Files
project_argument/.ipynb_checkpoints/argument-checkpoint.ipynb
jwberent 4b4b74d964 I filled out the proposal.md file.
I have just started the project so there is nothing to reflect on yet.  I am excited for this proejct as NBA data is very interesting to me.
2025-10-18 12:47:07 -04:00

577 lines
16 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"id": "worldwide-blood",
"metadata": {},
"source": [
"# Introduction"
]
},
{
"cell_type": "markdown",
"id": "understanding-numbers",
"metadata": {},
"source": [
"*✏️ Write 2-3 sentences describing your research.*"
]
},
{
"cell_type": "markdown",
"id": "greater-circular",
"metadata": {},
"source": [
"## Overarching Question: [✏️ PUT YOUR QUESTION HERE ✏️]"
]
},
{
"cell_type": "markdown",
"id": "appreciated-testimony",
"metadata": {},
"source": [
"*✏️ Write 2-3 sentences explaining why this question.*"
]
},
{
"cell_type": "markdown",
"id": "permanent-pollution",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "technical-evans",
"metadata": {},
"outputs": [],
"source": [
"#Include any import statements you will need\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "overhead-sigma",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n",
"\n",
"file_name = \"modern_RAPTOR_by_player.csv\"\n",
"dataset_path = \"data/\" + file_name\n",
"\n",
"df = pd.read_csv(dataset_path)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "heated-blade",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>player_name</th>\n",
" <th>player_id</th>\n",
" <th>season</th>\n",
" <th>poss</th>\n",
" <th>mp</th>\n",
" <th>raptor_box_offense</th>\n",
" <th>raptor_box_defense</th>\n",
" <th>raptor_box_total</th>\n",
" <th>raptor_onoff_offense</th>\n",
" <th>raptor_onoff_defense</th>\n",
" <th>...</th>\n",
" <th>raptor_offense</th>\n",
" <th>raptor_defense</th>\n",
" <th>raptor_total</th>\n",
" <th>war_total</th>\n",
" <th>war_reg_season</th>\n",
" <th>war_playoffs</th>\n",
" <th>predator_offense</th>\n",
" <th>predator_defense</th>\n",
" <th>predator_total</th>\n",
" <th>pace_impact</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Alex Abrines</td>\n",
" <td>abrinal01</td>\n",
" <td>2017</td>\n",
" <td>2387</td>\n",
" <td>1135</td>\n",
" <td>0.745505</td>\n",
" <td>-0.372938</td>\n",
" <td>0.372567</td>\n",
" <td>-0.418553</td>\n",
" <td>-3.857011</td>\n",
" <td>...</td>\n",
" <td>0.543421</td>\n",
" <td>-1.144832</td>\n",
" <td>-0.601411</td>\n",
" <td>1.249008</td>\n",
" <td>1.447708</td>\n",
" <td>-0.198700</td>\n",
" <td>0.077102</td>\n",
" <td>-1.038677</td>\n",
" <td>-0.961575</td>\n",
" <td>0.326413</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Alex Abrines</td>\n",
" <td>abrinal01</td>\n",
" <td>2018</td>\n",
" <td>2546</td>\n",
" <td>1244</td>\n",
" <td>0.317549</td>\n",
" <td>-1.725325</td>\n",
" <td>-1.407776</td>\n",
" <td>-1.291727</td>\n",
" <td>-0.049694</td>\n",
" <td>...</td>\n",
" <td>-0.020826</td>\n",
" <td>-1.502642</td>\n",
" <td>-1.523468</td>\n",
" <td>0.777304</td>\n",
" <td>0.465912</td>\n",
" <td>0.311392</td>\n",
" <td>-0.174621</td>\n",
" <td>-1.112625</td>\n",
" <td>-1.287247</td>\n",
" <td>-0.456141</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Alex Abrines</td>\n",
" <td>abrinal01</td>\n",
" <td>2019</td>\n",
" <td>1279</td>\n",
" <td>588</td>\n",
" <td>-3.215683</td>\n",
" <td>1.078399</td>\n",
" <td>-2.137285</td>\n",
" <td>-6.158856</td>\n",
" <td>4.901168</td>\n",
" <td>...</td>\n",
" <td>-4.040157</td>\n",
" <td>1.885618</td>\n",
" <td>-2.154538</td>\n",
" <td>0.178167</td>\n",
" <td>0.178167</td>\n",
" <td>0.000000</td>\n",
" <td>-4.577678</td>\n",
" <td>1.543282</td>\n",
" <td>-3.034396</td>\n",
" <td>-0.268013</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Precious Achiuwa</td>\n",
" <td>achiupr01</td>\n",
" <td>2021</td>\n",
" <td>1581</td>\n",
" <td>749</td>\n",
" <td>-4.122966</td>\n",
" <td>1.359278</td>\n",
" <td>-2.763688</td>\n",
" <td>-4.050779</td>\n",
" <td>-0.919712</td>\n",
" <td>...</td>\n",
" <td>-4.347596</td>\n",
" <td>0.954821</td>\n",
" <td>-3.392775</td>\n",
" <td>-0.246055</td>\n",
" <td>-0.246776</td>\n",
" <td>0.000721</td>\n",
" <td>-3.817713</td>\n",
" <td>0.474828</td>\n",
" <td>-3.342885</td>\n",
" <td>0.329157</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Precious Achiuwa</td>\n",
" <td>achiupr01</td>\n",
" <td>2022</td>\n",
" <td>3802</td>\n",
" <td>1892</td>\n",
" <td>-2.521510</td>\n",
" <td>1.763502</td>\n",
" <td>-0.758008</td>\n",
" <td>-1.687893</td>\n",
" <td>3.103441</td>\n",
" <td>...</td>\n",
" <td>-2.517372</td>\n",
" <td>2.144151</td>\n",
" <td>-0.373221</td>\n",
" <td>2.262658</td>\n",
" <td>2.309611</td>\n",
" <td>-0.046953</td>\n",
" <td>-2.483956</td>\n",
" <td>2.024360</td>\n",
" <td>-0.459596</td>\n",
" <td>-0.728609</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 21 columns</p>\n",
"</div>"
],
"text/plain": [
" player_name player_id season poss mp raptor_box_offense \\\n",
"0 Alex Abrines abrinal01 2017 2387 1135 0.745505 \n",
"1 Alex Abrines abrinal01 2018 2546 1244 0.317549 \n",
"2 Alex Abrines abrinal01 2019 1279 588 -3.215683 \n",
"3 Precious Achiuwa achiupr01 2021 1581 749 -4.122966 \n",
"4 Precious Achiuwa achiupr01 2022 3802 1892 -2.521510 \n",
"\n",
" raptor_box_defense raptor_box_total raptor_onoff_offense \\\n",
"0 -0.372938 0.372567 -0.418553 \n",
"1 -1.725325 -1.407776 -1.291727 \n",
"2 1.078399 -2.137285 -6.158856 \n",
"3 1.359278 -2.763688 -4.050779 \n",
"4 1.763502 -0.758008 -1.687893 \n",
"\n",
" raptor_onoff_defense ... raptor_offense raptor_defense raptor_total \\\n",
"0 -3.857011 ... 0.543421 -1.144832 -0.601411 \n",
"1 -0.049694 ... -0.020826 -1.502642 -1.523468 \n",
"2 4.901168 ... -4.040157 1.885618 -2.154538 \n",
"3 -0.919712 ... -4.347596 0.954821 -3.392775 \n",
"4 3.103441 ... -2.517372 2.144151 -0.373221 \n",
"\n",
" war_total war_reg_season war_playoffs predator_offense \\\n",
"0 1.249008 1.447708 -0.198700 0.077102 \n",
"1 0.777304 0.465912 0.311392 -0.174621 \n",
"2 0.178167 0.178167 0.000000 -4.577678 \n",
"3 -0.246055 -0.246776 0.000721 -3.817713 \n",
"4 2.262658 2.309611 -0.046953 -2.483956 \n",
"\n",
" predator_defense predator_total pace_impact \n",
"0 -1.038677 -0.961575 0.326413 \n",
"1 -1.112625 -1.287247 -0.456141 \n",
"2 1.543282 -3.034396 -0.268013 \n",
"3 0.474828 -3.342885 0.329157 \n",
"4 2.024360 -0.459596 -0.728609 \n",
"\n",
"[5 rows x 21 columns]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"id": "continental-franklin",
"metadata": {},
"source": [
"**Data Overview**\n",
"\n",
"*✏️ Write 2-3 sentences describing this dataset. Be sure to include where the data comes from and what it contains.*"
]
},
{
"cell_type": "markdown",
"id": "infinite-instrument",
"metadata": {},
"source": [
"# Methods and Results"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "basic-canadian",
"metadata": {},
"outputs": [],
"source": [
"#Import any helper files you need here"
]
},
{
"cell_type": "markdown",
"id": "recognized-positive",
"metadata": {},
"source": [
"## First Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n"
]
},
{
"cell_type": "markdown",
"id": "graduate-palmer",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "endless-variation",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
" \n",
"✏️ *Write your answer below:*\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "portuguese-japan",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "negative-highlight",
"metadata": {},
"outputs": [],
"source": [
"#######################################################################\n",
"### 💻 YOUR WORK GOES HERE TO ANSWER THE FIRST RESEARCH QUESTION 💻 \n",
"### \n",
"### Your data analysis may include a statistic and/or a data visualization\n",
"#######################################################################"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "victorian-burning",
"metadata": {},
"outputs": [],
"source": [
"# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON "
]
},
{
"cell_type": "markdown",
"id": "collectible-puppy",
"metadata": {},
"source": [
"## Second Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n"
]
},
{
"cell_type": "markdown",
"id": "demographic-future",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "incorporate-roller",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
"\n",
"✏️ *Write your answer below:*\n"
]
},
{
"cell_type": "markdown",
"id": "juvenile-creation",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "pursuant-surrey",
"metadata": {},
"outputs": [],
"source": [
"#######################################################################\n",
"### 💻 YOUR WORK GOES HERE TO ANSWER THE SECOND RESEARCH QUESTION 💻 \n",
"###\n",
"### Your data analysis may include a statistic and/or a data visualization\n",
"#######################################################################"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "located-night",
"metadata": {},
"outputs": [],
"source": [
"# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON "
]
},
{
"cell_type": "markdown",
"id": "infectious-symbol",
"metadata": {},
"source": [
"# Discussion"
]
},
{
"cell_type": "markdown",
"id": "furnished-camping",
"metadata": {
"code_folding": []
},
"source": [
"## Considerations"
]
},
{
"cell_type": "markdown",
"id": "bearing-stadium",
"metadata": {},
"source": [
"*It's important to recognize the limitations of our research.\n",
"Consider the following:*\n",
"\n",
"- *Do the results give an accurate depiction of your research question? Why or why not?*\n",
"- *What were limitations of your datset?*\n",
"- *Are there any known biases in the data?*\n",
"\n",
"✏️ *Write your answer below:*"
]
},
{
"cell_type": "markdown",
"id": "beneficial-invasion",
"metadata": {},
"source": [
"## Summary"
]
},
{
"cell_type": "markdown",
"id": "about-raise",
"metadata": {},
"source": [
"*Summarize what you discovered through the research. Consider the following:*\n",
"\n",
"- *What did you learn about your media consumption/digital habits?*\n",
"- *Did the results make sense?*\n",
"- *What was most surprising?*\n",
"- *How will this project impact you going forward?*\n",
"\n",
"✏️ *Write your answer below:*"
]
}
],
"metadata": {
"jupytext": {
"cell_metadata_json": true,
"text_representation": {
"extension": ".Rmd",
"format_name": "rmarkdown",
"format_version": "1.2",
"jupytext_version": "1.9.1"
}
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}