{ "cells": [ { "cell_type": "markdown", "id": "worldwide-blood", "metadata": {}, "source": [ "# Introduction" ] }, { "cell_type": "markdown", "id": "understanding-numbers", "metadata": {}, "source": [ "This research examines teen technology habits as reported by teens in the year 2018. The connection between age and amount of time spent on technology is first examined, followed by an analysis of teen perceptions about fitting in and social media usage and how those perceptions vary based on technology usage." ] }, { "cell_type": "markdown", "id": "greater-circular", "metadata": {}, "source": [ "## Overarching Question: What effect does technology usage have on teen mental health?" ] }, { "cell_type": "markdown", "id": "appreciated-testimony", "metadata": {}, "source": [ "I first became interested in this topic after recently reading “The Anxious Generation” by Johnathan Haidt. In this book, Haidt explores how the wide prevalence of the smartphone and social media has rewired childhood for kids during middle school and early high school. His main premise is that increased social media and smartphone usage has led to the massive increases in depression and anxiety we have seen since 2012, which is about the same time the smartphone became readily available. While I think this project will be similar to his work, I will not set out to look at his main premise, but rather explore some other ideas related to teen tech habits. This question also has relevance to my work as a teacher where social media is a daily part of my students’ lives. " ] }, { "cell_type": "markdown", "id": "permanent-pollution", "metadata": {}, "source": [ "# Data" ] }, { "cell_type": "code", "execution_count": 1, "id": "technical-evans", "metadata": {}, "outputs": [], "source": [ "#Include any import statements you will need\n", "import pandas as pd\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "id": "overhead-sigma", "metadata": {}, "outputs": [], "source": [ "### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n", "\n", "file_name = \"March 7-April 10, 2018 - Teens and Tech Survey - CSV.csv\"\n", "dataset_path = \"data/\" + file_name\n", "\n", "df = pd.read_csv(dataset_path)" ] }, { "cell_type": "code", "execution_count": 3, "id": "heated-blade", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | CASEID | \n", "SURV_LANG | \n", "FITIN | \n", "FRIEND1 | \n", "FRIEND2 | \n", "FRIEND3 | \n", "FRIEND4_1 | \n", "FRIEND4_2 | \n", "FRIEND4_3 | \n", "FRIEND4_4 | \n", "... | \n", "HH25 | \n", "HH612 | \n", "HH1317 | \n", "HH18OV | \n", "CO_DATE | \n", "DURATION | \n", "SURV_MODE | \n", "MODE_END | \n", "DEVICE | \n", "WEIGHT | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "2 | \n", "EN | \n", "NaN | \n", "3 | \n", "1 | \n", "2 | \n", "0 | \n", "1 | \n", "0 | \n", "1 | \n", "... | \n", "1 | \n", "3 | \n", "2 | \n", "4 | \n", "20180322 | \n", "22.866667 | \n", "1 | \n", "1 | \n", "Desktop | \n", "0.794092 | \n", "
1 | \n", "7 | \n", "EN | \n", "2.0 | \n", "2 | \n", "1 | \n", "3 | \n", "1 | \n", "1 | \n", "1 | \n", "0 | \n", "... | \n", "0 | \n", "2 | \n", "2 | \n", "4 | \n", "20180324 | \n", "17.850000 | \n", "2 | \n", "2 | \n", "Smartphone | \n", "0.313173 | \n", "
2 | \n", "9 | \n", "EN | \n", "2.0 | \n", "2 | \n", "1 | \n", "3 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "... | \n", "1 | \n", "2 | \n", "1 | \n", "2 | \n", "20180323 | \n", "12.316667 | \n", "2 | \n", "2 | \n", "Smartphone | \n", "0.357175 | \n", "
3 | \n", "10 | \n", "EN | \n", "1.0 | \n", "4 | \n", "3 | \n", "2 | \n", "0 | \n", "1 | \n", "1 | \n", "0 | \n", "... | \n", "0 | \n", "0 | \n", "1 | \n", "2 | \n", "20180402 | \n", "9.733333 | \n", "2 | \n", "2 | \n", "Smartphone | \n", "0.762108 | \n", "
4 | \n", "13 | \n", "EN | \n", "2.0 | \n", "4 | \n", "4 | \n", "2 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "... | \n", "0 | \n", "1 | \n", "2 | \n", "3 | \n", "20180308 | \n", "14.633333 | \n", "2 | \n", "2 | \n", "Smartphone | \n", "0.842675 | \n", "
5 rows × 176 columns
\n", "\n", " | AGE | \n", "INTREQ | \n", "FITIN | \n", "SOC1 | \n", "
---|---|---|---|---|
0 | \n", "14 | \n", "5 | \n", "NaN | \n", "3.0 | \n", "
1 | \n", "15 | \n", "1 | \n", "2.0 | \n", "2.0 | \n", "
2 | \n", "13 | \n", "2 | \n", "2.0 | \n", "3.0 | \n", "
3 | \n", "17 | \n", "1 | \n", "1.0 | \n", "2.0 | \n", "
4 | \n", "15 | \n", "2 | \n", "2.0 | \n", "2.0 | \n", "