\n",
" \n",
"\n",
@@ -379,14 +379,14 @@
],
"text/plain": [
" AGE INTREQ FITIN SOC1\n",
- "0 14 5 77 3\n",
- "1 15 1 2 2\n",
- "2 13 2 2 3\n",
- "3 17 1 1 2\n",
- "4 15 2 2 2"
+ "0 14 5 NaN 3.0\n",
+ "1 15 1 2.0 2.0\n",
+ "2 13 2 2.0 3.0\n",
+ "3 17 1 1.0 2.0\n",
+ "4 15 2 2.0 2.0"
]
},
- "execution_count": 48,
+ "execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@@ -404,7 +404,7 @@
"AGE indicates participant age\n",
"INTREQ indicates frequency of which a teen uses technology (further defined below)\n",
"FITIN indicates how well a teen thinks he or she fits in\n",
- "SOCI indicates what effect teens think social media has on teens their age."
+ "SOC1 indicates what effect teens think social media has on teens their age."
]
},
{
@@ -434,7 +434,25 @@
" - *What data science tools/functions will you use and why?* \n",
" \n",
"✏️ *Write your answer below:*\n",
- "\n"
+ "\n",
+ "Teens in this survery were grouped into 5 age categories ranging incluisviely from age 13 to age 17. The number of participants in each category was roughly equal as indicated in the table below."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "def017b8-7537-4963-9c50-2f9087260cfb",
+ "metadata": {},
+ "source": [
+ "Figure 1 shows a countplot of number of teens vs. age, and broken down based on their answer to the question \"How frequently do you use technology?\" A countplot was selected here in order to indicate how many participants fit in a certain category.\n",
+ "\n",
+ "The numeric scores on the legend correspond as follows:\n",
+ "1- Almost constantly\n",
+ "2- Several Times a Day\n",
+ "3- About Once a Day\n",
+ "4- Several times a week\n",
+ "5- Less often\n",
+ "\n",
+ "Figure 2 focuses on the most frequent response (almost constantly and several times a day) and then sorts those responses by age to provide another way to look at the most frequent responses in the data."
]
},
{
@@ -445,13 +463,19 @@
"### Results "
]
},
+ {
+ "cell_type": "markdown",
+ "id": "405135b6-700d-40b8-bc0e-3ed338190f74",
+ "metadata": {},
+ "source": [
+ "Table 1: Percent of Respondents in Each Age Category"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 65,
- "id": "39209c3f-7c3f-4a3e-abbd-7904e485e9e3",
- "metadata": {
- "tags": []
- },
+ "execution_count": 5,
+ "id": "bdf7dd26-d0c1-469e-9458-bf014cd02200",
+ "metadata": {},
"outputs": [
{
"data": {
@@ -464,20 +488,28 @@
"Name: AGE, dtype: float64"
]
},
- "execution_count": 65,
+ "execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "new_df.AGE.value_counts(normalize=True)\n",
- "\n",
- "\n"
+ "new_df.AGE.value_counts(normalize=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c7297da9-bfaf-415d-aa60-b9353564d256",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "Figure 1: Number of Respondents in Each Age Category Bassed on How Frequently They Utilize Technology"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"id": "negative-highlight",
"metadata": {},
"outputs": [],
@@ -488,7 +520,7 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 7,
"id": "victorian-burning",
"metadata": {},
"outputs": [
@@ -498,7 +530,7 @@
""
]
},
- "execution_count": 29,
+ "execution_count": 7,
"metadata": {},
"output_type": "execute_result"
},
@@ -523,9 +555,17 @@
"#legend(handles, new_labels)"
]
},
+ {
+ "cell_type": "markdown",
+ "id": "096c0ad1-c7f0-4984-ad86-1b07e4ef6478",
+ "metadata": {},
+ "source": [
+ "Figure 2: Number of Teens That Use Technology Almost Constantly or Several Times Per Day Sorted by Age"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 45,
+ "execution_count": 8,
"id": "2eff3a2b-30ca-4cf3-b365-d41acc121ece",
"metadata": {
"tags": []
@@ -535,7 +575,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/var/folders/c3/lngy07lx6hx3_kdztwrlr7j80000gn/T/ipykernel_6406/2489872726.py:3: SettingWithCopyWarning: \n",
+ "/var/folders/c3/lngy07lx6hx3_kdztwrlr7j80000gn/T/ipykernel_12977/2489872726.py:3: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
@@ -552,7 +592,7 @@
},
{
"cell_type": "code",
- "execution_count": 46,
+ "execution_count": 9,
"id": "fa39e859-5e46-4592-a0ac-d4ffd00a5038",
"metadata": {
"tags": []
@@ -564,7 +604,7 @@
""
]
},
- "execution_count": 46,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
@@ -588,7 +628,7 @@
"id": "collectible-puppy",
"metadata": {},
"source": [
- "## Second Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n"
+ "## Second Research Question: How does frequency of using technology correspond with how well a teen perceives he or she fits in? and How does frequency of using social media correspond with how much a teen thinks social media has an effect on people their age?\n"
]
},
{
@@ -609,7 +649,13 @@
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
"\n",
- "✏️ *Write your answer below:*\n"
+ "✏️ *Write your answer below:*\n",
+ "This question will continue to look at the responses sorted by age, but this time will focus on the responses to 2 questions.\n",
+ "\n",
+ "The first, \"In general, which of the following statements comes closest to describing how you see yourself compared with other people your age where you live?\" where the choices were 1-I tend to fit in pretty easily or 2-I tend to stand out.\n",
+ "\n",
+ "And the second, \"Overall, what effect would you say social media has had on people your age?\", where the choices were 1-mostly positive, 2- mostly negative, or 3- neither positive or negative.\n",
+ "\n"
]
},
{
@@ -622,26 +668,64 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 10,
"id": "pursuant-surrey",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG1CAYAAAAWb5UUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0eElEQVR4nO3deXhU9aH/8c+cyZ4wEEJCEEEgbCKyFawoW1NXilXkVi9lFwSUpaACZVECConsKgIBESyLuFNQf1cWbRGuptCKCxiCCigICRBICGSdmd8flrmmCRiSSc4J5/16njwP8z3fmfPJHJ/Mx7ONw+v1egUAAGAThtkBAAAAqhLlBwAA2ArlBwAA2ArlBwAA2ArlBwAA2ArlBwAA2ArlBwAA2ArlBwAA2ArlBwAA2EqA2QGsyOv1yuPhxtcAAFQXhuGQw+Eo01zKTyk8Hq8yM8+bHQMAAJRR7drhcjrLVn447AUAAGyF8gMAAGyF8gMAAGyF8gMAAGyFE54BADDZT1cZe+TxuM2OYllOZ4AMwz/7bCg/AACYxOv1Kjc3Rzk5WRSfMggNjZDLVbvMl7RfCuUHAACTZGdnKjc3RyEh4QoJCZNhOCv8wX418nq9KijIV07OGUlSzZpRFXo9yg8AACbweNzKzT2viIhaioioaXYcywsKCpYk5eScUY0akRU6BMYJzwAAmMDtdkvyKjg4xOwo1cbFAuR2F1XodSg/AACYisNcZeWvQ4KUHwAAYCuUHwAAYCuc8AwAwFVg1qwE/b//9+4llz/9dJJyc3M1e/YMvfHGJtWrd426dOn4i687Zcp09ex5j0aPHi5JWrx4uSRp5cpkrVq1QmPGjNeDD/YrNc9nn/1Tb765uZy/UeWh/AAAcJWIiorSrFnzSl3WsGFD7dy5o9jYsmWrij0eOXKIevW6V7163ecbq1//2suuc/nyJbr11m669toG5QttAspPBRiGQ4bBiWrl5fF45fF4zY4BAFeNwMAgtW59Y5nnlzY3Ojrmil4jMDBIiYkztXjx8mpzjyLKTzkZhkO1aoXJ6bTuaVNej0cOP90KvDJ4PG6dOZNLAQKAamzMmPFKTJypN97YoAce6Gt2nDKh/JSTYTjkdBp68dVdOpaRZXacEtq2uEYP3tVOh95dodzTx82OU0JoVD017vWwDMNB+QEAPyoqKnkPHKez8u4c/bvf/V4ffbRNy5e/qFtv7fqLh8msgPJTQccysnT42BmzY5RwTbRLkpR7+rhy0783OQ0AoCqcOHFcPXrcXGJ8xIjRGjBgcKWtd+LEqRo48EElJs7UCy8kW/7wF+UHAICrRFRUHT377IIS49HRMZW63piYuho9epySkp7Rm2++pj/84b8rdX0VRfkBAOAqERgYqJYtW5my7l697tOHH25XcvJi3XJLF1MylJV1z4YFAADVyqRJU+V0OpWYOFNer3XP56T8AAAAv6hbN1ajRo3T3r3/0s6dfzc7ziVRfgAAgN/8/ve91anTr5WTk2N2lEui/AAAAL+aNOlJhYWFmx3jkhxeKx+UM4nb7VFm5vnLzgkIMBQZGa4pz71vyUvdb2l3nUb/sYv2vzLTkpe6h9ZtqFaDntKZM+dVVOQxOw4AVLnCwgKdPn1cUVH1FBgYZHacauFy71nt2uFlvvEwe34AAICtUH4AAICtWOo+P8nJydq5c6fWrFkjSRowYID+8Y9/lDr32Wef1X333Se326327dsrPz+/2PLRo0drzJgxlZ4ZAABUL5YpP+vWrdOiRYvUsWNH39gLL7ygwsJC32Ov16vx48crKytLt99+uyTp8OHDys/P11//+ldFRUX55oaFhVVdeAAAUG2YXn7S09M1ffp0paSkqFGjRsWW1apVq9jjtWvX6osvvtBf//pXhYf/dBb5gQMHFBERoZYtW1ZRYgAAUJ2Zfs7Pvn37FBgYqE2bNqlt27aXnJeZmalFixbpkUceUZMmTXzjBw4cUFxcXFVEBQAAVwHT9/zEx8crPj7+F+etWLFCISEhGjp0aLHxtLQ0FRUVaejQoUpNTVXdunU1aNAg3XvvvRXKFRBw+V5Y1svpcHm8jwDsyuOx9jefW5nT6fjFz+nLMb38lEVOTo5ef/11jR49WsHBwcWWHTx4UB6PR2PHjlVsbKz+/ve/a/LkySosLNR//dd/lWt9huFQZKR1b850NXG5Qs2OAACmyMtz6tQpo8If5Hbi8ThkGIZq1gxTSEhIuV+nWpSfbdu2qaCgQH369Cmx7N1335Xb7fadA9SyZUv9+OOPWrlyZbnLj8fjVXb2hcvOcToNPrj9IDs7V243NzkEYD8FBfnyeDxyu72l3uzVMBwyjKrfO+TxeOXxWPP+x263Vx6PR1lZF5Sb6y62zOUKLfPRhGpTfrp37y6Xy1ViWWnNr3nz5tq0aVOF1sldh6uG2+3hvQZgS273pQuGYThUq1aYKacGuN0enT17oUIFaM2aVUpJ+USLFy+/5JysrLNatGiePvlklxwOh2677U6NGvWnMu3RuVRhLKtqUX727NlT6j17srOzddttt+nPf/6z7r//ft/4l19+qWbNmlVlRAAA/MYwHHI6Db346i4dy8iqsvXWj6mpUX1vlWE4yl1+3n77Da1YsVRt2rS77Lxp0yYpLy9Xzz23VDk555SYOFO5uRc0bdqMcq33Sli+/Bw/flxnzpwp9VJ2l8ulm2++WQsXLlRUVJSuu+46bdmyRZs2bVJycrIJaQEA8J9jGVmW/P7I0pw6dVJz5szWZ5/tUYMGDS8796uvvtBnn/1Ta9e+oUaNGkuSJk6cqscfH6MRI0YpOjqmUrNa/gyrkydPSip5z5+LZs+erZ49e2r69Om655579P777+v5559X165dqzAlAAD2lpr6tQIDA7R69atq1ar1Zed+/vlnioqq4ys+ktS+/a/kcDj0xRd7Kzmpxfb8JCUllRhr06aNDhw4cMnnREREaPLkyZo8eXJlRgMAAJfRpUs3denSrUxzT57MUExM3WJjgYGBcrlqKj09vTLiFWP5PT8AAODqkpeXp6CgoBLjQUFBKijIL+UZ/kX5AQAAVSo4OFgFBQUlxgsKChQaWvm3kaH8AACAKhUTU1enT58qNlZYWKjs7CzVqVO5JztLlB8AAFDF2rbtoIyMdB09+oNv7LPP/ilJatPm0t/z6S+UHwAAUKncbrdOnz6l/Pw8SdINN7TWjTe21fTpU/T11/v0r3/t0dy5s3XXXb+r9MvcJYtd7QUAAP5P/ZiaV8X6MjLS9Yc//F5TpkxXz573yOFwaPbsuZo//1mNHTtSwcHB6tHjNo0ZM75S1v+fKD8AAFiMx+OV2+3RqL63Vvm63W5Phb/ba+rUhGKP69W7Rjt37ik2FhlZW88882yF1lNelB8AACzG4/Hq7NkLfLFpJaH8AABgQXYoIWbhhGcAAGArlB8AAGArlB8AAGArlB8AAGArlB8AAGArlB8AAGArlB8AAGAr3OcHAAALMgwHNzmsJJQfoAqY9UesrOzwxw6oTgzDocjIUBmGs8rX7fG4deZM7hX/TcjOzlJy8ov63//dqfPnzysurqlGjhyjtm3blTr/+PEftXDhHO3d+5lCQ0PUq9d9euih4XI6K/93pvwAlczMP2JlVd4/dgAqx0//w+TUoXdXKPf08Spbb2hUPTXu9bAMw3HFfw+mT5+izMzTSkiYpcjI2nrzzQ167LFRWrVqnRo2bFRsblFRkR57bLQaNGioZctW6ujRo0pKelqGYWjo0BF+/I1KR/kBKplZf8TKqiJ/7ABUrtzTx5Wb/r3ZMX7R0aM/aPfuFC1Z8pLatGknSRo/fqJSUj7Rli3/o2HDRhab/9FH25SefkLJyavlcrnUpElTnTmTqSVLntOAAUMUFBRUqXkpP0AVqS5/xADgStWsWUtz5y5Sy5atfGMOh0MOh0PnzmWXmP/553vVvHlLuVwu39ivftVJ58+f18GDabrhhtaVmpervQAAQIXUqFFDnTt3KbbH5m9/266jR3/Qr399S4n5J0+mKyambrGxOnWiJUkZGScqN6woPwAAwM++/PJzzZ49U927/0a33NKlxPK8vHwFBgYWG7tYnAoKCio9H+UHAAD4zccf/03jx4/SDTe01lNPPVPqnODgYBUWFhYbu1h6QkJCKzkh5QcAAPjJW2+9pqlTJ+rWW7tqzpxFCg4OLnVeTExdnTp1stjYxcfR0dGVnpPyAwAAKuydd97UwoVzdf/9DyghYXaJw1o/165de6Wlper8+Rzf2D//uVthYeFq1qxFpWel/AAAgAr5/vsjeu65eerW7TcaMGCwMjNP6/TpUzp9+pRycnJUWFio06dP+Q51de3aQ1FRdfTUU1P0zTcH9fHHf1Ny8ov67//ud9nS5C9c6g4AgEWFRtWrFuv729+2q6ioSDt2fKQdOz4qtuzuu3vp7rt7aezYkXr++WXq0KGjgoODNX/+C5o/P0nDhw+Wy+XS/ff/QYMHD/PHr/GLKD8AAFjMT18541bjXg+bsG73Fd/wdODAhzRw4EOXnbNz555ij6+9toEWLnzxivP5A+UHAACL8Xi8OnMmly82rSSUHwAALMgOJcQsnPAMAABshfIDAABshfIDAABshfIDAICpOK+nrLxe/7xXlB8AAEzgdDolOZSfn2d2lGqjoCBfkuR0Vux6LUtd7ZWcnKydO3dqzZo1vrFp06bpjTfeKDavfv36+vDDDyVJHo9Hixcv1htvvKFz586pU6dOeuqpp9SgQYMqzQ4AwJUwDKdCQ8OVk3NWRUWFCgkJk2E45XBU/eXtVuf1elVQkK+cnDMKDY2QYVRs341lys+6deu0aNEidezYsdj4gQMHNHLkSPXv39839lNb/smSJUu0fv16JSUlKTY2VnPnztWwYcO0efNmBQUFVVl+AACulMtVW4GBwcrJOau8vPNmx7G80NAIuVy1K/w6ppef9PR0TZ8+XSkpKWrUqFGxZV6vV998842GDx9e6re8FhQU6OWXX9YTTzyhHj16SJIWLlyorl27asuWLerVq1cV/AYAAJSPw+FQWFiEQkPD5fF45PG4zY5kWU5nQIX3+FxkevnZt2+fAgMDtWnTJr344os6duyYb9n333+vCxcuqEmTJqU+NzU1VefPn1fnzp19Yy6XS61atdLu3bspPwCAasHhcMjpdBY7soHKY3r5iY+PV3x8fKnL0tLSJElr1qzRjh07ZBiGunXrpvHjx6tGjRo6ceKEJKleveJfxBYTE+NbVl4BAZdvl04n54r7gx3ex+ryO1aXnABQUaaXn8tJS0uTYRiKiYnRsmXL9P3332vOnDk6ePCgXnnlFeXm5kpSiXN7goODlZWVVe71GoZDkZHhFcqOsnG5Qs2OgH9jWwCwC0uXn0ceeUR//OMfFRkZKUlq3ry5oqOj9cADD+jLL79USEiIpJ/O/bn4b0nKz89XaGj5/5B7PF5lZ1+47Byn0+DDwg+ys3PldnvMjlGpqst/K3bYFgCuXi5XaJn3YFu6/BiG4Ss+FzVr1kySdOLECd/hroyMDDVs2NA3JyMjQy1atKjQuouK+BCoCm63h/faItgWAOzC0gf5J06cqMGDBxcb+/LLLyVJTZs2VcuWLRUREaGUlBTf8uzsbO3fv1+dOnWqyqgAAKCasHT5ufPOO/XJJ59o8eLF+v777/X3v/9dU6ZMUa9evRQXF6egoCD1799f8+bN0/bt25Wamqrx48crNjZWd9xxh9nxAQCABVn6sNdvf/tbLVq0SMuXL9eKFStUo0YN3XPPPRo3bpxvztixY1VUVKRp06YpLy9PnTp10sqVKxUYGGhecAAAYFmWKj9JSUklxu6++27dfffdl3yO0+nUhAkTNGHChMqMBgAArhKWPuwFAADgb5QfAABgK5QfAABgK5QfAABgK5QfAABgK5QfAABgK5QfAABgK5QfAABgK5QfAABgK5QfAABgK5QfAABgK5QfAABgK5QfAABgK5b6VnegvAzDIcNwmB2jVE4n/48BAFZC+UG1ZxgO1aoVRskAAJQJ5QfVnmE45HQaevHVXTqWkWV2nBLatrhGD97VzuwYAIB/o/zgqnEsI0uHj50xO0YJ10S7zI4AAPgZjhMAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbofwAAABbsVT5SU5O1oABA4qNffjhh+rTp4/at2+v+Ph4Pfvss8rLy/Mt/+c//6kWLVqU+ElJSanq+AAAoBoIMDvARevWrdOiRYvUsWNH39iePXs0evRojR07VnfddZeOHDmip556SmfPnlViYqIk6cCBA2rYsKHWr19f7PVq1qxZpfkBAED1YPqen/T0dI0cOVLz5s1To0aNii3bsGGDfv3rX2vkyJFq1KiRunfvrvHjx2vz5s0qKCiQJKWlpalp06aKjo4u9hMUFGTCbwMAAKzO9PKzb98+BQYGatOmTWrbtm2xZQ899JAmTZpUbMwwDBUWFionJ0fST3t+4uLiqiwvAACo3kw/7BUfH6/4+PhSl7Vq1arY48LCQq1evVqtW7dW7dq1JUkHDx5UZGSk7r//fqWnp6t58+YaP3682rRpU6FcAQGX74VOp+m98argj/eRbeEfvI8A7ML08lNWRUVFmjhxog4ePKh169ZJko4fP65z587pwoULmjZtmpxOp9auXav+/fvr7bffVtOmTcu1LsNwKDIy3J/xcQkuV6jZEfBvbAsAdlEtyk9OTo7GjRunf/zjH1q8eLFvr069evW0e/duhYaGKjAwUJJ04403av/+/VqzZo1mzJhRrvV5PF5lZ1+47Byn0+DDwg+ys3Pldnsq9BpsC//wx7YAALO4XKFl3oNt+fKTkZGhhx9+WMeOHdPKlSvVqVOnYstdLlexx4ZhKC4uTunp6RVab1ERHwJVwe328F5bBNsCgF1Y+iB/VlaWBg0apMzMTK1bt65E8dmxY4fat2+vH374wTdWVFSk1NTUch/yAgAAVzdL7/lJTEzUDz/8oJdeekm1a9fWyZMnfctq166tDh06KDIyUpMmTdKUKVMUGBio5cuX6+zZsxo8eLB5wQEAgGVZtvy43W69//77Kiws1KBBg0os3759u6699lqtXr1a8+bN09ChQ5Wfn69f/epXWrt2rerUqWNCagAAYHWWKj9JSUm+fzudTn3xxRe/+JyGDRvq+eefr8xYAADgKmLpc34AAAD8jfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABshfIDAABspVzlZ/fu3Tp//nypy7Kzs/Xee+9VKBQAAEBlKVf5GThwoL799ttSl+3fv1+TJ0+uUCgAAIDKElDWiZMmTdLx48clSV6vVwkJCYqIiCgx7/Dhw6pTp47/EgIAAPhRmff83HnnnfJ6vfJ6vb6xi48v/hiGoXbt2ikxMbFSwgIAAFRUmff8xMfHKz4+XpI0YMAAJSQkKC4urtKCAQAAVIYyl5+fW7Nmjb9zAAAAVIlylZ+8vDwtXbpUH330kXJzc+XxeIotdzgc2rZtm18CAgAA+FO5ys+sWbP05ptv6qabbtL1118vw/DP7YKSk5O1c+fOYnuWvv76a82aNUtfffWVateurcGDB2vgwIG+5R6PR4sXL9Ybb7yhc+fOqVOnTnrqqafUoEEDv2QCAABXl3KVny1btmj8+PEaPny434KsW7dOixYtUseOHX1jZ86c0ZAhQxQfH68ZM2Zo7969mjFjhsLDw9WnTx9J0pIlS7R+/XolJSUpNjZWc+fO1bBhw7R582YFBQX5LR8AALg6lKv8FBYWqk2bNn4JkJ6erunTpyslJUWNGjUqtuz1119XYGCgZs6cqYCAAMXFxenIkSNavny5+vTpo4KCAr388st64okn1KNHD0nSwoUL1bVrV23ZskW9evXyS0YAAHD1KNfxqi5dumjHjh1+CbBv3z4FBgZq06ZNatu2bbFle/bs0U033aSAgP/raDfffLMOHz6sU6dOKTU1VefPn1fnzp19y10ul1q1aqXdu3f7JR8AALi6lGvPT8+ePTV9+nRlZmaqbdu2Cg0NLTHnvvvuK9Nr/fwS+v904sQJNW/evNhYTEyMJOn48eM6ceKEJKlevXol5lxcVl4BAZfvhU4nX4vmD/54H9kW/sH7CMAuylV+xo0bJ0nauHGjNm7cWGK5w+Eoc/m5nLy8vBLn7QQHB0uS8vPzlZubK0mlzsnKyir3eg3DocjI8HI/H2XncpUszjAH2wKAXZSr/Gzfvt3fOUoVEhKigoKCYmP5+fmSpLCwMIWEhEiSCgoKfP++OKe0vVFl5fF4lZ194bJznE6DDws/yM7Oldvt+eWJl8G28A9/bAsAMIvLFVrmPdjlKj/169cvz9OuWGxsrDIyMoqNXXxct25dFRUV+cYaNmxYbE6LFi0qtO6iIj4EqoLb7eG9tgi2BQC7KFf5Wbx48S/OGT16dHleuphOnTppw4YNcrvdcjqdkqRPP/1UjRs3VlRUlGrUqKGIiAilpKT4yk92drb279+v/v37V3j9AADg6uP38hMREaGYmBi/lJ8+ffropZde0tSpUzVs2DB98cUXWr16tWbMmCHpp3N9+vfvr3nz5ql27dqqX7++5s6dq9jYWN1xxx0VXj8AALj6lKv8pKamlhi7cOGC9uzZo4SEBD355JMVDiZJUVFReumllzRr1iz17t1b0dHRmjhxonr37u2bM3bsWBUVFWnatGnKy8tTp06dtHLlSgUGBvolAwAAuLqUq/yUJiwsTN26ddOoUaM0Z84cvfPOO1f8GklJSSXG2rRpo9dee+2Sz3E6nZowYYImTJhwxesDAAD24/cbe1xzzTX69ttv/f2yAAAAfuG3PT9er1cnTpzQSy+9VGVXgwEAAFypcpWfli1byuFwlLrM6/Vqzpw5FQoFAABQWcpVfkaNGlVq+YmIiFCPHj1KfEEpAACAVZSr/IwZM8bfOQAAAKpEuc/5yczM1Msvv6x//OMfys7OVmRkpDp27KjBgwcrKirKnxkBAAD8plxXe504cUK9e/fWK6+8ouDgYLVq1UoBAQFatWqV7rvvPqWnp/s7JwAAgF+Ua8/P3LlzFRAQoPfff18NGjTwjf/www966KGHtHDhwlLv2QMAAGC2cu352blzp8aOHVus+EhSgwYNNGrUKO3YscMv4QAAAPytXOXH7XYrMjKy1GW1a9dWTk5OhUIBAABUlnKVnxYtWmjz5s2lLvvrX/+q5s2bVygUAABAZSnXOT+PPvqohg4dqqysLPXs2VPR0dE6efKk3nvvPe3cuVPPP/+8v3MCAAD4RbnKz6233qqkpCTNmzev2Pk90dHRSkxM1O233+63gAAAAP5U7vv8ZGRkqFWrVpo0aZKysrKUmpqqF154gfN9AACApZWr/Lz88statGiR+vfvr7i4OElSvXr19N133ykpKUnBwcH6wx/+4NegAAAA/lCu8rNhwwaNGzdOw4cP943Vq1dP06ZNU506dbR69WrKDwAAsKRyXe2Vnp6uG2+8sdRlbdu21dGjRysUCgAAoLKUq/zUr19fn3zySanLdu/erdjY2AqFAgAAqCzlOuz1wAMPaO7cuSosLNRtt92mqKgoZWZm6qOPPtKqVav0+OOP+zsnAACAX5Sr/AwePFjp6elas2aNVq9e7Rt3Op0aNGiQhgwZ4q98AAAAflXuS90nTZqkRx99VHv37tXZs2flcrnUpk2bS37tBQAAgBWUu/xIUo0aNdS1a1d/ZQEAAKh05TrhGQAAoLqi/AAAAFuh/AAAAFuh/AAAAFuh/AAAAFuh/AAAAFuh/AAAAFuh/AAAAFuh/AAAAFuh/AAAAFuh/AAAAFuh/AAAAFuh/AAAAFuh/AAAAFsJMDvAL0lJSdHAgQNLXXbttddq+/btWrp0qRYtWlRi+YEDByo5HQAAqG4sX37at2+vnTt3Fhvbu3evxowZo0cffVTSTyXn3nvv1YQJE8yICAAAqhHLl5+goCBFR0f7Hl+4cEGJiYnq3bu3+vTpI0lKS0vTAw88UGweAABAaardOT/Lli1Tbm6uJk2aJEkqKCjQ4cOH1aRJE5OTAQCA6sDye35+LjMzU6tXr9bjjz+uWrVqSZK++eYbud1uffDBB5o1a5by8/PVqVMnTZgwQTExMeVeV0DA5Xuh01nteqMl+eN9ZFv4B+8jALuoVuVn/fr1qlGjhh588EHfWFpamiQpNDRUzz33nE6fPq0FCxZo4MCB2rhxo0JCQq54PYbhUGRkuN9y49JcrlCzI+Df2BYA7KJalZ+NGzfqvvvuK1Zo7rvvPnXr1k21a9f2jTVr1kzdunXThx9+qJ49e17xejwer7KzL1x2jtNp8GHhB9nZuXK7PRV6DbaFf/hjWwCAWVyu0DLvwa425Sc1NVU//PCD7rnnnhLLfl58JCkmJka1atXSiRMnyr2+oiI+BKqC2+3hvbYItgUAu6g2B/n37NmjqKgotWzZstj4woULdeedd8rr9frGjh49qjNnzqhp06ZVHRMAAFhctSk/+/fvV4sWLUqM33777Tp27JgSEhJ06NAh7d69W2PGjFGHDh3UtWtXE5ICAAArqzbl5+TJk74rvH6udevWWrFihQ4cOKD7779fo0eP1vXXX69ly5bJ4XBUfVAAAGBp1eacnxUrVlxyWefOndW5c+cqTAMAAKqrarPnBwAAwB8oPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFYoPwAAwFaqRflJT09XixYtSvy8/fbbkqSvv/5a/fv3V7t27RQfH6+//OUvJicGAABWFWB2gLJITU1VcHCwtm3bJofD4RuvUaOGzpw5oyFDhig+Pl4zZszQ3r17NWPGDIWHh6tPnz4mpgYAAFZULcpPWlqaGjVqpJiYmBLLXnnlFQUGBmrmzJkKCAhQXFycjhw5ouXLl1N+AABACdXisNeBAwcUFxdX6rI9e/bopptuUkDA//W4m2++WYcPH9apU6eqKiIAAKgmqkX5SUtLU2Zmpvr166dbbrlFffv21Y4dOyRJJ06cUGxsbLH5F/cQHT9+vMqzAgAAa7P8Ya+ioiJ99913atq0qf785z8rIiJC7733noYPH65Vq1YpLy9PQUFBxZ4THBwsScrPzy/3egMCLt8Lnc5q0Rstzx/vI9vCP3gfAdiF5ctPQECAUlJS5HQ6FRISIklq3bq1Dh48qJUrVyokJEQFBQXFnnOx9ISFhZVrnYbhUGRkeMWCo0xcrlCzI+Df2BYA7MLy5UeSwsNLFpFmzZpp586dio2NVUZGRrFlFx/XrVu3XOvzeLzKzr5w2TlOp8GHhR9kZ+fK7fZU6DXYFv7hj20BAGZxuULLvAfb8uXn4MGDevDBB7V06VL9+te/9o1/9dVXatq0qa6//npt2LBBbrdbTqdTkvTpp5+qcePGioqKKvd6i4r4EKgKbreH99oi2BYA7MLyB/nj4uLUpEkTzZw5U3v27NG3336rxMRE7d27V4888oj69OmjnJwcTZ06Vd98843efvttrV69WiNGjDA7OgAAsCDL7/kxDEPLli3T/PnzNW7cOGVnZ6tVq1ZatWqVmjdvLkl66aWXNGvWLPXu3VvR0dGaOHGievfubXJyAABgRZYvP5JUp04dJSYmXnJ5mzZt9Nprr1VhIgAAUF1Z/rAXAACAP1F+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArVB+AACArQSYHaAszp49qwULFuhvf/ubcnJy1KJFCz3++OPq2LGjJGnIkCH63//932LPuemmm7RmzRoz4gIAAAurFuXnscce08mTJ7VgwQJFRUVpzZo1Gjp0qN555x01adJEBw4cUEJCgm677TbfcwIDA01MDAAArMry5efIkSPatWuX1q9fr1/96leSpCeffFIff/yxNm/erP79++v06dNq27atoqOjTU4LAACszvLlJzIyUsuXL9eNN97oG3M4HHI4HMrOztaBAwfkcDjUuHFjE1MC+DnDcMgwHGbHKJXH45XH4zU7BgATWb78uFwude/evdjYBx98oCNHjmjKlClKS0tTjRo1NHPmTO3atUthYWG666679OijjyooKKjc6w0IuPy54E4n54r7gz/eR7aFf/jrfXQ4HKpRI8Sy28Xt9ujcuTx5vRQgwK4sX37+07/+9S9NnjxZd9xxh3r06KEpU6YoPz9fbdq00ZAhQ/T1119rzpw5+vHHHzVnzpxyrcMwHIqMDPdzcpTG5Qo1OwL+zd/b4sVXd+lYRpZfX7Oi6sfU1Ki+t6pWrTCzowAwUbUqP9u2bdMTTzyhDh06aN68eZKkmTNnatKkSapZs6YkqXnz5goMDNT48eM1ceJE1alT54rX4/F4lZ194bJznE6DD24/yM7OldvtqdBrsC38wx/bQvq/7XEsI0uHj53xQzL/89fvCsA6XK7QMu9xrjblZ+3atZo1a5buuusuPfvss75DWgEBAb7ic1GzZs0kSSdOnChX+ZGkoiL+MFYFt9vDe20RdtoWdvpdAZRkzYPy/2H9+vV6+umn1a9fPy1YsKDYuTwDBgzQ5MmTi83/8ssvFRgYqEaNGlVxUgAAYHWW3/Nz6NAhzZ49W7fffrtGjBihU6dO+ZaFhITozjvv1OzZs9WmTRt16dJFX375pebMmaOhQ4cqIiLCxOQAAMCKLF9+PvjgAxUWFmrr1q3aunVrsWW9e/dWUlKSHA6H1qxZo9mzZys6OlqDBw/W8OHDTUoMAACszPLlZ+TIkRo5cuRl5/Tr10/9+vWrokQAAKA6qxbn/AAAAPgL5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANhKgNkBAKCqOZ3W/f8+j8crj8frt9czDIcMw+G31/M3f/++QFlQfgDYRs0aIfJ6PHK5Qs2Ockkej1tnzuT6pRAYhkO1aoVZuuy53R6dPXuBAoQqRfkBYBvhIUFyGIYOvbtCuaePmx2nhNCoemrc62EZhsNv5cfpNPTiq7t0LCPLDwn9q35MTY3qe6vffl+grCg/AGwn9/Rx5aZ/b3aMKnMsI0uHj50xOwZgGdbdFwoAAFAJKD8AAMBWOOwFADCVVU/I5kq0qxflBwBgCqtffefPK+9gLZQfAIAprHz1nb+vvIO1UH4AAKay29V3MJ81D7QCAABUEsoPAACwFQ57AQAAS38PnL+vvKP8AABgc4bhUGRkqAzDaXaUUvn7yjvKDwAAVcDKe1acTkOG4bTNlXeUHwAAKplhOFSrVphlb+h4kV2uvKP8AABQyQzDIafT0Iuv7tKxjCyz45TQtsU1evCudmbHqDKUHwAAqsixjCwdPnbG7BglXBPtMjtClbL2/jcAAAA/uyrKj8fj0fPPP6+uXbuqXbt2evjhh/XDDz+YHQsAAFjQVVF+lixZovXr1+vpp5/Whg0b5PF4NGzYMBUUFJgdDQAAWEy1Lz8FBQV6+eWXNXbsWPXo0UMtW7bUwoULdeLECW3ZssXseAAAwGKqfflJTU3V+fPn1blzZ9+Yy+VSq1attHv3bhOTAQAAK3J4vV7/3S/aBFu2bNGYMWP0+eefKyQkxDf+pz/9SXl5eUpOTr7i1/R6f/k22g6HZBiGsnLy5HZ7rngdlS0o0KmIsGAVns+W1+M2O04JDsOpwHCXPB6PKvpfINuiYvy5LSRrbw+2hbVYeXuwLayjrNvCMBxyOMp2E8lqf6l7bm6uJCkoKKjYeHBwsLKyyncvBYfDIaezbG9gzYiQX55kosBwa1++aBj+2/nItqgYf24Lydrbg21hLVbeHmwL6/Dntqj2h70u7u35z5Ob8/PzFRoaakYkAABgYdW+/NSrV0+SlJGRUWw8IyNDdevWNSMSAACwsGpfflq2bKmIiAilpKT4xrKzs7V//3516tTJxGQAAMCKqv05P0FBQerfv7/mzZun2rVrq379+po7d65iY2N1xx13mB0PAABYTLUvP5I0duxYFRUVadq0acrLy1OnTp20cuVKBQYGmh0NAABYTLW/1B0AAOBKVPtzfgAAAK4E5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANgK5QcAANgK5ecqlpycrAEDBpgdw7bOnj2rp556St26dVOHDh3Ut29f7dmzx+xYtnX69GlNmDBBN998s9q3b6/hw4fr22+/NTuW7R06dEjt27fX22+/bXYUW0pPT1eLFi1K/Fzt2+OquMMzSlq3bp0WLVqkjh07mh3Fth577DGdPHlSCxYsUFRUlNasWaOhQ4fqnXfeUZMmTcyOZzujRo2Sx+PR8uXLFR4erueee06DBw/Wli1bFBoaanY8WyosLNQTTzyhCxcumB3FtlJTUxUcHKxt27bJ4XD4xmvUqGFiqsrHnp+rTHp6ukaOHKl58+apUaNGZsexrSNHjmjXrl1KSEhQx44d1bhxYz355JOKiYnR5s2bzY5nO1lZWapfv76eeeYZtWnTRnFxcXr00UeVkZGhgwcPmh3Ptl544QVFRESYHcPW0tLS1KhRI8XExCg6Otr3ExISYna0SkX5ucrs27dPgYGB2rRpk9q2bWt2HNuKjIzU8uXLdeONN/rGHA6HHA6HsrOzTUxmTzVr1tT8+fPVvHlzSVJmZqZWr16t2NhYNW3a1OR09rR792699tprSkpKMjuKrR04cEBxcXFmx6hyHPa6ysTHxys+Pt7sGLbncrnUvXv3YmMffPCBjhw5oilTppiUCpL05JNP6vXXX1dQUJCWLl2qsLAwsyPZTnZ2tiZOnKhp06apXr16ZsextbS0NEVGRqpfv346dOiQrrvuOj3yyCPq1q2b2dEqFXt+gCrwr3/9S5MnT9Ydd9yhHj16mB3H1gYNGqS33npLvXr10qhRo7Rv3z6zI9lOQkKC2rdvr3vuucfsKLZWVFSk7777TllZWRozZoyWL1+udu3aafjw4frkk0/Mjlep2PMDVLJt27bpiSeeUIcOHTRv3jyz49jexcNcs2bN0ueff661a9cqMTHR5FT2sXHjRu3Zs4dz3ywgICBAKSkpcjqdvnN8WrdurYMHD2rlypXq3LmzyQkrD3t+gEq0du1ajRkzRr/5zW+0bNkyBQcHmx3JljIzM/Xee++pqKjIN2YYhpo2baqMjAwTk9nPW2+9pdOnT6tHjx5q37692rdvL0maPn26hg0bZnI6+wkPDy9xcnOzZs2Unp5uUqKqQfkBKsn69ev19NNPq1+/flqwYIGCgoLMjmRbp06d0mOPPVZsV35hYaH2799vy5M9zTRv3jy9//772rhxo+9HksaOHatZs2aZG85mDh48qA4dOiglJaXY+FdffXXVXwjAYS+gEhw6dEizZ8/W7bffrhEjRujUqVO+ZSEhIVf9PTSspnnz5urWrZueeeYZPfPMM6pZs6aSk5OVnZ2twYMHmx3PVurWrVvqeFRU1CWXoXLExcWpSZMmmjlzpmbMmKHIyEi9/vrr2rt3r9566y2z41Uqyg9QCT744AMVFhZq69at2rp1a7FlvXv35vJeEyxYsEDz58/X+PHjde7cOXXs2FHr1q3TNddcY3Y0wBSGYWjZsmWaP3++xo0bp+zsbLVq1UqrVq3y3RbiauXwer1es0MAAABUFc75AQAAtkL5AQAAtkL5AQAAtkL5AQAAtkL5AQAAtkL5AQAAtkL5AQAAtkL5AQAAtsIdngGY5oUXXtDixYt14MABpaSkaODAgfrtb3+rJUuWlJj79ttva/Lkydq+fbsk6be//e0vvv5f/vIX1a9fv9S5gYGBqlmzptq3b6/HH39cjRs3liQdPXr0F187ISFBffv29T0uLCzU66+/rk2bNunQoUNyu9267rrr1KtXL/Xt21ehoaG/mBVA1aH8ALCU7du3a9OmTfr9739/yTkxMTF67bXXfI9Pnjyp0aNH65FHHlGPHj18402bNtXZs2clqcSy3Nxc7du3T8uWLdNDDz2k//mf/1FwcLBv+X/O/7kGDRr4/p2VlaURI0YoNTVVf/zjHzV69Gg5HA7t2bNHS5cu1TvvvKMVK1YoNjb2yt4IAJWG8gPAUlwul2bNmqVbbrlFderUKXVOUFCQ2rVr53t89OhRSVLDhg2LjUvylZ/SlnXu3Fnh4eFKSEjQp59+qu7du/uWlTa/NAkJCUpLS9Orr76q66+/3jfepUsX3Xvvverbt6+eeOIJrVmzRg6H4xdfD0Dl45wfAJYyfvx4XbhwQQkJCVWyPpfLVe7nHj58WO+//75GjBhRrPhc1LhxY/3pT3/S7t279emnn1YkJgA/ovwAsJS4uDiNGTNGW7du1bvvvuu31/V4PCoqKvL95OTkaNeuXZo/f77q16+vjh07Xnb+xR+32+2b8+GHH0qSbrvttkuut2fPnnI4HL5zlQCYj8NeACxn6NCh2rp1q55++mndfPPNlzz8dSWmTp2qqVOnFhsLCwvTrbfeqkmTJik8PPwX5198zmeffSZJ+vHHHyVJ11577SXXW7NmTdWsWdN3aA6A+Sg/ACzH6XQqMTFRvXv31owZM/TCCy9U+DVHjx6tHj16yOv1avfu3Vq0aJF+97vfKSEhQQEBJf8UXpxfWrYrZRiGPB5PeWIDqASUHwCW1LRpU40ePVoLFizQe++9V+HXq1+/vm688UZJUps2bRQZGanJkyfL6XRqxowZl51/Kddcc42kn064jouLK3VOTk6Ozp4965sLwHyc8wPAsoYNG6bWrVvr6aef1unTp/362vfff7969OihDRs2aOfOneV6jfj4eEnSBx98UGz822+/VW5uriRp69at8ng86tatW8UCA/Abyg8Ay3I6nUpKSlJOTo6Sk5P9/vpPPvmkgoOD9cwzz6iwsPCKn9+oUSPdc889WrFihfbv3+8bT0xMVPfu3bV69WrNnz9fN9xwg37zm9/4MzqACqD8ALC0Zs2aadSoUTp37pzfX/vaa6/V0KFDdejQIb3yyivFln3//ffau3dvqT+HDh3yzZs+fbpuuOEG9evXT3PnztWuXbs0ZMgQ1a9fX4mJiTp58qQmT57MPX4AC+GcHwCW9/DDD2vr1q3at2+f3197+PDh2rhxo5YsWVLsrtJLly7V0qVLS33Oz7+Co0aNGlq9erXeeOMNbdy4Ua+99po8Ho8aNGigMWPG6Ouvv9awYcM0cOBAPf74437PD+DKObxer9fsEABwNfv444/13XffadCgQWZHASDKDwAAsBnO+QEAALZC+QEAALZC+QEAALZC+QEAALZC+QEAALZC+QEAALZC+QEAALZC+QEAALZC+QEAALZC+QEAALby/wEjIBbbnaLTBQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
- "#######################################################################\n",
- "### 💻 YOUR WORK GOES HERE TO ANSWER THE SECOND RESEARCH QUESTION 💻 \n",
- "###\n",
- "### Your data analysis may include a statistic and/or a data visualization\n",
- "#######################################################################"
+ "sns.countplot(data=new_df, x=\"INTREQ\", hue=\"FITIN\")"
]
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 11,
"id": "located-night",
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAG1CAYAAAAWb5UUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/OQEPoAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7JUlEQVR4nO3deXxU9b3/8fecyQphQggkYRVEAdlCECgom3GpV7Ft9OqtZVEECbIJgiCCJsiqhEXZZBVBkKUgFeVWwNpavYCggL+KiGJEQUggkMRA1pn5/WFJO02EkMya83o+Hnk8zPd853w/M4dm3v2e7znH4nQ6nQIAADAJw9cFAAAAeBPhBwAAmArhBwAAmArhBwAAmArhBwAAmArhBwAAmArhBwAAmArhBwAAmArhBwAAmEqQrwvwR06nUw4HN74GACBQGIZFFoulQn0JP+VwOJw6f/6ir8sAAAAVVKdOTVmtFQs/nPYCAACmQvgBAACmQvgBAACmQvgBAACmwoJnAAB8zOFwyG4v8XUZfs1qDZJhuGfOhvADAICPOJ1O5eaeV35+nq9LCQjh4RGy2epU+JL2X0L4AQDARy4Hn4iIKIWEhFb5S726cjqdKioqVF7eBUlSZGR0lfZH+AEAwAccDntp8ImIsPm6HL8XEhIqScrLu6BataKqdAqMBc8AAPiA3W6X9K8vdVzd5c+qquujCD8AAPgQp7oqzl2fFeEHAACYCuEHAACYCgueAQCoBr799hu9/vpKHTz4mXJzcxQZGan4+I7q33+gbryxhUvf48e/0fr1a/TZZweUnX1BUVF11K5dvB566A9q06Ztufs/evSINm9+UwcPfqbs7GzVrVtXN9/cRf37P6oGDRqW+5rMzAwNGPA/mjEjTR07dnL7e64sZn4AAAhw3357XMnJjyknJ0ejRz+tefMWafjw0Tpz5rSSkwfqH//4f6V933tvhwYN6qcffvheQ4YM09y5CzV06AhduHBew4YN0oYNb5TZ/5Ytm5ScPFDnz5/X0KEjlZb2svr1e1QHD36qwYMH6Ouvj5V5TUbGGT311Ajl5fnfPYwsTqfT6esi/I3d7tD58xd9XYZPGIZFhuGdxXcOh1MOB//8AJhTcXGRsrJOKzq6voKDQ6q0r5kzX9Cnn+7Xhg1vKSjoXyd18vPz9Yc/PKAbbrhRs2e/rGPHjmrIkEd19933avz4SWUuF3/55Tn64x83aO7cherc+VeSpM8/P6SRI5N1//0P6cknx7r0v3Dhgh57rK+ioupo1aqfQ5PD4dCf//yuFi2aL6dTys3N0SuvvOqWmZ8rfWZ16tSU1VqxOR1Oe6GUYVhUOypcVsPqlfHsDruyL+QTgACgis6fz5LT6dR/zmeEh4dr1KinVFBQIElas+Y1hYfX0OjRT5d7n5xhw0bpww8/0OrVK0rDz5tvrlVERISSk4eX6R8VFaURI8bohx9OKD8/X+Hh4Tp+/Gulpc1UUtJ/q1OnLnr66dHuf8NVRPhBKcOwyGpYtfRva/RjToZHx2oQGavkXgNkGBbCDwBU0S239NCePR8rOXmg7r33N7r55s667rqmslgsuu22OyT9PCOzf/9edenSTWFhYeXuJzg4WD173qY//nGDcnKyZbNFat++verevecvvub22+90+T02Nk4bNrylmJhYffbZAfe+UTch/KCMH3MydCLrpK/LAABUUFLSfysr65zWr1+refNekiTVrl1bXbp004MP/l433dRGubm5unjxourXr3/FfTVq1EhOp1MZGWfkcPz8WIn69RtUuBabLVI2W2SV3o+nseAZAIBqYPDgodq27X+VkjJNffr8VjVq1NTOnf+rIUMe1ebNG0pPiVmtV573sFp/XvrgdP7rvx0Oh2eL9zJmfgAAqCZsNpvuvPNu3Xnn3ZKkY8eO6oUXnteSJa/orrvuVnh4uM6cOX3Fffz44ylJP5++stlsqlGj5hVfk5+fr+LiYtlsgfN8MmZ+AAAIYGfPZuq3v71b77yzrcy2Fi1aaciQYSoqKtKpUyd1yy09tHfv/+nSpUvl7stut+vDD/+qdu3iVbt2bUlSly5ddfDgARUWFpb7mu3b31KfPnfoq6+OuusteRzhBwCAAFanTrSsVqu2bt1cbkD5/vvvFBISqkaNmmjAgMdUWFig2bNnlD5Y9d8tXbpIJ0/+oAEDHitt+/3v+yknJ0fLly8p0z8r65zefPMNNW3aTC1btnLvG/MgTnsBABDArFarxo2bqIkTx2rw4P564IGHdN11zVRQUKD9+/dqy5ZNevzxJ2Sz2WSz2fTssymaMeMFnTp1UklJ/60GDRrq3Llz2rFju/bv36snnhipbt1uLd1/27btNHjwUC1fvkQnTqTr7rv7qHbt2vr22+N68821Kiws1Lx5i3z4CVw7wg8AAAHullu6a9my17V+/RqtWfOasrMvKDg4WC1atNILL8xUr16JpX3vuOPXat78Rm3atF6rVi1TVtY51a4dpfbtO2jx4pVq27Zdmf0/8sggtWjRSlu3btIrr8zRTz/lKiYmVrfc0l39+w9UbGycN99ulXGH53KY9Q7PQUGGoqJqKuXt2R6/1P266Eaa8pundeHCRZWUVK+rCACgItx5h2ezcNcdnv1qzc/SpUvVv3//X9w+efJkJSYmurQ5HA698sor6tGjhzp06KDHH39cP/zwg6dLBQAAAcpvws+6des0f/78X9y+e/dubd68uUz74sWLtX79ek2dOlUbNmyQw+HQ4MGDVVRU5MFqAQBAoPJ5+MnIyNDQoUOVlpampk2bltsnMzNTzz33nLp06eLSXlRUpFWrVmnUqFHq3bu3WrVqpXnz5unMmTPauXOnF6oHAACBxufh54svvlBwcLDefvttxcfHl9nudDr1zDPP6Le//W2Z8HP06FFdvHhR3bp1K22z2Wxq3bq19u/f7/HaAQBA4PH51V6JiYll1vH8u9WrV+vs2bN69dVXtXTpUpdtZ86ckaQyzymJiYkp3VZZQUE+z4VeV9GFYoE+JgD4A4fD4usSApbVaqnS97TPw8+VHD16VAsXLtS6desUElJ2JXx+fr4kldkWGhqqnJycSo9rGBZFRdWs9OtRcTZbuK9LAACfKCiw6tw5o8pf5GbicFhkGIYiI2v84lPmK8Jvw09hYaHGjRunJ554Qq1alX/XyMtvvKioyOVDKCwsVHh45b9UHQ6ncnPLv/V3dWa1Gl4PI7m5+bLbudQdgPkUFRXK4XDIbndyy48Kstudcjgcysm5pPx81ztU22zhFT6b4Lfh5/Dhw/r666+1cOFCLVr0850ji4uLVVJSooSEBC1fvrz0dFdmZqaaNGlS+trMzEy1bNmySuPzD9E77HYHnzUAU7Lbuc1eZVU1MPpt+Gnfvn2ZK7bWrl2rnTt3au3atYqNjZVhGIqIiNC+fftKw09ubq6OHDmifv36+aJsAACqzDAsMgzfrAlyOJxyOKp3MPPb8BMWFqbrrrvOpS0yMlJBQUEu7f369VNaWprq1Kmjhg0bavbs2YqLi9Ndd93l7ZIBAKgyw7Codu0aPrsgxG53KDv7UpUC0Nq1r2nfvj1auHDZL/bJycnW/Plp2rPnY1ksFt1xx681fPiTVVrLU1F+G34qatSoUSopKdHkyZNVUFCgzp07a+XKlQoODvZ1aQAAXDPDsMhqNbTozY91KrPyF+9URsOYSA1/+FYZhqXS4Wfr1s1avnyJ2rfvcMV+kydPUEFBvl5+eYny8n7SzJkvKD//kiZPnlKpca+FX4WfWbNmXXH7yJEjNXLkSJc2q9Wqp59+Wk8//bQnSwMAwKtOZebou1MXfF1GhZ07d1YvvTRDBw8eUOPGTa7Y9x//+FwHD36qN97YrKZNm0mSxo+fpLFjRyo5ebjq1YvxaK1cWwcAAKrs6NEvFRwcpNWr31Tr1m2v2Pfw4YOKjq5bGnwkKSHhZlksFn3++SEPV+pnMz8AACAwde/eU92796xQ37NnMxUTE+vSFhwcLJstUhkZGZ4ozwUzPwAAwKsKCgrKvXlxSEiIiooKPT4+4QcAAHhVaGioioqKyrQXFRVV6SbFFUX4AQAAXhUTE6usrHMubcXFxcrNzVHdup5d7CwRfgAAgJfFx3dUZmaGTp78obTt4MFPJUnt28d7fHwWPAN+ypt3eDXDHV0B+I7dbld29gVFREQoNDRMbdq0Vbt28UpJeVbjxj2j/Px8zZ49Q3fffa/HL3OXCD+AXzIMi2pHhctqWL0ynt1hV/aFfAIQ4EcaxkRWmzEzMzP04IO/0bPPpuiee+6TxWLRjBmzNWfOixo1aqhCQ0PVu/cdGjlyjEfG/0+EH8APGYZFVsOqpX9box9zPHvZZ4PIWCX3GlClO7oCcB+Hwym73aHhD9/qk/HtdkeV/xZMmpTq8nv9+g300UcHXNqioupo2rQXqzROZRF+AD/2Y06GTmSd9HUZALzI4XAqO/sSDzb1IMIPAAB+xgwBxJe42gsAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK4QcAAJgK9/kBAMDPePPZfv/JDPcYIvwAAOBHDMOiqKhwGV56tt9/cjjsulCJZ/3l5uZo6dJF+r//+0gXL15U8+Y3aOjQkYqP71Bu/9Onf9S8eS/p0KGDCg8PU58+v9Njjw2R1er59034AQDAj/w862NV+jvLlZ912qtjh0fXV7M+j1fqWX8pKc/q/PkspaZOV1RUHf3xjxv01FPD9dpr69SkSVOXviUlJXrqqRFq3LiJXn11pU6ePKlZs6bKMAwNGpTsxndUPsJPFXhzWtIM05AAgH/Jzzqt/IzvfV1GhZw8+YP279+nxYtXqH37DpKkMWPGa9++Pdq5888aPHioS/8PPtitjIwzWrp0tWw2m66//gZduHBeixe/rP79ByokJMSj9RJ+KskwLKpdu4asVu+sGbfbHcrOvkQAAgD4ncjI2po9e75atWpd2maxWGSxWPTTT7ll+h8+fEgtWrSSzWYrbbv55s66ePGivv76mNq0aevRegk/lWQYFlmthha9+bFOZeZ4dKyGMZEa/vCtlZqGBADA02rVqqVu3bq7tP31r+/r5MkfNGrU2DL9z57NUExMrEtb3br1JEmZmWcIP/7uVGaOvjt1wddlAADgN/7f/zusGTNeUK9et+mWW7qX2V5QUKiIiFoubZdPdRUVFXm8Pu7zAwAA3Obvf/+rxowZrjZt2ur556eV2yc0NFTFxcUubZdDT1hYuIcrJPwAAAA32bJloyZNGq9bb+2hl16ar9DQ0HL7xcTE6ty5sy5tl3+vV6+ex+sk/AAAgCp7660/at682br//oeUmjpDwcHBv9i3Q4cEHTt2VBcv5pW2ffrpftWoUVM33tjS47USfgAAQJV8//0Jvfxymnr2vE39+z+q8+ezlJV1TllZ55SXl6fi4mJlZZ0rPdXVo0dvRUfX1fPPP6tvvvlaf//7X7V06SL9/vd9rxia3IUFzwAA+KHw6PoBM+Zf//q+SkpK9OGHH+jDDz9w2fZf/9VH//VffTRq1FC98sqr6tixk0JDQzVnzgLNmTNLQ4Y8KpvNpvvvf1CPPjrYHW/jqgg/AAD4kZ9vamtXsz6P+2h8+zXfVmXAgMc0YMBjV+zz0UcHXH5v1Kix5s1bdM31uQPhBwAAP+JwOHXhQj4PNvUgwg8AAH7GDAHEl1jwDAAATIXwAwAATIXwAwAATMWvws/SpUvVv39/l7a//OUveuCBB5SQkKDExES9+OKLKigoKN1eWFioKVOmqFu3bkpISNDYsWN1/vx5b5cOAAAChN+En3Xr1mn+/PkubQcOHNCIESN055136q233lJKSop27NihKVOmlPZJTU3VRx99pAULFuj111/Xt99+q1GjRnm5egAAECh8Hn4yMjI0dOhQpaWlqWnTpi7bNmzYoF/96lcaOnSomjZtql69emnMmDHavn27ioqKlJGRoW3btmny5Mnq1KmT2rdvr7lz52r//v06ePCgb94QAADwaz4PP1988YWCg4P19ttvKz4+3mXbY489pgkTJri0GYah4uJi5eXl6dNPP5Ukde3atXR7s2bNFBsbq/3793u+eAAAEHB8fp+fxMREJSYmlrutdevWLr8XFxdr9erVatu2rerUqaOMjAxFRUWVeWpsTEyMzpw5U6W6goKunAutVu/nRk+PWR3fU6DiWADVn8PxyzcxNAwLNzm8AqvVctXv6SvxefipqJKSEo0fP15ff/211q1bJ0nKz89XSEhImb6hoaEqLCys9FiGYVFUVM1Kv95TbLZwX5fgdtXxPQUqjgXgXQUFVp07Z5T5IrdYLKplC5PV8M3/IbE7HPopt0BO57UFoPPnz+uVV+Zq797/U2FhoRISbtaoUWPUtGmzcvvn5GRrzpzZ2rPnI1ksFt155681cuRohYX98t8ih8MiwzAUGVlDYWFh11TfvwuI8JOXl6fRo0frk08+0cKFC9W+fXtJUlhYmIqKisr0LywsVHh45f+QOxxO5eZeumIfq9Xw+pdFbm6+7HaHx/ZfHd9ToOJYANVfUVGhHA6H7HanSkr+9b+9oCBDVsPQ0r+t0Y85GV6tqUFkrJJ7DZDT6VpTRYwf/5QcDodmz35Z4eE1tGLFEo0YMVQbNrxVblB55pmnVVCQr/nzlygv7yfNnPmCLl68pMmTp5Sz95/Z7U45HA7l5FxSfr7dZZvNFl7hGWy/Dz+ZmZl6/PHHderUKa1cuVKdO3cu3RYXF6fs7GwVFRW5zABlZmYqNja2SuNe60H3Brvd4Zd1VUV1fE+BimMBeJfdfuWZlR9zMnQi66SXqqma3NxcxcXV14ABA3X99TdIkh55ZLAGDvyD0tOP66ab2rj0/8c/PtfBg5/qjTc2l84MjR8/SWPHjlRy8nDVqxdzxfH+MzBeK78+yZ+Tk6NHHnlE58+f17p161yCjyTdfPPNcjgcpQufJSk9PV0ZGRll+gIAAM+w2WxKTZ1eGnwuXLigTZvWKyYmVk2bXl+m/+HDBxUdXdfllFhCws2yWCz6/PNDHq/Xr2d+Zs6cqR9++EErVqxQnTp1dPbs2dJtderUUWxsrO69915NnjxZM2bMUHh4uFJSUtSlSxd16NDBd4UDAGBSL744Xdu3v6WQkBDNmjW33GUoZ89mKibG9QxNcHCwbLZIZWR4/lSf34Yfu92uHTt2qLi4WI888kiZ7e+//74aNWqkqVOnasaMGRoxYoQkqWfPnpo8ebK3ywUAAJIeeuhh/fa392vr1k2aOHGsFi9eqZYtW7n0KSgoKPeCpZCQEBUVVf6CpYryq/Aza9as0v+2Wq36/PPPr/qaGjVqaNq0aZo2bZonSwMAABXQrNnPp7meeeY5HTnyD23ZslHPPpvi0ic0NLTcC5aKioqqdMFSRfn1mh8AAOD/srOztXv3eyopKSltMwxDTZter3PnzpbpHxMTq6yscy5txcXFys3NUd26V17s7A6EHwAAUCXnz59Tauokffrpv56uUFJSomPHjpZ7n5/4+I7KzMzQyZM/lLYdPPjzxUvt28eX6e9ufnXaCwAA/KxBZNVu2eLNMa+//gZ17XqL5s2brWeemSybzaY1a17TTz/9pIce6iu73a7s7AuKiIhQaGiY2rRpq3bt4pWS8qzGjXtG+fn5mj17hu6++96rXubuDoQfAAD8iMPhlN1hV3KvAT4Z3+6wV+rxFqmpM/TqqwuVkvKs8vJ+Unx8ghYtWq64uDidPv2jHnzwN3r22RTdc899slgsmjFjtubMeVGjRg1VaGioeve+QyNHjvHAOyqL8AMAgB9xOJzKvpAfcM/2ioiI0Lhxz2jcuGfKbKtfv4E++uiAS1tUVB1Nm/ZipeusCsIPAAB+JhAeLhrIWPAMAABMhfADAABMhfADAABMhfADAIAPOZ2s7akod31WhB8AAHzAarVKkleeZVVdXP6srNaqXa/F1V4AAPiAYVgVHh6hvLwLkqSQkFBZLL65vN3fOZ1OFRUVKi/vgsLDI2QYVZu7IfwAAOAjNlsdSSoNQLiy8PCI0s+sKgg/AAD4iMViUWRktGrVipLdXnL1F5iY1RpU5Rmfywg/AAD4mGEYMowQX5dhGix4BgAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApuJX4Wfp0qXq37+/S9uXX36pfv36qUOHDkpMTNSaNWtctjscDr3yyivq0aOHOnTooMcff1w//PCDN8sGAAABxG/Cz7p16zR//nyXtgsXLmjgwIFq0qSJtmzZouHDhystLU1btmwp7bN48WKtX79eU6dO1YYNG+RwODR48GAVFRV5+R0AAIBAEOTrAjIyMpSSkqJ9+/apadOmLts2bdqk4OBgvfDCCwoKClLz5s114sQJLVu2TA888ICKioq0atUqjRs3Tr1795YkzZs3Tz169NDOnTvVp08f778hAADg13w+8/PFF18oODhYb7/9tuLj4122HThwQF26dFFQ0L8yWteuXfXdd9/p3LlzOnr0qC5evKhu3bqVbrfZbGrdurX279/vtfcAAAACh89nfhITE5WYmFjutjNnzqhFixYubTExMZKk06dP68yZM5Kk+vXrl+lzeVtlBQVdORdard7PjZ4eszq+p0DFsQAAz/F5+LmSgoIChYSEuLSFhoZKkgoLC5Wfny9J5fbJycmp9LiGYVFUVM1Kv95TbLZwX5fgdtXxPQUqjgUAs/Dr8BMWFlZm4XJhYaEkqUaNGgoLC5MkFRUVlf735T7h4ZX/Q+5wOJWbe+mKfaxWw+tfFrm5+bLbHR7bf3V8T4GKYwEA18ZmC6/wDLZfh5+4uDhlZma6tF3+PTY2ViUlJaVtTZo0cenTsmXLKo1dUuJ/XwJ2u8Mv66qK6vieAhXHAoBZ+PVJ/s6dO+vTTz+V3W4vbdu7d6+aNWum6OhotWrVShEREdq3b1/p9tzcXB05ckSdO3f2RckAAMDP+XX4eeCBB5SXl6dJkybpm2++0datW7V69WolJydL+nmtT79+/ZSWlqb3339fR48e1ZgxYxQXF6e77rrLx9UDAAB/5NenvaKjo7VixQpNnz5dSUlJqlevnsaPH6+kpKTSPqNGjVJJSYkmT56sgoICde7cWStXrlRwcLAPKwcAAP7Kr8LPrFmzyrS1b99eGzdu/MXXWK1WPf3003r66ac9WRoAAKgm/Pq0FwAAgLsRfgAAgKkQfgAAgKkQfgAAgKn41YJnXFl1fLYXAADeRvgJAJG1wuR0OHj2EgAAbkD4CQA1w0JkMQylv7Nc+VmnPTZOZLO2atjzfo/tHwAAf0D4CSD5WaeVn/G9x/YfVifOY/sGAMBfsMgDAACYCuEHAACYCuEHAACYCmt+gGtkGBYZhsWjY3DbAQDwHMIPcA0Mw6KoqHAZhtXXpQAAKonwA1yDn2d9rNx2AAACGOEHqARuOwAAgYuFBQAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQqFX7279+vixcvlrstNzdX7777bpWKAgAA8JRKhZ8BAwbo+PHj5W47cuSIJk6cWKWiAAAAPCWooh0nTJig06dPS5KcTqdSU1MVERFRpt93332nunXruq9CAAAAN6rwzM+vf/1rOZ1OOZ3O0rbLv1/+MQxDHTp00MyZMz1SLAAAQFVVeOYnMTFRiYmJkqT+/fsrNTVVzZs391hhAAAAnlCpNT9r1671avApKSnRyy+/rNtuu00JCQnq27evDh06VLr9yy+/VL9+/dShQwclJiZqzZo1XqsNAAAElgrP/Py7goICLVmyRB988IHy8/PlcDhctlssFu3evdstBUrSkiVLtHnzZs2aNUuNGzfW8uXLNXjwYO3YsUPBwcEaOHCgEhMTNWXKFB06dEhTpkxRzZo19cADD7itBgAAUD1UKvxMnz5df/zjH9WlSxfddNNNMgzP3i5o9+7d6tOnj7p37y5JeuaZZ7R582YdOnRI6enpCg4O1gsvvKCgoCA1b95cJ06c0LJlywg/AACgjEqFn507d2rMmDEaMmSIu+spV3R0tD744AP169dP9evX18aNGxUSEqJWrVpp8+bN6tKli4KC/vVWunbtqqVLl+rcuXNceQYAAFxUKvwUFxerffv27q7lF02aNElPPvmkbr/9dlmtVhmGoQULFqhJkyY6c+aMWrRo4dI/JiZGknT69OlKh5+goCvPZlmt3BzbHQLtcwy0eq9FdX5vAPDvKhV+unfvrg8//FBdu3Z1dz3l+uabb1SrVi0tWrRIsbGx2rx5s8aNG6c33nhDBQUFCgkJcekfGhoqSSosLKzUeIZhUVRUzSrXjauz2cJ9XQL+iWMBwCwqFX7uuecepaSk6Pz584qPj1d4eNk/mr/73e+qWpukn2dvxo4dq9WrV6tTp06SpHbt2umbb77RggULFBYWpqKiIpfXXA49NWrUqNSYDodTubmXrtjHajX4snCD3Nx82e2Oq3f0E9X5uAfasQCAf2ezhVd4BrtS4Wf06NGSpG3btmnbtm1ltlssFreFn8OHD6u4uFjt2rVzaY+Pj9eHH36oBg0aKDMz02Xb5d9jY2MrPW5JCV8C3mC3O/is/QTHAoBZVCr8vP/+++6u4xfFxcVJkr766iuXdUbHjh1T06ZNFR8frw0bNshut8tqtUqS9u7dq2bNmik6OtprdQIAgMBQqfDTsGFDd9fxi9q3b6+bb75ZEyZMUEpKiuLi4rRt2zbt2bNHb775pho1aqQVK1Zo0qRJGjx4sD7//HOtXr1aU6ZM8VqNAAAgcFQq/CxcuPCqfUaMGFGZXZdhGIaWLFmi+fPna+LEicrJyVGLFi20evVqxcfHS5JWrFih6dOnKykpSfXq1dP48eOVlJTklvEBAED14vbwExERoZiYGLeFH0mKjIxUSkqKUlJSyt3evn17bdy40W3jAQCA6qtS4efo0aNl2i5duqQDBw4oNTVVzz33XJULAwAA8AS33dWsRo0a6tmzp4YPH66XXnrJXbsFAABwK7ff0rVBgwY6fvy4u3cLAADgFpU67VUep9OpM2fOaMWKFV69GgwAAOBaVCr8tGrVShaLpdxtTqeT017wOsOwyDDK/zfpTjz/CgACX6XCz/Dhw8sNPxEREerdu7eaNm1a1bqACjMMi2rXrkEwAQBUSKXCz8iRI91dB1BphmGR1Wpo0Zsf61RmjkfHim/ZQP9zdwePjgEA8KxKr/k5f/68Vq1apU8++US5ubmKiopSp06d9Oijj/JYCfjEqcwcfXfqgkfHaFDP5tH9AwA8r1LnCc6cOaOkpCS9/vrrCg0NVevWrRUUFKTXXntNv/vd75SRkeHuOgEAANyiUjM/s2fPVlBQkHbs2KHGjRuXtv/www967LHHNG/ePM2aNcttRQIAALhLpWZ+PvroI40aNcol+EhS48aNNXz4cH344YduKQ4AAMDdKhV+7Ha7oqKiyt1Wp04d5eXlVakoAAAAT6lU+GnZsqW2b99e7rY//elPatGiRZWKAgAA8JRKrfkZNmyYBg0apJycHN1zzz2qV6+ezp49q3fffVcfffSRXnnlFXfXCQAA4BaVCj+33nqrZs2apbS0NJf1PfXq1dPMmTN15513uq1AAAAAd6r0fX4yMzPVunVrTZgwQTk5OTp69KgWLFjAeh8AAODXKhV+Vq1apfnz56tfv35q3ry5JKl+/fr69ttvNWvWLIWGhurBBx90a6EAAADuUKnws2HDBo0ePVpDhgwpbatfv74mT56sunXravXq1YQfAADglyp1tVdGRobatWtX7rb4+HidPHmySkUBAAB4SqXCT8OGDbVnz55yt+3fv19xcXFVKgoAAMBTKnXa66GHHtLs2bNVXFysO+64Q9HR0Tp//rw++OADvfbaaxo7dqy76wQAAHCLSoWfRx99VBkZGVq7dq1Wr15d2m61WvXII49o4MCB7qoPAADArSp9qfuECRM0bNgwHTp0SNnZ2bLZbGrfvv0vPvYCAADAH1Q6/EhSrVq11KNHD3fVAgAA4HGVWvAMAAAQqAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAg/AADAVAIm/Gzbtk333HOP2rVrp3vvvVf/+7//W7rt5MmTSk5OVseOHdW9e3fNnz9fdrvdh9UCAAB/FRDh509/+pMmTZqkvn376t1331WfPn301FNP6eDBgyouLtagQYMkSRs2bFBqaqrefPNNLVq0yMdVAwAAfxTk6wKuxul06uWXX9aAAQPUt29fSdITTzyhAwcO6JNPPtGpU6f0448/atOmTYqMjFSLFi2UlZWll156SUOHDlVISIiP3wEAAPAnfj/zk56erlOnTum+++5zaV+5cqWSk5N14MABtWnTRpGRkaXbunbtqry8PH355ZfeLhcAAPi5gAg/knTp0iUNGjRI3bp104MPPqi//OUvkqQzZ84oLi7O5TUxMTGSpNOnT3u3WAAA4Pf8/rRXXl6eJGnChAkaMWKExo0bp/fee0/Dhg3Ta6+9poKCAtlsNpfXhIaGSpIKCwsrPW5Q0JVzodXq97kxILjjc+RYuAefIwCz8PvwExwcLEkaNGiQkpKSJEk33XSTjhw5otdee01hYWEqKipyec3l0FOjRo1KjWkYFkVF1axC1agomy3c1yXgnzgWAMzC78NPbGysJKlFixYu7TfccIP++te/qkuXLjp27JjLtszMTJfXXiuHw6nc3EtX7GO1GnxZuEFubr7sdkeV9sGxcA93HAsA8BWbLbzCM9h+H37atGmjmjVr6vDhw+rUqVNp+7Fjx9SkSRN17txZ27ZtU15eniIiIiRJe/fuVc2aNdWqVatKj1tSwpeAN9jtDj5rP8GxAGAWfn+SPywsTIMHD9aiRYv0zjvv6Pvvv9eSJUv08ccfa+DAgbrjjjtUr149jR49WkePHtXu3bs1d+5cPfbYY1zmDgAAyvD7mR9JGjZsmMLDwzVv3jxlZGSoefPmWrBggX71q19JklasWKEpU6booYceUmRkpP7whz9o2LBhPq4aAAD4o4AIP5I0cOBADRw4sNxt1113nVatWuXligAAQCDy+9NeAAAA7kT4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAAphJQ4Sc9PV0JCQnaunVraduXX36pfv36qUOHDkpMTNSaNWt8WCEAAPB3ARN+iouLNW7cOF26dKm07cKFCxo4cKCaNGmiLVu2aPjw4UpLS9OWLVt8WCkAAPBnQb4uoKIWLFigiIgIl7ZNmzYpODhYL7zwgoKCgtS8eXOdOHFCy5Yt0wMPPOCjSgEAgD8LiJmf/fv3a+PGjZo1a5ZL+4EDB9SlSxcFBf0rw3Xt2lXfffedzp075+0yAQBAAPD7mZ/c3FyNHz9ekydPVv369V22nTlzRi1atHBpi4mJkSSdPn1adevWrfS4QUFXzoVWa0DkRr/njs+RY+EefI4AzMLvw09qaqoSEhJ03333ldlWUFCgkJAQl7bQ0FBJUmFhYaXHNAyLoqJqVvr1qDibLdzXJeCfOBYAzMKvw8+2bdt04MABbd++vdztYWFhKioqcmm7HHpq1KhR6XEdDqdycy9dsY/VavBl4Qa5ufmy2x1V2gfHwj3ccSwAwFdstvAKz2D7dfjZsmWLsrKy1Lt3b5f2lJQU7dixQ3FxccrMzHTZdvn32NjYKo1dUsKXgDfY7Q4+az/BsQBgFn4dftLS0lRQUODSdtddd2nUqFH6zW9+oz/96U/asGGD7Ha7rFarJGnv3r1q1qyZoqOjfVEyAADwc369wjE2NlbXXXedy48kRUdHKzY2Vg888IDy8vI0adIkffPNN9q6datWr16t5ORkH1cOAAD8lV+Hn6uJjo7WihUrlJ6erqSkJC1cuFDjx49XUlKSr0sDAAB+yq9Pe5Xnq6++cvm9ffv22rhxo4+qAQAAgSagZ34AAACuFeEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYCuEHAACYSkCEn+zsbD3//PPq2bOnOnbsqIcfflgHDhwo3b5nzx7df//9io+P19133613333Xh9UCAAB/FhDh56mnntLBgwc1d+5cbdmyRTfddJMGDRqkb7/9VsePH1dycrJ69OihrVu36sEHH9T48eO1Z88eX5cNAAD8UJCvC7iaEydO6OOPP9b69et18803S5Kee+45/f3vf9f27duVlZWlli1basyYMZKk5s2b68iRI1qxYoW6devmy9IBAIAf8vuZn6ioKC1btkzt2rUrbbNYLLJYLMrNzdWBAwfKhJyuXbvq008/ldPp9Ha5AADAz/n9zI/NZlOvXr1c2t577z2dOHFCzz77rN566y3FxcW5bI+JiVF+fr4uXLigOnXqVGrcoKAr50Kr1e9zY0Bwx+fIsXAPPkcAZuH34ec/ffbZZ5o4caLuuusu9e7dWwUFBQoJCXHpc/n3oqKiSo1hGBZFRdWscq24Opst3Ncl4J84FgDMIqDCz+7duzVu3Dh17NhRaWlpkqTQ0NAyIefy7+Hhlftj7nA4lZt76Yp9rFaDLws3yM3Nl93uqNI+OBbu4Y5jAQC+YrOFV3gGO2DCzxtvvKHp06fr7rvv1osvvlg6u1O/fn1lZma69M3MzFSNGjVUq1atSo9XUsKXgDfY7Q4+az/BsQBgFgFxkn/9+vWaOnWq+vbtq7lz57qc5urUqZM++eQTl/579+5Vx44dZRgB8fYAAIAX+f3MT3p6umbMmKE777xTycnJOnfuXOm2sLAw9e/fX0lJSUpLS1NSUpL+9re/6c9//rNWrFjhw6oBAIC/8vvw895776m4uFi7du3Srl27XLYlJSVp1qxZWrx4sWbPnq3XX39djRo10uzZs7nHDwAAKJffh5+hQ4dq6NChV+zTs2dP9ezZ00sVAQCAQMaiGAAAYCqEHwAAYCqEHwAAYCqEHwAAYCp+v+AZAHzNMCwyDItXxnI4nHI4eCgz4EmEHwC4AsOwqHZUuKyG1Svj2R12ZV/IJwABHkT4ARCwvDEjY7UashpWLf3bGv2Yk+HRsRpExiq51wAZhoXwA3gQ4QdAQDIMi6KiwmV4aUbmx5wMncg66ZWxAHgW4QdAQPp51seq9HeWKz/rtMfGiWzWVg173u+x/QPwPsIPgICWn3Va+Rnfe2z/YXXiPLZvAL7Bpe4AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUCD8AAMBUuNQdABBQvPWsNZ6zVn0RfgAAAcObz1rjOWvVF+EHABAwDMPilWet8Zy16o3wA8DtvPXAUZgXz1pDVRB+ALiVYVhUu3YNwgkAv0X4AeBWhmGR1Wpo0Zsf61RmjsfGiW/ZQP9zdweP7R9A9UX4AeARpzJz9N2pCx7bf4N6No/tG0D1xrw0AAAwFcIPAAAwFcIPAAAwFdb8AACqzFt3XeYqQv8SqHfbJvwAAKrEMCyKigqX4YW7LsN/BPLdtgk/AFCNeeuGk4ZhVfo7y5WfddqjY0U2a6uGPe/36BiomEC+2zbhBwCqKW/fcDI/67TyM7736BhhdeI8un9cu0C82zbhBwCqKW44CZSP8AMA1Rw3nDQXFp9fHeEHAIBqgsXnFUP4AQCgmvh51ofF51dD+AEAoJph8fmVEX4AAPACb912AFdXLcKPw+HQwoULtXnzZv3000/q3Lmznn/+eTVu3NjXpQEA4PXbDuDKqkX4Wbx4sdavX69Zs2YpLi5Os2fP1uDBg7V9+3aFhIT4ujwAgMlx2wH/EvDhp6ioSKtWrdK4cePUu3dvSdK8efPUo0cP7dy5U3369PFtgQAA/BO3HfAPAT//dvToUV28eFHdunUrbbPZbGrdurX279/vw8oAAIA/sjidTvc9JtUHdu7cqZEjR+rw4cMKCwsrbX/yySdVUFCgpUuXXvM+nc6rPz3WYpEMw1BOXoHsdsc1j3EtQoKtiqgRquKLuXI67B4bxwgKUVB4TeXm/6QSD44jSUGGVbbwWnI4HKrqv0CORdW481hI3jseHIurq27HQvLe8eBYXJ2/HQvDsMhiqdiC8oA/7ZWfny9JZdb2hIaGKiencudVLRaLrNaKfYCREWFX7+QmwTW9M51pC6/llXGkn/8YuAvHomrceSwk7x0PjsXVVbdjIXnveHAsri4Qj0XAn/a6PNtTVFTk0l5YWKjw8HBflAQAAPxYwIef+vXrS5IyMzNd2jMzMxUbG+uLkgAAgB8L+PDTqlUrRUREaN++faVtubm5OnLkiDp37uzDygAAgD8K+DU/ISEh6tevn9LS0lSnTh01bNhQs2fPVlxcnO666y5flwcAAPxMwIcfSRo1apRKSko0efJkFRQUqHPnzlq5cqWCg4N9XRoAAPAzAX+pOwAAwLUI+DU/AAAA14LwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwAwAATIXwU40tXbpU/fv393UZppWdna3nn39ePXv2VMeOHfXwww/rwIEDvi7LtLKysvT000+ra9euSkhI0JAhQ3T8+HFfl2Vq6enpSkhI0NatW31dimllZGSoZcuWZX6q+zGpFnd4Rlnr1q3T/Pnz1alTJ1+XYlpPPfWUzp49q7lz5yo6Olpr167VoEGD9NZbb+n666/3dXmmM3z4cDkcDi1btkw1a9bUyy+/rEcffVQ7d+5UeHi4r8szneLiYo0bN06XLl3ydSmmdvToUYWGhmr37t2yWCyl7bVq1fJhVZ7HzE81k5GRoaFDhyotLU1Nmzb1dTmmdeLECX388cdKTU1Vp06d1KxZMz333HOKiYnR9u3bfV2e6eTk5Khhw4aaNm2a2rdvr+bNm2vYsGHKzMzU119/7evyTGnBggWKiIjwdRmmd+zYMTVt2lQxMTGqV69e6U9YWJivS/Mowk8188UXXyg4OFhvv/224uPjfV2OaUVFRWnZsmVq165daZvFYpHFYlFubq4PKzOnyMhIzZkzRy1atJAknT9/XqtXr1ZcXJxuuOEGH1dnPvv379fGjRs1a9YsX5diel999ZWaN2/u6zK8jtNe1UxiYqISExN9XYbp2Ww29erVy6Xtvffe04kTJ/Tss8/6qCpI0nPPPadNmzYpJCRES5YsUY0aNXxdkqnk5uZq/Pjxmjx5surXr+/rckzv2LFjioqKUt++fZWenq7rrrtOTzzxhHr27Onr0jyKmR/ACz777DNNnDhRd911l3r37u3rckztkUce0ZYtW9SnTx8NHz5cX3zxha9LMpXU1FQlJCTovvvu83UppldSUqJvv/1WOTk5GjlypJYtW6YOHTpoyJAh2rNnj6/L8yhmfgAP2717t8aNG6eOHTsqLS3N1+WY3uXTXNOnT9fhw4f1xhtvaObMmT6uyhy2bdumAwcOsO7NTwQFBWnfvn2yWq2la3zatm2rr7/+WitXrlS3bt18XKHnMPMDeNAbb7yhkSNH6rbbbtOrr76q0NBQX5dkSufPn9e7776rkpKS0jbDMHTDDTcoMzPTh5WZy5YtW5SVlaXevXsrISFBCQkJkqSUlBQNHjzYx9WZU82aNcssbr7xxhuVkZHho4q8g/ADeMj69es1depU9e3bV3PnzlVISIivSzKtc+fO6amnnnKZyi8uLtaRI0dMudjTV9LS0rRjxw5t27at9EeSRo0apenTp/u2OBP6+uuv1bFjR+3bt8+l/R//+Ee1vxCA016AB6Snp2vGjBm68847lZycrHPnzpVuCwsLq/b30PA3LVq0UM+ePTVt2jRNmzZNkZGRWrp0qXJzc/Xoo4/6ujzTiI2NLbc9Ojr6F7fBc5o3b67rr79eL7zwgqZMmaKoqCht2rRJhw4d0pYtW3xdnkcRfgAPeO+991RcXKxdu3Zp165dLtuSkpK4xNcH5s6dqzlz5mjMmDH66aef1KlTJ61bt04NGjTwdWmATxiGoVdffVVz5szR6NGjlZubq9atW+u1114rvS1EdWVxOp1OXxcBAADgLaz5AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApkL4AQAApsIdngH4xIIFC7Rw4UJ99dVX2rdvnwYMGKDbb79dixcvLtN369atmjhxot5//31J0u23337V/a9Zs0YNGzYst29wcLAiIyOVkJCgsWPHqlmzZpKkkydPXnXfqampevjhh0t/Ly4u1qZNm/T2228rPT1ddrtd1113nfr06aOHH35Y4eHhV60VgHcRfgD4jffff19vv/22fvOb3/xin5iYGG3cuLH097Nnz2rEiBF64okn1Lt379L2G264QdnZ2ZJUZlt+fr6++OILvfrqq3rsscf05z//WaGhoaXb/7P/v2vcuHHpf+fk5Cg5OVlHjx7VH/7wB40YMUIWi0UHDhzQkiVL9NZbb2n58uWKi4u7tg8CgEcRfgD4DZvNpunTp+uWW25R3bp1y+0TEhKiDh06lP5+8uRJSVKTJk1c2iWVhp/ytnXr1k01a9ZUamqq9u7dq169epVuK69/eVJTU3Xs2DG9+eabuummm0rbu3fvrt/+9rd6+OGHNW7cOK1du1YWi+Wq+wPgHaz5AeA3xowZo0uXLik1NdUr49lstkq/9rvvvtOOHTuUnJzsEnwua9asmZ588knt379fe/furUqZANyM8APAbzRv3lwjR47Url279M4777htvw6HQyUlJaU/eXl5+vjjjzVnzhw1bNhQnTp1umL/yz92u720z1/+8hdJ0h133PGL495zzz2yWCyla5UA+AdOewHwK4MGDdKuXbs0depUde3a9RdPf12LSZMmadKkSS5tNWrU0K233qoJEyaoZs2aV+1/+TUHDx6UJP3444+SpEaNGv3iuJGRkYqMjCw9NQfAPxB+APgVq9WqmTNnKikpSVOmTNGCBQuqvM8RI0aod+/ecjqd2r9/v+bPn697771XqampCgoq+2fwcv/yartWhmHI4XBUpmwAHkL4AeB3brjhBo0YMUJz587Vu+++W+X9NWzYUO3atZMktW/fXlFRUZo4caKsVqumTJlyxf6/pEGDBpJ+XnDdvHnzcvvk5eUpOzu7tC8A/8CaHwB+afDgwWrbtq2mTp2qrKwst+77/vvvV+/evbVhwwZ99NFHldpHYmKiJOm9995zaT9+/Ljy8/MlSbt27ZLD4VDPnj2rVjAAtyL8APBLVqtVs2bNUl5enpYuXer2/T/33HMKDQ3VtGnTVFxcfM2vb9q0qe677z4tX75cR44cKW2fOXOmevXqpdWrV2vOnDlq06aNbrvtNneWDqCKCD8A/NaNN96o4cOH66effnL7vhs1aqRBgwYpPT1dr7/+usu277//XocOHSr3Jz09vbRfSkqK2rRpo759+2r27Nn6+OOPNXDgQDVs2FAzZ87U2bNnNXHiRO7xA/gZ1vwA8GuPP/64du3apS+++MLt+x4yZIi2bdumxYsXu9xVesmSJVqyZEm5r/n3R3DUqlVLq1ev1ubNm7Vt2zZt3LhRDodDjRs31siRI/Xll19q8ODBGjBggMaOHev2+gFUjsXpdDp9XQQAVFd///vf9e233+qRRx7xdSkA/onwAwAATIU1PwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFQIPwAAwFT+P6AaCn0JHeHbAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
- "# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON "
+ "sns.countplot(data=new_df, x=\"INTREQ\", hue=\"SOC1\")\n"
]
},
{
diff --git a/argument.ipynb b/argument.ipynb
index dd521f4..3c8826a 100644
--- a/argument.ipynb
+++ b/argument.ipynb
@@ -122,7 +122,7 @@
"