diff --git a/.ipynb_checkpoints/Untitled-checkpoint.ipynb b/.ipynb_checkpoints/Untitled-checkpoint.ipynb
new file mode 100644
index 0000000..363fcab
--- /dev/null
+++ b/.ipynb_checkpoints/Untitled-checkpoint.ipynb
@@ -0,0 +1,6 @@
+{
+ "cells": [],
+ "metadata": {},
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/.ipynb_checkpoints/argument-checkpoint.ipynb b/.ipynb_checkpoints/argument-checkpoint.ipynb
new file mode 100644
index 0000000..c5b05f2
--- /dev/null
+++ b/.ipynb_checkpoints/argument-checkpoint.ipynb
@@ -0,0 +1,825 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "worldwide-blood",
+ "metadata": {},
+ "source": [
+ "# Introduction"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "understanding-numbers",
+ "metadata": {},
+ "source": [
+ "This research explores how students’ daily lifestyle habits—such as study hours, sleep, physical activity, and social engagement—relate to their academic performance and stress levels. By analyzing patterns in a large dataset of self-reported behaviors and outcomes, the study aims to identify which habits most strongly influence GPA and well-being. The findings may offer practical insights for students seeking to balance productivity with personal wellness. \n",
+ "\n",
+ "It is important to study this because academic success is often viewed through the narrow lens of study hours alone, while other lifestyle factors may play equally significant roles. As students navigate demanding academic environments, understanding how their choices outside the classroom impact their GPA and well-being can lead to more effective support systems and healthier routines. I’m interested in this question because I want to be able to bridge academic performance with holistic wellness, offer insights that could inform school policies, counseling programs, and personal time management strategies. This topic resonates with broader conversations about student mental health and the importance of balance in education. By analyzing these relationships we can move beyond anecdotal advice and provide evidence-based recommendations."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "greater-circular",
+ "metadata": {},
+ "source": [
+ "## Overarching Question: How do students’ daily lifestyle habits—such as study time, sleep, physical activity, and social engagement—affect their academic performance and stress levels?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "appreciated-testimony",
+ "metadata": {},
+ "source": [
+ "This question is important because academic success is often viewed through the narrow lens of study hours alone, while other lifestyle factors may play equally significant roles. As students navigate demanding academic environments, understanding how their choices outside the classroom impact their GPA and well-being can lead to more effective support systems and healthier routines. I’m interested in this question because I want to be able to bridge academic performance with holistic wellness, offer insights that could inform school policies, counseling programs, and personal time management strategies. This topic resonates with broader conversations about student mental health and the importance of balance in education. By analyzing these relationships we can move beyond anecdotal advice and provide evidence-based recommendations."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "permanent-pollution",
+ "metadata": {},
+ "source": [
+ "# Data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "technical-evans",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Include any import statements you will need\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import numpy as np\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "overhead-sigma",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "file_name = \"student_lifestyle_dataset.csv\"\n",
+ "dataset_path = \"data/\" + file_name\n",
+ "\n",
+ "df = pd.read_csv(dataset_path)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "heated-blade",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
Student_ID
\n",
+ "
Study_Hours_Per_Day
\n",
+ "
Extracurricular_Hours_Per_Day
\n",
+ "
Sleep_Hours_Per_Day
\n",
+ "
Social_Hours_Per_Day
\n",
+ "
Physical_Activity_Hours_Per_Day
\n",
+ "
GPA
\n",
+ "
Stress_Level
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
1
\n",
+ "
6.9
\n",
+ "
3.8
\n",
+ "
8.7
\n",
+ "
2.8
\n",
+ "
1.8
\n",
+ "
2.99
\n",
+ "
Moderate
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
2
\n",
+ "
5.3
\n",
+ "
3.5
\n",
+ "
8.0
\n",
+ "
4.2
\n",
+ "
3.0
\n",
+ "
2.75
\n",
+ "
Low
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
3
\n",
+ "
5.1
\n",
+ "
3.9
\n",
+ "
9.2
\n",
+ "
1.2
\n",
+ "
4.6
\n",
+ "
2.67
\n",
+ "
Low
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
4
\n",
+ "
6.5
\n",
+ "
2.1
\n",
+ "
7.2
\n",
+ "
1.7
\n",
+ "
6.5
\n",
+ "
2.88
\n",
+ "
Moderate
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
5
\n",
+ "
8.1
\n",
+ "
0.6
\n",
+ "
6.5
\n",
+ "
2.2
\n",
+ "
6.6
\n",
+ "
3.51
\n",
+ "
High
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Student_ID Study_Hours_Per_Day Extracurricular_Hours_Per_Day \\\n",
+ "0 1 6.9 3.8 \n",
+ "1 2 5.3 3.5 \n",
+ "2 3 5.1 3.9 \n",
+ "3 4 6.5 2.1 \n",
+ "4 5 8.1 0.6 \n",
+ "\n",
+ " Sleep_Hours_Per_Day Social_Hours_Per_Day Physical_Activity_Hours_Per_Day \\\n",
+ "0 8.7 2.8 1.8 \n",
+ "1 8.0 4.2 3.0 \n",
+ "2 9.2 1.2 4.6 \n",
+ "3 7.2 1.7 6.5 \n",
+ "4 6.5 2.2 6.6 \n",
+ "\n",
+ " GPA Stress_Level \n",
+ "0 2.99 Moderate \n",
+ "1 2.75 Low \n",
+ "2 2.67 Low \n",
+ "3 2.88 Moderate \n",
+ "4 3.51 High "
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "continental-franklin",
+ "metadata": {},
+ "source": [
+ "**Data Overview**\n",
+ "\n",
+ "This [dataset](https://www.kaggle.com/datasets/steve1215rogg/student-lifestyle-dataset) was published on Kaggle by Sumit Kumar. It was created for educational and analytical purposes.The data was self-reported by students who participated in the survey through Google Forms. The form was shared with students across different educational institutions, primarily focusing on those in India and other South Asian countries, where the Cumulative GPA (CGPA) system is widely used. This ensures that the dataset is contextually relevant to the educational environment in these regions. \n",
+ "\n",
+ "The dataset contains data from 2,000 students collected via a Google Form survey. It includes information on study hours, extracurricular activities, sleep, socializing, physical activity, stress levels, and CGPA. The data covers an academic year from August 2023 to May 2024 and reflects student lifestyles. This dataset can help analyze the impact of daily habits on academic performance and student well-being.\n",
+ "\n",
+ ">Number of Records: 2000 rows \n",
+ ">Number of Columns: 8 columns \n",
+ ">Column Names: Student ID, Study Hours, Extracurricular Hours, Sleep Hours, Social Hours, Physical Activity Hours, GPA, and Stress level\n",
+ "\n",
+ "We're going to clean our data a little by renaming some of the headers and getting rid of Student_ID"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "5f8b95c7-829f-43c6-beeb-1ea529efb937",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
studying
\n",
+ "
extracurriculars
\n",
+ "
sleeping
\n",
+ "
socializing
\n",
+ "
working_out
\n",
+ "
GPA
\n",
+ "
stress
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
6.9
\n",
+ "
3.8
\n",
+ "
8.7
\n",
+ "
2.8
\n",
+ "
1.8
\n",
+ "
2.99
\n",
+ "
Moderate
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
5.3
\n",
+ "
3.5
\n",
+ "
8.0
\n",
+ "
4.2
\n",
+ "
3.0
\n",
+ "
2.75
\n",
+ "
Low
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
5.1
\n",
+ "
3.9
\n",
+ "
9.2
\n",
+ "
1.2
\n",
+ "
4.6
\n",
+ "
2.67
\n",
+ "
Low
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
6.5
\n",
+ "
2.1
\n",
+ "
7.2
\n",
+ "
1.7
\n",
+ "
6.5
\n",
+ "
2.88
\n",
+ "
Moderate
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
8.1
\n",
+ "
0.6
\n",
+ "
6.5
\n",
+ "
2.2
\n",
+ "
6.6
\n",
+ "
3.51
\n",
+ "
High
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " studying extracurriculars sleeping socializing working_out GPA \\\n",
+ "0 6.9 3.8 8.7 2.8 1.8 2.99 \n",
+ "1 5.3 3.5 8.0 4.2 3.0 2.75 \n",
+ "2 5.1 3.9 9.2 1.2 4.6 2.67 \n",
+ "3 6.5 2.1 7.2 1.7 6.5 2.88 \n",
+ "4 8.1 0.6 6.5 2.2 6.6 3.51 \n",
+ "\n",
+ " stress \n",
+ "0 Moderate \n",
+ "1 Low \n",
+ "2 Low \n",
+ "3 Moderate \n",
+ "4 High "
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df=df.drop('Student_ID', axis=1)\n",
+ "df=df.rename(columns={'Study_Hours_Per_Day':'studying', 'Extracurricular_Hours_Per_Day':'extracurriculars', 'Sleep_Hours_Per_Day':'sleeping', 'Social_Hours_Per_Day':'socializing', 'Physical_Activity_Hours_Per_Day':'working_out', 'Stress_Level':'stress'})\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "infinite-instrument",
+ "metadata": {},
+ "source": [
+ "# Methods and Results"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "recognized-positive",
+ "metadata": {},
+ "source": [
+ "### First Research Question: \n",
+ "## Which lifestyle factors (study hours, sleep, physical activity, social time) are most strongly correlated with GPA?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "graduate-palmer",
+ "metadata": {},
+ "source": [
+ "### Methods"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "endless-variation",
+ "metadata": {},
+ "source": [
+ "*Explain how you will approach this research question below. Consider the following:* \n",
+ " - *Which aspects of the dataset will you use?* \n",
+ " - *How will you reorganize/store the data?* \n",
+ " - *What data science tools/functions will you use and why?* \n",
+ " \n",
+ "To explore this question, I will focus on the columns: `studying`, `extracurriculars`, `sleeping`, `working_out`, `socializing`, `GPA`. I'm leaving out `stress` because this question addresses lifestyle factors and stress isn't a habit but an outcome. \n",
+ "\n",
+ "I will calculate the pearson correlation coefficient and create a heatmap that highlights the direction of the correlation using seaborn. If needed, I may need to find the spearman correlation for non-linear associations.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "portuguese-japan",
+ "metadata": {},
+ "source": [
+ "### Results "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 115,
+ "id": "negative-highlight",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "studying vs GPA → r =0.7344679806560518\n",
+ "sleeping vs GPA → r =-0.004278440948943774\n",
+ "working_out vs GPA → r =-0.341152464009962\n",
+ "socializing vs GPA → r =-0.08567714046513732\n",
+ "extracurriculars vs GPA → r =-0.03217353173983065\n"
+ ]
+ }
+ ],
+ "source": [
+ "habits=['studying','sleeping', 'working_out','socializing','extracurriculars']\n",
+ "heatmap_values={}\n",
+ "for var in habits:\n",
+ " x=df[var].to_numpy()\n",
+ " y = df['GPA'].to_numpy()\n",
+ " r_matrix=np.corrcoef(x,y)\n",
+ " corr=r_matrix [0,1]\n",
+ " heatmap_values[var]= corr\n",
+ " print(str(var)+' vs GPA → r ='+str(corr))\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 116,
+ "id": "c1b4d2a7-2550-4241-b899-3e884e3e136c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAF2CAYAAABOPc3NAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXEdJREFUeJzt3XdUVEcbBvBnF+lIkyaKgIqADRQ7KqhYQE3URBQL2Cv2FmLXKDE2LDHYsUZjjbFXLGjQqNiCNdYIqEhR0KXs/f7wY+OVBZcVpPj8zrnnhNmZuXPvEnz3nbmzEkEQBBARERFRnkgLewBERERExRGDKCIiIiI1MIgiIiIiUgODKCIiIiI1MIgiIiIiUgODKCIiIiI1MIgiIiIiUgODKCIiIiI1MIgiIiIiUgODKKL/CwsLg0QiwYMHD/KtzwcPHkAikSAsLCzf+iwIBw8ehKurK3R0dCCRSJCYmKh2Xzldc36eoyCEh4dDIpEgPDy8sIfyxfP09ISnp6fKdatXr16wAyLKAYMoKlD37t3DwIEDUbFiRejo6MDQ0BDu7u5YtGgR3rx5U9jDyzebN29GSEhIYQ9DLfHx8fD19YWuri5+/vlnbNiwAfr6+krrZgWaf/31V4GdQ11F7T3ICiaVHQ0aNMj3882ePRu7d+/O936LgqdPn2LatGmIiooqkP7lcjnWr1+Pli1bwszMDJqamrCwsECrVq2wYsUKyGQyUf3330upVApra2u0atVKaQCemZkJa2trSCQSHDhwoEDGT4WnVGEPgEquffv2oXPnztDW1oa/vz+qV6+OtLQ0nDlzBuPGjcONGzewYsWKwh5mvti8eTOuX7+OkSNHisptbW3x5s0baGpqFs7AVHDhwgW8evUKM2fOhJeX1yf3p+ya8/scyuT0HhQ2Pz8/+Pj4iMrMzc3z/TyzZ8/Gt99+iw4dOuR735/b4cOHRT8/ffoU06dPh52dHVxdXfP1XG/evEHHjh1x6NAhNGrUCGPHjoWlpSVevnyJkydPYsiQIYiMjMTq1atF7Vq2bAl/f38IgoD79+9j2bJlaN68Ofbt2wdvb29FvePHjyMmJgZ2dnbYtGmT6DUq/hhEUYG4f/8+unbtCltbWxw/fhxly5ZVvDZ06FDcvXsX+/bt++TzCIKAt2/fQldXN9trb9++hZaWFqTSwku4SiQS6OjoFNr5VfHs2TMAgLGxcb70p+ya8/scxUnt2rXRo0ePwh6GWlJSUvI9Y6gKLS2tz3auUaNG4dChQwgJCcGIESNEr40ZMwZ37tzBkSNHsrWrUqWK6H3t2LEjatasiZCQEFGgtHHjRtSuXRsBAQH4/vvvC+2eUgERiArAoEGDBABCRESESvXT09OFGTNmCBUrVhS0tLQEW1tbISgoSHj79q2onq2trdC2bVvh4MGDgpubm6CtrS0sXLhQOHHihABA+PXXX4WJEycK1tbWgkQiERISEgRBEIQ///xTaN26tWBoaCjo6uoKTZs2Fc6cOSPqe+3atQIA4f79+4qy3bt3Cz4+PkLZsmUFLS0toWLFisKMGTOEjIwMRR0PDw8BgOiwtbUVBEEQ7t+/LwAQ1q5dKzrXsWPHhMaNGwt6enqCkZGR8NVXXwl///23qM7UqVMFAMKdO3eEgIAAwcjISDA0NBR69eolpKSkqHRff/vtN6F27dqCjo6OUKZMGaF79+7CkydPch17QEBAjv1l3aMLFy7kWOfDa/7YOVR5b5KTk4URI0YItra2gpaWlmBubi54eXkJFy9ezPEctra2wqtXrwQ9PT1h+PDh2cb5+PFjQSqVCrNnzxYEQVD8Dp04cUJUT5Xx5XYf5s6dq/R1mUwmTJ48Wahdu7ZgaGgo6OnpCY0bNxaOHz+erW5mZqYQEhIiVK9eXdDW1hbMzMyE1q1bK96HD6/9w3t86dIloU2bNkLp0qUFfX19oXnz5sK5c+dE58h6b8PDw4XBgwcL5ubmgrGxsUr3X5krV64IAITff/9dUfbXX38JAIRatWqJ6rZp00aoV6+e4mcPDw/Bw8NDEIT/3pcPj/d/v6pVqybcuHFD8PT0FHR1dQVra2thzpw5OY4ty6NHjwQNDQ2hTZs2H637PgDC0KFDs5WbmZkJDg4Oip9TU1OF0qVLCz/99JMQExMjSKVSYdOmTXk6FxVtzERRgfjjjz9QsWJFNGrUSKX6/fr1w7p16/Dtt99izJgxiIyMRHBwMKKjo7Fr1y5R3Vu3bsHPzw8DBw5E//794ejoqHht5syZ0NLSwtixYyGTyaClpYXjx4/D29sbbm5umDp1KqRSKdauXYvmzZvj9OnTqFevXo7jCgsLg4GBAUaPHg0DAwMcP34cU6ZMQXJyMubOnQsAmDhxIpKSkvDkyRMsXLgQAGBgYJBjn0ePHoW3tzcqVqyIadOm4c2bN1iyZAnc3d1x6dIl2NnZier7+vrC3t4ewcHBuHTpElatWgULCwvMmTMn13saFhaG3r17o27duggODkZcXBwWLVqEiIgIXL58GcbGxpg4cSIcHR2xYsUKzJgxA/b29qhUqVKu/eZVbudQ9b0ZNGgQtm/fjsDAQFStWhXx8fE4c+YMoqOjUbt27RzfAwMDA3Ts2BFbt27FggULoKGhoRjXr7/+CkEQ0L179xzH/im/O1lSU1Px4sULUZmRkRGSk5OxatUq+Pn5oX///nj16hVWr16N1q1b4/z586Jpq759+yIsLAze3t7o168fMjIycPr0afz555+oU6cONmzYgH79+qFevXoYMGAAACju8Y0bN9CkSRMYGhpi/Pjx0NTUxPLly+Hp6YmTJ0+ifv36orENGTIE5ubmmDJlClJSUlS6/8pUr14dxsbGOHXqFL766isAwOnTpyGVSnHlyhUkJyfD0NAQcrkcZ8+eVYz7Q87OzpgxYwamTJmCAQMGoEmTJgAg+tuSkJCANm3aoFOnTvD19cX27dsxYcIE1KhRI9fpswMHDiAzMzNfMoUJCQlISEhA5cqVFWV79uzB69ev0bVrV1hZWcHT0xObNm1Ct27dPvl8VEQUdhRHJU9SUpIAQPj6669Vqh8VFSUAEPr16ycqHzt2rABA9Mnc1tZWACAcPHhQVDfr02rFihWF1NRURblcLhccHByE1q1bC3K5XFGempoq2NvbCy1btlSUKctEvd9XloEDBwp6enqiLFnbtm0V2af3KctEubq6ChYWFkJ8fLyi7MqVK4JUKhX8/f0VZVmZqD59+oj67Nixo1CmTJls53pfWlqaYGFhIVSvXl148+aNonzv3r0CAGHKlCnZrju37FJe6iq7ZmXt8vLeGBkZKf3k/76c3oNDhw4JAIQDBw6IymvWrKnIdghC9kxUXsanTNZ9UHacOHFCyMjIEGQymahNQkKCYGlpKXrPjx8/LgBQmk17f1z6+vpKs4gdOnQQtLS0hHv37inKnj59KpQuXVpo2rSpoizrPWrcuLEo0yoIqt1/Zdq2bSvKMHXq1Eno1KmToKGhoXg/Ll26lC1j9X4mShAE4cKFC0ozull1AQjr169XlMlkMsHKykr45ptvch3fqFGjBABCVFSUqFwmkwnPnz9XHC9evBC9DkDo27ev8Pz5c+HZs2dCZGSk0KJFCwGAMH/+fEW9du3aCe7u7oqfV6xYIZQqVUp49uxZruOi4oNP51G+S05OBgCULl1apfr79+8HAIwePVpUPmbMGADItnbK3t4erVu3VtpXQECAaH1UVFQU7ty5g27duiE+Ph4vXrzAixcvkJKSghYtWuDUqVOQy+U5ju39vl69eoUXL16gSZMmSE1Nxc2bN1W6vvfFxMQgKioKvXr1gqmpqaK8Zs2aaNmypeJevG/QoEGin5s0aYL4+HjFfVbmr7/+wrNnzzBkyBDR+qS2bdvCyckpX9ajfaq8vDfGxsaIjIzE06dP83weLy8vWFtbY9OmTYqy69ev4+rVq7lmID71dyfLgAEDcOTIEdHh4uICDQ0NxdofuVyOly9fIiMjA3Xq1MGlS5cU7Xfs2AGJRIKpU6dm61sikeR67szMTBw+fBgdOnRAxYoVFeVly5ZFt27dcObMmWy/R/379xdl7AD173+TJk1w6dIlRUbrzJkz8PHxgaurK06fPg3gXXZKIpGgcePGeer7fQYGBqL3UktLC/Xq1cM///yTa7usa/8wc7x//36Ym5srDltb22xtV69eDXNzc1hYWKB+/fqIiIjA6NGjFQ82xMfH49ChQ/Dz81O0+eabbyCRSPDbb7+pe6lUxHA6j/KdoaEhgHdBhyoePnwIqVQqSoMDgJWVFYyNjfHw4UNRub29fY59ffjanTt3ALwLrnKSlJQEExMTpa/duHEDkyZNwvHjx7P9Y5OUlJRjnznJupb3pyCzODs749ChQ9kWnlaoUEFUL2usCQkJinudl/M4OTnhzJkzeR57fsvLe/PTTz8hICAANjY2cHNzg4+PD/z9/UWBQU6kUim6d++OX375BampqdDT08OmTZugo6ODzp0758v4cuPg4JDjE4nr1q3D/PnzcfPmTaSnpyvK3/89vnfvHqytrUVBt6qeP3+O1NTUHH/f5HI5Hj9+jGrVqik9dxZ173+TJk2QkZGBc+fOwcbGBs+ePUOTJk1w48YNURBVtWpVta4vS/ny5bMFlCYmJrh69Wqu7bI+6L1+/VpU7u7urlhMPnfuXERERGRr+/XXXyMwMBASiQSlS5dGtWrVRP/fbt26Fenp6ahVqxbu3r2rKK9fvz42bdqEoUOH5u0iqUhiEEX5ztDQENbW1rh+/Xqe2n3sU3UWZU/i5fRaVqZg7ty5OT4andP6pcTERHh4eMDQ0BAzZsxApUqVoKOjg0uXLmHChAkqZSHyw4dZgSyCIHyW8xeUvLw3vr6+aNKkCXbt2oXDhw9j7ty5mDNnDnbu3KnSI+P+/v6YO3cudu/eDT8/P2zevBnt2rWDkZFRvoxPHRs3bkSvXr3QoUMHjBs3DhYWFtDQ0EBwcDDu3bundr+fStn/X+re/zp16kBHRwenTp1ChQoVYGFhgSpVqqBJkyZYtmwZZDIZTp8+jY4dO37SmNX9f8TJyQnAu8yki4uLotzc3FwR+G7cuFFp2/Lly+e6XUdW5tPd3V3p6//8849KHwKoaGMQRQWiXbt2WLFiBc6dO4eGDRvmWtfW1hZyuRx37tyBs7OzojwuLg6JiYlKU+mqylpca2homOf9icLDwxEfH4+dO3eiadOmivL79+9nq6tqAJh1Lbdu3cr22s2bN2FmZpYvjz+/f57mzZuLXrt169Yn3dP8ktf3pmzZshgyZAiGDBmCZ8+eoXbt2pg1a5biH/Hc3oPq1aujVq1a2LRpE8qXL49Hjx5hyZIl+Tq+vNq+fTsqVqyInTt3isb+4bRdpUqVcOjQIbx8+TLXbI2y6zc3N4eenl6Ov29SqRQ2NjYqjfdj91+ZrGm106dPo0KFCopF4U2aNIFMJsOmTZsQFxcn+v9L1WvLD97e3tDQ0MCmTZtyfcAgr+7fv4+zZ88iMDAQHh4eotfkcjl69uyJzZs3Y9KkSfl2TiocXBNFBWL8+PHQ19dHv379EBcXl+31e/fuYdGiRQCg2Ijww92mFyxYAODdOh51ubm5oVKlSpg3b162lD3wbrojJ1mfbt//NJuWloZly5Zlq6uvr6/S9F7ZsmXh6uqKdevWib725Pr16zh8+HC2TRnVVadOHVhYWCA0NFS02/KBAwcQHR39Sfc0v6j63mRmZma7txYWFrC2thZd28feg549e+Lw4cMICQlBmTJlPprB+pTfHVUo+/2KjIzEuXPnRPW++eYbCIKA6dOnZ+vj/bb6+vrZvkpHQ0MDrVq1wu+//y76OqO4uDhs3rwZjRs3znFKOIuq9z8nTZo0QWRkJE6cOKEIoszMzODs7Kx4wjSrPCdZHyzy+6uCKlSogD59+uDAgQNYunSp0jrqZHyzslDjx4/Ht99+Kzp8fX3h4eEhWqNHxRczUVQgKlWqhM2bN6NLly5wdnYW7Vh+9uxZbNu2Db169QIAuLi4ICAgACtWrFBMoZ0/fx7r1q1Dhw4d0KxZM7XHIZVKsWrVKnh7e6NatWro3bs3ypUrh3///RcnTpyAoaEh/vjjD6VtGzVqBBMTEwQEBGD48OGQSCTYsGGD0j+qbm5u2Lp1K0aPHo26devCwMAA7du3V9rv3Llz4e3tjYYNG6Jv376KLQ6MjIwwbdo0ta/1fZqampgzZw569+4NDw8P+Pn5KbY4sLOzw6hRoz6p/zVr1uDgwYPZyj/crDA3qr43r169Qvny5fHtt9/CxcUFBgYGOHr0KC5cuID58+cr+vvYe9CtWzeMHz8eu3btwuDBgz+6i/yn/O6ool27dti5cyc6duyItm3b4v79+wgNDUXVqlVFQVuzZs3Qs2dPLF68GHfu3EGbNm0gl8tx+vRpNGvWDIGBgYrrP3r0KBYsWABra2vY29ujfv36+OGHH3DkyBE0btwYQ4YMQalSpbB8+XLIZDL89NNPHx2nqvc/J02aNMGsWbPw+PFjUbDUtGlTLF++HHZ2dihfvnyufVSqVAnGxsYIDQ1F6dKloa+vj/r16+e6PlJVISEhuH//PoYNG4YtW7agffv2sLCwwIsXLxAREYE//vhD6Zqy3GzatAmurq45Zvm++uorDBs2DJcuXcpxiwgqJgrvwUD6Ety+fVvo37+/YGdnJ2hpaQmlS5cW3N3dhSVLloi2CEhPTxemT58u2NvbC5qamoKNjU2um21+KOvx9G3btikdx+XLl4VOnToJZcqUEbS1tQVbW1vB19dXOHbsmKKOsi0OIiIihAYNGig28Bs/frzikfn3N2V8/fq10K1bN8HY2FilzTaPHj0quLu7C7q6uoKhoaHQvn37HDfbfP78uahc2ThzsnXrVqFWrVqCtra2YGpqmm2zzff7y8sWBzkdjx8/VnmLgywfe29kMpkwbtw4wcXFRbFZpIuLi7Bs2TJRPzm9B+/z8fERAAhnz57N9lpOm22q8rujzMc225TL5cLs2bMFW1tbQVtbW6hVq5awd+9eISAgINvYMzIyhLlz5wpOTk6KzS69vb1Fm13evHlTaNq0qaCrq6t0s83WrVsLBgYGgp6entCsWbNs9yCn90jV+5+T5ORkQUNDQyhdurRo64SNGzcKAISePXtma/PhFgeCIAi///67ULVqVaFUqVJKN9v8kLL7mJOMjAxh7dq1QvPmzQVTU1OhVKlSgpmZmdCiRQshNDRUtE2IIOS82aYgCMLFixcFAMLkyZNzPN+DBw8EAMKoUaNUGh8VXRJBKOarU4mIVNSxY0dcu3ZN9LQUEZG6uCaKiL4IMTEx2LdvH3r27FnYQyGiEoJrooioRLt//z4iIiKwatUqaGpqYuDAgYU9JCIqIZiJIqIS7eTJk+jZsyfu37+PdevWwcrKqrCHREQlBNdEEREREamBmSgiIiIiNTCIIiIiIlIDgygiIiIiNfDpPMI+zbztxktEREVT2/Ts35OYnz7l34uCHlthYCaKiIiISA0MooiIiIjUwOk8IiIiUolEU1LYQyhSGEQRERGRSqSlGES9j9N5RERERGpgJoqIiIhUItFk7uV9DKKIiIhIJZzOE2NISURERKQGZqKIiIhIJXw6T4yZKCIiIiI1MBNFREREKuGaKDEGUURERKQSTueJcTqPiIiISA3MRBEREZFKOJ0nxkwUERERkRqYiSIiIiKVSDSYiXofgygiIiJSiZRBlAiDKCIiIlKJRMog6n1cE0VERESkBgZRRERERGrgdB4RERGpRKLB3Mv7GEQRERGRSriwXIwhJREREZEaGEQVkLCwMBgbG6tcPzw8HBKJBImJiQU2JiIiok8hkUrUPkoiTue9p1evXkhMTMTu3bs/+7kbNWqEmJgYGBkZffZzExVHtoO7oeLovtC2Mkfy1Zu4MXImki5cU1q3wdH1KONRP1v5s/3huPD1QACAw+RAWPu2hY6NFYS0dCRduoFbUxYi8fzVAr0OIiq+GEQVEVpaWrCysirsYRAVC2U7e8N5bhCuD52KxPNXYD88APX3rUZ4tTZIe/4yW/2LnYdBqqWp+FmzjDGaXPwdMTsOKspS7jzA9REzkHr/MTR0dWA/ohfq7V+DcKeWSHuR8Fmui6io45oosS9yOm/79u2oUaMGdHV1UaZMGXh5eWHcuHFYt24dfv/9d0gkEkgkEoSHhyudZouKioJEIsGDBw8UZWFhYahQoQL09PTQsWNHxMfHK1578OABpFIp/vrrL9E4QkJCYGtrC7lcnu08WdOBhw4dgrOzMwwMDNCmTRvExMQo2mdkZGD48OEwNjZGmTJlMGHCBAQEBKBDhw4FcduIigz7kb3xePVveLJuJ15H38O1IVORmfoWNr2+UVo/PSEJsrgXisPMyx2ZqW8Rs/2/IOrplr2IP34Ob+4/weu/7yJ6bDA0jUqjdA3Hz3VZREWeREOi9lESfXFBVExMDPz8/NCnTx9ER0cjPDwcnTp1wtSpU+Hr66sIVGJiYtCoUSOV+oyMjETfvn0RGBiIqKgoNGvWDD/88IPidTs7O3h5eWHt2rWidmvXrkWvXr0glSp/G1JTUzFv3jxs2LABp06dwqNHjzB27FjF63PmzMGmTZuwdu1aREREIDk5uVCmIok+J4mmJoxqV8OLY2f/KxQEvDh+FsYNaqnUh03vbxDz2z5kpr7J8RwV+nVBemIykq/eyo9hE1EJ9MVN58XExCAjIwOdOnWCra0tAKBGjRoAAF1dXchksjxPqy1atAht2rTB+PHjAQBVqlTB2bNncfDgf59y+/Xrh0GDBmHBggXQ1tbGpUuXcO3aNfz+++859pueno7Q0FBUqlQJABAYGIgZM2YoXl+yZAmCgoLQsWNHAMDSpUuxf//+PI2dqLjRMjOBtFQpyJ7Fi8plcfHQd6z40fZGdWvAsLojrg6YmO01Cx9P1Nq0ABp6upDFPEekdx+kx3MqjyiLJIcP/V+qL+5uuLi4oEWLFqhRowY6d+6MlStXIiHh0/5IRkdHo3598aLVhg0bin7u0KEDNDQ0sGvXLgDvpuuaNWsGOzu7HPvV09NTBFAAULZsWTx79gwAkJSUhLi4ONSrV0/xuoaGBtzc3HIdq0wmQ3JysuhIF+QqXSdRSWDT+1skX7uldBF6fHgkTtfpgLNNu+L54dOovTkEWuamhTBKoqKJT+eJfXFBlIaGBo4cOYIDBw6gatWqWLJkCRwdHXH//n2l9bOm2gRBUJSlp6fn+bxaWlrw9/fH2rVrkZaWhs2bN6NPnz65ttHU1BT9LJFIRONQR3BwMIyMjETHb/LsC3GJiqq0FwmQZ2RA26KMqFzbsgxksS9ybauhpwtr37Z4vHa70tczU98g9d4jJEZewdUBEyFkZMCm97f5NnYiKlm+uCAKeBeMuLu7Y/r06bh8+TK0tLSwa9cuaGlpITMzU1TX3NwcAEQLuqOiokR1nJ2dERkZKSr7888/s523X79+OHr0KJYtW6aYUlSXkZERLC0tceHCBUVZZmYmLl26lGu7oKAgJCUliQ5fKT9pU/EhpL/bfsCs+XvZXokEZZo1ROKfl3NtW/bbNpBqa+HfTXtUO5lUCqm21ieMlqhkkWpI1D5Koi9uTVRkZCSOHTuGVq1awcLCApGRkXj+/DmcnZ3x9u1bHDp0CLdu3UKZMmVgZGSEypUrw8bGBtOmTcOsWbNw+/ZtzJ8/X9Tn8OHD4e7ujnnz5uHrr7/GoUOHROuhsjg7O6NBgwaYMGEC+vTpA11d3U+6lmHDhiE4OBiVK1eGk5MTlixZgoSEBEgkOf+yamtrQ1tbW1SmKfkiY2kqxu6HrIXLmjlIvHgdSReuwm54AErp6+Lxup0AAJe1c/D23zjcmrRA1M6m97eI+/0o0l8miso19HRROWgQ4vYehyzmOTTNTGA3uDt0ylmKtkEgInrfF/evp6GhIU6dOgUfHx9UqVIFkyZNwvz58+Ht7Y3+/fvD0dERderUgbm5OSIiIqCpqYlff/0VN2/eRM2aNTFnzhzRk3cA0KBBA6xcuRKLFi2Ci4sLDh8+jEmTJik9f9++fZGWlvbRqTxVTJgwAX5+fvD390fDhg1hYGCA1q1bQ0dH55P7JirKYrYdQPSEOagydTga//U7DF2ccb5dP6T9f7G5rk1ZaJc1F7XRr2IP08Z1lE7lCZmZMHCsCLetS+Dx9yHU3RUKTVNjnGvWHa//vvtZromoOPjca6J+/vln2NnZQUdHB/Xr18f58+dzrZ+YmIihQ4eibNmy0NbWRpUqVQr0gSuJ8KmLbChPZs6ciW3btuHq1fzfBVkul8PZ2Rm+vr6YOXOmyu32aXIfHCKikqBtesFuyXHVx1PttjX3h+ep/tatW+Hv74/Q0FDUr18fISEh2LZtG27dugULC4ts9dPS0uDu7g4LCwt8//33KFeuHB4+fAhjY2O4uLioPe7cfHHTeYXl9evXePDgAZYuXZotk6Wuhw8f4vDhw/Dw8IBMJsPSpUtx//59dOvWLV/6JyIiet/nfMpuwYIF6N+/P3r37g0ACA0Nxb59+7BmzRp899132eqvWbMGL1++xNmzZxUPZuX2BHx++OKm8wpLYGAg3Nzc4OnpmS9TecC7JwfDwsJQt25duLu749q1azh69CicnZ3zpX8iIqLCkJaWhosXL8LLy0tRJpVK4eXlhXPnzilts2fPHjRs2BBDhw6FpaUlqlevjtmzZ2d7YCw/MRP1mYSFhSEsLCxf+7SxsUFERES+9klERFQQZDIZZDKZqEzZw04A8OLFC2RmZsLS0lJUbmlpiZs3byrt/59//sHx48fRvXt37N+/H3fv3sWQIUOQnp6OqVOn5t+FvIeZKCIiIlLJp2xxoGyfwuDg4Hwbm1wuh4WFBVasWAE3Nzd06dIFEydORGhoaL6d40PMRBEREZFKPmVNVFBQEEaPHi0qU5aFAgAzMzNoaGggLi5OVB4XF5fjV7OVLVsWmpqa0NDQUJQ5OzsjNjYWaWlp0NLK/z3fmIkiIiKiAqetrQ1DQ0PRkVMQpaWlBTc3Nxw7dkxRJpfLcezYsWxfq5bF3d0dd+/ehVz+31eZ3b59G2XLli2QAApgEEVEREQqkkilah95NXr0aKxcuRLr1q1DdHQ0Bg8ejJSUFMXTev7+/ggKClLUHzx4MF6+fIkRI0bg9u3b2LdvH2bPno2hQ4fm2/V/iNN5REREVOR06dIFz58/x5QpUxAbGwtXV1ccPHhQsdj80aNHiu+3Bd49bHXo0CGMGjUKNWvWRLly5TBixAhMmDChwMbIzTaJm20SEZUQBb3Z5s3OrdRu67TtcD6OpGhgJoqIiIhU8jk32ywOuCaKiIiISA3MRBEREZFKmIkSYxBFREREKlHnKbuSjHeDiIiISA3MRBEREZFKpBqcznsfM1FEREREamAmioiIiFTCheViDKKIiIhIJVxYLsYgioiIiFTCTJQYQ0oiIiIiNTCIIiIiIlIDp/OIiIhIJZzOE2MQRURERCrhwnIxBlFERESkEmaixBhSEhEREamBQRQRERGRGjidR3C6daCwh0BERMUA10SJMYgiIiIi1Ui4Jup9DCmJiIiI1MBMFBEREamET+eJMYgiIiIilXBNlBjvBhEREZEamIkiIiIilXA6T4yZKCIiIiI1MBNFREREKuGaKDEGUURERKQSTueJMYgiIiIilTCIEmNejoiIiEgNDKKIiIiI1MDpPCIiIlINF5aLMIgiIiIilUj4BcQiDKKIiIhIJdziQIx3g4iIiEgNDKKIiIiI1MDpPCIiIlIJ94kSYxBFREREquGaKBHeDSIiIiI1MBNFREREKuF0nhiDKCIiIlKJRMIJrPfxbhARERGpgUGUEr169UKHDh0++3nt7OwQEhLy2c9LRESkEqlE/aME4nReEXLhwgXo6+sX9jCICp0gCNi4YQMOHjyIlJQUVK1aFUMDA1GuXLlc2/3xxx/YsX07EhISYF+xIgYPHgxHR0fF62lpaVi5ciVOnTyJ9PR01HZzw9ChQ2FiYpKtr+TkZAwdMgTx8fH4bds2GBgYAABuXL+ONWvX4snjx5DJZLCwsIC3jw86duyYvzeBiIo8ZqKKEHNzc+jp6RX2MIgK3fZt27Bnzx4EDhuGhSEh0NHRweRJk5CWlpZjm5MnT2LlihXo1r07lixZgor29pg8aRISExMVdVYsX47zkZEI+v57zPnpJ7yMj8cPP/ygtL+QkBDY29tnK9fR0UH79u3x09y5WL5iBbr6+WH9unU4sH//J183UVEnkUrVPkqiknlVKtq+fTtq1KgBXV1dlClTBl5eXkhJSclWTy6XIzg4GPb29tDV1YWLiwu2b98uqnP9+nV4e3vDwMAAlpaW6NmzJ168eKF43dPTE4GBgQgMDISRkRHMzMwwefJkCIKgqPPhdJ5EIsGqVavQsWNH6OnpwcHBAXv27BGdd8+ePXBwcICOjg6aNWuGdevWQSKRiP7hICpOBEHA7t270bVrVzRs2BD29vYYM3Ys4uPjce7s2Rzb7dq1C228vdGqVStUsLVF4LBh0NbWxuHDhwEAKSkpOHz4MPr37w9XV1c4ODhg1OjRiP77b9yMjhb1tW/vXqS8fo1O33yT7TyVKleGp6cnbG1tYWlpiebNm8PNzQ3Xb9zI3xtBVARJpBK1j5Loiw2iYmJi4Ofnhz59+iA6Ohrh4eHo1KmTKKjJEhwcjPXr1yM0NBQ3btzAqFGj0KNHD5w8eRIAkJiYiObNm6NWrVr466+/cPDgQcTFxcHX11fUz7p161CqVCmcP38eixYtwoIFC7Bq1apcxzl9+nT4+vri6tWr8PHxQffu3fHy5UsAwP379/Htt9+iQ4cOuHLlCgYOHIiJEyfm0x0iKhyxsbFISEiAa61aijJ9fX04Ojoi+uZNpW3S09Nx984duLq6KsqkUilcXV0VAdKdO3eQkZEh6tfGxgbmFhaifh89fIjNmzdjzNixkKrw6fne3buIjo5GjRo18nqpRFTMfbFromJiYpCRkYFOnTrB1tYWAJT+EZTJZJg9ezaOHj2Khg0bAgAqVqyIM2fOYPny5fDw8MDSpUtRq1YtzJ49W9FuzZo1sLGxwe3bt1GlShUA7/5gL1y4EBKJBI6Ojrh27RoWLlyI/v375zjOXr16wc/PDwAwe/ZsLF68GOfPn0ebNm2wfPlyODo6Yu7cuQAAR0dHXL9+HbNmzcqfm0RUCBISEgAg2zolYxMTxWsfSk5OhlwuV9rm8ZMnin5LlSqlWNuUxcTYGAn//2CSnpaGOXPmoG+/frCwsEBsbGyO4+zZoweSkpIgl8vRrXt3tGnTJm8XSlQccYsDkS/2bri4uKBFixaoUaMGOnfujJUrVyr9A3337l2kpqaiZcuWMDAwUBzr16/HvXv3AABXrlzBiRMnRK87OTkBgKIOADRo0AASyX8pzYYNG+LOnTvIzMzMcZw1a9ZU/Le+vj4MDQ3x7NkzAMCtW7dQt25dUf169erlet0ymQzJycmiQyaT5dqGqCCdOH4cnTp2VByZGRmFNpa1YWGwsbFB8+bNP1p37rx5WLR4MQIDA/H77t0IDw8v+AESfWF+/vln2NnZQUdHB/Xr18f58+dVardlyxZIJJICf9L+i81EaWho4MiRIzh79iwOHz6MJUuWYOLEiYiMjBTVe/36NQBg37592Z4M0tbWVtRp37495syZk+08ZcuW/aRxampqin6WSCSQy+Vq9xccHIzp06eLyoYNH44RI0ao3SfRp6jfoAEc//+hA3g3NQe8yxyZmpoqyhMTElCxUiWlfRgaGkIqlWb7IJSYkADT/2enTExMkJGRgdevX4uyUQmJiTD5/3muXrmCBw8eoF3btqJ+unbpgq5du6JHz56KMisrKwCAvb09EhITsWnjRnh6eub18omKlc+5tmnr1q0YPXo0QkNDUb9+fYSEhKB169a4desWLCwscmz34MEDjB07Fk2aNCnwMX6xQRTwLiBxd3eHu7s7pkyZAltbW+zatUtUp2rVqtDW1sajR4/g4eGhtJ/atWtjx44dsLOzQ6lSOd/SDwO0P//8Ew4ODtDQ0FBr/I6Ojtj/wRNBFy5cyLVNUFAQRo8eLSp78u+/ap2fKD/o6emJnkoVBAEmJia4EhWFSv8PmlJTUnDr1i20/SC4yaKpqYnKDg64EhWFRo0aAXj3QEhUVBTaf/UVAMDBwQGlSpVCVFQUGjduDAB48uQJnj97Buf/B3ETJ06E7L0nAG/fvo2QhQsxd968XD8QCXK5IvgjKtE+41N2CxYsQP/+/dG7d28AQGhoKPbt24c1a9bgu+++U9omMzMT3bt3x/Tp03H69OkCf8jqiw2iIiMjcezYMbRq1QoWFhaIjIzE8+fP4ezsjKtXryrqlS5dGmPHjsWoUaMgl8vRuHFjJCUlISIiAoaGhggICMDQoUOxcuVK+Pn5Yfz48TA1NcXdu3exZcsWrFq1ShEkPXr0CKNHj8bAgQNx6dIlLFmyBPPnz1f7GgYOHIgFCxZgwoQJ6Nu3L6KiohAWFgYAomnD92lraysyaIqy954iJCpsWSn4LVu2wLpcOVhaWmLDhg0oU6YMGv4/QAKAoO++Q6NGjRRBUseOHbFg/nw4ODigiqMjft+9GzKZDC1btgTwbjq8VatWWLlyJUqXLg09PT2E/vILnJ2d4eTsDAAoa20tGktycjKAd+sZs7JXf/zxByzMzVHexgbAuydzd+zYga++/rpgbwxREZDTvy2qkMlk2ZaPKPs3CXi3p9vFixcRFBSkKJNKpfDy8sK5c+dyPMeMGTNgYWGBvn374vTp02qPVVVfbBBlaGiIU6dOISQkBMnJybC1tcX8+fPh7e2NrVu3iurOnDkT5ubmCA4Oxj///ANjY2PUrl0b33//PQDA2toaERERmDBhAlq1agWZTAZbW1u0adNG9HSPv78/3rx5g3r16kFDQwMjRozAgAED1L4Ge3t7bN++HWPGjMGiRYvQsGFDTJw4EYMHD1b6S0lUXHzbuTPevn2LJYsX4/Xr16hWrRpmzJwJLS0tRZ2YmBgk/T/IAQAPDw8kJyVhw8aNSHj5EhUrVcKMmTNFi80HDBwIiVSKWT/8gPT0dLi5uWHI0KF5GpsglyMsLAyxsbHQ0NBA2bJl0adPH3j7+Hz6hROVYMqWk0ydOhXTpk3LVvfFixfIzMyEpaWlqNzS0hI3c3hK98yZM1i9ejWioqLya8gfJRGUPdNP+c7T0xOurq4F/rUus2bNQmhoKB4/fqxym3v//FOAIyIios+lUsWKBdr/q0Vj1G6rNWi2ypmop0+foly5cjh79qziyXgAGD9+PE6ePJltecyrV69Qs2ZNLFu2DN7e3gDePd2emJiI3bt3qz3mj/liM1ElxbJly1C3bl2UKVMGERERmDt3LgIDAwt7WEREVBJ9wpqonAImZczMzKChoYG4uDhReVxcnOKhjvfdu3cPDx48QPv27RVlWQ9hlSpVCrdu3VKsscxPDKKKuTt37uCHH37Ay5cvUaFCBYwZM0Y0h0xERJRfPtfTeVpaWnBzc8OxY8cU2xTI5XIcO3ZMaaLAyckJ165dE5VNmjQJr169wqJFi2Dz/zWM+Y1B1GdSUHvILFy4EAsXLiyQvomIiEQ+42abo0ePRkBAAOrUqYN69eohJCQEKSkpiqf1/P39Ua5cOQQHB0NHRwfVq1cXtTc2NgaAbOX5iUEUERERFTldunTB8+fPMWXKFMTGxsLV1RUHDx5ULDZ/9OiRSl/NVJC4sJy4sJyIqIQo6IXlr5cp359JFQZDfszHkRQNzEQRERGRaj7jjuXFAYMoIiIiUomEX0AswrtBREREpAZmooiIiEg1nM4TYRBFREREKpEU8tNwRQ3vBhEREZEamIkiIiIi1Ug4nfc+ZqKIiIiI1MBMFBEREamGa6JEGEQRERGRajidJ8IgioiIiFTCp/PEeDeIiIiI1MAgioiIiEgNnM4jIiIi1fC780QYRBEREZFq+LUvIgyiiIiISCUSZqJEeDeIiIiI1MAgioiIiEgNnM4jIiIi1XBNlAiDKCIiIlIN10SJMIgiHLhpX9hDICKifBBYsbBH8GVhEEVERESq4XfniTCIIiIiItXwu/NEeDeIiIiI1MBMFBEREamGC8tFeDeIiIiI1MBMFBEREamG+0SJMIgiIiIi1XA6T4RBFBEREamGWxyIMKQkIiIiUgODKCIiIiI1cDqPiIiIVMPNNkUYRBEREZFquCZKhEEUERERqYZP54nwbhARERGpgUEUERERkRo4nUdERESq4cJyEQZRREREpBouLBdhEEVERESq4cJyEd4NIiIiIjUwE0VERESq4XSeCDNRRERERGpgJoqIiIhUw6fzRHg3iIiIiNTwxQVRDx48gEQiQVRUVI51JBIJdu/e/dnGREREVBwIEonaR0nE6TwlYmJiYGJiUtjDyJPw8HA0a9YMCQkJMDY2LuzhEBU4QRAQeXAJbpzbBtnbZJS1q41mnafC2NwuxzbXIn7FtYhfkfzyXwBAGavKqNt6KOycmyrtf8+KAXh08zR8+ixFpRpeBXUpRMUHtzgQ+aLuRlpamkr1rKysoK2tXcCjIaJPcen4Klw5tQHNOk+D78jfoKmti99D+yEjXZZjGwMjSzRqNwZdx+xAl9HbUd6hAfatHor4mDvZ6kadXAdJCf30TKQ2iVT9Qw0///wz7OzsoKOjg/r16+P8+fM51l25ciWaNGkCExMTmJiYwMvLK9f6+aFIBVF79+6FsbExMjMzAQBRUVGQSCT47rvvFHX69euHHj16AAB27NiBatWqQVtbG3Z2dpg/f76oPzs7O8ycORP+/v4wNDTEgAEDsp0zMzMTffr0gZOTEx49egRAPJ2XNf23c+dONGvWDHp6enBxccG5c+dE/axcuRI2NjbQ09NDx44dsWDBgjxlhH755RdUqlQJWlpacHR0xIYNGxSvKZuCTExMhEQiQXh4OB48eIBmzZoBAExMTCCRSNCrVy+Vz01U3AiCgKiT61G31SBUrNECZtaOaNltDlKSn+Gfa0dzbGdfvTnsqnrA2NwOJhb2aNh2FDS19RD78Iqo3vN/o3E5fC1adJ1V0JdCRDnYunUrRo8ejalTp+LSpUtwcXFB69at8ezZM6X1w8PD4efnhxMnTuDcuXOwsbFBq1at8O+//xbYGItUENWkSRO8evUKly9fBgCcPHkSZmZmCA8PV9Q5efIkPD09cfHiRfj6+qJr1664du0apk2bhsmTJyMsLEzU57x58+Di4oLLly9j8uTJotdkMhk6d+6MqKgonD59GhUqVMhxbBMnTsTYsWMRFRWFKlWqwM/PDxkZGQCAiIgIDBo0CCNGjEBUVBRatmyJWbNU/+O7a9cujBgxAmPGjMH169cxcOBA9O7dGydOnFCpvY2NDXbs2AEAuHXrFmJiYrBo0SKVz09U3CTHP0Hqq+ewqdJIUaatWxqWtjUR+yBKpT7k8kzcvrQP6bJUlLVzVZSnp73BoQ1j4fnNFOgbmufzyIlIVQsWLED//v3Ru3dvVK1aFaGhodDT08OaNWuU1t+0aROGDBkCV1dXODk5YdWqVZDL5Th27FiBjbFIrYkyMjKCq6srwsPDUadOHYSHh2PUqFGYPn06Xr9+jaSkJNy9exceHh6YNm0aWrRooQiMqlSpgr///htz584VZWGaN2+OMWPGKH5+8OABAOD169do27YtZDIZTpw4ASMjo1zHNnbsWLRt2xYAMH36dFSrVg13796Fk5MTlixZAm9vb4wdO1YxlrNnz2Lv3r0qXfe8efPQq1cvDBkyBAAwevRo/Pnnn5g3b54iw5QbDQ0NmJqaAgAsLCy4JopKvNRXzwEAegZlROV6BmZIefUi17Yvnt7C9kV+yMiQQVNLD237LIWpVWXF66d3B6OsXS1UrNEi/wdOVMx9ygJxmUwGmUw83a6tra10+UxaWhouXryIoKAgRZlUKoWXl1e2maCcpKamIj09XfHvY0EoUpkoAPDw8EB4eDgEQcDp06fRqVMnODs748yZMzh58iSsra3h4OCA6OhouLu7i9q6u7vjzp07iulAAKhTp47S8/j5+SElJQWHDx/+aAAFADVr1lT8d9myZQFAkVK8desW6tWrJ6r/4c+5yelaoqOjVe5DVTKZDMnJyaIjPZc1JERFwa2LfyB0Qm3FIc/MULsvEwt7dB27C74jt6KGe1cc2fwdXsbeBQD8c/04ntyJRJOOQR/phegL9QlrooKDg2FkZCQ6goODlZ7mxYsXyMzMhKWlpajc0tISsbGxKg11woQJsLa2hpdXwT0UUqQyUQDg6emJNWvW4MqVK9DU1ISTkxM8PT0RHh6OhIQEeHh45Kk/fX19peU+Pj7YuHEjzp07h+bNm3+0H01NTcV/Zy02lcvleRqLuqT/39xMEARFWXp6ulp9BQcHY/r06aIy725T4NN9mtrjIypo9tWawXLsfx9kMjPePSSS+joe+kYWivLU1y9gbu2ca18apbRgbG4LALCwqY64R9cRdWo9mvvOwJM7fyIp/hFWfC/+EHRg7XBYV3RDp8ANyrok+nJ8QiYqKCgIo0ePFpUV1ENcP/74I7Zs2YLw8HDo6OgUyDmAIhhEZa2LWrhwoSJg8vT0xI8//oiEhATF1JyzszMiIiJEbSMiIlClShVoaGh89DyDBw9G9erV8dVXX2Hfvn15Ds7e5+joiAsXLojKPvw5N1nXEhAQoCiLiIhA1apVAQDm5u/WZcTExKBWrVoAkG2fKy0tLQAQZeGUUfZLvPqElspjJSoMWjoG0NIxUPwsCAL0Spvj8e1zMC/3LmhKe/sacQ+vokYjv7x1LsgVQZlbi/6o1uBb0cubf/oKTTp8B7tqH/+wRUQ5y2nqThkzMzNoaGggLi5OVB4XFwcrK6tc286bNw8//vgjjh49KppFKghFLogyMTFBzZo1sWnTJixduhQA0LRpU/j6+iI9PV0R7IwZMwZ169bFzJkz0aVLF5w7dw5Lly7FsmXLVD7XsGHDkJmZiXbt2uHAgQNo3LixWmMeNmwYmjZtigULFqB9+/Y4fvw4Dhw4oPLj0ePGjYOvry9q1aoFLy8v/PHHH9i5cyeOHn33lJGuri4aNGiAH3/8Efb29nj27BkmTZok6sPW1hYSiQR79+6Fj48PdHV1YWBgkO1cyn6JNTWFbPWIijKJRAJXD3/8dSQUxuZ2MDQthz8PLIa+oQUqvref065lvVCxhhdcmrx7ovfs3vmwdW6K0iZlkfY2Bbcv7cWTe+fx9cBVAAB9Q3Oli8kNTKxhVKb857k4IoKWlhbc3Nxw7NgxdOjQAQAUi8QDAwNzbPfTTz9h1qxZOHToUI7LefJTkVsTBbxbF5WZmQlPT08AgKmpKapWrQorKys4OjoCAGrXro3ffvsNW7ZsQfXq1TFlyhTMmDEjz4/2jxw5EtOnT4ePjw/Onj2r1njd3d0RGhqKBQsWwMXFBQcPHsSoUaNUTiF26NABixYtwrx581CtWjUsX74ca9euVVw/AKxZswYZGRlwc3PDyJEj8cMPP4j6KFeuHKZPn47vvvsOlpaWuf6SEZUEtZv3Q80mPXDityn4bWFnpMtS8dXAlSil+d+HhKQXj/A2JUHx85vXL3Fk0wRsmO2N3b/0Rtyj6/h64CpUcHRXdgoi+pBUqv6RR6NHj8bKlSuxbt06REdHY/DgwUhJSUHv3r0BAP7+/qKF53PmzMHkyZOxZs0a2NnZITY2FrGxsXj9+nW+Xf6HJML7C20o3/Tv3x83b97E6dOnC3soH7V0P38FiIhKgkCfgt0gNuXsTrXb6jfqlOc2S5cuxdy5cxEbGwtXV1csXrwY9evXB/BuqY+dnZ1iayM7Ozs8fPgwWx9Tp07FtGnT1B53borcdF5xNW/ePLRs2RL6+vo4cOAA1q1bl6epRSIioiLvM3/tS2BgYI4zK+/vIQn8t4XR51Qkp/OKo/Pnz6Nly5aoUaMGQkNDsXjxYvTr1w8AUK1aNRgYGCg9Nm3aVMgjJyIiInUwE5VPfvvttxxf279/f45bEny4BwYREVFRJfALiEUYRH0Gtra2hT0EIiIiymcMooiIiEg1n7DZZknEvBwRERGRGpiJIiIiIpVwTZQYgygiIiJSDafzRBhSEhEREamBmSgiIiJSDafzRHg3iIiIiNTATBQRERGpROCaKBEGUURERKQaTueJMIgiIiIilQhgJup9DCmJiIiI1MAgioiIiEgNnM4jIiIilXDHcjEGUURERKQaBlEiDKKIiIhIJdziQIwhJREREZEaGEQRERERqYHTeURERKQSLiwXYxBFREREquGaKBEGUURERKQSZqLEeDeIiIiI1MBMFBEREamE350nxiCK0LByQmEPgYiI8oVpYQ/gi8IgioiIiFTCNVFivBtEREREamAmioiIiFTDLQ5EGEQRERGRSgROYIkwiCIiIiKV8AuIxRhSEhEREamBQRQRERGRGjidR0RERCrhFgdiDKKIiIhIJdyxXIxBFBEREamEmSgx3g0iIiIiNTCIIiIiIlIDp/OIiIhIJdwnSoxBFBEREamEC8vFGEQRERGRSriwXIx3g4iIiEgNzEQRERGRSjidJ8ZMFBEREZEamIkiIiIilXBNlBjvBhEREZEaGEQRERGRSgRI1D7U8fPPP8POzg46OjqoX78+zp8/n2v9bdu2wcnJCTo6OqhRowb279+v1nlVxSCKiIiIVCJIpGofebV161aMHj0aU6dOxaVLl+Di4oLWrVvj2bNnSuufPXsWfn5+6Nu3Ly5fvowOHTqgQ4cOuH79+qdedo4kgiAIBdY7FQsXb78s7CEQEVE+cKtiWqD9/3PvntptK1aqlKf69evXR926dbF06VIAgFwuh42NDYYNG4bvvvsuW/0uXbogJSUFe/fuVZQ1aNAArq6uCA0NVXvcuWEmKhfTpk2Dq6trntpIJBLs3r0bAPDgwQNIJBJERUWp1NbOzg4hISF5Oh8REVFJk5aWhosXL8LLy0tRJpVK4eXlhXPnziltc+7cOVF9AGjdunWO9fMDn87LxdixYzFs2DC129vY2CAmJgZmZmYq1b9w4QL09fXVPh9RSSYIArZvWokTh/cgJeUVqjjXRJ8h41HW2ibXdof3bcfenZuQlPASFewrI2DgaFSuUk3xemJCPDavWYprUefx9k0qypargA6+vVDPvZmon8sXIrBzyxo8enAXmpracK5eC2MmzSmQayUqiWQyGWQymahMW1sb2tra2eq+ePECmZmZsLS0FJVbWlri5s2bSvuPjY1VWj82NvYTR54zZqJyYWBggDJlyqjdXkNDA1ZWVihVSrVY1dzcHHp6emqfj6gk+2PHRhzauw19hozHzHmroaOjix+njERamizHNudOH8XGVYvRya8vZoWEoYK9A36cMgpJif9NYf+yYAae/vsQYyb/hB+XbkTdRp5Y9NMkPLh3S1HnfMQJLFswHR5ebfHj4g2Y9tNyuHu0LNDrJSqKBIlE7SM4OBhGRkaiIzg4uLAv6ZOUiCBq+/btqFGjBnR1dVGmTBl4eXkhJSUFcrkcM2bMQPny5aGtrQ1XV1ccPHhQ1PbJkyfw8/ODqakp9PX1UadOHURGRgLIPp134cIFtGzZEmZmZjAyMoKHhwcuXbqU47g+nM7r1asXJBJJtiM8PBxA9uk8iUSCVatWoWPHjtDT04ODgwP27NkjOseePXvg4OAAHR0dNGvWDOvWrYNEIkFiYqLa95OoqBEEAQf3bEUH316o06ApKthXxuBRU5D48gX++vNUju327/4VzVp/BU+vdihfwR59h4yHtrY2Th75b83E7ZvX0LpdZ1SuUg2WVuXQsUtv6Osb4P7dd0FUZmYG1q9ciG69A+Hl3Qlly1VA+Qr2aNDEK6fTEpVYgiBR+wgKCkJSUpLoCAoKUnoeMzMzaGhoIC4uTlQeFxcHKysrpW2srKzyVD8/FPsgKiYmBn5+fujTpw+io6MRHh6OTp06QRAELFq0CPPnz8e8efNw9epVtG7dGl999RXu3LkDAHj9+jU8PDzw77//Ys+ePbhy5QrGjx8PuVyu9FyvXr1CQEAAzpw5gz///BMODg7w8fHBq1evVBrrokWLEBMTozhGjBgBCwsLODk55dhm+vTp8PX1xdWrV+Hj44Pu3bvj5ct3n6Lv37+Pb7/9Fh06dMCVK1cwcOBATJw4MY93kKjoexb3FIkJ8ajuWldRpqdvgEpVquLOTeVP3mSkp+P+3Vuo7vJfG6lUiuqudXHn1n9tqjjVwJ+nj+L1qyTI5XKcPXUE6WlpcK5RCwBw/94tvIx/DolUiqAR/hji3w5zpo7C44fqL7AlKq4ESNU+tLW1YWhoKDqUTeUBgJaWFtzc3HDs2DFFmVwux7Fjx9CwYUOlbRo2bCiqDwBHjhzJsX5+KPZromJiYpCRkYFOnTrB1tYWAFCjRg0AwLx58zBhwgR07doVADBnzhycOHECISEh+Pnnn7F582Y8f/4cFy5cgKnpuycaKleunOO5mjdvLvp5xYoVMDY2xsmTJ9GuXbuPjjUrfQkAO3fuxPLly3H06NFco+RevXrBz88PADB79mwsXrwY58+fR5s2bbB8+XI4Ojpi7ty5AABHR0dcv34ds2bN+uhYiIqTpIR4AICRsfjJIyNjU8VrH3qVnAi5PBNGJtnbPH3yUPHz8Ak/YPFPkzGgWxtoaGhAS1sHo77/EVb/X2v1LPYpAGDn5tXo0Xc4zCzLYv+uzZgZNBQLlm+FQWmjfLtOIvrP6NGjERAQgDp16qBevXoICQlBSkoKevfuDQDw9/dHuXLlFFOCI0aMgIeHB+bPn4+2bdtiy5Yt+Ouvv7BixYoCG2Oxz0S5uLigRYsWqFGjBjp37oyVK1ciISEBycnJePr0Kdzd3UX13d3dER0dDQCIiopCrVq1FAHUx8TFxaF///5wcHCAkZERDA0N8fr1azx69ChPY758+TJ69uyJpUuXZhvfh2rWrKn4b319fRgaGir2yLh16xbq1q0rql+vXr1c+5PJZEhOThYdua0pISoMZ8IPoXfn5oojMyOjwM61bdMKpKa8wvc/LMYPC9fCp4MfFv80CY8e3AUACP/PTH/tG4B67s1QsbITBo6cBIlEgsgzxwtsXERfui5dumDevHmYMmUKXF1dERUVhYMHDyoWjz969AgxMTGK+o0aNcLmzZuxYsUKuLi4YPv27di9ezeqV69eYGMs9pkoDQ0NHDlyBGfPnsXhw4exZMkSTJw4EUeOHPloW11d3TydKyAgAPHx8Vi0aBFsbW2hra2Nhg0bIi0tTeU+YmNj8dVXX6Ffv37o27fvR+tramqKfpZIJDlON6oiODgY06dPF5X1DxyPgcMmqN0nUX5zq9cYlatUVfyckZ4OAEhKfAkT0/+edk1KfAnbilWU9lHa0BhSqQaSEsT7oCUlvoSxybsHRuJinuDw3u34aekmlLetCACwtXfAzRtROLJvB/oOnQDj/5+vnI29og9NTS1YWFnjxXPx+guikk7dncfVFRgYiMDAQKWvZa0nfl/nzp3RuXPnAh7Vf4p9Jgp4F1i4u7tj+vTpuHz5MrS0tHDs2DFYW1sjIiJCVDciIgJVq77741yzZk1ERUUp1hh9TEREBIYPHw4fHx9Uq1YN2traePHihcrjfPv2Lb7++ms4OTlhwYIFql9gDhwdHfHXX3+Jyi5cuJBrG2UL+3oPHPnJYyHKT7p6+rCytlEc5SrYw9ikDG5c+e/3PTU1Bfdu/w0HJ+WfMktpasK+siNuXP2vjVwux40rf8HB8V0bmewtAEAiFf8plEo1IP//PsT2lZ2gqamFmH//mwLMyMjA82cxMLMouAWrREXR5/7al6Ku2GeiIiMjcezYMbRq1QoWFhaIjIzE8+fP4ezsjHHjxmHq1KmoVKkSXF1dsXbtWkRFRWHTpk0AAD8/P8yePRsdOnRAcHAwypYti8uXL8Pa2lrpQjQHBwds2LABderUQXJyMsaNG5enbNbAgQPx+PFjHDt2DM+fP1eUm5qaQktLK8/XPnDgQCxYsAATJkxA3759ERUVhbCwMADvAktllO3JoaVVcFMlRPlBIpGgzVddsGtrGKysbWBuWRbbNq6EsakZ6jRoqqg3a2Ig6jT0QOt27z6J+nTwQ+jCmahY2QmVqlTDgd+34O3bt/DwereG0bq8HSzLlsfqn+egW59AlC5thL/+PIXrUecxdso8AICenj5aeHfAjs2rUMbMEmYWVti7893fkPqNm4PoS1JSgyF1FfsgytDQEKdOnUJISAiSk5Nha2uL+fPnw9vbG61bt0ZSUhLGjBmDZ8+eoWrVqootAYB3q/8PHz6MMWPGwMfHBxkZGahatSp+/vlnpedavXo1BgwYgNq1a8PGxgazZ8/G2LFjVR7ryZMnERMTo8iEZTlx4gQ8PT3zfO329vbYvn07xowZg0WLFqFhw4aYOHEiBg8enOMTD0TFVftvekD29g1WLf0RqSmvUaVqTXw3fSG0tP77XY+L/RevkpMUPzds4oXkpARs37QKiQnxsK3ogO+mL1QsNi9VqhTGT1uALWHLMG/mOMjevIFl2fIYNHIyatVppOinW+9h0JBqYNnC6UiXyVDJsRom/bAUBgaGn+8GEFGRw+/OK2FmzZqF0NBQPH78WOU2/O48IqKSoaC/Oy/63r9qt3WuVC4fR1I0FPtM1Jdu2bJlqFu3LsqUKYOIiAjMnTs3x0V4RERElH8YRBVzd+7cwQ8//ICXL1+iQoUKGDNmTI47wBIREX0KQeCaqPdxOo84nUdEVEIU9HTe33efqt22amXrfBxJ0cBMFBEREamET+eJMYgiIiIilTCIEmMQRURERCphECVWInYsJyIiIvrcGEQRERERqYHTeURERKQSbnEgxiCKiIiIVCLnmigRBlFERESkEi4sF+OaKCIiIiI1MIgiIiIiUgOn84iIiEglXFguxiCKiIiIVMI1UWIMooiIiEglzESJcU0UERERkRqYiSIiIiKVcDpPjJkoIiIiIjUwE0VEREQq4ZooMQZRREREpBJ5YQ+giOF0HhEREZEamIkiIiIilXA6T4yZKCIiIiI1MBNFREREKuEWB2LMRBERERGpgZkogr5GamEPgYiI8oVpgfbONVFiDKKIiIhIJZzOE2MQRURERCqRC4U9gqKFa6KIiIiI1MAgioiIiEgNnM4jIiIilXBNlBiDKCIiIlIJn84TYxBFREREKhG4sFyEa6KIiIiI1MAgioiIiEgNnM4jIiIilci5sFyEQRQRERGphAvLxRhEERERkUq4sFyMa6KIiIiI1MBMFBEREamEm22KMRNFREREpAYGUURERKQSuaD+UVBevnyJ7t27w9DQEMbGxujbty9ev36da/1hw4bB0dERurq6qFChAoYPH46kpKQ8n5tBFBERERVb3bt3x40bN3DkyBHs3bsXp06dwoABA3Ks//TpUzx9+hTz5s3D9evXERYWhoMHD6Jv3755PrdEELjW/kt3896Twh4CERHlA6dK5Qu0/wOX09Vu611LMx9H8k50dDSqVq2KCxcuoE6dOgCAgwcPwsfHB0+ePIG1tbVK/Wzbtg09evRASkoKSpVSfbk4M1FERESkEkFQ/ygI586dg7GxsSKAAgAvLy9IpVJERkaq3E9SUhIMDQ3zFEABfDqPiIiIVPQpO5bLZDLIZDJRmba2NrS1tdXuMzY2FhYWFqKyUqVKwdTUFLGxsSr18eLFC8ycOTPXKcCcMBNFREREBS44OBhGRkaiIzg4WGnd7777DhKJJNfj5s2bnzym5ORktG3bFlWrVsW0adPy3J6ZKCIiIipwQUFBGD16tKgspyzUmDFj0KtXr1z7q1ixIqysrPDs2TNReUZGBl6+fAkrK6tc27969Qpt2rRB6dKlsWvXLmhq5n3NFoMoIiIiUsmnrG3Ky9Sdubk5zM3NP1qvYcOGSExMxMWLF+Hm5gYAOH78OORyOerXr59ju+TkZLRu3Rra2trYs2cPdHR0VLuID3A6Lw88PT0xcuTIfOtv2rRpcHV1zbf+iIiICpIgSNQ+CoKzszPatGmD/v374/z584iIiEBgYCC6du2qeDLv33//hZOTE86fPw/gXQDVqlUrpKSkYPXq1UhOTkZsbCxiY2ORmZmZp/N/1kxUeHg4mjVrhoSEBBgbG3/OU+eLnTt3qpXuI6JPJwgCNm8Mw5GD+5GS8hpOVatj8NARsC6X+yPd+/7Yjd07fkNCwkvY2VfCgMHDUMXRSfH6siULcOXyJbx8GQ8dHV04Va2GgN79Ud6mAgDg/j/3sGPbr/j7xnW8Sk6ChaUV2ni3Q/sO3xTo9RIVRQW5aaa6Nm3ahMDAQLRo0QJSqRTffPMNFi9erHg9PT0dt27dQmpqKgDg0qVLiif3KleuLOrr/v37sLOzU/ncRXI6Ly0tDVpaWoVy7vT09GyBUtZ4TE1NC2VMuVE2XqKSaOf2Ldi3ZxdGjJ4ASysrbNoQhmmTv8PS0DU5/r04ffIE1qwMxeDAkaji5IQ/du/EtMkTsGxFGIyNTQAAlSpXgYenF8wsLPD6VTJ+3bQeUydNwIo1G6GhoYF7d2/DyMgYo8cFwczMHDejb+DnJQsh1dBA2/YdPuMdICJlTE1NsXnz5hxft7Ozw/tbYnp6eiK/tsjM83SeXC5HcHAw7O3toaurCxcXF2zfvh2CIMDLywutW7dWDO7ly5coX748pkyZggcPHqBZs2YAABMTE0gkEsWiMU9PTwQGBmLkyJEwMzND69atAQALFixAjRo1oK+vDxsbGwwZMiTbVu4RERHw9PSEnp4eTExM0Lp1ayQkJAB4d+NCQkJE9V1dXUUr8CUSCX755Rd89dVX0NfXx6xZsxTTbKtWrYK9vb1irvTD6TyZTIYJEybAxsYG2traqFy5MlavXg0ACAsLy5Zt2717NySSnFOaFy5cQMuWLWFmZgYjIyN4eHjg0qVLojrKxpuQkIDu3bvD3Nwcurq6cHBwwNq1a3M8D1FxIwgC/ti9E5279kD9hu6ws6+EkWMm4GX8C/x57kyO7X7ftR2t2vjAq1UbVKhgh8GBI6GtrY2jhw8q6rT2bodqNWrC0tIKlSpXQQ//3njx/BmePYsDAHi18kb/QYGoXsMFVmWt4dm8JVp4tca5iNMFft1EVLTlOYgKDg7G+vXrERoaihs3bmDUqFHo0aMHTp06hXXr1uHChQuKNNqgQYNQrlw5TJkyBTY2NtixYwcA4NatW4iJicGiRYsU/a5btw5aWlqIiIhAaGjou8FJpVi8eDFu3LiBdevW4fjx4xg/fryiTVRUFFq0aIGqVavi3LlzOHPmDNq3b5/nOc1p06ahY8eOuHbtGvr06QMAuHv3Lnbs2IGdO3ciKipKaTt/f3/8+uuvWLx4MaKjo7F8+XIYGBjk6dzve/XqFQICAnDmzBn8+eefcHBwgI+PD169epXreCdPnoy///4bBw4cQHR0NH755ReYmZmpPQ6ioiYuNgYJCS/h4lpbUaavb4Aqjs64Ff230jbp6em4d/e2qI1UKoWLa23cuqm8zdu3b3D0yCFYWpWFmVnOi1pTU1NgULq0mldDVHwVtc02C1uepvNkMhlmz56No0ePomHDhgDePWJ45swZLF++HJs3b8by5cvh7++P2NhY7N+/H5cvX1bsAJo1HWZhYZEtS+Pg4ICffvpJVPZ+1sfOzg4//PADBg0ahGXLlgEAfvrpJ9SpU0fxMwBUq1YtL5cEAOjWrRt69+4tKktLS8P69etzfDrg9u3b+O2333DkyBF4eXkp7sWnaN68uejnFStWwNjYGCdPnkS7du1yHO+jR49Qq1YtxY6tuc3nKtvsLE0mg9YnbHZGVNCyssvGJiaicmNjE8VrH0pOToJcLlfa5snjx6Ky/Xt/x7o1K/D27VuUK2+D6bN+ynGaPPrvGzhzKhyTp89W93KIii3hEzbbLInylIm6e/cuUlNT0bJlSxgYGCiO9evX4969ewCAzp07o2PHjvjxxx8xb948ODg4qNR31qOJ7zt69ChatGiBcuXKoXTp0ujZsyfi4+MVi8OyMlGf6v3t4rPY2trm+nhlVFQUNDQ04OHh8cnnzxIXF4f+/fvDwcEBRkZGMDQ0xOvXr/Ho0aNcxzt48GBs2bIFrq6uGD9+PM6ePZvjOZRtdrYi9Od8uwai/BB+4ii6dGqrODIzMwr0fB7NWmDhkuWYPWchrMuVx9zgGUhLS8tW7+GD+5g9YzK6dvNHrdrZ/24QlXRyQf2jJMpTJiprPdK+fftQrlw50WtZez+kpqbi4sWL0NDQwJ07d1TuW19fX/TzgwcP0K5dOwwePBizZs2Cqakpzpw5g759+yItLQ16enrQ1dXNtU+pVJpt8Vh6evYvT/zw3DmVvS+/zv2+gIAAxMfHY9GiRbC1tYW2tjYaNmyY7Y/5h2Pz9vbGw4cPsX//fhw5cgQtWrTA0KFDMW/evGznULbZ2YMnz3MdF9HnVq9+Izg6Oit+zvp/JzEhAaamZRTliYkJsK9YSWkfhoZGkEqlSPwgU5WYmACTDx4S0dc3gL6+AazLlUcVJ2d09+2AP8+eQVPP/7LDjx49wOTvx6KVd1v4+vX45GskouIvT5moqlWrQltbG48ePULlypVFh42NDYB3u4xKpVIcOHAAixcvxvHjxxXts56gUWXN0sWLFyGXyzF//nw0aNAAVapUwdOnT0V1atasiWPHjuXYh7m5OWJiYhQ/Jycn4/79+3m55BzVqFEDcrkcJ0+ezPHcr169QkpKiqIsp7VVWSIiIjB8+HD4+PigWrVq0NbWxosXL1Qaj7m5OQICArBx40aEhIRgxYoVSutpa2vD0NBQdHAqj4oaPT09lLUupzhsKtjCxMQUV6/896BFamoKbt+KhqNzVaV9aGpqolLlKrh65bKiTC6X42rUZTg6KW/zjgABAtLT//vw8ujhA0z6bgyat2iFngF9P/n6iIorrokSy1MmqnTp0hg7dixGjRoFuVyOxo0bIykpCRERETA0NISZmRnWrFmDc+fOoXbt2hg3bhwCAgJw9epVmJiYwNbWFhKJBHv37oWPjw90dXVzXIhduXJlpKenY8mSJWjfvr1owXmWoKAg1KhRA0OGDMGgQYOgpaWFEydOoHPnzjAzM0Pz5s0RFhaG9u3bw9jYGFOmTIGGhob6d+s9dnZ2CAgIQJ8+fbB48WK4uLjg4cOHePbsGXx9fVG/fn3o6enh+++/x/DhwxEZGYmwsLBc+3RwcMCGDRtQp04dJCcnY9y4cR/NeAHAlClT4ObmhmrVqkEmk2Hv3r1wdnb+aDui4kIikaB9h074bcsmlLUuD0tLK2zesBamZczQoGFjRb3JQWPRoFFjxdYDX3f8FosWzEFlhypwqOKEP37fgbeyt/Bq+e4J4NiYpzhzKhyutevAyMgIL168wI5tv0JbSwtudd/tdvzwwX1MDhqLWrXr4OuOnZHw8iUAQKohhZGR8We9D0RUtOR5n6iZM2fC3NwcwcHB+Oeff2BsbIzatWsjKCgIXbp0wbRp01C79runYaZPn47Dhw9j0KBB2Lp1K8qVK4fp06fju+++Q+/eveHv759jYOHi4oIFCxZgzpw5CAoKQtOmTREcHAx/f39FnSpVquDw4cP4/vvvUa9ePejq6qJ+/frw8/MD8C7Iun//Ptq1awcjIyPMnDkz3zJRAPDLL7/g+++/x5AhQxAfH48KFSrg+++/B/BuEf3GjRsxbtw4rFy5Ei1atMC0adNy/Zbo1atXY8CAAahduzZsbGwwe/ZsjB079qPj0NLSQlBQEB48eABdXV00adIEW7ZsybfrJCoKOn3bFW/fvsWyJQuQ8vo1nKvVwNQZwaI9omJjniI5KUnxcxOPZkhOTsLmDWFISHg39Td1xo8wNnk3naeppYW/b1zDnt93IOX1axgZm6Ba9Zr4cf4SxT5SZ8+cQlJSIsJPHEX4iaOKvi0sLLEyLOe9aYhKopKaUVKXRMivHaeo2Lp570lhD4GIiPKBU6Xcd/D/VFvOqh8ydG1U8p7s43fnEREREamhSH7tCxERERU9nLsSYxBFREREKmEQJcbpPCIiIiI1MIgiIiIiUgOn84iIiEglJfXrW9TFIIqIiIhUIgglb5uCT8EgioiIiFTCheViXBNFREREpAYGUURERERq4HQeERERqYQLy8UYRBEREZFKuCZKjEEUERERqYRBlBjXRBERERGpgZkoIiIiUgnXRIkxE0VERESkBmaiiIiISCVcEyXGIIqIiIhUIpcX9giKFk7nEREREamBmSgiIiJSCafzxBhEERERkUoYRIlxOo+IiIhIDQyiiIiIiNTA6TwiIiJSCTfbFGMQRURERCoRPmlRlCTfxlFUSIRPuyNEREWeTCZDcHAwgoKCoK2tXdjDIaISgkEUEZV4ycnJMDIyQlJSEgwNDQt7OERUQnBhOREREZEaGEQRERERqYFBFBEREZEaGEQRUYmnra2NqVOnclE5EeUrLiwnIiIiUgMzUURERERqYBBFREREpAYGUURERERqYBBFREREpAYGUURUbMXGxmLEiBGoXLkydHR0YGlpCXd3d/zyyy9ITU0FANjZ2UEikUAikUBfXx+1a9fGtm3bRP28efMGpqamMDMzg0wmK4xLIaJiiEEUERVL//zzD2rVqoXDhw9j9uzZuHz5Ms6dO4fx48dj7969OHr0qKLujBkzEBMTg8uXL6Nu3bro0qULzp49q3h9x44dqFatGpycnLB79+5CuBoiKo64xQERFUtt2rTBjRs3cPPmTejr62d7XRAESCQS2NnZYeTIkRg5ciQAICMjA0ZGRhg+fDiCg4MBAM2aNUPXrl0hCAJ27tyJw4cPf85LIaJiipkoIip24uPjcfjwYQwdOlRpAAUAEolEaXmpUqWgqamJtLQ0AMC9e/dw7tw5+Pr6wtfXF6dPn8bDhw8LbOxEVHIwiCKiYufu3bsQBAGOjo6icjMzMxgYGMDAwAATJkzI1i4tLQ3BwcFISkpC8+bNAQBr1qyBt7c3TExMYGpqitatW2Pt2rWf5TqIqHhjEEVEJcb58+cRFRWFatWqiRaIT5gwAQYGBtDT08OcOXPw448/om3btsjMzMS6devQo0cPRd0ePXogLCwMcrm8MC6BiIqRUoU9ACKivKpcuTIkEglu3bolKq9YsSIAQFdXV1Q+btw49OrVCwYGBrC0tFRM9R06dAj//vsvunTpIqqfmZmJY8eOoWXLlgV4FURU3DETRUTFTpkyZdCyZUssXboUKSkpH61vZmaGypUrw8rKSrRWavXq1ejatSuioqJER9euXbF69eqCvAQiKgGYiSKiYmnZsmVwd3dHnTp1MG3aNNSsWRNSqRQXLlzAzZs34ebmlmv758+f448//sCePXtQvXp10Wv+/v7o2LEjXr58CVNT04K8DCIqxpiJIqJiqVKlSrh8+TK8vLwQFBQEFxcX1KlTB0uWLMHYsWMxc+bMXNuvX78e+vr6aNGiRbbXWrRoAV1dXWzcuLGghk9EJQD3iSIiIiJSAzNRRERERGpgEEVERESkBgZRRERERGpgEEVERESkBgZRRERERGpgEEVERESkBgZRRERERGpgEEVERESkBgZRRERERGpgEEVERESkBgZRRERERGpgEEVERESkhv8BkjIEZ6nbciUAAAAASUVORK5CYII=",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(6, 4))\n",
+ "sns.heatmap(pd.DataFrame.from_dict(heatmap_values, orient='index', columns=['GPA']), annot=True, cmap='coolwarm', center=0)\n",
+ "plt.title('Correlation of Lifestyle Factors with GPA')\n",
+ "plt.show()\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "collectible-puppy",
+ "metadata": {},
+ "source": [
+ "### Second Research Question: \n",
+ "## Is there a threshold of study hours beyond which GPA plateaus or declines?\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "demographic-future",
+ "metadata": {},
+ "source": [
+ "### Methods"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "incorporate-roller",
+ "metadata": {},
+ "source": [
+ "*Explain how you will approach this research question below. Consider the following:* \n",
+ " - *Which aspects of the dataset will you use?* \n",
+ " - *How will you reorganize/store the data?* \n",
+ " - *What data science tools/functions will you use and why?* \n",
+ "\n",
+ "To answer this question, I will focus on two key columns from the dataset: `studying` and `GPA`. These variables directly capture the relationship between time spent studying and academic performance.\n",
+ "I will use these variables to create visualizations and fit models. I’ll begin with a scatter plot to observe the raw distribution of GPA across different study hour values. Then, I’ll use Seaborn’s `regplot()` to add a linear regression line, and NumPy’s `polyfit()` to fit a second-degree polynomial curve. This will help detect any inflection point where GPA stops increasing or begins to decline. These tools allow for both visual and statistical interpretation of non-linear trends, and it makes it easier to identify a potential threshold effect. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "juvenile-creation",
+ "metadata": {},
+ "source": [
+ "### Results "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 127,
+ "id": "pursuant-surrey",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArsAAAIjCAYAAAADVtOsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XmcXFWd/48/71p79ZruTjrpdDa2sCYIsslOBEXRURx0ZPkNjqPOPGTG5avO6Ajq4DKOOh8dBgcH8TMwqDgu81EEBkR2BMOSACEL6XTS6X2rveou5/fHrbpd1UtS1aTTneY8H48ofevUqXPPObf7Xe/zfr/eihBCIJFIJBKJRCKRLELU+R6ARCKRSCQSiUQyV0hjVyKRSCQSiUSyaJHGrkQikUgkEolk0SKNXYlEIpFIJBLJokUauxKJRCKRSCSSRYs0diUSiUQikUgkixZp7EokEolEIpFIFi3S2JVIJBKJRCKRLFqksSuRSCQSiUQiWbRIY1cieYNz3nnncd5559X8vocffhhFUXj44YcP+Zgkh5Za1qrU9p577pn7gS1ivvjFL6IoynwPY0Zm+9xLJEci0tiVSI4A7rrrLr797W/P9zDecLz44otcd911rFq1imAwSDQa5eSTT+bTn/40r732WkXba6+9FkVR/H/xeJyTTjqJb37zm+Tz+Sl9f/rTn0ZRFN73vvcdrtupYK721A9/+MOKedB1nfb2dq699lp6enoO+edJpqIoCn/1V38138OQSBYM+nwPQCKRHJy77rqLrVu3csMNN8z3UHze8pa3kM1mMU1zvocyJ/z7v/87H/nIR2hubuYDH/gAxxxzDLZts3XrVn70ox/x7W9/m2w2i6Zp/nsCgQC33XYbAGNjY/zsZz/jk5/8JM888wx33323304IwX/913/R2dnJ//zP/5BMJonFYnN2L9Ot1VzvqZtuuolVq1aRy+V46qmn+OEPf8hjjz3G1q1bCQaDc/KZC4m///u/5zOf+cx8D2NG7r///vkegkRy2JDGrkQimRWqqi5ao+WJJ57gIx/5CGeddRb/7//9vymG6De/+U2+8pWvTHmfruv82Z/9mf/zRz/6UU4//XR+/OMf88///M8sW7YM8EIF9u3bx0MPPcSmTZv47//+b6655po5u5/5WKtLL72UU089FYDrr7+e5uZmvva1r/GrX/2KK6+88rCNQwhBLpcjFAodts8Eby/o+sL9E7tYv6RKJNMhwxgkknkmmUxyww030NnZSSAQoKWlhYsvvpjNmzcDXmzdr3/9a/bs2eMfDXd2dgITR8ZdXV0Vfc4Uo/n973+fNWvWEAqFOO2003j00UcrXk+lUkQiET7+8Y9PGee+ffvQNI2bb755xs8477zzOP7443n55Zc5//zzCYfDtLe38/Wvf31Kf3v27OEd73gHkUiElpYW/uZv/ob77rvvoLGl99xzD4qi8Pvf/37Ka7feeiuKorB161YA+vr6uO6661i+fDmBQIClS5fyzne+c8p8TebGG29EURTuvPPOaT2uwWCQL33pSxVe3elQVdWPiyz/zDvvvJPjjjuO888/n4suuog777zzgP2UePe7382GDRsqrl1++eUoisKvfvUr/9rTTz+Noijce++9wNS1OtCeKuG6Ll/5yldYvnw5wWCQCy+8kJ07d1Y1zuk455xzANi1a1fF9W3btvGe97yHxsZGgsEgp556asW9lHjxxRc599xzCYVCLF++nC9/+cvcfvvtU/Z/Z2cnb3/727nvvvs49dRTCYVC3HrrrYDnbb/hhhtYsWIFgUCAtWvX8rWvfQ3XdSs+6+6772bjxo3EYjHi8TgnnHAC3/nOd/zXLcvixhtvZN26dQSDQZqamjj77LN54IEH/DbTxezats2XvvQl1qxZQyAQoLOzk8997nNTwlxK9/DYY49x2mmnEQwGWb16NT/60Y9qmPEDMzlmt7RHfvKTn1S17k8//TRvfetbqaurIxwOc+655/L4448fsvFJJIeShfu1UyJ5g/CXf/mX3HPPPfzVX/0Vxx13HMPDwzz22GO88sorbNiwgb/7u79jfHycffv28a1vfQuAaDRa8+f84Ac/4MMf/jBnnnkmN9xwA6+99hrveMc7aGxsZMWKFX6/73rXu3xPZLkx91//9V8IIfjABz5wwM8ZHR3lrW99K+9+97u58sorueeee/j//r//jxNOOIFLL70UgHQ6zQUXXEBvby8f//jHaWtr46677uJ3v/vdQe/jbW97G9FolJ/85Cece+65Fa/9+Mc/Zv369Rx//PEA/Mmf/AkvvfQSf/3Xf01nZycDAwM88MADdHd3TzHuSmQyGR566CHOO+88li9fftDxHIyScdfU1ARAPp/nZz/7GZ/4xCcAuOqqq7juuuvo6+ujra3tgH2dc845/PKXvySRSBCPxxFC8Pjjj6OqKo8++ijveMc7AHj00UdRVZWzzjpr2n6q2VNf/epXUVWVT37yk4yPj/P1r3+dD3zgAzz99NOzmoeSQdrQ0OBfe+mllzjrrLNob2/nM5/5DJFIhJ/85CdcccUV/OxnP+Nd73oXAD09PZx//vkoisJnP/tZIpEIt912G4FAYNrPevXVV7nqqqv48Ic/zIc+9CGOPvpoMpkM5557Lj09PXz4wx+mo6ODJ554gs9+9rP09vb68csPPPAAV111FRdeeCFf+9rXAHjllVd4/PHH/S+BX/ziF7n55pu5/vrrOe2000gkEjz77LNs3ryZiy++eMY5uP7667njjjt4z3vewyc+8Qmefvppbr75Zl555RV+/vOfV7TduXMn73nPe/jzP/9zrrnmGv7jP/6Da6+9lo0bN7J+/fpZrUE1VLPuDz30EJdeeikbN27kH/7hH1BVldtvv50LLriARx99lNNOO23OxieRzAohkUjmlbq6OvGxj33sgG3e9ra3iZUrV065fvvttwtA7N69u+L67373OwGI3/3ud0IIIQqFgmhpaREnn3yyyOfzfrvvf//7AhDnnnuuf+2+++4TgLj33nsr+jzxxBMr2k3+DCGEOPfccwUgfvSjH/nX8vm8aGtrE3/yJ3/iX/vmN78pAPGLX/zCv5bNZsUxxxwzpc/puOqqq0RLS4uwbdu/1tvbK1RVFTfddJMQQojR0VEBiG984xsH7GsyL7zwggDEDTfcMOW14eFhMTg46P8rn8trrrlGRCIR/7WdO3eKf/zHfxSKoogTTzzRb3fPPfcIQOzYsUMIIUQikRDBYFB861vfOujYnnnmGQGI3/zmN0IIIV588UUBiPe+973i9NNP99u94x3vEKeccor/83RrNdOeKrU99thjK+7vO9/5jgDEli1bDjjG0p783//9XzE4OCj27t0r7rnnHrFkyRIRCATE3r17/bYXXnihOOGEE0Qul/Ovua4rzjzzTLFu3Tr/2l//9V8LRVHEc889518bHh4WjY2NU/b/ypUrBSB++9vfVozrS1/6kohEImL79u0V1z/zmc8ITdNEd3e3EEKIj3/84yIej1fsrcmcdNJJ4m1ve9sB5+Ef/uEfRPmf2Oeff14A4vrrr69o98lPflIA4qGHHppyD4888oh/bWBgQAQCAfGJT3zigJ8rhBDAQX+nnHvuudM+zwdbd9d1xbp168SmTZuE67p+u0wmI1atWiUuvvjig45PIjncyDAGiWSeqa+v5+mnn2b//v1z9hnPPvssAwMD/OVf/mVFrN61115LXV1dRduLLrqIZcuWVRytb926lRdffLEiHnUmotFoRTvTNDnttNMq1At++9vf0t7e7nsiwQsN+NCHPlTV/bzvfe9jYGCgItzhnnvuwXVdX90gFAphmiYPP/wwo6OjVfULkEgk/PuYzOrVq1myZIn/b/Jxezqd9l9bu3Ytn/vc5zjjjDMqvHZ33nknp556KmvXrgUgFovxtre9rapQhlNOOYVoNMojjzwCeB7c5cuXc/XVV7N582YymQxCCB577DE/bGC2XHfddRV7pdTfZBWKmbjoootYsmQJK1as4D3veQ+RSIRf/epXvrd8ZGSEhx56iCuvvJJkMsnQ0BBDQ0MMDw+zadMmduzY4as3/Pa3v+WMM87g5JNP9vtvbGyc8ZRh1apVbNq0qeLaT3/6U8455xwaGhr8zxoaGuKiiy7CcRx/Tuvr60mn0xUhCZOpr6/npZdeYseOHVXNBcBvfvMbAP72b/+24nrJw//rX/+64vpxxx1XsYZLlizh6KOPrnr+Z8vB1v35559nx44dvP/972d4eNifx3Q6zYUXXsgjjzwyJSxEIplvZBiDRDLPfP3rX+eaa65hxYoVbNy4kcsuu4yrr76a1atXH7LP2LNnDwDr1q2ruG4YxpTPUVWVD3zgA9xyyy1kMhnC4TB33nknwWCQ9773vQf9rOXLl0+JVWxoaODFF1+sGM+aNWumtCsZgAejFCv44x//mAsvvBDwQhhOPvlkjjrqKMBTRvja177GJz7xCVpbW3nzm9/M29/+dq6++uoDhguUYnRTqdSU1375y19iWRYvvPACn/zkJ6e8HgwG+Z//+R//81etWlURCjE2NsZvfvMb/uqv/qoiDvKss87iZz/7Gdu3b/fHPx2apnHGGWf4sdaPPvoo55xzDmeffTaO4/DUU0/R2trKyMjI6zZ2Ozo6Kn4uhR9U+8Xhe9/7HkcddRTj4+P8x3/8B4888khF2MHOnTsRQvD5z3+ez3/+89P2MTAwQHt7O3v27OGMM86Y8vpM+2XVqlVTru3YsYMXX3yRJUuWzPhZ4CUV/uQnP+HSSy+lvb2dSy65hCuvvJK3vvWtftubbrqJd77znRx11FEcf/zxvPWtb+WDH/wgJ5544ozzsWfPHlRVnTLmtrY26uvr/We0xOT5B28NavniNhsOtu4lA/9ACZXj4+MV4SoSyXwjjV2JZJ658sorOeecc/j5z3/O/fffzze+8Q2+9rWv8d///d9+jOtMzCRa7zjO6xrT1VdfzTe+8Q1+8YtfcNVVV3HXXXfx9re/fYoXeDpmStoSQryuMZUTCAS44oor+PnPf86//uu/0t/fz+OPP84//uM/VrS74YYbuPzyy/nFL37Bfffdx+c//3luvvlmHnroIU455ZRp+167di26rvtJbuWUYoRnyrLXNI2LLrpoxnH/9Kc/JZ/P881vfpNvfvObU16/8847ufHGG2d8P8DZZ5/NV77yFXK5HI8++ih/93d/R319PccffzyPPvoora2tAK/b2H2963jaaaf5agxXXHEFZ599Nu9///t59dVXiUajvvfvk5/85BQvbIlqv/xMZjrlBdd1ufjii/n0pz897XtKXzJaWlp4/vnnue+++7j33nu59957uf3227n66qu54447AE/KbdeuXfzyl7/k/vvv57bbbuNb3/oW//Zv/8b1119/wLFVW2jicDxHs/nc0rp94xvfqPC0lzObnAKJZC6Rxq5EsgBYunQpH/3oR/noRz/KwMAAGzZs4Ctf+Ypv7M70B7LkPRkbG6u4PtlLtHLlSsDzylxwwQX+dcuy2L17NyeddFJF++OPP55TTjmFO++8k+XLl9Pd3c3/+T//53Xd4+TxvPzyywghKu6tlmz/973vfdxxxx08+OCDvPLKKwghpi3QsGbNGj7xiU/wiU98gh07dnDyySfzzW9+k//8z/+ctt9IJMJ5553H73//e3p6emhvb6/9Bmfgzjvv5Pjjj+cf/uEfprx26623ctdddx3U2D3nnHMoFAr813/9Fz09Pb5R+5a3vMU3do866ijf6J2Jw1ndq6Ticf755/Pd736Xz3zmM/6JgmEYB/yCAN5+mW5v1LJf1qxZQyqVOuhngRd6c/nll3P55Zfjui4f/ehHufXWW/n85z/vG+CNjY1cd911XHfddaRSKd7ylrfwxS9+cUZjd+XKlbiuy44dOzj22GP96/39/YyNjfnP6EJnzZo1AMTj8armUiJZCMiYXYlkHnEch/Hx8YprLS0tLFu2rEKOKBKJTGkHE394SvGGpT6///3vV7Q79dRTWbJkCf/2b/9GoVDwr//whz+cYiiX+OAHP8j999/Pt7/9bZqamg7qZa6FTZs20dPTUxHzmsvl+Pd///eq+7joootobGzkxz/+MT/+8Y857bTTKo6vM5kMuVyu4j1r1qwhFotNW9GsnC984Qs4jsOf/dmfTRvOMBvv2t69e3nkkUe48sorec973jPl33XXXcfOnTsPqnZw+umnYxgGX/va12hsbPQz88855xyeeuopfv/731fl1Z1pT80V5513Hqeddhrf/va3yeVytLS0cN5553HrrbfS29s7pf3g4KD/35s2beLJJ5/k+eef96+NjIxULdkG3gnKk08+yX333TfltbGxMWzbBmB4eLjiNVVV/fCE0r6Z3CYajbJ27doD7qvLLrsMYErVun/+538GPJWRI4GNGzeyZs0a/umf/mnaZ6N83SSShYL07Eok80gymWT58uW85z3v4aSTTiIajfK///u/PPPMMxXH3Bs3buTHP/4xf/u3f8ub3vQmotEol19+OevXr+fNb34zn/3sZxkZGaGxsZG7777b/8NdwjAMvvzlL/PhD3+YCy64gPe9733s3r2b22+/fcbY4Pe///18+tOf5uc//zkf+chHMAzjkN33hz/8Yb773e9y1VVX8fGPf5ylS5f6ccFQndfRMAze/e53c/fdd5NOp/mnf/qnite3b9/OhRdeyJVXXslxxx2Hruv8/Oc/p7+/nz/90z89YN/nnHMO3/3ud/nrv/5r1q1b51dQKxQKbN++nTvvvBPTNA8qFVbOXXfdhRCiIimvnMsuuwxd17nzzjs5/fTTZ+wnHA6zceNGnnrqKV9jFzzPbjqdJp1OV2XszrSn5pJPfepTvPe97+WHP/whf/mXf8n3vvc9zj77bE444QQ+9KEPsXr1avr7+3nyySfZt28fL7zwAuCVVv7P//xPLr74Yv76r//alx7r6OhgZGSkqv3yqU99il/96le8/e1v9yW80uk0W7Zs4Z577qGrq4vm5mauv/56RkZGuOCCC1i+fDl79uzh//yf/8PJJ5/se2SPO+44zjvvPDZu3EhjYyPPPvusLx84EyeddBLXXHMN3//+9xkbG+Pcc8/lD3/4A3fccQdXXHEF559//qGZ5CLPPvssX/7yl6dcP++88zj77LNn3a+qqtx2221ceumlrF+/nuuuu4729nZ6enr43e9+Rzwe9+PWJZIFw3zJQEgkEk+W61Of+pQ46aSTRCwWE5FIRJx00kniX//1XyvapVIp8f73v1/U19cLoEIyateuXeKiiy4SgUBAtLa2is997nPigQcemFbC61//9V/FqlWrRCAQEKeeeqp45JFHpkgQlXPZZZcJQDzxxBNTXptJemz9+vVT2l5zzTVTZK5ee+018ba3vU2EQiGxZMkS8YlPfEL87Gc/E4B46qmnDjhvJUr3qShKhaSVEEIMDQ2Jj33sY+KYY44RkUhE1NXVidNPP1385Cc/qapvIYR47rnnxNVXXy06OjqEaZoiEomIE088UXziE58QO3funHKPkUhkxr5OOOEE0dHRccDPO++880RLS4uwLOuA7T71qU8JQHzta1+ruL527VoBiF27dlVcn26tZtpTpbY//elPK/rYvXu3AMTtt99+wLGVpMeeeeaZKa85jiPWrFkj1qxZ40t77dq1S1x99dWira1NGIYh2tvbxdvf/nZxzz33VLz3ueeeE+ecc44IBAJi+fLl4uabbxb/8i//IgDR19fnt1u5cuWMsmDJZFJ89rOfFWvXrhWmaYrm5mZx5plnin/6p38ShUJBCOFJw11yySWipaVFmKYpOjo6xIc//GHR29vr9/PlL39ZnHbaaaK+vl6EQiFxzDHHiK985St+H0JMlR4TQgjLssSNN94oVq1aJQzDECtWrBCf/exnK6TXDnQPB3pWywFm/PelL31p2r5qXffnnntOvPvd7xZNTU0iEAiIlStXiiuvvFI8+OCDBx2fRHK4UYSY42h3iURyxPKud72LLVu2vK7KWbXw7W9/m7/5m79h3759hzRWVrI4ueGGG7j11ltJpVIHrWYnkUjeuMiYXYlEMi29vb38+te/5oMf/OCc9J/NZit+zuVy3Hrrraxbt04aupIpTN4vw8PD/N//+385++yzpaErkUgOiIzZlUgkFezevZvHH3+c2267DcMw+PCHPzwnn/Pud7+bjo4OTj75ZMbHx/nP//xPtm3bVlPSkeSNwxlnnMF5553HscceS39/Pz/4wQ9IJBIzavRKJBJJCWnsSiSSCn7/+99z3XXX0dHRwR133FFTElYtbNq0idtuu40777wTx3E47rjjuPvuu6eVD5NILrvsMu655x6+//3voygKGzZs4Ac/+AFvectb5ntoEolkgSNjdiUSiUQikUgkixYZsyuRSCQSiUQiWbRIY1cikUgkEolEsmiRMbvT4Lou+/fvJxaLHdaSmhKJRCKRSCSS6hBCkEwmWbZsGao6s/9WGrvTsH//flasWDHfw5BIJBKJRCKRHIS9e/eyfPnyGV+Xxu40xGIxwJu8eDw+559nWRb3338/l1xyySEtySo5fMg1PPKRa3hkI9fvyEeu4ZHP4V7DRCLBihUrfLttJqSxOw2l0IV4PH7YjN1wOEw8HpcP+BGKXMMjH7mGRzZy/Y585Boe+czXGh4s5FQmqEkkEolEIpFIFi3S2JVIJBKJRCKRLFqksSuRSCQSiUQiWbRIY1cikUgkEolEsmiRxq5EIpFIJBKJZNEijV2JRCKRSCQSyaJFGrsSiUQikUgkkkWLNHYlEolEIpFIJIsWaexKJBKJRCKRSBYt0tiVSCQSiUQikSxapLErkUgkEolEIlm0SGNXIpFIJBKJRLJokcauRCKRSCQSiWTRIo1diUQikUgk84rrCnpGswD0jGZxXTHPI5IsJhaMsfvVr34VRVG44YYbDtjupz/9KccccwzBYJATTjiB3/zmNxWvCyH4whe+wNKlSwmFQlx00UXs2LFjDkcukUgkEolktuwcSHLLw7v43u92AvC93+3klod3sXMgOc8jkywWFoSx+8wzz3Drrbdy4oknHrDdE088wVVXXcWf//mf89xzz3HFFVdwxRVXsHXrVr/N17/+df7lX/6Ff/u3f+Ppp58mEomwadMmcrncXN+GRCKRSCSSGtg5kOT2x7vYun+cupABQF3IYOv+cW5/vEsavJJDwrwbu6lUig984AP8+7//Ow0NDQds+53vfIe3vvWtfOpTn+LYY4/lS1/6Ehs2bOC73/0u4Hl1v/3tb/P3f//3vPOd7+TEE0/kRz/6Efv37+cXv/jFYbgbiUQikUgk1eC6gvu29jOSLrCuJUo0qAMQDeqsa4kyki5w/0v9MqRB8rrR53sAH/vYx3jb297GRRddxJe//OUDtn3yySf527/924prmzZt8g3Z3bt309fXx0UXXeS/XldXx+mnn86TTz7Jn/7pn07bbz6fJ5/P+z8nEgkALMvCsqzZ3FZNlD7jcHyWZG6Qa3jkI9fwyEau35FHz2iWrsEE7XETFRdFOAAowkFVoD1usnsgQfdQkvaG0DyPVlINh/s5rPZz5tXYvfvuu9m8eTPPPPNMVe37+vpobW2tuNba2kpfX5//eunaTG2m4+abb+bGG2+ccv3+++8nHA5XNbZDwQMPPHDYPksyN8g1PPKRa3hkI9fvyOLsICCA7MS1ztyuiR+C8MKTe3nhcA9M8ro4XM9hJpOpqt28Gbt79+7l4x//OA888ADBYHC+hgHAZz/72QqPcSKRYMWKFVxyySXE4/E5/3zLsnjggQe4+OKLMQxjzj9PcuiRa3jkI9fwyEau35FHz2iW7/1uJ3Uhg2hQRxEOnblddAXXIBSNVM5mPGvxsfPXSs/uEcLhfg5LJ/EHY96M3T/+8Y8MDAywYcMG/5rjODzyyCN897vfJZ/Po2laxXva2tro7++vuNbf309bW5v/euna0qVLK9qcfPLJM44lEAgQCASmXDcM47D+0jzcnyc59Mg1PPKRa3hkI9fvyKGjWadzSZyt+8dZFzRRFe+6UDRcVHoSBU5or6OjOYZaelFyRHC4nsNqP2PeEtQuvPBCtmzZwvPPP+//O/XUU/nABz7A888/P8XQBTjjjDN48MEHK6498MADnHHGGQCsWrWKtra2ijaJRIKnn37abyORSCQSiWT+UVWFTce30hgx2TGQIpWzAUjlbHYMpGiMmFyyvlUaupLXzbx5dmOxGMcff3zFtUgkQlNTk3/96quvpr29nZtvvhmAj3/845x77rl885vf5G1vext33303zz77LN///vcBfJ3eL3/5y6xbt45Vq1bx+c9/nmXLlnHFFVcc1vuTSCQSiURyYNa2xLjurE7u29pP12ACgjCetTihvY5L1reytiU230OULALmXY3hQHR3d6OqE87nM888k7vuuou///u/53Of+xzr1q3jF7/4RYXR/OlPf5p0Os1f/MVfMDY2xtlnn81vf/vbeY8LlkgkEolEMpW1LTFWnxeleyjJC0/u5WPnr5WhC5JDyoIydh9++OED/gzw3ve+l/e+970z9qEoCjfddBM33XTTIR6dRCKRSCSSuUBVFdobQrwAtDeEpKErOaTMe1EJiUQikUgkEolkrpDGrkQikUgkEolk0SKNXYlEIpFIJBLJokUauxKJRCKRSCSSRcuCSlCTSCQSiUQikcwNrivoGcuSLthETJ32+jdGMqA0diUSiUQikUgWOTsHkty3tZ9dgylytkNQ11izJMqm4xe/nrE0diUSiUQikUgWMTsHktz+eBcj6QJL64KEzRCZgs3W/ePsH89y3Vmdi9rglcauRCKRSCQSyRHKwUITXFdw39Z+RtIF1rVEURTvtVjQIBrQ2TGQ4v6X+lndHF20IQ3S2JVIJBKJRCI5AqkmNKFnLMuuwRRL64K+oVtCURSW1gXZOZCiZyzLisbwfNzGnCONXYlEIpFIJJIame9kr2pDE9IFm5ztEDZD0/YTMjX6EznSBfuwjf1wI41diUQikUgkkhqY72SvWkITIqZOUNfIFGxiQWNKX9mCQ0DXiJiL1ySUOrsSiUQikUgkVVLyqG7dP0592GB1c5T6sMHW/ePc/ngXOweScz6GWkIT2utDrFkSpXc8hxCioq0Qgt7xHGtborTXT+/5XQwsXjNeIpFIJBKJ5BCyUJK9aglNUFWFTce3sn88y/b+JLGgjqYqOK4gmbNpiga4ZH3rok1OA+nZlUgkEolEIqmKWjyqc0l5aMJ0TA5NWNsS44JjWkjnHZ56bYSHXx3kqddGSBccLjimZVHLjoH07EokEolEIpFUxUJJ9iqFJmzdP040oFcY3qXQhBPa6/zQhJ0DSR7aNkAkoHPG6iZUVcF1BYmczUPbBljZFF7UBq80diUSiUQikUiqYKEke5WHJuwY8DzNIVMjW3DoHc/RGDH90ITy0IujWqMVhnGbEG8InV0ZxiCRSCQSiURSBQsp2WttS4zrzurk+GV1jGUsuobSjGUsTmivq6iItlBCL+YT6dmVSCQSiUQiqYJaPKqHg7UtMVafFz2g3u9CCb2YT6SxK5FIJBKJRFIlJY9qSWe3P5EjoGuc0F7HJesPj85uOaqqHLDy2UIJvZhPFu+dSSQSiUQikcwB1XhUDxe27bJ57yjD6QJNEZMNKxrQ9Yko1VqT2RYj0tiVSCQSiUQiqZGDeVQPBw++0s8PH++iaziN5bgYmkpnU4Rrz+rkwmNb/XEupNCL+UAauxKJRCKRSCRziOuKQ+4FfvCVfm6+dxvJnEVTxPQN2O0DSW6+dxuAb/AutNCLw400diUSiUQikUjmiJ0DSd/IzNkOQV1jzZIom46fvZFp2y4/fLyLZM6ioyGEqnphC7GgSsTU6B7NcscTXZy7bokf0rCQQi8ON9LYlUgkEolEIpkDdg4kuf3xLkbSBZbWBQmbITIFm637x9k/nq2QCKuFzXtH6RpO0xQxfUO3hKqqNEVMdg+l2bx3lNNWNZW9Nv+hF/OB1NmVSCQSiURyUFxXsHckw7a+BHtHMriuOPib3sCUF3NY1xIlFjTQVIVY0GBdS5SRdIH7X+qf1TwOpwtYjkvI1KZ9PWRqWI7LcLrwem9jUSA9uxKJRCKRSA7IXBzFL3ZqKeZQq7e1KWJiaCrZgkMsONVvmS04GJrn4ZVIY1cikUgkEskBmKuj+MXOXBZz2LCigc6mCNsHkkRMrSKUwXU9j+7RrTE2rGioeN/BZMoWK9LYlUgkEolEMi2Tj+JLHspY0CAa0NkxkOL+l/pZ3Rx9QyQ61cJcFnPQdZVrz+rk5nu30T2arVBjGE4XiAcNrjmzs8KQrUambLEijV2JRCKRSCTTMpdH8YuduS7mUDJQSwbsSLqAoakc3RrjmjMrDdhaZMoWI9LYlUgkEolEMi1zeRS/2DkcxRwuPLaVc9ctOWBowmxkyhYb0tiVSCQSiUQyLXN5FP9G4HAUc9B1tUJebDKzlSlbTMjdKZFIJBKJZFrm+ij+jcBcF3M4WHW2amTKRtKFRS1TJo1diUQikUgk03I4juLfCMxVMYdqJOGkTJksKiGRSCQSyaLiUBd/KB3FH7+sjrGMRddQmrGMxQntdVJ2bB4pScJt6RlHVxXiQQNdVdjSM87tj3excyAJTMiUDacLuK5b0UdJpmxVc2SKTFmtuK6gZzQLQM9odkEVHZGeXYlEIpFIFglzVfxhro/iJbVRkoTrHslg2y5dw2ls10VXVRpCBumC7UvCzUamrFZK+65rMMHZQfje73bSuSS+YIqOSGNXIpFIJG8oDhbjeKQy18Uf5uoofq5ZjOvdM5blub2jDCZz2I4gGtQxNB3LcRlM5dFUhc3do74kXC0yZSWqnbfyfdceN0FAXchYUEVHpLErkUgkkjcMi7XsrSz+MD2Ldb2TOYvu4QyO69IUDfjrHdA1zIjKcCrP3pEMyZzlv6cambIS1c7b5H2n4kIWokGddUFzwew7aexKJBKJ5A3BYi57K4s/TGUxr3cqb5O1HGJBfdr1DhgayZxNKl+pf3wwmTKobd6m7LuyMN2FtO9kgppEIpFIFj2TPVCxoIGmKsSCButaooykC9z/Uv+CSqqphYniD9P7sEKmRt523jDFH2a73rUk9x3qRMBaiAZ1b00tFyEqP1cIQd5yCZsa0WBtPs1a56183wkhSGa9/ZXM2gghFsy+k55diUQikSx6FrvnUxZ/qGQ2611LyMN8h0fEAgYdjWH2jmQYSReKMbsqluOSytnousqKhhCxwNS9cCBqnbfSvts/lqFvPE8ym+fETvhD1wixUIC2usCC2HdvjF0vkUgkkjc0i73srSz+UEmt613L0f1swiMOdZJce32IU1Y0kLdcbNdlNGORytvoqsqSWABdVdnQ0TBlvQ82jlrnrb0+RH3Y4IGX+zE1hcawV7giaCj0J7LsHc1w8XGt877vpLErkUgkkkXPYvd8yuIPldSy3rUk9wE1JwLOhRe4fL2HU3mWN4TQVAXHFSRzNk3RwJT1rmYcs3pOSlEUkzzB3s+ChbDjZMyuRCKRSBY9Jc9n73hu2hjH3vEca1ui8+6Bej3I4g8T1LLetRzd19IWJrzAW/ePUx82WN0cpT7syXKVF36YDaX1PqG9HseFZM7GceHE5fVT1rvacdT6nPSMZRnLWryps4GWWJCc5b0nZwla40He1NnAaMby52O+ODK/wkokEolEUgOHw/NZy1H1XGm/yuIPHuXrvb0/SSyoz+j5rPXovtq25R7jtUsipPIOo5kCpqaydkmEnYPp1y3LVc161ypLV8tzUpq71c1RljeESWcLwBindTYSCZk4QtA1lJ738CBp7EokEonkDUHJE1Y6yu1P5AjoGie013HJ+teXWLSQkpuO1OIPh5q1LTEuOKaFHz7exUv7E1iOi6GpdDZHeO8xLbM+uq+2bckLHDJU/rhnjJFMwa9y1hg2aasLHJKkyIOtd61JZ7U8J5PnLhbSIQuxkI5QFLJ5e0GEB0ljVyKRSCRvGObC8znXyU2S2bFzIMlD2waIBHTOWN2Eqiq4riCRs3lo2wArmzzDrjy5L2JqpPIOBcfF1FSiAW1Kcl+1iYDbB5IMpfIMp/PkLJeArhLQNYQQ9CdzjOcKNEUCr9vreaiTzqD652RKYmTZawspMVIauxKJRCJ5Q3EoPZ9zndwkmR3l63JUa7TCKG0TYtqj+1f6Etz3cj9OmV6upioc1RqrOLqv9pg/bGgMpfKMZSxUBcYyFq4QqIpCyFDJFmwQEDa0Wd/nnCWdUd1zMjnsoT1uApDK2fQkCgsmMVImqEkkEolkwTGfgv21MJfJTZLZM+u5Lm4zpfQf02y7ahMBBZC3XRK5oiyYphAyNHRNIZW3SeRscrY73UdUxWySzlzXJZG1GErlSWQtXNd93cmZ5fMxnvXKE49nF1Zi5Lx6dm+55RZuueUWurq6AFi/fj1f+MIXuPTSS6dtf9555/H73/9+yvXLLruMX//61wBce+213HHHHRWvb9q0id/+9reHdvASiUQimRPmW7C/FuYquUny+qhlXUpeYMcVbFrfOiWMYbpEsmqO+dMFG9v1PLkTBrdn2iqKgqqA44pZrfdsks6q9VzPhtJ8dA8leeHJvXzs/LV0NMfm3aNbYl6N3eXLl/PVr36VdevWIYTgjjvu4J3vfCfPPfcc69evn9L+v//7vykUCv7Pw8PDnHTSSbz3ve+taPfWt76V22+/3f85EAjM3U1IJBKJ5JBxpMW0zlVyk+T1Ucu6lHuBVVUlHqo89J6put7BjvlTOc+QXhI1ydsuWcvFEgJFUYiYOgFdoeAIUrnajd1ZVwQs81wLlGk917NFVRXaG0K8ALQ3LCwFkHl9oi6//PKKn7/yla9wyy238NRTT01r7DY2Nlb8fPfddxMOh6cYu4FAgLa2tkM/YIlEIpHMGbV6q17P5xyqBLVaK5fJKmfTY9suf9wzAsAf94xwaucSdH32kZa1rMv2geSceNyjAZ2QoeG4Lm3xAOmC66sxREyV0YxF2NSIBmo3xebac73YWDBfHx3H4ac//SnpdJozzjijqvf84Ac/4E//9E+JRCIV1x9++GFaWlpoaGjgggsu4Mtf/jJNTU0z9pPP58nn8/7PiUQCAMuysCxrFndTG6XPOByfJZkb5Boe+cg1nH96RrN0DSZoj5uouBVeJwVoj5vsHkjQPZSkvaHyj3y16/faYIoHXxlg91DaD5FY1RzhwmNbWL0kOqtxX3RME33jaV4bSNAWDxIyVbIFl75EjuaIyYVHN+E4dk1tHWdWQzki+f2rA9z5dDd9Y2n+ci3c+MsttNVH+MDpHZx7dMus+612roMqRHSFXL5ANDjVLMrnbcK6QlCt7fdDWFdY3RRk93CafSPpitdGgXjIYFVjkLCu1Px7p5Yxdw8l/edKUwR1QZWJlC1xwOeqVg7379FqP0cRk0tkHGa2bNnCGWecQS6XIxqNctddd3HZZZcd9H1/+MMfOP3003n66ac57bTT/Oslb++qVavYtWsXn/vc54hGozz55JNo2vQZj1/84he58cYbp1y/6667CIelVqFEIpFIJBLJQiOTyfD+97+f8fFx4vH4jO3m3dgtFAp0d3czPj7OPffcw2233cbvf/97jjvuuAO+78Mf/jBPPvkkL7744gHbvfbaa6xZs4b//d//5cILL5y2zXSe3RUrVjA0NHTAyTtUWJbFAw88wMUXX4xhTI0tkix85Boe+cg1nH96RrN873c7qQsZ03qrUjmb8azFx85fO61n90Dr57qCHzy2m5d7E6xZEplyrL1rMM36ZXH+f2etmvVRrut6x+Ol8AgvBnTmCmrVtp0r5sLLXQu27fLRuzazczDFivoghgbvbhnhvwcasRzYO5ZjXUuU71214XWFNFQz168NpvjPp7sZTRemeIEbIiZ/dnpHzXPiuoJv3Pcqv3t1AENTCOgaiqIghCBvO1iO4PyjW/jUpqNntfavDab414d3sbM/hSsE3lGIgqoorG2N8tHz1rB6SdR/rkDQl/Ck0GzHRddU6sMGbfEAoFQ8V7PdG4f792gikaC5ufmgxu68hzGYpsnatWsB2LhxI8888wzf+c53uPXWW2d8Tzqd5u677+amm246aP+rV6+mubmZnTt3zmjsBgKBaZPYDMM4rH/0DvfnSQ49cg2PfOQazh8dzTqdS+Js3T/OuqA5xSDtSRQ4ob3ugFneM63f3pEMO4eytNSFQdUr83IUaKkLs2Mwy0Dafl0avJ0t5py0PdTsHEjyo6f3+YmAraZOpmCzpTdFT6JwWBIBn9s3zM6hLLFQAEfRUYQLgC1UHEUlFgqwYzDLlr4Up62aORSxGg4210cva+Cas3RfBSSfLBDQNY5rb5h1db29IxlGsg4ndTTSN55nJFPAcV00VaUxFqYtHmAk68x6z2m6joOKhYIjgGJJB01RcFDRdB3DMOho1omFAjzwSj+mrhILGgQDCpYj2J8o0DWS45LjWv3n6lDsjcP1e7Taz5h3Y3cyrutWeFmn46c//Sn5fJ4/+7M/O2h/+/btY3h4mKVLlx6qIUokEolkDpgsUH8gwf5aKU/oEUKQzNl+kk4sqL+hZL8OVyLgwRhOF7Acl5A5fYhhyNQYSRcYThemff1Qc6ir65X23OrmKMsbwlP2nCMEXUPp1yU95riCS45toS+RJ2M5hA2NtniAXUOZimImfmmzMg8wiOLPE+HxC2VvHGrm1dj97Gc/y6WXXkpHRwfJZJK77rqLhx9+mPvuuw+Aq6++mvb2dm6++eaK9/3gBz/giiuumJJ0lkqluPHGG/mTP/kT2tra2LVrF5/+9KdZu3YtmzZtOmz3JZFIJJLZURKoL3nY+hM5ArrGCe11s/awwYQU1f6xDL3jeUYzBf8otyFssrQu8IaR/Zq1bNUhpiliYmgq2YJDLDg1TCFbcDA0labI4fOAH8rqepPlz+KhSi9kNm/Pes+V1jBkqPyxe7xiP/eMefu5vGjGWMbiTZ0Nvoc5nbfRVJXWuhBt8QBjGctvuxD2xqFmXp/qgYEBrr76anp7e6mrq+PEE0/kvvvu4+KLLwagu7sbVa18AF599VUee+wx7r///in9aZrGiy++yB133MHY2BjLli3jkksu4Utf+pLU2pVIJJIjhEPtYQNPiqo+ZFQc5RpBHcsRDCRz7BvNcMlxrW8I2a9aC2HMFRtWNNDZFGH7QJKIqUGZg9d1XYbTBY5ujbFhRUPF+w6ldNxcUi5/FjG1KZJfr0dqLl2wGUrlGU4XyFsO0bL9PJjMkchZNEXMimImq5ujtNeH6U1kyRYcQqbG0ngIl0oP80LYG4eaeTV2f/CDHxzw9YcffnjKtaOPPpqZcupCoZDvFZZIJBLJkcuh9LD5VHmUu9iptRDGXKHrKtee1cnN926jezRLW9QbSypn05eyiAcNrjmzsyI57UiqrjeXlctChsZQyvPQtsYDvhc2oCuYEZP+RB4hvHaqovinGiXPbknvd/9ojrZJpxoLYW8cao6s0UokEolEMgt6xrJVH+UeScezs6HWQhhzyYXHtgLww8e72D+aAiCVtzm6NcY1Z3b6r8ORV12vHNdxyVoOjhBoikLYmD5O2W9/EO+1918CZcavaN5rCsVTjbDBAy/3Y2oKsZCBoelYjkt/Isve0QwXl51qLJS9cSiRxq5EIpFIFj1zmSx0pDGXiYCz4cJjWzl33RKe7Rqk/6Wn+Mq7jp9SQe1ITJwqjbl3LEvedklkbd/Y1RSF3rHstGOuxnudsRyaowGGFRhJe4UlDE3FclxSOZtoUKcpEiBjFauTlGziSXG43s/CP/RYaHvjUCGNXYlEIpEseuYyWehIZK4SAWeLrqtsXNnIb16CjSsbp+jqLpSkulroGcvy2M5Bdg6msB1ByNQwVAXLFYxkLBJ5G1NXufykZf6Yq/VeR0yd5miA5qg55aSiJR70tXMjpu6damS9U41ScmYqb6OrKq3FtqNlpxoLbW8cCt4YT7VEIpFI3tAspKP7uabaBK65SAScKw5XUt2hTH4bzxXY3u8ZuvGghisU37MbD2okcg47+lOM5wqsIFyT97p8P2/oqJtWeqy0n7cPJGs+1VjbEqPzLRE27x1lOF2gKWKyYUXD6yruMZ9IY1cikUgki57Fejw7mVoTuOYkEXAOOBxJdYc6+a1rKE22YGNoCqm8i+26COFFDuiqiq5CpmDTNZTm+GX1NXuvS8lv978ycMDkt9mcakw3F8/sHl2QiYDVcGSa6BKJRCKR1EjpePb4ZXWMZSy6htKMZSxOaK877MlNrivYO5JhW1+CvSMZXPf1a0GUjsC37h+nPmywujlKfdhg6/5xbn+8i50DyUMw8rnBdQU9o57Oa89odsp8lDyZveO5KYpMJc/82pborD3zpbnb0jOOrirEgwa6qrClZ/ZzpxQjYTMFB8txUBUFXfPK+VqOQ6bgVLSb8F5Pb7CHTI287Uz1XovS54mKn0uUz53ruiSyFkOpPImsheu6U+ZuYi7G0FSIBw00Fbb0jC34fTQT0rMrkUgkkjcMC+Hofi7ks47EBK4SpfnoGkxwdhC+97uddC6JV8zHXHrmS3PXPZLBtl26htO+NFdDyCBdsGc1d81RE1UpmaCT36cgEKiqQnPUK5pRi/e6vILapvWtUzR8dw6mK8ZcrQSaPxfDGWzXpWs4U1Z8xSCddxbsPjoQ0tiVSCQSyRuKuTq6rybec67ks2abwDXfBRrK56M9boKAupAx7XzMVeJUz1iW5/aOMpjMYTuiqGzgSXMNpvJoqsLm7tGak99a4kFCpo7tCjRFYDkCVwhURcFQAVUlbOq0xINAbUUoytcbFJJ5yy8UEQ3oMyfslXmBBcoUL3BpLgaSOWxXENBUAoaKcGEgmUef5VzMN9LYlUgkEonkdVKNt3Yuva+zSeCa7wINk+dDxYUsRIM664LmtPMxF575ZM6ieziD47o0RcsLNGiYEZXhVJ69IxmSOaumfvO2y8qmEK/02mQtt1S7BAeB7ULIUOloDJG3XWBSEYqX+nHKip9oisJRbRMe2NJ6DyQcXtw3zljWwnEFmqpQHzI4YXkd4O2LWrzAybxF90iGbMHBdQVjtuUb6EFdRVUVby7ytc3FfCONXYlEIpFIXgfVemvnUj6r1gSuhVCgYcp8lHkZDzQfh9ozn8rbZC2HWFCfdl0ChkYyZ5PK16b0EDE97duZyz6AoanTJ9UVi/v54Q+TbPmIqTOaLvDy/gS2W5Q10xQsRzCcLvDYjiGOWxb3pcdK86yqKvFQZbpW+TyncjaJrEXOclAUBVNX0RQVRwgyloMQwtfyPZKQxq5EIpFIJLOkFm/tXMpn1SKtNlsPc60hDwdrP9v5ONShF9Gg7iV/WS7RgJgyd3nLJWxqRIOVJtPBxtEaDbB/LIfjurREDWxX8b2kuioYzdr0judojQb8/nwP7HEH9sCW+s7ZDo1hA1X1DNiA7oVIjGQsv+/XRtJVz3PE0LEcQcF2qQ8b/lzoioJmqIxlLHRVJWIcWebjkTVaiUQikUgWELV4a+dSPquWBK69I5maPcy1hjxU03428zEXoRexgEFHY5i9I5lpq5HpusqKhhCxwMQYqxnH8z1j5G2HkKGRd8DUFcyilzRvC0KGRs5yeL5njNNWNdXkge0dz5IvKjfkbIGpCzQFHAEFW3jXi30vrQtVPc+92SyGpuDoKlnLLXp2PX3ggu1i6hq6ppC2jizPrpQek0gkEolkltQiF/V65LOqkSqrVlqtfMxCiAopKiHEFImrWiXNqm1f63zMlbRae32IU1Y00BILsiQWIGe5jGYK5CyXJbEALdEAGzoaah7HcLoAwLL6EBFTx3YEOcvBdgSRgM6yYn+lduXr4rouPaMZdgwk6RnN4LpuxbqU3rO0PkjE1Ip9u17fps7S+qDfdy3zHA3qxEMGsaBB2FApWC6pvE3BcgkbXhGKupAxxcu90DmyRiuRSCQSyQKiFu/kbOWzavFmVpPAVRrz/rGMXz52Ql7KZGldYIrEVbUhD7W2L5+P9rgnwZXK2fQkChXzMZfJfeXjGE7lWd4QQlMVHFeQzNk0RQOzGkdTxMTQPJ/isvogBdv1K6iZukoqb2NoKk2RSumxbX3jbO9LTUk6O6otSjxoEjH1ib6FZ0wfqO9a9l3Jy71rIMV43sVxBQKBIyBrudSFNFY0hiu83EcC0rMrkUgkEsksqdU7WWthi9l4M0sJXMe0xVnRGJ5i/LXXh6gPGTzT5UlMBQ2NhohJ0NAYSOZ4pmuUhrAxReLqYCEPUFtYx+T5GM96Gf7j2anzUWu/tVIaxwnt9TguJHM2jgsnLq+f9Tg2rGigsynCcLqAEIKAoRE2dQKGhhBeItmq5ggbVjT46wKCJ3eNMJwuYOoq8aCOqasMpws8uWsEELTXh2ruu9p9114foqMhTNZyEICmKeiaiqZ595q1HFY2ho+4strSsyuRSCQSyQwcLAlpNt7aauWz5rRQRKl5mbwVCEr6WCWzvdYksvL2Qnie0VKSVayYCDY56WxtS4zOt0R4tmuQ/pf28icb2zm1cwm6PuGPK+/XdQW9iayvK7s0Hjpgcl+1CW3VrEst86HrKtee1cnN926jezRLU8T098ZwukA8aHDNmZ3+fbquYM9wBld4+rYIsF0BAgxVIe+4dBdDWGrtu9r7A28rGJpK2FAJmDqq4iXW5Qs2ljtFmveIQBq7EolEIpFMQ7XhA7MpdlCNfNZcSZX1jGUZy1i8qbOBvvE8I5kC6byNpqq01oVoiwcYy1izSqorD5Eo9V2qRtYYNmkrC5GYPM+lCmo/+2MPf+xOTpvM9mpfglf7klOO+I9uixELGlOS+2pNaDvYutQ6Hxce2wrADx/voms4zUi6gKGpHN0a45ozO/3XATbvHWUgmac5ajKetUnkLIQARYGgodEcNelP5Nm8d5TTVjXV1He19zfd3ig4Dpqq0lYfrtgbsqiERCKRSCRHMLXq0M5FsYNKb6ZL73iOjOUQNjTfgzwbqbJSv6uboyxvCE/xvjpC0DWUJl2wOaolVrWkGRRDJMIGD7zcj6FCwNQJ6BquEPSNZ9g7muHi41qnJHsdrIJae30IgeCJ14YRriAc0H1d2aFUnuHXCmw6rq3ieH0utIRrkXgrceGxrZy7bgmb944ynC7QFDHZsKKhwusKXjJZtuAAnrJCPGT4cruO4xZfU/zktFLf56xp5v5tffSN52mrC3DJMW2YplbTfZUo3xvt9aEpe84Ff29MxnUFPaPFcJbRLB3N+oIpKSyNXYlEIpFIypht+MChLnZQnrD0al+K8TJvZl3I4OiyhKXZ9FvyTsZDlR7KbN5+fUl1Ak+2K+9CttIoCuiqH0FRSwU11xV0D3tH+AFdQ1MVFEBTFUzdUynoHknjumJOE9pmm2So6yqnrWo6YN8NYYOC4yKEIBY0KHfmC00lmbNQFIWG8IEl0PYMZWctxXag5MWesVxF8mI5k73z3/vdTjqXxA9bNb6DIRPUJBKJRCIpY66ToaqlvT4EwktYGpmUsDRSTFhSiglLtfY7V0l1PWNZukczhAwNENiOwHY8SSzwtGX3jGToGctWzLMQgt7ifPaOZRFCVMxz6Yh/WV2QaKBSaisa0FlWF/SP+EvjKPUNVMirAa9rDUvzsX5pnJ7RLC/uG6NnNMvxy+Kvq/JcWzxIQFc9BQThzZ1VnDshBLYrCBoqbXHvnkqe6y094+iqQjxooKsKW3pmTl60bZc/7B7m3q29/GH3MHaxVHGJWpIXS5QnUdYVvziVvPOvRxLuUCI9uxKJRCKRlDGXlc5qwXUFe0ZKCUuK581UFDQVDBXyjqCrmLA0197JasM0knmL7pEMtiMIGxoZ4eII0BSFsKFiO55ecDJvoSoKOduhP+Hy4r4xcvkCZ54ED20bIBgwOWF5HQr4urKW49ISD6EpyhSpLUd4R+iTNWtzlsq23uSU2OHO5nCFlvCsUJhI9FNef+JWznZZ2RRme3+KoXShwhvpAiFDo6MxTM52fc9190gG23bpGk7799cQMkgX7Cme6wdf6ffjey3HxdBUOpsiXHvWpPjeKpMXoTbv/HyGNEhjVyKRSCSSMuay0lkt+N7M+iB5S5C1HCzhoigK0ZBJk64wUJawVAtzlVSXytkkshb5oscwYKioCrgCMpYLuFiuV5lsaV2I0XSBl3sT2I6gLuiZd0bRc/34ziGOWxqv0JXNFhxiQYOAURmTmp1Gs7Zgu2zuHvW8v0EdQ9OxHJeBZI7hdJ4VjeFZrWFFnHF9iLCpkynYvLQ/Qe94btbe3YipUx82iQZ0Co6ncVvKUNNVhWjAez1i6vSMZXlu7yiDydyU+xtM5dFUhc3do34i2YOv9HPzvdtI5qwK5YbtA0luvncb4MX/1pK8uKIxPPUUpMwSfj1JlIcaaexKJBKJRFLGbJKQ5oJavZm1UmtSXTUSXmFTw3K80rLx4ESCkqZAUFdJ5GzPy2tqtEYD7B/LkbMcGsMGRSlXNEUhHtQYyVj0judojQZYGg/S2RRh+0CSiKmhqmrZuFyG0wWObo35urJL40HylstoxmJFfRDbhZzloCkK9SGdvWM5Wm2XpcWQgGrvcS7l4EpjdoTg+KUx0gXX99ZGTJW9YzkKxTFvH0jSPZzBcV2aogF/HAFdw4yoDKfyngc9Z2HbLj98vItkzmJFfYi05ZDIWuiayor6EHvHstzxRBfnrltSU/IiLJxTkIMhjV2JRCKRSMqYbRLSoaZWb+ZsqDaprloJr0zBwdAUHFchZ7uYuoqmKDjCM4ANTUHXFDIFh+d7xsjbDqauMpq1CSieWzCRtcgLBVNTyVleu9NWNdWkK9ubyBEwVEKGxmtDmYqjdwWIhw1MXaU3kfPvv5p7nCs5uPIx14cMxrI20aBOtOitHcva1IdNf8ypvE3WcogF9WnHETA0kjmbVN5m895RuobTBDSF7QMpcpZTIWlWH9LZPZRm895RltaFqk5ehIVzCnIwpLErkUgkEskkZnPMf6gpVcmq1ps5V9Qi4RUN6MSDBoamIIolZkuhFxFTQ1EgbOpEAzp7irG9mqJgCa8sLXjec4QXo2w7wvdc16Irmy7YFGzPKwqeOkQpttnUVPSip7zkcaz2HufSk5ku2Ji6ysaVjeweSjOaKZDK2+iqSks8yMqmMImsRbrgGcIhUyNvuURMF8sRvtff0BTylkvY1IgGdfYMex7eTMFGCO/LRqkccrbgkLNsIqbBcLrAqSsba5aaq2hfdj+H8xTkYEhjVyKRSCSSaZgL7dxamE2VrENNrcf2saBBR1OYfaMZLEd4WrGKghCCvO2iFz3JsaBBY1Fqy3Y9j68ivL4VRcFQlaIMFzSWSW1Vq1kbMjSGUgUSuQKW7ZC3PUUDRVFQhCCRszBTGiFDq+ke59KTWeo7aKi8qbNhSghBKm8XjVuv747GMDsHUuwaTE/ruV7VGCEWMKgPGmQLDo4LIXNC+k1XPaM3W3DIWDb1QaPmU43J7dvj3ilDKmfTkygctlOQgyGNXYlEIpFIZuBQa+fWymyqZB1Kaj22b68PccqKBvK2i227jGYtnGIFrpZYAF1T2dDRQHt9CNt10VSFdN5FUyFqeAarpipkLc84C4Y0WibF1VajWasAyZzFSKqAohS9mYoX55yzBVmrQEDXUGq8x7mM5y7ve11LtCKEYLq+OxrCbO1JeEoQLpSUExQVcgWXlcX12Duaruhn8pgpvlUUw0hqPdUob981mIAgjGetw3oKcjCksSuRSCQSyQKmWm/mXFBZxU3Qm8iSLTiETI2l8dCUY/tyT99wqsDyxrB/ZJ7M2TRFJzx92YJDyNBI5W0EYLuegoPtuggUVNWLKfUqh9VGMmuTzFkIQFNBVRRQQEVBVQW2A6mcRTJro+lK1aEJ5fe3vT9JLKhPur/AtJ5M23YPun61eFVdV4AChqYQNg2ChhciIoSXiGc5wvf2jmdtQqZGznIpOAJVEah4cmauAENTCRoq42UFQNa2xOh8S6TqPVc6BekeSvLCk3v52Plr6WiOzbtHt4Q0diUSiUQiWeBU482cC0pH66/2JXi1L8lYWRW3+pDB0W0xYkGj4th+smcwU/CSmk5cXunpS+VtNFWhKWIwmrYoOJ55VnAEKgoNEQNNVUjla49/3T2SomC7RAMarlA8A9r1krJMXSOoe2EVu0dSnLS8oabQhLUtMS44poUfPt7FS/sTE5q1zRHee0zLFE9m1fq208zdTF7V6STCHMdFU1XaJkmENUVMYkGDoO4wmrEo2BNBD6bmqVMYulaR6Dhdst4zu0cPWBFNVRXaG0K8ALQ3HL5wn2qQxq4EqE5SRiKRzB3yGZTMBwfbd+31IQSCJ14bRrgCQ1cxNQUXGErlGX6twKbj2qYc21fjGYwWvaJjWRdTg6CuAw6xgE7OdkkXXJoiOtFgpalSzbOiKAqqqqAoKlFTxRUaAoGCgqp4iXOq6iXOlYcPREyNVN7xY2WjAW1K+MDOgSQPbRsgEtA5Y3WT72lN5Gwe2jbAyqawbxBWq287ee4OFitei0TYhhUNtMQCvNybIKCrBPRikYhisYjxnM36ZWE/0bGWhMQjBWnsSqqWlJFIJHODfAYl80E1+851Bd3DGSxb4LguWWuivKyqgKaqdI+kp1Rxq8YzGDF1T5bMEbgoKMVCFHnbxRIKalGpodxrXO2zsiQaIBrQyduuL4GmKwqO8CqVKYqnHLEkGvDDB17pS3Dfy/1eMYcimqpwVGusInyglMx2VGu0Iv61TYiKZDbXFb6+bUdDyFfTiAVVIqZG9+iEvu10IQ0HihWfnCh3IIkwVVXoaArzcm+STFFruFQUzRECQ9PoaIxMub9DrSM8n8x9wI9kQVNe07o+bLC6OUp9eGHVtJZIFjPyGZTMB6V99+K+MfKWg+sK8pbDi/vGKvbd5r2j7BnJIFzX12ZVFfz4UOG6dA1n2Lx3dErfW3rG0FSIBw00Fbb0VPbtmUoCFOH9t58sVfxZESgIXz2glmdlw4oG1rXEUBX8MsU5yy2WMfaquh01nWxbcQgKouLnEuXJbK4r2N6fYHP3KNv7E7iuqEhmK+nbNkVMFEUhbzlkCjZ5y0FRFJoipq9vWyslb3TveA7HcekZy7BzIEnPWAbHcekdz7G2JUp7fYiesSzJnE1jxMDQvCQ9xxVFQ1elMayTyHkhD+X3B57m8VAqTyJrAVTc35GE9Oy+gVms3+AkkiMF+QxK5oPSvtvWl2BgPMd4zvbjcOuCOi11QX/fDY7nGc9auHiyVeBXsAUgZ7kkshaD4/mKvruHM9hFQ9h2XHRNpSFskM47ft+pgo0jQEHBcR1E0f0m8HSEdU3DFpAq2DU/K+WybYlsgYZiEYmC7ZLIWTRGAr5sW6lvxxVsWt86JYxh52Da77sUPrBrMM/z3WOkC7Y/H0+Yw5y8op5oUCddsP0KeCiwfyxL1nJxhUBVFEKGSjxsYDnurCrglbzRf+ga4b+e2UvednzvenmMr6oqJHMW3cMZVMWTcUvmHX+9YwENVVX8amuq6iXr5SyVbb1JRjIFv4pbY9ikszlM3nbmvSJarUhj9w3MXFaCkUgkB0c+g5L5oGcsy2M7B9k1kMJyBCFTw1AVLFcwkrFI5G1MTeXyk5YxlMnhugJdVTxFA6C8coCuKtiuYCiT8/t+bu8oA8kcjiuIBg2MoI7lCAaTeTRVYXP3KD1jWVI5m5zloKqguCpqUfpKVRQv5lbxlAVSOXtWz8pk2bZUseLcMW3xCtm28r5VVSUeqjz0Lu87Yur0jGZ5ef+4r2SgqeC4XsLdE7uGOG5ZHRFT9xO+ese8uQnoKqqi4ApIFxzSBYeAPvsKeHuGM+weSpOzvdAEXff6ztkOrw2l2TOcYW1LjFTeJpGzyBU9yiFT86vaZSwXIQSWI0jlbZbWhSjYLpu7R7EdQTSoYxSruA0kcwyn86xoDM97RbRaObJGKzmkHCk1rSWSxcpCfAZlolwltczHkTJ349kC2/s9Qzce1P0xBlSvmEMiZ7OjP8V4tkBjNICmekZUyStZwhUCV3hxrY3RAADJvEX3SAbHETRFTd8wDegKZsRkOFXwvIh5i4jhGcGOI2gI6wjHBSxChkZY86SwbEcQMfSKZ0UIMSUha6ZnpRrZtlqew876MF1DGWwBId0zygWel1RVFLK2YM9whiVhk9ZogICuMZop0Bg2cAXYwkuSC+oKIxmLulCIk9vra15D23b54eNd5G2HY1uj2C5+BTVdhb1jOT8eOGxqWI5n0MYCKkKI4jggoCkk8y66KgibGkvjQfKWy2imMs44oGsYYYXu0SyttsvSSdrHUNz/o154Q89olo5mfcHsf2nsvoE5UmpaSySLlYX2DMpEuUpqmY8jae66htNkCzYBQ5tijKiqgqmrZAo2XcNpWmNB4kGdRN6h4Ah01YvZdQXYrkBRFeIBjdaYZ/ykcjbZgkMsqE/rgQ0YKsmcTSrnGaWGppBTYCBVwCx6dsdzFgWhENRVdE0hbdksDYcI6hr7xzL0jucZzRTKwiNMltYFZnxWDibbVstz+L/b+8nbNoaqkLcF4FSEdRiKQs6y+d/t/Zy0vIFl9UGG03mG0paXJFVMDHOBoK6ytC5Ifypf88lNeTywpmloWuXrk+OBDU3BchTGcsWwi5I2hYJXPllTyBQcehM5AoZKfchgNGMVPbsqluOSytnUh01MXaU3kasYc2n/dw0mODsI3/vdTjqXxBfM/pcJam9gygPc/SoqRUrVWkoB7hKJ5NCzkJ5BmShXSbVJVuVt53LuXFewdyTDtr4Ee0cyXlGBWVKS5RKuV0I3b7lkCg754pG2KMZ+KorChhUNHLu0jpChEtJVHFdQsL0Ep5CuEjJUjltW5yd6RQM6IUMrJr25FUlZpZ/DpkY04EmKqQrkbYHrVo7Rdb3rmuJJlLXXh6gPGTzT5YVIBA2NhohJ0NAYSOZ4pmuUhrAx7bNysLmr5TnsG8/jvd1rJ8CrYOZPruft7hvPky7YxQQwA1315NpcV+DihX80hL2EselObg425lI8cMjUcF0vbnok7SWSua53vRQPHA3qBAwNx/W8uQrCN3gVwHEFQUPzY41NXWXjykaaowESWZu+RI5E1mZJLMCGjnoCeuWYy/d/XVEVoi60sH53SJfdG5haa2BLJJJDy0J5BmWiXCW1JFkBcz53h9prXJLlSuYsBpI2rjuhuqqqXmxpLGiwJBqoSPQaz+RpiJh+xbBMwaY+PJHoVbrvjqYwuwZT7BpMV4gZKEA8ZLCqMUwsaGAXpcyEEEyeGlXxDM2s5RIytIkOoKjaMKETW1JxmM78r2buankOW+IB7wuBqBxOSc3LdUFRBC3xAGFDYyiVR1UUjl8WJ5V3sFwXQ/US3waSeYZTecKGVvOYmyImhqYykMgxnvHCMErjCOoadWHPI9sUMYmYOrrqeXEDqoKu66WZw7Yd7GIoSsTUURWFoK6Rs2z/npSye81bladNk393qLiQ9b6grAuaC+Z3hzR23+DUWgNbIjmUHCkxjnPJQngGZ5sot1jXr5YkK2BO5242Av8H63vDigYaIyYDyfyEnBie8eO4XsGFlU2m762dnOiVLzgYmsqxS+sqEr3A85J2NITZuj8BeF5DIQSKoqCrCjnbZWVjmPb6EM90DWPZEy5dP/+tbBoKtstAIoeuqn7FsN7xHAPJvF+NrDUeoq1uomJYaZ5rmbtqn8Pjl8bRNJWc5aLiGYmlyXOKXtuQrnL80njR+FaK4QJKhRau50H2Xis30ktjHkrmPW+wmJCEKx/zhhUNxII6r/YnUQTommfMCiBTsElbNke3ee32j2cJ6CrxoIGiQDrv+PHXkaCBEIKgrqIU168+ZPDAK/0YmkLA0AiaGq4Q9Cdy7BvNcslxrb4HfcrvjrKbWUhJttLYlVRVrUUiOdQcSTGOc818P4OzSZRbzOtXS5KVqihzNnez8bjXsi4lzVxNVVDx4kgdV3g+00lbr5pEr4mOASH8kIDSuIXwvLAle2goXSgaXfixo+Bgaip20XvqCsFQukBd2CRnO9SXDEZRtKsECLxj+PGs5c/zbOaumucwZ7vEAjp5q+BJpBUTvYSY8DXHgl4FONUVNEdNFAVGiuEE5fGv0aCn2JC1nIoxVyMJ58+B8OKnXUf43tqS17kYAk3GcmiOBijYLiPFOQcv3CJbcGiImDRFA2SK40DBG2PeSxgsJ6CrFcb5QkyynQ5p7EqAg1drkUgOJYuxHOXrZT6fwVoT5Rb7+tWSZLW0LjRnc1erx73avjfvHSWZs1lWF/SPwO2ihzds6tSFdBJZm817RysSuw6W6FUac/dIhqChUbBdNK9aBJ6aLgQNje6RDD1jWd8YDpsarlAAx+8nYOioeAoCQggipl4hiRULTRiOg8k8I+lChSTWbE8rDvYcpvI2QUOjLW4ykrYoOML3ZpqaQmPEQNc0X8arORqgOWr6SXWpvI2uqrTEg7TFA4BSMeZqJeF6x7OMZAqEDJW87eK63pcVBdCKoSjD6QKb946ytC6EqavYxbhfzTfevf93XIGpq56sWnH9QoZGwfH6LSWzqSqEytavNN8LKcl2JqSxK5FIDisyPnThUUrQ2bp/nGig0sArJeic0F5He33oDbF+5UlW081HeZLVXM5dLV6zWvouJTe1N4RojQlGM7YfS9oQ1hGKQs9odkqxA9t2D+rZLRUw0BRYs8QrHFGKd46aOiPpvF/AoLMpQsjUyVkO8aCGrqiA5cXzCk8CLWzqdDZFpkhiWY4gVyx92xA2pkhizZXHMVqUOXMclfb6EKNZ2w+naAjpjGZsdE3xk+pKe+PUlfXTFqso7Q2oTRJuMJX3dINVlWhYI1VwsFyBoSpETY287enmDqbybFjRQN5yyVoOq5vDpAuuv94RU2XvWI5Cce62DybpHsmgKgprmiOeNFxR0szQFEbSln+qAdP87iibq8n7fz6Rxq5EIjmsyEIKC49aEnT2jmQW/fqVkqz2jWamPX7WNZUVxSSruZy7WrxmtTxXpeSmsXSBvO1WVPbK216hg1JyU4kHX+n3Y3ZLxl1nU4Rrz6qM2U3lbbKWg6kr9I7nyFoT8aFJwyZgeBJXJc/nUa1RXulNkMjZ1AU9w9kRgkTOQdcU1rVGqQuZviRW2NDYNZQuqjd4HmNVhbqgUSGJNVcex1jAoKMxzN6RDGNZm1jZ3hjL2ui6yoqGELFA5d7YOZhmaV2Q+rBBtuCwczA9JQG1Fkk48BwHWeEwnpsIlS0gyBRcTB00xdPULZ+714YzB5y78lMNVVUJTIpSmSwdN3n/t8e9PZPK2fQkCgsm0V0auxKJ5LBypMR4vdGoNkFnMazfwRK42utDnLKigbztYlkOA6mJkqktMRND19jQ0eB7q+Zq7mrxGm8fSFZddGHDigZaYgFe7k0Q0DWCxkRlr1TeYThdYP2yuJ+g9uAr/dx87zaSWYt4yJMMsx2X7f1Jbr53GzCRxBYN6miqwkAyj6Z4CU6aouIIQSpvMZ4TNEUCvufz7LVLKDguA+M5cgXPW2jZLo0Rk5Z4gHPWLfHvr2C73hG8r2tbnI+imkDBdmc1d+UczHvt7w3LxXY9T3MpNGFJLICuqtPujXu39PJM1yipvE00oHNaZyNvPaGtItynUhKuMm5aCCok4VY2hnER5Kd5zASQtyFoCDqbIqQLdtVzN/lUo2C7vmfX1NWKU40S5fu/azABQRjPWgsq0V0auxKJ5LBypMR4vRGpJkHnSF+/WqSoXulL8Op4Dtt1EQJs12U4bXF0W3CKt2ou5q4Wr3Gp72qKLqiqQkdTmG39SQq250E1NK/sb8F2vNcbI6iq4lfqGk0XvKpfacv31AZ1hdF0wa/UpeteqIKmFJOk/HufSFQTrkBXIFocR+n+miMBTFUA+3nz6iYKrkJzLODfX8jQGEoVsBzBmiVTj9cHkgWGUgVfpmw2sn7VeK/L+x1O5VneEPKl2JI5m6ZoYEq/e4YzPP3aCLsGU/4XENcVHLssXmEIliThcpZT9I6rflnfgu2C4oUoLIkGCBoqBfvAWsuWLQgaKoZW/dypirc3dg6k2DmQKlMTVqZIx5VT2v/dQ0leeHIvHzt/LR3NsXn36JaQRSUkEslhZSEVUpBMpZSgc0xbnBWN4Sl/rI7k9ZtN8QcFMDSVgK5gaCoH+tM9F3NX8podv6yOsYxF11CasYznNStPZqul6ELPWBYFhTNXN/lZ+oms5/1rjgU4c7WXhNYzlmXz3lF2DCRxXJeM5aJrnuGpawoZy8VxPQ9vqVKXwEsuiwcNIqaG7QhyluuV/TU14kED09D9Y/fS/Z24vJ5g0VANGhonraivuL+inoMn1lX0GIdNr1iC57UVfpGEWucOJrzX2weSxII67Q0hYkGd7QOe9/rBV/qn9HtCez2OC8mcjePCicvrZ+x3x2CKhohJZ3OEhojJjsHUlH43rGhgXUsMTVUJGyq2I8haDrYjCBsqmqpwVKsnJ/bojiEOVlfEEfDojqGa5q69PkRHY5ic5TChm1HqwYuT7ihKx01GVRXaG7zr7Q0LS9FpYX71lkgki5aFUkhhoXGkaNYeqetXnsC1dkmEVN5hNFPA1FTWLomwczA9pVCE4wo2rW+dNrFoNkl45XO3vd8zqg7mFYQapOlKJ9PC89BajlIsgFBZdKEUTnF0W5yjW2PsGkr5x+trmqMIBbqG0qQLNoPJvBenrELI1HFcgS1cFDyjN5P3jvEHk3kAspbjy21l8haaouEg0IrxoeGAUSG3Vbq/zrdEeLZrkP6X9vInG9s5tXNJRfhAST5r+IAyXmXyWTXMXcl7ncxZLK8LkLEEiayFrqosrwuwbzxf4b2eTb8dDSFUtVR4QyVianSPZiv6LS/gkcxaRWUHBdsRJLI2jRHTL+DRO5YrVkNjorbGND/3juUq5m44lccsenBdIShYztS5E94XvIipF7V7BQoKQkDBcQ/4hW+hIo1diURy2FkIhRQWEkeaZu2RuH6lBK6QofLHPWOMZCbicBvDJm11AT+BCyYKRaiqSjxUeQj6epLw1rbEuOCYFn74eBcv7U9MHJc3R3jvMS0zzt3BJLF6xrKMZSyOaYvxal+Sfamsr9FaHzI4pi3mF104UMjDWMauCHkQCFzhmTvJnO2HdCgK6KqKqnhfJEpewIip0xwNYDkO+0YypAu23z5i6rTVBWmOBirCXEr7v2swwdlB+Nkfe/hjd7Ji/5f6bY6a9I3nGckUSOdttBlkvGqZu817R+kaTmOqCjsG0uTsiXsM6ip1IYPdQ+kpUmzV9tsUMX1Dd+K9XgLg5H4nF/Cwct7+OLotVlHAo70h6FedcyfUzzyDV3j6yUqxXWnuTF1he1+KwUl7Y1VdkHjQ9BMdx7IWR7dFebUvxXjWmtD6DRkc3RZldFLxDp9CATKZGedjPpHGrkQimRfmu5DCQuFI1ayd6/U71J7udMFmKJVnOJ0nZ7kEdJWAriGEoD+ZYzxXoCkS8BOcSslerivoTWTJFhxCpsbSeGjGJLxqxrxzIMlD2waImBonLK9DuAJFVXAdwUPbBljZFJ7Vepffn6GrLG8IeTGyQpC3XfaPZ2kqJiEd1RLzq2SZmurNhaEiXBhI5Ng3mvGrZI3nCpi6RjJvoSlgaBqK6sXk5m0bR3gKBZ3NEcA7BkcIXtyXQAhB2NQ9g1h4hQpe3JdgWV3IPwYv3//tcRME1IWMKfu/POFsYxUyXuUcLOlsOF0gmbPIWV4ylq4q/piztkshVSBoqFOk2A5GSeItZGpFb3tlslfI1BhJF6b0e+GxrZyxspHvP7GLfSM5ljcG+Ysz1xAOT8TJvm9DB1/77atkCu7kj/Uq4QmImCrv29CBaWrFEJcRTE2lJR7waxwLF17tS/nrvX0gWdxHBUzNC0so9wL3jucp2GJi71sWJJPev3weAoGa5uhwMa/G7i233MItt9xCV1cXAOvXr+cLX/gCl1566bTtf/jDH3LddddVXAsEAuRyOf9nIQT/8A//wL//+78zNjbGWWedxS233MK6devm7D4kEsnseKMXMznSNWvnav3mwtMdNjSGUnnGMhaqAmOZiUSrkKGSLdggvHaKohDUNV7tS/BqX5KxMu9Wfcjg6LYYsaAxrXfyQGMurXf3SAbbdhnNWr53uSFkkLacWa936f4yeZuWeKX8WLRY6rV0f8BElaycVUzPLx6CC0HA0HxPYTxgEAt4RRJKFcNUSt7EYtJSQCMeMPx73DOSwXZdr4SucP3KXp6BJegayeAWA07L97+KC1lP0WFd0Jyy/2uR8SpRTdJZXUgnW3CwXeErU4DnHVUVyFkuQgjqQrWZTAeSeAsZ6rQSbwD/98kubnt0N4PJnG8c/3xzL9efs4oPntEJeAU+msImmUJumk/2aIyYE0Z9letdSgRM521a44FKFYuATn8ij2LbRNIJ6B6D3NTPVxxnyrX5Zl6N3eXLl/PVr36VdevWIYTgjjvu4J3vfCfPPfcc69evn/Y98XicV1991f95sp7g17/+df7lX/6FO+64g1WrVvH5z3+eTZs28fLLLxMMBuf0fiSS+eRIifmUTCA1h6cyV55uT47JJZGz0NXJklg2tisImV7i1PL6EALBE68NI1xBOKBjaAqWIzyv12sFNh3XNsU7OZzKEwt6yVmO67KlZ6xizD1jWZ7bO8pgMoftiGLcqe5VAUvl0VSFzd2js1rvot6Bl2o0yYtoaMrEa0yqcuZ4R/algF9FVSqrnAGxkEnOdslbDjnb9authXSVgKERDZm+sbR5rzf+gK5RsB1c4eKKUmliBVPX6BnN+pW9KvZ/WcLVdPu/1vAZXzItZ9EUMf3Y8lLSGXheVEVMPHsKFMM2mIiJLb5Q3q4aJku8eTamwGV6iTfwDN1v3PcqecvBNFQMFFygbzzLN+7zbJ8PntHJ5r2jZO2yLxKTUICs5frzXF7VzvYz2zwvdvl6lyezAeQtB0cIDOESt3MsGRulQXHQhhqgoWyPJhLw0ENoDzzAhS++CJddBsZUxZH5Yl6N3csvv7zi56985SvccsstPPXUUzMau4qi0NbWNu1rQgi+/e1v8/d///e8853vBOBHP/oRra2t/OIXv+BP//RPD+0NSCQLhCMt5lPisRg0aw8lc+npThc8g1ZVlLIvFhOSWKrilU0tVSPrHva8jwFdQ1OVYhlWz1jL2w7dI+kK72T3sOfN7BrOlEl+GaTzE97aUnUxx3Vpik54zQK6hhlRGU5NVBerlVJiWMF2pi260BgxaY56iWGl+9MUWLskOuV4vXwcqqr4CWfZvIVSFnsqXJfQpISzUmUvBQVdU7EcAUUVAF3zkpxKlb3iIaPm/V9t+EwtyWFjOYuQqZHO215YgEKZN9orvxs2dMZqXJeSxNvW/QnGs1PfG9BVX+INoFBwuO3R3WQKDgqCdN7xHbCaApmCww8e2837Nq5gcDzPeNby9qXihS2UDHStGIKRyFoMjueJBnRv3xVDKtL5iUIfXjU4d9J6B9hvu7zWP04onyOcz6BaecYUL8SkIRYka7swOgoPPgj33QdPPgmWhQpEAPvJJ+H882uar7lkwcTsOo7DT3/6U9LpNGecccaM7VKpFCtXrsR1XTZs2MA//uM/+obx7t276evr46KLLvLb19XVcfrpp/Pkk0/OaOzm83ny+bz/cyKRAMCyLCyr9l86tVL6jMPxWZK5YT7X8LXBFP/5dDej6QJt8SBh0yRTcHhl/yh942n+7PQOVi+JHvZxHWnMxxoGVYjoCrm8l10+mXzeJqwrBNU3xu+HntEsXYMJ2uOmd6Rd7ukD2uMmuwcSdA8lfYmjEgdbv0Q6h45Le9yYOFIuGr8NQY2ArlBwXBLpHM+mc4ylc3Q2BKa0bQxpBHSd0VSOZ7sGaYuH2LJ3mNFi0k/M99YKxlI5NFXhxe5huodaSGRyOI6nemConhFYfoNRUyWVt0lkclhWbZ7doAphHTTFxVQEaKVXvM9QhUtY99r1pSrHYZjlPkxRMY62eIjWqEFrVKcv4YWB+KEXkSCtMS8xrLRHXcdGEw4uCpoCpl4yHD1tV1eAhsB17Cn7XxGewVz6/wPt/7aYAXieQ8exmXxy/sc9I+wfTdEWNTA1gLLYVg3aogY9Iyme7RqkIagSD6ioQiHvuBQjMFAAVYWAphINKDQE1Zqew57RLEOJDGFdoCIQFZ5rCOqCwUTa38/3vdzLSDKDrggUBcwyo9sVnkNvOJHhvpd7GEnl0XHRi/Nbbuv7CWtCMJRK0xTVyBUKFCwHRVGIBVT/VMOybWwhUHC99Y4GaLDTWOND1KfSZRa/94WvLjPG2du30P7LbyI2PztjyIL4xS+wzj676rmaLdWuhyImi/0dZrZs2cIZZ5xBLpcjGo1y1113cdlll03b9sknn2THjh2ceOKJjI+P80//9E888sgjvPTSSyxfvpwnnniCs846i/3797N06VL/fVdeeSWKovDjH/942n6/+MUvcuONN065ftdddxEOvzGODiUSiUQikUgmExwaYtlTT7H0ySdpevlllBnMxnxdHb2nncb+M89k6IQTEPrc+1MzmQzvf//7GR8fJx6Pz9hu3o3dQqFAd3c34+Pj3HPPPdx22238/ve/57jjjjvoey3L4thjj+Wqq67iS1/60qyN3ek8uytWrGBoaOiAk3eosCyLBx54gIsvvhhjAcW4SKpnvtawZzTL9363k7qQMa1nMJWzGc9afOz8tVM8YZJKqlnD3786wJ1Pd9M9kvGTXToaw3zg9A7OPbplVp872TMfMlWyBZe+RI6GiDmtZ/61wRQPvjLA7qG0H7ayqjnChce2HNFe/Nns59JcdA8lOSPYw5O5djqaY1Pmomc0y1fvfYWesWwxXlYr02l10FSF5Q0hPnPpsfQlsvzdz7diagp52xP2F8I7ig8ZJS+w4CvvOh6Av/v5VizHYSxtUShT+jdVhfqIgaFpfOVdx9MWD/HVe19h36jnBZ4yBk1leX2Qz1x6bM3Pa+n+tvUlGc0UcMrGoakKDRGTY1pjfObSYwFqGkcte/SPe0b425+8QDJbQKCgq4qvJWy7XixoLGTyz1eexMaVjRV9L4uZrKeLl+hkf7Iw7f6v9hn8454R/u7nW0F4mrk52/W9tUFdJR4yQFH8dfn8L7fw8v4kedspVtvyWrtAUNc4dlmML73zhJrW5bcv9fKFn28lYGiETG3K69mCQ95yuOldx/PW9Uv514e3868P70YF9GnCdGzXi/f96HmrWL0kxud+tgXLFTPG7Bqqwj/+yQksiQb49D0velXYAENX0YWLWcihZzKErBympvDpTUfTHA1y66O7sPfs5eRtz3Daq8+wat/OGe9RLFmCe/HFiEsuQWzYgBWJ8MCWLYftb2EikaC5ufmgxu68hzGYpsnatWsB2LhxI8888wzf+c53uPXWWw/6XsMwOOWUU9i501uIUixvf39/hbHb39/PySefPGM/gUCAwDRyGYZhHFbD5XB/nuTQc7jXMOdmSduC1oCJUKb+cgwEFDLJAjkXubeqZKY1fPCVfr56/04/2aW+mOzycn+ar96/E0XT/ezuWjh6WQPXnKX7Mdf5ZIGArnFce8O0STc7B5L86Ol9fgJXq6mTKdhs6U3RkygsWKmyauho1ulcEmfr/nHWBc3KTHAh6EkUOKG9zi9DWj4X7fEACIiGAtPORUezzgkrmkjbw74SguN6Oq0N0SC6pnJiRxMdzTGWN0apjwS9xCJNRdfUYqlbyGZs8o7L+mVxTu1cwvaBJMm8y2DKO05VFcU/es47kByzWBJTiIeDdDTHvDFYw9iuy2jGwnZtLyQgGkRXJ8ZQa0xyzs0ylLEZyTpkbU9rtWTcCRdExmEoY5Nz4aiW2sZRyx6Nh4NEgwFcFDJ5h4ztFr8oeJXRwqZGLGQSDwcxDKOi767BBARhNOdM23ctz+CpnUsImAav9idRBGia4qlIANmcy0g+zzFtMU7tXMLOoRSKqhMJmqRTee+LgvBiCHRVIRQ0UVS95t+jqqZjoSIcBdVhyn7OOQo2KqqmYxgGq5bUYbleXLPXvmwNBbgoKAqsWlLH6uYYmq6TytozGrtBU2d1cx2KCkHTRAiLYD6DMprGLGTRgJCpoioqQV2jYaCX0D0P8ZFf/5Zl+3bNeF/j9c2ITZuof+fbUE45Ba1cQ1jzjPrD9bew2s+Yd2N3Mq7rVnhZD4TjOGzZssUPe1i1ahVtbW08+OCDvnGbSCR4+umn+chHPjJXQ5ZI5o2SOHymYE+pVQ6e56AkDi+ZPbVWQqqVapNujnSpsoNRS3W2yXNxMNmq8r6HUwWWN4YnVS+rlK5a2RTm5d4E6YKDqjj4nj4BuqbQUSwHHNRVEkVZLhXP2PUy9z2DxsUrJxvU1UljyLO8IVRVBbVqCOgqe4azFGyXgKZguZ6slKIomCoUbJfukSyBWY6j2j0aCxp0NIXZNwoRU/iavIriGd265snVlf++KvXdPZTkhSf38rHz104x+Gf7DArXM3BdR/hfQooKaIiiukJJtk1V4IRlcVJ5x49LjgY0BpJ5hlP5Cdm2KlkSDRAN6H7ct6mrfjJZwXZRFIgGdJZEPWdbW12IeMhgPGPhwBSZBQWIhwza6kLEQjqxoMFYdvrkVQHEgwaxoIaayXCClqF/bIhkpuBHL7tC0Ny7j/O6n+fsXX+kra97xnsZb25jz6lns+2kM9nVsoprz15F/WRN42AQogvzZGle/wJ+9rOf5dJLL6Wjo4NkMsldd93Fww8/zH333QfA1VdfTXt7OzfffDMAN910E29+85tZu3YtY2NjfOMb32DPnj1cf/31gPet6YYbbuDLX/4y69at86XHli1bxhVXXDFftymRzBnlQuvRgD7Fc9A7nptRaF1SPbOphFQr1WjWvhGkyqqVl5oyFweRrZqu70zBJqBrnLh8at+JnE1D2GSkFBJQ8vRpCg1hk0TOpmcsy9beBI7joive5woEwvWMO01TUF2B7bhs7U2wuiV2gDHUv67qcwOJHFnLq3AGCrpa9EYLsF1PbipTsBlI5FjVHJ3VOKrZo+31IU5Z0UDedss86G7Rg26gayobOhqm/E5SVa+AwQvgFTKYZETX+gxu3jvKSLpA2NTI2S5O2XG/VvySMpLOs3nvKK3xICVpNkVRvBCHIl6k54RsWy1sWNHAupYYL/eOE9RVcrbAKn4BCRsqOdvlqNaYLz22YUUDy+qCJDLWjN7a9vogG1Y00DOe9bShp0MIwlaO0HACbfdrLI0FWGW6dBelylYP7uXMXX/kzF1/ZMVo74zjH1u6gj0bz6Jr49mMdKxBAHuGMxzVHPHmTFEgFPIM3GgUdN0rMrEAmVdjd2BggKuvvpre3l7q6uo48cQTue+++7j44osB6O7urtjUo6OjfOhDH6Kvr4+GhgY2btzIE088URHf++lPf5p0Os1f/MVfMDY2xtlnn81vf/tbqbErWZTU4gmTzJ7ySkjTMVMlpEPNG0WqrBovYvlcCCFIFT1cyaxNJKTOOBfV9F2SCAsZKscvjTGasSm4Lqaq0hDWGc1YvlTTQCKPoihoKlA0lso9iGhedvxAIl/TGGplKFXAdUVZ9r7wQxlKR+GuKxhKTezRuRhHhdc4machauC6nqqB60BTbHrvtesKeka9Us09o1k6mvWKNrVWIytJoOmaypKgjuUKT1FDVTBUhazlVkigleTVRtKFov5xKYbZJhrUK+TVKsZ8gLnTdZVrz+rk5nu3kcgWaAgbmLpKoaj33BgJcM2ZnVNOgxRlouRvySte0ioueaNHM3lGMxOGpSIEIStHtJAlZOVQhcBWIJHJsTRq0rLnVT746IOcvuMZWscGZ17Ao45i7C3n84vWE9hdt5QlsQBBQyVXcBhM5olHApx5SifqslbPwC2z0Q62hvPJvBq7P/jBDw74+sMPP1zx87e+9S2+9a1vHfA9iqJw0003cdNNN73e4UkkRwS1Cq1LaqdUCSlbcIgFp4YpZAvOtJWQDjVvpLCVg3kRS3OxfyxD33ieZDbPiZ3wh64RYqEAbXWBGefiYH2n8jZZy8HUFfoSBU+btqhLmrddAoZCpuCQytu01QXQVa9wgyuKSURFw8TQVFQElitoq6vMCznU1edKfsuAoVKwBXlnQj/LK6KhFiW1Kn2Gc1EFb21LjAuOaZm2ctl7j2mZNg69FLN7dhC+97uddC6JV+iE11qNTAjPuFU07x4Dk4wuRfGMMyEEEVOnORqgOWrSO55nNFPwDGVVpSUepC3uyavVWjEP8GOIS3ORytsYmsoxbXGuObOzIs5/895Rkjnv2R7PWjgTtR9Q8EJEkjmLzXtHeWLXII4rCFt5olaWcCGLKkq60YBwOa7vNdx/vBf3xae5sm9mD27v8jVsO+lM1l/7HlpOPIZ64PzhFPr2YfaOZBjMAJEI7etXcMHGTla1Tk0Eq2YN55Mj/zeiRCKZEw+NZIINKxrobIqwfSBJxNQqTpxc12U4XeDosuPIuaI8bCViaqTyDgXHxdS82MLFFLZyMK9Ze32I+rDBAy/3Y2oKjWHP6x40FPoTWfaOZrj4uNZp58K2vcpSw+kCTRGTDSsaKrxr0aCOpioMJAtoCHRdQ1e8Y+xUrsB4TqEpYhIN6pzc3sY3YtvpS2RpCBnF426vkK6CYDRrsbQuxCXHTF8M6VDR2RzB0L3CCKoiMDWViThjl5zlxYd2Nkdm/RnVVmncOZDkoW0DRAIab17diKaqOK5LMmfz0LYBVjaFfQOovGJee9wE4RUumFwxb3I1Ml1V0IvxwNNVI1vVGCVk6mQLNiFDnRLilbccwqbOqsZoxXO1saOOvkSejOUQNjTa4gF2DWUqniu/Yl4yj6opCFeQsx227Bubtsrfhce2cu66JQfcc+B5r8cyBdKFot4wE155gETOwnUcxgbHEL39rBzrRRMCrdhAEQ4n9u3knNc2c1bXczRnxmdcy/2dR/PahrPYf/pbSDS1eJ7Ypcsp6VmsbGtgxerl7Lc1Uppx0PWuZg3nE2nsSiSLhLnw0Eg8yo8ju0ezFaVHh9MF4kFj2uPIQ03piPiVvgT3vdSPIyYOqTVF4ai22KIIW6m6ImDJ8zVZicRzbTHdLDz4Sv+0Hsdrz5rwskVMHU0pymUJQda2fKvDq8AGmuJ5+kxT4/pzVvGN+15lNGsRNnUCuucBzhRsgrrGn5+9CnOGEJhDRSxgEA/qpPM2llMSzYKSL1dTIRbUiQVmlyFf7ZqUJw4e1RqbYmSWJw4CNSUZdjSFebk3SSpvoSkTFRccITA0raIaWTxscFRrlJf3JxjP2oRMzS/5XDqJWdcaJR42Kp6r+18ZmCLbdlRrbEpi5La+BAPjOcZzNo4r0FSFuqBOS11w2iRRXVcPGs8fD+pkCg5upfMdIQQhK0+0kCVq52gab6DTsNGFQHUdNuzfxlt2P8eZXc/TkEtO27dQFPavXc/eN53Dng1nkmlc4r+Wy9uYmkYoGoamJi88IRBABZYfcMRTk2YPtobzhTR2JRLJEUG1XqW5YvJx5Ei6gKGpHN0am3IceTgQCCzHLcb0CdQ5NrSnYy7WxPeapQrEgzrxoIHrCrb0VHqJesayjGUt3tTZwP4xr+IZQDLn0BILsrQuyGjGqkhQe/CVfm6+d5svXVX6wrJ9IMnN924DvHX27kCAELiirPKVABeBRillyeODZ3QCcNsjr9GfzJPKe7GkbfEg15+z2n99LudOAUxNRVOLcbqTqoBpqqfYMJtPmFiTPLHimjiuy5aeqZ7M8sRB8ErWlk4fYkG9InEQ8Nt6CbVZVgWgdyxLS114SttkzqYxYjCS9jR7S/EihqbSGNZJ5CbWu70+xNlrl1BwXN8ozRY8o7QxYtASD3LOuiVTPf+iNJ+ef35ypljPWJbHdg6ysz+F7YoKI3okY5HI2ZiayuUnLatwPhzsNAFgKJWvMHSDxRjccCGHJlx/ncfGU7x9aDuxR+/itN3PEc9npl03R1FRTjsN3vpW/rvhGLYUDFY2hSu+gFhGgN0Fk3XHt9F2wtEVpdiq2aPl6y0E9CayrDKhdzxLSzyyYJJmpbErkUgWPFV7+uaYao8j54qSF2U84xlrA0kvaUcvZqOPZ6zD5kWZizUp3V/3SAbbdukaTk+Upg0ZpAu2f3+lBLX6kJdYVLrb0v8HDI1E1vIT1GqRrkoVbC9eUgHhlh8kF7PzVQVbQKos+e2MNU2Mpgs8tnOoGHepc/baZs5YM9WbNxdzl8rbOMILXwjqnkJBKbvJdV0/njiVry150V+T4Qy269I1nMF2XHRNpSFskM47FXuutC45S+OV3lFGM4Wy9iadzWHytuOvS8526E+4vLhvjFy+wJknwUPbBggGTE5YXoeCl4zouoLu4QxBXeX4ojyY5boYRXmwkXTBTxqEykS5JZEAqsaMiXKle3Rcwab1rVPCg3YOpv17TGQstvensByX+rDhG44BXcHUFMYyFjv6UyQyFjR6c1jNaQJAXyJHYBoDFyBgF3jT3pc4d/dmzvnPrRjZDBdNs16WqvHH9mN5bNUGlr77Mj5w6SkAvGk4RffmHrpGstQ316PFYyRUk/0pi8YWk4tOWl7xO6PaPVpa74GEw4v7xsmW1vCVAULFNSy1m0+ksSuRSBY05fFgS+uChM0QmYI9b/Fg1RxHzhU9Y1me2zvKQDKH4wriIcP3Kg2lCmiqwubu0Tn3oszVmpTubzCZK1Y50zE0HctxGUzlK+4vYuoUbJc/7hnBcQUNIe/PWTSoM5jMM5IusKIx7CcV1SJdBZCzHHRVRRT1cktZ8YqioqsqOcshlbOnzMfx7XWEi4U+XulL0p/MV8zHXM1dKu8dp7fEA+StYtU3vKTtSMj0qr7ZtRu7k/dcNGhgBHUsRzCYzE/Zc5PXpbJ9jpF0vmJdRtMFXu5NYDuCumLyp6GrjKQLPL5ziOOWxomYOr3jWbKWQyyoo6oq8VDlGgYMjWTOrri/ycm7edtL4Fy7LDqjjN10fZd7J3ePpMgWbAKGNq38X8DwEkh3j6RYv7yuutOEzjgkkxh7drM0OezH6gatHGd0b+Etu5/j9L1bCNnTq70UNJ0/LF/PI6s28ETHieSCYVYtifDe09Z5DTSNlauW8c62pfz2tRS7htLksw4B3Z02kbmWPRoxdW8N9yew3co1HE4XeGzHEMcti8970qw0diUSyYJlsRdRqJVk3qJ7JIPjCJqiZqVXKWIynCp6t/KVWpeH8si8fE3WLomQyjuMZgqYmsraJZEKL9i08lJVSH45rktTNFB2fxpmRGU4lfe9d0e1xMhbLmNZz1NbCok1dZWGsEr3aJZW22Vp3DtOr0U+bkVDCMsROK6gLqhju+AKF1VR0VVI5h1sRxA2tZrmA5iz/RwN6oRMDccRLK0zSRUc36MaNTVG0hZhU522DPOBqHXPLY0HK9al9MUioCsYYaNiXVxXsH8sR85yqA9q+PEiQhA1FcZynoRiazRAMm8RMjXylkvEdL31KUqPGZpC3nIJm9qU+5uNjF0yZ1eEXpTL2CmKV6BECG8/uwI/IbEkFaaqngTd5NMEy/Ek00xNZW1EZbh/gN/8cphz33Ecuq7SEQ8Qy2c4o/tF3rJ7M6fue5mAM71urQiF6D7+TTy97lTSp7+ZF8a8L19rgzrHtcXoTjk82Gdx7YnLUSPeF981wEdWHvgZLN/Pa5rD9CXy9CVyhA2NNc1hdg1lKvZoazTgraHt0Bg2/GQ5TVGIBzVGMpa/hvOJNHYlEsmC5Y1QRKEWUjm7KH+mz+BVUj3vVm7Cu3Woj8xLaxIyVP64Z4yRTMEPNWgMm7TVBaZdk2rGUZL8mvn+Jrx3vYkcAcM7Sh/NWDQUvXEF22E061If8jRNexM5VjSGa5KPyxQcDE2hYMNYzva8uoDAq3plqAq65smP1TIfwJzt51jAoKMxzK4Bz3PnulCK2lVVqAsarGiM1JygVuuem7wukzVry9eldzxL3nbQFIWhjI2peMbuaMaiIBQCmudBf75njKV1oVnfX60ydtOtYUnGrlQVLVNwGMtauEJUJC8amupXRSudJnhKKXmcTJZQPk20kMNVBa2GQu+Q4NVte1j/yrOc9qtf87Nn/4DhOtOOM20EeWbVSXRedQWBC87jrj/2A4LB8QLJnENW1RnXIoxYMZrbY2wtKPTkYUWZAMfB5qK0ny3H4Zcv9HoSaKUEvJDB0W3Rij36fM+Y7zEfy9oYihd6MZ4tYAmVgK75azhfJ2IgjV2JZNEw3wlcc8FsiygslLk41OOIBnRChkbecqatmOfJKWlEA96v9rk4Mk8XbIZSeYbTefKWWxFqMJDMMZ4r0BQJVKxJteMoeSer8d6lCzam7lXjem0wxVDSMyZHMxZLYt4x7nhZzG4t8nHbB5IEdM+wLiWr+WEMxZLBQcOb51rnY66KgrTXe8bg1p5xz+tYllWnCIWs5dBRTNwqp1BwuH9bH33jedrqAlxyTFuFckSte658XXYPpekZ80oYm7pKe32IVc0T6zKcLpCzHGxRdOqWPRpCgC28cJLhdIFTVzbS0TBxf7brIkrlkBWVrOWwcpr7g9pl7GIhw1/DyTJ2S+NB2utDbN0/DkWBOZSJUtJ52+Go1igbVjTwwLZ+nHQWpZCmLptBd91inWIFIzPGGbuf54ydf+S4b70KrsNU9VpImmEeX3kSv1+1gc3tx9KxrJ5brtzIntEMI9kC/bbCuBpGa4uimSaW4zKasxnuT055DquZi3TBpnskza7BNAXbOwkxVAXLFYykC/xxzxhrlkT8fofTBWxHeF5toDx6XuDlu9mOmPOCOwdDGrsSySJgoSRwHWpmU0RhoczFXIwjFjToaAqzbzQzbaUnXVNZ0RgmVlQwmIsj87ChMZTKk8nbtMSDU0IN+hM5EF47qC0UpeSd3DmQYtdguiIRXsGTk1pV5r0L6hoDyRw9Y1kyWe+P6WiqQN6BSFAjHjT9vVGLfFwkoKNr3rG0oanomurHUdqOV3pXUxUiAR0Fqp4PRVHmtiiIKM1USUFC+D97hlkl//fJLm57dDeDyZz/peIbse1cf84qX0Gilj0HE8/sYDLPvtEso+mC37cQnvEcC3q6rXUhnWzBwXEFIV0loAE4hAwN1YGc7ZIVgrpiPDaKl2SXyXsFF0pfQCzbQVXNaUvsHmoZu5IE2rb+JK7jEjR1NBUcF3IFG1VTWR3VUYeHaBveT9NoH5btYgmIpkY4+7XnOKfrOU7s3YE6QwHisWCUx1eezGOrT+H59mOwVZ2JPEkFolHMcB2vhMZJWaKq57DauQjoKnuGs+Qsl/rQRAW0QLHy3FjWpnskS6CYlNsQNig43hePhpCBrriARV1IxxYqqbyNK1wawrOTvDtUSGNXIjnCWWgJXIeScrH36bxKk4soLJS5mKtxtNeHOGVFA3nbxbZdRrMW6byNpqosiQXQNc+j1l4fmrMQkJL3ZnoV24nXSn/GaxlHe32o6L1LFJUQSp+ooKiQK7iTvHeCJ3eNAFAX9P6oB4rxqU/uGmHT+sqiEtXKxyl4f/RjIQMV/GpdiqIQDei4QhDUJwzgaudjeY37uRZ6xrJ0j2YIGioFW0HXSnfi/W/QUNkzkvHX+/8+2cU37nuVvO2UaQML+hJZvnHfq4AnqVbLngNvjwoET7w2jHAF4YDuJ1EOp/I88VqBTce10V4fYt/IhGSWoiqoxTAGVfF+Lg1eEQo9Y1le6U2QsxzcYnysUhSccPE8wK/0Jir2c7XPYbmM3eQKaq3FCmolGTtvSApnrm7i1b4kY1mLgi0IuhZrNZvjYwrxoT769wRZElRpHR9iw/ZnOXf3ZtYPvDbzAi5ZwtAZb+HfAmvZtvwoxi1B3vKkBV1NxQ2HMeIxtpkhNjshWuNBXFVHMNMpQOVzWO1cDCRy5G0HXWXa51VXIW85DCRyrGqO0hYPEtBV0sXEQN2rm42uqdi29+UkFtRoK8bOzxfS2JVIDiOH+lh7oSVwHer7K5cP2jHgGUwlb1zveI7GiDlFPmi+52K2CVzV6HCWz8dwMk9D1JhRTmm2ISAHI2s5NEc9ua/pPH3RoE5TxCRreXGHNY9DAUNTCBte1n3JoeW6LpY74YBzXcGe4QyuEAR0Fa04l1qxdG/edukeyeC6omKeLzy2lXPWNB/w6D5jOTRHAygK5CyXeMiTmBJCkLddgoZKUyRApniP1c5H+fpt708RK1Zqc1wvKaopas5YFOSgyX3FRDJNUVizJDIlBGQkbfmJZIWCw22P7iZfTCpyhYJbki0LG4xkLH7w2G7et3EFpqlN7LlUgeWN4QOOuSQR5rqCgK6hqZ5HWVMVTF0jbzt0j6RxXcFYzks6yxRscgUHtej8KzhexTddhbChM5aziBclv1xX0BwxpySGjWcrJb9qSbQq7dHVzVGW1QXZNZgmWbCJmTprlkQQikLXULoiFOXotjjrG4OMDAwhkikiiktLNISLILt9F+Z//C+Rhx/ktldfmfFZ6o808OTajWz40PvouPBsXto5xAsP7aQ1HqBO0+lzDcb0AEowRHPYwAUSo1nvJCJkVL3vavmdNJKx/Op7Xsls1SuwIrzkOs+jqzCSsYpz4bKyKcyuwTSJnI0wvX2QLTgkC4KgodHRGCZnuzPOw+FAGrsSyWFiLo61F1IC11yFD0yWD+pP5Ajo2hTJnIUyF+UJS8/uGZuiM7p0mgSuanU4S/NxwTEt07Z/7zEtFZJAc3FkHjF1mqMBmqPmFC9YS9ELBorfby3j6BnLMpaxOKYt5nnN0nk/OaY+bHBMW4yxooetdzzLQDLPsvogeUtgO0U9XceTu2rSFfoTeTbvHa1IjJlun+4Zylbs0/J7LCUsOY6DVubpK7/HWuajfP1e2j9euX6nLp/2Wakqua8skUxVVQKTcvDKE8nu39bHYDJHUFdJ5d1i/Kt3Yq+rKkFdZSCR4/5tfbz9xPYpz2CmYBPQNU5cPlW2avPeUW9d6oLkbZes5WKVecWbIoa/Lk0Rk1jQIGSojKS94hMABUegqSqNEQNd0zxZuDLJL1VV8G5PKbu/SsmvWhKtSnt0W9842/tSjJW1fWl/gqPaohMhMYUCjdkkxt5h4pqgTgXqTOp69tD58GN0PPMozT1dMz4/+2PNPLJ6A4+v3shrbZ24KHx6xdF0qCp19VEy0Tp2hsKkhOEZqo5AzVjkLJeAofhJlLU8h7UkUZbCe0xd8SXsLOF6EnYB3Zewa4qY/rPS0RjB0FRe3p/wVTmSeQtd857ZpXUhKT0mmTsWSpKOpLYKRLUwV967Wpnr8IFa5YOm40Bz4bqCnlHviLJnNEtHsz7rZ2UiYangJfVM0hlNFPU2S+OotqpXiZ0DSR7aNkDYVDmhPY7r1TjAcQUPbRtgZVOYtS2xihCQiKlNEcqf7ZF5eb+nrqyfVoC/vN9aQlG2DyT9ZC9DU2iIGL5nVlcU9o9nabJdP7nJclxa4iFUYCzt+XyjAY36SAC3uJbliTHV7tPyMZ+yoo7XhtOk8g7RgMbqpgivDWcq7rHUdoPf1iYa0KdtW1q/SEDjzasb0VQVx3VJ5uyK9at1zLUkkr24L4/timISm+J5X4shAZbjAp6kVt943u+jmmcQmLIuqbzjG1bRgFaxLhcf00pLLMDLvQlCpk5QE4BDfcgg53jxoeuXhdmwooH7Xukrk/xysRwvCc9TQKiU/Co9h9UmWh3VEqM8JKa87XC6wLPb+3n7qijtY/1QKHCMYbGjP0lHqpeWpx7hqBeeYMlAz4zPzL76Np4+6lQeXbWRXc3LURUVU1fQbJe8ZlJoaoJVqzh+tUbwxTQv9yYwtQKqooIicF1I5goMpwXrl8XZsKIBVVWqfg7Ln6uDJVGWJ3KW5NLKTwi6R7N+Imfp+a4PGzzTNUJ9SENFBTK0RAO4KOwbzXLs0visQnMOJdLYXaQslCQdSe0ViGphrrx3tXC4wgeqlQ+qdS5Kz0rXYIKzg/C93+2kc0l81s9KyNAYShVI521a4+VasZ4uaX8ijxBeu1qqeum6OmUvjWasir2UKVRqYG46vpVX+hLc97JXHaqEpioc1Rqb8cj8QJQfxe8cTLO0Lkh92CBbcNg5mK4ILZnc/mChKKXkt6FUnlzBIWdPeByDukrQ1Pykm5KUWE8xCUrB8wruHc3SPZqnofh6yQNV6z7ddHwrf+ga4e5n95G3Hd/o/sPuUf9UoXSP1bYtH8NRrbEpBunkMdSU3FdDIllLPOCXQQ4YEyWEFQWUouqFAFrildqoB3sGAX9dxjIF3zNYMkqTOa3CO1me7FWwHT+ZSlUVCnkv7KOjMYKqKr7kl+eddnFE2X4uSqDFgp7kF9SWaDVdSIzuOkRzaZakU5DPM25EcbNt6K+8xOUP/D+se39L80j/zBNx1FH0vfktfE10siPegl1UExMuZHWDjBbCioYIhQI0LGsFw0B1BSubwry0P0Ey7yDEhASZonjloDsaw55nu4bnsJak0gMlcvYmKhM5JzYvZAs2qYKDXnwOB1MFbDyN54XgYpPG7iJkoSTpSDxqrUBUC7UmcM0FCyV8YDZzUf6stMdNEFAXMl7Xs1KSqiqlhuQtx/eMmLrqv6ZQW1Wv01Y1zX4vidLYvCjHGZLAq6Z0rP3bLX1s6RknY9mEDZ0Tl9ex6fi2KXNWbXuBV1hiNG0hhMAoixfMFBwylktA1xB4UmKmprBvNI8AwsW/ZqoCGVvQn8izZknY90CV71OARNaqKBwweZ/uGc6weyhNrqgDq+uetFTOdnhtKM2e4Yw/7lLbrGWjFj2lQkDWsiva1vqs1DLmWhLJLMeLxcxbLsIVE8lgeOWRHQEhwyvLW041p4UbVjT43tqAphAwdTRFxRGCVNE7eVzRO9kzlvWTvbb1JcnkPE9yvhgzfXTbRIjShhUNNEZMBpJ58GXgvD3jCs+o7myeWO/KRCsvvOX/z96fR9tx3fed6GfXdOZzR9wBFzNAEOAkCaQok5osKSKltB0/x/ZTFA9x2053rzidrJVk5XWctBO3W5ZsJenXq9utl9VSbNmJOk5blhOnl0xKsmZSEkVIIkECIEEMF7y483TGmvf7Y1fVqTMAOHXJS0I0fmvZFHALdXftqX713b/v9xvX+OoaXUSr1brDSt1hX8XEaDbR1hsYnoMmBAUDTtbmuf87TxF+4h/AyhIj11kXF/Yc4LsnHuT4z/8Up959ikk/xPuj7+GstmhbFk2zQMvKI4Wm9gepccdYoWuOLm7baL2KEMRzW7C4bSfzI8u6SghrUe1tGq3tJbPFJ0m/981LvLTaYKUmMQ3B8alKX2nVwlabs0s1HF8SBCG6pu4ipSQIQxxf4/ke4uDrEbeT3TdY3CokndvRiZ26Xg0TWVCz3YpbpZQia1/0rhWNENrKieqOvLXjtRKTm675IRdWGtELpCP9NFaymCgrclMWVy/INpfi5wtCyaN3Tw885nzFe4EgLat58xz6JtfXbY+arWxu9Uj6C5SGp64LghDqtk/d9ggreWq2l9wjkN3/lSjSUhgh2vE8tT2Nc4v1vrrFQ5NFHD+g6foJ4u74ASeny/ghSXJgaHB1y04Qd1DqDk3HY7Rg0nZVImFogoKl0XS85NqsayVLm7vIizchkrmB5PBkiRdXmth+iKGrMhFfSvxAYugahyZLuEFnhIY9LdQ0wcHxIueW6nghGKFE01SZjReqhO1QhE7Gz7enkqNh+6zWJOAyVrTYUy2wp5Lr0kqOpxCgpOEQhEh8P06wOn0ZE638MGCj2b+35k2BoWls1trozQbj60vsL6oPFb8gObJykfvPfYc3n/8uo/XNgeMFcHHuGKdPPMgPTr6V7YlprtUcjqzo3CcF2tgo5SMHeTnYwpepBkqJFAJDkCC1oIwYXlhuIJEUDIEXpko1NAiRvLjcYLvtsp9U4niTdRWTSl0/GCjpN16ymCx3SKUAByeKvO3QOBqCuutRsUzeemiMgxPdCeu2rdrsRtB1fIAU/9f1A9Vmu6fNr3HcTnbfYHGroGy3oxM7cb3KEsMSuHYrboVSijiy9EXfWkm9AV7JWilZBpah4YeyAz3Fb6KottYyNEqWkcnVC7LNpfTzaZpGtdB9/1eyF3Qh4qMFipZBy/V57lqNxW27DxEf9vrL6008X9WWIiVe2DFzyOkaGALXD7i83uTyepO6HWCIToKb9AWgC6jbQUKyKlkGrh9yen4zIrF11y2uNx32jxcpWUYX4q7rOnrPt0gacQd4caVOKJVEWc7U0ATJnwFeWK5z+uomsyOFTGslS5uhf/5fj0hWsgzunK5SzRs8f62uEnwpEUJ97N01W2F2pHPfLKeFC1ttEIKHjo5zfqnBdtujHZG9JsoWx6fLSERCDEs/31hJ9clYyWS1oYiB6TGp2z57R/Nst/3IjEK1uZRXmr11209OQSZKFoYucAM1IZQLnsJ2dRlQatlMSJe96wq9rnptjp5/kbe9+F3uPfcUlWZt4NyXQnBu7jjfP/kg5+79EbZHOuTHUDcwJko8LU1OW+PM5gqsYTJeyrHecgkCiD98DU0wXrSoRWt1/3iRy+tNmpEurRQapi4QUduDUBLKkIbjc3m9yT1zo0Ovq3hPCqI9qVfSL70n9Y73selyct/nl+os1Z2u8b681qRue3iBjEotVF9oGgSR9FjN9ri81uSevaMD+/S1iNvJ7hssbhWU7XZ0IqsD0U5iWPLIbsRrVUoxLOHy2FSFQ+8q3VTGa7fWymw1j+OFtL2Ao5P9ElDzm8pRaraaZ7aaH9rVC7LNpd1yn8t6epTleiFEwrQv5PSIhBSiCQ1Th7YbJiSkhc02XhCia4KcppJbgJyuEgkvVGSra1t217hstrrro3OGjllU4zIdjcuZSCWhYOlIKak7flIbXckZXYh7KGXCgi9aWvJ8ulClAC1XJSirDYcHDo5nWivpNu8fzdOM7mVqGqMFg6tbdtLmOI5NVdj3cIE/Oj3PwqbN3FieD506QD7f2V/iNdv2An7ubaNcXGslUltHJotcXG9zbKrM3Gghk4RXGq09MTPCienKDWW8jk2Wu8YkTpQsQ2esqA8ck7mxArMjgrrt44UhpqZKOgIpuwiJb54bJWfobLZcxosmBCF5t03ZaVPwbbbbPuMFjZPnTqN/8Qv8m8cep9huDlwrgdB46cjdHP3Zv863j72F/+V7m0xXcxiahmeY2Lkidq6Ab1r4YUgzakc5bzC/0SJv6twzW6HphgkyX7I0Nlt+36leICUyBNNQJEEZKiULXUhV9xuVCWQZl3getbyAIxNFtto+ThCS0zvzKN6TdrK+/VAiAUNAXAGuIdAFeFIlvPEJy+sVt5PdN1jcSijb7VCR1YFopzEMeWQ34rUopchCuBx07VOXNvuu3a21slizyZkaowWTzZZHOa9+jxeol/po0cIyNBZrNvvHi0O7ekH2ubQb7nOvpO70ZtfHJKSm67PZSifhCiE1dSVftaecY62ukliFAIskCQjiP0dHxjlDXHdc0n2XHpcYcV+t2WxFKGJClDN1RgtGgriv1G3CUCL0wSL8QqjEREqZea3EbTY0wXOLdfwgJRGma4yXuucSDHZF+7ffuNLlipZux8X1NrOjBY5E7bi43u5qx9WNViLh9Z9/sNglyzVaMDmekvCKUdi8oXNtq5VIYvlByJqusdX2mR3JJfOud0zGotMH1w/YbIcDx0SdbJhUC91zuu34Xacgyw2HuapJsLmJtbLOiAgwBWiuw90v/YB3XjzN2648g+koFZbendPXdM4evoevHznF8yffyt/8wJs4fnSS8tVNwufbrOQqGCNVAr17f0ifxqRPYnRdp1roPiLImWHfqZ4uBD6SlqdqjKNJnpxWxPW8aWm1m42L+l2peRR27OcWNMF40Uz6Gci0vjdbrqqhhkj7OG6x+nNUiaSuex3jdsbzBoudomy3Zcp2L7I6EO00Xs8x3M1Sio5sm0s1km0LQ8mzC/1HqPG1a3UbXYsIRZ7PMy9v9l3bt1ZSv/OVINJN18cyNO4/OM6ltWaf/uXBiSK1VB3isK5ecZuzzKXdcJ9LI8ZSqnrQNGnqenWnwyDMp/artp+5VqPX6hYkbgB3RoSegqFj6Mr1S0NiRXNdIPADSQjkDcGp/eMDxqXBSs1JkMGpao5Dk6VkXE7tH6OSNzi/VAeUZXAszdV0fJqOz50zimR1fqlOwTJouz4FU7sO2m5weLwMZCP3NV2frZZL3fbxAxkh36odfqD6fqvlJn2duKJ5ynJX1wVBIFna7nZFS7fj888u8dTljUQu7a2HxvngvZ123EjCa71Hwiueo6MFky+cXcbUBTlTJ2fqhFKyXGvz8maLR+6aTiSx0mOy1VDJVsMO2FPJ941JfApSMARb7SAZv9GC3jkFmRuBWg3nyjXuaK5y5wRcnm9x4oXv8fCF7/LA/BkKXkdSLR2haXH26H187dBb+PbhN+EWy+wbK/I3T+3j4TcdhHKZuw4epngJXlipsx9Bs+0l7ShZWtdpzAsr9UyneocmSpiahuOHfXW3ElWuU4g0mbOOy1bLpdb28EOpNIo1Vbqlygx8tlqdPSnLidB4KYehKRKpSngj5Fl2DD90TTBeyg2832sVt5PdN1jsBGW7LVO2u5GFOLLTuBXGcDdKKRKprY0Wvh9yeb2ZHAOOFUyarp8cqQE8dmaZc4s1pR3Z9lMi8gZTDbfr+K13rcxVO3WxCzV3x4h0jGzlTY23HhrrSwYbjo/jhV2I6vtOTvPuO/Zkc1AbYi7thvtcGrmLDRd6Bep7606HRZg1TXBwQpGbQETuTeol70YOTDGhZ6RoMlaMpNzofsnKiAw4WrQYKZpd7bA9HxkhUOn/Ol4/0h0nHG7a/Skuv46sbatFk+PTZZ6/VmO77aukI7LHjVG+O6bLVIs9zz4EuS9vaFyJpAonSqZqa+qfbtu+OiY3tMQVre0F5HSBE4RIX6HApi5oe0GXKxooFYlvX1znpdVGMkfDUKklxPtG3AbHCxgpmAMkvLykDeln84KQhhMC3eSwnKElzzpoTOJ+7x2TWBLr//PZZ/jey7XkegFohOwzQ/72sT0YVy6BlJQ317j/9Ne4+7lvcfD50xjeYGQxzOfR3v1uePRRtHe/mzvzRYLFbe5yQyoTo9x35z6Mall1JCpp+sW3H+Kf/ekZfrBQQ6YaIoRgspxLTmOynsSUc4b6mBnYUvX3miBJjoceF6mu9UPJnrJFEHbc53QNNlse8xtN8rqGrmuZToSmq3mqBUOZdsguDh4hCo2u5g2mb9sF345XO7KgbLdlyl6byOJAlDVupTF8tUspYqmt1brdR9BZbXRLbQF848IqF1Yb+IHsEZH3qNkK2fvxN+1N2pgel8urNcgrBv+NEOmbIehpxPiOqXLXceuNEGNNE8yOFKgWzCTxGxQJMngmQgZdhQ7dNzfa93Ez7LVZJa5GiyZfeF4hd3lTV3JgUrJUa3N1s8X7I+Sutz9uZm6hxlGRm2InK7eH3EREbpIoVMn1Qxq218UCNzUo5xUxKE4c0oijZWhUC2aSlK42HBa22gni+N0rG2w0XQqmju0HXSx/pfmrs95wOX11kwcOjvOOY3twg5DlbVshZFH5wHjRZGokzzvv2DMQQb8ZuW+pZuP4qi5Z0zTSp8pSgqEJbC9kqWZz5to2yzUbgcQPRdd1fkTOWtruuKLFZia1tiqXGTM0XD/sMzNJt2HQsXa6DYcm1cfu/EZLIZp+gO93atYNQ1AwdeY3Wp25FI+JrlE2ozpqXWO13j0mANe22rRcNR5SSkpum6JnU3bb5E2N2oshPHEOHnuM6See4K95gxVu3HyBcyfuZ+sd7+Edv/TXoRTtWaaJUalw35FDkB8+OUt/gKQjfRLjeQErjc6H4VTFwjT0rpOYuK9vFI6v+jr+37FNth+EneS/Z1xAfbAZ0bWG3mmtjJRDHC9kqW7z4KGJTCdCp/aPcXCixLMLNTQZdn2waIAQStkj5h28XnE72X2DxjAo222Zstc2dhP5fKOOYd32mF9vEYQhE+W0QYMSQ19vOIrgYXuESF5YVoluNd8vIl+z/YESOPG4zK/V+cGTV/nV9xzjwGRlYH8Ng6C/ZqcrEcwn1f9TCNP14ibXdiSudM4ubvZZHKclruL7eYGk6fqETY/4da9pYOndIvJd5hbPLUdmAOp6XQiOz3TMLdLkppMzVRa3bVqeMhuYHckTQkJuAhI5pVBKhAyAgIKpIYU+UE4paViqDVGHJN0EsNpwFBFM16jkNPyUBJShge2TkM7Sz1dre4RSJicKeUtndqSwIwRd0wSbkXwWKB1ZK6U77PohOUMD1HXXtuzI/Qx8QtJ8IE2oJw1QhL1YWm2z6ZA3NDZbXvJ8eUOw2XQSubQsbYCOPF7bCwgCiR2EyMguuCA02l6QImUVUiiwRzMCh5frNk5IoqkMKOT6axcx2032+Dam3UaEkrF2jXfOf4+HL5zmzZ84H0sN9CWedqHE/Fse4oU3P8z35k5SGinxU6fm0MbHoFxW/5e7+VF73HeuHzJZMmm6YTLeJUt9MKSNYOK5cX7bTmyZ/TBkvelx50y+ay9YqXcnu12lVdF/HV8pcZi6HkmrqXImmRJ/iU1YDE1LxsXUBQiNthf2nZjkIgu6zZaXef9KG4OEgaCS04GAat6g7oRoescY5PWM28nuGzhuhrLdlil77WM3kM838hg2HJ+2dyOpLV0RPByflbpN2/XJmXrfxqpp6ki85foDJXA0TTA3VuAHwNzY4A+QLAj6bp6udCGDYylkcLHGYs0eWMN8s2tjCainr2wMMKuw2UhJXC1stZnfbJE3NVw/iNDGqL8k5E2NKxFy1zfn4rdxSootHb0lD3Nj3f++aXtdR6ixnJKmCUx0wMPSdTxEn5zSwlabrZbHWw+NJeUXcb3z9EiBmWqOrZanUGMpE9LZIOkxEQQJ6azr74WgkCqD6J2zWddrTFi0DJG4kbkyRBOCUs4gZwhcXyqiXK3dRRCKsbuYKBT/Xc4QnL66mcilKaMODU2I5M/QkUvL0gZQZUAbDYea7SuGviaSe7f9ENtXH1KxPF6sVqBKRTr9KVCnBvPrTa4trHH2xZfJXbnEdBiwp7nFOy5/j7dfPM3diy+iX+9Db2yM+jvezXeOP8h3p+/AFhqWrnNw7zjveMtBDh6eBTMbMTjuuyAMsaWgYOlJ8q8c/2TSdw8e7siSCaLabzplNr1xcbXRQYk7HEsgKrGNxvfiaoOHj+5JpNUijDYhLwpUfxu6SMalYBlYusDxQ9peiBd9gJSsaAyDzhhmlXCMjUHOL9VpO6pcRErYU81z53Tn9Oi2qcTteF3itkzZD3+80cewHBGeHC+knJMDCB6hInjkDVbr6qUqwxAp9b4jXxlGslU7MK/cCYKe9XTl2J4SDSdgs+Vi6RrH9pT6jB+ytAMY+tpYmmirrSSgvEBieyG6EIwVzS4JqBdW68xvtNCF4Oiefmm1jabXJafUZW5x143NLbIQbMNQdskpuV4A2ExX81im3iWnBJ21on5PkcVam7YbULB0ZqsFQmSCGh8eL3eRznprHNOksyzPl3W9pklZ8bj0ytjFZCijNyFPfU/IVLJ7774RFredoeXSHj05M3QbAAqGTtMNCEJJ3tQS9QBNqP+zvZCWG1Aw9OTkRhdwbKqMDHzAZv9ogXzg0V7fINi8hn1Ux372HD/5vT/nXZdOc/fyxeuu1fbIOIX/6gPwyCPw1rdSMQzeI+GkK2jk8hRGR5i7zsnNMLFad1S9raYSyLifDSHQTZ2W46m+qztdc+ORu6ZYqjnJScVMNdcn21YwO0RZLaoBjuedRDnbCaBgGn3SaqHsXKsJyUbLY7xk8ea5UTRNJGMYS9ilJdCubtldYwjZJRzvnKly53SFy2s1YJG3HRnn0GQVKbpPY16vuJ3s/iWO2zJlP/zxRh/DSs7kwHiRqxvXIXgYGvvHClRyJnsqOcp5A9sLBh63IgRlS2dPJTsreKcI+rCnKwVT47tXtvrKB2ZHcjuW8YLhJYRASRMVTD3lsBSJzgPVQkeaKC2npGkauR4vjF6TlKzmFsMeoS5stZM2X1xrYUXSYyt1GzcUXW3ulcTqJdZd27S7iXUWHJ8u8+zCNqsNV7HXI5hUqTx0SGdZni/reo1JWYOk6RZr3dJ017ZsDA0iYLarjCEOXSPRHR5WLi1LGwCubDaRUv2uIAS0DkoZhCQqKVc2m0xV8l0nNyWp5sy+2jLSDymuvsy9z32bvZ/9CMdeONv/QFGslsb4+uG38NUj9/OjH/or/OQDh5SrQakE5TJaqcTeHjvunYZEqrIZrfuDWvUdCE0j9AIksmt9Pz2/3bW+F7b61/fcWAFTF0qXVoIWaXpJqdRFhFBI+dxYgeWGw97RvFJZsIMuYmTDUaVQsyN5lhtOInH4G3/2POeWG+giZVYhJROlXNcYQnYJx3hd1dsOVODKepuNVthHWH294ofzDXg7XpV4rcwAbsfuxRt9DBOCh6eQiM2WlyBSeypK1D0meMxW89wxVeH5xRp5Q2D7Ek+GCCEomhq2Lzneg14MG2lELgzDvlrSnSLoTddnreGw3nSxvYCcrpEzNWSokraa7TFRsgbKeA0j+5UFRUwTWMJIJF6gahF1TeD6IU3X7zO2cP0wQfosQ+uTU8qKZg4rzdV0/U6be0E6QVebgS5inaULKgUzITsuDyDWnZyt8uJKAz8IlUNbGN1XQM7UOTlbTeSzhn2+41OVocl6ccTSc5/62kucW+6oJpycKfNL7zya/Dwu69GDEDeQfTW7li4wdIXiHhorJch13tCi8oeOVFSvXFoWeTwhBIYuECio2Q+VSUKsCqFmlbqunDcYxSO3scWk5hH4PhU2ec/jX+HUuafYtzw/sE8BFiuTfO3wKb5+5BTnJg8SCA3NNPhv7joEc3NQLNKXjQ4RNyOgHppUfWd7AXlD9CGqrh9StAwOTZa61rfjBX3lQb3r+5ETM8yOvMDCVkvVWIcktbiGpqbg3tECj5yY4eJGk7GSxTvvmOSZl7fZanu03Q6Z8965EYDk3gcnihyeLNJ0fBw/SMwqcobOoclilw1wltKq3nU1XlTjnjfFwHX1esXtZPcvcbwWZgC3Y3fjjT6G3VJbDvvGCj1SW7nk+TRNJAhUve0xXjIxdA0/CKm1fcZLVh96MWzE6MW5pe3EArUja2Zy50yZat7KjF4UTJ21hstWy0UAW36aKKQE9KVU16XbMazs17AoopSStYY6Yi2Y6hg6IRWZOm3XZ73hUDR1hFCElAsrDS6sNAaiwIdTcko7Pn1I09tFvxxT0dRZazj4QcixPakj8LECQjdYrtlJm5NICloHQHKRcH/62oKpM5I3FQoWHydLcIMwuTartFpC1nteHW/HoWuC49OVgev12labhS2VMAehxAtCXt60uRah8kBiyGF7AZYekggDCwEyRNOUHN6eci6RS3t2YZu1pttVIyrpRq7jGFYeL90OlUx1o4hSwgges3aN0cVN7pM1vEvnePPz3+YdF09zYHOxrw/jWBib4csH38JXD5/iwsR+EAJPN2iaeVpWgbHxCpX9cwrR3UEMQxQdyVtR39VYa3qknz5EmY7cMV1mJG8RSslaQ9WGT1fTBFuBVYpk81Lr27J0fuWdh/ntPz9Py/FjKVwE4IdQzBn88jsOY1l6Mu9GiyY/8eZyX1mO0mj2KFlGUk5RtAw+/NZ9NyyngOHLn5J5mmVdvU5xO9n9Sx67aQZwO16beKOP4fVl20b7nq8XgfJsxai/c6YfgcoSc6MFkJInX9oA6JE1c3nypQ0+cHd29EKgULSa7WHqWlR6oRFIScsL8AJVkxy/LLKik8Oi/lc3Wzh+SL3tKftds0O6abo+figpWAYS2Dda4MB4kTML28jkVZxQZLC9gAPjxYHSY1nNLW4kzSWjHoxfpVacMJh6dJSvfha/hxe22my1FUEtdvaKTwmmq3lmqjk2I4Ia0Hdt8lFRsrqu3fHpSlJHq9Lo64mrJkYRvkJbc4Yy0liq211GEaf2jyUnGyVLx/Zl6sNJ7zrZ0DTRh1yHiS1tN3KdDsPQukhXgyLdjviEJQglBd9lLGijt9qcmMhz38Vn0b/wOP/oT/8LY+tL173fyuxBJn/qx1l9+Ef5te83Wdx2aGoGDbNAy8rj6WZE/lKEuRtoktwwhkUz50YLnJyp8uJyAz8MCQKZfAgZuiCna9wV9d3Lmy3omoW9IVMzWMVDRyc4MVPmuWs1XFUsjhRKn/jETJmHjqr+75U4nBvtILO98y5daqPreh/xc6flT3FpVXqtNNrKsMP2ZN+6uk1Qux2va+yGJNbteG3jjT6Gw5IlYHgEKkuEoeTKRotQKqcuzw9xUDqShgA3lFzeaBFGygDDRsPxE+ehLup19GeF6EgaTqo8Qnb+4/ghXiAjIwUVCcElA+rfdDoOXZ0XXJROCnW0HYSSptORHjN1LWJyR+5ioWpPGvXM2o4sBLy2FzBZthACNppun9VsOW8wUepIj6UJavvGin0lIIGUXUSaYa9NP98Lyw1lDXsdo48uMtvdNyazaZpIjCIcP2C8aKJFdadFS7nDbbS8LqOI/pMN5SbXe7IRRrINCXKtkSD5MqRvDLNEusbXqTWY8VuUXBvd9ziy8BLvvHSa91z+HsbqMgCDiopemjrIN46c4uuHT1E4fpT/5UOn2G4GrL3wEqs5nUCo8gFLSnJClQ8gtO45miGyEj8R6oO3ktMJURJeulD7gZ9SxGh5AZPlHOsC1puuWitCKHKtH8/RHK1ojsbt2FPJ80sPj3FxrUXd9alYBkcmi1xcb3fNj2HnXdZSop04JMZrpdl2gS0ePDROqWD1ravXK24nu7cDePUlsW7Hax9v5DEcliwRxzAIVJY4fXWTlbpDyTLYbLmqhjMKXcBY0WKl5vTJDd0sGo46lp6q5hJZp7jOuJQ3E1mnONmNUZQ7Z8qcX2qw1mgn5RSjUTlFGkUZFvVvOD6hVO5KN5Imajj+QITU9xXqOT0yGMkZth1ZCHgly2CynGOybPUhSlMRogTiuk5uabMPgLbjX7cE5GbXHpuq8N4TU/z+Ny/z3LVtvCDEjGxdf+aBfQOfbxiy3uPnllit2xQtI0l049A0jaJlsFLrGEX0n2yEA082Bo5hjFxXrFeGxrVavG9CcGnC47+8tMiR+bO88+Jp3nn5+0y2tq77z85NH+GbR05x4Bffz//3GQ0hNIxqibYoctocgwmdWn6JspRsR6YnqkpDkjd0RvIGQe+H4ZCRlfi51fI4MVPh/FKdrVRJ02jB5MRMJZGwi+doztA4v1Rnte50XXtkskQlb3bJ48XtMAyD4zPVrrb0zo9h513WUqK4VCqZGz2k2Rs5JFYKBrShUjCQQvStldcrbie7t+OWipuRA/6ytSNL7Fabd7Mvhrn3reAQt9502Wq7NGyFwOipJoZS/bwSGKw3B1uSXi9iabUgkMyOWANlvIqWRjnfIXvFhBfL0Ng3WuigqkHI4raD68suFGUYVLy7HfkbtiMrQppux81OH7IgUGmy1wMHR2nZHjGiVMybXFhtdpUPZC03yEIku7BS5y/OrVDK6fzIkXF0TSMIQ+q2z1+cW+HghEpMuomOsq/Oshc1W9p2CKQkZwxebzlD0HIlS9tO8nfvOznNO49O8vi5JZa2HWZGcjxyYiaxCE73c9YxtG2fPzo9z8KmzdxYng+dOkA+b0CrBfU6NBpg2zz3p1/gyB//Gb9//ruMtmsD244QbN11H5+dOMm3jj3AcnEUw9T5W9NjNMdgS89hGMrsYN0OODiRU0YbTU99KOR1hJBIqdQLtm2FXsdrJUtkJX6qNehg6IKpSi4p5gml5Np2m4mIGHl8qsJo0eSpyxuYGt3XhiHnlupdZUdZEdhh513WuR+72pmRRrIUEt8PWd5u8/Jmq8vVru/eqfbeSiTp28nu7bhlYkcuUm/gdmSJ3WrzbvbFMPe+VRziRnIGLSdAoqxo0y8LTUq8EJqOz0gu25aallbbbHmU8wol8QKlPJGWVoMOoa2X8AJQlrKP8ALDoeJZ25EF9UzHzU4fdkL2urbd5sJqk7mqBREf68Jqc6DTUxYy57BEsvQcPT5d6Usk0nM0fr7zS7WBqOCdM5UupG9mJIcuVI1u0ervL8dXHyQzIx05vUHjfWWt3TXeWVFugH/1+Hn+4IkrNBxlzVz0bX7/T57iZ+8Z51cemIUnnoDHHkN+6Uvcvb3N3QPGNxAaZ/bdyUtvfjt/7R/+Apd9i8/+57PU9BxOvoBnmIDPlmYqd6/IxW6sqPrE0ERUhwy63qlv98OQUMYuZtnTmjTx82ZoZkzm3Gq5aELQ9sKkNrpgatheAJIOMTJxGwwIw+gvruM2mGX+Z5l3WUuJENB2fVZdX8nHRRm6rkHZ6q6L7r33XLVjLrJQc28ZkvTtZPd23BJxK6B3t1I7skTc5vWGSzVvUM2bhKHk2YVX1uad9MWwKHB877W6nehu2p7PMy9vdt17p/q2rzYavdJ0uu04Uz9LTGelui5Lf2SRVoMODWxYwksW0k2WdmSVz8rSH1kQqHR5xOXVGuRhu+1dl5y5EzKnlMoiNkSioYwD0pGeowC16Ig9RgXTc3RutIBE8sTFdWQoKeaMRBt1reGwftHl0btmkud75MQMH6+8wFKtTd4QXaUMYRjScn1lR3xipmu8b7YXZO3nf/X4ef5/X30Jw2kz7dlUfBvLsXnL/BkO/afv4S48i9VuAf0qcJ6m8+z+kzx57AGeOPQm6oUKej7HofI0E1PjLE5sK4KmJihGj6cJsP0QL5TkTZ2ZSj5yf9Oo5k0EkroTJB8KlZyBRJI3tB3VGs+NFhI009I1ckZKArBmd6GZVzdbOF5IzQ4wddHlPtd0A7xAUjBDZDQ3srgNpsflZmsr696YpZTo7GItIhYSaUyrXS4IwfYlZxdr1y1TGmYdvh5xO9m9Ha973Cro3a3SjiwRt3l+o4Xvh1xebya1d2MFk6br76jNO+mLYVHg+N7nFmus1G22235KxstgquHu2HEqSzuyxFrdRddUyUIoIZ35hnTcodbqnTKGYdqRRVoNugkvg0w20oSXrGOYpR07kc/K2h/DSunF5RHza3V+8ORVfvU9xzhwA4esLM52222PiZLJakPJfRm6xnjJZLvt9c1R29M5u7jZhwoemizi+AFN1ycMJfPrisiYM3R0Tcm16ZrAMnQcP2B+o5kQHWMpqo8/dp6NltelxtByffKGnkhRZd0Lhu1ne6PGf3n8++xt1JkI2jw4f4a3v/Q0D1w5Q8F3Bvaxqxuc3n83Txw9xZMH76NulfAMEydfpGkpBHfRKpM3TAqmRsNWRLowqg8KJfhBjJbqtPwATQgmyzkatsdq3cMLw+RD0/ND9lQsJsodslfmEKh15Hj0fs7mDD35vGy6EalUqA+DjiqIjEh+JComQCa3wSzSdDvZG4eZ+9ttlxeWG0gpmSxZfRrMNdvnxeUG222X/RT77j3sOnyt43ayezte99gpevdGbUeWWNhq872rm6zWbfxARsmPkqJabTjomuD0/GbmNmftiywo8MJWm29cWOXCagM/kD0yXh4128cyNH78TXszEyt2C5mfGclh6hqaADeQ+KFMTAYMTWBpgjC6Lms7skirpUlZsc5u0/HRNa2PlPVKkZ8btSOJIeWzXkl/DIO+apGr1A+AubGbo/jDONul11Ul9VGx1nC71lXJUsYaT1/ZIAhln3HARtNJHNxiouPekXwfEbCcM5gomSz3EB1//qFDAHzy65dYrdu0XJUszY4U+OV3HE5+nnUvuFE/P3q4wlHZgpdW+MJXz/D+04/z7kuneeDqc+QCb2Cf+VYO4z0/ynP3/Aj/bHOCppXHNXM4uTxtq4CnG0riTIIWhEgpadhq7s6O5Nhq+wSBSsyCCPUeLRhIBA1bIdheELLR8vCjhDH+4PSlssedC8IdlTEsbLWZ32iRN3VcP+zRjhbkTZ35CIFt2BGptGIlpFJXhmhCUE6TSiMHwSxug11xk7W1U/3qm839y+tN2q5PztSVfnnUijgsQ6Pl+lxeb3LP3GjfvbOsw9cybie7t+N1j518ob6R25ElYm/5IAyZKKdFy3WsksZ6w1HIgT34BXW9yNIXWRHEbVshB34gqeaNZEPMaQJTEx3kwHa5a2Zk6OPW3UTm08fJo3kdLxQEMkQXGqYm2XaC5Dh5J+0YVlotfcx5/8HRgdJVcX9kcfaKY5h2pOWzHrlrmqW6nZCsZip5Xlrrls9K98exPSUaTsBmy8XSNY7tKfXJbcXteD2l9NLrarxk0XACmlFZx1jRZKPpJuvq+FQFxwvZanscGCskpQY5Q2AWTeY320z7IbPVPGcixvxUtYAuRJ/7XCAlC5vtPqLjzz90iA/dv/+GpLPevcD1Q2wvQBeC8ZI1cC9Ij/fm+jZ7pMt9VYmxcgW+9CV4/HH+6je+wY/7g/e8lpnj2wffxFcOvYX9f+0RfuUD9yK2XF7+j2fZ0ixMUzHypZQIGdW3B8qC+MB4EUNTds9BGHLndAXHUyTDw3vK5EyTjaaDoWuUcwbT5RzXtmy8IGSiaOKHJH1naLDZ9ljctpkuZ7cDj/tOF6pEp+H6CTpftgw2mp2+ix0EgzBk72i+bwzXG06Xg2AWt8HutTV1Q/OH9F5QNLW+a3dKDBNCGfTIyC5aSf0qZFfXQEanDr0f0Ld63E52b8frHjt2WHqDtiNLNBy/y1s+HbF9aN32M8vxZOmLrAji5bVu5CAdmiY6yMFak3v2jg593Hp1o7VryHx8nPyxz59jvaW0VTUBoQwJQ0nB7Bwn76Qdw0qr9ZKyZkfyjBZN2m7QR8rayXweph3xeBdMjdPzW10ubteKNjMjuT7R+fj6p69sDXR9GzQur6eUXryuQHJ+SfVFbEaWN3RGikYixbZYs8mZKgmOyX3p0pLRgollaCzWbCZKFqauRWifSa6n/rcdEbImSv1sNMvS+bH75m7aZssQXNuyaXtBijilkzMFLTfo2gteurLCV797iWsLq+Q2Vrnn+adYOfsdZs9+HxFEyiM9v6duFXni4H189fApTu+7C8+0aJp5/vsTx+DoURpXNpEj1wibLi1f0oEk1X91oZzAbC9kdiTHgYkiL2+22Gx1tJJzhmCz5WLoGvsjN77vL2zh+GrObttKKi+uY9Ai21vbC/j+wlZm2cF03y1ud/dd3fS7+m52pJC0OS4lismcG83uNgMdt8HVRpeUthBQzXe7DXatlfntrpKYhS1FlEuvlUfvmeY7l9f5v556WVkAR3M0Z+jcM1fdETEsdsBruT4bLS9qc4RyC7A0dQqxZwcfFa9n3Dpv7dvxqscPi3zWjh2Ifgjb8WqPSSwZ5Xgh5Zzsa7PjKQeuXjmeLEShmxEl0gjiMLI9qvZLIMMQKXWCUKaQA/X3miYi89nhj7WzygdljYeOTnDX3ipnFmq4fkCQerGc3FtNnI12Ih+kyHpOwjZ3vIBnXt4aWHoR98efP7vEswvbtDyfomlw374RHr1npsuzPqt8liI3OVQiclMQhjy70N2OjvyZg+2Fisxj6EgpWa7bbNsuE6Vcl+h8fL3jhV3H6ysDrh92ju5mlCPN1tWGA1LVY8dLq+0FtGuBSgoiKTbLUAS+S2tNVmoOXhhiahrT1RyHJktstz2ars+p/WMcmijxwkqdkqX31XCuN13ujFzOdtJmXROs1N3EBS1WK2g4Hts2TJQsKtKD1VUuX1rki184zdxT3+B9z32b/S89jybDgffezpf5+sE387XDp/je3jtxDIuWladpFmibOYqWzk+98y7QFAqb07U+j5Q4pFREs3LO6BAj/RDPD9iOCJ4NO2BPOY9hdIiRZ65tR3W8SuJLpnLoEPX3fiAHyv/dbC51+s5Bk5IQRTjTBPi+z7YtmCip8U632fdDNtteUkq0p5LD0LvJnInbYCgT+1xQyGmv22BaWtD2AnJ6iihXt6nZHhMlK1krV9ZbXFprYfsBGkpzGASOH3BprcWV9Vbmsq1T+zv9rdRNBAk1NpQ4UnJ8rLCjOfp6xu1k9w0aP0zyWTshpfwwtmM3xiQtGTWIsNQrGTVsO7qIEs8tE8gYoRHoQnB8ptKHIF7baiV1pL3IXRpB3FPpJAkbyYupo3Fg6hFyUOkgB8Mca2eRD8oa8fHiZDnHLz18kIvrTRpOQDmnc2SixMX1Vp+8VBb5oHNLNVa2bbbtFFkvbzA1kr9+6UXnHcSgctksY5iQm9Zb+GHI5fVWqu9Mmk6QtKNo6kp6qe2hoQT209JLbdfvkl6Kr285PlPVfF+pzXLN7pZq4vXfv4qmTttTbP9wQNKmCbCjI2Nd05Qdb0yM6hkT2+uMd+wu9ht/9jxnl+roQiRasYGUTJRyictZ1ihZBroQCt1L5opqfM73sNpN9jkBY8+0Cb/1NYqf/TP+2wvPX/d+7ZFx8h98lPD9j/Crz4ZcaUtaZp6mlcc2813XTpStpM1x34FCcVPAYKJa0nZV36Xn6PklG6VzBX4QstZ0uTM1R8eKJm4Q4kfGCV5iKqHc/Fw/JNRhrNi95oaZS2XLQBfgeCFu0D/gli4whLqum8zpsm+8eEPHvCxug7G04FbLRQBbvpeyfFYnArG0oO+H/P43LyvJw7xB2+2USBQsjabj8+knLvPuO/Zkmk+aJjg4UeTcUh2kxDJ1dKFc4lwvACE4MF68JYGzG8XtZPcNGD+M8lk7IaX8MLVjt8Ykq2TUjtoRgxHxttyzx82NFhgtmnzh+WUsXVApmAlyt1xrc3Wz1SWc3o0cSITQkptKGeIGYiBycLNj7S75IEOjkiIKrdTtPjH0LNHtbKRzfPr6zkZZTghist5LKw0lWZQm67U8ao6PpSuyXrrkIR7DudECRUsdOT53rcbitr2jMYzJTSt1ewDJqpvcFNsU19seuiZ6EEQfP5QUUlqcHbb69V6OoktM7VbYv5ZqNo4XdCW6SRdCJJUXsFSzefDQxID5r5IxJVvV7pr/ByeKHJ4s0nR8dfQcKkQuZ+gcmixycGJnpRsCRXiq5nU0IQhaNnmnScmzObq1xFtffIq3v/Q0Mx+7BMDUgHtsVsf5zh0PcPrEgzTvvoe/84F7WQp0Xrj4Aqs57bqCd3XbT0h1S3UbN1CnMzK2wk4NvaYJ3CBkqW5zaE+5036htHMBDF0j6JkuM9U8uiZouSG6FBiRkoVEqSj4sUxZtZOIDzuXJESubIOf0A0kW20vef7rkzn7ZbyyuA0KwPECJcWma1hGR0u45QV4gTqpEyhXxxdX6gRhSNsTWKaGLtRHU9tTBMAXluuZXR2VS5zgoaPjvLDUYKvt4UYf4BOVHMeny4C4pYjaw8TtZPcNFjshg9wq8XqTUnbajjBUpBKAhc02ByaNrmt3kziVRTIqq/97QpQ4eWOiBNDJAnpJC9GxXfpvNU1wcDxCDlBqBh0nJHXloZ0iBwmg1UExQRKfeV7vZX2z6Ha+ClnctpP+iE8A4tKEbs/6+gDP+s6YxDI/XiCp5HT8EBw/QBMalZxO3Qm6ZH52OoaP3jU9kMwWX1t3POY3WgSBZLxk0nADmk4H2e2SSIpkoYRIk1SilFaoWuYglDSj2tC2FzBZthDiRnJplqqT3OFaudka7I2bHWuv1Z0k8VHHw51/KyMhDjeQrNWd9OPfdP7Hz1e0DP7GA3NcXGtRd30qlsGRySIX19s73gtaXsBMTjDSbKHVGxxZf5n7zz3FqXPf4cDK/HX/3droFM/c9SA/uOttzM8dxTFzLPo6nlFka2aOqyt11oIoCY2Q2hhRFSjEr2b7LNZU/683XSWdJgRCU/W08VpU5QdqL4qvS89R5YJX4+Gjk4kLXtwfLS9QMmWOIAhU2ZOS/4IgUKSpgqkl0mNZ5tJm22GzdWMS72bLY7PtcJASkM0R8Mhkmb0jeV5abSbjfXRPCSlEl1Ndw4lkzQAZhgShIETJm8lQocB+ZIm8WnfU6Z0GBctIpp4hlBZ0y/GS67JE3OYTMyOcnKn27XUhDHTXu9XjdrL7Bot0gft3r2wNPMq91eSz0vF6klJ20o74iOzyao135OF3v3yBQ3uqAwk9uyVpNqxkVFb/92GJEkAfehGjy9PVfvRiYasNQnDfvirPX6vTdP3k5VmyDO7aW0HuADlY2Gqz1VLt6JXlmh4pMFPNJZ71Wfs5Lk04t7SdoB1p56vjM2WqeSspkej2rK91POsnS/zMialkTGKZH02gJJXCDunG0ASWLrpkfnYyhrMjeWWvWug+ykxf27B92m6AQHJ+2cH2UoQsU2e0YOAGIpFICqVkT9nqk88qRTqwMXkr7rtYLq13frxSuTQYbg2mY5hj7fWmg5QySe7SgJ8u1ItTSsl60xmI3l1v/sdjUjA1Tl+tJetqTdfYavs7258dB+p1qosrvP3C09z5zBMc+/6TzKy+fP1/su8An5+7j2fvfhvrB47hWnnsXAE7XyTQDRzbSySxLq02VP0qDEzAw0CVelxabUDUL6AME5ASL1QJrhCQ0zUQAj+SHkuPt6ZpVAoGtKFSMJBC65ujuqbIe5tNF8fv1BdbumCsZKFpWjJHs8ylr5xb4TqgbhKBhK+cW+HN+8aTvxvWEfDc0jbnlxpsp/aNM9dq3NmzbzQcVcY0WjTZbvnU2l73OiyqWvKG4yORhFIiNH3gN5bQNEIvQGb8xO8tw5ob636+pu3dckTtYeKHq7W346aRLnB3vKBP87G3wH0ncasQ37K0YzfanHYrGstHyIcm+tyKdipplqXNWVCGYduRZR7F6MVsNceZa3Vqjkc1Z3LP3gpoWhcSEM/Rmh0wXjIZLZgESPTIQlM5EzmZ+yONosyNFlmstRNJrNlqgRB5XUTiZsigOoKWPPnSBqC0Ji1dEEiFZD350gaP3j3dVS6iPOsNHjoykSDrtR7PeiEU2mV7stuZLbIY9QOJZXQQ1KwkvGGvLefUS3SlbgNgaFFtoYSW69NyfaareSWRJNRcCQLJ7Eh+oFB+0dISUmSXXNqBkYGnBDuVSxt2DcYxrMPYeDmnyEmhGpN0yWMYKmTX0GC8nOuZd4WbImE73Z+75r8MmNN9tGYDTp+Gxx5j9rHH+eX5KwP7DWB55gDLP/Iu7vmvf4arY3P80Rcv0TRyFCZGQe+kAjIiSMaSWAXTQKCeOU68OtcmctMUTHWPw+NlCpZB2/Wp5g38UKmWaELD0BQKXLQMDo9nM40p51RN8pbjU7B0rFAm9ay6Jmg66tQklvHKslYadseIYtAOG6eL6euGibnRAsjOvtGtKa72jQ+k9o1yJMW42fTQNKHc4pJTL8l222e8ZFHOGxRzJQqWge0F5A2t76TD9UOKlsGhyVLmNt8KhPFXO24nu2+wiAvcm47PdDWtuyqwShbLNScpcN9JvN7EkZ20Yzfa3OtWtLDh8iOH4My1GuW81eVW9GpJQN2szcOiDEMRp6Qceh4p8oTO01fW+5Da71/d4q69FWZHisnz9ZIwbD/sImE4vts3R4fpjxsR5a5t2n1Eud573wgZDEPJlfVWhLxGphJxeho97PyGcsYCUp715a6XxUyPZ/140UySJ+gvs5Co5Go8It1kJQMOS9gLAqXJGoZq3Lygm5WfJhXpupaQImOprVh6abPl9ZEi0ySkx8+u3NAVaifkvmHWYBcJbwiHsT1lZSISRC5dXRUx0f80dY095dyN591W97zLsq565+gXTs+z8PIqorbNHZfP8cALT3H8B09gLC0Cg5O0y9OHeOrOBzh954PkThznb73/LrRDM+QcQeliyOZmi1Y7oJwX3cTWlHzW3FghsTQOQommKUUViVTzBUUqnRtTyU+1aHJ8usyzC9ustzzFoxQgZYAE8obGHdNlqtGcHna8pZTousALQlqu7CunMHSV9MbJbpa1sm+sO3FL6oxl95rsve5mEYaSKxstQinJRe0TQunVmho4geRytG/E8z9WZNGiGua4ZtcP1T6pR9dpQnB8uszzizVqtt+VSLfdAENX/TyS75exu1HcKoTxVztuJ7tvsIhoPim6R2/IG1JFbhQ7IY7sJqI6TDt2i+ySdivyAknZVM+kCVhpKAmpmNCT9Ut5N8lsw7bj5c0Ww86judECNdvlqctbSCkxdZEQJRqOz1OXt/jRO43k+dIkDEMTGLqGIdRvarqK4BSTMLL0R5ooZ+rK9SiWxFoaQJRL3/tmyODpq2oslTuSOsaP+0GLEM2XN9ucvrrJ7EghOT4FqLW9LkSpu9RA1eTdKNKYb9czahCg1pinhSxt+33PmBD2dE1JhMUyRrVuwt53Lq8npKJQdu8Pkm5S0YOHJjKRIrueRYLvh0oqClVbmI6s5L60Y1is0Zo3xUDHsN41m5ZM612zM5U8pZyBH6oPLz/sOEQbEZ+ynDeYqeS7xkQXSkQvkKCLkGuu1zUm6XUVo42xTFk5p9O3PzsOFy8t8qdffo6x73+XHz/zbU6e+TbV2sZ158vLB+7gm0dO8eSx+1kcm8HOFQgLJQ5OTxFMz0ClwlxJDi2fNV3OMTvyAte22j0mA6qkQwjB3lFlqBKP4cnZKi+uNPAj4piMPqKMiNB4craazI+u8e6aK93jfXWzhesHeFHZhBAdlDm2F+64n2Ujzr79jskkUUxWo+z6D6YmePsdk9ft90GROOaN5hO3NU+GyjGvYDFhCFZSjnkCJctWzZtoAtpe2HFny6mPpbyhJfvuO47twfUVEXK96SYnLBMli6lqnnfesadvHQ7zTt4pUTtr7fxrGbeT3TdYtLyAyXKO9RuSQbL7h++EOLKbiGoWgs5uEMNix522p1DMVnS8tVJ30HUdV5A47mhacegv5deKzHazdmSZR74f8vy1GqGUGBromqaY1VIQygA/lJy9VsP3QyxLT0gYYSixgxDphQmrWkTJY0zCyDreSPAiclQoveSumgDL1LteplmQwZgMIlDJvBuol7GIEl1khzRSLZjYfoDtaZxbrPchSocmizh+QNP1o9rQTpt6k0xQL/L1ptP1g4bjU297+Kl/awioFMzuD9kIpW3YXpfGJ1KSM/Xkd6RJRbqmPtqSfpJ0kYqykCLT/bzd9pgomaw2JF6EMI+XTLbbXtecHnaO9jqGmZp6GsvQGS8ZfY5hvWu2VzKte80q+aXnr/mK2Z4aEz+EoqlxYLyEHSPgEuqOT932CMMO+qtpaq7G3Rmvq8u2x5lrteSkAKHUBfaULaZzAmdpBTZ8wq99neDffZb/5qlvUG3WBi1rpBBw6hTykUf508m7+IZTpG5avOwZNDWlDLGnYrHd9gf2883ks2JDlY/8P2exUxNOAr6EvC4SQ5X0Dw1do2gZuEGYIJeWrmHoWtIfveM9V1UoZMP2Wai5XePdaPvUon1Wiw5Ukn6Obli3fRptv6sdah3cmDgYhHBwosDFtZZKpOm+hSbUz3sOPG4a6003k2NePD+EANsLqRbMhITn+CF5U0v23bjvvnN5nYurvvpolhAKtRcdyRt9CGyWd3JWonbW2vnXOm4nu2+wSJNBekk6vWSQLJGVOLKbiOpOCDqvNjGs4fjUbA/bC9RXuqXub+iChhsgI1vMmKQz7Jfya01mu147ssyjx88tsdXyqOR0QinwwzBBcnKmQQHJZsvj8XNL/Nh9czQcH9tTx2xeoCCz5DhSKKTX9pRbUdbxnt9sqcTFC6L3W+ff5A2NK5G/fS/SdzNkUKJKFzq1h+o4Uka1tfHfSyQlS9mCnp7fxA9kn4nCetNh/7gq61hvqCTW0FRSmZa60kTnpR5ft7DV5un5TRq2RyA7SgFSKgJNw/b47pXNTn9stMibOm6kSRr3h9AU8j0f9cdgUlE0hgq+S0hFg+bR9UiRcZvT/VxJfTitNdw+BHbYOdrvHtjpvEHugb1rNi3r1OxZs7MjBcyITBXfOk6shFAJpql3SHVPz2+qD6ywW/44DFXiFo9JyVLzICYjatFAm55H0W1R2WjyI7ULzP0/5+AbX0Xb2uKOAes4EIJn997Jk8fuZ+nBd/Df/uyPIkslHv/KPJfqiuRUrpqUo/KDYfr5evJZWWNhq921Dk1d67Jh612H6XZcXq1BXsmA9Y73pY0GjhdEphKd8oU4Yu3jSxsN7t43kok4WLIM7ts3RilncG6xjpNiq+UMwYmZCkf3VDK/N7M65g3ad4MgVCTbAe/v2FTCCyU5XUcYqr7XC2WfqcRO3slZiNqJHGLVAgkjBfOWkju9ney+waKLDHJwdKDc0E6Ky7MQCXYTncxKstoJMWyYKEbuR14gqeb1hMBiaIK8IajZPoamjuPj2A0S2U7i2FSFQ+8qcfrqJutNl4mSxan9Y13C41nm0WPPLRFISdUy0ITW54gWyhC75bG0rRK2Yk5P6v9GCwahFMn1mpDU7AA/kBRzeuZ5N7/eQgOO7ikNIE65A5G+YZDBAxNFhIAgANPoIEkiymy8AAxDWYPOVvM4njrePzBWQNNiC1QdsyiY32wz7YfMVvOMl3LKCABJwRAEUnRIN0LiRpJK4yVlsLHVdHlhuU4ooWBAgEiSUh2JE8CLy3W2mi66Lphfb6ELODqpZAjTR+bp/shCKkrPo2GQn95+dn1VH6wLwXjJ6kNgh7132j2waAaJkUG97WOZep97YO+aDSX4MkSgasXTa3a6nOPalk0QhkyVLXxJgk4aAjbbHovbNtPlHOdWampMQknBAC8UHdRfkziB5MXlOpsthxNTVa5t2XhByIwVojVblBvbPHzlB7zz4tPcf/H7lFx74Fz3NZ1n9p3gm0fv5ztH3sLm6CTrIkdYLPMze2bQhOBi3ScIJBNlq68eeL3hduTjMuwFrhvwya9fQiKZLitVjkCG6ELD0iVbdsCnvnGJD92/H8vSk/Eedh2mx3t+rc4PnrzKr77nGAcmK13jLaMxiJ8p/thUH3sy+ujsOKuliYP7xop9BLVAdgirx6cqHN1Tpu0FvP3IOM8tNhKS7d2zZS5t2BybKve9N1034PFzSyxtO8yM5HjkxEwXwp12zCuaGn5I0heGRp9jXpZ9NzaVcPyAE9Nlmm6YnCCVLI2rW3ZiKqFpYueSfjdZ371yp61oXKXklpI7fV2T3U984hN84hOf4PLlywDcfffd/Pqv/zof/OAHB17/f/6f/yd/8Ad/wJkzZwC4//77+a3f+i0efPDB5Jpf/MVf5NOf/nTXv3v00Uf58z//8915iFss0sdCF1abzI7kGS2atN2AC6vNHReXZyGO7CY6mZXslZUYNmy03ABTF4RSw/ZDjKg//VBi+xLL0DB05aeejleTRLbTGHSU9dSlzYEOasPMo5kRlbA5vqRoKXQ7jbk4ntrcZ0ZUwtZyVN8FoYj6SmBECJvtS0w96jsnYHbEGro/FrfbCdKnaRq5HtOgQUhfFmSwZOnKRSiUGJAgTH4o0XWNoqVjuyGLNZucqTFaMBMCV7oEZLRoYRkaizWb6WqeasFgu+3T9iWdmgZ1lqoLQTVvMB0J5Z++uoHrq7IPO0jXDkdIMOq48/TVDU7OjtD2AixDsLjtKB3bKJGu2zo5U83PGMnMQipKfucQyE/cz5YhuLZld7WjYHa3I8u9Y/fA56/VWFhsYxDCIbi41sBHY7xkcdeeakKUi9esFwi22qqEIYZrVd11Z81+f2ELxw8omDpOICP1DTVHHT+kYCoW/PcXtji7uK1qRSW0fDrzSEq8sDMm35vfxGm0yW9vcGx9jQcvnOZdl57mR+bPUPAHa6EGpsVTe0/wjaP38/X997JcHKeZK9Ay86DrWIaGCJTaw1QlHyGIxsB9N2dqiZxYHMPsBY+fW2K1blO0DAxDxzAgDdUWLcFKze46ucmyDtPjPTdW4AfA3Fh/UiWEKgsJ0QijFmgiInEiEJpAQyYVC717abXQPXfbjp/sHen97tKGzdGpclI+c2ljMCnrD5+8zCe/fonVup0ksB+vvMCvvPMwP//QIYBux7zlBroQyb4RSMlkj2Neln33u1c2uLzepGzpLNUc2l7YVZZTtnQurTX7eARZJf1uVvLQK3faaDvcdwi+c3mDciF3y8idvq7J7r59+/jYxz7GHXfcgZSST3/60/zET/wE3/ve97j77rv7rv/KV77Chz/8YR5++GHy+Ty//du/zSOPPMJzzz3H3Nxcct0HPvABfu/3fi/5cy6X67vXD2MMS/baDRewLMSRrPJBu9UOYNckVMp5g2rBpO0oHUM/UEmtH0hKlo5AUMx1UKXder6skeUoa9h59MiJGT5eeYGlWpu8IRIkEyAMQ1quSqZiAks5pySfTE0QAk2nk/yUcjoaUMwZlHNGpv6oO16C9JVzsu/aXqQvjQyWrBA3VGPoegFodF8vYbyUw9BcWm6A7Yf4EapUMFSiO1K0KOeUDbJlaNx/cJxLa80+XdmDE0VqbY+m63Nq/xgHJ0o8s7CNkB1VBlBJEgIOTZYS5MfxFTknKUWk4+wVpmSgHF+VT+iaYKXuKm1YTZVfSAkNx2PbVses5bzRRyoKIhRNCIEu6CMVdcb35ntSpx0OOqiEKSIkNmw3akeub63c7N5zowWqOYPNltIuNbVOnwShZLPpMZLvECPLeYO8qVOz1SlAmogUSokvlANXOW9wZb0FwN7RAtttpTkb66NWo7W/0XSVhFjPmPSG4XuU3RbF82cpP/cd/vnn/oxTV86QDwabGDiGRe2tD7Hnp/8a39x3D7/2jSW29AJNK48UqcxRKgKTpSt1BCUTpitJs5zRVx+alhODFDmz7qDpAhlKbD/g2Ze3uvaCpW2HQEpyhpo7vSc3OUPQcmVycpNeV8Oswzh8P+TpK4p49/SVDR441G1ze2iyRCln0op0qf1UqY2pCQKgZJmJ1FbWvTTe7/782SWeXdim5fkUTYP79o3w6D0zXe/NP3zyMh9/7DyOH1CMtKUdXxFhP/7YeYAk4VWOeSUatksrMk7RNEHRVLJgvY55STvORO1w1bjdNzfaowXt0nZ92kLVWucMDU0IQgnNaI9Cqjr7mEcwrGRhlvdEr9zpWEF9COVN7VWTO3014nVNdn/8x3+8688f+chH+MQnPsG3vvWtgcnuv//3/77rz5/85Cf57Gc/y5e+9CV+4Rd+Ifn7XC7HzMzM7jT6dYqsZK9X240sC3FkN9HJrLIouyWhEqNKVzda+EFIqWgAbfZUcjTdEMPQu+SXduv5ssROykuGmUcxgeXjj51no+V1bf4t1ydv6F0Elkre5MBEkQsrDZoxwoZKGNpuQLVgJrJHWfojPSaDSHW9kljx9S+tNHhprYmJhH0wv9HGQzCSN9k/XkquPzBR5OVNKFoBIpXQyzDENPSkzaBOFPKmxlsPjfW9WBqOHyXYClE6MFHk+cUaXqgIfonKlVRlMQfGS0l/T1c7H+5p/Dz+b5xwTVeVJJYevQgVyzxIbi4QaJpSzUjWYSR5NZI3I41dlajIENwg7FNwGXZPKlsGulBJki+h7XtdiKoQilxXzii9F8s6gaRoqqNb8KkUTDQ3xB0g66QL0SUjluoQkCT9EddaNmyPettL7FdFVCCtCZJay7br9yW6lu9RclvM1FZ59+Xv8a5Lp/mRT5xD8wcnuC0zx7cO3MdXD5/iOwfu5Td+5d3sue8w2rUG177nJbXc8QcQqQ8jP4SRotG1ri6sNKI2qecTQLVgcjiao/FecG6pxsq2zXYqmR/JG0yN5JO9ID65absBoVRH5XGSaWgamug+ucm6DgG+dHaZ3//mZa5tNvh7x+Gffu4Me8fK/OLbD/G+k9MAjOSt5PTB8QJVT436yHP8kJxpdElt7Xgv7VlYvWMbl3U4fsB40Uw+7osW5A3BRstLyjoMQ+OxM8s0HI+SZWB7IVKAhqBk6TQc7/pH/GpbVGossmPWEcdY0Uz4Amk0XxdQiFB8TQjGimaXDNvNZAizvid65U475WAa4yX9Fcudvlpxy9TsBkHA//1//980m00eeuihof5Nq9XC8zzGx8e7/v4rX/kKU1NTjI2N8d73vpf/+X/+n5mYuL43tOM4OE7nGKlWU6xXz/PwvBtbCL4aEf+O6/2ui6sN/t2359lsusxU8xQti5YbcPbaJkvbTX7ubQc4kvIYT8dMxQTUphIEPkE2EYauODiW5xfeto8vnV3h0lqTtZpKWu/bW+a9J6Y4OJbH8zymSgbHJgs8v1ijYpX6vqhXtlvcvbfKVMnYUf8O246s12aJqZLBqX1VAt/HD0OabXUPA8neEQtD07h//86eMW7zF59f5vlrNVq+T9EwuHeuyvtOTu+4zQubbS6v1pirWuogsEcFYK5qcWmlxvxaPdHMjONm8+hvPDAHYcCnv3mJ5bqD6ylpqf0jOf7Ww4f5Gw/MJW2eKhkcGsvzwuIWlgixjNQmL0PCwOfQWD7pu6Q/zkb9EQn237t3hPed7J538Zh4QcBaw6Me1ajOVExMXe8ak6mSwaHRuB0SK9qkc7pEhOo5D0ftANS9Ax/fD9lq+wShIo6MFpVUU3xvIJn/5ckimlQHr5oEQr9r/s+v1WnbLrMVhRT2JhLjJZOW7SRjMp7XKRiSQKbytdQYStTLbjyvE/o+libJiZBQi7G4OP1RckaWJgl9n/m1OvW2w48cUqYPWxGBytAEY1WT6UqOWqvTjmRPajgKycvrBGHI2YWNvj3J930sDXJCMcW7k0w1T0xNXed53tD73dNXNthq2hway2F7Ib6vkCNdhowXDfKGxlbD5ruXV7n/4HjUHyE5XfWxTIiRsfVxiKWFhL7PvTNlxgs6L64oS+uioaUIiT5rdZ87pqrcO1PmzNV1crok53sU3TZ7t1d418WnecfF07x54RxGOJjC37AKfPvwm/jm0ft56uB9bBbK1PU8rmmxmKvgWRbrNYecJhPEftB4a8D6ts1b94921pUW/4u4r2XXuppfq/Otl5a5ulrHDyVlS48SUknTdrnqejxpwF+9e4r3HJ1gqmywXHcwBOQ0LfndQejhSpip5HjP0Ym+deiHIVstH8f1MDSN2arZtzd+9fwK/+oLL9JwPKZLao8Zy+tcXqvxL//8LDLwefedU0yVDO6eLnNlrU6LAC/orBXT0CjmBPfMlLv23Cz7f3re7R/JU7SKtNyAc9e2WN5uJfPusecXqTXbjOV18kbPqGiCsbzOdqPNY88vcO/eUb710jIvr9XxAslooaOF27RdrnoeT15Q/RzvuV3tGE21Y3GL5VqnHXsKBmVL0HQCLK1TvgFqbuuElHMGewoGUyWD8bzOl19YwYrUMEyhGLFbjTYr203eG/Xx/Fo9eU8IGdBoB7hhiKVplPN633si9H1MEZLTQgwRYgjVH4YIkUJgaSGWUOtqN/KpYe8pZO/nwmsczz77LA899BC2bVMul/nMZz7DX/2rf3Wof/t3/s7f4bHHHuO5554jn1c1bf/hP/wHisUihw8f5qWXXuLXfu3XKJfLPPnkk+j64C+Lf/Ev/gW/8Ru/0ff3n/nMZygWX3/r2ttxO27H7bgdt27kNzaY/da3mH3iCSaffx5xnQTXqVRYetvbuPbww6zeey/SzHbycztux+3ojlarxd/8m3+T7e1tqtXqda973ZNd13WZn59ne3ubP/7jP+aTn/wkX/3qV7nrrrtu+O8+9rGP8Tu/8zt85Stf4b777rvudRcvXuTo0aN88Ytf5H3ve9/AawYhu/v372dtbe2Gnfdqhed5fOELX+D9738/Zs/mt7DZ5ne/fIGRgjmw/rNh+2y3PX71Pcf60LjXOy6uNpIvasdXX9RH9pR474mp6yLRP2wRP+P8Wp2H8gs8ac9xcE/lFT1jP7Kl03IDlmo2YyXrhkj+jWI351IanRkvWhQsjbYbstFyKedM/uH77+Ddd051tQNkCkWMnKxKCkUEkbQjS39cXG3wf3zlJS4sN5LyCKWzKzg2Xebv/OjR5Np0O5ZrDo22y986uM2nr4xQLlp97YjvP8ycHrYdT1/Z4J9+7gzlnHHdMWk4Ph/5yXu4/+A4T1/Z4B/8xx+w2XQZlE5pwFjJ4l//v98EqONgS1clJW0vSI7iC5ZOThe4geQjP3kPM9XC0HMD4GOfP8vLm20lcZU3Eoethu2ja4J9YwX+hw+eZG6skDzjq92OpVqbf/zHz+D6qifKluC/v7PN/3a+QMPtHKX+zk/fl/TdsO0A+Md//AwN28cOAmSqs3Ohx3jgcGd9kX/GZYwvfZE9L55Fu07V7kahyhOH34L5Xz2C/u538Ztfu4Zt5Wmh46dIcoYQWLqqufyffvIePnD3LH/+3CK/9tlnu80OUiFQ9aq/9VP3cu/e0aHX1bPXtvj1z50hZ+oUrH4QqO0GOF7A//ST93Dv3lE+9vmzPLuwzWbbJZ3H6xqMFizunRtJxjuOYdZK7/w3RMhfn9rgT1bG8aXWNf9nqgU+9vmzXFxrUmvHaF5ck6LKNI5MlvraMUxk2Ruz9B0w9LUfuHs2UztAadk2bI8XVxpst71OKUrR5I49Zcp5M7n2f/xPz/L8tRqOH/aVw+QMjbv2VvnNn7gXyLa+d7KPvppRq9WYnJy8abL7upcxWJbFsWNqMO6//36eeuop/tf/9X/l3/ybf3Pdf/Mv/+W/5GMf+xhf/OIXb5joAhw5coTJyUkuXLhw3WQ3l8sNJLGZptmXfO5mDPp9dtim6Uumc5YSD++JXE7QqrvYIa9pW4eJO/eOccfM6KvuoHYrRfyMSjJngf/uPcf7JHOyRBhKvnhunbWmOiaNS0BKBYMjeYsXVxp86fw6d8yM9v0O3w9vKCF0YNLg0J4qZ65tc0fe6isvWai53Ds3krn9vh/y6W+9zEbb58BYEU1Tr/18DmZMg/nNNn/w7Zf50ROzGIaWzOkjk2Vmx8rXlQSyQ9B1Y+j+APjiuXXcUPCekzMs1W3abkDB0pmp5HlprdnVd73taLZdYJu3HJygVLC62hGvrWHmdDyGbih4710zA+WD4nZUi3l03aDhhuSsftH5hhtiGAbVYh7TNHnzvgmaLtihIKcpbd1QKla6LsAOoeXBm/dNcHGziW4YuIFkomIOkIDyMAxBtZTnwGRl6LlxbrnGxQ2bIIDxkoUXSOxA3bdcsNhoelzasGkFEtM0k2d0w5DJar7vGdcbDoahUy3msUOG3u9OHZhEaAabdpvxokkQJT0BGkKTbLQ8ZkcsTh2YxDT1rnaMly02W35yPDtWNCKrY3XdpfUmG+0AQ9Op5nU0xyXvNDm2Os87X/wOb3vhaY6vXLrumlgpjfH1Q2/hq4dP8d25u2jmi/zef/ej3LNvEp77Glu1NmMFAz8UKYk3yWZbkTkfvWsO09R53/FZ3PA5nCCM3MoSD4pEW1kKjfcdn2W+1pnPM6MlFrftpORndiRPCMl81nQDDw0ZCLSAvvG2A4GPhqYbtHzJxXWbvGVycqTAaqPjCLinbLLV9tV4+7LrHTTMWtm0Q5qeZLRs4IXqYwOg5UqELjBMg2bDY9MOqRZVOwIp2D9RHiilN6gdw0SW9+yjd83xLx9/iaVaG6FpfYTcTTtIxvAL55dVP/ug6aKn1ABsn6SfTdPM1I7jU501++g9e7m43qThBJRzOkcmSlxcb3F4qsqByQpnr9V4fqlF24fRYi7lgqdMZLZaHmeXWjRdyZ0zFZoerLb8RDoxADQdygWN+c024xXYN17GMLSu98qbDoxH0mNqHy3mzUgurfqK3os3imHH+nVPdnsjDMMulLU3fud3foePfOQjPPbYYzzwwAM3vd/LL7/M+vo6s7Ozr2YzX7N4LaSodjOGFaX+YY6bSeZkiZ3KtsUEj8vrTbwgxNQ1Dk2Uuggeu0V+O311k8vrTSZKVtfGr36nIvHEEjgPHp7IJAm0ExORgqlxen6ry7nsWtFmpkcCp7cdlYIBbagUDKQQXe3ofqYbz+l0mzVNo1ro7pN0m7OQigCeWdzG1KPENlU3HUjwUOYUhqaumx0pJEShWAItb+h4QRgldh2iUJa50bB92u5gSbOOlFiYSFzFz/jyZoewFLdjo+li6FofuW+Y/W65oWxYt1ouNTtARHbPjh9Ss0PyhkrylhtOcv8DE7FUWZ0g7KCqC9uC8aLFXXvKVPImUkoM12E8dLhn7TJvP/dtHnzxuxxenb/uuC+WJ/jqkVN87dApTs/dSTNXomnmCTWdSk7HF0YXmXOz7UdkTg3Hl9Tb/WTOM8s1CpaO2w7VRw0dybvY6atg6pxZrjE7UrguCWlhy+4iIe0p5yjnDBw/VIoOhqZIhBIlbSeUasqecq4jHacLlutuInHlBZKwrlQABknHDbNWYiLgVsvF8SRB4MM+eHnLRtcNcqZIiIBpCbubSelljSzv2SyE3LifbS+I2q4lVuqur5x3ytF1WdsRr9mzSzW+cHaFIHWC9NJKk+MzlWTNXtpo0HZ9cqYeGfdAWh4yZ6rfeWmjQbVokjM1xorXkU4smIl04v7xYp9cWmwqIQSvSO701Y7XNUP6J//kn/DBD36QAwcOUK/X+cxnPsNXvvIVHnvsMQB+4Rd+gbm5OT760Y8C8Nu//dv8+q//Op/5zGc4dOgQS0tLAJTLZcrlMo1Gg9/4jd/gp37qp5iZmeGll17iH//jf8yxY8d49NFHX7fnfCXxSqSohpUqux23TuzEVOJLZ5f56OfPUWu7VPMmlbySHTq/XOOjnz8HkCS8sazN559d5KnLmzQcn3LO4MFD43zg3pkdydLFlpiDjuniNscyTbC7MnZKAsfB9kJyhkbO0JFSsly32bZdJkq55Nq+dqTu+0pk3tJjeDOZn+NTFQ6MFzmzsI2UingWtUAltF7AgfFi0ob1posfkqKadYdA4IfqugcOjvOW/WM4XogXBKzW3QQJm6ooUt2pA2N90ks3k5or55SqwUrNwdA0dE0kkmZNx2e7rcwjYomrudGCaocf4vshm20vcePbM6AdWebGWMninXdM8szL27QdNb88P2SirI7W4/GI21HNG2y2XIJAoqw8QEhlFrLZchnXAubcOsH3n+Cf/MW/420vfpdDm9euO9bu/gM03v0+/pV2hC9XD7BtFGj1SISZGl39EUtSxRqtLVeh3LMjBX75HR2N1ni886ZGNZ9nuebgBh1yoqULpqo5vEAm4z1aMPnC2WUsXVPz39SQIazUbF7ebPHIXdPMjRaYrea5Y6rC84vb5A2NlttB24uW0g4/HpkdvLBaR9MEq5ELW6/EVc32GY8k7HrjZu+gU/vHmKrkeH6xRk7XiG8hpaRhe6w3Q+7eW03aMayUXtbI+p4ddgxP7R+L+rlG3lC64q5U5NCiqWH7MunnnbQjiWQ7EJ0/p38slPpKTMzsva+U6sNECJFIJ546MMbltVafe+ahiSLbkXRiHMO64L2e8bomuysrK/zCL/wCi4uLjIyMcN999/HYY4/x/ve/H4D5+fkupOgTn/gEruvy0z/90133+ef//J/zL/7Fv0DXdZ555hk+/elPs7W1xd69e3nkkUf4zd/8zR9ard2donFZpcpux60RWZH82EVns+mQNzQ2W16CduQNwWbTSVx04pKGK+stvn1xg5dWG0kSFoaSk3urO5ob3ZaYWt/P227QZYm5WzJ2UkrWGg5bbQ8NdTSXFllvuz5IKEYSOL3tmKuq9jVsn4Wa+4oNWK5ttRLLzxhhHi9azKQQNiB5SQmhILv4eFFoSgMp/dtHC8rlLJSSoimQdNy6BFLVoro+o4Vu5Of8UhsvVOigF4asNR3unKn2Pd9QzmU5A10X+KHEC3w6b1r1XyGU/mqc3KX7eb3hsm+8iK4pSbS67TNR3plcYNzPo0WTn3hzmZVaE7jKe09OMVUt0XR9tlpe0s9hKLmy3krKPuKMIOe7lOwWb1k8x1/58g8Q/+MPOHTlCoeuM76XxvbyxNH7ufrQu/n5/+7/RViu8K3/+By1SK2gnCot0SK0NN0foJKlD92//4buW9BZW6YhmCznVF1mlJSORAgbyGRtKTe/kIbj0Z3xSPXhF/0pbXaw3rDRIvk1P5RstQMmy/nE7KBkGRha5OyX6AmrTwUplWuZrvVb0A/zDtI0wcGJIs9dq1FzfGxP3X2r7eGGAkvXOBChh5ml9DLETt6zw4xh3M8f/fw56m2P8ZKJoQv8QFJrq4+E65lK3KwdsURYEEoevWt6YLlULBGWBcmP11Xe1HngOtKJdiSdmI5hXPBez3hdk91PfepTN/z5V77yla4/x05r14tCoZCgwm+kyGoSsRMP7Ntxa0TWL/vTVzd5cUXZx7YiNDNGXVqeYpK8sFxPSghiFLgeCX3HG+mLq40+FHjYSFtiliy9r4at1xIThp/TWfrj6mYLxw+ptz2FQJk6euTM1nB8/FBSsIwuPHQ3EIm50QKjRZMvPL+MpQsqBRNTN/CCkOVam6ubLd4fIWwLW23mN1vkTQ3XD9B73OfypsaVjVaqbCX+uUQTWlQDKKL+EEDQ8TBOhUAdB3eMma//ArrZ0XPcfwJBiIzuJJKfaan/HUfveLdcVSJy377+ft7J3LhjqszsSAHaMDtSIISBa2Vhq03OEGC7lO0m9189w49e+C7vuHia6cb6dZ/5xYn9fO3IKb529K1cmD0C5TIfeOsRZk8c4epmi5xpUM1HznZ+R5M3b2pISVeiGYdl6fzYfXODfl0S3cinoJQ3kmPwpuOx0ZLcFSGfC1tt5jda5E1dObolo6DGO2/qzKfmkjI7KNJ0fBy/Q9bLGwaHJouJ2YFAEZiqeRNNKCOLGJ0s5wxCKckbWteMGvYdtLDVZnHb7thv0/1fTahxXNhqk0z11HF9LJscCdImksk7iZ2YMQ0zhvF+mpSZ2arM7M6ZCn/r4UN9++2w7chSLtVBmBWSb/sSLxpvhTB3kHxNE13rKl1mdrMTr1ezpO/Vjluz0PN29MWwJhE7MQ7YzbhdSpEtsiIMqw0ncecqWlqfsHjLDWk4PqsNJ0GB67aXEA8AKnmNkqUzv9nuQ4GHiTR6cWW9RTGnR5qkkpYTMFLsRi/iODZV4dC7Sjck1WXpj6bj4wexZmo8xyIcKrLpDEJJs6emL27Hdy+vsvzcVX7q/rk+96bMkWSEfeeJkCSIUHc85jda6EJwZLLY52+/2fK5utGi7ij2+Vbbi5QulG2toYsk+fEDpYtbNDVlh5tCft5/cmoggWXQXnCzNRv3s6ELcppKvoSQSKnaEYTyuv184B3Fm6KZ8bU32+/Sc+OF5TqjeY3DFixtt9myVSlFeq2sr22TW13hXVef4T0vPc2DF55morF53SFcOnQnf3HgTXz7xINc2HOQmlkgzOWwNIEvRTLEbS9gsmwhorKTkUJkyhGCE4TkTV2ZT3jd4tSuG9y0LzRNcHC8yLmlOl4IwgvRNQhClBWxEByKkM+67TG/3kIXcHRPic1Wh0g2VlQ6zlc3WtTtztwoWgYfun+O55bq1G2fSt7g7pkKlzbaydxoeQGT5RxCqJMUPUZ5IwS/YOlMlHK0oudLv4OO7SnRcAI2Wy6WrnFsT6kLcay1PF5YbgAwVTYJ/BAIKFsGI4ZGzQ54cblBreUhNAgChSJbmoahd/R+/SBM5t1OanazzLt03IwUHMf7Tk7z7jv2DHXtsO3IUvKW3qNrbZexojoVcP2Qmu0x3mNbvFvGRq9n3E52f4hiGLLXTglOuxG3Syl2FlkQBimlsnXVGTjeQqiXj5QyM5EsS7zv5DTfv7rFHzxxhfVmOznGLedMPnDPzEC0eND8eOrSZt/8GLY/Go463t9TtpLjuhi9KEUkEjfofxnG7bi8WuMdefjs0ws8PV/f8Txd2Gqz1fZ466GxhCgUf5BMV/PMVHNstjwWttpdZK+lmntTstdEyVJkurzBdtvH9gJ8qQTlC5bOSMEABBMlK9kL/CDkz55ZZCslTfTcQo07Zyp9e8Ewa3ZQP4eKa3PDfh5Eovyj77zcRaJMxzD73bEpJfP3+9+8zItL2zx0HJ66vMne8TI/c2KKY1UTrl2DL32J+z7zWT731S8z3q4NvFeI4OzMEawf+6tUfvon+d+vCq44gmdWVcIgbRCOQ8kyuGtvla1oDEuWwWQ5x2TZ6hDD/LBrvKH7eP0Pn7yc1HvGZQkfr7zAr7yzu2Z3YasNQnDfvirPX6tTd7xEjUG1o4JEqLkUEbgEkvPLDWwvSK5dqeuMFoxkXNJz4788u9Q1Ny6tNrvmRvx8XhDy8oZKvpI25AzuqlaZjI6/4zbHRNGnr2wNLOOJ7x0TpzQBGy0fXajTqIbnE7gali4S4tRUJU8gJVPVHI6npOOCaK2U86aad/4rS3aHnXcwHCk4HYahZdpXb9aOrCVvvQhzw/ExdY0TM9U+hHknKPetHreT3TdY7ITgtBvxl6mUIgwlC5tKDWBhs82BSeMVf/UOizAcHi9TsFQdZ8HU+o75HU95tx8eLzO/1cpEJMsSXzq7zOfPLEUs3kJSU9byQj5/Zok37x/t2kyzzo+hakkj8lcQSGZH8gOltoqW1kVgSbcjZhGPFMxXNE/jNXhkssxsNc+ZxRp126OSN7lntgqa4PJak6brd5G9dK2DSIdSKtJNW3aRm9IlI8enSmy1fZwgJKdrjBYMrm7Z3Dld5tT+MS6sNZjfaHJhpYHrq5exqSuSylrDoXbZ49hUJdkLhh2TnfRzFhJlHMOcCl1YqfMX51YoRSRLaPDw3hLu2gZbv/sYjSunKX/jq7C1xaDD5kAInps7wbfvuJ/HjzzI2tQc/9t/+06CXI5zF5/lpSiRKVpGooLgBaFCWoMwIRnGx74PHBwdWDuZPvb9wycv8/HHzuP4QReTf6nW5uOPnQc6BKim66uxsgMmSiaTlQ73RIYhNTvA1B01l/IGQRiyWneRUmIaWlIb3XLUR9VUJUc5b9B0/WRueIGkYOmJlup60+WpyxvJ3Dg+VUEieWZhmzCUXbavrh/yzIJS/oifL27zetPB8cKIza/KeFZ6iKIiOpWwfWUXXoymjADcQOKHElNX66J73llDzbvdiuuVg72wUt9xOVhv3Aw1TpfxKOvh7nk3qNwgC8KcFeW+1eN2svsGi1tBquxWK6XYzehFBX/3yxc4tKf6qqDXwyAM1aLJ8ekyz1+rsd32u15aMTHsjuky1aLJhJeNSDZspMsjDo4X6K3Z7S2P2On8uFl/VHLm0FJbqm3d7dAIoa2S5jsiDd+dzNN4DT59ZYPnr9W6kLDvz29x194qsyOFhFSn6wIvCGl5Ml2OGFkGd5O90sSic8uNpISgJgVLNZuJ1HFkXte4st6i5SoSme37HQMDTeBHCU9ezzYmWft5JyTKYRDmdJtPjpmUtteZ+d63+Vtf+Tb7v/9tcu3m4Pmq6ZzeeydfPXw/Xzr6Vq6NTNHOFbByFvftG2GkUiIIQ66st2i7PkYkuxSPoa4ptHF+o0Xe0Pqkl2ZH8owWTdpu0Ce95LoBn/z6JRw/YLxoJmulaEHeEGy0PD71jUt86P79WJZOwdRZayg2/HQ13/cxu1xzkFLJj8lQKpQdlSBqUX2rJsDQlUVt2wsoKt0prqyrGvexopncN2coY4vNltc1N+bXW3i+JAhD7G53XHRNY36jSRhKNE1QNHXWGg4tx2cq1eacoWOVNJZrdkIUHSuahKFMZNTC6N7pP4ehZKxoZp53uxW7VQ6WjixSkmeXajz2vCpXikPXBMenKwPLDbIgzG8k6dDbye4bLF6JVNmrFa9VKcXrXQ+8G6hg1pgbLfCOY3twg5CVbZtt26ftquPI8ZLJVDXPO+/Yk8gNZSWSqZ/duJ+zlkek54eUkmtb7S7x+53Oj0TiylN1r5stLykf2FPJYWjdEld98zT1En8l83RutMC27fLU5U2FsOkiQdgajs9Tlzf50TuNhFTn+gFe0HnBA8rZSIIfsaXT5KY+YlEIQii2fZpYtFS3aTo+XghIia6REHq8SL+qYfss1W10XUv6AqDW9roY2Om+yNrPaRJlw/HVHJGSEGg4AZqmdZEo43W1VncSFQDHC3jm5a2udXVtcYON587z42ee4MT3v8n+H3wb07EHD4ppIt/xDv7LzL38H5WTLJQmaBk5Ak1PiE9+GDI7kmdutMB3Lq/TcgOCECCMSoLUl4IfqLKNpqNc/A5NlpNj3z9/dolnF7ZpeT5F0+C+fSM8ek9H0u/xc0us1m2FFA9YK0XLYKVm8/i5JX7svrmE6if66G2diSKiGvDFuk0YSnK6hiYUMhqTzixdufcFoWSprvrI9UOM6+yXhiZwvJClus1Kw+HKRgspo4Q/6i8kkZRVyOX1VjJ+HbWG6+3FInkiIbuvkT3/jS5HSJF53qXj1XxXpPc7IQQ120v0jCs54xWVg8HOUGMpVd1yUkstBp/e/WWO28nuGyx2yzggS7wWpRSvdz3wbqGCWSM93ntKOTQdwhA0DcIAJiodko6miYSkML/Z7tpI15vqeLmXSDZMP2fV2Y3nx3It5JmXt7ptLgsm9+4bQUDm+dEtceWwb6zQI3HVTVjarXnq+yFnr9UIpYyQWS1BBEMZ4oeSs9e28f2QuuNRswMQEo0oeUDlEkp5TLU9JqiliUUffus+lmpO8qEwU83x0lqHdLbacPCCEBEhkmmmuybU7/KCkNWGw2jRwvYDbE/n7OJmlyHBWNHi0GQRxw9oun7mfo5JlGGoEko/DLoQZkPrtCN+vnNLteTjLZkbeYN9BcG3mqscWfkBo//pz/gfnvwmpje47Ma3crxw/M1M/PRPMP3hnyLYM82n//0zXF5uYGpQ0fXEjiwIArwQ5jdahKE6ypdSpVxukE42lTavHhEw+0p+0kIYgr4UdWnbIZBSKUIMiJwhaLmSpW1lrBSTw9YFiSFHWuC/nDcScthmy1NlKmg0HZ+OZ4YibpVyyvZ1s6XmkqkLENpAKaqcqfpms+URBCHbbS+pw5d0XNxi9LXW9lipqSQ6Tdi7fpsVYW+j7Sp91wF2yPE60IWWXJdl3sXxar8r4v3O9QPObba7aqPzps6eioUXhDsqB8uCGmua4LEzy2y3PSZKJqt1iRvXRpdMttveG+YE9dWI28nuGzBe7+Ly3S6luBXqgXcLFdxJ9I537EN/bG+5b7x7SQobTVfJ4Ez3y+AM289ZdXZLlsFm0+X5xRp+XC+oqWPWjabLNy+scddsdUfz4/oSV6N9fbFb8/Txc0tstTwqOV2hs6GM0Fd1lFtAJRGPn1OmOI4XoKE86tNJKSjHLNsLuLzW5J69o13zTtd15sa651Z63m00HEJJhOgqhDR9FK80UmGj4VDaN4brhzx9ZYMglJTzJmbewAskq3WbjaaTuM5l7WcpJa4f4IedZ4of0g8lfhhgaJEt8Vabb1xY5aW4ltTUKOMxvrXCw2e+ybte+i6nrj6PFviUB/S9n88zf9/buPzWd/Hsmx5m0RrhV3/sPpgocfrSOstNj72j+YTgFKIUDUrFHDlDsFxzOH11M+kbBuCTMdoaSpEkxF2nPKMFipZBy/V57lqNxW07WSszIzl0oWp0iwOqhRxf1aDOjHQctWLyW6zZnBb4T5Pf4vXVdoMkUUxrkrTdAKvQua5gGVi6uCGZc6JkcXZxmyBQyajSDhZqEKWqLQ8lyECy3nT62txL0Oxts5SRZa1IG6p0+lkXnTmUdd71jsur9a6YKFn4UWmHRChFlCjpbrsBV9dbVItW5nIwyHZKNjtS4HtXN1mt2/iBpFLofFSsRQYgp+c3X5N30A9D3E5236DxehaX72Ypxa1SD9zrktVoK/Sv3vYpFbRXBb3OcvSWZbyHISlkkQ/q1dntJY70lkdMl3Nc27Kxve66xZwmMDXYaHksbttMl3dmBDOMpBn0EzxadmcMi3lx3Xl6M+JIjN5VLQNNaAQpo4gY3bVbHkvbDrMRwzyUCtXrRc0cXyKkRITZ0ejJYj4hCuYNkSRnsQyb7SnEdLKYZ7aax/FCttoe+0cLNL2ApqOQ3dGCydWtNtN+yGw139XPw8y5/aPFxN7WEHT/PJT40XH4/tEi222XF5bqGO02J1qrvOvsEzz04ne59+pZjLBbuiuOdr7Iwlse4vKD76L99pNcyR3DzRd5caWhxi/6IIgRualqAQ1VQhGrBJRzOiGKYLredDk4VkIIJfFVsDRiE4XYua7thpg6HBwrZdqTHjkxw8crL7BUa5PTOwUKIvoNLddndqTAIydm+uboqQMjA5H8eI7uKVp4AfhSUjAUqSux+pCSti/xQ7hvdgTD0JI1u28kR8uTSV8UTcHL206yZpdq7aRsIU7043KGZCQFjEXJXbrN99+kzVtNl8hLhaKlYQoJBBQMDUMXtN0QTah+Ts+7Ydb3Tt8VN9t375sdwfMlXkSoi39maAINScsHP5DcNzvS156brZUsp2TlnMH8eosgVDJ7vbXR6w0nkZrbabzepYKvZtxOdt/A8XoVl+9mKcWtIq2Wdsla3HZotB3uOwTfubxBuZDr8qHfSezk6C3LeN+MpJCWD/rula2+Y+3ZlHzQ/vFiQpo6u1Tv012d6NFw/P7CFo4fUDB1bF9iGTLlF6/Y3rYX8P2FrR3VvA0radZL8NBlyH1H4YmX1giENpDgMQxxpBe9M3qMIhyvg95J1P9GKPez3oiRNKmpn2VBo/eM5BgpmGy1XNpemGpBfBQP1YLJnpEcizWbnKnsV59brCk0OkqMDU0wXrSwDI3Fmt01x4aZc1e3WmiRw1sYZfOxDnOYSpquXVujNH+JX/rip3nHxdPcc+08uhxcq+pWRrAefT/L73wf/7Z0B9dEgenJCvfKi2xhsLDS6Ntn4hOIrabbkUyLahzrtrLXjU8g2n5AKWcQhC6uLzF0uvWMdSjmDNp+kHlP+pV3HuZjnz/HasNT5UWiQ8QqmDq//I7Did5ueo4+fnblhiSkZxa3MQ2B6YEX0NNmZVts6Oq6Bw9PdIiOK0100WlHICWTqTWrRXPAD9SHSW+9gUaU6EXPnqXNvf1spqa06neR9HMcw67vnbwrhtl3n1ncxtTB1DXcUGIgk77zQ/X3hkbSz8PeNz1Hhzkli6XmKnlj4PPlTJ267e9Yiu31LhV8teN2sns7diV2q5Rip3WWr/YX6txooeNDb2iMF9TLKW9qrNS7feizxq1QptGRD3JxvKDvWLsWkSfifh6WNAUktWx7RwvU2mrD9qQiAZVyBtW8sWMJtB333aCCwZ4YVj4rjd7lDdFHBEyjdy+s1cmZOg1HnfGna3aFUKUNJVPn0KRCtrLIDc1W8xwcL1KLDCZkhM4lKJ2mrFpjmbKtlkut7UXGHB3dZj+Q1GyPrZbXt66GEdUXKNtXQwvxAoUuShRiXQkcjm9e5f0vfJuH//Q5qufO8K7rJLgbhSrfPPwWvnbHgzzy9/8m73/4JNO5HD+TUkS5kQNelxuZoZM3O26DDUfVrd8duZG9sFpnvGRhaIKm40WOU2HiilbKGYwUzETGK8ue9NDRCe7aW+XMwrYiW0VDkjM1Tu6t8tDRwR94NyMhrTddDE1wYLzISt3t02DeU7FoRs8J8Zot0XQ82m5K39lS8y1es4cmShQsg7rtIWT30ojJakXL4NBEib6Q8XUKF+9dV+W80eln28MP1TrwQ0ne1Lv6GTrre73hUs0bVPNKzeHZhf71nXVcht071psuhq6xf8xktebQ9sIE9S+YGnuqua5+zrInZXGjfGG1TsHSlbxbTg6QnQwpWnqfFNuwkn6v9zvo1Y7bye7t2LXYjVKKndRZ7toXalIQl4Y7ojNZBuZLN41bpUyjW/IofUQmsEpWl+RRFtKUpokEvQDYO5rH9cOk7MEytETsPGvNW9a+6/KWv3ualu0BNR4+Okkxb3aVaoShHFo+y7J0fuWdh/n4Y+fZaHldWqot1ydvdNC7Ss6kmtdp2MqoIY0Bh1JZ71byRiKnlFVuKHbfMnWFvsWIux/9u9h9K5Yp84KQnCHwQlJMfnCDMJGiimNYUf09kbZrzfYIw5CC63B89TIfeOFJ3n3paU6uXr7umK6VRvnm0fv58h0/wpP77qaWK6HnLX7q4D7IqTKXeJ+ZX6vzgyev8qvvOcaByUrf+tA0wYGJIueW67h+gKGrMhs/VDXFmiY4MF5C00Qic/VSpFEsCRNpLVPXKJg6+8eLybgMuyfFcy5v6tw3N8LVzTaurwhi+8cKWKY+cI4OQ0KK15Vl6JyYqVC3fbwwxNSUokbD8XF9VYcb3zeUkjumylzbtpN27B3JE0rZkZrLx3PUU3XlqWeTKGS3kjeSZ+9dV4N0h3tl7OJ+FtF0zhkaUnT3c3zf+Y0Wvh9yeb2ZlF6MFUyart/Vd1neFVn2jmT/klDO6Ug6jnLlnPr7eP/Kuielnc5uRiJOS7ENIgIOkmLLKun3RpIOvZ3s3o5djVe7lCJrPfBufaEubLXZaimXrKVth3pbkTNsTzI9UmCmmksclrI8/61SphHX5g0jeZSFNLV/vNiHXuRSIvU3kkC7WWTtu15v+UrBgDZUCgZSaF3XL263E/mslheSMzqoYMtTaFRaPis2BYhdslquSuZnRwr88js6LlkCsAwdUydKMEnQV10ocpllaINFnG6CmsXuWw8dHef8UoPttocfqHtOlC2OT5cT962luq0cqaIk19C1qNRAKSWEElpuwFLd5tCeciZ5pFP7Rpk1AvZffJZHzz/Buy+d5o71q9cdx+XqJF8//Ba+eueP8J39d9OwSoS6rmTIgpCKpTNTyXf9G00TzI0V+AEwNzb4g3phq41A8PCRCc4v1dlqe4lM32Qlx53TleS6udECB8aLnFnYRqKSF1JAatsLODBeTPaZYfekha12F6loqppLEpT1Zj+pqPf6G5GQetdVtdBJcnrXVe99x6MEbtB9BWDpSr9bhJIwTCklaOojK5eao73rqlroRvp7ZewOjHX62Yo+plSJgOrng1E/97Y5bVax2nD6+i7LuyLL3tF7QlDK6UkZQ8sL2WzbyQnBTvbzYUnEWaXYhn0X3irvoFc7XtVkd2tri3/37/4df/fv/t1X87a3I4o3UrH4TiNLPfBufqGmXbL2jRVptl1giwcPjVMqWARSJi5ZO7nvTuSwhvVpHyaySB4BmdqcRi8urzcpWkbH6cn1GS3m+iTQ4Obzv5c0WLf9Lq3Y3nakrw+CkMtrdQ5X1Evh0GS16/pYPsvQNPKG0iCN0eicIbAjm9LVhpO05+cfOsSH7t/P4+eWWNp2mBnJ8ciJmaQeE5TubBBIhcjpkiCkc0ytqU+KWJ837oMYNfsrJ/bw3FI9cWe7e6bCpY12Mqfj5zsxM8LJmSqL23aXnnEIyRxdb7jKdjqClkMZdpLniCwXhpL1htslj7R/NE/TVdJUpqaxfzTP1S2bT3/zEu+eyWN872m0P/kc//sf/Slzay9fd74tj8+w56f+GgvvfoRfWyrzXC3AlhqmJjBFJJMWSoqmzoHxEnYQDjONuyLujztnqhyfqvDc4jY126eaN7h7dgQ0utdshNAVow8yTXQ0f72go9KQZU+q214mUlHv9a4fYnsBuhCMl6yu6+Pa+Y9+/hzzG22qBQNDV7W2tbZPtdBBBbO2I5BqjuZN0Zc0BqFyOovnaOY9TBCh5Rp5XQA2Y0ULOyl5IXNfZB2XLG3OckKw0/18GBJxFim2LITjW8WF9dWOVyXZ/dKXvsSnPvUpPve5z1EsFm8nu7sQb7Ri8VcSw9YD7+YXau8RWTk8HSsAAQAASURBVDcqKGg7/o4IajuVw8rq0z5MO4aVPILhj3HjeN/Jab5/dYs/eOIKG812ouFZyZt84J6ZvjYPM//TpMG4zfEx53jRYqaHNNjrdOYHHu9/AL58fgXjwmaf01kYSpzQp253yyTpAixDIOhIUcVhWTo/dt8go1oVDcePdFdVaUTnvhJdwFjR7Ep24zm91XL49xfWBrizVZI53TuXehH3pu0l/RGrnJq6hh+EOEGneNiMju6lVKoSsTySpQteWGkmOqMaIWOhy9tXX+Bd//mbBL/xDMbL82gw0Kr38thenjh2P99+0zs5N3cnv/nzDzE7VmLPF17gzu12n/tcyTI4MdsZk6wR98f5pVqC7MYavhdXm9w5U6GSNylZhjq5aauTm1g+ywkCDE1jJjq52Uyd3Ay7J2UlFcXXW4bg2pZC35PaWlMnZwpabpBc/76T01zbavPJr19iYbOdfJDtqeb5hYcOJusqazuCUKHQsWRbXOJSyEUyZX5njmbZw+ITshMzFc4v1VmLTsjWGg6FnMWJmUpyQpa1L2D4d0XWNg97QvBK5A2HcTobVootTTh++srWwL3xevtGljbfyrHj1l69epXf+73f4/d+7/eYn5/nb/yNv8HnPvc53ve+972a7bsd3HrF4rcCwjxMPfBufqH2HZGlfvZK5NV24nfeIU55FE0N01J1tOeXr++4c7Mx7JIPOjg6sO4u3Y6dtPnzZ5bImxpjpULCGm+7IZ8/s8Sb948mbR52/s+NFhgtmnzh+WVMXZA3dXKGjpSSpVqbq5st3p8iDc6NFqi1PZ66vEkYSiqWBgQYQqNudzud1VoeQkDL7SSzMd8rkND2JCVLcHh8kPrr9aOcN7A9n42WFyWMkctZJNW10fKYFCQkk6brc365xosrTYJAOWAJZUhGw/F5en6bO6Z8mq7P8alKMi5FU+urpU6Py7btYho6TcdHE5HpQZTsBqHE8UPKOYNDkyWubrSp24rUJMOQqt/mwavP895zT/D2i08zW1+/7vO+PHOQbx57K39x4iGuHDhOdXyEQNPY3myz3vZ54LAaw6cubzBeMhktmklCowl4ebPNydnqjoifc6MFJJInLq4jIwKUFdlXrzUc1i+6PHrXDHOjBV5YqXed3PSeEgw6uRlGEqscnTAMSyoq59Wpx0rdRReQM3V0oRFIScPx2LYVgz9N4Dq3VOf4VImxkkHbDSlYGntKOc4t1bmwUufYVCVzOwqWThBIZkesPmnBjaZH0dKSa9N7R9HUVYmMG1CIyk/S8+6FlXpEhHUwDY2xQgFw2DtaoOFJrm23mfBDmq6fuS/S43Kzd0WWkod4btw5U+XETJXFWjt5vtlqgZDO3EivwWH3xqwx7Lsw7mfHC7tKQFbqNtu2y0Qp19fmrNKhYShZ2GwDSsbvwKRxy5w+Z0p2Pc/jT//0T/nkJz/J17/+dT7wgQ/w8Y9/nA9/+MP803/6T7nrrrt2q51/aeNWKxa/lRDmm9UD7+YXau8R2VxVkakats9Czd2xvFpWAlJ8pLxWdwjCgK1WxzhAIS5hn0/7MGOYfr4Lq01mR/KMFk3absCF1Wbf8+2kzXXb48B4xyUIVG3hIJegYeY/AFJZ4TZdn7DpEWdsmqbqDtOj4fshzy8qpzPTUGUDqs1gGgIvkArx9UMKpobfo3rfW83sh8oEIUvkDY26EyS6pQn/SxCVNEDdCchHY2fpgktrTfxA6Y8GsmNYIYSqr728plDXeAy/c3md/+upl5VKRjI3dO6ZqybjEhPlmpHTma5FQvkRoo0gIcqN5lyM7S3ee/kHfODCd3j7xaeZbG5d9xlbJ+7iT6bu5ev3vJ3vj+xnE1Nx123Ir7YYiepQE0JiMoYBipx//THMEmFkBOBHjmhN108SegHIAOY3moSh7Ns70vWvwMCTm2EksbKSikqWEbm1KfWMpINQCKwMVdKZJll97+omC+stmilnr5KpMzdRZO65QhcxbNh2xNdutjzKedU3XqDqRHuv7cy7Df6vp67i+EFC7kujqpomKJo6aw2HluMzVc1jRhJ75bxBzhIs12yQUDT1lHPdzfuiN272rshS8tB3YjLae2LSmRtZ9/Odxs2er7efe8tW0v28U+nQCylVlHfk4Xe/fIFDe6q3zOlzprf83NwcJ06c4Od+7uf4D//hPzA2pggkH/7wh3elcbfjtSMs/TDKkWRBJ7N+oQ5T/5o+QrqZ7NGwbU6HlIqgEQQhuq4N3MRPX93k7FKNlushZeTmE6GkticRwuP5xVpCnMoyhjuSj7sJaSpucxaXoHj+g7IlTSNs6fkPML/ZIm9quH6g6k/j1EgqWbgrG61krSinMyXOjpSqThWVYOZ0jZwh2Gq5PH5uiVCqusQYze0NgZLoOrO0zZHpTr/cbLzPXKsliWtcbxeTfwxd/dkLQs5cq3FkT4Uz12o4Xpggv1qUqBH9GcD2OtdfWW9xaa2F46vaRqEpNQbHD7i01uLKeotjUxUE6gPC8VQdZNsL8QgRCIqWTkEXzAZtSn/yxxz7z/+Jx7/0JcbbtQE9ASGC52eOMPLXf5z9v/RzWMeO85l/e5rzKw2EBNPQkjnacnyajs+JmQ5xKssYxuFH7m8AT1/Z4IFDe/rW6+mrirxk6UptgigRlNGvsDTBy5ttTl/d5IGD40Oj4pDt9CELqUigJMmqeVUz3O10phNKSd7UEqLo488vcWG5QRBKzJSzV8MNuLDc4DFtiR9/097M7Yiv9YKA1bqbqDxMVXIYeve1QDTvmtjRvDMMRea0/YCLa81k3kWp6gCfus7KShtvDNsXO4lh97udvlduJh23m5GlnyH73t/lIFi1QMJIwbylpMoyJbu+7yOEKlDX9dduoP4yx2tRLP7DKEeSFZ3M8oWapf51WNmjYdsc9/Pidpu261NrecmRoQYsbre7+nmlbrPd9pChSgTifdcQKum1vUD51tftHY3hMEdkWaSGNE1kcgmqFkxsP8D2NM4t1vtqzQ5NFnH8QCG5UjK/0UIXgqN7SgOPW69utKg7isDScTpTygrKQ8tTx9RohFKy2QpY2nYSq90bhZTqnlnGe6XmKDF+IZNEF6LyiFBGSK9gpeZEbbZJC931WqzGP1vathME3fEDTs5U+vojjaDHhETXD/HCkBwahAEjdo0fPX+a91/4Dm+9cJpSqz7w2QMheGb2OF858gBfPPEQ61P7+ecffiv775lVSvtRVt7B42JELmpz9IO642UaQ+is12ubDf7ecfinnzvD3rFy33pNSIZCUC4YakxRbdKEoB3Ve642nEyoeNZ1NSypCDpEUSHAdgMqBTMhyrleQN7SE6Ko54W8sFwnCGWiIQyg6QJdk9heyIvLdbaaLvvHi5naEaOT5xfbeKFK2LwwZK3hcOdsdeDJjeMHnJwu44ckY2hoKAJjNO/aXsBk2UJERNixSLnB9QM222FEhLVoR0TYYftipzHMfrcTkvQw0nG7+d7s7efBhONOPw/bF9CfG2iE0Fbo/B1565aRKsuU7F67do3PfvazfOpTn+Lv//2/zwc/+EF+7ud+rg9xvB2vXux2sfgPoxzJbqKTWSSV4hhG9ihLP3/jwioXlhvqWNxSkj9eINlsedRtH0vX+PE37WX/eJH1hkMYykhDtft3iggt9EPJesPZ8Rje7Igsi9TQ/vFiJpegkqWMG07Pb/bJDa3UbdabDvvHi5QsI/pAUKQbTdPI9dw6Z6pa3EZkC9ztdKZhRCizoWuEoVJciJ3O1htOV5LZG/Hf5wyRabxnRnJoQiTHm70zR0o1hjMjuc79o9re3vYI1N8j1XW9CHpvf/Qi6JahEfo+440t3v7Cd3jP+Sd568XvU3bbA5/Z13S+v/dO/uLw/Tx+/CFeHpnGz+XJGQp1j8sSTl/dpG777B3Js91SH+9+lDgWLIORgkG97XP66mYy/sOOYXq9zpTV/ljOGQPXa0wyFKamnMt6eltogtALE5LhsKh41nU1LKkIBhNF3SBA17RE4jAmiv7FxSVcP+xyM4sjdkFz/JDTVze4d/9opnak+8hE6/pzb6Tnna7r9OJivfMufr7YiRKUhOMgIuywffFKYhi5zCwk6WGl43bb8TPdz5stN0HyB/VzHMP0Rd/8T21Kt5JUWaZZkc/n+dmf/Vl+9md/lpdeeol/+2//LX/v7/09fN/nIx/5CL/4i7/Ie9/73tuo76sYr+Qo/mZHqFkQiayyTrsVWSRUsqCT0FNLOlbAC6QSWtc1DowVupCwLJJeWfq51vJ4YbmBF4SMFExl3xnVolXzBtttjxeXG9RaHozDeEklbKGUyfFY8nujv9M1wXhEPtiNMcx63ywuQQCOp45Z4zGJ5YbGiibzm22m/ZDZap667VEwdeX4ljP6zCocL1Ckm5za9tJOZzkdYrdePwgJQrqczp5b3O565i5CYurv7psbzTTef+X4NDlDp+aEFAyBEFrixiRlSNuXlEydv3JcJWxv3jeGpimw1BBRrWJyvbJzNTV13bWaPRyCXmtzSm/z8Bc/yy8+9RUeuPQD8q498N9I00Q+/HY+UTrBfzp4ivb0LA2U1F5BCHIGbLZ98qbOm+dGARIkf26swExVuZXF6Hw5p/D0hc02602Xg+PFrjHsJ051xrBXAk1EZSiWLjoSaKn1GjuB2V6gxjsUhDJEExqGptZ67ASWRidPTJdpumFydF+ytK5772RdDUNmg2xE0dhuOiXV3DVH43matqUeph3pk5v3n9jDxbUWddenYhkcmSxycb2945ObdLnIAwdHI2MXJeEYG7sMIsKeOjDaR3x7aa35isle8fMOU2o2zHslq8TbTtoxTKTn0QNDEI6zxA+LVNmOP4GOHj3KRz7yEX7zN3+Txx57jE996lP82I/9GJVKhbW1tVezjX+p45UWi9/oCDULIpGWdYq/DP0gxNA1xooWsz2yTrsVWSRUsqCT0EEkFEvW6ZO2Kef0BJG4mSTMoDYP08+XNhq0XR9TFzQcHz/sEM4MTWBqgpbrc2mjwd37Rpiu5qkWDGq2jxtIDI2UT7uqZ6vmDaar+V0bw6ySX1lcgq5utMiZGkVT56W1Zh9haSRvYhkaizWbSt7kwESRCysNLqw06Lz6BQKoFkwOjxeTE5LY6exjnz/HasOjED32Zsuj7St3uNjpbGG7jREh7PFde0PXBQvbbSYr+aHHG+DQZJGzizUcX2LoIYYQ+DLEDySmpix9V1su+/MGThBSzqnjz0CChozGWxLxyCjlTJwgvCGCLsKA4vISP/O9r/HQn38E/Tvf4pecwQmuY1j84Mh9XHjgXfzoP/plgtm9fOM/n+XawjaOG6LhJ9IUDVeR7mZH8iw3nAFIvtmH/DdtL0Hy4zF8efM6xCldU45aebOzXi2dpZpDEASwD17estF1nbLVvV5HCspI4wcvb7PS8JTZIR3L27yhc8d0mZGC1bUXLNXcG+4FsyOFzOtqGDIbZCOK7h3NJxJxfqA+cmNljyCqNzd1jb2j+UztiPcvLwj4z88sqbkXSbaduVbjzpnyjk9uep8vrvcUghsSYR9/fpkg5cCiC8HxmVdO9spKwL7ZeyWrxNtO23GzyEo4zhI/LFJlmX/7t771Lf7sz/4M13V53/vexwc+8AE++MEP8sEPfpDV1VX+8A//cDfa+Zc6Xkmx+I2OULMgEsenKowWTL5wdhnL0KjkTcy8gRdIVuo2L2+2eCQl6xTHqy1TlkVCJWs71psubTeg7SoykqFrGEIV7TccD9sTgEg8z7vufQO5lSxfvvGG2PbCiKSkJdJSyrY0tn1V153aP8bJ2RGeWdgmDBWxKE6OC6aGpunctXeEU/vH0DSRjKGpq402Zypix3Ktfd0xvFlklfyCztHy733jEi+s1BOr0junK/zi2w8nP2+6Pq4fqtrV6LnShCVdU/0Sz9GO61WcxojoUoUIp12vAB46OsFde6s8+/I2Qajq1YJQYuk6J/dWeeio+qgR0TFwEEgG2RloKD1aIbqF5MNQ9kkT9SIdc2MFRgomP7i6qRAXqRLYcs7gTftHqeSN5NpyzmCqkkPXoN72cMNO3a6lQaVgMlnOUc4ZHJ+qJAh60dRpOy4j68u8+7lv8PDzT3LipWcwg8FoS8vM8d1D9/G14z/CN+58EKammZqscmp2H6CSpvGiyWrDVdbDoRocQ1OIu6lr10Xye+tw00i+pglFhvJDXNfnWs1J6ub3juSwTCMhQ525tk3b9WlHZSCFCEgUQNMNsH1lSRev17nRArPVPN8Lt7qQThmNXygle0fyqXurvSCQysUulrlquj4KiBMJOpnsjbpGztDImRoyhJVa/96Yleg77P7/yIkZpqsvcG27jSUkXtD5UDY1cCXMjeR55MRMpnY0XZ/5jSYvrTZxfYXYmprACyUbTZenr2xxdE9pR+Pd+3zDEn07TFHR+fMrjJ0QsG/2XklLvJWskIYTJCcE5ZzeJ/G203YMEzsiHA8RuyXD+WpHpmT3j//4j/nQhz5EoVDANE3+9b/+1/z2b/82/+gf/SMA9uzZwz/4B/9gVxr6lz12Wix+oyPUrIhch12SPiiTxMydXrRrN2TKskioZG3HeNHEDUL8IETXBI7vd6Gqrh8mL/nee99IbiXLl+9EyUIT6khaiwswY4UDAWGo6u/iesgYJf1nf3qG1boXIZ+xkkPInoqVoKSxhJQXhDQcRcZKR87QrluTetOQyuGq6fiEMiX5JcAyry8XJSPil4zaHIbdLYjH2w/kQMLSSt1hveF0xluqRKxkGcrCVAMZopKnIOxqR7xW8obOm/aNsLzdBFpMV3NMj5SwDD1ZKxMlK0HKdDrKB6CQdFDoSVxnfD3zgtGC2WVeAApR9AylY+ukSi/KOV0lTqk1GCOfW22PXhpOABhaB/k0DI3/+m37+D9+/0s8+MUv854Xv8NbFs5hyMHuY61ckdNH38wzb3kX3zn5NjZLIwjDpKIrbdO1hkshGsu1hiLW3bO32vcC7x2TeI7+xp89z9mluqp/Far+NZCSiVK3Y15MDLuw1qLtddZgyw26iGFjRRMvkPhhGEmHqedquT6+1HAhSb7j8b6y0UIiMSN3uo70mDLMuLzRIgwlY9FeIKWkkje7iZ+mTt32EKJz78668ugtIMgZerKudkr0HWb/j08qPvr5c7TcoGste4H6qI5PKrK0I2doXFlvY3sho4XOh3wuOmnaavvMb7TJReM3eLwjhHnAeKef70ZE3y4i7F03J8JmiZ2MyzDvlVji7exijTPX2vhBB4wwdI3xksXJPdVEtm23ieDD5hFZYrdkOF/tyJTsfvSjH+Vv/+2/ze/+7u+i6zof/ehH+a3f+q0k2b0duxs7KhZPRe8RahqRs3RBpWAmKOlyDyIXO90oRyGblZqTvOCmq3lmRvKJ083+8eKufZ1mlVDJ0o6pah5dEzRdiRGqZDPuQtdX9ZB5UzBVzffd+0ZyK1nqroOo1s0LVWKdLmMwdQ1JSDGnatQGdU4MeIhOZyWxsNVmfqNFwdRxg1ChlLEMjq6OZ+evI+t0o5q+WC6qYGq4Xo9cFOpYu1cuKk0s2lPJJWUMF9aaXcSi9HirY7/O71VEos54D3K98n318TY9ku9zvYrJIyt1myCU7KnkgRZ7KnnWm93kkZmqOiJuEaQQ5rgd6nEtXWOmmu8zLyjmjIRk2GteoIapc205b3YREp+4uN517dxoASSsN9w+JYYghLWGixb4zC1dgU/8Cff/xz/hPz77PbTrSEl4lSrmo4+w9p5H+LsbU6wYRSZHSwghiGeYjD5u41XXOyZpDdreMYnj4ESRw5NFmo6vlA1CEEIlgocmixyc6My3mBhmewFanBijlEXSxLCZilqvDcfH0AVWRA7UhMALVBnISMFM1kosPZYzNNwE9ZTJc1iaYCGSHpupKqJd0/ETt7D0M/qhpJLXmanmk3WVN3VVJx7KpI5a19RJR7yugF0l+u4dLVC09MTVrnNvKFo6e6N5lH5PSCm5ttXuspJOt2OlZuP4AYam2uj4YaKba+kahgaOF7BSszkc6V2nx7vt+smeVLCMvvGO42ZE31dCkr4ZApu+N9xY4jD9fltvuFTzBtW8SRhKnl3o3/urOYONpqv0nYUqv1IyZAoZH8kbyfp+LYjgw+QRWWNH6PxrHJmS3fPnz/NHf/RHCQHtH/7Df8iv//qvs7KywtTU1K408HZki8zF4gm7pid5FOq1Fv9tfN/RQgfJiP8rgbyps932lATULn6dZpFQydqOthdQMDXqNriBRISd5DFmxRdMbeC9bya3MmzdtR2EHIzqTl0/JG/q/3/2/jzckuwq74R/O6YznzvmHXIea65SqVIqqVQSGtCIwOC2QcY0g23aT2P8YT53GxuMscGmwabdbfwBchtoI9rIxnjgM9iaJyRVSTVkzTlVztOdpzPGvPuPHREn4px7K0/cqlRWwV3Po6eUNyPjRuy9Y8eKd633fdE1lcg40cto/3gFO0KxYiJNx/XVOb1eMlYyFZocE2liWSc/lJQMjU6o2iI0ISgZKrHeStbplWTYYhKGBlvIRbkZEkY/ETAmqNWKGhVLzxAB80rm5HG9iscjCCQTVSsRtLcMjfGKzkrL7Y2HVOPZtCNEtU8GQRfqGei4QWJeEIYqmdM1ERlGCCxDx/GDxLwAGPpYTROJEUYgs5q/ehhweOUq33Hm63z4/3kaceNlkJKRTZ6hRrnO83e/hU8deRurj76H/9///D6WVztY/+0UpbbzCuPck3XKMyfxs1K2DL7/rXsHNGvPL3eSZyUMJb/z9Uu0HZ+RknIAC6TEEIKSpZLPtFxaydRpdFVFI4yyu1BKwjBOrvTkmtPSY+NlgyAklZRCx+lJj9VLJgcmypxfatOw/UzpvusGFE2d/eNlbD8kDIOEhFSy1BoIQpVUlCydIAyT9a9pYltknmFQxPi50jXBm/eOsG77yTM7WjS4tjFIqltohDx/bT3ThztSMrl/70jUDqLc/Sxdw/EDJWEYFfOEUFWNkqlj6hqrHS8z36GEo7vKzDWcpE1ptl4glGxr/4+v2fZ0Ts2tDfRGp2UI845dnnPH93dltYPvh1xaaScV0bGSSdv1M+v58moHgLIpME0jeW49z8cNSaoJmibyv79fR5FHhvN2RK5kt9PpUK/Xkz9blkWxWKTVau0ku6+TyO1L3oeExXIk0/UsEtYvAVVLveCWmuoFGUtA3cqv0zwSKnmvo2X7ylDAUHJUYQghJM5WBUMQyKg8k1NuJY9H+/7xCmNlKymBu37Wdz1dAj9xdY1TcxtRr67E1LWEoGb7IUIITt7YSGSdGl0P2wsUkmWmxP29ECmDJGGB4WXY0iSMzeWisiSMvKYSeSRz8rhetWw/kbkSIp06xuSRrMxVKGWk6hAOSH5ZutLlbTlKQmux6bB7pIjjhxnx+2rBYKJistBwkjkZ9tiHD03w2dPzLLdsZULh+xxdvsxHT3+N9114insWL2753KzXx3nu7od58sFv44U7j2OXqjQdX0l+Xd/IjHPc0tR2fPQtxjnPnKSfFV3X2TOWfebTz8rcRpeXF5sEYUjXy67ReI2fXWgmY6dpgtnRIhtdnyDqPw5CmUiagUjWXVp6TAiBocezF81jSnosfg5HyyZn51usdz26UTI4UVVEt3rRSiTvGnbquUqbZrgBUqr+2ZbjJ2S2PGSeYatT6efKMHQmq1k1hP7naq3tcnKugR/IgT7cr59b5p7ZetJahSAi6alzadGWF0r184KpJ61V/XJb4xFhzQtCVtoeuuZvS24rfgc9fXmVIK6CRLyRpabNakqGMO/Y5Tl3//2leSNLLSdTEZrb6Krne7SI48mE6CiEoFYuUDCUhnb8fL9RyF5bxTAynLcrco/Yb/3Wb1Gt9vzffd/nd37nd5icnEx+9hM/8ROvzdXtRO7Yjsf3MEjY0clqRgIqTlIKho5ZFhkJqHPLrVv2dZpHQiW+v2ElgSqmkZA6dlUL2FFJUtcERUNjo+vhB5KKaWzrCzyvR/ufe9PuTeV1jk5Vk7LXQtOmYau+RlMn6Y3TIlKKF0gats9C0+bweDWRUxstm8naUH2IGusdD0PTqJhGLvS1n4TRj+z2kzDS0kTxvMQtMfG8bCZNdHz/yKao4GbSRMPI9FULRiJzVbF0mjHi2/UpWEZG5iqMEhaBYFfVwglksjYKuqDpBPiBpGzpXF3r4gUhU/USuhADEmiBlInUFpAcq/HKslwA84sb3HPlNN9x9uu89/xTHFu5uuWzYk/N8Nl9D/LiW9/L6aNvYkkr4kuJITSqUm45zg/lGOdhZIyyhL2QuQ07UzJPPytp9LVkaQQh+FI5uZVMLYO+HpqsKOQ0kNw5XcRxfWCdQ5NVCpbBatvD0EWy7tLSY0VDUwhlhOxqgoz0WPY5nN10POLncKPr4gVqfdSLevI8G0KgGRoN28fQ1NrIKyWZR2oxj+TXg3tGubFuY3sB42Wzt59rAlOD1Y7H3IbNdLXArrKF5yui3lbyeH4geWBW1RFejdzWK8VsvYjjhax3+99BArNPhrB/7G5W2es/t5I4DDeVODy72Bz6/uI5GXYveDVSo7cihnESfaNErmR3//79/OZv/mbmZzMzMxkFBiHETrJ7G+PVeHy/EhI217ApmBqjJTPxR0+XLkfLViIBdSu/TvNIqOSV2mp7SvLL1QVrXS+D1na9AFNTdrxtz2e2nB+hia9/WI/288vq/qbrRbpuwPnlQYmY1ZZDECr2fqwb2isxKrQyCNVx07Uipi4IDI2uF2YQKFVm1JP7y4u+7h9XrRfnl9oDqGe9bHJovJKQMGJposWGzUbXT/oLRdQKMBIJr6eliU7NN/jsqcWbesvnkemLyV6KPNJQDmoH4cJyiwBFRLx7V5Va0WRuoxv10go2bOXWFjci2kJg6hqGLui4wYDUVsHMJh9dx0/uD1Qv9nrbTZDduI+6aStmfyXwOPDSU/Cbn+cv/Kf/Pz96/fKW6+dafYovHz5O+S/9BfZ/9P38yh+fAwEbDR/bb/fG2dAZKb/6cR5Gxih+Dk/Pb3BmvjVQMr9zpoeSxuir1KFpq8S/RxLV0ET091Im5J+rqx3WOl7ivlUwBWsdD8PQ2DdWStZdLD32wvUGy203skZQkxiSlR7LPocd9RyOxM9hJ3OPHTfA1AWh1LD9+LlSKhlx+T5eG3mlJNNSi09dXt90D4tR8TySX89eX8fxVRuI7UssQ6b2Aql+7gU8e309WqNqnXqhxNB6cnd+qH5uaPD83AYPH5rYttzWzSJ+B42Vt3gHlXoyhHFPfh4JwIKpUTL11B6m1oZAyRbG585zf3n3gu1Kjd6KyOMk+kaIXNnGpUuXbtFl7MRrGdvx+K5Y+gBC048CW4bG8QPjXFxuD5QuD0yUaUQ9u3dM1W6ZEUb6/j71whxPXlqj5fhUCwYPHxznw/fPZO4vjyRQtWhQjDYqGcpUaVsgQ0koFNmkGhEKbpXcSh6JmMlyESFiR9YUbS9iPocSDE0dVy0a1EtKFioMJbYf4soQTQjKlp78t1o0uLzSySUMv3+szIvXG6qHO6WFKzSw3ZADKcmvh/aNUSsYnFloKu3PdNnX8Wk7PnfN9KSJeuOqkIYQiYZixW81dp96YZ4nL60ma+OtB8f5SGptgFoftaJCANVmrn6uAXYQstrxqRdN9oyWaDoeRVOnYXsEQdgT7o/RQQFF06JaNLhjV1byq+0FSYJSMfUB6aWpWoGTcw0Kho6hKUtVy7G59+WXeM9LX+XbL51ganUegOyIqLg0NsuXD72FT935Dp6dOYZnFfnVDz3Ig3fNUvvCZc4sNNFQH2pxi0vXC2hvvMI4B72kWxevMM7PR8+g61G1TB4+NMaH758dGGek5PHzq8naSZfMHz+/yofvnU5QUstQvdGaoLd3SPAD1WZUK5oJ+vrmfWM4XojrB5GaBiw1nURNI5Ypi6/j7tk6Ly80lYVtiPIpFr02pbtn68nx8T1++oV5Xri+QcfzKZsGD+wd4UP39dZS/Fx1nQCJzLSiVCwdgaBc6FU28qzRntSiq4w2+srrjajFqO36ucxaPnd6AVCEtkZXJW+eVG1PlYJBvWgkzzco5YB9YyZLDUe1k0TIbsnU2FUv0HaC5Nh0padaGCT3bSa3NUy0XR/L0Hho/xgXl9pcX+8m76s9YyUOTVYS3kh8fJ7KXuw+t5msmR6p8bRdP9f9pfeCYQx00uvjtZYIyxPbcRJ9vUeu1WbbNp///Of5zu/8TgB++qd/GsfpecEbhsEv/MIvUCxuwhTfiW9p5PH4PjXf4DMvvbJId4zOFE2Ntx4cG9g4Wo4flbGNW2qEEcfllQ7fvLDK+aVWch1hKLl7dz17rBhOEgigahnoImIuF4wBiSQvCDGEOu5Wy60MKxEzUVeIuiLyJLeccfUyDY2JupVBwvxQMdUTaa4oGYuRsDwoUfyLTF1QtkyKpp60U9heoFpD+k8giCSf4tmIOP5RL6CM/mLAW74VzYO+tbe8WhsrA2vjnr61ERPJQFItmJQNAJ9q0UTzyZDD4rURhqqc2y89poUyWRtpObjnrm8k8moiSt52VQsZObj9E2VOzjUJmhu85epJPnjmMb7twtPMNFe2XB8vT+zjy4eP8+k73sFLM0dxDCsZ46KhMVUv9A6W8fiKCKeSiSVuzNgfGOemxI1lCF9pnC9Fz2CEYIZI7t49MjDOl1c7hFJS0EUk4aZIYaYGTtCT/KoXTWoFg0bXw5PRxfctm5j9Hj+DXzqzyIvX1yN8FhaaDvNNj/v3jA4+g1IpAtSLppL4ExIhlQOhF26h8RKt1fj/96/lzHMVhNRK6tyhlLhegGHoGYQ5Gbsh1mjJ1Fluqf7p6Xq6ZC6wKhYLDQcZkSfzmLXEzzfA7tHiQHm9tUn1AQm1ogEEybG1op7I/cXHpsdjU2OQPsR92IjfQUtNh2vrXdY6blIhkKi2pDSfIY+0ppQykjgMObqrOjAeCw07kdMTQgx9f3nmJB23QiJs2MjTwvZGamnIlez+zu/8Dv/tv/23JNn9tV/7Ne69915KJfUlfPr0aWZmZna0dl8nkUtiZJOv2XSkkcxjU9UBuaF+JPNWGWHA1l+dLy+1Ml+d/ZJA2dJUVhJo33gZCRRMg3oxRBNKpzYMVZJSsXRCqWOZRvKyu9VyK8PM30ytSNHQ6bo97dT+l3HRUP2+aSTMD1X/dSzNNVUrYGhagoTN1otDIxJpWbr4pRIEIbqmMRN51qdl6U5cXaNp++weKbLRUeiLHytIRMSiZtdPWiQy3vLFV/aWH3ZtAANEsiAIkvHrJ4dN14tKfi7c3IrVD5UN6+YCX31SZcn/kdy4ssDhx77AP//a53j4zBNMtte3nuz772f9Pe/nJ9zDPD2yl44wB1pGDF1JgU3Vi71xjghcthfgS5l8zI2UDJr2FuNc2uY4L77COKdIOjGKWC1ZTKRIOtP1Il4YbGrcEY+dG/QIgo+fX+H0fBMvkIkDni6g60tOzTd5/PxKxglsQJouDBO9035puoy04GiJsmXQcX1eutFgbsPOyEv1P1dOECRVr/RzBcPvX/GcxrJvW41IWogx/ndx+Xm17WLqyqzlh9/RKz/3o8Dp8vpmiGO6+lAu6EmFoO2GrHY87t1dT47dbDziKuCuvn0mT7ySpN9Ky+GxPkm/PNKaV9c6pCUt0+PRL6e3N+f9DTsn/XErJMKGiTwtbHmcRG935Ep2f+/3fo+f+qmfyvzsk5/8JIcPHwbg3/7bf8uv//qv7yS7OeJm7lu3+nfnEenOi9ZuxwjjZiSMWJpomK/OmCihCzg6Nfi13k+USMtcdR2PgplK6MOQUoR4xpJK6Xu8XXIrifySUPcQI6OCHmoXyy+l53C5aTNWNgkjMlsQSiZrxWQONU0MjUjE5cJhJb9i0saesRIz9VcmZVULxtBkkLyIRD95RAY+0GXvaBGhGxnySLmg03SUXqghQDe05PswCEICUOoGTu86Qim5f7bKhh0mBLyRgmBjcY2Tv/pbvHfjJWY++1n+P6uvgODuOcoTdz/C2//O/8SRb3sr8+sunf/yAtZSG/wwMrSI+k6lkk3bP17C8cPMOE/XJItNFycIKegaUzULKcSm4zxesWhFRDBTUz2Safm4/nGOSY+WrrF/rHTTcW46ftLWUStkx7lk6Kx1/B6Qmv5IiNbzWsej0fFwawG/9dWLeEHArqqFkmDuMFYuUA1hrevx21+7yMeO78Oy9FzrNM+elH2uHMbKVtICop6rQvJc5R27jhcwWS2wItRzUzC0pGri+OGAJByo5OpdRyb57Ol55jccZkYKfPCuGaxUS1IexDGuPpxeaOJ4PkIYKTlEH03X2D9eSfa89HistBz2jpXQNTUWTdtnolrYtOp1s3dhHkm/5N8NKa2Z3vtXWg6WqWfQ+bSc3nbub5g5eb1EHqLjGylyJbvnzp3j/vvvT/5cLBYzmf/DDz/Mj//4j792V/enPIZx37qVkW7g1zRtwLN+u/JZ6chjhFEyNZ6+vL5puSktTTTsVyeQIRL0kwP6iRKxrJllCM7Me2y0nYzz1exIISHS9N/j7ZJbaTm+sgGOSBt+ChLTBYyVVUk1vsejUzXed9fUIPFgssL77prKzOGwiEQeoiNAP2mjf921bS8pi+Yhg+RFJPqvw4zWh2Xq+FJkyCOXltu4fkDV0gilwA/D2CGXgmWgIXH9gEvLbTpOwKWVNlVLZ7HlYTs+1c4Gbz9/gm8/8zhvPX+CWrelrqtvPgMhOLn7Dr52x9t47IF3sTSzj7YwOXbsHo4Ui1SsMJHE6pG91At/omJmJLESIuCGzUbXw/Z7ZK/1jstI1L+dHmeQnFlobUoadAOZGWfV1+8kckqaUMYk1YK+6Tivd9yM/JImBE3Tp2CK5DpOXF1VDobRR1vaOEOP2l78IOTE1VUur7VZatqULQNd1zAinWRDF4RCULYMFhs2nz09z3c+sCfXOs2zJ8V746bP1UT2uco7dvGeVDA0zsw3WWqm9qSyyeHJSqZ0D5u3g11e7g68V4Z9vq+vdxEIHtgzwskbDZq2l6yNimVwz+56cly81/e/KzquGtsH9o5uWdm72bswj6Tfw4cmcktrpvf+pVY3s/cf6tv7t3t/N5uT10PkbmF7g0SuZHd9fT3To7u0tJT5+zAMM3+/E1vHsO5btzLyNvDDrekl6pEwHNX0n9ItXGzabNguE5UCbdfP9dV5YKKciygRE9qevLSKpWvsHS1l7GbPzLcyhLZbHcOQ9apFgyCUbNgKDUsZjCElbNg+ltG7x3OLTb54epGKpXP/3hFFxNMEYSD54ulFDkyUB16IN0Mk8hAdIVtCLZsabbeHfFYsLVNCPbvUHHoO06Q6GSlMpJH8fkSiv5RLakn1l3I/c3JeuXmh+hb7XbI6jjIMEAhFJrIdit0m7zv9Dd579ps8fP4ZKm5303kOhMbze+/iq8ce5iv3vou58SlcvYAfSkJbMl4RmTWaSGI9MMOF5Q5N16dmGRyeLHNhpZtIYs3Wi9SKxhYEtZC2ZycEtbNLStt2qeUSBhLDUH37IZK2rRLhqaqVjHPXDei6yknM0DUMoUq8LcfD9lSTa3qc4zK4qaFMiaQkBBpdB68N90Rl8Gevrif6rZpQ5Mr0eg6iJMvxJfMbDoGUFIzN956CIei46ri86/TsYjPZk2wvTGybpZQs9O1J6eeqbGncv6eeqZikn6uVtptr7OJS/JOXVjEEjFVMZRmugSbh9HwzKcXH1/Fvvn6J5aaDoSlk0vECnr+2vul75dvvnubdx3a9orxUvD83bJ/JaoFdWiFxlZAhNGwfU3cGpCSHfVcM+y7MK+OVB8m/Y6qWe+/fzv29lm6i6RjmXTFs5CE6vpEiV7K7d+9eXnzxRe68885N//75559n7969r8mF/WmOvO5btyrySnPF8Vr3EpVNneWWQ8fxmaoXB0rVCw0bpDouz1fntogSKTkDy9SS4x2/18/5rYhhyXplU08c3aBX6k3uIpTYkT5ov/PPWtfLOv94wVD+7/2IRB6iI9BH4Gqonrio90IIwWSKwJVnDl8JQSyZegZBTF9HXMqdqap10LJ95lteppS7q1agWlQarV0vUHJSQovMDgIQghEddndWGfncp/nff+8PeMul5yh7m3/8e5pO561vJ/jIR/jJ7n6e00axhSK/4AO+sqnVdQ1d6xk0pMf6c6eXEomwOeD8cjsjERavCSSEca96VAOP3cZkxAQsmTpdT+lKC6GsTJPVHiVtXS+kZOqMlU3cIFQIrCZwfD8lD6aSELWHmMk1Hxgv8+Jcg5YbImWv/CCEIlAeHC+jaYKZkWJSple/useOT5MYZ0aKylhDKAOY8iYgk+OrRGhmpJB7ncZ70npHqUKsd7zUWtLoun6yJyXP1Uqn1wsf9Mag4/Yc4saHGDtTV7J3vYdYVahajk8QpD6ydJFRgomv4/R8Q6H5tt+TeCsaTI0UN32vGIb2ir2XW5Hk1PqRGZJcf9zsXZHnXZhXxitvxWk7e3/e+3st3UTjyEPsHia2S6p7vUeuZPc7vuM7+Lmf+zk++tGPDigudLtdfv7nf56PfvSjr+kF/mmMvO5btyoy0lyGpkq5kazNYnNQmms7MYwodfQKYwsudPJ3kkFU0A9Jvu4NjcxXp6aJXESCNNFqbsNmsekk5cjpeomZkSzRKn2PT19WskpPX17lLQe3ZqkOMx7D+q4DzDdsvLh3IS3DkPqz64fMN2x0TUtISF4gM2jVYkshQWkS0rYQiZsQHQciUiqIZbz6iThpsosXBCw23QQFnqpZmLqeIdXFCKIuQ9DUvQkhcByXQGgJghhHXKr9N1+7yNWVJqBK/HdM1fiRRw9lCD3HpmoRSUckNraFwOeQs8bbX3qcD19+mvv/t+cQts3hTW7V0U2e2ncvXzzyVr5x/6P8+v/6XWjFAtf/zZO4G91Un3Us2ybU9W81jElCqNKf/rdxTFDbM1pkPSaoBSqZrRQMRksGTdvjxNW1BAnXokQz9f2R2MK6fshiw2amXlRothuiS4GhiaRX3A1C/FBSNHVmInH/6+td5ho2uhBsZiOgC8GNDZvr613um61TMDRsL0SgtFylTAkiCKU2cd9snb2jZX6ldpb5RpeiEV1kFGEY0nGVY9kH75oZ/KU3WacSheg1bA9DU+0yevRx03J8ZbltKbJq7Ki12LQ3cd/KOmpNRWPXdiWGlJuMHRRNwVRq7E7NNxSBMtLTji82CJXxwcm5RqIV+7VzS5xfbCnCXlrirePRcHwsXeO73rQ713ulnyTneEEGUe0nyeWJ9LsQlKFL/N9Kycq8C/MijnkMGgb2/oaT7DPT9SIzI8VN9/6899foehl0+dW+628VarxdUt3rOXIluz/zMz/Df/gP/4E777yTv/k3/yZ33HEHAGfOnOHXfu3X8H2fn/mZn7klF/qnKV5X/tfx859CORSM0tMu2G4MK0qdJgdsht6lyQHxV+fP/9FJTi200EWvNBtIyWSlkPnqzEMkiOdlNEYAohd+jCoVTT2j45i+xxtrLX7iDvj7/+VFdo9VNxXeHmY88viua5oqdyrESZlIaLpI3uNhKAlRKF78RX5lpUPXVUSrfrTKhYSElAeRAHIRHWOSTscNksQmXooFQ6PjBhmSTozGnZnv4ochSIkfv9xm6pk5PDBe5rlr63RDgCA9/BhamCCI6TgwUeZthyewdAl0ODJV5c0HJjgw0Xv5pNddY6PJbGOZ9555nG97+UkeuvoSVrD5s9o1Cnxj/3188ejDfOHIwyxVxpCGwXS9SEfTwfEJoqRH1wSG3iO++YFKcPxQJj3XGVLpva881hki4MgrE8NUUqkQwzDKLtNbQ0zWWW671EomJVOj5QiCINbiVX8fBIocVDK1hDS10XU5u9BCAFNVCz8kWXeGBk0n4OWFFhtdF0PXODRZ4ex8Cz+l7xb/P0MTHJys4oYSy9L50Xcd4lc+c4bVjsdYUSF9XTdgzVYI119756Gk5SYPIbftqoRWEyKVJMXIskhaFOK94MpqhyCQTFStAXmwlVZE7nNUqq/Gjlccu27f2IWhZLJiEsr400agCUnD7o0dwNmFVuTk1iN3KVc0QcP2k2P3MXxiFZPkbvgh5xZbfao2MFaxmKhmSXLDRrzn2p7Oqbk1Wl2HBw7CE5dWqZYKHJws4/gBbdfPjTjmIVUP7P0JQ1Ld6WZ7/3bur796mr6/vHGrUeNhWlzeSJEr2Z2enuaxxx7jx37sx/h7f+/vJVqNQgg+8IEP8Bu/8RtMT7/xMv5vdbxe/K83k4xqOz66pjG9iWRUnsgjSh2TAyar1gCRYCoiEkCvlHtgosyhyQptx8fxFVqlaYKSoXNwspJJUvIQCWJ/9BNX1gbkl5aaDqttN+O9nr7HuAReLRib3uOw45HHd33feDl5BsuWPkCcskwdDRlZIKuEqWF72F6AiFCZGK1quwEy0hptOX5u96E8RMcTV9c4NbeRJN2moSUfLE4gEYHPyRsbA9I2AtWG0HvdZ6/r+nqXl+YayixgkwhCePFGI7Oe08jI4ckqyEUOT1Y5OddgvtGTl8K2ObJ2nb/5xB9w9Kmv8sDVUxjh5i/3oFzh6/sf4POH38LnD7+FlVIdVzMThLQQ9Re2bD+6LslUvZBpvRBCUC2aFAyB6/eS3Tyk0gEiYHGwjBuXfRebdqQdLNG0bDuM0NTPQ6mQ5pat9oiZemFLSTMQyf1dWmnTdX2Fjuoael+12zIkHdfn0kqbN+0dY3aklDxvQUrqTdcU4XJ2pJg8gz/4yEEAfuurF2m01Vp0vIDZkRJ/7Z2Hkr/PO3YtWyky7KpaA2SoimWoeQl6c6jGeCsSpaZIlNGx2x07TdMiQmMvE0uPnbqO+NjsdWiaet7jY+/bM8qwUbEMLENTHx+bIOJBKLEMbVvvq3jPffryKkEoGSupxVE0NZaaNqttJ7Pn5kUchyVVD+z9xVfe+7d7f/2mIP33lyfy7NHbrRDfrMXljRS5R/jQoUN8+tOfZnV1lXPnzgFw9OhRxsfHX/OL+9Mat9J9Kx03a1rPKxk17HnzSkClx+MtB0Y3RVzi8Yi/ZsuWzseO7+XkfIOG7VMvGtwzU+fiamfga3ZYIkHsj77W6fde1zHLIuOPnr7HfaNFRNSHaOmCfaNFrq7byT0CmWP9kERuqP/YvL7yBycqlCzVS1ovKi3gHvKjyCNly+DgRCUy2FDJb9USBIF6gWtCYGnQcpUVaLmgk5e8mKdSsdC0adiqV9EyRGRrHJkzCHB9ScP2WWjaGTTug/dMM9+06boBJUtpB59fTiGZHZvzS61EHgyR8GiUA5eEC0stVjrKTvRm/YKXri3z5B9/lcPXnkZ86lPsf+KbHAw3z6Q75So33vIoh3/4Y5x70yP8nf96gWYoqBcNCl6IEfVOlk2Nhu3jB5KKaSB0NT5BIJkdsfACmZSITV2w2vYoW1pCUMszL3lafk7NNRBCfRCULI1Q9sZOE9B1lcPcgbEKuq56oIMw5M7pKi0nSEq+1YIiARq6RrWgrlkIJWUnQ0kYhngBhDJEExqmrvrKtchoIn4GhRC8ac8I67afVEFGiwbXNmzc6BmM4wcfOcjHju/jMyevE15+hl/48/fxoXv2DMg6pccuDEPmNmw6UT97jPrFY1ctGMk9zo4UN5kXVxEjo3ssmbpyOCsYA8QpxwsGjt3O2CVrOQops2MH5Dp22IjnpOsFHJmsDIzFlbXuwJzkPfd6V+258ZRZhsZYWcvsuXHkRRyH2f/z7P2v5v565xWYZXPb54XtEczhtSWzvZFi29Dh+Pg4Dz/88Gt5LX9m4la7b8FwTeu5G/iHPG9eCaj0eJxbajM7UmS0bNJ1A84ttTPjcXW1w/mlFn4Q8scvzLHe9RISxoWlNnfO1Db9mh2GVBd7r4+WtvBeL1uJP3osgVa1dOYbjjIk2AvX1m10Xadq6RkJtPSxXS/MtA/0H5vHV36kZHHHdJVTcyrpT/fptZwAQxccm64yUrKY2+hi6gLbg+WOR4onhNCU+YShCzpOwOyIlYu8mKdSsdpS8kmG1kt0k3kSqjzrh5LVlpORgDpxJSsBdaNsZySgvnx6UdkmR/Otbozkv1og8UL48ulFHtw7vmXv/OS5Uxx97Av8pW98mdkLpxBxBav/vuqjXH7oHVx8+D2cvOdh5o0yP/GRe9nY6CIK18D2WGq5GZS07Shk19AFbc9ntlxKCHjxmisaOl6gXrz9JMo8rlB5Wn66fkClYOAFLt2oXzYOiUJVywWDrh8wWymxf6LMtbXeNVej6sNax1NOfOPlZC3sqhaoFgwatkez6WdR4wjprpdMdlULmWdww/YzCNtG3zOYfp4tS+fD987y3y8/w4fvnU1k5NIRj93p+Y2UbFtE4CqZ3DlTzchL9d9jZl767nH/RJlziy3OLbUG7q9eNDnUd2zesUsTI2NrbddXjjdVS2dXVZHw8hw7bGy2L6bHYqs5yXPusUg6cSxC210/YK0bMloyNz13XsTxZvt/nr0/zz3239/Aebe4v2Eiz14Qx2tNZnsjxa2tk+/ElrEd961hv8iGbVrPKxk17Hm3I0o9bLmp7fpcWW1zLk3CiF102i5PXlrl6FRtWz1Qsff68QPjXFxuD7RTHJgo04j6tpSEkE83Eo6vWWoeTF3QdANsX/WWxveYPjZG1qSEdt+x25FLe+fRXbhByOKGzVrHox2hLuNlk6mRIu86tos9oyWatocmBE6ktwpZAwrHDxmJNCvzkhfjdVQ2NeYbToKYzdQLA+toolJAi3qnZZR4xUiUHo+RJhJpp0QCyg1VSV2CH4YsNLISUC27x5qOiV7x/aWpb/FxbdfH9nxGQsmu0yc59rXPcuTZP2H87Nmt18joBJePP8qFt72Xq296G261RmhaihAVVUGqRQNNqPaDcJNxdqNezWrRyO02lXaFMnXlAhiTDOf7XKEg3fLjJaodqi/UyLT8VIsG1YKhWoO8MONgJlDJRbVgZK/ZD/G8gMVW7yU7VbMwDT1zzQ/tG2O8YrHYdAbc50LA9kMOVRU6d265lTyDF5ZaiiSaEIUKHJysJM9gOoYx59kzWgIpefy8IpNmCFxtl8fPr/Lhe3tjl9yjH7DUR4w0+u5x/3iZF69vIOMeouhOYzWU/ePlgfPGiihx69iuWgFD1wbGLiZGFg2B7UtcGaIJVSWwfckdKVLWZiRKXQjK1uCxmbG7SQVw2H0xb8Tnfmj/GJeWOzS7Sr3E9iRT9SIHJ8rb6pXtj9t1j/33l24VfLX3l8chDr41Emiv59hJdm9j5HHfGvaLLG/T+rBSPHnOu11R6mHKTUVd4/JKB8cPGSubWTKILljreFxZbVPU8zfRx1/KRVPjrQfHBspCrSgRqFgGY2UTL5CEMqRWVI5CoMT9S6agaftoQiTyS16gSFUCsPuSOxdFvBkrm7nl0tJzuNHxqJckgVQC/AVTV2z0aA5LlpIpy0h9xTcfkfBsL+h9pAxJXoyv4YlLK/y7J6/h+EGiglAwdO7bkyWRTdWLjJRM1touLXew79UQJJa3sQTUcsvBjj4M4rErGhpFS08koPaNl4hy4Qy5KblBFOq7b6wIrRZjT3+T7/v3v8s9zz/O1NXzW64Lf3YW+73v5z/MvInlN7+NwvgooZldu2n02g/DpPc2fRXx/w9lNM5Rb2VutykJXihpOz6h9JK50aI+7fjI+JkNpeTYrio3NuxkPe8eKRJKmTyzVctQpg1CYJkaQdAbZ11Xrl2GgKplZNbcmQ0bP1THKtKgx50zxU0rUyIafyPlAuZH1r/xx1f8DNqej4jWp5C9peh4g3yGYc15wlByebVDKCUFXREChRDomtKndgLJpVXl0JUlRsb3qJ7h5b57DEP1PJm6FvXzahmNVjfoIeXZ+XbZO17um29rU5m+X/rUaZpdj/GKiaEL/EDS6PqMV6wMKStG8ldaTtTGoHqt17thRtKvf+yGqQAOsy/mjd65dd5ycIx21wXWefjgOJWSMjuxt3nu18M99t/fZud9VfcXbyr9rSnRB1f/XnArJdBe77GT7N7mGMZ9K88X2bab1jchHqQjz3lfjSj1zcpN803Vs2ds8UAamsDxQuabNgd3Vbc8z2aRRrqPTVUzbR39vdRBEGIZWtJO0B9+KKkVVV8pqCRYIQUR4z5Cdr1IqmmkZDJTK74qX3lNCEqWkRC4+lsEFhs2XsTeGmjbi/7sBkpeytC0XOTFyysdLi53cPwAXcSyWeD4AReXO1xe6SRrNDYZ2MpuMgCmakUe2jfG9Y0uTdtjte2BlJiGliQHHTeg44UK2QQ+9tB+/vfPnKXpBOlbiiYwpOJ0edvqBX7g9/47/NXPM332LFvRaTemdvP8PQ/TeP+H+cj/9D9QrtfpPnaVizc2OGaYr9hn/+SlFRwvYCDfjiKUYHsBiw2bQ5PVXCTK6+tdrqx1lHqGF0TzmPoYNDQur3YS4mCa7DhetZIPp+W2myE7ynhRRKoMmtZThVAkSIEU/cJw6jdnSYODEUug7R4tJqQsqarqCSmraStntrccGM9WFEpmUrlZbDpcW+tmKgp5zHkSB67RYkIG9KTqD66WLCYMwWLKgSu5RwFG6uO5/9nZzKnL9xXSPT2SderazImyN9+bV/X6SVmerXqY75wZJGUpJL+ckHelFIkL3sHJcoa8u50K4M32xbzRf+5ayYAu1EoGIbxq/srtvsdbOXZ5HOKAW05me73HTrL7Oo/0F9mRyTLzDYf5hk3Z1DkyWeb8cpaQlUfWLEP+uXtqoPycPnee895KUeq1joepCxAaXS+M+tKUs5Lrh0poXErWOpsper5y5JGqsYOQA1Gf3kbXT9oYum5A05UUDeUXbwchYSgpmTqNrkcoFbKnRxJPMcG5ZOl0+nzXl5s2Y2Uz48Y0WcuiZnmkqJZbripjC8UIj5GzGFkLQnWtyy2XkbKVkBd3j5Q4v9yi5SjizpHJKlKQkBdjsp7jB9w1XR1wREsT8NJzrgmSa4gjwZCFSqtaXZ+GrWxsYwcwIqk1Qxf4ESLW6vrsGytz754637ywps4RBlTcLm++cZoPvPxN3nPxBPs2Frac/9WZfSx92yM8dfd7eGbqGOXJcX7oPcfQouQjnpcz8w10TWw5L0tNBzfoIcn9RKEQ1cqw1OwZTgxLoowJjBpwZFeFlhMkLQQxwSlNYIzJjuMVi5ajjAlMTfUQZo4VJI5eJkQfSirJjRHqWGorz5qL5fESCbS6eoadIKQQmS6EkHG+GraikN4bj+6q0InuWUo4uquy5XUM48C1nb0xD9H36FSNg99WGZpkNYyTYY+8a/D9b937itcM5K4ADrMv9sfN2gduJX+lf320nIC1joula5uuj/g6zi40o2rdTSosQ8SrGbubRd5197qRO71NsZPsvs4jRlS9IOC/PpclZI2WTO6YqWa+yPLImmX8369sZEhI19cVCSk+d165tFslSq0SZwNLF68oCbRd3+48UjX7xyuYuqb84iMNzabjYRgmd83WmR0pUbEM5ja6aJpgNoVsxXJDJUvvyQ1FKPHRqRrvu2tqUJN3ssL77poaQPqGlVOKi+qbyZSZhkYBhaBJZIbMc3a+lVl3L11vcEeKzBMTEqsFnfmGO+BcVi3oGUJijPTtqlqstb0kMQSlZjFWMWl0/QiJs/H8gLJlQCSNFpfXLV3DMgSuH3BxtUW9bLK3arFuuux56QQfOP9Nvu3iM+xuLm894Xfdxfq73sNXjr2dp8f3c3yywbP2Pg5P1QdQtqNTNe6aqfFbLy+z1LSTRGlXvciPHtuVHLvSdpBSYmgxGaz367SoHUBKyUo76642DImy5fgR+Ugwt+FkxrppK5e4jhska0nptUrOLLQUohq3gJhq3blBVsN3pGSw0fFpe36qXURnpKwsklu2n2vN7Rsvb+ls1xFCWfGmnO3yyCECyf711OX1AY3W9P6Vvo5hHLhezd64XaLvkxfXtiQKDeNkmJ4XXdfZM5ZdS1vJBQ6D9A27L97smjdrvdsOf2WYyMzh5fVNCVz99xjvuy/daGT23e/t23fzxHbGbpjIu+5eD3KntzP+9N7ZGyRuRqyICVnnl9qqX83UsXRBIGG55dC87HNkVyX5IsvjGtPzf3eVbE6fBmAj0oSNvcOHPW8c2xGlvhkSkG6RiGW80nJKV9ftTVsk8sitDIO6pD3rxysmpjCAFntGSnhScG2ty92zdUUMc7xEXuropMn1DQfbDykaGntGCmzYIYYuEtLZucUmXzy9SKVg8MjhiaQvsGH7fPH0IgcmyhnC3rBf7Acn0zJlGl6gpSSEoGGrpPLgZCWaxx6ZxzK0ZN2tRGSeD0VknhdvbNB1A7qu6hfO6vf6KMBNJMidIvepJKxgiASNV2X0ED+Q+IGqAsTSS5oQFE1Bx5NJ0l02BbYPlgyw1lYQ3/wCH/7NT/J3Tz7BrvbalmvMvuseih/9CHzXd8H99zNarfJdhsmblps89/iXtuyd/8KpBT7x+GVsL2CqXkiY7l034BOPX2b3aIlvv3ua8WohkfESqP7pOGSU/BoajOdkxYMikumaYLHpoIt+Zy+PDVsyUSkkaykIQ6UIEaG2cftMJ0qap6qWOlaqVpuVlose9UzH2K7vB6x3PCYiZYC8pjhx24oiTmkD17zSDrk3crY7t9xK0Ko9o2XmGt1Eam62XiIki1bF+1fX8ShEA+0HIQsbncz+FV/HsO1V55Zb29obX0uibxyJo2LTQdMj0psf8MK19czxeeclL9I3bPVhO/eYh78ybKTJrY4XZjTLF5tZcmt8zcPuu3kjz9gNG3ne9UDu9/eftthJdm9jDEOsKBqKkNV1fQxdy6AzyrLT58pqh+I2XGO28jyPnX/SnufbLcfkkYgZBglIt0hcXbczLRJzjc1bJPLKrQyNukhFPGu7AWaEmm50fTwElt4jCsWks2cur3Fh2UvKsBvAYtNlvGzy5gNj1ApmpvR2x3Q1synNSDlQXsyLuN8xXeXF6w2W215iAxorFRQNXcmUFS1F5lnpKKKXlBHhKyopRwvwSkTmGSubuIEi8NSKZlK2N4RAN3WatodIkfXGo+P9IETXhCIpSdW6YGgKmTR1jfGIgFgtGDS6HhvdMBk7y/ewnBbvv/Y8H7jwFO/9+POYqyvs3WJtnZw+zFcOPcTX7nobv/jT38fBQ7Ng9sZLg1fsnY9bNdbaLkVD0LR7iGrREKy13aRVY1e1gKVrdMNI1aCv0TXuc80rAQUkRDIpQSTXGEmjCZUIxUSyUMpE5g5Uf3haf1WG6u/Lpp44eUlAaKovOk7mA01DBqpPPn5R5llzmiY4MFHm9HwTL5AYujKuCEKl+awJwf7I2e6V5JRurNkZOaVQqpabpaaN4wXIyOTj2loHoekUnCDZv4Bc7VXb2Rtfa6Jv+vjT8w0WN2w2bL8nl1Y0mBopJsfn3Qu2g/QNU33YLhlqGP5KnojJrR3HZ6peTM2h0ixfaNgJuTXvvrudGGbs8p4vzzv5VrVTvFFiJ9m9TTEssWK+YdNxg8gVSqJrJF7qfiAJQ2g7AfMNm4NRL9awZZM42RmkncSR9Ty/VeWY9HistBxqRYN60SQIQ164vj6ABORpkchz3jzHx0Shoqnh+kHkMhUlEqFyAIqJQntGS7Rtj9WONzDSEljteLQdL/Foz1NezCsfd/dMnZcXmri+6tFMJ5kFQ3BPhEY/dXmV6+vdxMErTphA9cuaukKvT1xdY6ZepGBotB0fKWXketUztkjIepFw+lS9iK4J2q7EkOp3x2vaDUL8EIqmYKpeZN9omUqkT1zwXUa6Td556Rned/4p3nn5WUbt1qbrKRCCl2aP8bXDD/GVO97G5Yk9rGsFAk3n+a7OQTP7gvcjlyOApy+v8paD2f7iE1fXeHmxSRCGdLys+1zHU4n+2YVmbzxMna63hZUbqo1gpk9I3vfDm1ZBJFAwDerFEIGk0ycvJU0dyzSQwHxESBSy1wsd25/GK8sNQuYbNrMjJQqmrlzWonuKk/mypZI/KyIC7k2tubKpDxh99K85VTYXPHJknDNzzaw8XsXizpkqIJJnZVg5pWtrHZpdl7WOhxBQMdRd6Zqg7Yd0vJCSoWV6wofdO/LujUm8hkTffeNlrq93+dq5Jc4tKPvktNTiasejYftYusZ3vWn36wbp+1Y4ew0T0SfgZrMUX00yw6+Xa84bed7Jt/L9/UaI25rsfvzjH+fjH/84ly5dAuDee+/l537u5/jIRz6y5b/5gz/4A/7BP/gHXLp0iWPHjvFP/+k/5Tu+4zuSv5dS8g//4T/kN3/zN1lfX+fRRx/l4x//OMeOHbvVtzN03My5Kf0VudJ2IxmnmBWtpfgaYfLzfmb7MGWT2PN8RbCpzFW1aDBRyXqe34pyTDweV1Y6+GHIpZVOysDApO0EA1/Vw7RI5D1vnuObjseV1Q66EBzZVYEwAGz2jZVA01lte4r843i4rsWLNxoZ29M4YjvUF683cN0gdykyL6oUE5G8QPa0VCXIQKG38at9qenQsn0EMloTMkl+zAhabDk+S02HesnkwESZswstltsu6fQsRKFf+8fLSk8Y1UdaMjVaDgQRsqcLRYQKYutnU6Pr+oStNsX563zsxW/yvgtP8Y7Lz1NzO5uvI03jmd138rVDD/G5Iw9zbXSatlUi1BSyp2vKcnixke2V/cKpBX7n65e4sdbiJ+6Av/9fXmT3WJUfebSX/MTjYWgoxYs+9LrjeMl4xO5bTc3D3yTf1TWV7HZSsmvxNWR6tCcqmWuIx26yauH6ISttOzq/xJfqeZ6IbLe7XsBKyyVIS0Kk87aIGBiGkpWWy2jZis6rUE5FSlMEyq4XMlGxkvP2pOZW+XdPXsXxe/q96Zdn/KzGa3qqVlJrSoieBNpokV21YlbDdEg5pYbj0XQCJFIZiURfnJoQCBSq3nACGk6WrDrM3pFnb8wQ9u55ZcJe3ue70fE4u9DCC0JGN5FaXO94vLzQotHx2Ddefl0gfXnv8VZF/KyIV5xDK+prf+MSuPK8k2/F+/uNErc12d27dy+//Mu/zLFjx5BS8olPfILv/u7v5plnnuHee+8dOP6xxx7j+7//+/mlX/olvvM7v5NPfvKTfM/3fA8nTpzgvvvuA+Cf/bN/xr/8l/+ST3ziExw6dIh/8A/+AR/60Ic4efIkxWJ+S75bEVs5N8HgV6SMELWSqSWkoli2xzJ1NFTiIuUgAnGzsknFMpiMXo79ZJCpSLoExLZKWXni+nqXZyIy0qB/uJORSMrjopP3vHmOb9l+RHQx0DQNI7a5NHV8qVEwNaUSYPv8/okrdNwAK6Lmhymd3Thx7LgBv3/iCu+7a2b7RIIhUKWnL6/RcgKiz6YkJNByAp6+HEtRRclv9KGlawJDiEgurffzmMw2WraUVWoQqgQrusG49D1a7jlTtWy1xmbqhQHCXtnSmdF9RtYXKP/mv2bti5/jPzz+NSqevekce5rOib33UP/uj7L47vfxvzy+Tsss4kV3JxONVvWcaRrMjPTaB75wakFpmNoeM1U13tWCwdnFJr/0qdOASo5U4icRmr5pDiY0jdBTiVfL8ZWWq6EhffW8xh86QoOCrhHKHjEsfQ3p0nr/NYB6Zi1DizSbRbTukjvEDySWofReJb11lkZz44MFikAXz6FlaAShjCyCRXKg6j/unReIpOba2JHUnGEodQrbD7iw3M5IzVUsZaH79OVVglAyXi0k6ORyy2Wts5aQa/PIKV1abuP6AdWIcBlKlbSEUlIwDTQkrh9wabnNfbtHM3N2s70jz96Yh7CXt9Xg4mqLrutTMPUtHRU7rs/F1Rb37h15XSB9ee/xVkV6DvvX0mbvt9fDNW838ryTX+v39xslbuvMfdd3fVfmz7/4i7/Ixz/+cb7xjW9smuz+6q/+Kh/+8If5O3/n7wDwj//xP+Zzn/scv/Zrv8a/+lf/Cikl/+Jf/At+9md/lu/+7u8G4Hd/93eZnp7mD//wD/lLf+kv3fqbGiLyfPkeGq9Ssgy6rs9o2SAI9aRErGuw3vEoWwaHxvNpykK2wf34gdFNEYlX27Q+DDEsRkmDQDJeUWYNtheiR32eaZQ0T6TPO1G1BvruVlpu5rzp40dLOutdL5HQUn8OkuNj9M7xAuVjnyEhSRwvUE5nBYPrazahVL9X07TEOSxOIsMwxPMk19fs3KXINKr0gbt2cWG5Q9P1qVkGhyfLXFjpJqjSWsfh7EITKSVlU/XDJOqoUmL7IS8vNFnrOOyfKCOESmyLRiT5RQSuCbADRS7bP1FO/N8DKblnuspyx8P1lSzcZNnkesPBTfm/x2MXhCF3TlfZaNmIboeZ9jrvOfMk9774Dd504TkK3uY6vI5u8tS+e/n6keN88fBbmKuM8zf/3IP84COH8V74Io7jUdQhRCTjrCGxAxgxTd5/h0oc4z7cpu2xb7SIiPyTLV2wb7SYkUxLk/uKhiCUvbHThLJjjcl9oMYNBLsqJo7fI1EWDGg6ioRXLuiZa9g/VkpIU7WiRsXSubLWzci2xWPd9QIOTZToeDLpaS2bgmsbvbFei+YwXnsi7smN16gvMQWZOex4AYcnypvKx8XnTUvN3bmrzIbdO3akqHG94W56zevd7D0WDIFZNrmy1mU6OneaoLZ7pMj5pXayno/sqiCFSAhqItKSFqCkotAAj1rRJECj43homthU/fdm+1KevfHsYnPo/Twv0TcmaEqprjn+OIlbhKRUyUv6PHmRvjwSaMPs53n3sMy5b+KClyfS1/GWId5vf9YJXH/a43XzmRIEAX/wB39Au93mkUce2fSYxx9/nL/9t/925mcf+tCH+MM//EMALl68yPz8PO9///uTvx8ZGeFtb3sbjz/++JbJruM4OE6vtNloNADwPA/Py6/XerMoaqq/zHZUaUVEiET8X8fxKRuCogZYgntmypyZa2I7HsWkZyvEdgKqpuDOmTIVS2zrWt9/1wTzG20uLjWZqRcZL2l03ZCLSx0mKxbffucEQeATDBpd3TQuLLX4wqnFBAEqGjqHJit8+91THE4ZPjTaNoHvY+mClaaduHyJSLoq7htttG08b/gv0vi81YKBqSVdiyoEVC0l9xWfNz7e8wNe3vBwUyXgpQ3BaNkEqdNo28zUSxyeKHJ9vUuz4ySe7jLwaXZDSoZg71iRsiHYM2JSMiQ6EkKJRs/GVoQCHUnJgD0jJkHgJ3NyYbHBTL1IyVJzMt+wB+bk+lqXS0sNZODxmRfX2UhJhL08b3J0qsLFxQZXlps8c2kZIQMqhkABFL0+XAAd8GXAM5eWuXOmzlhRo2mHSEL06OUav2zLhqBW1Oh0Xa6ttqiYUNbh/FJTJfPRC3mjbTNetigbcG21xZ6xEmVDcHTMYO76CvrVeb7rzBO8/eWnedPlF7GCzcuEXaPAkwfv52uHH+Krhx5itTaGXSgSCk0pQJiC+UaHY7uKnJxzI7mvqOQdaduWdDg6WWS+0WGPXuLpy6vcWGsxXtRYbdkE0SJfbHTRdZ3xosb11RZPXVpipl7inpkyp240aXbdAXJfydC5e6ZM1dCYb3SpmKBJsF2F8iIhEGCHgrKhUTKh1XF46tISN9ZazFRNlGRqqu9Bh5mqmVzD8QPjXF9T5x4talxfy7ZzrKH6/uOx7nRdNYeOQuINQTKHvpSUTUGtkJ3DkYLGtdV2al2IgfPON7rcWGtRNeDqSlu52kXrudHWqJc2v+apikGr61It6qlycsCuspGcO94bz82vcW6x3beeNzg6VaFWtChqMFHWGS+rD84w8ClFWteWrlRACjrUTZ2Jsp7ZG4fdl4bdG/v38/5I7+d5n++Jks54SSH9Xae3lojQd1PXqJd0Jkr6wP4/UzMBhVJutYdvNhZPXVgeGIs845Yeu2HuMX3uK8tNHinCv/rSWfZP1jY9d54Ydg63c807sXnE6/BW5E6v9PtuFkJuVv/+FsYLL7zAI488gm3bVKtVPvnJT2Z6cNNhWRaf+MQn+P7v//7kZ7/xG7/Bz//8z7OwsMBjjz3Go48+yo0bN5idnU2O+b7v+z6EEPz+7//+puf9R//oH/HzP//zAz//5Cc/Sbn8Zw/u34mduJVhNRrMfPOb7H78cXY9/zyav3mC65XLzL/1rdx45BEW3/xmwkJ+9YKd2Imd2Imd+NMbnU6Hv/yX/zIbGxvU6/Utj7vtyO6dd97Js88+y8bGBv/xP/5HfviHf5ivfOUr3HPPPd+ya/jpn/7pDGLcaDTYt28fH/zgB19x8F5NXFhq8RtfPs+5xRa6DPlrh5v89oUagdA4OlXlb7znSPJFe2Gpxb/95hXWmg5CV57rQgMZwFitwP/4tv2v6usXVAlpbsNOylOq/2ywhDTM130YSn77axd58tIqfhiy3vETotdo2cDQNB4+NM5fffQQmia4ttrhb/zeCeY24h7l9O+VUR9zid/4gYfYG/UafeXMIr/3zStcWe0khJ7942V+4G37efedU4BCPX/5U6e4uNJmYxNHtXrJ5PBkhb/3kbvZM1bi4nKL7/1XjydEquxVqCgZGv/hf36EQ5PV3ry0XEaKGg9b13jC3cuGHTJWtZJ5CUPJj37iCZ68vL4pt1sAbz04ym/90MPJmH/lzCL/9huXubjcTkpvhyYr/I9vP5DcH8CVlTY/9H8/QcfxqZfMzJyFoWSj61EtGnzirzzMyfkGP/ufX8SLzCT6+EpKZUHT+Cf/w33cv3uUX/7UKS4st2l03ITQpqH6jOtlKxm7IAxT12BkSvxm6OE3WhxtL/ErpWuMffVLiKeeQmwBjzSLFZ4++hDtd7+X9//Nv0ygl/i7f3CS+eciQp5IXG0TO96pWoFP/JWHCaXMXIfj9zR5C4Zgo+snY7F/osKTl1b4yX/3LH6oONmGkPzMgz7/27MGvlRMbUMT/Ivvf5Dj+8f5lU+f4bOn5nG8QCmhRONh6Kp38kP3zPC/fuhObqx3+Ru/d4Ib6x3cqGUlGWcBpibYM1rmN37gIRaaNn//v7xItWBsigq2bJ+W4/OLf/4+jh8Y5+pqh//v7z9Hx/XZVVUtP4FUWr6mLlhqqbam//Njb0ITIpnDjbaDn1LJMDQYqRSSOZRS8pO//ywbXRdNCDpO0FN5KOiEUjJasvg/P/Yg1zc6/I3/5wS+VE6BaVvqMGqHMYTgN37wId52aJLra11+/UvnGCmZVAo6LTvADUMsTaNa1Gk7ARtdjx9/71GmawX+yu88wen5JgVDwzL1RALN9QIcP+Tu2Rr/9w8/jGFofOXMIv/8cy/Tsj3GSzp/9VCT//tijdWuMo742x84ljwvyb50eRXfD1nv+kkLyGjJUH28B3v7Uvo5utnemOwFbXcAFRyrWJvu0cOcNwwlP/tfXuALpxeRUlIw9QSdd7wAIQTvv3uKf/w99+cq+cdjcXKuwZFdlYGy/fmlNvfurvNXHz0EMPSx6Wu4sNTi8ycXOHmjQdv3qRgG9+yu8/57pgfeFfG5NUIO2ue5VDxCiLbpufMgzHnGejvH7sRgeJ7H5z73OT7wgQ9gmoP9z691xJX4m8VtT3Yty+Lo0aMAHD9+nCeffJJf/dVf5f/6v/6vgWNnZmZYWMjafS4sLDAzM5P8ffyzNLK7sLDAgw8+uOU1FAoFCpugRqZp3rLJ0g2DAA0vFIRRWuVJQSAFARq6YSS/+87dY/zwo0ZCJHD8AMvQObq7+ppKhhycemXXsXOLTX73m9cSofBpy6Dj+rww1+J6w01kua6udjhxrcGNhpsQvYoFRUiZa3jomuDpqw2+s+2zb7yMZhi4UuCGGkEYRptpVCKWytrWlQItGpMvnFrglz97LiH0jEaEnpMLbX75s+cQusG33z3N/kmD3WNVnr3Rwg1FZM2rXveaBg1Xsme8moiXn1ns0HIlgex1+aVTb4lSMjiz2OGO2bHMvFxaUg+cGwru2TuWmZerqx0KhQLlgsVan/yYAEbLJgWrwGI0Htn7KzAZ3d+pxU7m/gCWOj5NV/HRPakhUlVwGa2lhiNZ6vh86J49/MIfn2GjtXkvLMBUzeRD9+zBMDR2j1d59noTJxSK2YUkROCEkoYTsjsauycuraSuQccMPEpul33L13jHqW/y1jNPcM/cObQtZJzWSzW+cfghHjt6nKcPPoAYH2d23y4emNqHkJJypULZ79JyfBy/dw5TV+S3aqmIZhgsbHQz16EbqjUDwJMQECZjcWTGZPdoFR+NDcfD0LVEusqTGm1fmROMlNRxi22fS+s2um7geZIw6o8IojaGsm5wcc1mse2jGQYtL6Tl9SyF4wgluELQ8iSaYfCWg7vYPVbl7GKT/aYxYHQw3/K4c7qWSKEZhoEnwQvBR0czREI09KXEDT0sCYZhsHesnMyhi5ZciARcsnN4dU2t/eVOiKkrVQUzSqrW7BAvkOi6umZdM3FCgR+CpmuIjOCDwAkkgS7QNbV/7p80OLirzos3Njg2VaVa7r12pJRcb3S5f88I+ydrSvKu4TFRL+F4UqkdyFC58VkW1bLg2obHC/MtHj40wfvv24PQjURNA6DlSQ5N1QdkCON9aa7h4geSatGgqJt4Qchcc3BfSsfN9saBPbrpUjB07tkz9op79M3Oe3W1QyB0Hjo0wZn5VqatY7RS5I7pKj56sncMG1dXO5xb7jI1UgbNyD6ZAqZGyry81GWxHRkuDHlsfA2Zd8VYhXL0rnhxvs2N5rXMuyJz7qiVTwodhD5w7mHfQdsZ6+0euxObx63Mn/p/zzBx25Pd/gjDMNM/m45HHnmEL3zhC/zkT/5k8rPPfe5zSY/voUOHmJmZ4Qtf+EKS3DYaDb75zW/yYz/2Y7f60oeOfm955ene4B1HJikXzQHPbrj1kiE3Ix7kEQrvJ5y13IC205Pw6iectR0fP5AYusAy9IhQEvdDKlJGEEp1XA5Cj6YpyrmpCcoR6hknr2EYWc+mxmBuw07+PkYQ44iRRBkdF0dM8Hjq0hILL13lLxzfM6DR2rQ9rqx0GCubHBwvstzueZhPVgw27Ij4ZnsDpKm2G9LoehiaNkCaMgyNtY6HpatEtOMowfkAiY6IEE0NEKx1FFmnXjRYbrmJGkOCkkb3XSuk0GGpzA+UDXPkvhWC44e4QZh8BKx1PCrSp+x02H/1Cu85/ySPvPwUd8yd33K9rVVHeeqOt3Dq/rfz/KEHaJaqeMUyZdNgte1xZd2h6XhoQiTyQV3Hx/GVcoMhVEJWKvTkg9Jj0fWUSkB8f0GkjhCPBSh5qaKp07A9/CDEi27IC0L8gMTOueMF4AdcWe2gCcGRyUqEqMbucyKzppXrUhBZGosI+VQrK4x0iJu2T9P2MCJ5sV/61Gkur3QoFxTrXkpJxwkYKVsZk5TccoHJHOr4oUy5DSpb7XgO265PkJI49AOZjF2svBE74q3byhGw4yolDUPTkmMVUgpl02BdWeflEr9fabt4QchUvYQuBE3bT8hvtaJBIBWJKS21GEuJqWfwG/zin79v4BlMP4dBGDJRTRtFKJOBlZaTPIfbibxkr2EiJjPfNTPC3TN15jZsOl5A2dSZHSkSQsZRLo6b7ee30m0tz7siz3Vs16xiJ3YCbnOy+9M//dN85CMfYf/+/TSbTT75yU/y5S9/mc985jMA/NAP/RB79uzhl37plwD4W3/rb/Hud7+bf/7P/zkf/ehH+ff//t/z1FNP8a//9b8GFHP1J3/yJ/kn/+SfcOzYsUR6bPfu3XzP93zP7brNgeiXqqmVDOhCrWQghbalgPWtkgwZxmEsj+h2LMslkJxZcDKub0VTZ7Rk4AaClq02x1iqaaRosNH1sP3U8YbOSMkgCJVU04mra1xaaTNRsTIomBof5Wt/cbnNiatrzI6UWO943DVT48x8k/W220NFyiZ3zdRYj2SM9o2XFWMdZeXaLxGmawJdqpJxwejdf78L3n96+jpPX2lmxq4VWbPWigqZnh3NfokWApX8pO/P0gVnF9qDY1E2kvt7+NBEIlXVtD02bH8ANR4pGdQiPckTV9dwA8lM3WK17eEGvRJ7QReMV5SzWTJ2fRJQvq9KvtMjSrantd5k7twVDj53gp/84u/xtpef4uDC5S3XmTs1g/UdH+bcm9/B352rIkZGMEbqyEgHNx6VtGzb7EiJyWoByxCcnVe6qvEc6prG7EiBelHJmsVjAZKNrk/b8zPrrloyAMFExUrmRdcEoyWLtY6bEBLVf9XPNSESibC01FyhL39JX/Ni08bzlRoHMvqokirxLugaGEJJYq20uW/PKN9+9zTPXl3ndx+7zEq7m6DB1YLJh++byaCTeSWx1rsee8eKnLzRpO32xqNiGdyzu5bIeLUiZ67RksFG16dhewPPbBBKWrbPRMWiVjQpmjprbRcnJSZs6YKxioWpa8k4w/AyVxPRv13vuDie+miJ9Z2btk/BFAPnBiUldvzAOP/9JTh+YHzTBDP9HG4l4xU/h9uJoZ0Xc0S/jNeesez+37a9AUmsYfbzW+m2luddkec63qjGDzvx+ojbmuwuLi7yQz/0Q8zNzTEyMsIDDzzAZz7zGT7wgQ8AcOXKlUxC8453vINPfvKT/OzP/iw/8zM/w7Fjx/jDP/zDRGMX4Kd+6qdot9v89b/+11lfX+ed73wnn/70p183Grvw+hHdhuE9zPNcc7WgXoyLTYWAmrqyHw1CScf16bg+0/WikuxCmWlommCt7SmdyqKOECpB8EPJhu0zXrGoFg0ur6ge3ZKlI6WSfIrRKsvQKFk6q21X2X+WzMQb3dQ1pmuFpM8ylHBjo8uEHybj/NC+cSxDw/VDirrok64C21fo4EP7xjNjt9JSrHcAQxO8cD07dtWiQcnScbyQihUOoIKOFyqZsuj+mrZCzILIXSzu0ev6AW4zpGjqCbL10L4xQLLeHVwrEljv+tSKBg/tG+NzpxfwgpA9Y2X2jinntrjfebxsEkKCmtVLZiIBtXesTNP2cf2AcuAyEdhMvPw8u/7ki0z+o6fYc+E8d2+xvhbHp/n64eNcfeu7+Bt/5/thbAS3GdL8gxcUwiY0XC/IzGFati121Hry0iqGpvpzY/Q9CEPOzLcSR63ZepGpWoGTcw0sXVAvmUmNwPMDllsu9+6uR2Om1l0QhmzYyjq5EKFBBU0QhLBhexQMoXppJRmpuf6+xfQ1L7WUXJQGFCNENU7YDE1ge2FGLuoLpxb41IvzFEyNsXIpMQDpeCGfenGeB/eNJglvXkmsK6ttzi8pPdqyZSRryfUDTs+3Irtr9czqQiGrupYdOz8IWe94TFQLVAsGd0zVknEumTpFs9cLLICNrpcZ5ziGqU49tG8sOXdBFxQsI3Gqa9kuK23JPZucexjZqvRzWC3ITeaw9xzmjWH30byRV8Zr2OvI67yY5xryvCvSUmwVS6cTASDNrk+5KDLnziPxthM70R+3Ndn97d/+7Vf8+y9/+csDP/ve7/1evvd7v3fLfyOE4Bd+4Rf4hV/4hVd7ebcsXi+i23nKQnmuOQjCBM019B6BRRMKjfODkK6rSnGgxsPQRJQQgK73rFj9UNmW6ppI0LutkJ+SqWeQn9gbfb3joQnlBNU7VqPr+Yk3OsBoxeKO6Rov3WjQ8XoktRgtNTTBsekaoxWr57a22sH3Q66vurz9ILx4o0G1aNF2/WTsagWT/eNlzi+2OL/cJoxcr4h6h0eKJvvGK9QKJqMlpansh5KimR479T87sqYdLam14fthpqS7Galuta1Q2XjsFEJpMlnN9qm3bS8Zu2S+HY9xPGY6babPvMChJ/+EA09/jdH5a1uuqytjszx29DiPHTnOS9OHKY6N8bf/wnGMQ7vV+go77J8oc26xxbml1gCBq140OTRe7q2zyMii7QYDY2fpenLPmiY4MFHm9HwTP1RIsaEJvFCq/lIh2D9eTpKgcmTpK6VE10ViDGLoAl2q/uyuF1I2dXRNY/9EmWtrnU3bBwxdY190zbuipLDt+KzbfmJsIYkJahrVgsGuaiHTtnJgvDTQs9uvs5tuCTi31GZ2pMho2aTrBpxbamdaAoqGxuWVDl1XXZ8XhL1Kha7RcX2urHYSkpmu99p8dE0kxLAgUNeuRwYh8TifnGvQdoOoFThu01Djlx7ndNysOqVpggPjag69EIxQommqjcmL5vBg37n7qyu//qVzHNxVH0BU4+fw6uoWc2ho7BsrUSvk6zO8leX1PC0gea8jcV48uZBx2tM1wR3TtW27reV5V/Rfhy5DHjgCj51fJhBa5jpeL+/NnXhjxs6quA0x8LWe+rvXUsD6Zn1becpCeZCAJy6tEISSoqmkIzJWsxoYpk4QSuabNgd3VRWqZmjUi2aSlLoRKaVaMAgj1regD/kxNAqm3kN+HI+VdpigStc3ujh+SMP2MDSBoWkYkUB7y/Ejr/ke4WLPaInjB8a4vNqh2fUIUooFuoBK0eD4gTH2jJYSt7WlphLb1yN9VNvzaXsKLY3d1vaMltg/XubF6xuJMHw024hQ2VruHy+zZ7TEtbUOcWok6OnaZqTxY2cH4PdPXMHxQgyh+m7T7rBajEh7Ib9/4go/8PBBDk5UOLvYpGLpAwjzStvlzukaD+2uo3U73E8L7/Nf5+0vP8Whp75GbXl+y7XmHj3Glw+8mT+auZ+Tuw7QNot0CmVMy+K+PXUOpJKO9HjITYTy7dR4XF/vcmWtQ9HUcP0g6qPu9RQXTY3Lqx2ur3fjweGRI+OcnW+x3vXoRi0PE1WLO6argEjKnPMN5ZRnRZWHMDKVCCXqZ0K5yM03bB4+OMGb943h+CG+H7LW9ZL2gV21Aoau8dD+sQRh3jNa4sUbDZBKgzaUidstroQ7x6o8tG8sV1tO7PgVtwR86vk5nry0Rsv1qFomDx8a48P3zyYJ3nzDpuMGBNEHgq713NT8QBKG0HYC5hs2syMlCoZOvagQXdsP8aQii5YLBlKq3lYZ7RsN22esbLHaiSyJpeqPN3TBWNmiYfublpOH2ZMQag5jQlb/HMrUHKaRzD11C6TSBN4MUd0zWlJz6IX4Ychax0sctXbVChhabw7zXnO8j0opubHezfTVvtry+rAtINsu80d7Rkze3YxHmsdtbbumEgO/t+/P2z7vTuwEO8nubYn+r/U99aiH0Pa53nBflS95HMP0beUpN2W+wF9aIJCSGM3RheCOmd4X+FrHw4xQoo6rXqoSCCOyWdlSyVWaKDRZLSAi5LJeMhPCi+OHFE0tId2k0TsvkBh6CvkJZAa9a0cIqZQRIkqQyCuIiMAVhDJb9pKqR1FIiROEhKFE0wQFXSXW8YzEZJeVtkPL9hFRsnt1rYtES0qhiuxS6r1QohtLVB6iDTs+73rXo2RptJ0wQZfToQsomxrrXTV2sTtbyRRoUdIfG3LoQiVw3cidzTA0fuTRg/z8H53k1HwzInBF/aS+xx4j5K8fGMX4T38An/kMP/iZz2D0qZ+kw7nrHgof/Qjh+z/AJzfKPLcRcnDPBIW2n7zsZ+oFzi93BpGtCOYUkcVXPB4iYgYm4xyRHXUhOLLrlYlhmhC5yDwxoc3SVbtM2TQAj3LBoOPJAXJf/MyutFz2jpeT9dO0fSaq2Wd2f4R8+qGa8/i9HEqJocH+8UqGkKV6jTd/BuO2nHRcXunwzUurnF9qJW51IZK7d48kz/dK2+3ZOsuIkhgl3FKGyc9X2i6jZSshAtpewEjJ7BESA9U6ExMBw1ByZaVDydS4f3edlhMkEl7VgrrezYheefakYeawH8nUCKGr2hWOFa0BJDM7hw57x0p9c1gY2HfzXPNCI+T5a1ljl5GSyf17RxDRcduNYVpAtkP2iknSm7XDbJckvR00eliydh6EeSd2Ih07ye5tivSX8qWlBhRVr9ur9SWH4fu2tl0WSmr7ovfnVMTkEdVikD0klOrnlm4kx21GugmCEF3TmN6EdDMseteyfRxPlVkDAUQkofjSYxQxJsrFKGLJ1HA9xfZP33LR6KGILcdnsemwESWdUVeBQqZ9yWrbIwgVgtw7r44bhBl2vhCqFzQ+70TFomjqyiHPV2XnnmMSmBGaHY/dnrGiur8QdAOMFOoLEATq3+0ZUz3rBybKHJos03Z8QrtLybGpOS3edv00H77xHA//+glYXgY23xyuHbyThUfezfRf/C72Pvwg1GpcdzWe/+J5xmZNNMtkj5UlD/UjStlxDtB0gZa65sw4R2THYYhhsyOlXGSemNBmGQLHk4mTkpRQLZqJc1881v3oVsf1KRg6D+wdRNiaEZFrpe3ip9oHjKhNpGF7yXz3WksGSVVdNxggZH3h1AK/9KnTifRe/MJ/ebHFL33qNKAUCmK/oJKpEUqBH4ZKo1uAZepoqA9EKWXmGRwgJPY9g3Mb3YTopWka9VL2ujcjem13T3qlORxAMjPtMJsjmVvP4ejAvpvnmtfarvq4CSQlS8eM2mdW2y5fP7fMPbP1V11ev1kLyHbJXpvN4aslSW8HjR6GrJ0HYd6JnUjHTrJ7G2MY2ap0DONLnqdvK09rQuYL/J5XRgIemB3BC1TPYykiesVtDBqSbqB6KB+YHQG250N/18wId03XOL/Upun61CyDI7sqSCES5KdiGgoJDCVjJSORDhOoBHCjqyTPKmYPhb2y0kGDLVDEHmJlmYKWozRzDQF6NM66EOgCfAltRx0Xo5OaEByeKNN2wwQJq1gaax0/QScf3DNKwdBZC112VUwcn+QaCgasdX2Kps6De0YB+NhD+/k/PnuOhuNhhOFAz6cbSkaKJh97aD9hKPn805eZspv82IxL4RtPcOy5x7n/9FNU2lsIc2sa8vhxGt/2Ptbe+R6sI4d5855daPUaGGrc2vONBFEKw3AAjesnjuQZ52rBGJoYlpd089C+saStY/9YCUID6LJ3tAiakrG7c7qWIUMNg27F810wdO6drbPe9ZLrGC2ZrHV6aHT6GiqWPjB/SWtJdA390nteoEialq6xf6yU6fE9NF6lZKke8NGyQRDqSbuIrsF6RxlQHBrP7gVvuckz2HS8oQmXr2ZPulmperuEpWHmMM81T1cL3Fi3sb2A8bKZzGFBU21bqx2PuQ2b6eqtdQDMs/6/FWSv1xqNznPendiJ/thJdm9jDCNb1X/sK5XTIH/f1rCtCVdXO0MjAXMbXUxDoDnQ8eNzkvxXj3r7np/b4OFDE7lINzF6cWO900OggpBlXWO96zM7UkjQi7luF1MXBIaG7UssQ8OISDe2H2IZOoYuaHs9CbQ0YjWIIvYQq1NzG4ShSprVHcroDiPTightfe7KOnfPjtB1AyxdMN9wBohyBUOj4yqSzELLYfdoUZWuO36Ed6o5ablKAmh2pMhCy2HfeJli0eCH3nGAf/WV83R8iaWF6Jr63W4oMQX8lTfvorixwo0L15n4T/+Jdzz/OEdfeIKy3d50XUpdR7z97fDBD8L734/Yt4+RWo2RajVJcNMRz8np+Y0EbU8k3komd8xUE3mwvOM8O1IamhiWl3QTt3X80qdOc2Wty0xVoWFuIJnf6FIvmhmN2zhuhm7FaLRlxPPdI1HaXkjBFMl8919DGqldabsD1xD3+KrkxRkgaFYLekZ6747pKidvNNjo+gpx1JW5S6urEONj01XqZTPXM5iHcAnb25OGKVW/GsLSzeYwzzXPbXRx/ICSqUf7jOy5vvlS/dwLePb6etJ3fSsiz/r/VpG9Xks0Os95d2In+mMn2b1NkYdYkUfWJv2lLKXqRYu/7muR9M5mX+yxxJDS+JRoRraHMM8XeFy63eo7WwBBIDN9iMOWp/aMlhgtmXzu1AKWoVErmphFheAuNm2urXX4YCRF1XQ86iUTU9cIAtUDGycGZUtD17QMApVHmsjxZSJJJjSRSnbVi0WGymXL8aVisAvBUstNjB40oZjrbTegEUurFQzaro8ZmW8stsIs+UcTjJXV/aTn73/54J0A/O7XL9JwAvBDKq7NXs3jB49V+ZErX4ff/AwzX/wS39vZPMH1NZ2Th+7n9AOP8NYf/Yscuv8YVKtQqxFqukJRljuboigKKZU8fn6VMAgT844gkCw1bFbaLh+6dzpBVPNIsSWkIj/E8wIWW26Cik/VLExD35RUNAzpBkgkvTIOXI7PndO1AQeuYSOW8VpsOBiaIr/FxMi247PRDRMZr/Q1/JuvX+T8UovFhsQ0BHdM1fiRR7PXsNJ26boBXVdpPltGT7mk7fqoNlnVC/yWA+O88+gu3CBkfq3DWtdPPkLGygYzo2XedWxXMnZ5nsH9YxHBMCbepUiDXS/gQEQwhPzoXZ7riJHMkiG4vNziUB3OLTQ5MFl9VYSlvPsdwO7REo2u+pCLyX2VgkG9aGzad503hqnsJXGT9f96IXt9q8jaO7ETO8nubYg8xAogl5xMGvmM+1/j5GC8bDGTQj7j69joekyUTRZbkjBUvbITZZONrrct6bHRokKEQgmmBkGq71SPEM+O5zPad56hy1PxH9MNrYp1o34c/XWMQJ1bbNFyVKIbO7J1vZCRsq5QwQiByiNNtHu0iKlrhFIl9aamAQGmpuFHYr6m0Ng9WqRSMDB05YolE4UH9RqSUvak1aLkZ7nlIoTgvtnaQMvDUstjueVSMrMfIw/urnFyXOPqlRWqjTUeufICH7j+HPf/+nPgKL3j/uYYRzd55sB9fOPoW3j+6IOsVUcxR0d52/HjMK1aTIapKISh5PJKB8cL8CXRhPfCCJX7WEz2S8/L+aX2gBFGvWxyKEIG02jVmQ1b9Z1K5dS10va4c6a4JdllGNINDO/ANWxUCwZ6RHrzAp+U8BgQkQcjGa84DkyUedvBcTQETdejZpm89eAYByay6NV4WRl/SCmpFc2E+GYIgW4qcxFNiKicrsbuiUsr2H7PLVACtqc+wvoJPXmeQVPXKJsaBcuIPt4kjuvjhdncajvo3TDXEd/fl84s8OUziwgCPvAW+OLZReTZFe7dXeeD996xrfJ2nmuO+64Bdo8WB7S/W46/qRFGnhj2Ocyz/l8PZK9vBVl7J3YCdpLd2xJ5iBVArhJgLML/uZMLWLqgVjIxdQMvCFlodLm61klE+NPyWX4gqZd6yd1yJC6fls8aFgm4utYmTkP9EHRFaofoz+rfgBRbwG03Gbv1TuzsZbPYcBI70el6kZmRYuKK1kOgGsS0rRiJEoDthhkEKi1N5AUBi003OfdUzcLUeyjidLXAdP0sNza6GJFElbq/EF0IPCmYGSnywbtmmG/aFAyNWslEQyXaMfLTL60WjQ4iWhSuH+KFIaEGFUtL/k4AeB60WnztmYv8xz96kjedepofP/8U9198ETPY3PLUMS2e2H8/jx97K88feRPtSp2mVWJDK9BFY8YqIqJWhbRpRr1oUC+ahKEcMM04cXWNs4stlehuEr6EMwutRD4rPS+hDPECEgUJUx+cl3SodLFPii21NrbrsDSMA1ccN0PY4mEQUa96Os1U/eIic1xvnB2mRwrs1koEYchLcw3mm06mcjNVL1IwdFqOn4xZ8nul6oWvFXWm6oqQeHmlw8XlDk6U9AhDqW84QcjF5Q6XVzoDLVPDlPjjZzD+oHaDAF3TmBktM1MvZJwJt4siDlOqfvz8CqfnlSJFOXqb6UDHDzk93+Lx8yu33Mxhtl7M9F2nI1a76O/9huGR2mEre3lJZ68XstetJGvvxE7EsZPs3oa4lb7kQOpt24/GRMhS9Mc8XvGaNnwv3Vpk4iBQ2q9+n4KWhup1jaXH4sgj8zNaitCW+Gaib4aiqbPR9XrjIdSAyEjuC6HSSCnTnbbRdaVRxPkufhhCZGyx0na5c6ae3KNl6fzouw7xi//9lJKpit5xXghOAEVT8NfeeQjL0reQVlNIb7+0GsBktcDLbZdnrm1E/ZDx9cHuouBAwcC9cBGCFsHnPs/E//Of+Zfnn8cMg03XiF0oYX3g/Sy8/dv4+8sjXJUFnGIZv6JIZoGU+F6ACFXS3nJ60kSxacallXaCMI+VzIxpxtyaUh9Iz2+MY8aX37R95ta6cKg3X34QYPtSqRVExwdSw9CCZF4y1YeKyVJT4saVikq2+hCvDdvTOD3XHKhqHJws4/jBqyLdDLVGHUV8FCJqcQl7cnBCUwocQSiVIkY8zisd/DDk0koHPwgxolaWthNk0DjHDzkwUeL8UpuG7WeY/103oGhq7B8vJXrAv/P1Szh+wN0ztYF2kX7DimEjHueMu16qVSqQMiPxdqtQRNcN+K2vXsQLAqZqFsrFu8NouUBVKmLYb3/tIh87vg9rC2m3rSLPNWua2FLSL5CSiUphoPd7WA5GHqLcG5nsFV/HleUmzz1+lR9/71H2T9Z2EN2deM1iJ9m9DXGrfcnXuzHyqQhcsXB6LCG0FqEueb3ih0UCYskjLdLp7C9Tx4Tz+DjIJ/Pj+iEnrqzhB5JaqtVgqemw2nbZN15O5HWurHYomroyfogSXyJUsGjqXIkkrvoRJIFyYhNb4ohRbAVOp36+ubRasKm0GihUY6nlEoZqvAqeQ8WzKbldZtprvGvlJPt+7ySceAo9CDa16m0WKjxx+EG+fuQ4pw7dx9/9vocJqlUu/PcL6AWD0FNKBtILVG9hSmorlktLo/6qpUNVCJZaTgb1f/b6WvJ743dTPFqxNTPAs9fX+O6H9nJ9vcupuQaOr5QyNCGScQ5CieNLTs01kspG+jpq6epDK1t96F8b6WtebNqstJ1kbWwnhl2jLcfH8SPJO6meJU2IZEkkknepcV5sKoOLaqoHfamZHef42vePVxgtm1uaLsRkwH7Din4i4GaGFcNE//5VL2X3pa7jb9qW8FqjiJ89Pc9S01Y2yJqGoakRNnRBGArKlsFiw+azp+f5zgf25D5/nmtOS/o5fhBJvEkKhs7ByXKmHSUPByNPteKNTvbSNMGesRLPAXvGdtQVduK1jZ1k9zZE3qb87fiSxzI+ryTKnocoFEcsl3bi6horbZeJisVD+8YyqMWBsUqCXBYNFJqaOEhJ3ECVcg+MVYAsenFkssJ802ahYVOydI5MVji/3Os1m60XcTzlfrR/rGevWjB0zLJCq6b9kNl6kbOLTa6sdNCFkri6mfh9uuftA3dPcWGlTcsJqBZ0Dk9UuLDSM0fw/ZDf+upFJJLpqkkYhkBAvaBevOu2n6BKeaTVXDfg0lIby+kyEdqUXIepxjKPXjzBOy+c4N65c2hbZNgbpRqPH3ozXz38Zl7aexdBucK6UaRhlble38WhXRWs0jWCQDI7YtFygqRNQ42HR9lShhhp1H+8UqDl+rQdP0IcLVbbKdRfpLKoxC0j9eco4uM2bJezCy1CKZmsmISy90mhCUnDDnh5ocWG7aIhMtUH11dW1LoQjFesTPXhjqna0Gsjb+RB2MoFPXINhNGikbT0xK00TSfADyTlgp7IlAWBZLxi0nICWo6ak7GymTHNgOze8d1vmmW+4QwYeBydqkYObhvbMqy4WWy3LWGYvSNPzG84BFJSMDZPigqGoONK5jecbZ0/vuZhZcrKlsH3v3XvpnOyXQ5GHrT2jqna64J09mcpcpEGd+K2xk6yexsib1P+dnzJNyOo3Vi3MwQ1YGiiUBybld+evLiWKb91/YBKwSAIXPxQYOjqf0Goegp1ISkXDLq+KrvH6IUfhPzX524MSFfdOVPL9DAXzJ5eaT+JbLRsYRkacw07Qa4tXTC3YWckv5p2LPkVJMh1+jr+6Pm5zHW8dL2RuY7nrim0sWhodLyeXbAXhAQBFHUtgyrdVNbp7l1o7RZffeJlppeuMbW+wDsvPsO3XXiaexYvbrmWnLEJPrPnfr566DjPTB2hYxVpWWXaVolQU4YJeoSb5pGMio0DBJIzC01sL0g+WIqmzmjJwA0UCrx/vJRQsEJAyB4lq9e/CvvH1Uv20nKbrutTMJWurJYcof5rGZKO63Npuc1Urajm0BDcWLcHpLaUjJeaw7mGPfTayItk5UHYOk6AqQtCqeEEseSdQnmdyO3M0AUdR63/rhsAkjMLzsA4j5QM3EAkxifpveP8cofZkSLTI0W6bsD55U5mP9iOYcUwsd22hGH2jjwxM1JAFwLHl5Q3uQXHVx/uMyOvTt82j0yZrusDRhivhoORB619vZDO/qzEsK0oO/H6iJ1k9zZF4m//whzPXF7h/gm4sNzioQOTfPj+mczDkteXPCaomRoULIOCoRNKyfxGJ0NQAxKiEKhELWbMW7o2QBSKy2/LTRtdU9JZtufz/LW1TPmtWjAYL1sYGrSdANsL8XxFyCqaGpWCzkjJStjobdfnymqbc4stvNiBKNIDXWm7PHlplaNTtaTXzIrIRBeWmtxYtxOUdM9oiYO7KjSint1qUb0AllquKpVHyHIItJyU5Fdx8+soGJqyYQ0Hr2N+w8EPlZICCMwIXVKWtSrNCyUJqhTP4adfmOeF6xt0PJ+KLjg+bvL+AxaHmovw/EWmf/v3+bUvfoE7li9vuXYWquOsv+u93PlDf5HLs4f5F//xJCtakbZVwtezj7TjS4qG4OBkJSMZFYYSP5AJomoiMpJRTccjCEOWmi5BKDF0lRBL2dORnaoVqBaNnrGF7SUJbv+H00hJGVuoP0dl/TBESj3TWi4lyFDJlwkE1aKBrgkWmw66EBi60kqWQMvx2LBVT2S1qGTb4rVxcbmdaeGZqhc5MFFO1kbeSCNsYSiZa3TpugElS2e2XsogbNWCIvN1XR9JTEhUPbsVS1lOlwtGsv7DULLQsBOVBhGNc9cN6Dg+0yPFjHLDsPtBXsOKPLHZei6bBg/sHeFD980MvOyHJTvmiQ/eNcOv1M4y3+hSNERCkPQD9Vx2XKXT/MG7ZnLfX57YLgdjGGnINIpeNrUB1Lgfrc07LzuxvcjTirITr4/YSXZvY1xe6fDNC6tcXWnBBJxfbOEGgrt31wcelFxEAqkS15YTQjf7Yi9kWP8oolAY0nZ8ZSoR1Vs9v6eXCr1S3em5BotNm42UZudIyWCq5Sblt1rRZP9EmXOLIW4keRSjVaauUTSNxAgAFAp6eaWD44eMlc0UUU5g6YrwdmW1TVHX0HWNoqGz2Oxyfa3LWqeHvkopqRT1pGcxlBJDE3hBiBtZ7yblZBFplGq9Xtn4OmxPIV7dFMpmaCoZjK9jql5ASqV1WjA1tEhZQhOqZ9DxFNI7Vc+iSiL0KXWaFJsN6qHHzI1Vxv7oBPzJl+DsWR7YYq3cqO/isSMP8aUDD3F21wF+6s8/yJ1vO4bohFyuLvWrfWXCC0IKcalYKD3lrhtEJiLxMSrRin9SNnS6ntL5lSijhdSSwQ8lXS+gbOiJscXHv3wOPxzsYjA0+MFHDlCMPip2RUmy7QURaqulRPiVn23V0tVxlpHI1fkypOsFKftk9QFjCKhaqmxbNHSKpsZbD44NJBItx49advJvezHCdma+wZn55qbVh1rR7FVMIiMMzw+VCkckzeV6QcYIIwjCxFZbIAn7JjJOest9UnPD7Ad5DSu2FXFvRvT/N1uGeciOeVDHmCT6Tz99hsWmS9lQv32949DxBSXLSEiitzK2w8HoN8WJ24Nm+ypvafm4f/fkNdUPHH04FQyd+/bUN0drh5iXndhe5Glp2kHRXz+xk+zepkj7289ULRSL2OLlpay/fTqGIRJcX+9yZa1DydRxg3CgVF0ydS5HpCyAU3MNbC8gJLK8jaj0IYpEkyYKfe3cEueWWpv4v3s0bIWqfdebdisEcTwWnZeRBqW6BiklthewP4UYzzdtXD/E2GJjMDSVPM43bR4+OEFsYABkr6Pj8fj51cTA4NpaB9fvJbr0bg8pSf4u/q3zTVUmD0KQUr2AYpTN9ZXhRscNmG/a3DdbxzQ0bC/MEO2AJAkumRr3zdbB87hw4Qb/+StnaK83efvGDe567jH2P/01xuevbTmXV0ZneOzocb5+5DgXJ/bi6CYrWoGwUuHI8XtgvMbXT114xUQXVPn86y8vUzQMNd++7M13FCFgp4hh801bEdgYfFHGHwy2p8bi4K4q3/3gbr50epHT881Ehg3A1AR3ztT47gd3Jz97aN8Yx6ZqnJxrUDQUEh5LsZVN5XZ3R4Q4Xt/oqq8N2UPRY7W+UErVohEhvXtTKNixqWqGOPVqexb3jJaQSB67sIIMVRtOXH1YbjmsXHD50D0zybljIwzfD1nreok011S9iKFriYTdE5dWcIMwWWf9HwpCoEwhonFOxzD7Qdo049JKm9W2i6lrr8o0A/pMcUZLlC2Djuvz0o0Gcxv2AMlqWLJj3vaSR45McNdMlZduNAhQbSEB6kP2rpkqjxy5dY5lceTtYR7WFCeORD7OV73qIjIocfxgQD4uz7zsxPbi1Ugc7sTti51k9zZE2t9+32gRIRUKaOmCfaNFrq7b25IEAhLCiyYERyYrA6SzNOFFBiiiUCiZrFgDx250PV5eaNHoeEhNcnZBJbr1qD0AYv93QcP2E1LRHkogFYpbsQyFJkfKDI4fqpd76prXOh6mLkCoHlojpYLgByEFUwcpWet4iYFBKFWbga6JqPyLItX5YWJg0Oz6CfnM0JQMVNJLGqqEtGV7NCP0e6XlEoaRZFSExJEkWEoxIAwlKy2X0bLFockKLy+0sL2QGDtygxDbg1Loc39JJ7x8mXDF4My//xzv+JMv8sBL36C+NL/l/DlHjvGpPQ/wxzP3c3F0FgyDdqFEyyzT1VRJ/9h0DTdKKK+udYdaF1fXumx0FTFMSslE2aDjyQSdLJuCphOqOey6LLUcvECtS41IQSPKcsNIYSNOVmKkY994mXcdmeDEtXUaXZ96yeChvaNcWutmkI404tjoehRN1bKgzgnjFStBHGMZL0PXMJGqFB/B7WEYJgoObcd/VT2LYSi5Ho3l9bUu+ycN+klIV1bUuioYulp3KLc8y9BxfIX6h6HEMLTkOlaaDmNVU1lLaxAGMFErJNcRrzldKAkrkVIMkVIl9PGa2/Sah6j0xKYZwxLDbnbevMhWHonDPBFfx65akb/6jjEuL7eAOd53xxQHJqtcWOm+JgjbzcYjz7oLw9QXzU1McYBc8nGaJnYQx29BbEfibSduf+wku7chEn97S2e+4RAEAeyFa+s2uq5TtfRtSQJBr5+yVjQ2lRsqmJqSE7N9Fps2XdfH1EWiVNAr22uYuqDj+lxcVTaqPVJRdqPUNOUUFJOKRorWgPyZ76uy5fRIVv5s33g5Kq8aICUbXkDD9XokHUOnVNBAKMLNiatrLDYddo8WcTxVSndliCYE1aLJhCFYaDjRcQoxLpkabiDxgl4fg6EJSlFyfHG1xb17RxLVXUsXuIHqaVXHq3YIS1d9yhJJxTK4c7pOvWhy8kYDPzJxqLU32BN43D1m8eDcZWb+j39P+OUv8pH5uS3nbHH/UV66/xHu/ZG/SLD/AC9+8xp2W7KwFtASvUe0oAvumqlzZFc1KXOGMtzqtJkIpSofd10fkCy2AlIALC0HihF7/dJKm9WWQyijjwQRmyOo13LsBhdKWG05CdJRMjWeu95go+vjhyEbXZ/nrjeYGSkMIB3ffvc0z15d53cfu8xKy4tsqqFaNPnwfTMJ4thyfEIpGSkaSj/Z8TNrY6RkEETawLA9iauYaHJpqcE7i/DrXzrHwV31DNEkWXcjRRw/zPThVgsGExUzWXcPH5rg6FSN9901lSCqXhBi6hoHJyp8711TPZm+aM0Vow86L1T6rEKodYjQIh1iuek1D0uOMQxtqL1kmPPmRbbyShwOG+nrMAyDo9M16M5xdLqGFPprgrANO87DrrvNDDnajq9kCEdKA4YceeTjZkdKO4jjtyC2K/G2E7c3dmbjNoTyt/fpCoVK1Sy1MZm6oOkG2L4yM9iOl3q1YFAydRwvoGLpA/JSjhcoObGCwVJL/d6uF0ZJTLpsH0T9liJxeRuWVJRXdP6hfWNM1QqcnGtQMDTqRTMRZfdD5eZ27+46D+0b43OnF/CCkKl6CV0Imraf3F987utrXVbabrLhu4FK0nTRKw0LwA17yRzAwckKlqHkoIRU8xFHEEi6UikaxGSvI7uq+O02P3qsxPnLDUSg8wNrp3j3xWfY9/Rj1Js9/dn+uHHwTi489Cg3Hn4XjclprjRc9t51H0cOzxIuGFw+ucDkuGQklPhS9aWammC17XL8gJmUOR/YNwpcuem6eGDfKEKo8XRT3hOJioKEjiexdJXATZaLCRJVNARBKBIVBF1TdrO6po5ru74q5bcd1QscEfc8ETLvB2zYLhOVQgbp+MKpBT714jyWTsSWV1fieiGfenGeB/eN8u13Tyckw7W2l9hhJ8gnko0+kiHkk7hKE6fGIsUCQxMDxKmVtptZd/2WsOl1F5/3i6cXKVs6D+wZSY71Q8kXTy9yYEI5WB2crFCyVP9yraBvKlNWtgwOTlYGrnm56WBokU2vF/D8tfVXRY4ZlnSTRraGIVmlJQ6rhUHXt80kDoeJW42w5SUhDdNHnXdvjNfdMPJx9ZK5gzh+C2K70ns7cXtjJ9m9DTFWNiMdzpBa0SCyVUfXBCVTJXCaEIyVB78abxYxOezUXIMXbzRU/2QKzRwvm9y9S5HIJipWooerNmSZ1NCEEFFJXyGqCjkdjlSUV3Re0wT7J8qcXmiq3t2ChqFreIE6t6YJ9o9XMnJK6x03QXZ7cmI+BVMkckphdF++n0Ux1T1KNCGxDD2RXqoXTGoFnabtEQJhIJNkEJSkVt3SGPFdtKVFPlptc/X6FVaeforvOPcU7772HIWNjU3nRQrB1UN389RdD/PYoTezVB1DGCYFvc6oNYq3u0Rx9wwUiz2CYcp6Lv7s6ScYztZLWDqZBLY/LF0dF0u/xRGnfoKe05kfqp5CU9cYKZmstV3abho9VqOhC6iXTHaNFCibOsstR2k6O36GzGbpgnLBAElCsopLs2tth6KhYXvqWdCEoGhorLWdpDRbsQwMTeAHkiAMB14sup4lGcLwElf9xKnrqy5vPwgv3mhQLVoZ4lRWxstUrTWp6Dp+b931nXet62UIWR2v54o2UlRGECfnGjSdYMARzdA1jk2r49LXfHq+weKGzYadIooWDaZGitsqVedpTXglecPxsjUgbxhL3l1d7bDadgck4QxDY99YKSNxOEzcSoRtuySkm/VR590b88jH7SCO35rYkXh7Y8bOqr8NMVMrYhlaUrbzo+RA/VehP7Wizkwtv/j9ntEStaLBatvDC8IM6cwLQlY7PvWiQgaDUCEqQRhiaEQl1Eg1IWLmVwo6M/Uie0fLQ5OKNE3k+vK9vt5FIHjH4YmE6d51I+SwVuDO6V4JsB8FLpg6ulDIWsvxWGmHCQp8ba2jyHZbELjin8fjLAHL0DF1VTrudTGE1DybeuByQIJ2+RKcfIbyf/yv/OzXvkLVbm96fqnpiLe/jfADH+R3ikf4/HKAZhro9Tp+pUJbL9C0PdwbXT54T509o6UBgmEQyShpQqDrIkMw3DdeZqZWZKRksdZ2E+mldBgCRssWM7Uiz11f733M0Etw4z9H3wAstxw+et9upmoFVreoLkhgqlZISGSrbZf1jpIeSwHiOIHE7XgUjJ4Vxomra7y82CSU0I4SOiNC3duucnQ7u9DkxNU1ZurF6BtMJsScxAUvUuBIE8/zulPFxCkvkFTNWD4OFlsKNY2JU2kZr7Kp4YckaK2hkZHxypzXD7FMPZH/W2zaGLqWnHfPaIl3Ht2F64eJyknsiDZesZiqFXjXsV2ZZ+Vr55Y4H8njWYaGpQsCqexxG46PpSuiaJ5SdbolAKDR9TKIY7oEnpY3tHRBrWQmhLOFRndA3nDPaEkR9rwQP1SmH7Ek3K5aAUPrEfbScbNe2bzmPHniVpGQ8qKCeeTj8u67vfPsGCPkjVvhCLgTtzZ2kt3bEHYQcmCizJn5Jkstl1Jkc7nRcemGgpKhsX+8gh0M14+ZjphIA5JqwYzaEOKWAJkh0ti+uo6zCy06jq9aE4QiktmBYpzvHy9j+2GGVNTseoxXTIwoKWx0/QypCPIZYcSlvTtn6tw1Ux/QMA3plfY0TXBgoszp+SZeIDF0iaZBEKqeXE0I9o+XI2KMKhG+Urh+SDMS7G+7Sn7NNDRKWkjVdym5XUqeg+l0ePOVl3jPpWeZ+bXnod1mapPzeZrOCwfu5bHDx1l+2zv52R94B5qhs/aNGyx5LcJiiVpZoTWR7APQQ49jgqEfSkqGRjsMI6k0tS78UGYcteK1ZHtBYlIQl8EBypaerKWlpqvk5ML+DtDev9E0wVKzl+AKAaYQkQ2wOiqUECKTVpYN22Wt4ybnSKtDxEn0esdlw3aBCksth5bjE9MFHd9P9Yqrk3qBz1LLoVpQpV1DU9JoiryozukHYYRWq57d7RKnup76/R1bjd9i00HXdVxBQpzaN17mRx49yM//0UlOLbQUoUyoD6ZASiYrhWT9J+eNdHbXu37KCEPD9cOe+5xWTp6VyaqV6FdrQq3pyVox86zEJEMnsr9Om1DoAlxfJiTDfQyfhMXPoO1pnJ5rDqC1ByfLOH7QK4En5Y5+ySs1O+mfppGwlZbD3rESuqZauJq2z0S1MICEDdMrm9ecJ0/cqhaJvKhgXvm4vIjjjjHC9iOXHOhO3PbYSXZvQ1Qsg9GyRb1k4rddwujNEaJe9rWiwWjZ3Fa5aTMiTai6DAaINLMjJUbLFrWiQmX8IIw83cE0tOg6rOQ6+mWMPFuVbu+cGZQxyvPl219+2zOafUm37V5pT8mgCR45Ms7Z+ZZCgSMkbKKqSsIguL7e5cTVVUVKe4XwAsmJq6vcv2+UdrNLqdXg3tBGdGzotHno4vM8ev5pHrr0PEV/c5TT1Q2eO3Q/2ne+m9/wj7EsioQIwqDMs2GJ6YlJrhfa3H9H/aaklJbt0+h62F4QkXd67SIdL0TKICn/xmOXrKUo8Yt1ONVaMpO1NDNSQBOw1etZopKsmZECJ66u0bR9do8U2eioF39MnCpZihjW6PqcuLrGqbkNvBSsvNlW7/qSZy6v8cCeMaSU+EFIiEoYdUEiJ+ZF/b4a6j5ajirTT9ULmbYVERESC4bA9dVx2yFONezeWFej3nlDF7RcpWfqBT3y24GJMocmK7QdH8dXlr+aJigZOgcnKxyYUOs2Pq8T9YwUDC3S2VXINdF9bkWqc3xVbj46VR14Vi6ttCOSnkT2mVDEc99yfC6ttLlvz+hWy34gKpaB64ecuLI2IA+22LRZaTuJo9f19e4AATVGaqfrgwTUze6x46pn+oG9owP3mAedT5/30lIDirDR9V41wnYrWwLyooJ55OPynHvHGOHVxzDyfzvx+oidZPc2xGy9GJX0JPfO1nC9AFjn8GQVy9S5uq5UBGbr+dsY8hBpHkpKi+o62m6YkL0qlrbpdXz73dM8emiC3z9xhetrNnvGinzsof2JYUA6hiUKZV2CdKV3GyG7M7Vipvx2drGJ7QfcNTPCXdN1zi+3aDnKterIZBUpSFDgbqQTC5snYBIwfY9weRku64wtLHOoMc+bXj7BI+ee5u5zz2MGm8shBYUij++9l8eOHuelY28mKJX43kdH2XjKpq2XWZYGPoKF0KTqBQkpZc9o+RWR64ppJL3KoymDDUMIdFNjveNhaBoVU413/1pa7/YIL6MlIzOHE0enEjRVjwYlQYGl0icVQvC+o1N85cIyXhCyZ6zETJ1ErcOIiI4hJOvI9sLkPOnEVaCSsLgdxI6MNg6MVRBCEPghpqkBQiHFCHQh8aJKwoGxCrohKFk6QSCZHbFouUEiwl+1dFbbHmVLSxzU8qBxZUvHi1Q66kWdeFkamqBoKDk9Q5OULT1BjcuWzseO7+Gl+SZN26dWNLh3psbF1Z7MVbmgJ3OYlunTBRQNjYbtowtBudDr+82DEgVSIkNJ0dQSYFUIJa1neyHa5opirxjxOlrrKDlEP1SosS5Eso6mo3V0brmVi2SV5x630ysbn/fKcpPnHr/Kj7/3KPsna6+IsOVukXiNWwLykCghn3zcrRrnndiJN3LsJLu3IeYaNgVTY7Rkst71GSupDatgCta6PqNlC8vQmGvYub8a8xBp4usYK6vrqBYNqhGas971GS2ZA9fxhVMLA3JKnz+5xI88OihQPyxRqOcStMq/e/Iqjh8ktsVpVCJm429Fjtno+BlyjO1tztoqeA4Vz6bkdjHDgOIVB178PHv/26f4l998HCPY/N91rSJn7nkLB/7Sn+f5w/fzy1+6hGUaUCnjlUqAZKU2gRsKhBsQekEiU7bVNd9YszPXPNftYuqCwNDoeuEAEdAydAxd0Pb8zFoqmzoXVjoZE5HVjstIsTeHcxtdSgUdtxMq+f0+0FtDJYQvLjQG1lG9lH2ptm0vWUeLjW5PvxhlBywSvqP6JQIomuocXT+gUjDwAjdRAokj7vktFwy6fsBsRRmUnF9scX65PWCSMlI02TdeSchNedC4jhtg6oJQaqpVJ3qp+6HE9lU/rKELOm6QoMZeEPDHL8xnHNQuLrW5Y6aaoMYdR503CAW2PziHph6d18mus2FRIl0IQk2h+HqkzSulanvQNGXFnDfidVQydS4sdzJLQwD1cm8d5SVZ5bnH7fbKappgz1iJ54A9Y69cSt5Oi8Rr3RIw7N6YjmHl4+LrvxXjvBM78UaNnWT3NkTbVW5jxw+Mc3G5TavrAErOaape5MBEmUbXG0BGhkEN8hAazi23sAxFDrm41Gah6SRJ2HS9wKHJitI2ja4jdn1rdFUZzdCU6P2ZhcaA61tP0smhVjSoF02CMOSF65vLIymXIKUDG++9Ukq6rs+F5XbiEpSHHHNosoqGusayZ1N2bcqejS5DxjoNHr38LO++eII3//ZZCAM2w9GbhTJPHHqQx44c5+Th+3n0nt088N5jTLd82s+2uapZ1EpmZInQxfEVRun6YSIZlb5mUxcUI8KSlJL5vmtuOh71SA0hCEM6bpj0e1YsDU3TMjJNbdfH9UP0pJQdayVLLKGha6ovue36rLRdjKhvtOuFAwlN0dQwhGCl7fKBu6aHXkclQ6dgajh+iBBqvGM3MC1CeYuGxkP7xgHVTlMtGLRsD9eXpFM+DdB1kRyTdeOLW0TjBQLdPje+GI2LZfdixLFa0AfQuGrRoF4y6ToBQRhgR8mn7QSUTB1d0ykX9AQ1vrLa5vxSGydCPDWhzEmWWw7Nyz5HdlVou6rKUC+aCcmz64WJFnTF0hGoZL5ayL/9HpyoUCkoVyxdxChv3O8MgVQfhAcnKjc/WSridWRoWtK33yMCqspCvI7umKrdMuml15Oc2K1qCfhWtA/c7F3xRjdG2CHV7UTe2El2b0PEyEjR1HjrwTHaXRdY5+GD41RKFi3Hx/HCm8opbYYa5CE0xNdhe0qINi5nx1uG7fWQsFguamGji+MFeCnel6kp1KzfyefKSgc/DLm00kn5v5u0nSBTIovPvdH1Eg1XGZW1i6ZyckufeyhyTBCwV3gc9dbxW22khKn2Gu+8+AzvuvQMD8y9jNYPbUaxUapx4o638OxdD3Pm0N0EwsAJJLZu0h6bhCNHqDQc9hzYYOXaBgtNFysiGa62XdxQqSakJaOQqk+z7fiE0iNBJwVYpp6MeSzTdH6xRdsNIzKZSh67fshIUWffeDlBMmPZr4bt4/uBSrajpFBIScMWFFoOZVNnrGziBiG6JpiuWTh+z42pYAjarkoOx8pmrnU0WrG4Y7qmLFtT0hexfq+hKde30UjirVowFDopNyfKxYS0JBmUyo2vbOnK1ET0tGW9oEeGitG4U/MNPnNyIXMtuia4Y7qWQePisT55o8Fqx0MXalF3fJ/ACxmvaslYB2HI5ZUOLdsjCLNKFhpK6eTKaoeioaFrGvsnylxb66gWiZKZoK9OhCDvGy9vij7fLEZKqi/91FwDL1CtDCrpJUL+hVp3JSvXeUumznJLtUBt5ry42HRZbrmUIlOZWyW99HqTE3utWwKAW94+MMy74o0sU7ZDqtuJ7cTrbyX/GYh0P9ixqSq1kgFdqJUMQhhARvIiAcMSGvaMlrI+7SUTUxeRT7vDtbVu4tP+1OVVXri+QStCvzRBwkb3QvCcgOevbSTEt2ciB7MglFRT/u9LTQc9JekUuwSdmttI2OuGLhJCj+1LBD4nb/TOvRU5ZrZisN8KCa9eY+EZnzdVC7yHdaZe/ArvOP809yxc2HpSdu2i/e738Ye77uPq4btZ6AZs2D5tw8QrVSmNjXBotMQCgusNhz2jJWZGipy4sjbQDkCEsM6OlPrkxDRcL8iikyjUM5YT2zNaYv9YD8nUdIHWh2QeSCGZEmjaHqttDyIliZjp3vVCur6nUGRgpl6kEFnwCiEoF9JorexJ3kU92nnW0fEDY1xe7dDsehmpN01ApWhw/MBY5prbrocXbDp0+IEieUnYlAzlBAGGpjETkfv6yVDJiYitJ8TgL4quu14wWOt4BFKpTgBoCFwJa22PkaJKbp64tELT9jIfeXHrRoiyUG50PeYbNg8fnFBSW36Y6OwGQYiuaUzVChj65lJbw0QiVRaEic6um5Yqq2elyoYNEQ2aQCbEyDhkZGsrUioLt0p66VYK9r+aFonXqiUAuKXtA8O+K96oxgg7pLqd2G7sJLu3IfJI5qRRg6O7KrScgLWOi6VrHN1V4dxSe1MkYGhCQ/xPbuLTPt/o0rCVjqqZch3TBWhS4oXQsD3mG12qRYMrqx2CQDJRtZJjC4bAqlistNyMfNZCw6bR9ZFILF1LiFOaAEsTuEFIw/ZZaNiJS5Aie5VYWGkStFqM+W12myr57l4+j/X8H2N8/cv8zIsvbjkPK/UJnPe9n93f993w5jczv9Lh7DcuMzszQbVcZhULB7Ep8SaWeNOEoGwqXWIIKBmqvSNAJBJvsRSVBhzZNYiarbbdRIoKSiAUklkyBG6UhBqawNIEvhSZvK3V9WnYASAjcxJJECh4XtcUStq0fVpdH91Qsm3nl9o0bH/AwKBo6onUXO51JKFWMBgvmQSyd3+6UOdPv9Y3ui5rHVUe1SBDqApDNfdrHY+Nrotl6EOToeJnJQglH7p3eqCNof9ZCUPJ5VUl01c2NBRfzFfoZQBuKLm02iEMlT6uk1Kc2MyQw/HVcVmpLZe94+U+qa3tI5/pc0+UTDZcH8cNKFg6I5bBrpHSpue+Wdm34wVMVgusCDY1fqgWDSYqBTqpPvhbIb10K1HjW1W6z3veW9U+kBe5fqMZI+yQ6nbi1cROsnubYljJnBg1KJkaT11eZ63jploCLGZHClsiATcjNOTxab+w1FL6n7ApIqEhCSVcWGoxUy9FxCZj02MLpqYSsEg+a7XtEEiJJnrSU3EpPibbBKFkte1QscaoyID1qzdoLK3TbnbwZUhpZY7d557izaefZHru0pb3fKM+ydcPP8Tz976d49/5bXzPQ/vUX5TLFIojtHZLFqtFakWTGpDGCNLEm1jirWLprHU8vKiNoeOH+KFgrGwkEm+gENla0djU375g6mo8Ivms9Y7HRMXi1FwTN+gpHVi6xl2ztWRO9o2XubjawoukqvwgVAlZ9A9MTVAwNFw/4OJqizftHWP/eIXRsrmlbFu9aA2ULodaR33oa6LRWrEG0NdnrqypNRx9NKXn29BFIk32zJU13nfXzNBkqDTCpmnaAKmuHzWL5zB2ioulwhqOj0RjrGKxGM3hhaVWz8ZXJN+CQNSXHA37haUW8EpSW69edP7oVI27Zmp87eVllpp28mGxq1bkXXdODUWG2qysPVktMFm1BvaCqUhODMTA2rgV0ku3CjW+VaX7vOe9Ve0DeZHrN5oxwg6pbideTewku7cxhpHMabs+yy2HlbaL4wV9LQE2DVslRpshAb4fviIil8envWQavbJtRJiKI+69FEDJVMSbkqnjeAGVSN4pjWQ6XqBIVlFP5kS1gIgQQF2opDc+fRBKAgmVwGXWbbFnbZ4DrSUee3mJIytX+cj5p3nz6SeZWb6x5TivTO/l+XvfxnN3v42r0/swdB1TF5xphlzQyhw+NAu6zu5QcvhCe6jS3os3NljveHRcP/kIACJCnEImHV+y0nY5MFGmZOk4Xki1IAfO63hhQjpruz5nFhqcnVcOY6YuknH3w5CTNzbwQ5nMd3wuL1AmDwUjPS/q53FSmS5d/rk3zTLfcOh4AWVTZ6Ze4Pxyh6NT1dxySul1tGe0pGyDo/POjhQJISNFFSOkAlUl8KXoaQMLiMFDx5eZa74Z6SyWpStbJWSEaKfXcz9qttJ2adoeXVfZSZcNDQgo6BodH9baLmVLZ6XtJusfIoc4kTXv8GVv/ceRV15qWNLNF04t8InHL2N7AXvGShlzl088fpndo6UBomiesvZD+0cH5P/OL7e/pWXtvKhxGCpJRVCSePsnjYFjb1XpPu95X0/kvjeSMcIbnVS3E7c3dpLd2xw3k8yJiSNtx2e6XhhoCVhoOEipjkvHZhJhBycqGYmwPBJCe8ZKmLpyYQslJHR7qcq4sfvVnrEStaLJ/oky55danF9qD8oYlUwOpQg6k9UCVurcilwFRc+m6HQpuTYVXTLlz8LTZ3jkP/8+3/vEnzC9sbTluMo770R+4IP8t9kH+JNwBF+qZKDjarjlMoWREXRhUrtq8z8f1qJy+vClvVpRjVsglSVvLFtlaAI9VMmPGlc9IUJdXe1sWiI2DI19YyVqBRPPC7i43MEPSdQueig3+KFKHK1oHUxUrMgVLURI0DQtQR7DMEQi0TQtOS6+v/PLHWZHikyPFOm6AeeXO9uWU0pLqyXIblR9uL5uM5uSVgPYPVpMLJk7XpqkJnFRyaSpa+weLeYinb2SxNt42cpIvAGMlky6bqDc6kwdU1fnNnVBAUHXC+h4AaMlkyBa/+rDTc1F7+OP5N/tGeu9iPPISw1LuonJnE3bY/94KaOSMVoyubLWHSCK5ilrn5pv8NmTCwSptiZdCO6YqX3Ly9rDosbx2F1aavDOIvz6l85xcFd9S4nD17p0n/e8rzdy3xvFGOGNTKrbidsfO6viNsfNEIk0cQTA8YKMSUQ/cQTSEmEepi5SEmHNjERYHtRsulpgduQs19dV76kfM3OESvZCYPdoiQ/eNYNhaIpkdaOhStJhjyhk6Cib4hTJaqZepFIwkL5N0bUpOMqiV0Oiy5B7Fy/yvivPct9/+Tm0+XmObzGWV3cf5vyD7+DMA4/w5/78owB840svM2dLGmaZYLIChkkoJestD0MPMkQ56JVQP/3iPC9c36DjKhT6gT2jmZfnastLStkiFpUl9ecoSV1tebzjcEkRlrwQP1TC/TGpbletgKH1CEt//MJ1nAjaDEIShywiHVVQKhkvzm9weLrGTK1IyVQtDCqBlgnybhkabqBQ45laMdf9wfDycRmio65RMDQKpoYMYbFhc22tkxAdAT541wy14ksstQatnGW0tsaLOh+8a2bwL9madJZHlk6dLp1myyRpDVP6wLFW8AfvmonWfxeBSnhjaFcXIIVI1n967F5rKaoTV9e4tNJmoqJ64fv3g4mKxcXldkLmjMu+oAh0aaR7y7JvspxF78+v00iP3Z66BRJGSuaWhKVbVbrPc943Irnv9RB/2u9vJ25t7CS7tzGGQSRi4sgNP+TcUivTKygEjJUtJqo94kgiEdbo4ribSIR5foL8GIY2NGpmWTo/+q5D/MpnzmC7PhVTR9PF/9vem4fJVV53/p+71V7V+yK19gWJ1SDAhM3GBoQ9E28/x7GdBRPHmXkcPAmZiT2JE+I1cYyT8UwmHvI4cQDHIXbyTLzEGcCADRiMwYBtViEktNHqTb3UXnXX3x+36nZVV0uqaqlU3dL5PA+Wu/rWrfe+763qU9/3nO/BdTzKtkM8pPObV20kVOk2FbTPUhQUpWokBv7+b02YYVmY0zNcpOaYKMxh2Q4hPM6Z3M2Ve5/mF/Y+Q18hffQ5XL2ZH2+9hJ9uez3umhHW9ETJlWzymoEdj/O01kM+5odHxbyD69moFa9Z0/bqCuXqqAQznv8/lYr0eSazZb+wyvWDULeiCrp4OG7FL1atHldbsFRmTU90QcFSOJjn8XQ5EM39z3JvPsirqR0cT1e8mR2X9X0xXh7P+m1v8WVx14WS6xI1NNb1xik5CwLL41xftRikGfu46rJajkuubFEfHXmBG0QVVVVIRQ2O5KygiUSVSm0dyahRV6DZTNFZcF3BZNVQa0tXIV20iYZ8z9qi5eJW8q6LlkPZ9dstR0M66aJdd/+XLYeIoQZuJKbtEjG0uvu/XVZU1Q6JAIfnSkH7ZP+e1khF/eB+Om8GxZwlS2XXWLZB6d7QH6NsO43Ffeccv7hvObBwnlVcKPr+yVsjoaMWLLVr676V86604r7lwOl+fUJ7kWC3QzSrSMRDOiFdxXa9GiWrIilV1L5QxTMXfOXnudE0udJRLMJK8xZhdUVHTVg1/frlGwD4ux/uYypbwrRcNEVhdU+M37xqY/D70bkiB2cKRA0N0/HN9KvnVRRIKQ7TBw8z/pzG6qhKMl1kc8jl8tyrrHvqUXa88jQ9xeyi8+YpCvs3bOdHmy/hJ1svxuwfRNcUbMdjrgwH0yp9q1YR3riBmXSROdMPxgHCuhpYmuVN/zHLdYNCuYZ16YkSqwRDL4xlGMuUgnUZ7goT0lRUA0zbV1Oh4iurKYR0BdeF4a4wcKyCpe46NSesK0HKwsLiLU31c1tdbz43Nx7S6Y6FSEUN7IpzA56/x66rvoLXHTOC+6PZ6xudKzZtHwf4HrOGhmlXm1X496jvlaxxsGKtVi0MM22PoVSY2byJ6czfbGFdoScWwrS9BnXyeEVnwFFt6YYqRVa1hXJ98RARQ8V0lLovev77oNI22PDV0kXv/4qiuqo72nD/t8uKqjqWw3NFlIqaqyl+G/C8aZMrW0QMjb64X2ho2i7PHJzFdrxK+owfDE9mS0zny6ztjS2puG850DDPdULAsQuW2rV138p5V1Jx33LhdL8+oX1IsNsBWlEkqj3ri5azqG3VwdkiZqVnPcBEutSURdhEulSn5uw8Z2jRopSFysivX76Bd79uhC//aC+vzZRY0xvhP12xmVhsPocqW7Y4OOPbcm3qizNXMFFKRbrsMoOeRX6uTDajUJhOwJ7nGL73Xm753gOE84sHuI6qMnn26xj6pXfgvunN/J8fjrNvJs+qZIgcOhktgpWIE42GeG2uRNxTWZWKkC6aWI7fojUV0XE9sL1KswpdJVOy0RSFWEhbdF2OpbLt3D7MF5K7Gc8U6YlquI5f3JQwdFRNYa7ksKorWrcV30zB0kXrevz0A9slrIKiqUGw67keZdcP2i9a1wMQ3B+263HuqiR508VyXQxVJR5SOTRXCu6PVmzsqmvoOB69cQPL8ShVvtz0xAxm8ta8Ku7BwekCmgJbBhOYtlu3tT6dK9dYqxGokyM9Udb2RJnMlinbLmHd96F18VN6atXJZovOmi24BLhwpJuwruG4Jn0xHc/1/DUM6SiqQrrs27FdONIdrM+vX76B9168lu/tGmc8XWa4K8zO7cOEQvM58+20oqqOebZg0hszgvelriiousJMwW83fuFIN6qqULb8tJl1PfP5vWFdw4j5nx1DlXtjz5Hciiv+OVUFS8cr9F1urKSis6WwlOtrV8c16eS2cpBgtwO0okgAhA2V7qjBbMEiEfGT9C3H/yPWHQsFPevX9sbYeyTblEXY3iPZOluzZw7O1W1zHo6VGF7E1myxwren96frCt9yJZti2SZmFpkez6IWCiiOS0YBT7G58vBLvP6Vp9j4V89CIY8ChBfMkaVq/HRkO49tvpiJS6/gw++6FLUvwcRcESU2R84yeMjSKCkaWECxhK6W6Y0ZwXwUTAdDUzAdmC1a9Wp1xZpL1xQKFZW3VWubD129kc/9v11M5mzClTSGrGlTdvwt5eq2dpVmCpZ6YmHOGkry0liGsuOh4wcytuthO75N2NahJD0xf8bGMqXg/pgr+n6oiYp6N1e06+4PoGkbu1zJpmg6hHSFsXS5Ybs8bCgUzHlVvGqt5lvL1RdL1lqrgV9UZ2gqcwWTsuUF57YcD8ctEzYUDE0N1MlWis6aLbgEmMiVWd0dYSpX5kjBDrrgZU0b0/UV6VVdESZy5ToFLhTS+MULRjga7bSiqo45XTTJlByiIRq8kqtj9ue+/rOjtjCy9t5YicU/p2LMzRT6LkdWStHZUmnl+trVcU06ua0sls8n1xlEq4pESFe5eH0vr07lmMyWA+VuKBVmQ3+cTNEKjq2zCHN9O6dqxqy3wCJs3tas7NtiLdjmTJdM+uLh4NxB4VvBJBbW0DUNz/N4eTzjF745DteuS9A9O8WqqdeYyZVRgYRT5rKDz3PV3qe59ODzRO3yotdtajo/WXMuP9y4gx+vv4BcOIYHRAoaT48VWL9tA+mox6vRHKPpLCXF9S2/KgVctuuRKdnMFfz5SIR1IoZGpmjhuS6O56cZqJWiIgeViDFvgVa7Lq7rMZYpBkr3qlS0YV1Wd0eJh/2mB9U42sNXYeNhjdXd9ZX5zVpA7TxnGMt1ee1InrzlYnm+rVg8pLGmL8YN5w4HRRh50w7uj31Hckxm5u+PwUXuj2Zt7BJhHU1VmMyU0RTQdQ1d8cskcyWTdNG3jEuEdVBo2loNYMfaHgaTYV4cy1SK2bRgKz5XtpjOu5y7OsWOtT2oqhIUnRmaH4CGdf++G1+k6KyVApa8aWM57lHrrxT8PORWlcF2WlHlTZueeIgrt/Tz3GvpBq/k80e6guOAmnsjX5fWMZiKsL4vFtwbZw0mV1zxT8M81/zuZIy5+nmXrbwvqvmhuyfrC32F5Uu7Oq5JJ7eVhwS7HWApyk/Jsn1LLnxbruoHe9mqPzawCKtYJM0XHvnFOQp+TulIT5SYoXEkV6ZQthlMzauZYV0jFFeZyJTAg5ihBYVvU9kynusyV/TdCAzXpscto86Uue/bk7zxXecTM4vouSzX7n6Gq/f/lEsPvUDYWaQIDCAaxb3qar4U3sz9A2djRyM4rl+E5RgG5UiMw1qEv9pr8Yu/2EXEKXJguoDtegwkQv6xlWBeU31/24MzeSKaimpUOng5bl2hnuuBDRiei64qQbBbXZeXxzO8PJ5lrmjhVAKJ7qjBtuEkyYif/1qdD8vxiBkqruerw5pK4IpwohZQpuWSLVlBB7VkxPBTKGqKMKpjLll20Nig9t/a+8P1vKZt7BRAU/xcVgvwbDv4EqUo/veL6twpitK0tRr4qsz6vhi7xrO+D7Dmoap+/rnl+Orxut7Y/HZgxS84b9q4eas6ClQVQpoWvBdaLWAJ6yoHpou4HgwmjIpXcpHeWAgXSJdcDs4UCbe4Zd1OK6rqenfHDDZdGG/wNM6bDnMFq+6zI2KoXLqhpyGtI1e2KVsu8ZC+Iot/WulE2Sp1Fm81KSDJiEo8pNVZvC3nlIYzmXZ1XJNObisTCXY7QKuKRK2tk6Lie6wqMJkp89psscHWqT/xEofTjepp1S1pIBFi5/ZhxrIlqBiXOY7DkbxFyXaJ6Cr9cSP4nYdf+PbSWJqiaWPYFn12ibhVxLAtqt1lx3MzjP39z0n98Afc9dQTGK7TMAaAvBHhyQ0XsOFX3sXGd72Vhw9k+Pd7duF6HrZqUIrFKYQjWKrhOx14LuPpEt/bNU5/Ioxpu/O+tlWH/8rc6ZU8xfFsiVVdUdJFqy7QrcVyYa5gBarsSHcUD48fvTqN67hEQjohXcFxYSpbYrpgcsM5vqr61IEZXhrPUDAtXA/ilYYEhqKSt11Ux+XFsUxDkZXjODx/OEumbJEKG5y3OnnUQhpVUUhEjKC4T1UaPzhrbb8MzU8hiIY0XM9vXTs6N39/vDbrt8ZtxsYuyPhQ/OpGhflCOVBAUYKgek33vLWa5TgcTvt5wiFdZXVXFEObt1YDKuk5Cpdv7uXlsSyzBYt8ZRy98RDbhhOAMl/8NlvwC8lsZ/71Kzd0xFA5UFP81koBy2SmRNl20FVQVS1IRQkbKmVHQVddypbDZKbExqrbA83l6QUWb89VLN4sm5ihc8GaLm44b3jJVlS1nx1bBxOM9MzfL8dSjbcOJurSOhY7diUW/zTbibJVai3ear2MgcC3umrxdqzugkLnaFfHNenktjKRYLcDtKJIVG28ipZTaQ1K0G1KUyARMepSUXVd5ezVKcYzU4FvaC2aAmev7kLXVYqWQ38ixGS2xMGZQt15Ds4U6UuEWN8Xo2g5HJmcRZueZsQsElWcIPDqLmW57NVnuGLPM1x4+GU0b/HIMhuK8dj61/Hwxh38bM05EDb47xdvZ2M0ylhxjqlwglI4ihKJzCt1gKIpmJbvmnB4roSmqhiaAopK0XIr1ei+ZZVpu36+qOcxW7CIGCqzBfOYazFXMJktlFnfF8d1Pd9qy/ENhAumM+9OgYLruBycyeO6fiCZLlq4rr+eduW6bc9FUVQc1yNTtJjMloIiq2dfy/Pca2nKNe4DP351mvPXdDGUijRaQB3HaisIsALbLxc/gXmesK4G69qKjZ3rVQohVYWQpqDXNKuwKykhVQeA6v385P4Zdh/289dc10NVFXIlO3CcqI63mi4ymPRt4hRFCa5xdXeEgWQk2F53PY+DMwU0RVm0QLOuUK5CswUsMwWLkOYH+UXLQavc07brUbTciqKrMFOYP3fLeXrz38WCrmuL0eyY293AYCUWNzXTibJVqkWU0ZC26O+jIY2ZvMl0/tifL0LnaFcBo3RyW5lIsNshmlUkRueKvDSWoWQ5gQepqvqqmuP5DQZeGssE3yJH54oUyn5hUclq/NNq6Ar5ss3oXJF4SGciU2ImZzb8EfY8j9JMGtPJkhqNU943QaKYRVcUBkpzXP7qM1y59xnOGXsFzVv8T/hcJMGjGy7kkQ07+NnqbViaf7spgKfolLt6YP16rCM6cz/LoasKoQXnUJhv0hDWlUrunE5IUyjbLsUgp9XvoBXWFUzHoy8e4qGXJ3GOFl1UsD146OVJLlzbyzOHfCutcKUA0Atsv/zzG5rGa7NFvzI7V8ZxKn7Bnlcbz+BW7ME8x2M6V+Z1a3rYO5njlclcUDxYtYMrOx7PHJxj62BiSRZQC23e3JoGHqrqpyRUbb9asbEbSxdxXI/BZCgoInNcL1Cbw7qCaXtBgdqB6QL7juQpO37xmKpVr8/l1SN5DkwX6jqumbbL0wdmcFyP3kQ46E52JGcyW5gNLLHG0n7edDKio6oq4QU7xmFD9YvfSvV/WJopYKnmYYZ0hbLlYTv+OWzHIx7Wg2us2n0ttVHESHeNxdvhDGPp0qI5fc0W3bS7gcFKLG46XifKVqkWUfr3XmOaQtF0giJKYXnSrgLGlVjMKUiw21GaUSQyBYvdEzlc16M/Hgq6OykoqIofIL8ykSNTsKB3/ngVheGkQdmeV8LCukKmZAfHb+yNsf9IARfQAA2HqFkmbhWJlku4wGxRoUdXGMrN8J7nHuDqV5/m3IlXj3pN5Z5eCle/iT911vPT4S0olZxKD/A0nbwRIW3EcEMhhtePQDhcZ7elVxTBKm7FO7Zqt3XOcBcb+uLsnsyytjuC7RJcn67CobkS24aS7Fjbw33Pj9WNrS5dpOb/Z4t+kDOVKwcFPF0RvWHuSrZHrmwzlSvTHQvVnay2QG2+sQF0x0L0RQx/nj2/21z1+tTq9Xmwf7pAX8TgYKbYkmpQa/O2ud+3E6sWqCXCWp3yedZAMrCx29QfJ285gRtD3NA4NDdvY5ctWUQNDcd1Wd0dWdROLBbyi/uq+Y1l2+HsocSia1Kb31i1S5srWqzt9vNMc2V/zN1RnUNzpcASqzqOsuUQD2kNym7ZcoJxtMqOtT0191IU09aAIgPJMCFd59BcMbiXltoo4ngWb0sNytrZwOBMsFM63jXW3hvxkFaXyuC6ftOO6r0hLE/a1XFNOrmtTCTY7TDHUyT2zeQomjZhQ0NVlUoRzfwxYcP/hrlvJse5a7rqjtc0ldiCXbja4586OI1nmnRZJeJmkYg9vyXnAWvSE7xh308p/X9/wRWv7uaKo1zDZLyHRzdexFPbX8/7futtTJccnv1/u/BcD0vRKEaiFEJxyrqO6/rnNhQ4lC7wOnrq7LZKtouuKb7dltdot6XrKjdduYHP3bOLQ3OluirpsYxJKmLwgSs2oOsqyej87R3sJtckpFZj0upxnuf5wScOMwVvXgFV/GKsaqMIr7K9r1fUSMcjyFv2A735pgSaqvAvPzsUVP1XC8eqP1T/r2W7/MvPDvHm7cMtqQbHsgjLluotwqo2ZTFD49XpPK5bnQVfBe6KzNu2JSMG6/pivDY7X3RWtbybyZvomsra3hjJiFGX36hpGtqCe25hfmN1HLqq8MJYtjLPfkKwrip19nHVceydyrF3Kr/QPY5U1GBjZRytUr2XPvVvL7JrIuu/V9bD+FyRggN98XBwLx2aKbTcKCJqqDx9YG5Ru7STkdPXjgYGZ4KdUjPXWPs5c3C2WPc5M52v/5wRliftKrpcicWcggS7yx5FUYK0Bdf1GpRdz/PffNU/wPXHu9TEa8HxYdcilJ4lu2ecNemJutdbP3uYq/f9lDfue4bNM68ddVxjyX4e2biDRzftYN+qDaiawfbhJOes6eWRA3MUE0lyoRhZT5tPJXD9nOGwofnOEpUx19ptjU4XfMWxYreVCOuM9Ebr7Laqdj9V/8uZvImhqWwbSvKBK+b9L9+0dYi//v6rfjDFAtW1gq4qvGmrf/zG3gSaqpAtO36qgVpp5oC/tW06HqmIxsZeX70L6yqms3gRnlf5/cbeBM8eSld+9ru3uZ6H5853RTMUKNseo7OlllWDRFhHU3yLMF1TGzpqpYtuYBGWN21M20VTK24XlftDVTxURUVT/bznqhXVRWt7KNsutu0yW7TIl200VWUgGUavKTp7/nC6pfzGvGkzVzDJFC0sx7eP8xRQKl67tfZxZw0mWdcT4/nDGf8Wcr0gmNdUhZLtsr431qCiNNsIYH1fjI39MfJlG8f11XLH8wjrOhv6Y6zviwVjbkVxb8XSb6mc7GYHZ4KdUivX2OznjLB8aVfR5Uos5jzTkWB3mTNQCVQKpsNc0fLb0laiV1XxzfcTYZ2BRLjh+Nmi4wtmeIQsk7hVYpVTJqF5DJtDZCO+9+7mmde4Zv9PufrVZ1g/N3bUsRRH1nLfmgt5YN2F7O1fUy3NR0EhEQvzi9ecg75pA4loHuunORzTQXdcFMebtwfT/CAlFtKCMdd+U17TFcV03MDAPaSpDKQiDd+Urz17iDduHTjmH/veZJjNA3F2T+TwqDba8AM9vwQNNg/E6U3644iHtSC4nI+JfQm29ud4WAvmv6rWVl9VrXmWqijEIxojPZHgi0ZIVysuBv58KIqv6qoK/nEtqgaJsI6mKUHucB0VX2Wtxl7tSK5MpmRj2w4l2513WPA8MiWFcK5MrLKLUB3HdM5kTW8MTfWtyLIlm77E/DhazW+MaCoHpguYjlvJNfaVXUVViGp+sVrVPm5+CbzARq8a/3ueF1xjLc02AqimJsRCOu+/dA1TmSJwiOvOHmIgFWXvkUKQbtBKnp7neU1b+i2Vk93s4EywU1rKNTbzOSMsb9pVdLkSiznPZCTYXebsWDuvnvlhpeIb7eKrhGXb4ayhRJA7Fhw/miZmlYiZRaJmCb3iFuACw4NxzjlykPX/79/5he/8P0YyU0d9/Vd7R+h91y/S/a63MdkzzI8e2sfoRBbVcbBQKUViOLEEAxsGWb11HUQi7Fgbqow5g4JXURKVIKgq227dmKHxm3LZ9oOHLYOJo35T1nX1mLY/I91R3v66Ef71p69xaLqAVVHGFSCk+du677hwJFAFx7OlSsMNFdvxHQcq3xbQVdA1FaVyHFTUW8NPbfDXBFD8c6uq//vxTIn37ljH//jeHjJlC911K/l//gei67qYrkdXxOC9O9YtOhfHUg18xVgjFTFQgJLtYnkuiqIQC+u+kq9rQUCYLVnM5i08z8PQVd9L1/PdB4q2VXfswnEUTL8D2QVr6sfRan5jtS2164KFbyOnVAzRrEqRXaHsMJ4toWkqB2cKRCoFeH6Ts+ouBkRqCvDW9sZaagRQWwyoaRqruqNQhFXdUTxFq0tNaEVxPzRboGrbtzjzln5LoR3NDs4EO6WlXuPxPmeE5U+7ii5XYjHnmYoEu8scVVVY1xdj10Q28H7VVHBcKJk2qqayrjfuf5t0XdR8jvPUPIXMODgOIV1DC6m4jsem0T1c/erTvOngz9Fnp+gCuhZ5zd3963h44w4e3bgDNq7nT952Hqm+OD984iDhsMH1l5/FQUcji0E0pDGcjLD3SH3RzfyYPUK6Fiiqpu2gacr8mGs42d+Ua9XJLf1x0qV5H+GuiEH/AsV4tmBhaAqGrmM7vpJY3TJXFD9Ht2prBhDSVEKa38rXd0t2iBsaNmrFB1jxLdAiOjdesZ6/eXgvBctDV51AEbZdMDSFX798PZHI/Ntxy2CSdVfF+N6uccbTZYa7wuzcPlzXfhgI7OMUxXfm6IoaKCp4ru+EEDE0+uIhipVitEzJ7/amaf41O56vcWua7yecLdlkS63ZeNXmNx6YKZCq5P6atkumZNEVDdXlN07nTdxKmopXDV6rOcyVx13PC3IjD04X0BTYMpBYtFDu0EzBb77RYiOAVlITWlHca9dksSYbiYgerEmrtKvZwVLtlJZLMZvreozO+vnSo7NF1vXrDeMQyyhBOHORYHeZMzpXREHhik19QVcv0/YLpAZSEc7ujxIpZBl/cS+rwx4TswUixSIXr0mxbyLLuv0vcfmep7jy1Z/Sl5876uu8MLiRRzbu4JENOxhP9aMAq7vDnDvURTQSYowQzykJ4metphwxGAJqtaOFBToKCheMdPHi4Qx50w62y+NhnXNWpYJrW/it+GR/U25FMa7amoFH2vL/MFbHHdE1ohENUILt+GjIL9jKlkwUfOU8Zzp4ePRUtvarx/63ndvYdyTPPc+N1TW50BTYee4w/23ntrpxL7ZN/Y0nX2vYpo6HdPoTYfoTIcbSZWYLJrbtF0MNpSIMp8KAb8v289dmsWyHSMWerexUqgUVvxlHRFcwbYf903nOG+luaU2uPXuIw3NF/u6H+zg8VwwC0sFUhBsvX1835mo6QtRQ/W527nwOc0jXUPGwXP/LRq5sU7R86zFF8Ztm1BI2NN96rGy33AigVQuhZhX3xdaktk1v7Zq0SruaHSzFTmm5FLNVx7F/KsNVEfjSD/awYSDVMA6xjBKEMxd5Vy9zqmrEtuEU24dTjGWKmIUSXW6ZtbqLas4xOlOkmI7DQIJCscTIS8/w+pd/wvqfPk40O7foeT1FgR0X88Da1/HV1FlMRbvxqnmlCriKykE7xJq+AYYvPIfdUzmy2gwDIR3X9RjL+P6n0ZDGqlR00QKdTMmiLxEiYetBy9uwrpIpWRiauqiC0krRTbOqUrOK8Y61PQwmw7w4liGkKaSiRqDAWrbDkZzJuatTwXZ8MqLz8ngWgLjunyukKuRtj6lsmW3D81v3D740wa7xLL0xo8Fabdd4lgdfmggCwla2qWu31y9Z371oE4rq9vqzo/69ULZ9ZwhDm8859lyPsu1haGrDFm8z7JnMsms8y9nDSc4dSeG5fg6u6/jXt2cyGwQeG3sTREM6RdOmK2osaqcXC+ls7E2gaP6XCr+trbuI9ZjrW49FdA5MF4JCOc/zGlTghYVyrXYybPZeamVNamnmfq5tduC6LrmyEzg9JMLakpsdtFoYuVyK2arjmM6V6a7ki2sqPDc61zCO2muMh7SGdRHLKEE4felosPu5z32Of/3Xf2XXrl1Eo1GuuOIKPv/5z7Nt27ajPueaa67h4Ycfbnj8P/yH/8C///u/A3DTTTdx11131f3+hhtu4N577z25F3AKqKoRZjZHr2dxdjGPWqkax4a85RL1XHqeeAwee4iNDzzI5kx60XO5qsro1vN54fzLueiDv0Tf+hG+/Y2fMjGRw3E9HFWloEfIh6MUdd/m65W8n+daHcfL45lAYXZcX2HujhpsG06SjBh1BTpHcmVKZn0hVERXiYS0RQt0Wim6aVVVakadVFWF9X0xdo1n/fQCfLcGy/WwXb/gbF1vbL6zHfNWYlblZz8vWKm4TVSWqWbreUN/vCGntXbrGWhpm7p2e33PVJ5VXRG6YwZF02HPVL5ue70/HkJV/FxvP+uitoWafzGq4h/XCrWFP2cNJxsCpYWFP6mYwVlDCV48nCFTsomGtKCpRK7sF7NtHUqQivnq27reGHsnc+w9srhd2treOMmwERTKzRXMoBFGNQ0lavg2bLVqeyudDBfeJ8e6l1pZkyrN3s/Va5xM+x38Fr63uqLGkpodtJKmsVyK2arjODhdwHZdRmdMLt8ALxzOkoiGyJedunFUr/Gl8Qz3vTCB43lU7yVNUThrOCmWUYJwmtLRYPfhhx/m5ptv5tJLL8W2bT7+8Y+zc+dOXnzxReLx+KLP+dd//VdMc161mJ6e5nWvex3vec976o57y1vewh133BH8HA6H23MR7cLzIJ9npJTlImuaPQfThPpiwR8WzSwz8txP6P/RI5y96ylCxQIw7wZQxdF0xs6+kP2XXMWBC3+B3abBWUNJBjau4fnROV7LlMmEomSNKCUjPB+h4edNHpgu8MyhWS5Z34uHx49encZ1XSKG343LcT2mciWmXzW54ZzhoECnthBKVZXAGrhgOhQst64QClpTM2vVnGREJxUxcFx3UTWnFfwUDIXLN/eyezzHXNGiWAno+xIhzhpKAAqjc0XG0kVm8iZRQ6Vku3XnUVXfcWA6Z/LMoVmApreeWzm2uk1d3V6/57lxfrJ/hlzZJhHWuXRDL289fziYi8FUBKPSJrqxZZ7/T0j3t9prOZ7i2Grhz0h3lKu2DGA6LhPpkm8zVlFge2MGg10Rrt46EChs63pjPD+anneOqN5Mnp+zvK5yzlWpSKDMh3XV95qu2LDlyhbTebdOma+du+N1MmyVVooM5+9nk1TlfnZdj+dGG1XSHWt7/B2FiSwqfh55tRtf0XLJWyW2Dy+t2UGzY14uxWyjc0V+emiWyWwJx/XoifpfniOGylS2jKYqPHNwdvFxVLc0qveSxLeCcFrT0WB3odJ65513Mjg4yNNPP80b3vCGRZ/T29tb9/PXv/51YrFYQ7AbDocZHh4+uQNuN44DhQLkcv6/nocKvGFzD1PpAmOHp7n4wHOc9bPHWPPcU4TKpUVP44VC7N12Ic+ecxnTl16J0p2iZLlMZct0xQyu2jaA2t3F4VmNF6IDuJ6/VRxZYIlVNB0yRYupdBnX9XwFxfFrzAumHVigKfg+tAdn8riuR7ZkkSk5OJW2uQt79qp4dYVQrRTdqKpSp+bsny4EXcB6YkaDmtMK1ZSR7cNdnD2cYixdomA5xAy/Mt8F9h/JkzftoNuaoaqkEjqK5wFFemIhPEWhaLpBtzVVUVryoW3l2CoHpgs88eo0e6dywdas63qcszoVBClFyyFqaOTKtn9vVZqUuPgBLYpCxNDqCqeaURxbLfypVdgyRRvX84JdgkhIZ1VXtE5FxANDU4mFNL+5iqLgeh5ly8Fy5j0PapV5y/HQNQ9V9dsgW45Xp8zX0kwnw6XQTMpDoE7OFLBtl/3T+SAtoSdqkDftxe9nD9zKG7DaTtut5EJ73tLH3cyYl0uhV7V7oON49CVCGL5VByFdpTeuMZ0zg+6BMD/XjutxwzlDi6aXrHR7NUEQFmdZ5eym0/72+8KA9lh85Stf4X3ve1+DEvzQQw8xODhIT08Pb37zm/nsZz9LX9/iBRvlcplyuRz8nMn4BvaWZWFZ1qLPOZlUX8Pas4eG9lPZLCOP/ID//O/3Ev7xj9CtxXPxvEgE7+qrcXfuxHvjG1FNhcKeGWZmi5jpIoausWHTEFe+bj2r1w1iKQoTe7IYqoeuKITU2oDU//+qDrbnciSX56n9U0xlCqRCSsUXtXqcEthtTaYL/nG5Mo5tBX98FsO2LfZNZdg2GOfpAzMcns0xnDDwY7zaCi4YThiMzuR4av8Uw6kozx2aZjZXxHE9koFhv8dcroSmKjx7cJqDRwYZ6Wkt9y6i+rm3pbJfQb+mu3Y3wKNYsonpChEVXMfGwFeoI7pCqCLCJsMKpqv4bgiWi+vY9CXCxA0F27LrHBeqlCybuKHQU8k5bPbY6n3z8MuT/OX9r5ArWwwmQkRDKkXT5cB0lr+49yU8x+aN2wbJ5EtEdVjXHSJTqBTg4X8IRCIaqUonuUy+hGXFeHUqx9eeOMhs3mQ4FSEWClEwHV46PMt4Os+vXbaOTQOJhnlbSLk8P2/VMTu2jYZLSPXQw/P3vKp6aLg4to1lWYzOFskWy/zChi7GM2XmCha246CrKgPdYYaSYTKFMgePZCu3i8fVm7vZM5knXbQoV4o5V6UMtgzE0fA4eCS76L0xmNCDfx3H5ij9QlpmOGngJ8XQcN7R2SLPHZpmLlfEdjySES1oQDGXb7yfnz4wQ9m02NgbJl20KVkOnuuvYSKq0RXVKZsmT+2f4uL1zX+OtjLmpax3O8jkSzi2v4vhf475nxu64oKqkggp5Mp2cD+PzhbZP5VhJBVCUzy6Iirze2EeI6kQ+yYzR70/hPYT/C08BX93hfZwqtew2ddRvGppdIdxXZe3v/3tzM3N8eijjzb1nCeffJLLLruMJ554gte//vXB41W1d+PGjezdu5ePf/zjJBIJHn/8cbSFwSTwyU9+kk996lMNj999993EYqfeQ8/IZFj1k5+w6kc/YvDnP0e1F1dI7EiE8Usv5fDllzO5YwdOJLLocYIgCIIgCKcbhUKBX/mVXyGdTpNKpY563LIJdj/84Q9zzz338Oijj7JmzZqmnvOf//N/5vHHH+fZZ5895nGvvvoqmzdv5oEHHuDaa69t+P1iyu7atWs5cuTIMSfvZGFZFo/8y7/w5r170R98EOWJJ1CO1oY2lcJ705twr78e78orYWEusqpCPA6JBMRidTm4C3n6wAz/9Rs/I1t28DzfLaGa/2e7HoqikAxr/I/3XshUrsyffPN5woa26BZ70XQoWw6fftd5vDqV5f88tO+41/3b12zkt685i6cPzPBH33yeRFhfVCnKVayl/vRd5wE0fWxV2Xp1KseDL02y70g+2Irf2B/n2rMH2TSQqHv+q1M5/s9De9kzkatsC1eKoRSFLUMJfvuazWwaSDA6W+TWbz/H7sqWeSqi8ntnl/jiSxEyJRddU9g2nOQz7zifkZ4oD788yZ985wVmCyZuzTtOVaAnFuLTbz+XN24bBHyl9s/vfZmZfBlNmV8Tx/Poi4f572/ZFhxbnbuQplC2XYqWW/GqVYgaaqWlscefvus8hlNR/vyelxid81XERESr8X910FSFNT1R/uCtZwO+hVNX1DjqPKeLFje/aQsjPdH5eZvMBcV74KcWbBmcnzfw1cxmz93KOFod80Isy+L+++/n+uuvxzAaranaQSv3/sXre1s+vl0sVP2ruwnjmRI98VCg+reT0dli3f3cE1V57+o5vnG4m9miW3c/j/REW7rvRNntDJ14Dwonl1O9hplMhv7+/uMGu8sijeEjH/kI3/3ud3nkkUeaDnTz+Txf//rX+fSnP33cYzdt2kR/fz979uxZNNgNh8OLFrAZhtH2xXK/8vc4f38HN/z4Ryiuu/hBPT1w3XW4O3cycfaFFFCJGRpDEb+9bBDgJpP+v01aR12yYYDNQ908OzqH53rkLTfI2Y0aGoqqsGW4m0s2DPDyeBZVN8iUbRRVrdhFVdviQqbsEgsZbOrv4nDapOwcfwyRUBjDMLhkwwCrexLsnsyyztAb7KXGcxbbhpJcsmGA3ZNZNE0nZ7qEQ0qDvVTOdNF1nVQsgmEY7JnM8tUnXgsskoZCOgXT5rmxHKMZs6GYTdN1HFRMD8q2VymK8gjrCg4qmq5jGAbr+nV+YfMQBRsm0yWyJT+9JFtyiUdCDHZFuHzLUJD7OZa1mCu5lOz6zlkKMFdyGctawb22YTDFSG+C2aJD0XZwXT+/NqLrrO5NsGEwFRw7W3JJlxxQ/Fa+muLnW3uuQqnkoql+S93ZksvrNyU5f20feXsay3KYzJnYbsX/NRnG0DUuWNfHuv4kuyez5G2PoXAIF7/ZRDW/MRnRCYcNClmTkuu/T6rzZrkKTqVFtYeC5tbPG0DJLQbn9ha5V8NhJTj3WYNJNgykeP5wmq2RUIPTw2jG5PyRLtb1+2vY7LHHysk8Fe/7Kql4BE3XyZke4ZDSMOac6fn3czyy6HtlobNH7XulnS1tt63u4QNX6vP+1VmTsK5xzkjPCRX2tcK6fn3+frYdZvO+YDFbdOmOR9B1NbifVVVhXb9+Uu4Pof2cyveg0B5O1Ro2+xodDXY9z+O//Jf/wje/+U0eeughNm7c2PRz/+Vf/oVyucyv/dqvHffY1157jenpaVatWnUiwz3p7JnMYn/j39j+o0XSNgYG4PrrYedOuPRSDqRL/HD3NIeeHKVc6Yy2amSAN1y8gc0bVzUd4NZS7Xz1qX97kSPZIiFNqYS6YLsuA/Fo0Pmqahf13GtpjuSswFrL82Mpwvq8XdTq7mhQ+HQ0VAVWV6rta8fx0ni2ErB5eJ4SqJnVcSQjBuv6YuyZzLFnKkftvoSiQCpisLE3RrJS0d6KRVL1+HTBd4SYzPqepnrFBSFdsOqOrxZZpQsWuqIDJqmojqZrdUVWpunwdz/ch+W4xAwFyyVwFjBUMB2Xrzy6j/devBZdV7nv+QliIY33X7o2aK17tE51PTEDy/GwXRcFj5I3f25NARMFvXJc7ZhfTpewXd+2ynZdpvMW24bnO8pVreYOzxXmm1UEhYAhVnWFAwP+usKfc49f+NOKuX8rllhAS8cuB5Jhg3W9MQ7NFBbttqbrKmt7oiTD/jzVdqs7OFuscy6pdpyr7VbXTk52x8NWqbufx0t+W0nAdlyO5E22LbASa/VeEgTh9KGjwe7NN9/M3Xffzbe//W2SySTj4+MAdHV1EY36gdCNN97IyMgIn/vc5+qe+5WvfIV3vvOdDUVnuVyOT33qU7z73e9meHiYvXv38rGPfYwtW7Zwww03nJoLa4Kq3dCa865m+/3fAiDb08/z517GgUuv5vL/782sH/Sb+R6YzvF/nxllrmjT3d9NrCtFWg3xZNZkz8+n+Y1EcslKyvq+GBv7Y+TLNmXbgcoWeETX2dAfY32fn7M80h3l7OEUr0zmcDwP23FxK12vdM33zj1nVYqR7iim4xCp/BEBGpRMgKihcc7q1FHH4XfU8gjrWsM4Aisqt+pF5WvMnutRqrGiatUiaaGVUSpqBP6vR3LmUa2MVFXBMPy3UsTQcRa81vd2jTORKaHg4Xiq38yh8kXBcT0UXMbTJb63a5zXrekJxqxpKiPd9TnjC8c8nIygqX4hjq75bYoVdd7713b8FsLDyfp8br+phBoosAv/vI90R+mOGtz/0gShypcMI+Kr7pPZEq/NFth5zlDDPKuqSipaH2gtZj3WSgODVmy8Wjl2OTDSHeWitT2ULRfbdZktWEG3tYFkGF1V2bGup67RQdWCr+pJPZM3MTSVbUNJPnBFoyd1OznZHQ+XiqKApvn3na6pHG1jaaXdH4IgnBw6GuzefvvtgN8oopY77riDm266CYCDBw82+I2+/PLLPProo3zve99rOKemaTz77LPcddddzM3NsXr1anbu3MlnPvOZZeO1W6s4DrzpWh478EGcX9jOs/FtxMIGB2aKOK/OsbY/BYrC9w8VORRKsWbTAFnL81UzRWXLQPyE7HKq44iFdN5/6RrGM+XAams4FWbvkUJwbgAUP0hNhjRMx8X2QFcgpKnY3nxQazkeG/tjvDKZ91vXKuApoHi+C5muq2zoj2FVLMlqx/G+S0Z49UiBrGmTDOls6o/x6nSxfhwVK6p4SCesq35w5/qdwUzHDQK3Wosk13UbrMQWWiTVWhn1xn3FtGS5aIqvjM7krcDKaKGNUaFkARmu2NxPLGLUrcvhuRKW46IpoOvzgaWigKIpmBZYrsvhuRJbBufH7HleQ/rAwjEXLIeIoZEpWTiui6qoaBVrLsd1URTfCqpgOS0psNX1BirdyBwsp6rkzzfUWDjPi3E067FWFLZWVMROK46tUDsX07kya3qiaKqfkpIt+U4ei6mN1549xBu3DjTdbfB0pJX34FLvJUEQTg86nsZwPB566KGGx7Zt23bU50ajUe67774THVpbqSphUUPlybEiD77hRj60YY7nnsoSDxn0J8PsyXscjnThJRI85xVQUh5PH8owUzADH87eWIjhrvCSDdxrFTlN0xjpObqKCDBXsFjTE+XFwxnyph1sl8dDOuesTjFXsBidKxIP6WwbSqGrCrvGspSd+Ug4rClsH06weSAZ9KCvnY9nDmWCLfMjmspc0WZVzTUCzBUtLt3QM7+9bvvzMdQVYTgVZrZmHBFdY9d4OmgSUdv17azhBKlIKBhHrmRTNB1CusJYurxoB66C6W8vL1Qzk1EdipCM6niKWjd34UorYUVpVFCVyuN4fl5wbfrAeLq86HpXt/gBcmUbTVVY3RVhrmJFZTseigKxkE53VMfDV35bUWCr6719OMnL41leq1i9aapCd8xg+3Cybr2bTUuoshSFrRUVcbkojs2wcC4Kpk1Y17hgTfcx1UZdV4PGImcirbwHF94LK+n+EAThxFkWBWpnGnnT5kiuzHTeb6cbr5i0lkMRDithdpOgNxQlF4mB7c4fa7l+Zyhdw/M8JrIl0iWTvnh4SQburSpyB2fy7J3KY7seyYiBpvhKrWm7FSN/l7xpc9Zgku6KEroqFcJV/II2VQHVc5nJW1y83gi2Zufnw6RkOYQ1lbCh4rkwmS2RqXRVq46jZDts6k+wpifWoHw6nhc0fjhrMAl4PL53BvDN5kOaX0A1nTd5fO8MN5w7FIwjEdbRFIXJTLmSN+ynSLge5EoW6aJHXyJMIqzXzZ3neeSKFXW4aBOPqnVzd9H6HkK6imm76JVisyqu62G7HmFd5aL1/nZ1d8zg/hcnCGkKyagR+K5OZIocmi1w/Tk1Y66ovY7jsW0oQs50gtzaREhjJm+hawqJiN7yelfvO0NXWdMTRVEUPM+jbLscThfps+fXu5W0hCqisM0jc9E6y6W5hSAIyx8JdjtAzNA4kiszVzBRFYVCpcPPy2oSTdNwizaeUiZm+BZf/rEWquKrbfNqo0qx0smsemwrtKLIOa7LgekCZcvPAa39IxzRVeaKfgpApLqNWlFyNV2nu6boJluycWy3TuGMGhpHciZzBdN3J7DnrzGiqxRNB8/zj/Mfmx9zKlo/7mLZriucOjBdwHb9qi3bnbcSq8rSB2cKgdtBIqyjaYqfouF4DcVvuqagVY5TKuOoFnDlimUu2ABP7p8hEQ3XFXDF0TlrKMlLYxlKtm9LpisKtudhOx6aqrJ1KElPNFw3dw1Fh5Xgu/bR2gKn2YJFIqKTCPvB8WzBaihwana9Pc/jSK5MoWwzmKrPeU54HhOZUnDfnUjhjyhs88hctMZSdhQEQTgzkU+BDuDhd9fKlBx0FWJGdZvb35a2XYgabhDzlG2XTMlCU8DQNXTFt6/KliwcD6IhncWSOmzbPWZOXyuFQk/un6Zs+96VVMZfDUgNza/4L1m+z6amqg2pBtWim6FUfarB2t4YClC2HDIlC0NTCekqmqLieB4Fy/FdDEIayoIxx0NaQ95p7ZifOjATpBHMizuVa6yM+7XZIs8cmuX1G/vw8FVqx/WdJGpDMxe/2Nu0/XVZs6CAqzfqf9mIGGpDARfAznOGsRyX12YK5E0Hy/MqKSAaa3pj3HDucFDs1crc1RY4WY7DVNbEcl2Mip2YrtUXODW73odmC/gGYkdTFv3fVe87KfxZHNf1RK2t4XifSa3Q8PlV87tj7SgIgnDmIcFuB8ibNk6ll33RcnEr/SNyJZuyC5rqB3rV7Tfb9VXGsutRsu35CnoFtIq/6sKtugdfmgiqtS3HxdBUNvTFuenK+WrtVhS52YJFSFMp2w6TuTKeO++zq6i+whfSVGYLFt0xu+lUA/ADfMerhFULc7Erj9uuR65s19kN3ffCBE5N4wdNUTirxm5oKlv27ZtU6I0bOC6B94CmQqHsG/BPZX1/zmzJIlNJRwipCqrq59h6+EGL4/l+s9lSpT2hMj/GeTnWC66h+kjtmE3LIVO2sR0PXVNIhXU2DSSCMVe3Zpudu3r7pSKW6+J6fsHbkXyZbcOpJVlzFS2H/kQIRWFRS6xERKcvHqJozTc/ka34evZMZoPgv9rMZPNAghvOOzOD/2Y+k1ph4efXSCoE+J+joxlTrMQEQQiQYLcD5Ep+IZGuKnieglJxpFXwUBW1opI65Ep+QFO2/O5WruMHVdVGB37QVn8s+H9UPnfPLrKVXNdqQLN7Msvn7tkFzNsXNavI9cVDoEDJcoLCtNpYr2g5hA2NvnioYXvxWKkGUAl2XY/BVJiy5VG0HCzPRVEU4hGjosz6wW4d1Ug0UGvrf+3hf6FQVA1FUdC1+oMUVcW1HLxKWOr/EfZzqKtd5KruZiFdQ8V3Jdg/nacrGmKu4Cuw4+ky2aIfMJcsj6GuKMOpcFDAVW9T5tt4Vb+wqAtSFVqdu/rpUBbYiS3uVNDMesdDOv2JMP2JUIPCPFhRmEFpGIdsxftUrQWrzUxioSgF0+b5w2kOp4sNzUxOd1r5TGqF2vt5/1QGIpAuWmf8joIgCPVIsNsBYiHN7xLmenRHdRTPA2ziYYOYopAp+RX1sUpb3tpjXW8+lFEVr+FY23a587H9ZEsW63qiWI6HafvK4LqeKAdni9z1o/28cet8h6Utg0nWXRXje7vGGU+XGe4Ks3P7MKGatsAXrOrCsj1sD6J6ZQs7CHo9iraff3rBqi5CIa2lgqXaIqtVXaGGDmozeYtYSCUR0Rvsho5ln7WhP040pFOyHCK62lAYZtousZDOhv444Lsi+GquQiLsr1FtqkbRdFBV/7iFCmy+aAJzvH5DL/FoqE6BbcXyq1UP2lYbOlTX+3gKbO04Llnfveh5T6ctYtf1GJ31XShGZ4us69eXrAi22sxkJdNMmsbCz6SqlWQyohIPaYt+JlWf10zKQ/V+Pngky88fP8TNb9oiXdAEQahDgt0OUDAdDE3BdGC2YBNWfWUxX7Ypu5UcWE2hUGnKYGgKjqtQsj1CuoJeyWct2V7Dsc8cmmX/dL6Sv9pon5UIa+w7kg/yVGHx7cVvPPla3fbis2NpDA1fdba9+nQDBXRFQVf9416/sa+lgqXFiqwiurZokVUr9lldkRBnDSV4cSxDpmQTDWkYqoLlehRNB13zu751Rfztz4GK00LBtJktWpVL9FMkFMVPbUiEdQYS4QYFtt72SKlTYFttutDK3LV67irHU2Brt4j3TOVZ1RWhO2ZQNB32TOVPqy3iarrB/qkMV0XgSz/Yw4aB1JLTDVptZrJSaTZNo/qZ1BcPNXimq5XuhM18Jh0r5UFVFUZ6ovwcGOk5c1NnBEFYHAl2O0AirPuNAIoW9f3FADwcFyKGRiLsL08q4nfycj0/UK76ncZDWuCnWj12Om9SNB2Kpn+e6k6263nkyzZ+uqnCdN4E5rcX04UysZBOLKThuB67xtN124v+8b47QqGSyhDk7Cp+YVbteVspWGqli9TuyWzTdkNnDSa5assApu0ymS2RLtoUK3PXGw8xmAxz9daBQJ3csdZ/jecPp8Gr+N9WJtBzPcqex1k9UXas7UFVlaaLY2rH3Exzi1bmrp32S9Vx3Pv8OM+NpimYDrGQxgUj3adN3mltusFIKgQedEWNE0o3WOqarKRitlbSNKbzftvtaGhxx5hoSGMmbzZ8Jp3slAdBEM5cJNjtAFU/V1VVCKsaUR3AIh7WUW2/uEivsbha1xdjz2SOfNHv3OXh4bp+4JuKGqztjQXWO70xA9NxMR0H16Viu4WvvqoKqgphTaM3ZgTbi1PZEp7rkS6WgtSEiK4ylS0F24s9lfMCDCZCWA64nt+xy9AItrl7YvM5ps0WLLXSRaoVu6Ha8/YnQn7ec8Xv13E9+pOROnVSVRXW98XYNZ4FzyNkaPNewpYDisK63hhqpXit2eKYVptbtDJ3p8R+qVJ/5/n/01QzmJXAwnQDFReKflrN1khoyekGS1mTlVTM1mqaRl88hKH5FoLJSGMaQtF0MDRf4V1qyoMgCMKxkE+LDuABYUMjFTGIhbTaOn5iYf/xkO4/PtIdZV1vzC8Mw/eD1VU//9TDo2Q5rKtYUAG+JyoeZcvDdHwnA1X19UnT8R+vHvfMoVleGktTtFyKFVuxkO4XvRVtl6Ll8uLhNM8cmmU4FSGsqziuV3Md8wGA7XpEDJXhVGRJc1JVEc8b6SJTshmdK5Ep2Zw/0l2nElVzScfSJVzXJVO0OJIrkylagWq6ZTARzEf1vBes6SFi6GiqQsTQed3angbVzu8cpnD55l564yEs2/VtwmyX3kSYyzf3AkrQYax67nNXpRirPDY2V+S81amGMVebW0znTUK6SiqiE9LVoLkFeA35r9VUg+3DKdZWguyF1M7HwiC0qjDXzkcrVNW7F8YyjPREuXBNDyM9UV4Yy3DHY/vZM5lt+ZzLiVbSDVqh1TWpzvPzh9N0xww29Sfojvnq8nKc51bnbcfaHjb0xZnOm7iuW3e867pM50029sfZsbanpZQHQRCEZhFltwPU2jqVLIeErgNFBhNhcrZHpOJqENg6eWBoKvGQTlhXUVTwXN9/13TqGzQUSg6ON/+IU+uKVcH1/OMmsn5A6XkQ0uedAVTF/8+0PTIlm4lsiVTU8FXPsSwTWbOh4ULM0Pyg3J7/Y7Ykteo4KmKd9diLE3XBt6YqnDWUbMglbVYlrW4/Dyaj5Eo2iqIERVmruyMMJCNkilZjSsB8toPfr2LBJVWbW7ie3ylNU/3ubJrq52OXbbeuuUUrnEhDh2NxJhRZtSsFpJU1WYnz3Oq86brKTVdu4HP37OLgbLEuNWE6b5KKGHzgig3olS9/raQ8CIIgNIMEux1goa1TrmJb5ULQOKBq67RYkwHbdv0mA12NTQb2zeSwHQdNpeIrO48CaCpYjsO+mRwzuTKO6/npDQsUGlXx3R5s12MmVya+pgdDU3ErwWfV9av6LNfzgoAcWrdeqsud7IkSC/mFYi+MZRjLlBbPnfSq1+X7UyzaWaN6PU1YYsVDOqbt8vSBGRzXozcRxtAULMfjSM5ktjDL2t7Yotc40hUFD1Z1RXnhcIax9PyYnzk0y2S2zOruSGCtZnouqqKQiBj06QoTmXJdgU4rtKOhw5lQZNXOFJBm12QlzvNS5q2aY1stOpvJmxiayrahJB+4Yr7orJWUB0EQhGaRYLcDLLR1KpQsqrZVsYhRZ+tULW6q2lItLG5yoa7JgIev3CooRHQ/Abeah+u3zPXzVj2gPxZBVRVs10OvNkKoHoufmqCpCv2xCEOJMIfnSjiex2DCqJzHrfgCe8wWbcbSJYYS4ZbVqlaOB1q22oLmin9WpSKULZe5Yn2+YFhXMGIGB2eLDNkuq1KRlvI9q2rVYCqKip/fbLv+F5ZEWMPFt7s6EbVqy2CSNVdE+cYzBxmdLTHSE+G9O9YRiSztLd7OwrflwlI7cDVbSNbMjsJKnOdW7fGqXHv2EG/cOnBMO7FqysPuySzxkFaXylBNedg2lGTH2p72X2ibWUkFiYKw0pFgtwMstHWqVoErCg22TlUV5fBcYV7ZdVx0TWV0rsSqrnCdiqLgq7J+GZuKpih+2oMHjuehKh6K4rcbGOgK0xU1SOdNiqYLSk2fBg80BVJRg4GuMD8bnaNsO8RCOmXHT3sIKRqOB2XbI1bxs/3Z6ByruqItqVWt5gC2arXVbDrFWKZE2FDpiRmBBVpt17DuqEFIVxnLlOrGoSj1qvLCMVfVqrm8SbmSC121g8uWVMK6esJq1T88vp+/++E+prKlwKP47x89wIeu3sivX76h5fOdksK3DrOUDlytpuYcb0dhJc7ziaTO6Lp6zN2LVlIeVjIrqSBREE4HVvYnxgqmleKm7qjBT/bPMp4uYDkuHmA5LuPpAj/ZP0tPzAhUlI29CeJhHUWhYlfmN3vw0wx8v9hEWGdjb4Ida3tY3xtDqagnrufn+FbTYBVVZUNfjB1rewLVcVV3hHhIw3Y8SpaL7XjEQzqruv3CtOm8WaNW6XieV1dE5nke0ZBG2XYCtar2+MWoPb6VY2E+1eC50TS6qpCKGOiqwnOjjcU/edMmpPs2ZwPJMNmSzUSmRLZkM5iMcPH6HsK62vI4dqztYTAZ5nC6RK7seyxHDRVDU8iVHQ6nSwylwktWq/7h8f184b6XGc8UCRsaPTGDsKExninyhfte5h8e39/yOdtZ+LZUXNfj0EyBXeMZDlVynE+UZt+H0J5CsuU4z80QFJSu7mKuYLH/SJ65gt+57ES7w1179hB/+NbtnDWYJFuyGZ0tki3ZbBtK8gdv3b7ibcdWWkGiIJwOLB+54EzlOMVN1ceLpk2u4rFbTZbVVIVEjZsDQCpm+I0UDmewXJeIoQU2XmXbV4m2DiVIxQxU1bc1e3Y0jbvgJf2fPdb1xuvsg/BgdXcU03YDBTGkq+TKdqBO1qrR4+kyMwUz2LbvjYUYXqBGt6puNXtsNdXg4EwB23bZP50PxtETNcibdl3KQ3UcpZrCQC/413e+WMo4qvO8ayKLaTvomt84xHb99sOqqgTz3Cqm6fB3P9xH2XbojRnBtm8sBBFdYaZg8ZVH9/Hei9fWdcQ7Hu0qfFsqbVfCmigybEch2XKb51ZotvBzKTST8rASWYkFiYJwOrCyPzlWMIGt0+EMq7p81aZa3FT77X50rshLYxnKtt8y2E9T8P/1A1iPl8YywRb/SHeUq7YMsGUoQV8shFPpFua4Hn3xEFuGEkEjhdG5Iq9O5Y/qm+p6Hnun/K34Wvsgz/MIGxqxkE7Y0PA8r84+aKQ7SnfMV6MnMkUihkpPLETEUJnIFPnJ/lm6a9ToVtStVo4dnSvy00OzTGVLTOXKdeOYypWZzJR45uBs3dxVxz2ZKZGM6gynIiSjOpOZUt24Wx2HgsIVm/roT4QxbZdM0ca0XfqTYa7Y1Besdat8b9c4U9kSsZC+qFVTLOSP/Xu7xls+dzvVu1ZopxLWyvuwHTZlsHzmeSk0Y4+3VKopD289bxWv39i34gNdaO99JAjC0RFltwPUfrvfMhCvFKj5ebVbBuJ1RVbpksnuiRyu59EfN3C9qveA75aQKTm8MpEjXTJZS6xOKRqIh1E1cF3fa9d1oC8536BhLm+yeyKL50HcUHGZL1BTgZLt8spElrm8ydre2Hwu3UyRVFRH1xRsxyNTtElF53Pp3Kr6DPPVbtT+7NUVA7WqbjV7bLZkcXC6gOO69CXCwR+XsK4RiqtM58ocmimQrcy/vwjz/5RtF6uSAhJczlHGfKx8z2rKw7bhFNuHU4xlihRNh2hIY1UqiotXV2RYe58cTzUbT5dxPI+wvniQEdYVCqbHeLp81PvxWLRTvYPjX2M7lbBW3oftLiRr9zwL9XSqOGwlFiQKwumABLsdoPrtPmqoPHVgjlyxzAUb4Mn9MySiYVZ1hYNv9/uP5CmaNmHDr0z2tY35/daQ7lEwbfYfyXPe6m6g0faomr6wZXWizvbomUMzmLZb6aymNMj8uup7wD5zaIbz13Zz7dlDHJ4r8nc/3MfobDFIYxhIRbjx8vVBLt1idmnV9r9Va7Vau7TFxnws+6xmj82VbYqWQzKiL6qihA2NbMkmV7brxr1tOMHL4zmO5Ip1nc62DSfqxl07jv1TGYhAumg1jGNhmsZId33BUr5kL7mj1nBXGE1RKkWCjfda2fbXaLgrfIw78tg0Y9u2FJq5xnZac9W+D58+MEe25n2YjIYZrnkfnopCsnbNs1BPJ4vDVmJBoiCcDsg7qgPkTZsjuTLTebPSVKLSzAGYzJbIVHrC5027ouAqeK6L52l1Qqnngee6qKqCQn0g0IxSVLYrdmP4KQtupYmDoiioNXmL1eP2TGbZNZ5l+3CS81angmDXdj12jWfZM5lly2AyUC829SdY0xMjW7IDe7BkRMfxFlcytwwm2fCGeFN5elsGk6y7Ksb3do0zni4z3BVm5/bhurzURET3C8Usl3jIV2mrYzY0hbLlEgtpJCr2XLXrEtJV1nRH5xt4OC5j6TKm7dWNuzrPB49k+fnjh7j5TVtY15+sm+dWrZpa8SjeuX2YLyR3M54pEtGVBqumgmmzqivKzu3DjTdik7RDBWv2GtuphM2vd5my5dJTcfaIGAqT2RLpkklfPEzetDlrMLkkuy1hedGq//fJZqm2bYIgnBgS7HaAqKFxJGcyVzBR8LuZAUzmyqiqvyXvef5xA8kwiYhv61W0HEK6byfmeB6m7YLiF6kNJBuVu+MpRau7Ixiaiu24FByvpijHTzPQFL9z2+ruel/ZbcPJhg/p2u3khepFKlqvYBTLjUomLK64/GTf7KKKy4MvTQQG9ZbjYmgq33jyNW66ct6gPhk2WNcbY+9kjr1H8vidSv3qPlWFrojB2t44ybBRty75ss1QKlx3jQnPYyJTDtZl4TyP9ET5OTDS0xgItrOjViik8aGrN/KF+15mpmD5edS6r/QWTJuIrvGbV21sqTjteGtyoipYK9fYTiUsZmgcyZUplG0GUxEM1X8HhHSN3rjORKYEnn/cSi4kE3yWQ3GY3EeC0Bkk2O0AClC2HTIlC11ViBn+B5ui+GqT7fr2XAq+yfrWwSQvjmWI6Aol28PyXBRFIWaolGyPs45ism7b7jFV0p3bh0lGXmQq19jMwANsD3qjOju3D7e0nVyrXsRDWkPjh8XUi1YUlwdfmuBz9+wiW1HAq38sdk9m+dw9uwC/mnukO8q6nhjPj6bxPCrd3/yARvUUipbD+t5YMA6lcuXKUVux+b9byp+hasrDPc+N85P9M+TKNomwzqUbennr+cMntG1f9dGt+uwWTF+9XtUV5TevWtxntxm1tl0qWLvvpWap9gI8+ooqdXdDOzrVCaeO5dKtTu4jQTj1SLDbAXJlG6dS+FSyPFzH/3OaK9mYrq86Oq7n57nWmKxnixa9cQO9osZmija98dCiJuuLKZ8b+uJ1yqeqKqQiOkdyJh5+GoWi+OkRLn7wlwrrdUVWzWwnV9WLl8Yz3Pei3+2siqYqnDWUrFMvWlFcXNfjzsf2ky3VdzlLRlTiIY2Ds0Xu+tF+3rh1wD9/5W+a51aviMpruoBaF9YWLIf+RJhpBWbyZkNTiUREpy8eplC1JmuRA9MFnnh1mr1TuSBgc12Pc1angj9wS922//XLN/Dei9ceM62jSjNqbTtVsHbeS61QtBz6EyGUynpX0xhM22G26FbWO0SxZr2lkGzlspyKw+Q+EoRTiwS7HSBX9j90dVXBdL1ae08ANEWhZDlB4dTCvvJWyfe03TZc31e+SrPK5zOHZjEdj6FUiNm8hel4VF20wppCT9yg7Hg8c2iWVV3RpW0nVxtUVDwkFhNNW1FcxtJF9k/n6YuHFrXa6ouH2HckH4z54EyBiKFhOi6KNz/LiqIQMTQOzhQCJSce0ulPhOlPhAJ/4HzZRlNVBiuFdaAsacv8aGvyylSubk1OZNs+FNL4xQtGjjmOZtXadqpgS77GJu6lVsdRXe+xdJlc0XesKFneMddbCslWJsutOEzuI0E4dUiw2wFiIc0vlnKhJ6bj16dZpKIGtgeZkoPteMRqVLlrzx7iyo19fOOZg4zOlhjpifDeHeuIROqX0LbdppXP6byJ5biM9MRY2wMzeQvTdQmpKr1xAxcYnS0ynTe5ZH1v04UVVVXQcT1uOHeoYeu51tKpVdW4OuboUXJQoyGNmbzJdN4kEdY5OF1AU2DLQKKhEcZC67HaLfOL13cvOu7Ftsxd12N01vfFHJ0tsq5fr1NoWlmTdhawtKLWLlUFayY9opVrbPVeaoXacVyyvrtiPTbH6zf0EosYR11vYel0yvILpDhMEM5kJNjtAAXTqbTy9XNuE6HKh67iq0ohXUXXFArm/PbpYmkJD7w4VZeWAPDModmmlc9qV7Si6ZCMGPQvKHLLl6ygK1orhRWHZgqBKqiqKqlo/TgWqoKtKC71Y250aSiaTjDmhdZj4QWFZQutx2qvcc9UnlVdEbpjBkXTYc9UftHikWpKwP6pDFdF4Es/2MOGgVRdSkAra/L6jX1tK2BpRa1digrWbDFbO++lVli43iOpEFR8po+23sLS6aTlF0hxmCCcyaz8ljQrkEREJxU1SIR04iENu5Kzazse8ZBGIqTTFTUCS6zqFvjuySzJiM5IT5RkRA/SEh58aSI4dzPKp+W4TOfNuq5ofg7rPK7r1nVFg/nCinNXpxidK/Lsa2lG54qct7q+09O8Krj4d6loSKNsO4Eq2Eo3slbGXGs9tth5F1qP1V5jM92sajt7dVUcJ7qijZ29WlmTVsfQCq2sSytrsnAumuly1uw1tnovtUrtONJFX+GveiUv9+5lK4l2dsFrhZXcrU4QhKUjym4HqFpiHZopYDsu8ZgOFBlIhsmbLrqusbYnSjJstLQFrutqS8pnbfHbwdliXS7pdN4kFTEWLX6jYmrg+f/TEAy1qgq2orioqtL0mGvnebGCM11Xg3mupZnikYUpASouFP0vMlsjobqUgFbWpJUxtEor69JOu7RWrvFU5Fk245UsLJ3lYPlVixSHCcKZhwS7HWCkO8pFa3soWy6265Ir+oqe58FgKoKuquxY18NId5SnDsy0tAVeVT53T2aJh7SGJgPTeZNtNVZlC4vfZvKmX/w21Fj8VlvcNNITJRbSKZg2L4xlGMuUAmVkKblxrdjxNDvmhfM8W7CCTm4DyXDdPC/keMUjDSkBNfH+wpSAVtek2TG0Sqvr0uyanEgx2/Gu8VTlWR7PK1lYOsvF8qsWKQ4ThDMLCXY7QK1qNp0rs74nDMxx7uokcyWXvkQ4UM1aKcgC6tXamSKpqI6uKdiOR6Zok4o2qrXXnj3EG7cOHNOTt1V1pnp9uydyJCM6mqrguB7Zkk1fYvHcuFYUl2bGvHCe1/REF4wjvOQcvdoCLs/zyBX9bfRs0SYeVesKuBZfk3n7uMXWZCkcr/hnKTmLzazJiVg6tTLm3eNZVA1cF1QVXAf6kktfQ+HUsJwsvwRBODORYLdD1Kpm+6cyADguXLCmu041W8oW+LVnD3F4rsjf/XAfo7PFwIFgIBXhxsvXN1iVgR8kv35j31HH26o6s2UwyZu3D3LnY/t54XC6zuv3PZesOWpuXCuKy/HGDI3qZMH0u7ctnOdWqW6vH54rMJ4uky2WuWADPLl/hmQ0zHBXuG57/ahrkjz6mrRCs8U/SzG0P96aLDXVoJUxbx9O8nevHGEqW6qbuw9t7Zc8y2XOcrP8EgThzEM+XTpIM7mCS9kC3zOZZdd4lu3DSc5bnQqCA9v12DWeZc9ktuUAYaGSmS3ZgQVUslIIVqvO7JnM8v1dk8RCKuePpHA9UBW/Wcb3d02yvi+26BjaYU20ZTDJhjfEj6kCt8pId5TumMH9L04Q0hR6Y77yHjEUJjJFDs0WuP6coboCrl3jWbYNxdnYHwuC/5CmLHlNqrTa6exk5ywuJdWg1Y55dz1+gKJls7o7SkhXMW2XTMnirscPsLo7esJfFoT2IZZfgiB0Ggl2O8zxcgVbLSKrTTfYNpxs+MOy1GKQWiVzLF1mtmBiOy66ptITC7GqRsmsjuHgdCHIlZ0/1qBgFhYdQ7usiRY770/2zZ645VE1T3eB0u3/PN8s5HjzUZxefD6aYanFPyczZ7HV9Iildsxb3xur+7LXEzMaCjSF5YdYfgmC0Gkk2F0BtFJE1q5ikJHuKN1Rg/tfmiCkqyQjBkZEx3I8JrMlXpstsLOiZI7OFfnpoVkmsyUc1yNRc+xUtoymKjxzcLZuDK2qk83SrvOOzhWZK1pcuqGnofvWUKX71mzBYnTObzZRnQ/bcQkZGmFDw/U8JjMldE1tmI9WxrEcin9aSY9oV8e846W0CJ1jKekzgiAIJwsJdlcIzRRkQZuLQapxiVfxHsNXMKs9hqtCZ7ZscXCmgON49CVCQUAT1hVC8RDTOdPvXFb2fU3bZU3UTsuj6jxv6k+wpidGvmhS7b4Vj4ZwPI/9R/LkTRvX8zg4U6BYdvDwmCv6j6mKQtRQMW2vbj6WMo7lUPzTbHpEuzrmCcsbsfwSBKFTSLC7gmimIKtdxSCjc0XmCr6SOZ4uM1MwyZdtNFVlqCvKcCrMXEXJzJXsSkGdvqhyFzZUv3NZyQ7O3Q51sp2q58J5TkZ1KEIyquMpCsWyHczzWLpIpmhRtv0mGGFdRVUUXA/ylS55lusG83Ei41jIqS7+aSY9ol0d84Tlj1h+CYLQCSTYXUE0U7xVWwwSD2nkyk5QSJYIa0ctBjneuRcqmQsL1GqVzERYJ2polC1n0YKUsuX4ncvCet25T7Y62U7Vs6HopuZ3C4tu0kUTy/EwbZdURA/mVVMgoqtkSjaaohBboF62ut4rpfinlTGvSkWW5FHcjkJHQRAEYWUiwe4KodnirWoxyEvjGe57YQKnJuVAUxTOGk42FIM0c+6FalwqWq/I1SqZAOv6Yrw2e5TOZZrK2t5YoOq1S51sp+q5sOhmJOUri7mSzWjGrCu6KZgOhqbguAol2yWkq2iKguP5AbChKeiaf1yVVtd7JRX/tKtjXpV2FToKgiAIKxMJdlcA1SKr6ZxJKqKTihi4rsdzo8cpsqqk1AbJtovEO9VzH8mW0VUFt6K8PvvaXN25W1WML1rbQ9l2sW2X2aIVpDwMJMPoWn3nsnapk+1WPatFN/c+N85Lo7Oc3wVjc0XOW9PDDecNB2uSCPtrZmgKngdFy8XyXBRFIR7SUBSIhfRA6V6KldhKK/5pR8c8aF9BoiAIgrBykWB3mRPYVs0UsG2X/dN5bNdFV1V6ogZ5064rsqoe77geN5wz1BCU7pnKB8cD3Pf8BLvGM0ymS6RLNo7roakKXRGdwa5IQ1e0ZhXj+c5lJmt6Y8fsoNYudfKUqZ4K818k6jsHA35BXFXpthyPVNRAURQ/pcN20St5jMnKl5ilFNWtxOKfk90xr50FiYIgCMLKRYLdZU7VxmsqW8J2vEpKgI7luEzlGm28aouyVFUlFa0v6qktygJ4dM8UeydzWI5HNKRhqAqW6zFTsMiUbUKayttet7q+qKQJxfjoncsWVxvbpU62U/WsVRFHuqLgwaquKC8czjCWLtWp4guVbsdx0FSVwQVK94kU1a3E4p+T2TFvudiwCYIgCMsLCXY7jOt6jM76gefobJF1/Xqd6pQtWRycLuC4Ln2JcI2Nl0YorjKdK/u2VSXftqqVoizbcdk94Qe6iZCK6XiYtoOmqCRCKjnT5ZWJHOmiyYgbDRTjnWcPMp4pU7AcYobGcCrM3iONjRFaVRvbpU6247wLVUQVF4qQiOhsjYQaVMRmle5NiFz8AAAo90lEQVTlZCW20pC5EwRBEBZDgt0OUi2k2T+V4aoIfOkHe9gwkKorpMmVbYrWsWy8NN/Gq+z/AW+lKOvnr81SNG3AYyrv4Ab77w6qAhFdoWB67J/O0xUNsXcqR9RQefpguq6D2uic30FtMdWsVbWxXerkyT5vg4pYk7uwmIrYrNK93KzEVhIyd4IgCMJiyKd+h6jbAk+FwIOuqNFQSJOI6ERDGmXLJR5yyZlOEGQmKo/HQhqJiL+UrRSSPTs6h+261JgABLgeFCyPkOahKL7ieCRXZjpv+pZidV3RSmRKFn3x0Bmjmi1FRWxGYT6Roroz3W5rJdqwCYIgCO1Hgt0O0MoWeDJssK43xq6xDM8fLmI7Lp4HigJ6xUx/40CKZNhXsuoKyV700w6qaKrCWUPzhWRdUR27JtBVIcjHdSuP2Q50RX3f3CM5v5HEUCrc0BVtIlPG8yBqLN7p6nRjqSri8RTmpRbVid3WyrRhEwRBENpPY0sioe20Ukgz0h0lGdGZzvtpA4qioGkKiqJgO27gNbqYWuW5HpbjYtoOluPiufU+ATO5+fa0Kv5OvOf5/6oLjvNH6aE0eA0Er4aCt1it2mlJVUUcS5fwvPo5qaqIWwYTS1IRqykP563uYq5gsf9InrmCxfkjXYtaZ1V3CZ4/nKY7ZrCpP0F3zN8luOOx/eyZzJ7Qta4kWp07QRAE4fRHlN0O0MoWuOt6HJwuAL4Xq6GrKHh4KFi2i+m4HJzJ47penfVYumDRlwgxlTWxHBdDVelLhEgXrEA1nsyWUVUCGVdVfMXY8/z/VEBTYTLrF6P1J8JMKyzaKCIR0emLhylYi+REnIa00lRiKTRbVCd2W42sRBs2QRAEoX1IsNsBWtkCf+bQLJPZMqu7IpRtl6Ll4lbSGJIRg7CuMJEp88yhWV6/sS+wKpvMlnBcj2TUb2ZgOR5HcmadVdlwV5iQpqIaYNoetuvhuYACuqYQ0hVcF4a7wsRDOv2JMP2JEOPpMjMFM2gUMZiKMJwKA8oZVfxTW3S2fyoDEUgXrZPWzKGZojqx21qclWjDJgiCILSHMycyWUY0FNLU/G5hIc3zh9NYjstgKooK5MpO0FQiEdZw8S3LpvMmANmyxcGZAo7j0ZcINeTWTudM36qsbLFz+zBfSO5mPFOkN2Zgu+B4HpqioKswW7RY1RVl5/ZhdF0Nxnzx+u5Fm1WcjOKfVoqslkNB1pbBJBveEOep/VNMvHCId188wiUbBuqaHSx1zM0cK3ZbgiAIgnBsOhrsfu5zn+Nf//Vf2bVrF9FolCuuuILPf/7zbNu27ajPufPOO/mN3/iNusfC4TClUin42fM8PvGJT/C3f/u3zM3NceWVV3L77bezdevWtl1LK7SyBd4XD2FoKnN5s0bZ9VAVhWxJJayrGJVCteo5iuaxrMpU36qsZBMKaXzo6o184b6XmS1axEI6YV2hbHtkizYRXeM3r9pIKOQXnVXHvGcqz6quCN0xg6LpsGcqf1KKf1opslouBVkL7eP+79OjPH0we8JjbvZYsdsSBEEQhGPT0QK1hx9+mJtvvpkf//jH3H///ViWxc6dO8nn88d8XiqVYmxsLPjvwIEDdb+/7bbb+Ku/+iv+5m/+hieeeIJ4PM4NN9xQFxB3mtpCmnTRLxSrboHXFtLsWNvDYDLM4XSJXNlGAXTVN03IlW0Op0sMpcLsWNsDQCLsOyeULcdvR2s5FEy77udYSCMR9oOfX798Ax+9YRvDqQhFy2Emb1G0HIZTUX7/hm38+uUbFh3zyS7+aaXIaikFWa7rcWimwK7xDIdmCrju0QrtljbmrqgfaFbt44425udG0+iqQipioKsKz42e2PW1s1DuVNDKurRjDQVBEITTn47KPffee2/dz3feeSeDg4M8/fTTvOENbzjq8xRFYXh4eNHfeZ7H//yf/5M//uM/5h3veAcAX/3qVxkaGuJb3/oW73vf+07eBZwg1UKag0ey/PzxQ9z8pi2s60/WqaOqqrCuL8aLY1lyZRtVUYIiMtfzMDSNdb3x4DnJiMG6vhh7JnPsmcxVvBM8QEEBUlGDjb2xOhXw8s19zObKPLpnmkzZIhU2uGpLH5dvbmzNeiq6kR2ryApouSCrHSpwK/Zx1TEfnClg2y77p/NBKkpP1CBv2ku+vpVst7USlXxBEARh5bGs9jbT6TQAvb29xzwul8uxfv16XNdlx44d/Nmf/RnnnnsuAPv27WN8fJzrrrsuOL6rq4vLLruMxx9/fNFgt1wuUy6Xg58zmQwAlmVhWVbD8SebwYQe/Os4Nk6NocHobJFiyWQ4qTObd/0iMvxGD7qq0BPTKZTKHDySZaQnymBcZ0NPhN1jc4QUFycQvzw0BVzHZkNPhMG4jmVZvDqV42tPHGQ2b3LBSJJYSKNgOuyeyDD1WIlfu2wdmwYSDWMeThqAHzAvHHOrjM4W2T+VYSQV8oPG2m5kwEgqxL7JDAeP+Ipms8eO9ETrrm84FSEWClEwHV46PMt4On/U63NdXxWtBvSruiJ1AePCMSuePwGK53efWzjm5w5NM5crYjseyYiGoelYjstcvoSmKjx7cJqDRwZbvj6A9T0RbrxsDQ+8NMGLhzNBG+fzV3dx7dmDrO+JnJL7uBWCdcmV/cYpEQ3HdXlpdKZhXZa6hq1SnaPlNldCc8j6rXxkDVc+p3oNm30dxVu499khXNfl7W9/O3Nzczz66KNHPe7xxx/nlVde4YILLiCdTvMXf/EXPPLII7zwwgusWbOGH/3oR1x55ZUcPnyYVatWBc/75V/+ZRRF4Rvf+EbDOT/5yU/yqU99quHxu+++m1hMKroFQRAEQRCWG4VCgV/5lV8hnU6TSqWOetyyCXY//OEPc8899/Doo4+yZs2app9nWRZnn30273//+/nMZz6zpGB3MWV37dq1HDly5JiTd7KwLIv777+f66+/HsOoLzJ6+sAMf/TN50mE9aAlcC25kk2ubPOn7zqPi9f3Mjpb5M/veYlXj+TJFBu/8aSiBpv64/zBW88G4Es/2ENX1DjqudNFi5vftCVQEdvB6Gyx6XG0MuZWjq1eX6OK6Cvd45kSPfFQoCIuHLPiOWwo7WV/ZDOeotWdezxTbHoNh1PRto15uVC9R1+bLeK4XsWz2bfHy5VsNFVhTU/0lN+jx3ofCssfWb+Vj6zhyudUr2Emk6G/v/+4we6ySGP4yEc+wne/+10eeeSRlgJdAMMwuOiii9izZw9AkMs7MTFRF+xOTExw4YUXLnqOcDhMOBxe9NztXizX9RidLQIwmbNZ11+f/5qKR9B0nZzpEQ4pdQ4LnueRMz10XScVj2AYBgWnwKszJRxPZU1vnLzpBvmh8ZDKbMFm30yJguM7OuRtj6FwCE9pzOkMhxUKWZOSS1vnYV2/zoaBFM8fTrM1Emq4xtGMyfkjXazr93Mzmz1292S2petzXY8Hdk1zJG+zdTAVnDse1dlUycN98OVptg53s64/WTeO6pJ5ioaLWjeOguM1vYYLz3us66s2EWl2zMslbze4Rx3oS/itpx1A1SAZ05jOmaf8Hj3e+1BYOZyKz22hvcgarnxO1Ro2+xoddWPwPI+PfOQjfPOb3+T73/8+GzdubPkcjuPw3HPPBYHtxo0bGR4e5sEHHwyOyWQyPPHEE1x++eUnbewngz2TWW5/aC9f+oEfqH/pB3u4/aG9ddX2ybDBut4YuqYwkzcp2w6u51G2HWbyJrqusrY3RjLsL3jVegzFYzxjMpktcyTn/zueMUHxKJgOuZJdZ1u1GKfKtqpaZNUb94OzbMnCdl2yJYtXJnN1RVatHNvq9bXSoGHhOHIl/zVyJbthHK2sYSvX1+qYlwvVezRsqEe1xzuV92gz70NBEARh5dLRYPfmm2/ma1/7GnfffTfJZJLx8XHGx8cpFuf/MN9444384R/+YfDzpz/9ab73ve/x6quv8swzz/Brv/ZrHDhwgA996EOA/8fylltu4bOf/Szf+c53eO6557jxxhtZvXo173znO0/1JR6VZm2rRrqjXLS2h8FkhIFkmJLlMlswKVkuA8kwg4kwO9b1BNZSibCOpipMZsrkyxa6phA1NHRNIV+2mMyU0VSFRFhfVrZVrdiaNXts7fW5rkumaHEkVyZTtHBdt+H65hs0LB44RUMaZdsJGjQ0ax/X6hq2Mhetjnk5sNAer5aF9njtvkdbsY8TBEEQViYdTWO4/fbbAbjmmmvqHr/jjju46aabADh48CCqOh+Tz87O8lu/9VuMj4/T09PDxRdfzI9+9CPOOeec4JiPfexj5PN5/tN/+k/Mzc1x1VVXce+99xKJRNp+Tc3Qim1VrbXUdK7Mmp4omqrguB7Zkk1fIlyn9CXCOpqi+EX8C7d9FQUPD70S7C4326pWbM2aObZ6fS+NZ7jvhQkcz6Nqw6YpCmcNJ+uubykNGpq1j2tlDVuZi5XYVKJqj/fabIGZvFnJ2VWxHJdcyUbXKkp3xGjrPdrq+1AQBEFYmXT0L2AztXEPPfRQ3c9f/OIX+eIXv3jM5yiKwqc//Wk+/elPn8jw2kbD1nOtvdSCree1vbFA6av6jBZMm7CuccGabnaeW+8z6gFhQyMVMVCAku1iei6qohALaXieRkjXgpdceO6JTImwrnH+SFfDuU8Fqqqwtrc5B4xWjkWhMs/K/M8LaGjjvCBftraN88JxjPRE+Tkw0nP04LzZNWzl+pY65k5SVbrLtottu8wWLfJlG01VGUiG0TV1UaX7ZN+jrb4PBUEQhJXJ8pF7ziDmt54XD0CiIY2JTKlu67lZpa9oOfQnQigKlCyHrqiBooLnQtlxiRgaffEQRctp+dwrjapy57geN5wzRK7sYDouIU0lEdbYM5U/aoOG3RM5khF9gQJ7Ykp3O+a53WNuB/VKt8ma3thxx9yOuVvK+1AQBEFYeUiw2wGWuvXcjNIXD+n0J8L0J0KMpcvMFkxs23djGEpFGE6FAWVJ515p1Cp3qqqSitanqC+m3G0ZTPLm7YPc+dh+XjicxnJcDE1lQ1+c91yy5oSV7nbMc7vH3A6OrnQfXa092XO3ElNABEEQhNaRT/EO0LD1XPO7E916rj33Jeu7F1UzT+W2tut6HVOMl6Lc7ZnM8v1dk8TDGr+wqRdNVXFcl2zJ5vu7JlnfF2sIxGptq0Zni6zr10+pkrqUMS8HOr2j0M73oSAIgrB8kGC3AywsuhlJhQDfkmk0Y55Q0U3tufdM5VnVFaE7ZlA0HfZM5U9p0dmeyWyg3JVsh4iusXkgwQ3nnZpc4FaVu9qCpbOGkg35r4sVLFWvcf9Uhqsivm3VhoHUKbvGpYx5OdHJHYV2vg8FQRCE5UNHrcfOZJq1rTrRcx/Puqpd1Fo6dccMNvUn6I6dWkunVm2rWvWsXQ62VSvRZ3c50c73oSAIgrA8EGW3gzRjW3Wi5+7EFvFCS6dqEJaMGCTC+ilTG1u1rWol7WG52FZJkdWJ0873oSAIgtB5RNntMFXbKji6bdWJnHttb4ztwynW9sZO2R/v5aQ2tqJyt9Kta7lc43LpgrfSaef7UBAEQegs8hdQOOmcKrWx2eK3ZlXuVjxrd09ml4WiuhJ9dgVBEAThVCLBrnDSORWWTq0WvzVTCNVK2sNysa1abl3wBEEQBGG5IWkMAuCrpIdmCuwaz3BopoDrHr+73dFotTCsVdpZ/NZs2kO7r7EdYxYEQRCEMxFRdoWTbhHWTrXxVBS/NZP2sNxsqzrtWSsIgiAIyxUJds9wqirpTN5kVVeEWChKwbR5/nCaw+nikpXBhR2yJjIlwrrG+SNH75DVDK0Uhp2If2szaQ+117h/KgOReduqE7nGpXI6dsETBEEQhBNFgt0zmHarpO1QG5eb1ZbYVgmCIAjC8kaC3TOYU6GSnmy1cbkUhtVSta36OWJbJQiCIAjLDSlQO4OZV0l1PM8jU7Q4kiuTKVp4nkc0pFG2nWXVkGA5FYYJgiAIgrD8EWX3DKaqkh6eKzCeLjNTMLFdF11V6Y2FGO4KL7uGBGK1JQiCIAhCKyyfKEY46Ryv6cJId5TumMH9L04Q0hSSUQND07Ecl4lMkUOzBa4/Z2jZqaTtKn47FTTbCEMQBEEQhJODBLunKU3biVUzARbk7Po/eyzXMGwlWm2dbIs3QRAEQRCOjwS7pyHN2omNzhWZK1pcuqGHsXSZ2YJJrmyjqypDqQjDqTCzBeuEbbzaxUqy2mqXxZsgCIIgCMdGgt3TjFbsxKoFapv6E6zpiZEt2ZiOS0hTSUZ0HM9j/5H8sipQW4mcikYYgiAIgiAsjrgxnGa0YidWa+OlKAqpqEF/IkwqaqAoSkdsvE5HWlkTQRAEQRBOLhLsnmbU2oktRq2dmNh4nRpaWRNBEARBEE4uEuyeZtSqtYtRq9ZWbbx64yFemcyRLVnYrku2ZPHKZE5svE4SrayJIAiCIAgnFwl2TzNaVWurNl7nre5irmCx/0ieuYLF+SNdRy2acl2PQzMFdo1nODRTwHW9hmOEeURBFwRBEITOIVLSacZSmi60YuMl9lmtI40wBEEQBKFzSLB7GrKUpgvN2HiJfdbSWcmNMARBEARhJSPB7mnKyW66IPZZJ85KbIQhCIIgCCsdCXZPY05m04VW7LNWSqOHTrCSGmEIgiAIwumAFKgJTSH2WYIgCIIgrEQk2BWaQuyzBEEQBEFYiUiwKzSF2GcJgiAIgrASkWBXaAppQCEIgiAIwkpEgl2haZbSgEIQBEEQBKGTSIKlAPjWYs1YYol9liAIgiAIKwkJdoWWu6KJfZYgCIIgCCsFCXbPcNrdFa1ZxVgQBEEQBKEdSLB7BtPurmitKsaCIAiCIAgnGylQO4NppStaq1QV4+cPp+mOGWzqT9AdM3j+cJo7HtvPnsnsyboMQRAEQRCEoyLB7hlMu7qiLVSMkxEDTVVIRgy2DiaYyZt874UJXNc7/skEQRAEQRBOAAl2z2Da1RWtnYqxIAiCIAhCK0iwewbTrq5o7VKMF+K6HodmCuwaz3BopiBKsSAIgiAIDUiB2hlMtSva4XSRVyZ9JTYa0iiaDmPp0pK7otUqxsmI0fD7pSrGtUjxmyAIgiAIzSDK7hlOO7qitUsxriLFb4IgCIIgNIsou8JJ74rWLsUY2m+XJgiCIAjC6YUEuwJw8ruiVRXjaqrBRKZEWNc4f6SLnecuPdWgleI36fImCIIgCIIEu0LbONmKMdQWvy2eAhENaUxkSidc/CYIgiAIwumBBLtCWznZivGpKH4TBEEQBOH0QSKCFYTreidVJT1V5z6ZVIvfnj+cJhHW61IZqsVv5490Lbn4TRAEQRCE04uOujF87nOf49JLLyWZTDI4OMg73/lOXn755WM+52//9m+5+uqr6enpoaenh+uuu44nn3yy7pibbroJRVHq/nvLW97SzktpO3sms9z+0F6+eP9u/urBV/ji/bu5/aG9J8V5oJ3nPtlUi9964yFemcyRLVnYrku2ZPHKZO6Eit8EQRAEQTj96Giw+/DDD3PzzTfz4x//mPvvvx/Lsti5cyf5fP6oz3nooYd4//vfzw9+8AMef/xx1q5dy86dOxkdHa077i1veQtjY2PBf//0T//U7stpG+202lqJNl7tsEsTBEEQBOH0pKNpDPfee2/dz3feeSeDg4M8/fTTvOENb1j0Of/4j/9Y9/Pf/d3f8X//7//lwQcf5MYbbwweD4fDDA8Pn/xBn2LaabV1Kmy82pUe0Y7iN0EQBEEQTj+WVc5uOp0GoLe3t+nnFAoFLMtqeM5DDz3E4OAgPT09vPnNb+azn/0sfX19i56jXC5TLpeDnzOZDACWZWFZVquX0TLV11jstUZni+yfyjCSCqHiQk2PBgUYSYXYN5nh4JEsIz2t5am289wAr07lePClSfYdyQddzjb2x7n27EE2DSRaPt9iDCcNwC9Ucxwbxzkpp22ZY62hsDKQNVzZyPqtfGQNVz6neg2bfR3FW9jiqkO4rsvb3/525ubmePTRR5t+3m//9m9z33338cILLxCJRAD4+te/TiwWY+PGjezdu5ePf/zjJBIJHn/8cTRNazjHJz/5ST71qU81PH733XcTi4lXqyAIgiAIwnKjUCjwK7/yK6TTaVKp1FGPWzbB7oc//GHuueceHn30UdasWdPUc/78z/+c2267jYceeogLLrjgqMe9+uqrbN68mQceeIBrr7224feLKbtr167lyJEjx5y8k4VlWdx///1cf/31GEa9ndbobJEv/WAPXVGDRKRRiM+VbNJFi5vftGVJym47zu26Hl95dB8vjmXYPBBvcEzYO5Xn3NUpPnjlxtMm7eBYayisDGQNVzayfisfWcOVz6lew0wmQ39//3GD3WWRxvCRj3yE7373uzzyyCNNB7p/8Rd/wZ//+Z/zwAMPHDPQBdi0aRP9/f3s2bNn0WA3HA4TDocbHjcM45S+4RZ7vXX9OhsGUjx/OM3WSKghcBzNmJw/0sW6/mTLgWO7zn1opsCeI0UGu2Kg6tR9m1JgsCvGK1NFJvP2adfl7FTfM8LJR9ZwZSPrt/KRNVz5nKo1bPY1OurG4HkeH/nIR/jmN7/J97//fTZu3NjU82677TY+85nPcO+993LJJZcc9/jXXnuN6elpVq1adaJDPuW002qrXeee73K2+HepaEijbDvS5UwQBEEQhLbT0WD35ptv5mtf+xp33303yWSS8fFxxsfHKRaLwTE33ngjf/iHfxj8/PnPf55bb72Vv//7v2fDhg3Bc3K5HAC5XI6PfvSj/PjHP2b//v08+OCDvOMd72DLli3ccMMNp/waTwbttNpqx7lru5wthnQ5EwRBEAThVNHRaOP2228H4Jprrql7/I477uCmm24C4ODBg6iqWvcc0zT5pV/6pbrnfOITn+CTn/wkmqbx7LPPctdddzE3N8fq1avZuXMnn/nMZxZNVVgptNNq62SfW7qcCYIgCIKwXOhosNtMbdxDDz1U9/P+/fuPeXw0GuW+++47gVEtX1RVaVuO68k8dzU94nC6yCuTOVZ1RYiGNIqmw1i6JF3OBEEQBEE4ZXQ0jUE4fZEuZ4IgCIIgLAckaVJoG9LlTBAEQRCETiPBrtBW2pl6IQiCIAiCcDwkjUEQBEEQBEE4bZFgVxAEQRAEQThtkWBXEARBEARBOG2RYFcQBEEQBEE4bZFgVxAEQRAEQThtkWBXEARBEARBOG2RYFcQBEEQBEE4bZFgVxAEQRAEQThtkWBXEARBEARBOG2RYFcQBEEQBEE4bZFgVxAEQRAEQThtkWBXEARBEARBOG2RYFcQBEEQBEE4bdE7PYDliOd5AGQymVPyepZlUSgUyGQyGIZxSl5TOLnIGq58ZA1XNrJ+Kx9Zw5XPqV7DapxWjduOhgS7i5DNZgFYu3Zth0ciCIIgCIIgHItsNktXV9dRf694xwuHz0Bc1+Xw4cMkk0kURWn762UyGdauXcuhQ4dIpVJtfz3h5CNruPKRNVzZyPqtfGQNVz6neg09zyObzbJ69WpU9eiZuaLsLoKqqqxZs+aUv24qlZI3+ApH1nDlI2u4spH1W/nIGq58TuUaHkvRrSIFaoIgCIIgCMJpiwS7giAIgiAIwmmLBLvLgHA4zCc+8QnC4XCnhyIsEVnDlY+s4cpG1m/lI2u48lmuaygFaoIgCIIgCMJpiyi7giAIgiAIwmmLBLuCIAiCIAjCaYsEu4IgCIIgCMJpiwS7giAIgiAIwmmLBLsd5JOf/CSKotT9t3379k4PS2iB0dFRfu3Xfo2+vj6i0Sjnn38+Tz31VKeHJTTJhg0bGt6DiqJw8803d3poQpM4jsOtt97Kxo0biUajbN68mc985jNI7fXKIZvNcsstt7B+/Xqi0ShXXHEFP/nJTzo9LOEoPPLII7ztbW9j9erVKIrCt771rbrfe57Hn/zJn7Bq1Sqi0SjXXXcdr7zySmcGW0GC3Q5z7rnnMjY2Fvz36KOPdnpIQpPMzs5y5ZVXYhgG99xzDy+++CJ/+Zd/SU9PT6eHJjTJT37yk7r33/333w/Ae97zng6PTGiWz3/+89x+++389V//NS+99BKf//znue222/jf//t/d3poQpN86EMf4v777+cf/uEfeO6559i5cyfXXXcdo6OjnR6asAj5fJ7Xve51fOlLX1r097fddht/9Vd/xd/8zd/wxBNPEI/HueGGGyiVSqd4pPOI9VgH+eQnP8m3vvUtfvazn3V6KMIS+IM/+AMee+wxfvjDH3Z6KMJJ4pZbbuG73/0ur7zyCoqidHo4QhP84i/+IkNDQ3zlK18JHnv3u99NNBrla1/7WgdHJjRDsVgkmUzy7W9/m//4H/9j8PjFF1/MW9/6Vj772c92cHTC8VAUhW9+85u8853vBHxVd/Xq1fy3//bf+P3f/30A0uk0Q0ND3Hnnnbzvfe/ryDhF2e0wr7zyCqtXr2bTpk386q/+KgcPHuz0kIQm+c53vsMll1zCe97zHgYHB7nooov427/9204PS1gipmnyta99jQ9+8IMS6K4grrjiCh588EF2794NwM9//nMeffRR3vrWt3Z4ZEIz2LaN4zhEIpG6x6PRqOx0rkD27dvH+Pg41113XfBYV1cXl112GY8//njHxiXBbge57LLLuPPOO7n33nu5/fbb2bdvH1dffTXZbLbTQxOa4NVXX+X2229n69at3HfffXz4wx/md37nd7jrrrs6PTRhCXzrW99ibm6Om266qdNDEVrgD/7gD3jf+97H9u3bMQyDiy66iFtuuYVf/dVf7fTQhCZIJpNcfvnlfOYzn+Hw4cM4jsPXvvY1Hn/8ccbGxjo9PKFFxsfHARgaGqp7fGhoKPhdJ9A79spCnfJwwQUXcNlll7F+/Xr++Z//md/8zd/s4MiEZnBdl0suuYQ/+7M/A+Ciiy7i+eef52/+5m/4wAc+0OHRCa3yla98hbe+9a2sXr2600MRWuCf//mf+cd//Efuvvtuzj33XH72s59xyy23sHr1ankfrhD+4R/+gQ9+8IOMjIygaRo7duzg/e9/P08//XSnhyacJoiyu4zo7u7mrLPOYs+ePZ0eitAEq1at4pxzzql77Oyzz5ZUlBXIgQMHeOCBB/jQhz7U6aEILfLRj340UHfPP/98fv3Xf53f+73f43Of+1ynhyY0yebNm3n44YfJ5XIcOnSIJ598Esuy2LRpU6eHJrTI8PAwABMTE3WPT0xMBL/rBBLsLiNyuRx79+5l1apVnR6K0ARXXnklL7/8ct1ju3fvZv369R0akbBU7rjjDgYHB+sKZISVQaFQQFXr/5Rpmobruh0akbBU4vE4q1atYnZ2lvvuu493vOMdnR6S0CIbN25keHiYBx98MHgsk8nwxBNPcPnll3dsXJLG0EF+//d/n7e97W2sX7+ew4cP84lPfAJN03j/+9/f6aEJTfB7v/d7XHHFFfzZn/0Zv/zLv8yTTz7Jl7/8Zb785S93emhCC7iuyx133MEHPvABdF0+Elcab3vb2/jTP/1T1q1bx7nnnstPf/pT/sf/+B988IMf7PTQhCa577778DyPbdu2sWfPHj760Y+yfft2fuM3fqPTQxMWIZfL1e1A79u3j5/97Gf09vaybt06brnlFj772c+ydetWNm7cyK233srq1asDx4aO4Akd473vfa+3atUqLxQKeSMjI9573/teb8+ePZ0eltAC//Zv/+add955Xjgc9rZv3+59+ctf7vSQhBa57777PMB7+eWXOz0UYQlkMhnvd3/3d71169Z5kUjE27Rpk/dHf/RHXrlc7vTQhCb5xje+4W3atMkLhULe8PCwd/PNN3tzc3OdHpZwFH7wgx94QMN/H/jABzzP8zzXdb1bb73VGxoa8sLhsHfttdd2/PNVfHYFQRAEQRCE0xbJ2RUEQRAEQRBOWyTYFQRBEARBEE5bJNgVBEEQBEEQTlsk2BUEQRAEQRBOWyTYFQRBEARBEE5bJNgVBEEQBEEQTlsk2BUEQRAEQRBOWyTYFQRBEARBEE5bJNgVBEE4zbnmmmu45ZZbmj7+pptu6mxrT0EQhJOIBLuCIAgdYGpqig9/+MOsW7eOcDjM8PAwN9xwA4899hgAiqLwrW99qyNj+1//639x5513duS1BUEQTjZ6pwcgCIJwJvLud78b0zS566672LRpExMTEzz44INMT093emh0dXV1egiCIAgnDVF2BUEQTjFzc3P88Ic/5POf/zxvetObWL9+Pa9//ev5wz/8Q97+9rezYcMGAN71rnehKErw82LpBbfccgvXXHNN8HM+n+fGG28kkUiwatUq/vIv/7Lu+E9/+tOcd955DWO68MILufXWWxd9nWuuuYbf+Z3f4WMf+xi9vb0MDw/zyU9+su75u3bt4qqrriISiXDOOefwwAMPdFSdFgRBqCLBriAIwikmkUiQSCT41re+Rblcbvj9T37yEwDuuOMOxsbGgp+b4aMf/SgPP/ww3/72t/ne977HQw89xDPPPBP8/oMf/CAvvfRS3Tl/+tOf8uyzz/Ibv/EbRz3vXXfdRTwe54knnuC2227j05/+NPfffz8AjuPwzne+k1gsxhNPPMGXv/xl/uiP/qjpMQuCILQTCXYFQRBOMbquc+edd3LXXXfR3d3NlVdeycc//nGeffZZAAYGBgDo7u5meHg4+Pl45HI5vvKVr/AXf/EXXHvttZx//vncdddd2LYdHLNmzRpuuOEG7rjjjuCxO+64gze+8Y1s2rTpqOe+4IIL+MQnPsHWrVu58cYbueSSS3jwwQcBuP/++9m7dy9f/epXed3rXsdVV13Fn/7pn7Y8L4IgCO1Agl1BEIQO8O53v5vDhw/zne98h7e85S089NBD7Nix44QKw/bu3Ytpmlx22WXBY729vWzbtq3uuN/6rd/in/7pnyiVSpimyd13380HP/jBY577ggsuqPt51apVTE5OAvDyyy+zdu1ahoeHg9+//vWvX/J1CIIgnEwk2BUEQegQkUiE66+/nltvvZUf/ehH3HTTTXziE5846vGqquJ5Xt1jlmW1/Lpve9vbCIfDfPOb3+Tf/u3fsCyLX/qlXzrmcwzDqPtZURRc1235tQVBEE41EuwKgiAsE8455xzy+TzgB5eO49T9fmBggLGxsbrHfvaznwX/f/PmzRiGwRNPPBE8Njs7y+7du+ueo+s6H/jAB7jjjju44447eN/73kc0Gl3yuLdt28ahQ4eYmJgIHmslz1gQBKGdiPWYIAjCKWZ6epr3vOc9fPCDH+SCCy4gmUzy1FNPcdttt/GOd7wDgA0bNvDggw9y5ZVXEg6H6enp4c1vfjNf+MIX+OpXv8rll1/O1772NZ5//nkuuugiwC98+83f/E0++tGP0tfXx+DgIH/0R3+EqjbqGh/60Ic4++yzAQJv36Vy/fXXs3nzZj7wgQ9w2223kc1m+eM//mPAV4AFQRA6iSi7giAIp5hEIsFll13GF7/4Rd7whjdw3nnnceutt/Jbv/Vb/PVf/zUAf/mXf8n999/P2rVrg2D2hhtu4NZbb+VjH/sYl156KdlslhtvvLHu3F/4whe4+uqredvb3sZ1113HVVddxcUXX9wwhq1bt3LFFVewffv2uhzfpaBpGt/61rfI5XJceumlfOhDHwrcGCKRyAmdWxAE4URRvIUJYIIgCMJpj+d5bN26ld/+7d/mv/7X/3rSz//YY49x1VVXsWfPHjZv3nzSzy8IgtAsksYgCIJwhjE1NcXXv/51xsfHj+mt2wrf/OY3SSQSbN26lT179vC7v/u7XHnllRLoCoLQcSTYFQRBOMMYHBykv7+fL3/5y/T09JyUc2azWf77f//vHDx4kP7+fq677rqG7m2CIAidQNIYBEEQBEEQhNMWKVATBEEQBEEQTlsk2BUEQRAEQRBOWyTYFQRBEARBEE5bJNgVBEEQBEEQTlsk2BUEQRAEQRBOWyTYFQRBEARBEE5bJNgVBEEQBEEQTlsk2BUEQRAEQRBOW/5/tpy7mppvDXsAAAAASUVORK5CYII=",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Fit a 2nd-degree polynomial (quadratic)\n",
+ "coeffs = np.polyfit(df['studying'], df['GPA'], deg=2)\n",
+ "poly_eq = np.poly1d(coeffs)\n",
+ "\n",
+ "# Generate predicted GPA values\n",
+ "x_vals = np.linspace(df['studying'].min(), df['studying'].max(), 100)\n",
+ "y_vals = poly_eq(x_vals)\n",
+ "\n",
+ "# Plot\n",
+ "plt.figure(figsize=(8, 6))\n",
+ "plt.scatter(df['studying'], df['GPA'], alpha=0.5)\n",
+ "plt.plot(x_vals, y_vals, color='green', label='Quadratic Fit')\n",
+ "plt.title('Study Hours vs GPA with Polynomial Fit')\n",
+ "plt.xlabel('Studying')\n",
+ "plt.ylabel('GPA')\n",
+ "plt.legend()\n",
+ "plt.grid(True)\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e910a5cc-a2d5-4410-a31a-99ee24cc4377",
+ "metadata": {},
+ "source": [
+ "### Third Research Question: \n",
+ "## How do students with high stress levels differ in lifestyle habits compared to those with low stress?\n",
+ "\n",
+ "### Methods\n",
+ "\n",
+ "*Explain how you will approach this research question below. Consider the following:* \n",
+ " - *Which aspects of the dataset will you use?* \n",
+ " - *How will you reorganize/store the data?* \n",
+ " - *What data science tools/functions will you use and why?*\n",
+ "\n",
+ "\n",
+ "For this question, we will be focusing on `stress` and categorizing `studying`, `sleeping`, `working_out`, `socializing`, `extracurriculars` bewteen low, moderate, and high stress. By doing so, I'll be capturing the possible relation between stress and lifestyle behaviors. Once I split the data into three groups, i'll comute and compare the mean and standard deviation of each lifestyle behaviors.\n",
+ "\n",
+ "I'll be using boxplots or bar charts and t-tests. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f37165a2-e308-4ee4-a256-333e1ced29f8",
+ "metadata": {},
+ "source": [
+ "### Results "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "525417bd-73de-4c97-86b5-0aeb0d0bba7f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " High Low Moderate\n",
+ "studying 8.385034 5.474411 6.969585\n",
+ "sleeping 7.046453 8.063973 7.947626\n",
+ "working_out 3.960933 5.581818 4.336795\n",
+ "socializing 2.627794 2.890909 2.739614\n",
+ "extracurriculars 1.979786 1.988889 2.006380\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAJOCAYAAACqS2TfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhv5JREFUeJzs3XdcleX/x/H3kQ2C5kAlN25Ny21Z7q1pZbnKmZVpbs1RzpyZK9Ny5J65Wu6dmmbu1Fy5R24RUDzA9fvDH+cLoQXI4XDg9Xw8fNS5zj0+HC5u7jfXfV+3xRhjBAAAAAAAEl0aRxcAAAAAAEBKRegGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAPyrs2fPymKxaNasWTHa16xZo+eff16enp6yWCy6c+eOQ+p7ki1btshisWjLli2OLuU/tW7dWmnTpo3TshaLRYMGDbJrPRaLRZ06dbLrPuBYs2bNksVi0dmzZx1dCgCkeIRuAEjFok68f//993itd/PmTb311lvy8vLSV199pblz58rHxydRa1uwYIHGjx+fqNt8GlF/fBgzZsxj3x80aJAsFotu3LiRpHXt3LlTgwYNSnZ/9IiLs2fPqk2bNgoMDJSnp6eyZs2qV155RQMHDoyx3OTJk2P90ccZVK5cWcWKFXN0GQAAB3N1dAEAgOQtV65cun//vtzc3Gxte/bs0b179zR06FBVr17dLvtdsGCB/vjjD3Xt2tUu23dW9+/fl6vr/35979y5U4MHD1br1q2VPn16xxUWT6dOnVKZMmXk5eWltm3bKnfu3Lpy5Yr27dunUaNGafDgwbZlJ0+erEyZMql169aOKxgAgAQidAMA/pXFYpGnp2eMtmvXrkmSU4W8lOKf3wtnNW7cOAUHB+vAgQPKlStXjPei+ldChISEJPpVFwAAPA0uLwcA/Kt/3tNduXJltWrVSpJUpkwZWSyWGCOQu3fvVu3atZUuXTp5e3urUqVK2rFjR4xt3rt3T127dlXu3Lnl4eEhf39/1ahRQ/v27bPt4+eff9a5c+dksVhksViUO3duBQcHy8fHR126dIlV58WLF+Xi4qIRI0b869cTl/oSyy+//KI333xTOXPmlIeHh3LkyKFu3brp/v37j13+r7/+Uq1ateTj46OAgAANGTJExpgYy0S/p3vQoEHq1auXJClPnjy2zyrqPt3169erYsWKSp8+vdKmTauCBQuqX79+ca5//vz5KliwoDw9PVWqVClt27bN9t7mzZtlsVi0YsWKWOstWLBAFotFv/766xO3ffr0aWXPnj1W4JYkf39/2//nzp1bR44c0datW21fX+XKlSX97/aIrVu36sMPP5S/v7+yZ89uW3f16tV6+eWX5ePjI19fX9WrV09HjhyJsa+rV6+qTZs2yp49uzw8PJQtWzY1bNgwxr3Ov//+u2rVqqVMmTLJy8tLefLkUdu2bf/z84ur/6pzzJgxslgsOnfuXKx1+/btK3d3d92+fdvWlpR9HADw3xjpBgDES//+/VWwYEFNnTpVQ4YMUZ48eRQYGChJ2rRpk+rUqaNSpUpp4MCBSpMmjWbOnKmqVavql19+UdmyZSVJH3zwgZYuXapOnTqpSJEiunnzprZv365jx46pZMmS6t+/v+7evauLFy9q3LhxkqS0adMqbdq0eu2117R48WKNHTtWLi4utroWLlwoY4xatGjxxNrjWt+/CQ0Nfex926GhobHavvvuO4WGhqpDhw7KmDGjfvvtN3355Ze6ePGivvvuuxjLRkREqHbt2ipfvrxGjx6tNWvWaODAgQoPD9eQIUMeW8vrr7+uEydOaOHChRo3bpwyZcokScqcObOOHDmi+vXrq3jx4hoyZIg8PDx06tSpOIevrVu3avHixercubM8PDw0efJk1a5dW7/99puKFSumypUrK0eOHJo/f75ee+21GOvOnz9fgYGBqlChwhO3nytXLm3YsEGbNm1S1apVn7jc+PHj9dFHHylt2rTq37+/JClLliwxlvnwww+VOXNmDRgwQCEhIZKkuXPnqlWrVqpVq5ZGjRql0NBQTZkyRRUrVtT+/fuVO3duSdIbb7yhI0eO6KOPPlLu3Ll17do1rV+/XufPn7e9rlmzpjJnzqw+ffooffr0Onv2rJYvXx6nz/G/xKXOt956S71799aSJUtsf2SJsmTJEtWsWVPPPPOMpMTp4wCARGYAAKnWzJkzjSSzZ8+eJy5z5swZI8nMnDnzX9eLjIw0+fPnN7Vq1TKRkZG29tDQUJMnTx5To0YNW1u6dOlMx44d/7W2evXqmVy5csVqX7t2rZFkVq9eHaO9ePHiplKlSrbXmzdvNpLM5s2b413f40R9Dv/17/r16zG2/U8jRowwFovFnDt3ztbWqlUrI8l89NFHtrbIyEhTr1494+7uHmObkszAgQNtrz///HMjyZw5cybGfsaNGxernriK+lp+//13W9u5c+eMp6enee2112xtffv2NR4eHubOnTu2tmvXrhlXV9cYNT7OH3/8Yby8vIwk8/zzz5suXbqYlStXmpCQkFjLFi1aNMb3NkpUP6xYsaIJDw+3td+7d8+kT5/etG/fPsbyV69eNenSpbO1375920gyn3/++RPrXLFixX/+jDxJpUqVTNGiRZ/4flzrNMaYChUqmFKlSsVY7rfffjOSzJw5c4wx8evjUZ/dP/sNACDxcXk5ACBRHDhwQCdPnlTz5s118+ZN3bhxQzdu3FBISIiqVaumbdu2KTIyUtKje8F3796ty5cvx3s/1atXV0BAgObPn29r++OPP3To0CG9/fbbiVLfv3nvvfe0fv36WP/eeeedWMt6eXnZ/j8kJEQ3btzQiy++KGOM9u/fH2v56I/pinps18OHD7Vhw4b/rOufou63//777+P0df1ThQoVVKpUKdvrnDlzqmHDhlq7dq0iIiIkSS1btlRYWJiWLl1qW27x4sUKDw//1++FJBUtWlQHDhzQ22+/rbNnz2rChAlq1KiRsmTJomnTpsWr1vbt28e46mH9+vW6c+eOmjVrZvs+37hxQy4uLipXrpw2b94s6dH3x93dXVu2bIlxeXZ0UZ/jTz/9JKvVGq+6/ktc65SkJk2aaO/evTp9+rStbfHixfLw8FDDhg0lJV4fBwAkLi4vBwAkipMnT0qS7X7vx7l7966eeeYZjR49Wq1atVKOHDlUqlQp1a1bVy1btlTevHn/cz9p0qRRixYtNGXKFIWGhsrb21vz58+Xp6en3nzzzUSp79/kz5//sTO2b9++PVbb+fPnNWDAAP3www+xQt3du3djfV3//PoLFCggSQl6lnKTJk00ffp0vfvuu+rTp4+qVaum119/XY0bN1aaNP/9N/f8+fPHaitQoIBCQ0N1/fp1Zc2aVYUKFVKZMmU0f/58tWvXTtKjS8vLly+vfPny/ec+ChQooLlz5yoiIkJHjx7VTz/9pNGjR+u9995Tnjx54jwzfp48eWK8jvpeP+mydT8/P0mSh4eHRo0apR49eihLliwqX7686tevr5YtWypr1qySpEqVKumNN97Q4MGDNW7cOFWuXFmNGjVS8+bN5eHhEaf6niSudUrSm2++qe7du2vx4sXq16+fjDH67rvvVKdOHdtyidXHAQCJi9ANAEgUUSNon3/+uZ5//vnHLpM2bVpJ0ltvvaWXX35ZK1as0Lp16/T5559r1KhRWr58uerUqfOf+2rZsqU+//xzrVy5Us2aNdOCBQtUv359pUuXLlHqSwwRERGqUaOGbt26pY8//liFChWSj4+PLl26pNatW9t9xNHLy0vbtm3T5s2b9fPPP2vNmjVavHixqlatqnXr1sUYGX4aLVu2VJcuXXTx4kWFhYVp165dmjRpUry24eLioueee07PPfecKlSooCpVqmj+/PlxDt3RryiQ/ve9njt3ri08Rxf9kWtdu3ZVgwYNtHLlSq1du1affvqpRowYoU2bNumFF16QxWLR0qVLtWvXLv34449au3at2rZtqy+++EK7du16qj4TnzoDAgL08ssva8mSJerXr5927dql8+fPa9SoUbG2l1R9HAAQN4RuAECiiJpMzc/PL05hKVu2bPrwww/14Ycf6tq1aypZsqSGDRtmC90Wi+WJ6xYrVkwvvPCC5s+fr+zZs+v8+fP68ssvE7W+p3X48GGdOHFCs2fPVsuWLW3t69evf+zykZGR+uuvv2yj25J04sQJSbJN+vU4//Y5pUmTRtWqVVO1atU0duxYDR8+XP3799fmzZv/8zOIGjWN7sSJE/L29lbmzJltbU2bNlX37t21cOFC2/PcmzRp8q/b/jelS5eWJF25csXW9m9f4+NEfa/9/f3j9L0ODAxUjx491KNHD508eVLPP/+8vvjiC82bN8+2TPny5VW+fHkNGzZMCxYsUIsWLbRo0SK9++678artaeps0qSJPvzwQx0/flyLFy+Wt7e3GjRoEGt7SdXHAQBxwz3dAIBEUapUKQUGBmrMmDEKDg6O9f7169clPRoB/uel1f7+/goICFBYWJitzcfHJ9Zy0b3zzjtat26dxo8fr4wZM/7nCHlc60ssUSPJJtojv4wxmjBhwhPXiT5CbIzRpEmT5ObmpmrVqj1xnahnUt+5cydG+61bt2ItGzX6Gf1zfpJff/3V9gg3Sbpw4YK+//571axZM8YoeaZMmVSnTh3NmzdP8+fPV+3atW2zqP+bX3755bH3SK9atUqSVLBgQVubj49PrK/v39SqVUt+fn4aPnz4Y/cR9b0ODQ3VgwcPYrwXGBgoX19f22d0+/btWI9ti8/nmBh1RnnjjTfk4uKihQsX6rvvvlP9+vVjPJM8qfs4ACBuGOkGAOjbb7/VmjVrYrU/7nnYT5ImTRpNnz5dderUUdGiRdWmTRs9++yzunTpkjZv3iw/Pz/9+OOPunfvnrJnz67GjRurRIkSSps2rTZs2KA9e/boiy++sG2vVKlSWrx4sbp3764yZcoobdq0MUb1mjdvrt69e2vFihXq0KGD3NzcEqW+xFKoUCEFBgaqZ8+eunTpkvz8/LRs2bInTtjl6empNWvWqFWrVipXrpxWr16tn3/+Wf369YsxsvxPUZOd9e/fX02bNpWbm5saNGigIUOGaNu2bapXr55y5cqla9euafLkycqePbsqVqz4n/UXK1ZMtWrVivHIMEkaPHhwrGVbtmypxo0bS5KGDh36n9uWpFGjRmnv3r16/fXXVbx4cUnSvn37NGfOHGXIkEFdu3aN8TVOmTJFn332mfLlyyd/f/9/fcyYn5+fpkyZonfeeUclS5ZU06ZNlTlzZp0/f14///yzXnrpJU2aNEknTpxQtWrV9NZbb6lIkSJydXXVihUr9Pfff6tp06aSpNmzZ2vy5Ml67bXXFBgYqHv37mnatGny8/NT3bp1//PrvH79uj777LNY7Xny5LHNTfBfdUbx9/dXlSpVNHbsWN27dy/WFQVJ3ccBAHHkyKnTAQCOFfXYoCf9u3DhQpwfGRZl//795vXXXzcZM2Y0Hh4eJleuXOatt94yGzduNMYYExYWZnr16mVKlChhfH19jY+PjylRooSZPHlyjO0EBweb5s2bm/Tp0xtJj318WN26dY0ks3Pnzljv/fORYXGt70miPocnPV5q4MCBsR7RdfToUVO9enWTNm1akylTJtO+fXtz8ODBWJ9nq1atjI+Pjzl9+rSpWbOm8fb2NlmyZDEDBw40ERERMfajfzwyzBhjhg4dap599lmTJk0a22OgNm7caBo2bGgCAgKMu7u7CQgIMM2aNTMnTpz4168zah8dO3Y08+bNM/nz5zceHh7mhRdeiPVZRgkLCzPPPPOMSZcunbl///5/bt8YY3bs2GE6duxoihUrZtKlS2fc3NxMzpw5TevWrc3p06djLHv16lVTr1494+vrayTZHh/2X4+827x5s6lVq5ZJly6d8fT0NIGBgaZ169a2R6HduHHDdOzY0RQqVMj4+PiYdOnSmXLlypklS5bYtrFv3z7TrFkzkzNnTuPh4WH8/f1N/fr1YzxO7UkqVar0xJ+tatWqxbnO6KZNm2YkGV9f3yd+1nHp4zwyDACSjsWYf1wzBQCAk3jttdd0+PBhnTp1ytGlpGrh4eEKCAhQgwYNNGPGDEeXAwBAssI93QAAp3TlyhX9/PPPj30+NpLWypUrdf369RgTxgEAgEcY6QYAOJUzZ85ox44dmj59uvbs2aPTp08/9nFLsL/du3fr0KFDGjp0qDJlyhRj4jUAAPAII90AAKeydetWvfPOOzpz5oxmz55N4HagKVOmqEOHDvL399ecOXMcXQ4AAMkSI90AAAAAANgJI90AAAAAANgJoRsAAAAAADtxdXQBTyMyMlKXL1+Wr6+vLBaLo8sBAAAAAKQSxhjdu3dPAQEBSpPmyePZTh26L1++rBw5cji6DAAAAABAKnXhwgVlz579ie87dej29fWV9OiL9PPzc3A1qYPVatW6detUs2ZNubm5ObocwG7o60gN6OdIDejnSC3o60kvKChIOXLksOXSJ3Hq0B11Sbmfnx+hO4lYrVZ5e3vLz8+PH2akaPR1pAb0c6QG9HOkFvR1x/mvW52ZSA0AAAAAADshdAMAAAAAYCeEbgAAAAAA7MSp7+kGAAAAgOQqIiJCVqs1SfZltVrl6uqqBw8eKCIiIkn2mdK5ubnJxcXlqbdD6AYAAACARGSM0dWrV3Xnzp0k3WfWrFl14cKF/5zYC3GXPn16Zc2a9ak+U0I3AAAAACSiqMDt7+8vb2/vJAnBkZGRCg4OVtq0aZUmDXcRPy1jjEJDQ3Xt2jVJUrZs2RK8LUI3AAAAACSSiIgIW+DOmDFjku03MjJSDx8+lKenJ6E7kXh5eUmSrl27Jn9//wRfas53AwAAAAASSdQ93N7e3g6uBIkh6vv4NPfmE7oBAAAAIJFxX3XKkBjfR0I3AAAAAAB2QugGAAAAAMTJrFmzlD59+nit07p1azVq1Mgu9TgDJlIDAAAAADur2GBrku5v+4+V4r1O69atdefOHa1cuTJG+5YtW1SlShXdvn1bTZo0Ud26dROpytSB0A0AAAAAiBMvLy/brN6IGy4vBwAAAADEyeMuL//ss8/k7+8vX19fvfvuu+rTp4+ef/75WOuOGTNG2bJlU8aMGdWxY8enmhHcmRC6AQAAAAAJMn/+fA0bNkyjRo3S3r17lTNnTk2ZMiXWcps3b9bp06e1efNmzZ49W7NmzdKsWbOSvmAH4PJyAAAAAIAk6aefflLatGljtEVERDxx+S+//FLt2rVTmzZtJEkDBgzQunXrFBwcHGO5Z555RpMmTZKLi4sKFSqkevXqaePGjWrfvn3ifxHJDCPdAAAAAABJUpUqVXTgwIEY/6ZPn/7E5Y8fP66yZcvGaPvna0kqWrSoXFxcbK+zZcuma9euJV7hyRgj3QAAAAAASZKPj4/y5csXo+3ixYtPvV03N7cYry0WiyIjI596u86AkW4AAAAAQIIULFhQe/bsidH2z9epHSPdDpTUz+qLLiHP7QMAAACA6D766CO1b99epUuX1osvvqjFixfr0KFDyps3r6NLSzYI3QAAAACABGnRooX++usv9ezZUw8ePNBbb72l1q1b67fffnN0ackGoRsAAAAA7MzeV5pGRkYqKChIfn5+SpMmYXcRP+kRXpUrV5YxRpLUunVrtW7dOsb7n376qT799FPb6xo1asS4L/xx2x0/fnyCanRGhG4AAAAAQIKEhobq66+/Vq1ateTi4qKFCxdqw4YNWr9+vaNLSzYI3QAAAACABLFYLFq1apWGDRumBw8eqGDBglq2bJmqV6/u6NKSDUI3AAAAACBBvLy8tGHDBkeXkazxyDAAAAAAAOyE0A0AAAAAgJ0QugEAAAAAsBNCNwAAAAAAdkLoBgAAAADATgjdAAAAAADYCaEbAAAAAAA74TndAAAAAGBnf50+nST7uXXzpiQpb2BgvNdt3bq17ty5o5UrVyZyVakbI90AAAAAANiJQ0N3RESEPv30U+XJk0deXl4KDAzU0KFDZYxxZFkAAAAAgGi2bt2qsmXLysPDQ9myZVOfPn0UHh4uSfrpp5+UPn16RURESJIOHDggi8WiPn362NZ/99139fbbbzukdkdz6OXlo0aN0pQpUzR79mwVLVpUv//+u9q0aaN06dKpc+fOjiwNQArwNJdxRf3SOHvmjFxcXOK9fkIu6QIAAEiOLl26pLp166p169aaM2eO/vzzT7Vv316enp4aNGiQXn75Zd27d0/79+9X6dKltXXrVmXKlElbtmyxbWPr1q36+OOPHfdFOJBDR7p37typhg0bql69esqdO7caN26smjVr6rfffnNkWQAAAACA/zd58mTlyJFDkyZNUqFChdSoUSMNHjxYX3zxhSIjI5UuXTo9//zztpC9ZcsWdevWTfv371dwcLAuXbqkU6dOqVKlSo79QhzEoSPdL774oqZOnaoTJ06oQIECOnjwoLZv366xY8c+dvmwsDCFhYXZXgcFBUmSrFarrFZrktScmNzdHHcZfUI/r6j1nPHzRuoTNVr9NOsmdBv8jMAZcExHakA/R1KzWq0yxigyMlKRkZEOqyMh+zbG2GqP7ujRoypfvrztfUmqUKGCgoODdf78eeXMmVOvvPKKNm/erG7duumXX37RsGHDtGTJEm3btk23bt1SQECAAgMDHfqZJERkZKSMMbJarbGufozrccWhobtPnz4KCgpSoUKF5OLiooiICA0bNkwtWrR47PIjRozQ4MGDY7WvW7dO3t7e9i430XVp5bh9r1q16qnWX79+fSJVAiRvx0+cSNB6R48dS+RKAPvhmI7UgH6OpOLq6qqsWbMqODhYDx8+dFgdUQOU8WG1WhUeHh5r3fDwcFmt1hjtwcHBkqR79+4pKChIZcqU0bfffqudO3fK1dVVAQEBqlChgtatW6c7d+6oQoUKCarJ0R4+fKj79+9r27ZttnvYo4SGhsZpGw4N3UuWLNH8+fO1YMECFS1aVAcOHFDXrl0VEBCgVq1iJ9K+ffuqe/futtdBQUHKkSOHatasKT8/v6QsPVHUarLDYfteu/ilBK1ntVq1fv161ahRQ25ubolcFZC4zp45k+B1IyIidPzECRUsUCBB93TnzpMnwfsGkgrHdKQG9HMktQcPHujChQtKmzatPD09be1Rj/JKKgnJR25ubnJ1dY217nPPPafly5fL19dXFotFknTo0CH5+vqqcOHCSpMmjWrVqqXg4GBNmzZNlSpVkp+fn2rUqKHRo0fr9u3b6tatm1NmtgcPHsjLy0uvvPJKjO+nFPc/bDg0dPfq1Ut9+vRR06ZNJT36Zp47d04jRox4bOj28PCQh4dHrHY3NzenPIg+tFoctu+n/byc9TNH6pKQsPy4bSRkO/x8wJlwTEdqQD9HUomIiJDFYlGaNGmUJo3jptBKyL4tFouCgoJ06NChGO3vv/++JkyYoC5duqhTp046fvy4Bg0apO7du8vV9VGkzJgxo4oXL64FCxZo0qRJSpMmjSpXrqymTZvKarWqSpUqDv08EipNmjSyWCyPPYbE9Zji0NAdGhoa64N3cXFxuuv8AeCffnYr6LB917Med9i+AQCAc9uyZYteeOGFGG3t2rXTqlWr1KtXL5UoUUIZMmRQu3bt9Mknn8RYrlKlSjpw4IAqV64sScqQIYOKFCmiv//+WwULOu7cyNEcGrobNGigYcOGKWfOnCpatKj279+vsWPHqm3bto4sCwAAAAASlb0fJxoZGamgoCD5+fkleER51qxZmjVr1hPf/6+nTI0fP17jx4+P0XbgwIEE1ZKSODR0f/nll/r000/14Ycf6tq1awoICND777+vAQMGOLIsAAAAAAAShUNDt6+v72P/GgIAAAAAQErgfHeyAwAAAADgJAjdAAAAAADYCaEbAAAAAAA7IXQDAAAAAGAnhG4AAAAAAOyE0A0AAAAAgJ0QugEAAAAAsBNCNwAAAADA7rZs2SKLxaI7d+44upQk5eroAgAAAAAgpfvZrWCS7q+e9Xi812ndurVmz56t999/X19//XWM9zp27KjJkyerVatWmjVrViJVaT+DBg3SypUrdeDAAUeXwkg3AAAAAOCRHDlyaNGiRbp//76t7cGDB1qwYIFy5szpwMoeefjwoaNLiDdCNwAAAABAklSyZEnlyJFDy5cvt7UtX75cOXPm1AsvvGBrCwsLU+fOneXv7y9PT09VrFhRe/bsibGtVatWqUCBAvLy8lKVKlV09uzZWPvbvn27Xn75ZXl5eSlHjhzq3LmzQkJCbO/nzp1bQ4cOVcuWLeXn56f33ntPkvTxxx+rQIEC8vb2Vt68efXpp5/KarVKkmbNmqXBgwfr4MGDslgsslgsttH5O3fu6N1331XmzJnl5+enqlWr6uDBg4n18T0WoRsAAAAAYNO2bVvNnDnT9vrbb79VmzZtYizTu3dvLVu2TLNnz9a+ffuUL18+1apVS7du3ZIkXbhwQa+//roaNGigAwcO6N1331WfPn1ibOP06dOqXbu23njjDR06dEiLFy/W9u3b1alTpxjLjRkzRiVKlND+/fv16aefSpJ8fX01a9YsHT16VBMmTNC0adM0btw4SVKTJk3Uo0cPFS1aVFeuXNGVK1fUpEkTSdKbb76pa9euafXq1dq7d69KliypatWq2eq2B0I3AAAAAMDm7bff1vbt23Xu3DmdO3dOO3bs0Ntvv217PyQkRFOmTNHnn3+uOnXqqEiRIpo2bZq8vLw0Y8YMSdKUKVMUGBioL774QgULFlSLFi3UunXrGPsZMWKEWrRooa5duyp//vx68cUXNXHiRM2ZM0cPHjywLVe1alX16NFDgYGBCgwMlCR98sknevHFF5U7d241aNBAPXv21JIlSyRJXl5eSps2rVxdXZU1a1ZlzZpVXl5e2r59u3777Td99913Kl26tPLnz68xY8Yoffr0Wrp0qd0+TyZSAwAAAADYZM6cWfXq1dOsWbNkjFG9evWUKVMm2/unT5+W1WrVSy+9ZGtzc3NT2bJldezYMUnSsWPHVK5cuRjbrVChQozXBw8e1KFDhzR//nxbmzFGkZGROnPmjAoXLixJKl26dKwaFy9erIkTJ+r06dMKDg5WeHi4/Pz8/vXrOnjwoIKDg5UxY8YY7ffv39fp06f/dd2nQegGAAAAAMTQtm1b22XeX331lV32ERwcrPfff1+dO3eO9V70Sdt8fHxivPfrr7+qRYsWGjx4sGrVqqV06dJp0aJF+uKLL/5zf9myZdOWLVtivZc+ffoEfQ1xQegGAAAAAMRQu3ZtPXz4UBaLRbVq1YrxXmBgoNzd3bVjxw7lypVLkmS1WrVnzx517dpVklS4cGH98MMPMdbbtWtXjNclS5bU0aNHlS9fvnjVtnPnTuXKlUv9+/e3tZ07dy7GMu7u7oqIiIi1v6tXr8rV1VW5c+eO1z6fBvd0AwAAAABicHFx0bFjx3T06FG5uLjEeM/Hx0cdOnRQr169tGbNGh09elTt27dXaGio2rVrJ0n64IMPdPLkSfXq1UvHjx/XggULYj3f++OPP9bOnTvVqVMnHThwQCdPntT3338fayK1f8qfP7/Onz+vRYsW6fTp05o4caJWrFgRY5ncuXPrzJkzOnDggG7cuKGwsDBVr15dFSpUUKNGjbRu3TqdPXtWO3fuVP/+/fX7778//Yf2BIRuAAAAAEAsfn5+T7xPeuTIkXrjjTf0zjvvqGTJkjp16pTWrl2rZ555RtKjy8OXLVumlStXqkSJEvr66681fPjwGNsoXry4tm7dqhMnTujll1/WCy+8oAEDBiggIOBf63r11VfVrVs3derUSc8//7x27txpm9U8yhtvvKHatWurSpUqypw5sxYuXCiLxaJVq1bplVdeUZs2bVSgQAE1bdpU586dU5YsWZ7ik/p3FmOMsdvW7SwoKEjp0qXT3bt3//Om+eSoYoOtDtv39h8rJWg9q9WqVatWqW7dunJzc0vkqoDE9ddTTIgRERGho8eOqUjhwrH+uhsXxwrVTfC+n1Y963GH7RvOhWM6UgP6OZLagwcPdObMGeXJk0eenp5Jtt/IyEgFBQXJz89PadIwtppY/u37Gdc8yncDAAAAAAA7IXQDAAAAAGAnhG4AAAAAAOyE0A0AAAAAgJ0QugEAAAAgkTnxfNWIJjG+j4RuAAAAAEgkUbPkh4aGOrgSJIao7+PTPP3ANbGKAQAAAIDUzsXFRenTp9e1a9ckSd7e3rJYLHbfb2RkpB4+fKgHDx7wyLBEYIxRaGiorl27pvTp0yfoEbJRCN0AAAAAkIiyZs0qSbbgnRSMMbp//768vLySJOSnFunTp7d9PxOK0A0AAAAAichisShbtmzy9/eX1WpNkn1arVZt27ZNr7zyylNdCo3/cXNze6oR7iiEbgAAAACwAxcXl0QJbXHdV3h4uDw9PQndyQwX+wMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnTg0dOfOnVsWiyXWv44dOzqyLAAAAAAAEoWrI3e+Z88eRURE2F7/8ccfqlGjht58800HVgUAAAAAQOJwaOjOnDlzjNcjR45UYGCgKlWq5KCKACS2ig22Omzfc8Znd9i+AQAAACkZ3dP98OFDzZs3T23btpXFYnF0OQAAAAAAPDWHjnRHt3LlSt25c0etW7d+4jJhYWEKCwuzvQ4KCpIkWa1WWa1We5eY6NzdjMP2ndDPK2o9Z/y84RiO7OfRb19J6LoJ3Ybx8kjwvp8WP5+IK47pSA3o50gt6OtJL66ftcUY47gz4mhq1aold3d3/fjjj09cZtCgQRo8eHCs9gULFsjb29ue5QEAAAAAYBMaGqrmzZvr7t278vPze+JyySJ0nzt3Tnnz5tXy5cvVsGHDJy73uJHuHDly6MaNG//6RSZXtZrscNi+1y5+KUHrWa1WrV+/XjVq1JCbm1vC9p2xVILWSwy1bu512L5TK0f2829GBiR43YiICB0/cUIFCxSQi4tLvNc/Xrpxgvf9tOjniKvEOKYDyR39HKkFfT3pBQUFKVOmTP8ZupPF5eUzZ86Uv7+/6tWr96/LeXh4yMMj9iWbbm5uTtmxHlodd+/6035eT/OZW+6H/fdCduKM/cTZObKfJyQsP24bCdkO/RzOxFl/jwLxQT9HakFfTzpx/ZwdPpFaZGSkZs6cqVatWsnVNVn8DQAAAAAAgETh8NC9YcMGnT9/Xm3btnV0KQAAAAAAJCqHDy3XrFlTyeC2cgAAAAAAEp3DR7oBAAAAAEipCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB24vDQfenSJb399tvKmDGjvLy89Nxzz+n33393dFkAAAAAADw1V0fu/Pbt23rppZdUpUoVrV69WpkzZ9bJkyf1zDPPOLIsAAAAAAAShUND96hRo5QjRw7NnDnT1pYnTx4HVgQAAAAAQOJx6OXlP/zwg0qXLq0333xT/v7+euGFFzRt2jRHlgQAAAAAQKJx6Ej3X3/9pSlTpqh79+7q16+f9uzZo86dO8vd3V2tWrWKtXxYWJjCwsJsr4OCgiRJVqtVVqs1yepOLO5uxmH7TujnFbXe03zexssjwes+LWfsJ87Okf08IiLiqddN6Dbo53AGiXFMB5I7+jlSC/p60ovrZ20xxjjsjNjd3V2lS5fWzp07bW2dO3fWnj179Ouvv8ZaftCgQRo8eHCs9gULFsjb29uutQIAAAAAECU0NFTNmzfX3bt35efn98TlHDrSnS1bNhUpUiRGW+HChbVs2bLHLt+3b191797d9jooKEg5cuRQzZo1//WLTK5qNdnhsH2vXfxSgtazWq1av369atSoITc3t4TtO2OpBK2XGGrd3OuwfadWjuzn34wMSPC6EREROn7ihAoWKCAXF5d4r3+8dOME7/tp0c8RV4lxTAeSO/o5Ugv6etKLuvL6v8Q7dIeEhMjHxyfeBT3OSy+9pOPHj8doO3HihHLlyvXY5T08POThEfuSTTc3N6fsWA+tFoft+2k/r6f5zC33w/57ITtxxn7i7BzZzxMSlh+3jYRsh34OZ+Ksv0eB+KCfI7WgryeduH7O8Z5ILUuWLGrbtq22b98e76L+qVu3btq1a5eGDx+uU6dOacGCBZo6dao6duz41NsGAAAAAMDR4h26582bp1u3bqlq1aoqUKCARo4cqcuXLydo52XKlNGKFSu0cOFCFStWTEOHDtX48ePVokWLBG0PAAAAAIDkJN6hu1GjRlq5cqUuXbqkDz74QAsWLFCuXLlUv359LV++XOHh4fHaXv369XX48GE9ePBAx44dU/v27eNbEgAAAAAAyVKCn9OdOXNmde/eXYcOHdLYsWO1YcMGNW7cWAEBARowYIBCQ0MTs04AAAAAAJxOgmcv//vvvzV79mzNmjVL586dU+PGjdWuXTtdvHhRo0aN0q5du7Ru3brErBUAAAAAAKcS79C9fPlyzZw5U2vXrlWRIkX04Ycf6u2331b69Olty7z44osqXLhwYtYJAAAAAIDTiXfobtOmjZo2baodO3aoTJkyj10mICBA/fv3f+riAAAAAABwZvEO3VeuXJG3t/e/LuPl5aWBAwcmuCgAAAAAAFKCeIfu6IH7wYMHevjwYYz3/fz8nr4qAAAAAABSgHjPXh4SEqJOnTrJ399fPj4+euaZZ2L8AwAAAAAAj8Q7dPfu3VubNm3SlClT5OHhoenTp2vw4MEKCAjQnDlz7FEjAAAAAABOKd6Xl//444+aM2eOKleurDZt2ujll19Wvnz5lCtXLs2fP18tWrSwR50AAAAAADideI9037p1S3nz5pX06P7tW7duSZIqVqyobdu2JW51AAAAAAA4sXiH7rx58+rMmTOSpEKFCmnJkiWSHo2AR39WNwAAAAAAqV28Q3ebNm108OBBSVKfPn301VdfydPTU926dVOvXr0SvUAAAAAAAJxVvO/p7tatm+3/q1evrj///FN79+5Vvnz5VLx48UQtDgAAAAAAZxbv0P1PuXLlUq5cuRKjFgAAAAAAUpR4he7IyEjNmjVLy5cv19mzZ2WxWJQnTx41btxY77zzjiwWi73qBAAAAADA6cQ5dBtj9Oqrr2rVqlUqUaKEnnvuORljdOzYMbVu3VrLly/XypUr7VgqAAB4nL9On07QehEREZKks2fOyMXFJUHbyBsYmKD1AABILeIcumfNmqVt27Zp48aNqlKlSoz3Nm3apEaNGmnOnDlq2bJlohcJAAAAAIAzivPs5QsXLlS/fv1iBW5Jqlq1qvr06aP58+cnanEAAAAAADizOIfuQ4cOqXbt2k98v06dOrZHiQEAAAAAgHiE7lu3bilLlixPfD9Lliy6fft2ohQFAAAAAEBKEOfQHRERIVfXJ98C7uLiovDw8EQpCgAAAACAlCBes5e3bt1aHh4ej30/LCws0YqC/TlyplsAAAAASC3iHLpbtWr1n8swczkAAAAAAP8T59A9c+ZMe9YBAAAAAECKE+d7ugEAAAAAQPwQugEAAAAAsBNCNwAAAAAAdkLoBgAAAADATuIVuq1Wq9q2baszZ87Yqx4AAAAAAFKMeIVuNzc3LVu2zF61AAAAAACQosT78vJGjRpp5cqVdigFAAAAAICUJc7P6Y6SP39+DRkyRDt27FCpUqXk4+MT4/3OnTsnWnEAAAAAADizeIfuGTNmKH369Nq7d6/27t0b4z2LxULoBgAAAADg/8U7dDOJGgAAAAAAcZPgR4Y9fPhQx48fV3h4eGLWAwAAAABAihHv0B0aGqp27drJ29tbRYsW1fnz5yVJH330kUaOHJnoBQIAAAAA4KziHbr79u2rgwcPasuWLfL09LS1V69eXYsXL07U4gAAAAAAcGbxvqd75cqVWrx4scqXLy+LxWJrL1q0qE6fPp2oxQEAAAAA4MziPdJ9/fp1+fv7x2oPCQmJEcIBAAAAAEjt4h26S5curZ9//tn2OipoT58+XRUqVEi8ygAAAAAAcHLxvrx8+PDhqlOnjo4eParw8HBNmDBBR48e1c6dO7V161Z71AgAAAAAgFOK90h3xYoVdfDgQYWHh+u5557TunXr5O/vr19//VWlSpWK17YGDRoki8US41+hQoXiWxIAAAAAAMlSvEa6g4KCtHv3bj18+FDDhw9X5syZn7qAokWLasOGDf8ryDXeg+8AAAAAACRLcU64Bw4cUN26dfX333/LGCNfX18tWbJEtWrVeroCXF2VNWvWp9oGAAAAAADJUZxD98cff6w8efJo2bJl8vT01NChQ9WpUyedPHnyqQo4efKkAgIC5OnpqQoVKmjEiBHKmTPnY5cNCwtTWFiY7XVQUJAkyWq1ymq1PlUdjuDuZhy274iIiKdaL6HrS5Lx8kjwuk/LGfuJs3PGfh593YRug36OpOTIYzr9DcldVB+lryKlo68nvbh+1hZjTJzOiDNlyqR169apZMmSkqQ7d+4oQ4YMunPnjvz8/BJU5OrVqxUcHKyCBQvqypUrGjx4sC5duqQ//vhDvr6+sZYfNGiQBg8eHKt9wYIF8vb2TlANAAAAAADEV2hoqJo3b667d+/+ayaOc+hOkyaNrl69GuMZ3b6+vjp06JDy5Mnz9BXrUZDPlSuXxo4dq3bt2sV6/3Ej3Tly5NCNGzcSHPwdqVaTHQ7b9zcjAxK0XkREhI6fOKGCBQrIxcUlQds4XrpxgtZLDLVu7nXYvlMrZ+zn0tP3dfo5ktLZM2cStF5iHNNzJ9I5AGAvVqtV69evV40aNeTm5ubocgC7oa8nvaCgIGXKlOk/Q3e8Zi07evSorl69anttjNGxY8d07949W1vx4sUTUO4j6dOnV4ECBXTq1KnHvu/h4SEPj9iXbLq5uTllx3potThs3wk9uYq+fkK3Ybkf9t8L2Ykz9hNn58z9PGobCdkO/RxJyZHHdPobnIWzni8C8UVfTzpx/ZzjFbqrVaumfw6M169fXxaLRcYYWSyWp7ovLDg4WKdPn9Y777yT4G0AAAAAAJBcxDl0n0ngpWv/pmfPnmrQoIFy5cqly5cva+DAgXJxcVGzZs0SfV8AAAAAACS1OIfuXLlyJfrOL168qGbNmunmzZvKnDmzKlasqF27diXK878BAAAAAHC0eF1entgWLVrkyN0DAAAAAGBXaRxdAAAAAAAAKRWhGwAAAAAAOyF0AwAAAABgJ/EO3ffv31doaKjt9blz5zR+/HitW7cuUQsDAAAAAMDZxTt0N2zYUHPmzJEk3blzR+XKldMXX3yhhg0basqUKYleIAAAAAAAzireoXvfvn16+eWXJUlLly5VlixZdO7cOc2ZM0cTJ05M9AIBAAAAAHBW8Q7doaGh8vX1lSStW7dOr7/+utKkSaPy5cvr3LlziV4gAAAAAADOKt6hO1++fFq5cqUuXLigtWvXqmbNmpKka9euyc/PL9ELBAAAAADAWcU7dA8YMEA9e/ZU7ty5Va5cOVWoUEHSo1HvF154IdELBAAAAADAWbnGd4XGjRurYsWKunLlikqUKGFrr1atml577bVELQ4AAAAAAGcWr9BttVrl5eWlAwcOxBrVLlu2bKIWBgAAAACAs4vX5eVubm7KmTOnIiIi7FUPAAAAAAApRrzv6e7fv7/69eunW7du2aMeAAAAAABSjHjf0z1p0iSdOnVKAQEBypUrl3x8fGK8v2/fvkQrDgAAAAAAZxbv0N2oUSM7lAEAAAAAQMoT79A9cOBAe9QBAAAAAECKE+97ugEAAAAAQNzEe6Q7TZo0slgsT3yfmc0BAAAAAHgk3qF7xYoVMV5brVbt379fs2fP1uDBgxOtMAAAAAAAnF28Q3fDhg1jtTVu3FhFixbV4sWL1a5du0QpDAAAAAAAZ5do93SXL19eGzduTKzNAQAAAADg9BIldN+/f18TJ07Us88+mxibAwAAAAAgRYj35eXPPPNMjInUjDG6d++evL29NW/evEQtDgAAAAAAZxbv0D1+/PgYr9OkSaPMmTOrXLlyeuaZZxKrLgAAAAAAnF68Q3erVq3sUQcAAAAAAClOvEO3JN25c0czZszQsWPHJElFixZV27ZtlS5dukQtDgAAAAAAZxbvidR+//13BQYGaty4cbp165Zu3bqlsWPHKjAwUPv27bNHjQAAAAAAOKV4j3R369ZNr776qqZNmyZX10erh4eH691331XXrl21bdu2RC8SAAAkTz+7FXTYvutZjzts3wAAxFW8Q/fvv/8eI3BLkqurq3r37q3SpUsnanEAAAAAADizeF9e7ufnp/Pnz8dqv3Dhgnx9fROlKAAAAAAAUoJ4h+4mTZqoXbt2Wrx4sS5cuKALFy5o0aJFevfdd9WsWTN71AgAAAAAgFOK9+XlY8aMkcViUcuWLRUeHi5JcnNzU4cOHTRy5MhELxAAAAAAAGcV79Dt7u6uCRMmaMSIETp9+rQkKTAwUN7e3oleHAAAAAAAzixBz+mWJG9vbz333HOJWQsAAAAAAClKnEP366+/Hqflli9fnuBiAAAAAABISeIcutOlSxfj9YIFC9SgQQNmLAcAAAAA4AniHLpnzpwZ4/XSpUs1evRo5c2bN9GLAgAAAAAgJYj3I8MAAAAAAEDcELoBAAAAALATQjcAAAAAAHYS53u6f/jhhxivIyMjtXHjRv3xxx8x2l999dUEFTJy5Ej17dtXXbp00fjx4xO0DQAAAAAAkpM4h+5GjRrFanv//fdjvLZYLIqIiIh3EXv27NE333yj4sWLx3tdAAAAAACSqzhfXh4ZGfmf/xISuIODg9WiRQtNmzZNzzzzTLzXBwAAAAAguYrzSLe9dOzYUfXq1VP16tX12Wef/euyYWFhCgsLs70OCgqSJFmtVlmtVrvWaQ/ubsZh+07IH0iir5fQ9SXJeHkkeN2n5Yz9xNk5Yz+Pvm5Ct0E/R1LimA48WVQ/ob8gpaOvJ724ftYWY4zDzogXLVqkYcOGac+ePfL09FTlypX1/PPPP/Ge7kGDBmnw4MGx2hcsWCBvb287VwsAAAAAwCOhoaFq3ry57t69Kz8/vycu57DQfeHCBZUuXVrr16+33cv9X6H7cSPdOXLk0I0bN/71i0yuajXZ4bB9fzMyIEHrRURE6PiJEypYoIBcXFwStI3jpRsnaL3EUOvmXoftO7Vyxn4uPX1fp58jKZ09cyZB63FMR2pgtVq1fv161ahRQ25ubo4uB7Ab+nrSCwoKUqZMmf4zdDvs8vK9e/fq2rVrKlmypK0tIiJC27Zt06RJkxQWFhbrBMDDw0MeHrEvY3Nzc3PKjvXQanHYvhN6chV9/YRuw3I/7L8XshNn7CfOzpn7edQ2ErId+nnqUrHBVofuf8747E+1Psd0pAbOer4IxBd9PenE9XN2WOiuVq2aDh8+HKOtTZs2KlSokD7++ONEOVkGAAAAAMCREhS679y5o6VLl+r06dPq1auXMmTIoH379ilLlix69tln47QNX19fFStWLEabj4+PMmbMGKsdAAAAAABnFO/QfejQIVWvXl3p0qXT2bNn1b59e2XIkEHLly/X+fPnNWfOHHvUCQAAAACA04nzc7qjdO/eXa1bt9bJkyfl6elpa69bt662bdv2VMVs2bLliZOoAQAAAADgbOIduvfs2aP3338/Vvuzzz6rq1evJkpRAAAAAACkBPEO3R4eHgoKCorVfuLECWXOnDlRigIAAAAAICWId+h+9dVXNWTIEFmtVkmSxWLR+fPn9fHHH+uNN95I9AIBAAAAAHBW8Q7dX3zxhYKDg+Xv76/79++rUqVKypcvn3x9fTVs2DB71AgAAAAAgFOK9+zl6dKl0/r167V9+3YdOnRIwcHBKlmypKpXr26P+gAAAAAAcFoJek63JFWsWFEVK1ZMzFoAAAAAAEhR4h26J06c+Nh2i8UiT09P5cuXT6+88opcXFyeujgAAAAAAJxZvEP3uHHjdP36dYWGhuqZZ56RJN2+fVve3t5Kmzatrl27prx582rz5s3KkSNHohcMAAAAAICziPdEasOHD1eZMmV08uRJ3bx5Uzdv3tSJEydUrlw5TZgwQefPn1fWrFnVrVs3e9QLAAAAAIDTiPdI9yeffKJly5YpMDDQ1pYvXz6NGTNGb7zxhv766y+NHj2ax4cBAAAAAFK9eI90X7lyReHh4bHaw8PDdfXqVUlSQECA7t279/TVAQAAAADgxOIduqtUqaL3339f+/fvt7Xt379fHTp0UNWqVSVJhw8fVp48eRKvSgAAAAAAnFC8Q/eMGTOUIUMGlSpVSh4eHvLw8FDp0qWVIUMGzZgxQ5KUNm1affHFF4leLAAAAAAAziTe93RnzZpV69ev159//qkTJ05IkgoWLKiCBQvalqlSpUriVQgAAAAAgJOKd+iOUqhQIRUqVCgxawEAAAAAIEVJUOi+ePGifvjhB50/f14PHz6M8d7YsWMTpTAAAAAAAJxdvEP3xo0b9eqrrypv3rz6888/VaxYMZ09e1bGGJUsWdIeNQIAAAAA4JTiPZFa37591bNnTx0+fFienp5atmyZLly4oEqVKunNN9+0R40AAAAAADileIfuY8eOqWXLlpIkV1dX3b9/X2nTptWQIUM0atSoRC8QAAAAAABnFe/Q7ePjY7uPO1u2bDp9+rTtvRs3biReZQAAAAAAOLl439Ndvnx5bd++XYULF1bdunXVo0cPHT58WMuXL1f58uXtUSMAAAAAAE4p3qF77NixCg4OliQNHjxYwcHBWrx4sfLnz8/M5QAAAAAARBOv0B0REaGLFy+qePHikh5dav7111/bpTAAAAAAAJxdvO7pdnFxUc2aNXX79m171QMAAAAAQIoR74nUihUrpr/++ssetQAAAAAAkKLEO3R/9tln6tmzp3766SdduXJFQUFBMf4BAAAAAIBH4j2RWt26dSVJr776qiwWi63dGCOLxaKIiIjEqw4AAAAAACcW79C9efNme9QBAAAAAECKE+/QXalSJXvUAQAAAABAihPve7ol6ZdfftHbb7+tF198UZcuXZIkzZ07V9u3b0/U4gAAAAAAcGbxDt3Lli1TrVq15OXlpX379iksLEySdPfuXQ0fPjzRCwQAAAAAwFklaPbyr7/+WtOmTZObm5ut/aWXXtK+ffsStTgAAAAAAJxZvEP38ePH9corr8RqT5cune7cuZMYNQEAAAAAkCLEO3RnzZpVp06ditW+fft25c2bN1GKAgAAAAAgJYh36G7fvr26dOmi3bt3y2Kx6PLly5o/f7569uypDh062KNGAAAAAACcUrwfGdanTx9FRkaqWrVqCg0N1SuvvCIPDw/17NlTH330kT1qBAAAAADAKcU7dFssFvXv31+9evXSqVOnFBwcrCJFiiht2rT2qA8AAAAAAKcV78vL582bp9DQULm7u6tIkSIqW7YsgRsAAAAAgMeId+ju1q2b/P391bx5c61atUoRERH2qAsAAAAAAKcX79B95coVLVq0SBaLRW+99ZayZcumjh07aufOnfaoDwAAAAAApxXv0O3q6qr69etr/vz5unbtmsaNG6ezZ8+qSpUqCgwMjNe2pkyZouLFi8vPz09+fn6qUKGCVq9eHd+SAAAAAABIluI9kVp03t7eqlWrlm7fvq1z587p2LFj8Vo/e/bsGjlypPLnzy9jjGbPnq2GDRtq//79Klq06NOUBgAAAACAw8V7pFuSQkNDNX/+fNWtW1fPPvusxo8fr9dee01HjhyJ13YaNGigunXrKn/+/CpQoICGDRumtGnTateuXQkpCwAAAACAZCXeI91NmzbVTz/9JG9vb7311lv69NNPVaFChacuJCIiQt99951CQkKeuL2wsDCFhYXZXgcFBUmSrFarrFbrU9eQ1NzdjMP2ndAJ8KLWe5oJ9IyXR4LXfVrO2E+cnTP28+jrJnQb9PPUxZH9XOKYDvybqH5Cf0FKR19PenH9rC3GmHidKbRo0UItWrRQrVq15OLiEuO9P/74Q8WKFYvP5nT48GFVqFBBDx48UNq0abVgwQLVrVv3scsOGjRIgwcPjtW+YMECeXt7x2u/AAAAAAAkVGhoqJo3b667d+/Kz8/vicvFO3T/071797Rw4UJNnz5de/fujfdfyx8+fKjz58/r7t27Wrp0qaZPn66tW7eqSJEisZZ93Eh3jhw5dOPGjX/9IpOrWk12OGzf34wMSNB6EREROn7ihAoWKBDrjy5xdbx04wStlxhq3dzrsH2nVs7Yz6Wn7+v089TFkf1c4pgO/Bur1ar169erRo0acnNzc3Q5gN3Q15NeUFCQMmXK9J+hO8ETqW3btk0zZszQsmXLFBAQoNdff11fffVVvLfj7u6ufPnySZJKlSqlPXv2aMKECfrmm29iLevh4SEPj9iXsbm5uTllx3potThs3wk9uYq+fkK3Ybkf9t8L2Ykz9hNn58z9PGobCdkO/Tx1cWQ/lzimA3HhrOeLQHzR15NOXD/neIXuq1evatasWZoxY4aCgoL01ltvKSwsTCtXrnzsyHRCREZGxhjNBgAAAADAWcV59vIGDRqoYMGCOnTokMaPH6/Lly/ryy+/fKqd9+3bV9u2bdPZs2d1+PBh9e3bV1u2bFGLFi2earsAAAAAACQHcR7pXr16tTp37qwOHToof/78ibLza9euqWXLlrpy5YrSpUun4sWLa+3atapRo0aibB8AAAAAAEeKc+jevn27ZsyYoVKlSqlw4cJ655131LRp06fa+YwZM55qfQAAAKQOf50+naD1oib5PXvmTILnLsgbGJig9QBAisfl5eXLl9e0adN05coVvf/++1q0aJECAgIUGRmp9evX6969e/asEwAAAAAApxPn0B3Fx8dHbdu21fbt23X48GH16NFDI0eOlL+/v1599VV71AgAAAAAgFOKd+iOrmDBgho9erQuXryohQsXJlZNAAAAAACkCE8VuqO4uLioUaNG+uGHHxJjcwAAAAAApAiJEroBAAAAAEBshG4AAAAAAOyE0A0AAAAAgJ3E+TndAAAAQGr0s1tBh+27nvW4w/YNIHEw0g0AAAAAgJ0QugEAAAAAsBNCNwAAAAAAdkLoBgAAAADATphIDQAAAHFSscFWh+17zvjsDts3ADwNRroBAAAAALATQjcAAAAAAHZC6AYAAAAAwE4I3QAAAAAA2AmhGwAAAAAAOyF0AwAAAABgJ4RuAAAAAADshNANAAAAAICdELoBAAAAALATQjcAAAAAAHZC6AYAAAAAwE4I3QAAAAAA2AmhGwAAAAAAOyF0AwAAAABgJ4RuAAAAAADshNANAAAAAICdELoBAAAAALATQjcAAAAAAHZC6AYAAAAAwE4I3QAAAAAA2AmhGwAAAAAAOyF0AwAAAABgJ4RuAAAAAADshNANAAAAAICdELoBAAAAALATQjcAAAAAAHZC6AYAAAAAwE4cGrpHjBihMmXKyNfXV/7+/mrUqJGOHz/uyJIAAAAAAEg0Dg3dW7duVceOHbVr1y6tX79eVqtVNWvWVEhIiCPLAgAAAAAgUbg6cudr1qyJ8XrWrFny9/fX3r179corrzioKgAAAAAAEkeyuqf77t27kqQMGTI4uBIAAAAAAJ6eQ0e6o4uMjFTXrl310ksvqVixYo9dJiwsTGFhYbbXQUFBkiSr1Sqr1ZokdSYmdzfjsH1HREQ81XoJXV+SjJdHgtd9Ws7YT5ydM/bz6OsmdBv089TFkf1c4piOpOOMx3T6OVKLqL6S0D6zNmOpxCwnXmrd3OuwfT+NuH7WFmOMY88U/l+HDh20evVqbd++XdmzZ3/sMoMGDdLgwYNjtS9YsEDe3t72LhEAAAAAAElSaGiomjdvrrt378rPz++JyyWL0N2pUyd9//332rZtm/LkyfPE5R430p0jRw7duHHjX7/I5KpWkx0O2/c3IwMStF5ERISOnzihggUKyMXFJUHbOF66cYLWSwzO+lc0Z+aM/Vx6+r5OP09dHNnPJY7pSDrOeEynnyO+nLGfS5y7OEJQUJAyZcr0n6HboZeXG2P00UcfacWKFdqyZcu/Bm5J8vDwkIdH7Mt73Nzc5ObmZq8y7eah1eKwfSf0l0709RO6Dcv9sP9eyE6csZ84O2fu51HbSMh26OepiyP7ucQxHUnHmY/p9HPElTP386htcO6SNOJat0NDd8eOHbVgwQJ9//338vX11dWrVyVJ6dKlk5eXlyNLAwAAAADgqTl09vIpU6bo7t27qly5srJly2b7t3jxYkeWBQAAAABAonD45eUAAAAAAKRUyeo53QAAAAAApCSEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADtxaOjetm2bGjRooICAAFksFq1cudKR5QAAAAAAkKgcGrpDQkJUokQJffXVV44sAwAAAAAAu3B15M7r1KmjOnXqOLIEAAAAAADshnu6AQAAAACwE4eOdMdXWFiYwsLCbK+DgoIkSVarVVar1VFlJZi7m3HYviMiIp5qvYSuL0nGyyPB6z4tZ+wnzs4Z+3n0dRO6Dfp56uLIfi5xTEfSccZjOv0c8eWM/Tz6upy7JJ241m0xxjj2TOH/WSwWrVixQo0aNXriMoMGDdLgwYNjtS9YsEDe3t52rA4AAAAAgP8JDQ1V8+bNdffuXfn5+T1xOacK3Y8b6c6RI4du3Ljxr19kclWryQ6H7fubkQEJWi8iIkLHT5xQwQIF5OLikqBtHC/dOEHrJYZaN/c6bN+plTP2c+np+zr9PHVxZD+XOKYj6TjjMZ1+jvhyxn4uce7iCEFBQcqUKdN/hm6nurzcw8NDHh6xL3twc3OTm5ubAyp6Og+tFoftO6G/dKKvn9BtWO6H/fdCduKM/cTZOXM/j9pGQrZDP09dHNnPJY7pSDrOfEynnyOunLmfR22Dc5ekEde6HRq6g4ODderUKdvrM2fO6MCBA8qQIYNy5szpwMoAAAAAAHh6Dg3dv//+u6pUqWJ73b17d0lSq1atNGvWLAdVBQAAAABA4nBo6K5cubKSyS3lAAAAAAAkOp7TDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQDQAAAACAnRC6AQAAAACwE0I3AAAAAAB2QugGAAAAAMBOCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7CRZhO6vvvpKuXPnlqenp8qVK6fffvvN0SUBAAAAAPDUHB66Fy9erO7du2vgwIHat2+fSpQooVq1aunatWuOLg0AAAAAgKfi8NA9duxYtW/fXm3atFGRIkX09ddfy9vbW99++62jSwMAAAAA4Kk4NHQ/fPhQe/fuVfXq1W1tadKkUfXq1fXrr786sDIAAAAAAJ6eqyN3fuPGDUVERChLliwx2rNkyaI///wz1vJhYWEKCwuzvb57964k6datW7JarfYt1g7SKNhh+4767OIrIiJCoaGhunv3rlxcXBK0jRBPx3W7mzdvOmzfqZUz9nPp6fs6/Tx1cWQ/lzimI+k44zGdfo74csZ+LnHu4gj37t2TJBlj/nU5h4bu+BoxYoQGDx4cqz1PnjwOqMa5lfzJ0RU4SKZMjq4ASYh+jtSCvo7UgH6O1IB+7pzu3bundOnSPfF9h4buTJkyycXFRX///XeM9r///ltZs2aNtXzfvn3VvXt32+vIyEjdunVLGTNmlMVisXu9kIKCgpQjRw5duHBBfn5+ji4HsBv6OlID+jlSA/o5Ugv6etIzxujevXsKCAj41+UcGrrd3d1VqlQpbdy4UY0aNZL0KEhv3LhRnTp1irW8h4eHPDw8YrSlT58+CSrFP/n5+fHDjFSBvo7UgH6O1IB+jtSCvp60/m2EO4rDLy/v3r27WrVqpdKlS6ts2bIaP368QkJC1KZNG0eXBgAAAADAU3F46G7SpImuX7+uAQMG6OrVq3r++ee1Zs2aWJOrAQAAAADgbBweuiWpU6dOj72cHMmPh4eHBg4cGOsyfyCloa8jNaCfIzWgnyO1oK8nXxbzX/ObAwAAAACABEnj6AIAAAAAAEipCN0AAAAAANgJoRsAAAAAADshdAMAAAAAYCeEbgAAAAAA7ITQjSTFZPlIDejnwP9EREQ4ugQg0XGcBxAfhG4kKYvFIkk6cuSIgysB7Ceqn0edlHFyhtTq+vXrcnFxkSTNnj1bx44dc3BFQOKIOs4DiCnqnOfSpUu6deuWg6tJPgjdSBKRkZG2/1+7dq1atGihpUuXOrAiIPFF7+fTp09X6dKlFR4eLovFQvBGqrNr1y5lzZpVx48fV69evdSvXz/5+Pg4uizgqUQ/zo8bN06tW7d2XDFAMmOMkcVi0ffff6+3335bP/74o4KDgx1dVrJA6IbdRUZGKk2aR11txYoVWrp0qc6dO6fPPvtMy5cvd3B1QOKI3s9XrVqla9euaf/+/XrrrbcUERFB8Eaqkz9/frVs2VKlS5fWtGnTtGPHDuXMmdPRZQEJFv04v2PHDl29elVz5sxR3759HVwZkDxEBe5mzZqpXr16qlatmtKmTevospIFQjfsLuoXVO/evdWpUycVKFBAXbp00YMHDzRmzBgtXrzYwRUCTy96P//oo48UFham1157TZs3b1b16tUJ3kg1okYCM2bMqEKFCikkJERWq1VBQUEx3gecTfTjfPv27XX//n2VL19eo0ePVseOHR1cHeB4ly9fVv/+/TVmzBj17NlT/v7+CgoK0vr16223lqbW8yBXRxeA1OHIkSP67rvvNGPGDNWuXVuSVKdOHY0aNUpjxoyRh4eHGjVq5Ngigaf022+/6dtvv9XixYtVrVo1hYeHa+vWrWrbtq1q1qyptWvXytXV1Xb5FZASRQWThw8fqkWLFqpWrZq++uorvfjii1q/fr0qVKig8PBwubpyCgLns2HDBn3zzTf66aef9PLLL+vu3btasWKFPvzwQ1ksFk2aNMnRJQJJKuqc5u+//5aHh4d8fHyUMWNGhYSE6IsvvtC6det08uRJhYWFaenSpapevbqjS3YIRrqRJNKmTavQ0FCFhoba2sqVK6c+ffro9OnTGjx4sL777jsHVgg8vTt37kiSnnvuOUmSq6urKlWqpAkTJmjz5s1q0qSJpEeXXzHah5RszJgxatiwoTw8PFS6dGmNHj1aDRs2VI0aNfTbb7/ZAvfo0aN18uRJB1cLxN21a9eUKVMmlS1bVpKULl06NW3aVCNHjtTkyZPVv39/27KpdUQPqYvFYtHy5cvVokULHTp0SOnTp9fXX3+tgIAA7d+/X40bN9bmzZv1wgsvaP369Y4u12EI3Uh0jwsTxhhlyZJFx44dU3h4uO0XUdmyZVWuXDl5eXlp5syZ2r17d1KXCyTI406mihcvLnd39xiTBLq6uqpMmTLKly+ffvjhB9WsWVPS/0YDgZToxRdf1NatW9WlSxddv35dmTNn1sSJE9WoUSO98sorGjdunKpUqaIFCxYob968ji4XeKzHHecLFCig69eva8uWLbY2T09PValSRenTp9eIESPUrVs3ScxwjpQt6ufj8uXLGjlypBo3bqwqVaro888/V+vWrTVq1CjNmjVLXbt2VZEiReTj4yM/Pz8HV+04nPUhUUWfZOTSpUu6ffu2JCl37tx65513NHDgQM2bN09hYWGSpODgYKVLl04tW7bUyZMntXXrVofVDsRVZGSk7WQqJCTE1p99fX1Vr149LV++PMaVG56enipbtqyWLFmi48eP65tvvnFI3YA9/PMPrcYYvfjii9q2bZt++uknderUSdevX1fGjBn1zTffqFOnTpo/f74yZMigPXv2yMXFhSs/kOxEP85brVZbe86cOVW1alV9/fXX+uWXX2zt6dOnV6NGjTR9+nTNnz9fq1atSvKagaRksVi0bt06jR8/XoGBgXrjjTckPRqAaNWqlT744AOlS5dO9+7dU//+/bVnzx69+eabDq7acbihCokqKnAPHDhQCxcuVNq0aVWkSBHNmzdPvXr10u3bt9W+fXtt2rRJGTJk0L59+xQSEqJFixZpw4YN2r59u3r16sVfh5GsRfXzzz77TDt37tS1a9c0YMAAvfrqq+rdu7d69eqlMWPG6JdfflGFChU0depUpUmTRpUqVZKfn58uXLjg4K8ASDxRPw8bN27Uyy+/LHd3dxljVLp0aW3cuFHVqlXTRx99pAkTJihLliwaM2aMrl27psyZM8tisXB/N5IdY4ytX3/xxRc6cOCAQkJCNHjwYD333HPq0qWLhgwZogEDBuj1119X4cKFNXr0aHl4eKhatWry8vLSmTNnHPxVAPb3119/acyYMfLz87Md16X/3ee9YMECrVmzRlu2bNGaNWtUoEABB1fsOIx0I1FEH6VYtGiRpkyZok8++UQNGzbUgQMHVLp0aUnS8OHDNXXqVBljdPDgQeXNm1c7d+6U9GjEsEiRIgRuJFv/fD7r+PHjVa5cOeXMmVNvvfWWRo4cqXz58mn8+PFq2LCh1qxZY5socNWqVcqQIYOyZMmiZ555RhL3+yHlOH78uGrUqKHevXvLarXaZuovU6aMfvjhB61YsUJDhw61/cHJ39/ftgyBG8lJ9BHuESNGaMiQIUqfPr1OnjypatWqadGiRapSpYqGDRumokWLql+/furSpYtCQ0O1fPly5cqVS1mzZpW3t7eDvxLA/j744APNnz9fQUFBmjlzpm7duiXpf7dWFC9eXM8995ztnu5UzQBPKTIy0vb/y5YtM99++62ZO3euMcaY8PBws337dpM/f35TsmRJ23KhoaG2/797967p37+/yZw5szl27FjSFQ4k0IkTJ0yPHj3MunXrbG3Dhw83fn5+Zvjw4bb+bbVazd27d23L9O7d22TLls2cPn06yWsGElP0436UJUuWGC8vL9O9e3cTFhZma7969arJnz+/sVgsZsCAAUlZJpBg586dM++++6755ZdfbG3vvPOOyZo1q5k/f76t7e+//zZ///237XXPnj1Nzpw5zdmzZ5O0XsDeoo77Dx48MCEhITHe++abb4zFYjGDBg0yt2/fjvFeeHh4UpWYrBG6kWBVqlQx+/bts73+888/TebMmY3FYjGzZ8+2tUdERJgdO3aYggULmjJlysTYxsWLF82HH35ocubMafbv359UpQNx9umnn5ojR44YYx79wlm1apWxWCwmS5YsZs2aNTGWHT58uEmXLp0ZNWqUuXz5sq39t99+M61btzbZs2eP8TMDOKOIiAjb/0cP18YYs3jxYuPm5hYjeN+9e9d0797d7Nmzx1it1iStFYiLCRMmmAsXLthez54927i4uJjChQubvXv3xlj2nXfeMQEBAWb+/Pkx/qj6yy+/mDZt2pgsWbJwnEeKExW4V61aZRo0aGBeeOEF895775kDBw7Y3psyZYqxWCxmyJAh5ubNm44sN1kidCNB7ty5Y/r3728ePHhga7t3755ZsmSJKVCggKlWrVqM5SMiIszOnTtNunTpTLt27WztkZGR5tixY+bcuXNJVjsQV4cPHzZ169aNFRR69+5tLBaLGTlyZKy/9o4cOdJYLBbb1R5RFixYwAg3nF70wD127FjTrFkzU7VqVTNs2DBb/168eLFxcXExr7/+uhk1apSpXbu2eemll2wnZgRvJCc///yzqV69eqzRuPr16xuLxWLmzZsXq8+2bt3apEmTxqxdu9bWdvfuXTN+/Hhz4sSJJKkbsKfHXc30/fffG19fX9O1a1ezaNEikzt3blOnTh3z888/25afOnWq7fwo+u8LGGMxhpsK8XRGjhypMmXKqFq1agoNDdWaNWvUtWtXlSxZUitXrrQtFxkZqaNHj6pw4cJycXFxXMFAHJj/nwQk6r/Lly9X5syZ9fLLL0uSOnfurKlTp2ratGlq3LixvLy8bOvOmzdPTZs2laura4wZ/YGUok+fPpo2bZo6d+6sP/74Q1euXFFQUJAWL16swoULa/v27erWrZvc3d2VLl06ff/993Jzc7P9PAHJSdRxev369cqWLZuKFSsmSapRo4aOHj2quXPnqlKlSjHOXT777DP17dvXNvt+mjRp6N9IMW7evKmMGTPa+vaJEyf0+uuvq0OHDurYsaOsVqty5cqlBw8eqECBAho8eLBq1qwpi8WimTNnqly5cipSpIijv4zkxZGJH84p+l+DIyMjTf369Y2bm5vZtm2bMcaYkJAQs3TpUpMnTx7z2muv/ec2gOQsMjLSXLx40aRPn9688cYbZteuXbb3PvzwQ+Pp6WnmzJlj7t+/H2tdRvSQEh0+fNgUKFDArF+/3ta2bds28+qrr5py5cqZixcvGmMeXf0UEhLCCDeSrag+GRkZaQ4fPmzc3d1N586dY8wvU7lyZZM9e3azadOmx567cD6DlGbRokWmYMGC5o8//jDGPLrC6ciRI2b48OEmJCTEXLp0yeTJk8d07tzZXLlyxWTOnNlUr17dLFu27LEj5HiE4RfEW9RfeufNm6fIyEgtWrRILVq0UK1atbRt2zZ5e3urTp06GjNmjA4fPqxXXnnlidsAkiMT7QIgi8WiZ599Vj/88IMOHz6ssWPHateuXZKkr776Su3atVOHDh00a9YsPXz4MMZ2mJUZKVFwcLAuXbqkDBky2NoqVqyoDh06KDQ0VCdOnJAk+fj4yNvbm1nKkSxFRkba+uTZs2dVrFgxTZ48WStXrtTUqVP1559/SpI2b96s/Pnzq02bNlq3bl2sZ8pzPoOUxsvLSzlz5tT777+vo0ePKk2aNMqdO7fefPNNeXt765NPPtGLL76oYcOGKWvWrKpQoYI2bdqkuXPnKjQ01NHlJ1uEbiTImTNn1LdvX82ePVs+Pj4aNWqU3nzzTdWuXdsWvGvXrq1BgwYpS5YssX5JAclV9MfF3L17V8YYPXz4UC+//LKmTZum33//XePGjbMF70mTJqlRo0ZavHix3N3dHVk6kCSyZs2qfPnyaf/+/QoPD5f06I9T1atX1+3bt7V3715bWxQuuUVyEv22n/79++vFF1/UxYsX1a5dOw0ePFhLliyJEbw3bdokX19fTZ06lduFkOK9+uqr6tmzp/z8/NSuXTsdOXJE3t7eypcvnyTp0qVLCgwMVNq0aSVJuXLl0ooVKzRu3Dj5+Pg4svRkjXu6kSD379/XW2+9JT8/P82fP1+SdP36dfXs2VPLli3T6tWr9fLLL+vBgwfy9PSUJO5tRbJnot2PN2zYMNuoRrFixdSnTx/lypVL27ZtU5s2bVSmTBl169ZN5cqVkyTu6UOqYYzRm2++qZMnT2rChAmqXLmyJOnOnTuqUaOGunTporffftuxRQJPEP1cpFu3bvrmm2/k4eGhGTNm6PXXX5ckzZo1S5988oneeustvffeeypUqJAkKSIigpFtpGjR+/hPP/2kyZMn6/bt25oxY4aKFCmioKAg1a1bV+nTp1fz5s21f/9+zZo1S3/88YeyZMni4OqTN0I3/pUxRpGRkY/9JbN7927VrFlTc+bMUcOGDSVJN27cUO/evTVr1izt379fJUqUSOqSgQSJHpYnTpyoTz/9VAMGDNDp06f1xx9/6Pjx49q+fbvy58+vX375Re3atVPu3Lk1btw4FS1aVBJ/WELKF9XHIyIiVKlSJd29e1evvPKKChUqpO+//17Xrl3Tvn37uJQcyV6XLl00f/58rV69Wj169FDjxo3VuXNn2/uzZ8/WgAEDVK1aNQ0cOFC5cuWSRPBGynf8+HEVLFhQUszgPW3aNBUrVkxHjhzRa6+9Jnd3d1mtVi1evFjPP/+8Y4t2Apwd4onOnTsni8ViCxGbNm3S9evXbe8XKlRItWvX1pYtWyQ9Ci2ZMmXSyJEjNWTIEFsQAZxBVOD+7bfftG/fPn377bfq0aOHJk+erOnTp6tMmTKqWbOmrl69qpdffllTp05V+vTpVbhwYds2CNxI6dKkSaPw8HC5uLho27Ztqlevnk6dOqWFCxcqa9as2rt3r1xdXRUREeHoUgGb/v37Kzg42PZ6zJgxmjVrltavX68yZcooS5YsevDggSTZ5uZo1aqV+vbtq5s3bypHjhy2dQncSMkuXryowoULq1u3bpKk+vXr68MPP9Qzzzyjd999V4cOHVLRokW1Y8cOrV27Vjt37iRwxxEj3XisUaNGqW/fvjpw4ICKFy+uw4cPq0SJEqpcubIKFCig4cOHK0OGDFq+fLneeecdHT161PZX4OjCw8MZ8YDT+PHHH9WnTx/duXNHc+fOVdWqVSU9Gt07ePCg2rZtq86dO6t169YxLiFnhBupTfTRvsjISIWGhtru7+O4j+Tk2LFjev/997Vp0yZbv1y0aJFKliypAgUKSJLatWunsLAwzZs3T9L/HnEa9eiwqDaO80jpQkJCNGPGDPXp00ddunTRiBEjJP1vxDsoKEiTJk0iaCcARw88VvXq1dWoUSPVq1dPBw8e1HPPPacjR47ojTfe0J49e1S6dGl16NBBmTJlUtWqVTVx4kSFh4frn3/D4cQLzqRKlSqqUKGCbt26pUWLFtlGPtKkSaOiRYsqIiJCp0+fjnXPNidiSKmeNAmmi4uL7XifJk0aW+COPiM04GhWq1WFCxfW1q1b5erqqu+++06hoaFq2rSpChQoYJsI0NfXN8aVfJUqVVKfPn1ibIvjPFKif563+/j46N1339XYsWM1ZswY289B/fr11alTJxlj1Lt3bz18+DDWuvh3HEHwWKVKldKwYcNUuXJl1a1bV0eOHFHhwoXVoUMH7d27V7169ZLValXVqlW1ZcsWbdy4UQ8fPrQ9GgZI7v4ZJh4+fKi0adNq4sSJatWqlXbv3q0vv/zS9n7UI4+YmRMpUfSfh/Hjx2vgwIGSHgWNJwXvfx7vw8PDCSZINt5++20tWbLEdm5y+fJlNWnSRM2bN9fdu3cl/W9gIH/+/Lp//74kqVatWrpx44aWL1/usNqBpGKxWLRhw4YY5zve3t565513NGnSJH3++ecaMGCAJKlu3boaMGCAZsyYIXd3dyaNjSd+OyKG6CdXBw4cUO7cuXXlyhXVq1dPhw8ftp1QdejQQdOnT9fmzZv1wQcf6NKlSxozZowkHg2D5C/6ZYLffPON3nvvPTVu3FhTp06Vt7e3xo8fr9KlS+vrr79WzZo11bdvXzVr1kwhISHq1auXg6sHElf0n4fdu3fr4MGDGjp0qCZPnizpycE7+uSDixcv1vLly7mXG8nGnTt31KlTJ/30008KCwtTQECAfv31V/36669q166dLXhLUubMmXX58mVVrlxZp0+f1qFDh+Tu7m4bCQdSqvDwcG3ZskVdunTRlClTbO0+Pj5q0aKF2rdvr88++8w24l2rVq0Ycxwg7gjdiCHqxKtnz57q27evfH199cEHH8jX11e1a9fWoUOHJD26n88Yo5dfflmDBg3SRx99pD179ig0NJSRbiR7Uf38448/1tChQ5U2bVpVrFhRH3zwgXr37i1PT09NmjRJNWvW1C+//KJ9+/apSpUqOn78OJNEIcWJ+nmIuocvLCxMuXPnVvfu3TVq1CjbMtGDd/TAPXXqVDVr1kzp06dnkik4XFQ//emnn/Tqq6+qTZs2tuBdrlw5/fjjj9q8ebPatWunO3fuSJLSpk2rv/76Sw8fPtSxY8fk5ubG3ARIsaLO069evarw8HD16tVLgwYN0scff6xJkybZlkubNq0KFiyoQoUKafbs2bp27Rrn+E/DAP9w/PhxkzdvXvPTTz/Z2nbu3Gnq1atnnn32WXP06FFjjDFWq9VERkYaY4zZsGGDyZo1q7l48aJDagbia+vWrSZ37tzm119/NcYYs2PHDpMmTRoza9Ys2zIhISGmTZs2pnr16mb8+PG29qh+D6QUy5YtM76+vmb79u0mPDzcnD592vTv39/4+vqa0aNH25aLiIiI0f+//vprky5dOrNs2TJHlA08Vnh4uO3/3377bePr62uWLl1qHjx4YIwxZvfu3SZDhgymcePGJjQ01BhjzLhx44zVajXGGNt/gZQm6vi9cuVKU716dTN9+nRjtVrNlStXzMCBA42fn5/56quvbMv369fPjBs3zty7d89RJacYhG7EChD79+83Hh4eZtu2bTHaN2zYYDJkyGACAwPN/v37Y7w3btw4kzVrVvP333/bu1wgUaxcudJUrVrVGGPMd999Z9KmTWumTJlijDHm9u3bZvfu3cYYY4KDg02bNm3Miy++aIYPH27CwsIcVjNgL59//rkpXbp0jLZLly6Zjh07GovFYiZPnmxrj4iIMMY8Ctx+fn5m6dKlSVor8CTRz2eiB+fHBe/ffvvN+Pv7m4oVK8YI6QRupHQ//PCD8fDwMGPHjjWnT5+2tV+9etUMGTLEuLq6mkqVKpk6deqYZ555xvz5558OrDbl4PJyxLoHO3/+/CpbtqzWrFmjkJAQW3vlypVVrFgxBQUF6dNPP5X0v0fFXLp0SWvWrJG/v3+S1g4klIeHh27evKlp06apXbt2Gj16tD744ANJ0rZt2zRw4ECdO3dOPj4++uqrrxQQEKBNmzbFeNYrkFLkzZtXV65c0cGDB21tAQEBev311+Xq6qqePXtq3Lhxkh5daj558mR9/PHH+vbbb/XGG284qmzAJjIy0nY+Ex4ebnvetiTNnTs31qXmZcqU0fLly+Xr6xvjPIhLypFSGWN08+ZNjRkzRoMHD1a3bt2UN29e23tZsmRR9+7d9eOPPypLlizKkyePtm3bpoIFCzq48pSBIwskPXou9/nz5/XVV1/Jx8dH5cqV0+rVqxUYGKi3335b7u7uunfvnjJmzKhZs2apdu3akh4Fdm9vb40cOZJ7+ZAsPenZqqVLl1bmzJn10UcfqV+/furQoYMk6f79+5oxY4YyZsyonDlzSpK8vLw0Z84c3blzRxkyZEjS+oHE9KSfh8DAQGXNmlUzZ85Ux44dlT9/fkmPJphq0qSJChQooJkzZ6pSpUoKDAzUrFmzNG3aNAI3koXo/XrMmDHasWOHjh8/rvfff1/169dXYGCg5s2bpxYtWqhdu3aaOXOm6tSpo5deekmrVq2KtQ0gJZg4caL8/PzUunVrSY/O2V1dXXXp0iVlz549xrJRf3iKjIxU7dq1Vb16dVksFs7tExGhG5KkLFmyqG/fvvLx8dHo0aP1+eef65133tHEiRP1/fffq2zZslq9erUiIyNVq1Yt26Q6Ub+g+KFEchS9j3799dc6cuSI/v77b9WrV09NmzZVp06ddPXqVR04cEArV67Uw4cP9e233+ry5cvat2+fLBaLbVIeLy8veXl5OfLLAZ6KMcb28zB58mT99ddfCg8P19ChQ1WiRAl16tRJI0aMUFBQkOrVq6cCBQqod+/eypYtm+rUqaMxY8bo7NmzKlmypDZs2CA/Pz8Hf0VI7aKO8VH9un///vr222/VsWNHVa1aVf369dOJEyfUrl07lSxZUvPnz1fLli31xhtvaPPmzapUqZJtWwRupCQhISHau3evPvnkkxjtN2/eVGhoqG1m/ocPH8rd3V2SdPToUW3fvl3NmjWTr69vktec0hG6U6HH/TW3devW8vLyUsuWLRUeHq6xY8dq7ty5mjJlirZt26a1a9cqV65cmjVrllxcXPiLMJxC9FnKZ86cqc6dO+vhw4caMmSItmzZopkzZ+rGjRtavXq1mjdvrtKlSytr1qz68ccfbbOU8wclpATRj9kDBgzQxIkTVbVqVe3evVurVq3SokWL1Lp1a7m7u2vRokVq0aKFcubMqbRp0+qHH35QZGSkcufOLU9PT0nihAwO98/j84oVK7RkyRLbQMG+ffsUEhKiRYsW6c6dO+rdu7dKlCihOXPmKDAwUC+99JIDqwfsxxgjHx8fffvtt3JxcdHOnTv1xx9/qH379sqbN68aN26sjh07qlSpUipWrJhtvW+//VanT59Ws2bNHFh9CubYW8rhSHv27InVtnDhQuPu7m569OgRoz0kJMT2/0wyguQu+mQ6W7ZsMfny5bNNjPbDDz8YT09P8+2338ZY58yZM+b+/fu2dennSIn+/vtv06xZM/P7778bYx4d21955RWTM2fOGG3Hjh0zR44csf089OjRw+TNm9dcunTJYbUDUdq0aWM+/vhjY8yj4314eLhZs2aN+fLLL40xxvz0008mffr0ZsGCBWbt2rXGYrGY999/3+zYsSPGdjjOI6WKmvDSGGNatGhhihcvbqZNm2YiIyPNlStXTIMGDYynp6f58ssvzcSJE02nTp2Mn5+fOXDggAOrTtkI3alI9Nk5d+/ebSwWS4zHIEWZOnWqsVgsZvjw4bHe41FJSM5GjBhhCw5RfXXZsmWmZMmSxphHs5T7+vraZikPCgoya9eujTUjOf0cKcGSJUtsj0MyxpgpU6YYf39/U6FChRgz1oaHh5tKlSqZ3Llzmz179sTo/5s3bzbNmzc3mTNnNvv27UvS+oHHCQsLM0uXLjUPHz40xvzveH3lyhVz+fJlc+PGDVOhQgUzatQoY4wxoaGhJk+ePE88rwFSqhkzZphBgwaZu3fvmmbNmpkXX3zRzJgxwxhjzL1790zfvn1NkSJFTPHixU3t2rXNwYMHHVxxysb1wanErVu3bJdh7dmzR3nz5tWIESPUq1cvffnllzGWfemll5QhQwb1799fX331VYz3/jnTOZBc7NixQwsXLtRnn32mw4cP2/pqmjRplC1bNn3//fdq27atRo0aFWOW8h9//FHXrl2LsS36OZzdrFmzNHz4cHl4eNja6tWrpzx58mjfvn26deuWpEeXnbu4uGjjxo3KmzevXnnlFf3555+2dYoUKaJs2bJp69ateuGFF5L86wD+yd3dXW+88Ybc3Nw0ffp01a9fX1arVVmzZlW2bNl079493b17V0WKFJEk3bt3T3Xr1tUPP/yg3r17O7h6wL6MMZKkixcvatCgQXJxcZGfn58mTJigZ599VjNmzNCMGTPk4+Oj4cOHa9OmTfrtt9+0dOlSFS9e3MHVp2wWE/XdQYq1efNmff7555o+fbpGjx6tFStW6ODBg/Ly8tLEiRP18ccfa8KECfroo48kSZcvX9bIkSP16quvqnLlyjw+A05j8eLFmj59unx8fDRkyBAVL15cN27cUJEiRXTjxg3b48Ek6cGDB3r99deVMWNGzZkzh6CNFCfqntfffvtNBQsWVLp06XTp0iXVrl1b7u7uWrFihXLmzCljjCwWi8LDw9W1a1dNmDAhxtwdzOGB5CJ6X4yIiNDkyZM1ffp0FS9eXDNnzpSrq6sOHTqkmjVrqmXLlipfvrxmzJih0NBQbdq0SRaLhbk6kOLt2rVLK1euVFBQkL788ksZY+Tq6qrr16+rY8eOunz5slq3bq127dpx7pOECN2pwMKFCzVt2jRdunRJN27c0G+//abAwEBJj4LHl19+qT59+qhz584qW7as5s2bJ2OMfv75Z9uJGMEbyZnVapWbm5skafny5fryyy+VLl06DRgwQCVLltSWLVvUuHFj1ahRQ82aNVNkZKQmT56sq1evat++fXJ1dbUFD8DZRR2zIyMjtXPnTr3yyiv64osv9O6778rX11eXLl1SjRo15OPjo2XLlsUI3lEIJkhuogfuQ4cOKV++fHJzc9OcOXM0ZcoUFShQQLNnz7aNgA8cOFB+fn7KnDmzNm7cKDc3N47zSLGi+vaZM2f0xRdfaO7cuSpdurQ2btwo6X+zlF+/fl1dunTR4cOH1atXL7Vs2dLBlacehO4ULPpJ0wcffKCpU6eqcuXKmj59uvLmzRtjucWLF6tHjx7y9/dX+vTptWHDBn5BwSlEPxH76aefVKFCBW3dulVfffWVfH19bSPeW7ZsUceOHXX//n1lypRJuXPn1vz58+Xm5kbAQIoR/Zh97949+fr6avDgwRo+fLhGjx6ttm3b2oJ3zZo15evrq4ULFypPnjwOrhx4suj9un///lq7dq369eun1157TWFhYZo7d66++eYbBQYGau7cuXJ3d9fp06fl7u6uZ599VmnSpGEAASneihUrtGbNGtWqVUs///yz5syZo/nz5+utt96S9L8BimvXrqlPnz4aMGCAcufO7diiUxFCdwoVPYgsWbJER48eVY4cObRkyRJ5enpq6NChKl68eIzlbt26JavVKn9/f0a44RSin4j169dPM2fO1IABA9ShQwctWrRIU6dOlZ+fnwYPHqwSJUooJCREt27dkpeXlzJmzEg/R4o1atQonTp1StOmTZMkffbZZxo4cKDGjh1rC96XL19W8eLF1ahRI02fPt3BFQP/bejQoZo0aZLmzJmjMmXKKEOGDJIeXbU3d+5cTZ06Vfny5dPs2bNtzx6WHv+oVCAliD7CXaNGDfXr109t27bVkSNHNHr0aO3evVsjRozQa6+9Jul/wZufiaTHp50CGWNsP0h9+vRR//79lTlzZrVr106tWrVScHCwPv30Ux0+fNi23Lp16+Tt7a0sWbLIYrEoMjKSIIJkLypwDx06VNOmTdMPP/yg5s2bS5KaNm2qLl26KDQ0VIMGDdL+/fvl4+OjHDlyKFOmTLJYLLb7nABn1qNHD506dUrS/ybR2bNnT4xJcT755BMNHjxY3bt318yZM3Xv3j0FBATozz//1DfffOOQuoG4MsboypUrWrFihcaOHatatWrZAndERIQ8PT31zjvvqEOHDtqxY4eGDRsWY33CBVIqi8WizZs3a+XKlapSpYrtGdtFixZVt27d9OKLL6p///5auXKlJNluxeNnIulxtpkCRQ8iM2bM0M8//6wCBQpIkpo3by4fHx99/fXX6tWrlz788ENNmTJFf//9t/bu3WvbBj+McBa3bt3Stm3bNH78eJUpU0aXLl3Svn37tGDBAlWvXl1Vq1bVL7/8oi5dumjmzJm2+QwkZimH87tz544WLlyoLVu2aNmyZcqVK5etPWqkL2pE45NPPpEk9ezZU8HBweratasyZcokiXu4kbxZLBbdv39fFy5csB3Do/q1i4uLHjx4oAcPHujtt99W5syZVbduXQdXDCSdefPmaebMmcqfP7+CgoLk5eUlSXr++efVuXNnubi4qEOHDnJ1dVX9+vUdXG3qRbJKoaIHkbJlyyokJESbN29W+/bt9eDBA1WvXl0+Pj7q3LmzwsLCtHv3btvIH+BMLBaLjh49qmPHjmnbtm3q0aOH+vTpowMHDqhr167KmDGjmjRpouLFi3PfKlKc9OnTa//+/YqMjFTDhg119uxZSY8uIYyMjJQk24zN0qMR7+7du2vVqlW2EzNJBG4kK487F4m6QmnDhg2SHg0ORPXr33//XYsXL5arq6saNGggFxcX23tAShP18xH16McZM2aoV69eOnnypFasWKH79+/bln3++ef1/vvvq3HjxipcuLBD6sUj3NOdQt2+fVvFihVTmzZtVLNmTU2ePFlnzpxRZGSkLl68qIEDB6pp06a6fv26AgMDmWQETi3qF05ERIQ++OAD1ahRQ9WrV1eLFi3k5eUV435V7mNCShF9dPry5ctq3Lix7t27p7Vr1+rdd9/Va6+9pvbt2+vOnTuSpLRp0+rixYvKnTu37T5AJstEchP9GB0eHi5JtnOTvn37atWqVercubPt8Y8RERGqW7euMmfOrLlz59KfkSr8+uuvGj16tD744APVqlVLkvT+++9r3rx5mj59ul5//XV5eHjYlg8LC4vxGkmP0J2CPSmIvP3223J1ddWsWbNsyxJE4OzOnz+vsLAw5c+fX9KjPl2zZk2VLVtWw4cPd3B1gP0MHTpU/v7+evXVV1WjRg1ZrVY9ePBA165dU8GCBXXlyhVFRkbKz89PxYsX14oVKySJwI1kJ/q5yBdffKHff/9dJ06cULNmzVSvXj1lypRJffv21caNG1WhQgX5+/tr7969unPnjvbt28dTV5Bq/Prrr2rZsqVeeOEFvf/++6pWrZokqX379lqwYIFmzJihRo0aydPT08GVIgqhO4V7UhApX768PvvsMwdXByS+4OBgHThwQKNGjdK5c+dsz+EGUorowWTRokXq1auXli9frjJlyujq1atq3ry5du3apW+++UZFixZVaGioIiIi5O7urrJly3IpOZK9vn37aurUqercubNOnz6tP//8U+7u7po4caIKFiyo5cuXa/r06cqUKZOeffZZjR07Vq6urlyxh1Rl9+7d+uCDD5Q3b159+OGHtuAd9Zjg7777Tm+88YaDq0QUQncqQRBBamCM0datW/XFF1/IarXqxx9/5DncSLE2b96sn3/+WdmzZ1fXrl1t/fzq1auqW7euPDw89N133yl79uwx1uPnAcnZ4cOH9eabb2rKlCmqUqWKpEd9/ZtvvtGNGzc0a9asWH1aEoEbKd6RI0dkjFGxYsVsbb/++qs6duyo7Nmzq0ePHqpUqZIkqUuXLurQoYMKFSrkqHLxD1xPnAoYY/T7779r1KhRslqt2rt3r1xdXZlkBCmOxWJRhQoVNGTIEK1atUpubm4KDw8nYCBFMcbo7NmzatiwocaOHavLly9LejQZWmRkpLJmzarVq1fr4cOHKl26tO39KPw8IDmJmvAvSnh4uP7+++8YAbpKlSpq3bq1Tp06pdOnT0uKPdkagRspVWRkpK5fv66aNWtqxIgROnr0qO29ChUqaMqUKdq0aZMmTpyo1atXS5ImTJhA4E5mCN2pAEEEqYmHh4deeOEFpUmThufNI8WIHjAsFoty586tVatWKW/evPrll1+0a9cuSbL1+yxZsujHH39U7dq1lSVLFkeVDfyr6LdKLF++XOfOnVO6dOmUJUsWnTt3TtL/+n7t2rXl4eGhX375RRKPfETKF9X3w8PDlTlzZk2aNEm7du3S2LFjdeTIEdty5cqVU6VKlbRmzRp99913Cg0NdVTJ+BeE7lSCIILUiMkBkRJERkbaAkbUo2DCw8NVsWJFTZ06VVevXtWkSZN04MABSf8L3gEBAZo1axaPT0KyZIyxHaP79eunzp0768cff1TevHlVvnx59ejRQzt37rQtf/v2bXl7eytHjhyOKhlIMlETAq5du1adO3fW+fPn9dprr2nChAlat26dxo8fHyN458+fXxMmTNCAAQPk7e3twMrxJNzTDQBAMhV9JHDcuHHatm2bgoODVbRoUfXp00dZs2bV+vXr9d5776lixYrq0aOHnn/+eccWDcTD0KFDNXHiRK1atUr58+dX+vTpJUlNmjTR1q1b1bx5c2XKlElbtmzR1atXmZMGqcby5cvVunVrvffee2rRooVeeOEFSdJPP/2kLl26qGTJkipRooTu3r2r+fPn69ChQ8qUKZODq8aTELoBAEjm+vbtq2nTpqlbt246deqU/vzzT128eFE7duxQzpw5tWHDBn3wwQcqWLCgxo8fb3tiBZCc3bp1S02aNFHr1q3VokULXbp0SSdOnNCiRYtUrVo1ff/99woNDdW1a9eUL18+TZ8+nckxkSqcPHlS1atXV+/evdWxY0dbe9QI+KZNmzR58mQdP35cXl5emjp1Kn9wTeb4UyEAAMlM9GcN//nnn1q+fLnmzZun2rVrS5KOHTumLl266P/au7+Yqus/juOvwz9B8TjDOWVMI1xHDiqhImIWhZiSUF3gljO9iIzRH9s0NytJLalBS/PP2FCcmStJcViUNdIpKIJK0xEeAlccRNYikk3MgHPg/C4cJ/158SN/nH0P8HzccMY5Z3tvbOfw+n6+n9dn4cKFqqysVFJSknbt2qWCggJFREQYOTrQbyaTSTabTXV1dSovL1deXp4aGxvV09Ojb7/9Vhs2bNCqVavU1dXlvmWWlnIMB62trTKbzXruuefc3wd33vmUmJioWbNmuY/KGzNmjMET439hwyMAAF6mL3B3dnbK19dXTU1NCg0NdT9vsViUnZ2twMBAHT9+XC6XS4sXL1ZRUZF7Tzfg7caOHav33ntPeXl5Sk1N1eTJk5Wdna3q6molJCSosrJSvr6+7sDtcrkI3BgWOjo61NDQoI6ODplMprs6ECoqKtTc3KwxY8Zo1KhRBO5BgtANAIAXOnjwoNasWaORI0fKarXqu+++cxei+fj4KCoqSn/99Zfsdvs9Tc6UCGKwSE9P16VLl9xHmyYlJam3t1e///77PaVpNJZjuAgPD5fVatW+ffvU0tLiDt6StGfPHu3YsYOLq4MMlwsBAPACd95SLt3e01dVVaX29nbNnTtXxcXFioiIUFpamvv1ISEhGjt2rFEjAwNi0qRJkqSbN2/q0qVLysnJUWtrqzZt2mTsYICH9X3uNzY2qrOzU93d3YqOjpbFYlFqaqq+/PJLORwOLV++XEFBQfr000/1zTffqLy8nIurgwxFagAAGOzOwH39+nU98MADkqTZs2froYceUmFhodLS0tTU1KSpU6cqNjZWX331ldra2nTx4kVuucWg53K5VFZWpo8//lgOh0MlJSWUpmFI6/vcP3r0qLKysnTz5k2NHDlS8+fPV35+viQpJydHJSUlOnv2rKxWqxwOhwoLC91N5hg8CN0AAHiJDz74QBUVFcrMzFRKSop+/vlnpaam6u2339bzzz+vXbt2qbS0VA6HQ5MmTdLevXsJJhgyurq6ZLPZFB0dLR8fH0rTMOR9//33Wrp0qXJzc7V48WKdOHFCL7/8slasWKH9+/dLul2qZrfbFRgYqAkTJmj8+PEGT437QegGAMAL9PT0aNmyZSoqKtKoUaO0evVqpaWlqaioSL/++qtyc3Pde1xv3bpFmzOGtDubmoGh6Pr163rppZf06KOPau3atfrtt980b948Wa1WVVRUaMmSJfr888+NHhMDhG9pAAC8gK+vrzIzMxUUFKS5c+fq0KFD+vPPP9Xe3q7z58+rpKREr7zyiiTR5owhj8CNoajvlvL6+npZLBY99dRTSkxMVGtrqxYtWqRFixZpx44dysnJ0caNG9Xd3a3Dhw8bPTYGAJ9oAAAYaNu2bdq6daskKSEhQb6+vqqurlZpaanmzZsns9mspqYmvfbaa6qtrb3rvbQ5A8DgYTKZVFJSooSEBNXU1GjVqlV6+OGHVVxcrHHjxmnTpk0KCAjQxIkTFRcXp5qaGl27ds3osTEAuDwOAIBBHA6Hbt26pY0bN+rChQtKT0/Xnj17NGfOHH3yySdat26dli1bptGjR+vy5cuKjIw0emQAwL/Ut8Ld3NyswsJCbd68WTNmzHA/b7PZ1N7ergkTJki6fXrFkiVL9OabbyowMNCosTGA2NMNAIDBLl++rKysLLW0tCgqKkoLFizQ0aNH9dZbb2nmzJmS/vmnjdI0ABh8zp07p507d8put6ugoEBTp051dxecOnVKKSkpeuyxxxQcHKzS0lJVVlbKarUaPTYGCLeXAwBgsKioKO3evVvr16/XTz/9pBdffFEnT57UsWPH3K8xmUxyuVwEbgDwYr29ve7HTqfT/bOjo0NVVVWqrq7WlStXJP3TXRAbG6vPPvtMPj4+GjFihM6cOUPgHmJY6QYAwMts2LBBW7duVVxcnE6ePGn0OACAf+GXX36R0+mUxWLRkSNHdOzYMe3du1c//PCD1q1bp9DQUGVlZSk+Pv6e93Z3dysgIMCAqeFJrHQDAOAl+q6Db9myRadOndLx48fv+j0AwLs5nU698847mjZtmrZv366lS5cqISFBkrRw4UK9//77amtr086dO3Xu3Dn3+3p6eiSJwD1EsdINAIAX6du73Yc93AAwuHR2dmrOnDmqr6/X5s2btX79+rtWsL/++mtt2bJFFotFGRkZmj9/vsETw9NoLwcAwIv89zFgBG4AGBz6itGcTqf8/f01efJkbdu2Tc8++6wiIyPlcDjk7++vZ555RpK0du1ajRgxQrNnz6alfIhjpRsAAAAABsDp06fldDo1a9YsORwOrVy5UhcuXFBZWZkiIyPldDrl53d73bOiokKhoaEKDw83eGp4Gnu6AQAAAOD/4HK51NnZqZUrV6q6ulpms1khISHKz89XbGysnnzySdlsNvn5+Sk3N1cZGRmKj48ncA8T3F4OAAAAAPepr4sjMDBQcXFx+uOPP9zPhYWFKT8/X6+++qqmT5+u5ORklZaW6vz58+4jwzD08ZcGAAAAgPvU1tbmfhweHq4zZ86428il28H70KFD+uijjxQdHa2amho98sgjBkwKo7CnGwAAAADuQ3l5udLT02U2mzVlyhT5+fmppaVFH374oaZPn66goKC7CjE5kWJ4InQDAAAAQD/debRjQ0ODGhoaVFtbK7vdrvr6epWVlWnmzJm6evWqpk2bprCwMMXHxyszM/OeYyExPLCnGwAAAAD6oS80V1VV6eLFi7px44YWLFiglJQUSdKPP/6opKQkvfvuu7px44aam5tVWVmpxMRESfceC4nhgdANAAAAAP1gMpl05MgRpaenKzk5WVevXtXhw4cVExOj/Px8zZgxQ1OmTFFvb69eeOEFSWJ1GxSpAQAAAEB/1NXVac2aNcrJydHBgwdVUFAgm82m8ePHy8fHR/7+/goODtaJEyeMHhVehNANAAAAAP3Q3NyskJAQZWRkqLGxUcnJyVqxYoWys7MlSbW1tYqIiFBHR4e7wZxVbnB7OQAAAAD0g8lk0sSJE2W32/X444/r6aefVl5eniTp7NmzKisr0xNPPKGYmBhayuFGezkAAAAA9IPdbldUVJT+/vtvvf7669q+fbv7udWrV6uurk7FxcUKDg42cEp4G1a6AQAAAKAfHnzwQX3xxRdavny5goKCdOXKFXV1dWn//v06cOCATp8+TeDGPVjpBgAAAIB+6unp0YEDB/TGG2/IbDZr9OjRCggI0L59+xQTE2P0ePBChG4AAAAA+JeuXbsmu92u4OBghYWFady4cUaPBC9F6AYAAAAAwEM4MgwAAAAAAA8hdAMAAAAA4CGEbgAAAAAAPITQDQAAAACAhxC6AQAAAADwEEI3AAAAAAAeQugGAAAAAMBDCN0AAAAAAHgIoRsAAAAAAA8hdAMAAAAA4CGEbgAAAAAAPITQDQAAAACAh/wHtQBydgt4jWQAAAAASUVORK5CYII=",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "habits=['studying', 'sleeping','working_out', 'socializing','extracurriculars']\n",
+ "\n",
+ "group_means = df.groupby('stress')[habits].mean().T\n",
+ "group_means.columns.name = None\n",
+ "print(group_means)\n",
+ "\n",
+ "group_means.plot(kind='bar', figsize=(10, 6), colormap='coolwarm')\n",
+ "plt.title('Lifestyle Habits by Stress Level')\n",
+ "plt.ylabel('Average Hours Per Day')\n",
+ "plt.xticks(rotation=45)\n",
+ "plt.grid(True)\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "ab5aca61-42b1-4de1-a395-170159206935",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "T-tests\n",
+ "studying: t = 69.5036426410152\n",
+ "sleeping: t = -11.963697983726032\n",
+ "working_out: t = -10.127179710552255\n",
+ "socializing: t = -2.382354439613457\n",
+ "extracurriculars: t = -0.11617129827155753\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"T-tests\")\n",
+ "for h in habits:\n",
+ " high = df[df['stress'] == 'High'][h].to_numpy()\n",
+ " mod = df[df['stress'] == 'Moderate'][h].to_numpy()\n",
+ " low = df[df['stress'] == 'Low'][h].to_numpy()\n",
+ "\n",
+ " # Calculate means and standard deviations\n",
+ " mean_diff = np.mean(high) - np.mean(low)\n",
+ " pooled_std = np.sqrt(np.var(high, ddof=1)/len(high) + np.var(low, ddof=1)/len(low))\n",
+ " t_stat = mean_diff / pooled_std\n",
+ " \n",
+ " print(str(h) + \": t = \" + str(t_stat))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b9097148-1880-45eb-9780-e95fa7716bcb",
+ "metadata": {},
+ "source": [
+ "### Fourth Research Question: \n",
+ "## Are there clusters of students with similar lifestyle profiles and academic outcomes?\n",
+ "\n",
+ "### Methods\n",
+ "\n",
+ "*Explain how you will approach this research question below. Consider the following:* \n",
+ " - *Which aspects of the dataset will you use?* \n",
+ " - *How will you reorganize/store the data?* \n",
+ " - *What data science tools/functions will you use and why?*\n",
+ "\n",
+ "\n",
+ "To explore this question, I will use K-means clustering to identify natural groupings in the dataset based on habits. The focal categories are: `studying`,`sleeping`,`working_out`,`socializing`,`extracurriculars`. I will also include `GPA` and `stress` for post-cluster comparison, but not in the clustering itself. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "id": "0f19fcb6-6eb3-4ba1-a7af-2c10ee3065a5",
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "ModuleNotFoundError",
+ "evalue": "No module named 'sklearn'",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
+ "Cell \u001b[0;32mIn[38], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01msklearn\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpreprocessing\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m StandardScaler\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01msklearn\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcluster\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m KMeans\n",
+ "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'sklearn'"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.preprocessing import StandardScaler\n",
+ "from sklearn.cluster import KMeans\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "infectious-symbol",
+ "metadata": {},
+ "source": [
+ "# Discussion"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "furnished-camping",
+ "metadata": {
+ "code_folding": []
+ },
+ "source": [
+ "## Considerations"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bearing-stadium",
+ "metadata": {},
+ "source": [
+ "*It's important to recognize the limitations of our research.\n",
+ "Consider the following:*\n",
+ "\n",
+ "- *Do the results give an accurate depiction of your research question? Why or why not?*\n",
+ "- *What were limitations of your datset?*\n",
+ "- *Are there any known biases in the data?*\n",
+ "\n",
+ "✏️ *Write your answer below:*"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "beneficial-invasion",
+ "metadata": {},
+ "source": [
+ "## Summary"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "about-raise",
+ "metadata": {},
+ "source": [
+ "*Summarize what you discovered through the research. Consider the following:*\n",
+ "\n",
+ "- *What did you learn about your media consumption/digital habits?*\n",
+ "- *Did the results make sense?*\n",
+ "- *What was most surprising?*\n",
+ "- *How will this project impact you going forward?*\n",
+ "\n",
+ "✏️ *Write your answer below:*"
+ ]
+ }
+ ],
+ "metadata": {
+ "jupytext": {
+ "cell_metadata_json": true,
+ "text_representation": {
+ "extension": ".Rmd",
+ "format_name": "rmarkdown",
+ "format_version": "1.2",
+ "jupytext_version": "1.9.1"
+ }
+ },
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.3"
+ },
+ "toc": {
+ "base_numbering": 1,
+ "nav_menu": {},
+ "number_sections": false,
+ "sideBar": true,
+ "skip_h1_title": false,
+ "title_cell": "Table of Contents",
+ "title_sidebar": "Contents",
+ "toc_cell": false,
+ "toc_position": {},
+ "toc_section_display": true,
+ "toc_window_display": false
+ },
+ "varInspector": {
+ "cols": {
+ "lenName": 16,
+ "lenType": 16,
+ "lenVar": 40
+ },
+ "kernels_config": {
+ "python": {
+ "delete_cmd_postfix": "",
+ "delete_cmd_prefix": "del ",
+ "library": "var_list.py",
+ "varRefreshCmd": "print(var_dic_list())"
+ },
+ "r": {
+ "delete_cmd_postfix": ") ",
+ "delete_cmd_prefix": "rm(",
+ "library": "var_list.r",
+ "varRefreshCmd": "cat(var_dic_list()) "
+ }
+ },
+ "types_to_exclude": [
+ "module",
+ "function",
+ "builtin_function_or_method",
+ "instance",
+ "_Feature"
+ ],
+ "window_display": false
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/argument.ipynb b/argument.ipynb
index 4ed27b4..c5b05f2 100644
--- a/argument.ipynb
+++ b/argument.ipynb
@@ -13,7 +13,9 @@
"id": "understanding-numbers",
"metadata": {},
"source": [
- "*✏️ Write 2-3 sentences describing your research.*"
+ "This research explores how students’ daily lifestyle habits—such as study hours, sleep, physical activity, and social engagement—relate to their academic performance and stress levels. By analyzing patterns in a large dataset of self-reported behaviors and outcomes, the study aims to identify which habits most strongly influence GPA and well-being. The findings may offer practical insights for students seeking to balance productivity with personal wellness. \n",
+ "\n",
+ "It is important to study this because academic success is often viewed through the narrow lens of study hours alone, while other lifestyle factors may play equally significant roles. As students navigate demanding academic environments, understanding how their choices outside the classroom impact their GPA and well-being can lead to more effective support systems and healthier routines. I’m interested in this question because I want to be able to bridge academic performance with holistic wellness, offer insights that could inform school policies, counseling programs, and personal time management strategies. This topic resonates with broader conversations about student mental health and the importance of balance in education. By analyzing these relationships we can move beyond anecdotal advice and provide evidence-based recommendations."
]
},
{
@@ -21,7 +23,7 @@
"id": "greater-circular",
"metadata": {},
"source": [
- "## Overarching Question: [✏️ PUT YOUR QUESTION HERE ✏️]"
+ "## Overarching Question: How do students’ daily lifestyle habits—such as study time, sleep, physical activity, and social engagement—affect their academic performance and stress levels?"
]
},
{
@@ -29,7 +31,7 @@
"id": "appreciated-testimony",
"metadata": {},
"source": [
- "*✏️ Write 2-3 sentences explaining why this question.*"
+ "This question is important because academic success is often viewed through the narrow lens of study hours alone, while other lifestyle factors may play equally significant roles. As students navigate demanding academic environments, understanding how their choices outside the classroom impact their GPA and well-being can lead to more effective support systems and healthier routines. I’m interested in this question because I want to be able to bridge academic performance with holistic wellness, offer insights that could inform school policies, counseling programs, and personal time management strategies. This topic resonates with broader conversations about student mental health and the importance of balance in education. By analyzing these relationships we can move beyond anecdotal advice and provide evidence-based recommendations."
]
},
{
@@ -42,26 +44,26 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 16,
"id": "technical-evans",
"metadata": {},
"outputs": [],
"source": [
"#Include any import statements you will need\n",
"import pandas as pd\n",
- "import matplotlib.pyplot as plt"
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import numpy as np\n"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 12,
"id": "overhead-sigma",
"metadata": {},
"outputs": [],
"source": [
- "### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n",
- "\n",
- "file_name = \"YOUR_DATASET_FILE_NAME.csv\"\n",
+ "file_name = \"student_lifestyle_dataset.csv\"\n",
"dataset_path = \"data/\" + file_name\n",
"\n",
"df = pd.read_csv(dataset_path)"
@@ -69,10 +71,129 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 13,
"id": "heated-blade",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
Student_ID
\n",
+ "
Study_Hours_Per_Day
\n",
+ "
Extracurricular_Hours_Per_Day
\n",
+ "
Sleep_Hours_Per_Day
\n",
+ "
Social_Hours_Per_Day
\n",
+ "
Physical_Activity_Hours_Per_Day
\n",
+ "
GPA
\n",
+ "
Stress_Level
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
1
\n",
+ "
6.9
\n",
+ "
3.8
\n",
+ "
8.7
\n",
+ "
2.8
\n",
+ "
1.8
\n",
+ "
2.99
\n",
+ "
Moderate
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
2
\n",
+ "
5.3
\n",
+ "
3.5
\n",
+ "
8.0
\n",
+ "
4.2
\n",
+ "
3.0
\n",
+ "
2.75
\n",
+ "
Low
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
3
\n",
+ "
5.1
\n",
+ "
3.9
\n",
+ "
9.2
\n",
+ "
1.2
\n",
+ "
4.6
\n",
+ "
2.67
\n",
+ "
Low
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
4
\n",
+ "
6.5
\n",
+ "
2.1
\n",
+ "
7.2
\n",
+ "
1.7
\n",
+ "
6.5
\n",
+ "
2.88
\n",
+ "
Moderate
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
5
\n",
+ "
8.1
\n",
+ "
0.6
\n",
+ "
6.5
\n",
+ "
2.2
\n",
+ "
6.6
\n",
+ "
3.51
\n",
+ "
High
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Student_ID Study_Hours_Per_Day Extracurricular_Hours_Per_Day \\\n",
+ "0 1 6.9 3.8 \n",
+ "1 2 5.3 3.5 \n",
+ "2 3 5.1 3.9 \n",
+ "3 4 6.5 2.1 \n",
+ "4 5 8.1 0.6 \n",
+ "\n",
+ " Sleep_Hours_Per_Day Social_Hours_Per_Day Physical_Activity_Hours_Per_Day \\\n",
+ "0 8.7 2.8 1.8 \n",
+ "1 8.0 4.2 3.0 \n",
+ "2 9.2 1.2 4.6 \n",
+ "3 7.2 1.7 6.5 \n",
+ "4 6.5 2.2 6.6 \n",
+ "\n",
+ " GPA Stress_Level \n",
+ "0 2.99 Moderate \n",
+ "1 2.75 Low \n",
+ "2 2.67 Low \n",
+ "3 2.88 Moderate \n",
+ "4 3.51 High "
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"df.head()"
]
@@ -84,7 +205,133 @@
"source": [
"**Data Overview**\n",
"\n",
- "*✏️ Write 2-3 sentences describing this dataset. Be sure to include where the data comes from and what it contains.*"
+ "This [dataset](https://www.kaggle.com/datasets/steve1215rogg/student-lifestyle-dataset) was published on Kaggle by Sumit Kumar. It was created for educational and analytical purposes.The data was self-reported by students who participated in the survey through Google Forms. The form was shared with students across different educational institutions, primarily focusing on those in India and other South Asian countries, where the Cumulative GPA (CGPA) system is widely used. This ensures that the dataset is contextually relevant to the educational environment in these regions. \n",
+ "\n",
+ "The dataset contains data from 2,000 students collected via a Google Form survey. It includes information on study hours, extracurricular activities, sleep, socializing, physical activity, stress levels, and CGPA. The data covers an academic year from August 2023 to May 2024 and reflects student lifestyles. This dataset can help analyze the impact of daily habits on academic performance and student well-being.\n",
+ "\n",
+ ">Number of Records: 2000 rows \n",
+ ">Number of Columns: 8 columns \n",
+ ">Column Names: Student ID, Study Hours, Extracurricular Hours, Sleep Hours, Social Hours, Physical Activity Hours, GPA, and Stress level\n",
+ "\n",
+ "We're going to clean our data a little by renaming some of the headers and getting rid of Student_ID"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "5f8b95c7-829f-43c6-beeb-1ea529efb937",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "