diff --git a/.ipynb_checkpoints/argument-checkpoint.ipynb b/.ipynb_checkpoints/argument-checkpoint.ipynb index 23ebdd8..8a134f1 100644 --- a/.ipynb_checkpoints/argument-checkpoint.ipynb +++ b/.ipynb_checkpoints/argument-checkpoint.ipynb @@ -96,7 +96,7 @@ "\n", "# Load the dataset\n", "def pandas(pd):\n", - " file_path = pd.read_csv(\"Fast_Food_Dataset/nutrition.csv\") \n", + " df = pd.read_csv('Fast_Food_Dataset/nutrition.csv')\n", "\n", " \n", "\n", @@ -106,14 +106,17 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 6, "id": "heated-blade", "metadata": {}, "outputs": [], "source": [ "#check first 15 rows\n", "def data (read_csv):\n", - " data.head(15)" + " data.head(15)\n", + "\n", + "\n", + "\n" ] }, { @@ -195,14 +198,18 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 8, "id": "negative-highlight", "metadata": {}, "outputs": [], "source": [ "#######################################################################\n", - "def file_path():\n", - " file_path = pd.read_csv(\"Fast_Food_Dataset/nutrition.csv\") \n", + "\n", + "# Calculate calories from fat (assuming fat column is in grams)\n", + "# Formula: fat_grams * 9 calories per gram\n", + "def first_15():\n", + " first_15['fat_calories']= first_15['fat'] * 9\n", + "\n", "### \n", "### Your data analysis may include a statistic and/or a data visualization\n", "#######################################################################" @@ -210,24 +217,23 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "id": "victorian-burning", "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'pd' is not defined", + "ename": "SyntaxError", + "evalue": "invalid syntax (2142274504.py, line 2)", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[14], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m file_path \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241m.\u001b[39mread_csv(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFast_Food_Dataset/nutrition.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "\u001b[0;31mNameError\u001b[0m: name 'pd' is not defined" + "\u001b[0;36m Cell \u001b[0;32mIn[16], line 2\u001b[0;36m\u001b[0m\n\u001b[0;31m def first_15('item', 'fat', 'fat_calories', 'calories'):\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ - "file_path = pd.read_csv(\"Fast_Food_Dataset/nutrition.csv\")" + "# Display relevant columns\n", + "def first_15('item', 'fat', 'fat_calories', 'calories'):\n", + " return first_15" ] }, { diff --git a/argument.ipynb b/argument.ipynb index 23ebdd8..8a134f1 100644 --- a/argument.ipynb +++ b/argument.ipynb @@ -96,7 +96,7 @@ "\n", "# Load the dataset\n", "def pandas(pd):\n", - " file_path = pd.read_csv(\"Fast_Food_Dataset/nutrition.csv\") \n", + " df = pd.read_csv('Fast_Food_Dataset/nutrition.csv')\n", "\n", " \n", "\n", @@ -106,14 +106,17 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 6, "id": "heated-blade", "metadata": {}, "outputs": [], "source": [ "#check first 15 rows\n", "def data (read_csv):\n", - " data.head(15)" + " data.head(15)\n", + "\n", + "\n", + "\n" ] }, { @@ -195,14 +198,18 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 8, "id": "negative-highlight", "metadata": {}, "outputs": [], "source": [ "#######################################################################\n", - "def file_path():\n", - " file_path = pd.read_csv(\"Fast_Food_Dataset/nutrition.csv\") \n", + "\n", + "# Calculate calories from fat (assuming fat column is in grams)\n", + "# Formula: fat_grams * 9 calories per gram\n", + "def first_15():\n", + " first_15['fat_calories']= first_15['fat'] * 9\n", + "\n", "### \n", "### Your data analysis may include a statistic and/or a data visualization\n", "#######################################################################" @@ -210,24 +217,23 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "id": "victorian-burning", "metadata": {}, "outputs": [ { - "ename": "NameError", - "evalue": "name 'pd' is not defined", + "ename": "SyntaxError", + "evalue": "invalid syntax (2142274504.py, line 2)", "output_type": "error", "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[14], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m file_path \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241m.\u001b[39mread_csv(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFast_Food_Dataset/nutrition.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", - "\u001b[0;31mNameError\u001b[0m: name 'pd' is not defined" + "\u001b[0;36m Cell \u001b[0;32mIn[16], line 2\u001b[0;36m\u001b[0m\n\u001b[0;31m def first_15('item', 'fat', 'fat_calories', 'calories'):\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ - "file_path = pd.read_csv(\"Fast_Food_Dataset/nutrition.csv\")" + "# Display relevant columns\n", + "def first_15('item', 'fat', 'fat_calories', 'calories'):\n", + " return first_15" ] }, {