Files
project_argument/argument.ipynb

430 lines
10 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "worldwide-blood",
"metadata": {},
"source": [
"# Introduction"
]
},
{
"cell_type": "markdown",
"id": "understanding-numbers",
"metadata": {},
"source": [
"*✏️ Write 2-3 sentences describing your research.*"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "16a88343-24ed-4a92-ae55-6cfd5d6b0eda",
"metadata": {},
"outputs": [],
"source": [
"#I am going to extract the first 15 rows from Fast_Food_dataset and analyze which foods wood be the better options if eating at one of these restaurants"
]
},
{
"cell_type": "markdown",
"id": "greater-circular",
"metadata": {},
"source": [
"## Overarching Question: [✏️ PUT YOUR QUESTION HERE ✏️]"
]
},
{
"cell_type": "markdown",
"id": "appreciated-testimony",
"metadata": {},
"source": [
"*✏️ Write 2-3 sentences explaining why this question.*"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5c1d1224-0292-4205-800f-ce0c75316075",
"metadata": {},
"outputs": [],
"source": [
"#Overarching Question: Are there healthy options at fast food restaurants?"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "37ad7c41-817d-47ce-9aeb-b3b58b5e7761",
"metadata": {},
"outputs": [],
"source": [
"#I chose this question because I generally try to eat healthy. Sometimes quick meals are a necessity. I am curious if common fast food restaurants truly offer healthier options "
]
},
{
"cell_type": "markdown",
"id": "permanent-pollution",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "technical-evans",
"metadata": {},
"outputs": [],
"source": [
"#Include any import statements you will need\n",
"\n",
"#python\n",
"\n",
"def pandas(pd):\n",
" import pandas as pd\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "overhead-sigma",
"metadata": {},
"outputs": [],
"source": [
"### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n",
"\n",
"# Load the dataset\n",
"def pandas(pd):\n",
" df = pd.read_csv('Fast_Food_Dataset/nutrition.csv')\n",
"\n",
" \n",
"\n",
" # Update this with the correct path\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "heated-blade",
"metadata": {},
"outputs": [],
"source": [
"#check first 15 rows\n",
"def data (read_csv):\n",
" data.head(15)\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "continental-franklin",
"metadata": {},
"source": [
"**Data Overview**\n",
"This dataset is showing the first 15 rows of Fast_Food_Dataset. It comes from Kaggle.com and contains nutritional information from fast food restaurants.\n",
"*✏️ Write 2-3 sentences describing this dataset. Be sure to include where the data comes from and what it contains.*"
]
},
{
"cell_type": "markdown",
"id": "infinite-instrument",
"metadata": {},
"source": [
"# Methods and Results"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "basic-canadian",
"metadata": {},
"outputs": [],
"source": [
"#Import any helper files you need here\n",
"\n",
"import numpy as np\n",
"import matplotlib as mpl\n",
"import matplotlib.artist as martist\n",
"import matplotlib.patches as mpatches\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "graduate-palmer",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "endless-variation",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
" \n",
"✏️ *Write your answer below:*\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0e3d2271-0361-4d42-a237-eff6b909c7b3",
"metadata": {},
"outputs": [],
"source": [
"#I will focus on rows 1-15 to reorganize the data into how many calories come from fat, which has the least amout of sodium and least amout of calories"
]
},
{
"cell_type": "markdown",
"id": "portuguese-japan",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "negative-highlight",
"metadata": {},
"outputs": [],
"source": [
"#######################################################################\n",
"\n",
"# Calculate calories from fat (assuming fat column is in grams)\n",
"# Formula: fat_grams * 9 calories per gram\n",
"def first_15():\n",
" first_15['fat_calories']= first_15['fat'] * 9\n",
"\n",
"### \n",
"### Your data analysis may include a statistic and/or a data visualization\n",
"#######################################################################"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "victorian-burning",
"metadata": {},
"outputs": [
{
"ename": "SyntaxError",
"evalue": "invalid syntax (2142274504.py, line 2)",
"output_type": "error",
"traceback": [
"\u001b[0;36m Cell \u001b[0;32mIn[16], line 2\u001b[0;36m\u001b[0m\n\u001b[0;31m def first_15('item', 'fat', 'fat_calories', 'calories'):\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
]
}
],
"source": [
"# Display relevant columns\n",
"def first_15('item', 'fat', 'fat_calories', 'calories'):\n",
" return first_15"
]
},
{
"cell_type": "markdown",
"id": "collectible-puppy",
"metadata": {},
"source": [
"## Second Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n"
]
},
{
"cell_type": "markdown",
"id": "demographic-future",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "incorporate-roller",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
"\n",
"✏️ *Write your answer below:*\n"
]
},
{
"cell_type": "markdown",
"id": "juvenile-creation",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "pursuant-surrey",
"metadata": {},
"outputs": [],
"source": [
"#######################################################################\n",
"### 💻 YOUR WORK GOES HERE TO ANSWER THE SECOND RESEARCH QUESTION 💻 \n",
"###\n",
"### Your data analysis may include a statistic and/or a data visualization\n",
"#######################################################################"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "located-night",
"metadata": {},
"outputs": [],
"source": [
"# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON "
]
},
{
"cell_type": "markdown",
"id": "infectious-symbol",
"metadata": {},
"source": [
"# Discussion"
]
},
{
"cell_type": "markdown",
"id": "furnished-camping",
"metadata": {
"code_folding": []
},
"source": [
"## Considerations"
]
},
{
"cell_type": "markdown",
"id": "bearing-stadium",
"metadata": {},
"source": [
"*It's important to recognize the limitations of our research.\n",
"Consider the following:*\n",
"\n",
"- *Do the results give an accurate depiction of your research question? Why or why not?*\n",
"- *What were limitations of your datset?*\n",
"- *Are there any known biases in the data?*\n",
"\n",
"✏️ *Write your answer below:*"
]
},
{
"cell_type": "markdown",
"id": "beneficial-invasion",
"metadata": {},
"source": [
"## Summary"
]
},
{
"cell_type": "markdown",
"id": "about-raise",
"metadata": {},
"source": [
"*Summarize what you discovered through the research. Consider the following:*\n",
"\n",
"- *What did you learn about your media consumption/digital habits?*\n",
"- *Did the results make sense?*\n",
"- *What was most surprising?*\n",
"- *How will this project impact you going forward?*\n",
"\n",
"✏️ *Write your answer below:*"
]
}
],
"metadata": {
"jupytext": {
"cell_metadata_json": true,
"text_representation": {
"extension": ".Rmd",
"format_name": "rmarkdown",
"format_version": "1.2",
"jupytext_version": "1.9.1"
}
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}