGFCxdi4MCBMZbLlSsXwsPDsXDhQty/fx/r16+Hp6dnjOXSpUuHpk2bYtiwYahVqxayZMmizGvXrh3s7OzQuHFj/PPPP3jw4AF8fHwwYMAAPH369Kc9x9y5c+Px48fYvHkz7t27hwULFmDnzp0/fL81atRA2bJl4ebmBm9vbzx8+BC+vr4YPXo0zp8/nwiVE9GXGGaIKIaOHTvi48ePKFWqFPr27YuBAwfil19+ibFckSJFMGfOHEyfPh2FChXCxo0b4eHhEet9ag89de3aVWe6ubk5jh8/jmzZsqFp06bInz8/unXrhtDQ0J/aUtOoUSMMHjwY/fr1Q9GiReHr64sxY8b88P1qNBr8/fffqFSpErp06YI8efKgdevWePToERwcHBKhciL6kkYkjpNHEFGqVKVKFRQtWjTRL1mwfv16DB48GM+fP//ujrxERF/DPjNE9FN9+PABL168wLRp09CzZ08GGSJKdDzMREQ/1YwZM5AvXz44OjrC3d09Ue7zn3/+Qdq0aeP8I6LUhYeZiEh1Pn78iGfPnsU5P1euXElYDRHpG8MMERERqRoPMxEREZGqMcwQERGRqjHMEBERkaoxzBAREZGqMcwQERGRqjHMEBERkaoxzBAREZGq/R+/Rgcdj1OeHwAAAABJRU5ErkJggg==",
 | 
						||
      "text/plain": [
 | 
						||
       "<Figure size 640x480 with 1 Axes>"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "display_data"
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "plt.title(\"Top 5 Defensive Players and their Defensive Stat\")\n",
 | 
						||
    "def_plot = sns.barplot(data=df_defense.head(), x=\"player_name\",y=\"defense_stat\",errorbar=None)\n",
 | 
						||
    "plt.xticks(df_defense.head().index,rotation=45)\n",
 | 
						||
    "plt.show()"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "8793880e-f0cb-4304-bdad-d54f25a5b426",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "### Results\n",
 | 
						||
    "I found that the best defensive player from 2014-2022 was Draymond Green.  This makes sense as he has won the Defensive Player Of The Year award and is known primarily for his defense.  He is known as one of the best defensive players in the league.  I am not surprised to see Draymond Green be the number one ranked defensive player.  The three next best defensive players are Anthony Davis, Joakim Noah, and Paul George.  These players are also known for their defense, so it makes sense that they are rated so highly.  It is interesting to note that 4 of the top 5 players are Power Forwards or Centers which also shows that this could lead to research on whether Power Forwards and Centers generally play the best defense."
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "90e25901-eb61-42cc-9d11-742ba515bfd9",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "#### Results from Graph\n",
 | 
						||
    "This graph shows the difference between Draymond Green and everyone else.  This shows the top 5 defensive players in the NBA from 2014-2022.  The defense_stat is the value of raptor_defense and predator_defense stats added together."
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "infectious-symbol",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "# Discussion"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "furnished-camping",
 | 
						||
   "metadata": {
 | 
						||
    "code_folding": []
 | 
						||
   },
 | 
						||
   "source": [
 | 
						||
    "## Considerations"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "27b18f33-f5fc-4eda-a0d2-1be37c5b6d76",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "My results give an accurate depiction of showing who is better between Kevin Durant and LeBron James and who the best offensive and defensive players in the NBA are.  Determining who is better between Kevin Durant and LeBron James is accurate as I used offensive, defensive, and overall impact data for both players and compared them.  I decided to add all of the values together as I thought that would accurately determine who has been better.  A person could use other data not given in the data set as there could be other metrics that better capture who the better player is.  In regard to who the best offensive and defensive players are in the NBA, the results are accurate as I used 2 different data points for offense and 2 data points for defense.  This makes the data give the overall best offensive and defensive player.  Also, the players given at the top of the best offensive and defensive players lists are known for their skill on that side of the court which further suggests that the data is accurate.\n",
 | 
						||
    "\n",
 | 
						||
    "Some limitations of the data set are that there are other statistics that were not factored in the data.  Also, this compares players only by specific data points and does not factor in how they effect their teammates which is very important in determining how good a player is.  This includes the leadership a player brings to their team and how that elevates their teammates.  Another limitation is that I used 3000 or more minutes played as a qualification to be considered.  There could be good players that played 2999 minutes and were not counted.  The other limitation is that the data goes from 2014-2022.  This is not recent enough as we are in 2025 and does not include data from the previous 2-3 seasons.  Also, it is necessary to note that it does not include data from before 2014.  This is a problem when discussing LeBron James and Kevin Durant as they both played prior to 2014.\n",
 | 
						||
    "\n",
 | 
						||
    "There are no known biases in the data as it does not factor in personal opinions of players."
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "beneficial-invasion",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "## Summary"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "b2c65367-4696-4cb5-81c3-faaa9cfc7b0d",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "I learned that my media consumption has led me to decide to use this data set.  I see a lot of NBA media so I was interested in using NBA data for this project.\n",
 | 
						||
    "\n",
 | 
						||
    "When reflecting on this project, this data could definitely be used by NBA teams to decide which players they should try to acquire.  In the off-season teams are allowed to sign free agents and trade for players.  This data could allow teams to realize who the better player is and acquire that player.\n",
 | 
						||
    "\n",
 | 
						||
    "I learned that LeBron James is better than Kevin Durant both offensively and defensively.  This can make sense although it is pretty surprising that LeBron James was better on offense.  Stephen Curry, Chris Paul, and James Harden were found to be the best players offensively which completely makes sense as they have been some of the best offensive players from 2014-2022.  Draymond Green, Joakim Noah, and Anthony Davis were found to be the best players defensively which completely makes sense as Draymond Green and Joakim Noah were some of the best defenders from 2014-2022.  Overall, I would say that the results make sense to me showing that the data was accurate.\n",
 | 
						||
    "\n",
 | 
						||
    "The most surprising thing was that LeBron James was better offensively than Kevin Durant.  I assumed he would be better defensively but I was not expecting him to be better on offense.  Kevin Durant is known as one of the best overall scorers and shooters so I definitely did not expect LeBron James to be better on offense.  I was also surprised that Stephen Curry was rated so highly defensively.  He is not thought of as one of the best defenders so this was interesting to see.\n",
 | 
						||
    "\n",
 | 
						||
    "This project will impact me when I am watching basketball in the future.  I will watch Kevin Durant and LeBron James and see for myself who is better at offense.  I will also watch to see how the best offensive and defensive players have changed since 2022."
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "41ca88fe-6262-474c-af0c-1f191ff4790a",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "## Final Poster"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "c7b9c078-dd64-40ae-b1e5-496afa39fd45",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "The final poster is attached as the James Berent Flyer.pdf"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "markdown",
 | 
						||
   "id": "44248208-44a9-47f5-85e9-c61d4b06c9a0",
 | 
						||
   "metadata": {},
 | 
						||
   "source": [
 | 
						||
    "# Add Data Structures"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": null,
 | 
						||
   "id": "398f3b13-0813-4052-a43f-68903048ed39",
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [],
 | 
						||
   "source": []
 | 
						||
  }
 | 
						||
 ],
 | 
						||
 "metadata": {
 | 
						||
  "jupytext": {
 | 
						||
   "cell_metadata_json": true,
 | 
						||
   "text_representation": {
 | 
						||
    "extension": ".Rmd",
 | 
						||
    "format_name": "rmarkdown",
 | 
						||
    "format_version": "1.2",
 | 
						||
    "jupytext_version": "1.9.1"
 | 
						||
   }
 | 
						||
  },
 | 
						||
  "kernelspec": {
 | 
						||
   "display_name": "Python 3 (ipykernel)",
 | 
						||
   "language": "python",
 | 
						||
   "name": "python3"
 | 
						||
  },
 | 
						||
  "language_info": {
 | 
						||
   "codemirror_mode": {
 | 
						||
    "name": "ipython",
 | 
						||
    "version": 3
 | 
						||
   },
 | 
						||
   "file_extension": ".py",
 | 
						||
   "mimetype": "text/x-python",
 | 
						||
   "name": "python",
 | 
						||
   "nbconvert_exporter": "python",
 | 
						||
   "pygments_lexer": "ipython3",
 | 
						||
   "version": "3.12.3"
 | 
						||
  },
 | 
						||
  "toc": {
 | 
						||
   "base_numbering": 1,
 | 
						||
   "nav_menu": {},
 | 
						||
   "number_sections": false,
 | 
						||
   "sideBar": true,
 | 
						||
   "skip_h1_title": false,
 | 
						||
   "title_cell": "Table of Contents",
 | 
						||
   "title_sidebar": "Contents",
 | 
						||
   "toc_cell": false,
 | 
						||
   "toc_position": {},
 | 
						||
   "toc_section_display": true,
 | 
						||
   "toc_window_display": false
 | 
						||
  },
 | 
						||
  "varInspector": {
 | 
						||
   "cols": {
 | 
						||
    "lenName": 16,
 | 
						||
    "lenType": 16,
 | 
						||
    "lenVar": 40
 | 
						||
   },
 | 
						||
   "kernels_config": {
 | 
						||
    "python": {
 | 
						||
     "delete_cmd_postfix": "",
 | 
						||
     "delete_cmd_prefix": "del ",
 | 
						||
     "library": "var_list.py",
 | 
						||
     "varRefreshCmd": "print(var_dic_list())"
 | 
						||
    },
 | 
						||
    "r": {
 | 
						||
     "delete_cmd_postfix": ") ",
 | 
						||
     "delete_cmd_prefix": "rm(",
 | 
						||
     "library": "var_list.r",
 | 
						||
     "varRefreshCmd": "cat(var_dic_list()) "
 | 
						||
    }
 | 
						||
   },
 | 
						||
   "types_to_exclude": [
 | 
						||
    "module",
 | 
						||
    "function",
 | 
						||
    "builtin_function_or_method",
 | 
						||
    "instance",
 | 
						||
    "_Feature"
 | 
						||
   ],
 | 
						||
   "window_display": false
 | 
						||
  }
 | 
						||
 },
 | 
						||
 "nbformat": 4,
 | 
						||
 "nbformat_minor": 5
 | 
						||
}
 |