Files
project_argument/.ipynb_checkpoints/argument-checkpoint.ipynb
caglazir 26c556893a In this submit, I finished my Argument project.
I am currently stuck on catching up on this course. I try my best
to find a time to dedicate to this course and its components. I am worried that
I am still behind my peers in terms of the schedule. But I am glad that
I now have finished my project. Although I wish I picked a better question or found
a better dataset. The project data analysis felt a bit too easy. However,
since this was already overduw, I decided that it's better to just get it done.
Upon self-reflection I decided that I understand and am capable of applying the skills
related to this project so no need to spend more time on this and delaying its submission.
2025-11-15 17:41:12 -05:00

711 lines
95 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "worldwide-blood",
"metadata": {},
"source": [
"# Introduction"
]
},
{
"cell_type": "markdown",
"id": "understanding-numbers",
"metadata": {},
"source": [
"*In my teaching residency placement, I have noticed that the students in my physics class lack the fundamental mathemetical and computational reasoning skills that they should have achieved by grade level. I have been hearing from veteran teachers that their cohorts who were in middle school during the pandemic are the most prominent victims of this situation. I want to compare the Algebra I Regents performance of cohorts that were 8th graders before, during and after the COVID-19 pandemic. I chose the anchoring grade level as 8th grade because traditional this is when the students should have been learned and practiced their fundamentals of algebra*"
]
},
{
"cell_type": "markdown",
"id": "greater-circular",
"metadata": {},
"source": [
"## Overarching Question: Has the mathemetical skills of our students decreased since COVID-19?"
]
},
{
"cell_type": "markdown",
"id": "appreciated-testimony",
"metadata": {},
"source": [
"Education was greatly impacted by the COVID-19 pandemic. With the involuntary shift to online syncronous/asyncronous schooling, we lost access to structure of the schooling that provided students better grounds to learn. I have been wondering about the impact of this ever since the transition initially happened. I think being in the school physically, greatly aids students, especially those that need accomodations, and external support (emotional, mental and academic). In addition to losing access to these, I hope that the students didn't also lose potential development to their mathematical skills, hence I asked this overarching question."
]
},
{
"cell_type": "markdown",
"id": "permanent-pollution",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "technical-evans",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import math\n",
"import statistics\n",
"import csv\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"from tabulate import tabulate\n",
"import seaborn as sns\n",
"sns.set_theme()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "overhead-sigma",
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"algebra = \"algebra.csv\"\n",
"dataset_path = \"data/\" + algebra\n",
"\n",
"df = pd.read_csv(dataset_path)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "heated-blade",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>2023</th>\n",
" <th>2022</th>\n",
" <th>2021</th>\n",
" <th>2020</th>\n",
" <th>2018</th>\n",
" <th>2017</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>164</td>\n",
" <td>264</td>\n",
" <td>137</td>\n",
" <td>41</td>\n",
" <td>218</td>\n",
" <td>256</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>26</td>\n",
" <td>60</td>\n",
" <td>27</td>\n",
" <td>21</td>\n",
" <td>23</td>\n",
" <td>23</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>26</td>\n",
" <td>51</td>\n",
" <td>19</td>\n",
" <td>10</td>\n",
" <td>40</td>\n",
" <td>51</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>68</td>\n",
" <td>112</td>\n",
" <td>67</td>\n",
" <td>10</td>\n",
" <td>102</td>\n",
" <td>130</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>37</td>\n",
" <td>20</td>\n",
" <td>20</td>\n",
" <td>0</td>\n",
" <td>35</td>\n",
" <td>35</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>7</td>\n",
" <td>21</td>\n",
" <td>4</td>\n",
" <td>0</td>\n",
" <td>18</td>\n",
" <td>17</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 2023 2022 2021 2020 2018 2017\n",
"0 164 264 137 41 218 256\n",
"1 26 60 27 21 23 23\n",
"2 26 51 19 10 40 51\n",
"3 68 112 67 10 102 130\n",
"4 37 20 20 0 35 35\n",
"5 7 21 4 0 18 17"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head(6)"
]
},
{
"cell_type": "markdown",
"id": "continental-franklin",
"metadata": {},
"source": [
"**Data Overview**\n",
"\n",
"*The data is taken from NYSED website. It is pulled from Cheektowaga High School's recent and archival 'School Report Card(s)' The school report cards can contain very detailed information, but the website allows the users to sort what they need. In this case, the school report card was generated on the NYSED website to present the annual Regents examinations. From these examinations, I handpicked relevant data for the Algebra examination. \n",
"\n",
"The header row reperesents the **year** of the examination. Since Algebra one is the fundamental math examination in the Regents standards, we will make the assumption that the year also represents the high school enterance cohort year for *most, if not all* of the students.\n",
"- The first two cohorts (2023 & 2022) are considered as post-COVID-19 cohorts as they were introduced to fundamentals of Algebra in 8th grade, a year prior to their cohort entry as tabulated.\n",
"- The following two cohorts (2021 & 2020) are considered to be the COVID-19 cohorts, as they were in 8th grade *during* the pandemic years.\n",
"- The last two cohorts (2018 & 2017) are considered to be the pre-COVID-19 cohorts. \n",
"\n",
"The 0th data row represents the **total number of students who took the Algebra Regents**.\\\n",
"The 1st data row represents the **number of students who performed at Level 1 (lowest level).**\\\n",
"The 2nd data row represents the **number of students who performed at Level 2.**\\\n",
"The 3rd data row represents the **number of students who performed at Level 3.**\\\n",
"The 4th data row represents the **number of students who performed at Level 4.**\\\n",
"The 5th data row represents the **number of students who performed at Level 5 (highest level).**\n",
"\n",
"*Regents defines proficiency in Algebra as performed at Level 3 or above*. This categorization will inform our data analysis. \n",
"*"
]
},
{
"cell_type": "markdown",
"id": "infinite-instrument",
"metadata": {},
"source": [
"# Methods and Results"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "basic-canadian",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "recognized-positive",
"metadata": {},
"source": [
"## First Research Question:\n",
"## How has COVID-19 pandemic impacted student's matehmetical skills?: Exploring the high school Algebra Regents examination proficiency of post, during and pre COVID-19 middle schoolers.\n"
]
},
{
"cell_type": "markdown",
"id": "graduate-palmer",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "endless-variation",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
" \n",
"✏️ *Write your answer below:*\n",
"\n",
"- I will use the rows 1 & 2 for this part as these are the rows corresponding to below proficient levels.\n",
"- I will add these rows together for each given year to look at the total number per cohort.\n",
"- I will use a bar plot to compare and contrast the numbers per cohort. Bar plot would be a best graphical tool for this as these numbers belong to cohorts and do not have a relationship with another variable. \n"
]
},
{
"cell_type": "markdown",
"id": "portuguese-japan",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "61bcbc93-b3bc-4e47-a978-1b5e9808536e",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of students who performed below proficiency in Algebra I Regents in the given years:\n",
"\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>2023</th>\n",
" <th>2022</th>\n",
" <th>2021</th>\n",
" <th>2020</th>\n",
" <th>2018</th>\n",
" <th>2017</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>52</td>\n",
" <td>111</td>\n",
" <td>46</td>\n",
" <td>31</td>\n",
" <td>63</td>\n",
" <td>74</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 2023 2022 2021 2020 2018 2017\n",
"0 52 111 46 31 63 74"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"blwprof=df.iloc[[1,2]].sum()\n",
"below= pd.DataFrame([blwprof])\n",
"print('Number of students who performed below proficiency in Algebra I Regents in the given years:\\n')\n",
"below.head(6)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "negative-highlight",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Text(0.5, 1.0, 'Number of students who performed below proficiency in Algebra I Regents in the given years')]"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAG4CAYAAADPFeHZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAU6hJREFUeJzt3Xd4FOXexvE7GxKkJRAEPHQCbihJCBBKpElRDFVQ6cVDEwQUkKOooCAcESwoRZQggnSQIiVEFJAmcgwIWFCEUEKwICUJEEjZef/g2n3ZJEASMllYvp/r8pLMzM7+5tlnZvaeth6GYRgCAAAAABNYXF0AAAAAAPdF4AAAAABgGgIHAAAAANMQOAAAAACYhsABAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBpCBwAAAAATOM2gWPPnj0KCAhQVFSUq0vJkn/++UfPPfec6tevr4CAAM2bN8/VJWVq1apVCggI0KlTp1xdSp4ICAjQG2+84eoyct3BgwfVtWtXhYSEKCAgQIcOHXJ1Sbkiq/1z9OjRqlWrVq6+d69evdSrV69cneed7tKlS3r11VfVsGFDBQQE6L///a9OnTqlgIAArVq1Klvzcpdti6v7QUBAgKZPn27qe/Tq1Utt27Y19T2Qd5o3b67Ro0eb/j72bcMnn3xi+ntl1fTp0xUQEODqMu5J2Qoc9h1EUFCQ/vrrrwzj2Shl3aRJk7Rjxw4NHDhQU6ZMUePGjXM8ryNHjmj69Ol37Y47KSlJ06dP1549e1xdiltKSUnR8OHDdeHCBb388suaMmWKSpcu7eqycBf6+OOPtXr1anXr1k1TpkxRhw4dXF2SW1u0aJECAgL01FNPuboUl2vevLmeeeaZW07Xq1cvBQQEOP4LDg5Wu3btNG/ePNlstjyoNHft27dP06dPV0JCgqtLuaFt27aZHnpx98uXkxclJydr9uzZGjt2bG7Xc8/47rvv1KJFC/Xr1++253XkyBHNmDFD9erVU9myZXOhuryVlJSkGTNmaOjQoapfv76ry3E7J0+eVFxcnCZOnMgXF9yW7777TjVr1tTQoUMdwwzD0MGDB5UvX/Z2Jx06dFCbNm3k7e2d22XmKTOP3q5bt05lypTRwYMHdeLECVWoUMG093InDzzwgEaOHClJOn/+vNavX69Jkybp/PnzGjFihIury54ffvhBM2bMUMeOHeXj45Mr84yKipKHh0euzEu6FjgWLVqkYcOG5do8zTJ48GANHDjQ1WXck3J0SVW1atW0fPnyTM9yuLvLly/nynzOnj2baxsPIDP2vnru3DlJUpEiRXJ93ri7JSUlZWv6zLZbHh4eyp8/vzw9PbM1L09PT+XPnz9Xv/i4gre3tymhKTY2Vj/88INefvll+fn5ad26dbn+Hnnh6tWreX5moUiRIurQoYM6dOigp59+WosWLVKZMmW0YMECpaWl5WktdyJvb295eXm5ugyXyJcvn/Lnz+/qMu4KhmHoypUruTa/HAWOZ555RjabTRERETed7mbX9qa/7tR+Xd2xY8c0atQo1alTRw0aNND7778vwzD0xx9/aPDgwapdu7YaNmyouXPnZvqeNptN7733nho2bKiQkBANGjRIf/zxR4bpDhw4oH79+qlOnTqqWbOmevbsqb179zpNY6/pyJEjeuGFF1S3bl117979psscGxur5557TvXq1VPNmjXVuXNnffPNN47x9svSDMNwnC6/1fWEGzZsUKdOnVSrVi3Vrl1b7dq10/z58x3ze/755yVJvXv3dszPfnnSja7vzewazt9//129e/dWcHCwmjRpog8//PCGO4pt27ape/fuCgkJUa1atTRw4ED9/vvvTtPYr5v/66+/9Oyzz6pWrVpq0KCBJk+e7Njonzp1SmFhYZKkGTNmOOq313zmzBm9/PLLatKkiQIDA9WoUSMNHjz4ppePbd68WQEBAfr1118dw7788ksFBAQ4HZmVpPDwcA0fPjzDPL7++mu1bdtWgYGBatOmjbZv355hml9++UX9+/dX7dq1VatWLfXp00f79++/YV1211/XOm/ePDVr1kzBwcHq2bOnDh8+nGH6o0ePOvpUUFCQOnXqpM2bNztNY+9X//vf/zRu3DiFhYWpadOmGj16tHr27ClJev755xUQEOB0vfnu3bsdn2NoaKgGDx6so0ePOs37ZuuB/TKHPXv2qFOnTo7LF+z9b9OmTWrXrp2j7l9++SVHyydlr3/eSGxsrPr166eQkBA1atRIM2bMkGEYTtPYbDbNmzdPbdq0UVBQkB566CG99tprio+Pv+X8z549q1deeUUPPfSQgoKC1L59e61evdppmo4dO2boh+3atcvQZyMjIxUQEJDh87ie/d61yMjIW2737Je8/vTTT+rRo4dq1qyp9957L0t129/n1KlT+uabbxzr6alTp264nT969Kief/55NWjQQMHBwWrVqpWmTp3qGH+jezhya9tiZ7PZNH/+fEc/bNCggfr166cff/xRktSzZ0+1b98+0/Zt1arVLc9Cp7+H4/rPZNasWWrSpImCgoLUp08fnThx4qbzut66devk6+urpk2bqlWrVtkKHPb1MSgoSC1bttTSpUtveO36F1984Vh369WrpxEjRmS6z5Skn376SV27dlVwcLCaN2+uJUuWZHjfgIAAbdiwQVOnTlXjxo1Vs2ZNXbx4URcuXNDkyZPVrl07x76sf//+Tn3eLPnz51dgYKAuXbqks2fPOo3L6vIvWrRILVq0UHBwsJ588klFR0dnev9OcnKypk2bpkceeUSBgYFq2rSppkyZouTkZKfp7PcL3mxfM336dE2ZMkWS1KJFC6f1TpJ27dqlbt26KTQ0VLVq1VKrVq0c6/TNpN//29fFvXv3atKkSWrQoIFCQkI0ZMgQxwGrGxk9erQWLVrkWKYbfadZtmyZWrZsqcDAQD3xxBM6ePBghmmyui/IzPnz5/Wf//xHtWvXVmhoqF566SX9+uuvGbZN6deDtm3bZnoPls1mU+PGjfXcc885DcvKvsG+X4yOjtaTTz6poKAgtWjRQmvWrLnpMhiGoebNm2vw4MEZxl29elV16tTRa6+95hiW1b62cuVK9e7dW2FhYQoMDFTr1q21ePHiDO9hr3vHjh2OdWLp0qWSct7XrpejS6rKli2rDh06aPny5RowYIBKlSqVk9lkasSIEapcubJeeOEFbdu2TbNmzVLRokW1dOlSNWjQQKNGjdK6des0efJkBQUFqW7duk6vnzVrljw8PDRgwACdPXtW8+fP19NPP60vvvhC9913n6RrX7IGDBigwMBADR06VB4eHlq1apX69OmjxYsXKzg42Gmezz//vCpUqKARI0Zk+HJyvX/++Uddu3ZVUlKSevXqpWLFimn16tUaPHiwo1PUrVtXU6ZM0YsvvqiGDRve8hroXbt2aeTIkQoLC9OoUaMkSTExMdq3b5/69OmjunXrqlevXlqwYIEGDRokf39/SVLlypWz1e5nzpxR7969lZaWpoEDB6pAgQJavnx5pkcC1qxZo9GjR6tRo0YaNWqUkpKStGTJEnXv3l2rV692uqwrLS1N/fr1U3BwsF588UXt3r1bc+fOVbly5dS9e3f5+flp3LhxGjdunB555BE98sgjkuTYIAwbNkxHjhxRz549VaZMGZ07d067du3SH3/8ccPLx+rUqSMPDw9FR0eratWqkqTo6GhZLBanUHnu3DnFxMQ4vpDb7d27V5s2bVL37t1VqFAhLViwQM8995y2bt2qYsWKSbr25bdHjx4qVKiQ+vfvr3z58mnZsmXq1auXFi5cqJo1a96yzdesWaNLly6pe/fuunr1qhYsWKA+ffpo3bp1uv/++x3v061bN5UqVUoDBgxQwYIFtXHjRg0ZMkTTp093tJfd+PHj5efnpyFDhujy5cuqW7euSpUqpY8++ki9evVSUFCQY97ffvutBgwYoLJly2ro0KG6cuWKFi5cqG7dumnVqlUZ2vdG68GJEyf0wgsvqGvXrmrfvr3mzp2rQYMGafz48Zo6daq6desmSZo9e7aGDx+uqKgoWSyWbC1fdvrnjaSlpal///6qWbOm/vOf/2jHjh2aPn260tLSHKFdkl577TWtXr1anTp1Uq9evXTq1CktWrRIv/zyi5YsWXLDI4NXrlxRr169dPLkSfXo0UNly5ZVVFSURo8erYSEBPXp00fStf65YcMGx+suXLig33//3dE/r++zfn5+WVqXs7Lds7/XgAED1KZNG7Vv317FixfPUt2VK1fWlClTNGnSJD3wwAP697//LUny8/PL9AvJr7/+qh49eihfvnzq0qWLypQpo5MnT2rLli03vaQlN7ctdq+++qpWrVqlJk2a6Mknn1RaWpqio6N14MABBQUFqUOHDhozZowOHz4sq9XqeN3Bgwd1/PjxTHf+WRERESEPDw/17dtXFy9e1Jw5czRq1CitWLEiS69ft26dHnnkEXl7e6tt27ZasmSJDh48mGH/lJ79QEiJEiU0bNgw2Ww2zZw5U35+fhmmnTVrlj744AOFh4frySef1Llz57Rw4UL16NFDa9ascTqbFR8fr4EDByo8PFxt2rTRxo0bNW7cOHl5eenJJ590mu+HH34oLy8v9evXT8nJyfLy8tKRI0f09ddf67HHHlPZsmX1zz//aNmyZerZs6c2bNiQq98jMhMXFycPDw+nZcrq8i9evFhvvPGGQkND9fTTTysuLk5DhgyRj4+PHnjgAcf8bDabBg8erL1796pz586qXLmyDh8+rPnz5+v48eP68MMPnWq61b7mkUce0fHjx7V+/Xq9/PLLjv2Pn5+ffv/9dz3zzDMKCAjQc889J29vb504cUL79u3LcRtNnDhRPj4+Gjp0qOLi4jR//ny98cYbev/992/4mi5duujvv//Wrl27HOEovfXr1+vSpUvq0qWLPDw8NGfOHA0bNkxff/21Y3ua3X3d9eztfvDgQXXr1k3+/v7avHmzXnrppVsuc3h4uGbMmKEzZ86oRIkSjuF79+7V33//rdatWzuGZWffcOLECT3//PN68skn1bFjR61cuVKjR49WjRo19OCDD2Zai4eHh9q1a6dPPvlEFy5cUNGiRR3jtmzZoosXLzoOjmSnry1ZskQPPvigmjdvrnz58mnr1q0aP368DMNQjx49nGo4duyYXnjhBXXp0kWdO3dWpUqVcq+vGdmwcuVKw2q1GgcPHjROnjxpVK9e3ZgwYYJjfM+ePY02bdo4/o6NjTWsVquxcuXKDPOyWq3GtGnTHH9PmzbNsFqtxtixYx3DUlNTjSZNmhgBAQHGxx9/7BgeHx9vBAcHGy+99JJj2HfffWdYrVajcePGRmJiomN4ZGSkYbVajfnz5xuGYRg2m8149NFHjb59+xo2m80xXVJSktG8eXPj3//+d4aaRo4cmaX2+e9//2tYrVbj+++/dwy7ePGi0bx5c6NZs2ZGWlqa0/KPHz/+lvOcOHGiUbt2bSM1NfWG02zcuNGwWq3Gd999l2Fc+na2a9asmVP72Ws/cOCAY9jZs2eNOnXqGFar1YiNjXUsT2hoqDFmzBin+Z05c8aoU6eO0/CXXnrJsFqtxowZM5ymffzxx42OHTs6vU9mdcbHxxtWq9WYM2fODZf9Rtq0aWM8//zzjr87duxoPPfcc4bVajWOHDliGIZhbNq0ybBarcahQ4cc01mtVqNGjRrGiRMnHMMOHTpkWK1WY8GCBY5hzz77rFGjRg3j5MmTjmF//fWXUatWLaNHjx43rc2+XgQHBxt//vmnY/iBAwcMq9VqvPnmm45hffr0Mdq2bWtcvXrVMcxmsxldunQxHn30Uccw+7rZrVu3DH3Fvm5s3LjRaXiHDh2MsLAw4/z5807LWrVqVePFF190DLvZetCsWTPDarUa+/btcwzbsWOHY/ni4uIcw5cuXZqhn2Z1+bLaP2/E3hev317ZbDZj4MCBRo0aNYyzZ88ahmEY33//vWG1Wo21a9c6vX779u0Zhvfs2dPo2bOn4+958+YZVqvV+OKLLxzDkpOTjS5duhghISGO7ZJ9fbX3w82bNxuBgYHGoEGDjOHDhzte265dO2PIkCE3Xa6sbvfs9VqtVmPJkiVO88hq3YZx7fMeOHCg0+sz28736NHDqFWrltPnbxiG0zbX3mfN3Lbs3r07w+eevpaEhAQjKCjIePvtt53GT5gwwQgJCTEuXbqU4bXXS98P7J9JeHi4U7+eP3++YbVajd9+++2m8zMMw/jxxx8Nq9Vq7Nq1y1FrkyZNjIkTJ2aYNv2285lnnjFq1qzptG05fvy4Ub16dcNqtTqGnTp1yqhWrZoxa9Ysp/n99ttvRvXq1Z2G2/vO3LlzHcOuXr3q2IYkJyc7LXuLFi2MpKQkp/levXrVaR9oGNf6TmBgYIbPMTOZ9b3M9OzZ03jssceMs2fPGmfPnjWOHj1qTJ482bBarU6vz+ryX7161ahXr57xxBNPGCkpKY7pVq1aZVitVqfPfs2aNUbVqlWdvgMYhmEsWbLEsFqtxt69ex3DsrqvmTNnTqbbuE8//dSwWq2ObVd2pN//29fFp59+2mkdffPNN41q1aoZCQkJN53f+PHjnfqWnX3bUK9ePePChQuO4V9//bVhtVqNLVu2OIZldV+QmS+//NKwWq3GvHnzHMPS0tKM3r17Z9g22fdndjExMRna3DAMY9y4cUZISIijH2dn32DfL17fD86ePWsEBgYab7311k2XxV7P4sWLnYYPGjTIaNasmePzyU5fS78uGoZh9O3b12jRooXTMHvd27dvdxp+O33tejl+LG65cuXUvn17LV++XH///XdOZ5PB9UdKPD09FRgYKMMwnIb7+PioUqVKio2NzfD6xx9/XIULF3b8/dhjj6lEiRLatm2bJOnQoUM6fvy42rVrp/Pnz+vcuXM6d+6cLl++rLCwMH3//fcZLtPo2rVrlmrftm2bgoODFRoa6hhWqFAhdenSRXFxcTpy5EjWGuE6Pj4+SkpK0q5du7L92uzYtm2bQkJCnI6e+fn5qV27dk7Tffvtt0pISFCbNm0cbXfu3DlZLBbVrFkz0ydN2Y9w29WpUydLT9S677775OXlpf/9739Zupwl/XtER0dLki5evKhff/1VXbp0UbFixRxnOaKjo+Xj4+N0VFOSHnroIZUvX97xd9WqVVW4cGFHf0tLS9OuXbvUsmVLlStXzjFdyZIl1bZtW+3du1cXL168ZY0tW7Z0OqoXHBysmjVrOvrqhQsX9N133yk8PFwXL150tPX58+fVqFEjHT9+PMN9VJ07d87StfR///23Dh06pI4dOzodRalataoeeughRw3Xu9F6UKVKFadHztrP7jRo0MDpaVj24fZ2zM7yZbV/3sr1R3M8PDzUo0cPpaSkaPfu3ZKu3UxZpEgRNWzY0Kl/16hRQwULFrzpk9S2b9+uEiVKOD2pz8vLS7169dLly5f1/fffS5Jj+2D/Ozo6WkFBQWrYsKGjzyYkJOj333932pbczK22e3be3t7q1KlTjurOqnPnzun777/XE088keFpaDe7X8OMbcumTZvk4eGR4RK262spUqSIWrRooQ0bNjjO3KWlpWnjxo1q0aKFChYsmPWFv06nTp2c7u2wf5aZ7bfSs5/ltD9Ew8PDQ61bt1ZkZORN70FIS0vT7t271aJFC6dtS4UKFTI8CfGrr76SzWZTeHi4U3vff//9qlChQob2tp+tsvP29laXLl109uxZ/fzzz07TPv74405n1uzT289spqWl6fz58ypYsKAqVaqU6aWWtyMmJkZhYWEKCwtTeHi4PvnkEzVv3lyTJk3K9vL/9NNPunDhgjp37uz0YIR27drJ19fX6X2joqJUuXJl+fv7O82zQYMGkpShTW+1r7kZ+9mXzZs359o9Mp07d3ZaR0NDQ5WWlqa4uLjbmm/r1q2d2ir9upCTfd31duzYIS8vL3Xu3NkxzGKxZDh6n5lKlSqpWrVqioyMdAxLS0vTl19+qebNmzv6cXb3DVWqVHHafvv5+d3we2v6emrWrOl0CeWFCxe0Y8cOtWvXzvH5ZKevXb8uJiYm6ty5c6pXr55iY2OVmJjo9P5ly5bNsK3Irb6Wo0uq7J599lmtXbtWs2fP1pgxY25nVg7pd1BFihRR/vz5M5wOLlKkiC5cuJDh9emf4uHh4aEKFSo4Vpjjx49L0k1PtSUmJjqtHFl98tPp06czvZTGfpnT6dOnM3y5vZXu3btr48aNjkvXGjZsqPDwcDVp0iRb87mVG9VeqVIlp7/t7We/PCS967/0SMr0s/P19c1SgPD29taoUaM0efJkNWzYUDVr1tTDDz+sxx9/3OnUZ2ZCQ0O1dOlSnThxQidPnpSHh4fjPoXo6Gh17txZ0dHRql27tmMnaPevf/0rw/x8fX0djyU8d+6ckpKSMrSNdO1SNpvNpj/++OOGp03tMnviTMWKFbVx40ZJ154uZRiGPvjgA33wwQeZzuPs2bNOXyyy01eljJ+vfRl27typy5cvO33ZutG807eX/eb06y81kP6/b9jbMTvLl9X+eTMWi8UpIF7/evv24cSJE0pMTHTcV5RZPTcSFxenChUqZOhP9kui7G1+//33q2LFioqOjlbXrl21d+9e1a9fX6GhoZowYYJiY2N19OhR2Ww21alTJ0vLdqvtnl2pUqUy3OCc1bqzyr5Dze62zoxty8mTJ1WyZEmnUJ2Zxx9/XJGRkYqOjlbdunX17bff6p9//rmtx/6m35fZd9q3erxpWlqaNmzYoPr16zuFp+DgYM2dO1e7d+9Wo0aNMn3t2bNndeXKlUy3LemHHT9+XIZh6NFHH810XumfOlayZMkM4atixYqSrvWhkJAQx/DMthU2m02fffaZFi9erFOnTjkFp1t9PtlVpkwZTZw4UTabTSdPntRHH32k8+fPO12CmdXlt/f/64OBfXyZMmWchp04cUJHjx7N8vbjVvuam2ndurVWrFihMWPG6N1331VYWJgeeeQRPfbYYxnW5azKaZ+9lfTLaf9+lZN9QWZOnz6tEiVKqECBAk7D039mN9K6dWu99957+uuvv1SqVCn973//09mzZxUeHu6YJrv7hht9tln57tOhQwdNmDBBcXFxKlOmjKKiopSSkuK0PcpOX9u7d6+mT5+u/fv3Z3hQSGJiotMDZTJbd3Orr91W4Lj+LEdmjxm70dGsmx2hyaz4Gx2xNW5yP8WN2F/z4osvqlq1aplOk36j6sonGhQvXlxr1qzRzp07tX37dm3fvl2rVq3S448/rsmTJ+d4vjl9Uoe9/aZMmZLpl/70n1V2n1yT3tNPP63mzZvr66+/1s6dO/XBBx9o9uzZmj9/vqpXr37D19m/qH3//feKjY1V9erVVbBgQYWGhuqzzz7TpUuXdOjQoUxvGM/N/nY77EcS+vbte8PfaUm/QTWzr95o3jdqr1u1Y06Wz2w2m03FixfXO++8k+n4zK6Dz4natWvru+++05UrV/Tzzz/r2WefldVqlY+Pj6Kjo3X06FEVLFjwpn08J9Ifdb6T5PW25XqNGjXS/fffr7Vr16pu3bpau3atSpQooYceeijH87zRjvhW25HvvvtOZ86c0YYNG5zu9bFbt27dDQNHdthsNnl4eCgiIiLTtszpmR0p83720Ucf6YMPPtATTzyh559/Xr6+vrJYLHrzzTdzfdtasGBBp8+udu3a6tSpk6ZOneo4OGrG8ttsNlmtVr388suZjk9/EOZ29jX33XefFi1apD179uibb77Rjh07FBkZqWXLlmnu3Lk5Wj9y2mdv5U7fF4SHh+vdd9/Vxo0b9fTTT2vjxo0qUqSI04Hd7O4bbmf71KZNG02aNEnr1q3ToEGDtHbtWgUGBjoOXtvryUpfO3nypJ5++mn5+/tr9OjR+te//iUvLy9t27Yt09+myWzdza2+dluBQ7r2TOO1a9dm+sSq9CnWLrtHzLIj/VNADMPQiRMnHDch249wFi5c+LZ2JpkpXbq0jh07lmF4TEyMY3xOeHt7q3nz5mrevLlsNpvGjRunZcuW6dlnn1WFChVueplCZkdLkpOTdebMmQy1Z/YElfTLY2+/4sWL51r73eqxmOXLl1ffvn3Vt29fHT9+XI8//rjmzp17wxVfurY8pUuX1t69exUbG+s4tRkaGqpJkyYpKipKaWlpGR46kBV+fn4qUKDADT9ri8WS6dGN9DJr7+PHjzuOmtnb2svLy5S+KmX8fKVry1CsWLHb+sKRFdlZvqz2z5ux2WyKjY11Oitif729zcuXL6/du3erdu3a2f5yXqZMGf3222+y2WxOO+7M1v/Q0FCtWrVKGzZsUFpamuNMm/1SwKNHj6p27dpZ3pDfaruXW3Vnhf1zzeyJa1l5XW5uW8qXL6+dO3dmuAEzPU9PT7Vt21arV6/WqFGj9PXXX2f58sTctm7dOhUvXtzpaTR2X331lb766iuNHz8+0/5ZvHhx5c+fP9N1Jf2w8uXLyzAMlS1bNktnCv/+++8MZz3tZ6XSH+nPzJdffqn69evrzTffdBqekJDguBnaLFWrVlX79u21dOlS9e3bV6VLl87y8tv7/8mTJx2Xq0hSamqq4uLinNax8uXL69dff1VYWFiuPe75ZvOxWCyOS8defvllffTRR5o6dar27NmT6/uMnNaYFbe7rytdurT27NmjpKQkp7McJ0+ezPL7BwcHa+PGjerZs6c2bdqkli1bOp0Nvp19Q3YVLVpUDz/8sNatW6d27dpp3759euWVV5ymyWpf27Jli5KTkzVr1iynbXl2f2g5N/paju/hsCtfvrzat2+vZcuWZfgSW7hwYRUrVsxxXbJdZo/jyi1r1qxxun4+KipKZ86ccSTVwMBAlS9fXnPnztWlS5cyvP5Wj4C7maZNm+rgwYP64YcfHMMuX76s5cuXq0yZMqpSpUq253n+/Hmnvy0Wi2MDZ3/0mX0FS38tnnRtRUrf/suXL89whqNp06bav3+/06Pqzp07l+FRjI0bN1bhwoX18ccfKyUlJcP75aT97PWnD0ZJSUm6evWq07Dy5curUKFCGR77lpk6derou+++08GDBx1nPKpVq6ZChQpp9uzZuu+++1SjRo1s1+vp6amGDRtq8+bNTpc8/PPPP1q/fr3q1KmT4fKPzHz99ddO16UePHhQBw4ccPTV4sWLq169elq2bFmm90ndTl8tWbKkqlWrpjVr1ji1++HDh7Vr1y41bdo0x/POquwsX1b7563YH98oyfFoai8vL8dp6fDwcKWlpWV4mox07QvGzS4taNKkic6cOeN0LXBqaqoWLFigggULOoVbewCOiIhQQECA45R2nTp1tHv3bv30009ZvpxKuvV272ayU3dW+Pn5qW7dulq5cmWGg0s3O1Jqxrbl0UcflWEYmjFjRoZx6Wvp0KGD4uPj9dprr+ny5cs3fFSuma5cuaJNmzbp4Ycf1mOPPZbhvx49eujSpUvasmVLpq/39PTUQw89pM2bNzttW06cOKEdO3Y4Tfvoo4/K09Mz00dDG4aRYd+TmpqqZcuWOf5OTk7WsmXL5Ofnl6XtqKenZ4b32bhxY579nlf//v2VmpqqTz/9VFLWlz8wMFBFixbV8uXLlZqa6phm3bp1GS6PCQ8P119//aXly5dneP8rV67k6PeLbrR/z+yScvtVG1nZP+amG+3Ds+p293WNGjVSSkqKU7vbbDan7f2ttG7dWvv379fKlSt1/vx5p8uppNvbN+REhw4ddOTIEU2ZMkWenp5q06ZNhnqy0tfsB02u7+OJiYlauXJllmvJrb5222c4JGnQoEH64osvdOzYsQzXrT/11FOaPXu2Xn31VQUGBio6OjpbRyWzy9fXV927d1enTp0cj4esUKGC42Yii8WiiRMnasCAAWrbtq06deqkUqVK6a+//tKePXtUuHBhffTRRzl674EDB2rDhg0aMGCAevXqJV9fX61Zs0anTp3S9OnTc3Rd5ZgxYxQfH68GDRo4rmVfuHChqlWr5rjGulq1avL09FRERIQSExPl7e2tBg0aqHjx4nrqqaf0+uuva9iwYXrooYf066+/aufOnRmOKPXv319ffPGF+vfvr969ezseO1q6dGn99ttvjukKFy6scePG6cUXX1SnTp3UunVr+fn56fTp09q2bZtq166d6ZG5m7nvvvtUpUoVbdy4URUrVlTRokX14IMPKi0tTU8//bQee+wxValSRZ6envr666/1zz//ZFj5MhMaGqp169bJw8PD8eXN09NTtWrV0s6dO1WvXr0c/2DX8OHD9e2336p79+7q3r27PD09tWzZMiUnJ+s///lPluZRvnx5devWTd26dVNycrI+++wzFS1aVP3793dM8/rrr6t79+5q166dOnfurHLlyumff/7R/v379eeff2rt2rU5ql+6dlnhgAED1KVLFz355JOOx+IWKVIk05tszZDV5ctq/7yZ/Pnza8eOHXrppZcUHBysHTt26JtvvtGgQYMcp8Pr1aunLl266OOPP9ahQ4fUsGFDeXl56fjx44qKitKrr76qxx57LNP5d+nSRcuWLdPo0aP1888/q0yZMvryyy8dR6euD6EVKlRQiRIldOzYMadnwNetW9dx5i6rN4xLt97u3Ux26s6qMWPGqFu3burYsaO6dOmismXLKi4uTt98842++OKLTF9jxralQYMG6tChgxYsWKATJ06ocePGstlsjvtmrn8kdvXq1WW1Wh03Y+bkYMTt2rJliy5duqTmzZtnOj4kJER+fn5au3at0+M6rzd06FDt3LnTsW2x2WxauHChHnzwQR06dMgxXfny5TV8+HC9++67iouLU8uWLVWoUCGdOnXKcYbn+t8gKVmypCIiIhQXF6eKFSsqMjJShw4d0oQJE7L0I3IPP/ywZs6cqZdfflm1atXS4cOHtW7dugz3VZmlSpUqatq0qT7//HM9++yzWV5+b29vDRs2TBMmTFCfPn0UHh6uuLg4rVq1KsNlPh06dNDGjRv1+uuva8+ePapdu7bS0tIUExOjqKgozZkzR0FBQdmq294Pp06dqtatW8vLy0vNmjXTzJkzFR0draZNm6pMmTI6e/asFi9erAceeCBbBytyg73GiRMnqlGjRpl+Qb6V29nXtWzZUsHBwZo8ebJOnjwpf39/bdmyxREIs3IGJjw8XJMnT9bkyZNVtGjRDEftb2ffkBNNmzZV0aJFFRUVpSZNmqh48eJO47Pa1+x1Dho0SF27dtWlS5e0YsUKFS9ePMNJghvJrb6WK4GjQoUKmf7AlSTHD8d8+eWX2rhxo5o0aaI5c+bc8EaX2zVo0CD99ttvmj17ti5duqSwsDC9/vrrTqfZ6tevr2XLlunDDz/UwoULdfnyZZUoUULBwcFOT+HIrvvvv19Lly7V22+/rYULF+rq1asKCAjQRx99pIcffjhH87TfI7N48WIlJCSoRIkSCg8P17BhwxwBpkSJEho/frw+/vhjvfrqq0pLS9Nnn32m4sWLq3Pnzjp16pQ+//xz7dixQ3Xq1NGnn36qp59+2ul9SpYsqc8++0wTJ07U7NmzVbRoUXXt2lUlS5bUq6++6jRtu3btVLJkSc2ePVuffPKJkpOTVapUKYWGhmZ4Ak5WTZw4URMmTNCkSZOUkpKioUOHqmfPnmrTpo12796ttWvXytPTU/7+/nr//ffVqlWrW87T/oXN39/fKWCFhoZq586d2fpCl96DDz6oRYsW6d1339XHH38swzAUHByst99+O0u/wSFdu1HVYrFo/vz5Onv2rIKDgzV27FiVLFnSMU2VKlW0cuVKzZgxQ6tXr9aFCxfk5+en6tWra8iQITmuX7r2hJQ5c+Zo2rRpmjZtmvLly6e6devqP//5T55+CcjK8mWnf96Ip6en5syZo3Hjxuntt99WoUKFNHTo0Azt+MYbbygwMFBLly7V1KlT5enpqTJlyqh9+/aqXbv2Ded/3333acGCBXrnnXe0evVqXbx4UZUqVdKkSZMyXS/q1KmjqKgop3nWqFFDBQoUUGpqapb7kZS17V5u1Z0VVatW1fLly/XBBx9oyZIlunr1qkqXLp3hqGF6ZmxbJk2apICAAH3++eeaMmWKihQposDAQKcnq9l16NBBb7/99m3dLH471q5dq/z586thw4aZjrdYLI5LLc6fP5/ppUiBgYGKiIjQlClT9MEHH+hf//qXnnvuOcXExDguk7MbOHCgKlasqHnz5mnmzJmSrl373bBhwwyhx9fXV2+99ZYmTpyo5cuX6/7779drr72WpVArXeujSUlJWrdunSIjI1W9enV9/PHHevfdd7P0+tzQr18/ffPNN1q4cKGGDRuW5eXv2bOnDMPQp59+qsmTJ6tq1aqaNWuWJk6c6HRvm8Vi0cyZMzVv3jx98cUX+uqrr1SgQAGVLVtWvXr1ytZDLuyCg4P1/PPPa+nSpdqxY4dsNps2b96s5s2bKy4uznFEvlixYqpXr56GDRvmdBNwXnj00UfVq1cvbdiwQWvXrpVhGNkOHLezr/P09NTHH3+s//73v1q9erUsFoseeeQRDRkyRN26dcvSvY0PPPCAatWqpX379umpp57KNETndN+QE97e3o4f6Mtse5TVvubv769p06bp/fff1+TJk3X//ferW7du8vPzy3CZ1o3kVl/zMPL6TljgHnfq1Cm1aNFCL7744i1/xRi4mT179qh379764IMPcvXo2r1q/vz5mjRpkrZs2ZLje+7uVM8++6yOHDmiTZs2uboUt2Cz2RxP65k4caKry0Emvv76aw0ZMkSLFy/O87M+ueHNN9/U559/rl27dmXp4NGd7rbv4QAA4G5nGIY+//xz1a1b964PG1euXHH6+/jx49q+fbvq1avnoorublevXs1wn8eaNWt04cIF2vQOkb7Pp6WlacGCBSpcuLBLLo+8XVevXtXatWvVqlUrtwgbUi5dUgUAwN3o8uXL2rJli/bs2aPDhw9nelPo3aZly5bq2LGjypUrp7i4OC1dulReXl5O94ch6/bv369JkybpscceU9GiRfXLL7/o888/l9Vq5cziHWLChAm6cuWKatWqpeTkZG3atEk//PCDRo4ceUc/Djy9s2fP6ttvv9WXX36pCxcuqHfv3q4uKdcQOAAA96xz587phRdekI+PjwYNGqQWLVq4uqTb1rhxY23YsEFnzpyRt7e3QkJCNHLkSMcP9SF7ypQpowceeEALFixQfHy8fH191aFDB40aNSrHDx5B7mrQoIE+/fRTffPNN7p69aoqVKigsWPHOj0Y4m5w5MgRjRo1SsWLF9eYMWNu+HtxdyPu4QAAAABgGu7hAAAAAGAaAgcAAAAA0xA4AAAAAJiGm8ZhCsMwZLNxexAAAHcLi8UjS7/MDWQXgQOmsNkMnTt3ydVlAACALPLzKyRPTwIHch+XVAEAAAAwDYEDAAAAgGkIHAAAAABMQ+AAAAAAYBoCBwAAAADTEDgAAAAAmIbAAQAAAMA0BA4AAAAApiFwAAAAADANgQMAAACAaQgcAAAAAExD4AAAAABgGgIHAAAAANMQOAAAAACYhsABAAAAwDT5XF0AgNtjsXjIYvFwdRkuZ7MZstkMV5cBAADSIXAAdzGLxUPFihaQxdPT1aW4nC0tTecvJBE6AAC4wxA4gLuYxeIhi6enznw+XClnjri6HJfxKlFFJZ58XxaLB4EDAIA7DIEDcAMpZ44o+Y+fXV0GAABABtw0DgAAAMA0BA4AAAAApiFwAAAAADANgQMAAACAaQgcAAAAAExD4AAAAABgGgIHAAAAANMQOAAAAACYhsABAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBpCBwAAAAATEPgAAAAAGAaAgcAAAAA0xA4AAAAAJiGwAEAAADANAQOAAAAAKYhcAAAAAAwDYEDAAAAgGkIHAAAAABMQ+AAAAAAYBoCBwAAAADTEDgAAAAAmIbAAQAAAMA0BA4AAAAApiFw3KVOnDih1157TR06dFD16tXVtm3bTKdbsWKFWrVqpaCgILVv315bt27NME1iYqJeeeUV1atXT7Vq1dJzzz2nv//+2+xFAAAAwD2AwHGX+v3337Vt2zZVqFBBlStXznSaDRs2aOzYsQoPD1dERIRCQkI0dOhQ7d+/32m64cOHa9euXRo3bpzeeecdHTt2TAMGDFBqamoeLAkAAADcWT5XF4Ccad68uVq2bClJGj16tH766acM00ybNk1t2rTR8OHDJUkNGjTQ4cOHNXPmTEVEREiSfvjhB+3cuVOffPKJGjVqJEmqVKmSWrdurU2bNql169Z5s0AAAABwS5zhuEtZLDf/6GJjY3X8+HGFh4c7DW/durV2796t5ORkSdL27dvl4+Ojhg0bOqbx9/dXtWrVtH379twvHAAAAPcUAoebiomJkXTtbMX1KleurJSUFMXGxjqmq1Spkjw8PJym8/f3d8wDAAAAyCkuqXJT8fHxkiQfHx+n4fa/7eMTEhJUpEiRDK/39fXN9DKt7MiXjzxrNk9P2vh6tAcAAHceAgdMYbF4qFixQq4uA/cYH58Cri4BAACkQ+BwU76+vpKuPfK2RIkSjuEJCQlO4318fPTnn39meH18fLxjmpyw2QwlJFzO8euRNZ6eFr5kXychIUlpaTZXlwEAdyUfnwKcKYYpCBxuyt/fX9K1ezTs/7b/7eXlpXLlyjmm2717twzDcLqP49ixY7JarbdVQ2oqX/yQt9LSbPQ7AADuMMRYN1WuXDlVrFhRUVFRTsMjIyMVFhYmb29vSVKTJk0UHx+v3bt3O6Y5duyYfvnlFzVp0iRPawYAAID74QzHXSopKUnbtm2TJMXFxenixYuOcFGvXj35+flp2LBhGjVqlMqXL6/69esrMjJSBw8e1MKFCx3zqVWrlho1aqRXXnlFL730kvLnz6+pU6cqICBAjz76qEuWDQAAAO7DwzAMw9VFIPtOnTqlFi1aZDrus88+U/369SVJK1asUEREhE6fPq1KlSpp5MiRatasmdP0iYmJmjRpkr766iulpqaqUaNGGjNmjEqVKpXj+tLSbDp37lKOX4+syZfPomLFCun0rLZK/uNnV5fjMt7/qqHSg9fr/PlLXFIFADnk51eIezhgCgIHTEHgyBsEjmsIHABw+wgcMAu9CgAAAIBpCBwAAAAATEPgAAAAAGAaAgcAAAAA0xA4AAAAAJiGwAEAAADANAQOAAAAAKYhcAAAAAAwDYEDAAAAgGkIHAAAAABMQ+AAAAAAYBoCBwAAAADTEDgAAAAAmIbAAQAAAMA0BA4AAAAApiFwAAAAADANgQMAAACAaQgcAAAAAExD4AAAAABgGgIHAAAAANMQOAAAAACYhsABAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBpCBwAAAAATEPgAAAAAGAaAgcAAAAA0xA4AAAAAJiGwAEAAADANAQOAAAAAKYhcAAAAAAwDYEDAAAAgGkIHAAAAABMQ+AAAAAAYBoCBwAAAADTEDgAAAAAmIbAAQAAAMA0BA4AAAAApiFwAAAAADANgQMAAACAaQgcAAAAAExD4AAAAABgGgIHAAAAANMQOAAAAACYhsABAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBpCBwAAAAATEPgcHObN2/WU089pVq1aqlRo0Z6/vnnFRsbm2G6FStWqFWrVgoKClL79u21detWF1QLAAAAd0PgcGN79uzR0KFDVaVKFc2cOVOvvPKKfv31V/Xt21dXrlxxTLdhwwaNHTtW4eHhioiIUEhIiIYOHar9+/e7rngAAAC4hXyuLgDm2bBhg0qXLq0333xTHh4ekiQ/Pz/16dNHP/30k0JDQyVJ06ZNU5s2bTR8+HBJUoMGDXT48GHNnDlTERERriofAAAAboAzHG4sNTVVhQoVcoQNSSpSpIgkyTAMSVJsbKyOHz+u8PBwp9e2bt1au3fvVnJyct4VDAAAALdD4HBjnTp10tGjR7Vo0SIlJiYqNjZW7733nqpXr67atWtLkmJiYiRJlSpVcnpt5cqVlZKSkun9HgAAAEBWcUmVGwsNDdWMGTP0wgsv6I033pAkVatWTXPmzJGnp6ckKT4+XpLk4+Pj9Fr73/bxOZEvH3nWbJ6etPH1aA8AAO48BA43tm/fPr344ovq3LmzHn74YV24cEEffvihBg4cqMWLF+u+++4z7b0tFg8VK1bItPkDmfHxKeDqEgAAQDoEDjc2ceJENWjQQKNHj3YMCwkJ0cMPP6wvvvhCXbp0ka+vryQpMTFRJUqUcEyXkJAgSY7x2WWzGUpIuHwb1SMrPD0tfMm+TkJCktLSbK4uAwDuSj4+BThTDFMQONzY0aNH1aJFC6dhDzzwgIoVK6aTJ09Kkvz9/SVdu5fD/m/7315eXipXrlyO3z81lS9+yFtpaTb6HQAAdxhirBsrXbq0fvnlF6dhcXFxOn/+vMqUKSNJKleunCpWrKioqCin6SIjIxUWFiZvb+88qxcAAADuhzMcbqxr16568803NXHiRDVv3lwXLlzQrFmzVLx4cafH4A4bNkyjRo1S+fLlVb9+fUVGRurgwYNauHChC6sHAACAOyBwuLHevXvL29tbS5Ys0cqVK1WoUCGFhITo/fffV7FixRzTtW3bVklJSYqIiNDs2bNVqVIlzZgxQ7Vq1XJh9QAAAHAHHob9F+CAXJSWZtO5c5dcXYbby5fPomLFCun0rLZK/uNnV5fjMt7/qqHSg9fr/PlL3MMBADnk51eIm8ZhCnoVAAAAANMQOAAAAACYhsABAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBpCBwAAAAATEPgAAAAAGAaAgcAAAAA0xA4AAAAAJiGwAEAAADANPlcXQAAAIDZLBYPWSweri7D5Ww2Qzab4eoycI8hcAAAALdmsXioWNECsnh6uroUl7Olpen8hSRCB/IUgQMAALg1i8VDFk9PbXh7kM7G/u7qclymeLkH1eY/H8li8SBwIE8ROAAAwD3hbOzv+vvoQVeXAdxzuGkcAAAAgGkIHAAAAABMQ+AAAAAAYBoCBwAAAADTEDgAAAAAmIbAAQAAAMA0BA4AAAAApiFwAAAAADANgQMAAACAaQgcAAAAAExD4AAAAABgGgIHAAAAANMQOAAAAACYhsABAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBpCBwAAAAATEPgAAAAAGAaAgcAAAAA0xA4AAAAAJiGwAEAAADANAQOAAAAAKYhcAAAAAAwDYEDAAAAgGkIHAAAAABMQ+AAAAAAYBoCBwAAAADTEDgAAAAAmIbAAQAAAMA0BA4AAAAApsnn6gIAAEDmLBYPWSweri7D5Ww2Qzab4eoyAOQQgQMAgDuQxeKhYkULyeJJ4LClGTp/4RKhA7hLETgAALgDWSwesnh6aP2bMTp78oqry3GZ4uXvU9tX/GWxeBA4gLsUgQMAgDvY2ZNX9Pfvl11dBgDkGDeNAwAAADANgeMesHr1aj3++OMKCgpS/fr11b9/f1258v+n57ds2aL27dsrKChIrVq10sqVK11YLQAAANwJl1S5uVmzZikiIkKDBg1SSEiIzp8/r927dystLU2SFB0draFDh+rJJ5/UK6+8ou+++06vvvqqChUqpMcee8zF1QMAAOBuR+BwYzExMZoxY4Y+/PBDNW3a1DG8VatWjn/PmjVLwcHBeuONNyRJDRo0UGxsrKZNm0bgAAAAwG3jkio3tmrVKpUtW9YpbFwvOTlZe/bsyRAsWrduraNHj+rUqVN5USYAAADcGIHDjR04cEBWq1UffvihwsLCFBgYqK5du+rAgQOSpJMnTyolJUX+/v5Or6tcubKka2dIAAAAgNvBJVVu7MyZM/rpp590+PBhvf766ypQoIA++ugj9e3bV5s2bVJ8fLwkycfHx+l19r/t43MqXz7yrNk8PWnj69EecCf0Z2e30x60pTPaA3mNwOHGDMPQ5cuX9cEHH6hq1aqSpJo1a6p58+ZauHChGjVqZNp7WyweKlaskGnzBzLj41PA1SUAMAnrd+6hLZHXCBxuzMfHR0WLFnWEDUkqWrSoqlevriNHjqhNmzaSpMTERKfXJSQkSJJ8fX1z/N42m6GEBH6oymyenhZ2HNdJSEhSWprN1WUAuYL129ntrN+0pbMbtaWPTwHOfsAUBA43VqVKFZ08eTLTcVevXlX58uXl5eWlmJgYNW7c2DHOfu9G+ns7sis1lS9+yFtpaTb6HeCmWL9zD22JvEaMdWPNmjXThQsXdOjQIcew8+fP6+eff1aNGjXk7e2t+vXr68svv3R6XWRkpCpXrqyyZcvmdckAAABwM5zhcGMtW7ZUUFCQnnvuOY0YMUL58+fX7Nmz5e3tre7du0uSBg8erN69e2vcuHEKDw/Xnj17tH79ek2dOtXF1QMAAMAdcIbDjVksFs2ePVshISF67bXXNHLkSBUuXFiLFi1SiRIlJEmhoaGaPn269u7dq379+mn9+vWaOHGiwsPDXVw9AAAA3AFnONycn5+f3n777ZtO06JFC7Vo0SKPKgIAAMC9hDMcAAAAAExD4AAAAABgGgIHAAAAANMQOAAAAACYhsABAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBpCBwAAAAATEPgAAAAAGAaAgcAAAAA0xA4AAAAAJiGwAEAAADANAQOAAAAAKYhcAAAAAAwDYEDAAAAgGkIHAAAAABMk8/VBeDeZLF4yGLxcHUZdwSbzZDNZri6DAAAAFMQOJDnLBYP+RYtpHyeBA5JSk0zFH/hEqEDAAC4JQIH8pzF4qF8nh4a8d4ZHT2V4upyXKpyWS9NHVlCFosHgQMAALglAgdc5uipFP0ck+zqMgAAAGAibhoHAAAAYBoCBwAAAADTEDgAAAAAmIbAAQAAAMA0BA4AAAAApiFwAAAAADANgQMAAACAaQgcAAAAAExD4AAAAABgGgIHAAAAANMQOAAAAACYhsABAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBp8rm6AAC4U1gsHrJYPFxdhsvZbIZsNsPVZQAA3ASBAwB0LWwULVZAnhZPV5ficmm2NF04n0ToAADkCgIHAOha4PC0eOqVH97SscRYV5fjMpWKlNObtUbLYvEgcAAAcgWBAwCucywxVr8mHHF1GQAAuA1uGgcAAABgGgIHAAAAANMQOAAAAACYhsABAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBpCBwAAAAATEPgAAAAAGAaAgcAAAAA0xA47hGXLl1SkyZNFBAQoB9//NFp3IoVK9SqVSsFBQWpffv22rp1q4uqBAAAgLshcNwjPvzwQ6WlpWUYvmHDBo0dO1bh4eGKiIhQSEiIhg4dqv379+d9kQAAAHA7BI57wNGjR7V48WINGzYsw7hp06apTZs2Gj58uBo0aKA33nhDQUFBmjlzpgsqBQAAgLshcNwDJk6cqK5du6pSpUpOw2NjY3X8+HGFh4c7DW/durV2796t5OTkvCwTAAAAbojA4eaioqJ0+PBhDRkyJMO4mJgYScoQRCpXrqyUlBTFxsbmSY0AAABwX/lcXQDMk5SUpLfeeksjRoxQ4cKFM4yPj4+XJPn4+DgNt/9tH59T+fJlnmc9Pcm56eW0TWhLZ7fTHrSlM9rD9fgMnLF+5x7aA3mNwOHGZs2apeLFi+uJJ57I8/e2WDxUrFihPH/fu5WPTwFXl+AWaMfcQ1viTkOfzD20JfIagcNNxcXFae7cuZo5c6YSExMlSZcvX3b8/9KlS/L19ZUkJSYmqkSJEo7XJiQkSJJjfE7YbIYSEi5nOs7T08LGLp2EhCSlpdmy/Tra0llO21GiLdO7nbZE7qBPOmP9zj03aksfnwKc/YApCBxu6tSpU0pJSdHAgQMzjOvdu7dq1qypd999V9K1ezn8/f0d42NiYuTl5aVy5crdVg2pqXxZyaq0NBvtlQtox9xDW+JOQ5/MPbQl8hqBw01Vq1ZNn332mdOwQ4cOadKkSRo/fryCgoJUrlw5VaxYUVFRUWrZsqVjusjISIWFhcnb2zuvywYAAICbIXC4KR8fH9WvXz/TcTVq1FCNGjUkScOGDdOoUaNUvnx51a9fX5GRkTp48KAWLlyYl+UCAADATRE47nFt27ZVUlKSIiIiNHv2bFWqVEkzZsxQrVq1XF0aAAAA3ACB4x5Sv359/fbbbxmGP/XUU3rqqadcUBEAAADcHY8iAAAAAGAaAgcAAAAA0xA4AAAAAJiGwAEAAADANAQOAAAAAKYhcAAAAAAwDYEDAAAAgGkIHAAAAABMQ+AAAAAAYBoCBwAAAADTEDgAAAAAmIbAAQAAAMA0BA4AAAAApiFwAAAAADANgQMAAACAaQgcAAAAAExD4AAAAABgGgIHAAAAANMQOAAAAACYhsABAAAAwDT5XF0AAMC9WCweslg8XF3GHcFmM2SzGa4uAwBcisABAMg1FouHivkWkCWfp6tLuSPYUtN0Pj6J0AHgnkbgAADkGovFQ5Z8nop57gVdOXLU1eW41H1VKst/2ruyWDwIHADuaQQOAECuu3LkqC7/9IurywAA3AG4aRwAAACAaQgcAAAAAExD4AAAAABgGgIHAAAAANMQOAAAAACYhsABAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBpCBwAAAAATEPgAAAAAGAaAgcAAAAA0xA4AAAAAJiGwAEAAADANAQOAAAAAKYhcAAAAAAwDYEDAAAAgGkIHAAAAABMQ+AAAAAAYBoCBwAAAADTEDgAAAAAmIbAAQAAAMA0BA4AAAAApiFwAAAAADANgQMAAACAaQgcAAAAAExD4AAAAABgGgKHG9u4caMGDx6sJk2aKCQkRB06dNDnn38uwzCcpluxYoVatWqloKAgtW/fXlu3bnVRxQAAAHA3BA43Nm/ePBUoUECjR4/WrFmz1KRJE40dO1YzZ850TLNhwwaNHTtW4eHhioiIUEhIiIYOHar9+/e7rnAAAAC4jXyuLgDmmTVrlvz8/Bx/h4WF6cKFC/r000/17LPPymKxaNq0aWrTpo2GDx8uSWrQoIEOHz6smTNnKiIiwkWVAwAAwF1whsONXR827KpVq6aLFy/q8uXLio2N1fHjxxUeHu40TevWrbV7924lJyfnVakAAABwU5zhuMfs3btXpUqVUuHChbV3715JUqVKlZymqVy5slJSUhQbG6vKlSvn+L3y5cs8z3p6knPTy2mb0JbObqc9aEtn9MncQ1vmDtbv3EN7IK8ROO4h0dHRioyM1EsvvSRJio+PlyT5+Pg4TWf/2z4+JywWDxUrVijHr7/X+PgUcHUJboF2zD20Ze6hLXMH7Zh7aEvkNQLHPeLPP//UiBEjVL9+ffXu3dv097PZDCUkXM50nKenhY1dOgkJSUpLs2X7dbSls5y2o0RbpkefzD20Ze5g/c49N2pLH58CnP2AKQgc94CEhAQNGDBARYsW1fTp02WxXNuY+Pr6SpISExNVokQJp+mvH59Tqak52zHci9LSbLRXLqAdcw9tmXtoy9xBO+Ye2hJ5jRjr5q5cuaJnnnlGiYmJmjNnjooUKeIY5+/vL0mKiYlxek1MTIy8vLxUrly5PK0VAAAA7ofA4cZSU1M1fPhwxcTEaM6cOSpVqpTT+HLlyqlixYqKiopyGh4ZGamwsDB5e3vnZbkAAABwQ1xS5cbGjx+vrVu3avTo0bp48aLTj/lVr15d3t7eGjZsmEaNGqXy5curfv36ioyM1MGDB7Vw4ULXFQ4AAAC3QeBwY7t27ZIkvfXWWxnGbd68WWXLllXbtm2VlJSkiIgIzZ49W5UqVdKMGTNUq1atvC4XAAAAbojA4ca2bNmSpemeeuopPfXUUyZXAwAAgHsR93AAAAAAMA2BAwAAAIBpCBwAAAAATEPgAAAAAGAaAgcAAAAA0xA4AAAAAJiGwAEAAADANAQOAAAAAKYhcAAAAAAwDYEDAAAAgGkIHAAAAABMQ+AAAAAAYBoCBwAAAADTEDgAAAAAmIbAAQAAAMA0BA4AAAAApiFwAAAAADANgQMAAACAaQgcAAAAAExD4AAAAABgGgIHAAAAANMQOAAAAACYhsABAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBpCBwAAAAATEPgAAAAAGAaAgcAAAAA0xA4AAAAAJiGwAEAAADANAQOAAAAAKYhcAAAAAAwDYEDAAAAgGkIHAAAAABMQ+AAAAAAYBoCBwAAAADTEDgAAAAAmIbAAQAAAMA0BA4AAAAApiFwAAAAADANgQMAAACAaQgcAAAAAExD4AAAAABgGgIHAAAAANMQOAAAAACYhsABAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBpCBzQ0aNH9e9//1shISFq2LChpkyZouTkZFeXBQAAADeQz9UFwLXi4+PVp08fVaxYUdOnT9dff/2lt956S1euXNFrr73m6vIAAABwlyNw3OOWLl2qS5cuacaMGSpatKgkKS0tTePHj9czzzyjUqVKubZAAAAA3NW4pOoet337doWFhTnChiSFh4fLZrNp165drisMAAAAboHAcY+LiYmRv7+/0zAfHx+VKFFCMTExLqoKAAAA7oJLqu5xCQkJ8vHxyTDc19dX8fHxOZ6vxeIhP79CmY7z8Lj2/09fK6WUNCPH7+EOvDyvNYavbwEZOWgKe1uW6jVPhi01Fyu7u3hYrm3KctqO0v+35cz6/1XKPdyWXrfZlvZ2fPCzT2SkpORiZXcfDy8vSbfflk9OelC21Ht3W2nJd3vbSem6tnxjqdJS791+6Znv5n3SYvHI44pwryBwwBQeHh7y9Lz5hqt4Uc88qubOZ7Hc3slGz8L351Ild7fbbUdJ8stf9PYLcQO325Ze9xfPpUrufrfbloWKeeVSJXe33Fi/CxYtkQuV3P1yoy2B7KDH3eN8fHyUmJiYYXh8fLx8fX1dUBEAAADcCYHjHufv75/hXo3ExESdOXMmw70dAAAAQHYROO5xTZo00bfffquEhATHsKioKFksFjVs2NCFlQEAAMAdeBhGTm/BgjuIj49XmzZtVKlSJT3zzDOOH/5r164dP/wHAACA20bggI4ePaoJEybohx9+UKFChdShQweNGDFC3t7eri4NAAAAdzkCBwAAAADTcA8HAAAAANMQOAAAAACYhsABAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBp8rm6ACC7Nm7cqLVr1+rnn39WQkKCKlSooF69eumJJ56Qh4eHY7oVK1Zozpw5On36tCpVqqQRI0aoWbNmjvEHDx7UkiVLFB0drb///lulSpVSq1atNHjwYBUsWNAx3erVq7VkyRIdP35cSUlJKl26tNq3b68BAwbc9b9VktdtuXTpUm3atEm//fabkpKSVKVKFQ0cOFAtW7bM0+U2Q1635Y8//qjFixdr//79OnbsmJo2baqPP/44T5fZDHndjpK0b98+TZ48WYcOHVLx4sXVrVs3DRgwwOn97ka51ZbJycl6//33deDAAf38889KSkrS7t275efnl+E9V6xYoc8++0yxsbHy9fVV48aNNWLECBUvXjxPltksed2WzZs3V1xcXKa1LFu2TCEhIaYsJ2AWAgfuOvPmzVOZMmU0evRoFStWTN9++63Gjh2rP//8U0OHDpUkbdiwQWPHjtWgQYPUoEEDRUZGaujQoVq0aJFjQ71x40adOHFC/fv3V8WKFXXkyBFNmzZNBw4c0GeffeZ4v/j4eDVu3FgDBw5U4cKFdfDgQc2YMUN//vmnJkyY4IomyDV53ZYfffSRGjVqpG7duqlgwYKKiorSkCFD9NZbb6ljx46uaIJck9dtuW/fPkVHRys4OFhXr151xSKbIq/b8cSJE+rXr58aNmyo4cOH67ffftM777wjT09P9evXzxVNkGtyqy2vXLmiFStWKCgoSHXq1NHOnTszfb81a9ZozJgx6tevnxo3bqzTp09r6tSpOnLkiJYuXZpXi22KvG7LGTNmKDk52WnYO++8o6NHjyowMNDUZQVMYQB3mbNnz2YYNmbMGKN27dpGWlqaYRiG8eijjxojR450mqZLly5G//79bzqftWvXGlar1fjxxx9vWsN7771nBAcHG6mpqTlZhDtGXrdlZtP9+9//Ntq2bZvjZbhT5HVb2udpGIbRs2dPY+DAgbe9DHeCvG7HsWPHGs2aNTOuXr3qGPbuu+8aoaGhTsPuRrnVloZhGDabzTAMw1i5cqVhtVoznXffvn2Nnj17Og37/PPPDavVapw+ffq2lsXV8rot07t06ZIREhJijBs3LqeLALgU93DgrpPZafxq1arp4sWLunz5smJjY3X8+HGFh4c7TdO6dWvt3r3bcdQos/lUr15dkvT333/ftIaiRYsqNTVVNpstp4txR8jrtrzR+92qve8Ged2WFot7br7zuh23b9+uFi1aOF0e2bp1ayUkJOiHH37IlWVyldxqS0lZurwsNTVVhQsXdhpWpEgRSZJhGDlZhDtGXrdleps3b9bly5fVrl277BcP3AHcc4+Fe87evXtVqlQpFS5cWDExMZKkSpUqOU1TuXJlpaSkKDY29qbzkSR/f/8M41JTU5WUlKTo6GjNnz9f3bp1k5eXVy4uxZ0hL9oy/XS3muZulddt6a7MasfLly/rjz/+yNCu/v7+8vDwcLyXO8mttszMk08+qR07digqKkoXL17U77//ro8++kjNmjVT6dKlc20Z7hRmtmV669evV5kyZVS7du3bmg/gKtzDgbtedHS0IiMj9dJLL0m6ds+FJPn4+DhNZ//bPj69c+fOafr06WrRooUqVqzoNC41NVU1atRw/N2xY0e98sorubUId4y8aMvrrVu3Tj/88INmzpyZC9XfWfK6Ld2Vme2YmJiY6by8vb1VoECBG87rbpVbbXkj7dq1U1JSkkaNGqWUlBRJ0kMPPaSpU6febul3HLPb8nrnz5/Xrl271Ldv3xzPA3A1znDgrvbnn39qxIgRql+/vnr37p3j+aSkpGjkyJGSpHHjxmUYny9fPn3++edatGiRXn75ZW3dulUvv/xyjt/vTpRXbWn366+/6vXXX1enTp3c4ilV18vrtnRXtGPuya22vJlNmzbprbfe0uDBg7VgwQJNnjxZJ06c0PDhw+/6S6qulxdteb2NGzcqJSVFbdu2Nf29ALNwhgN3rYSEBA0YMEBFixbV9OnTHde0+/r6Srp29LJEiRJO018/3s4wDL3yyis6ePCgFi9erJIlS2b6fkFBQZKk0NBQlS1bVkOGDFHPnj0dw+9med2WcXFxGjBggIKDg/XGG2+YsUguk9dt6a7yoh3t9xfYz3TYJScnKykpKcO87la51ZY3YxiGXn/9dXXu3FlDhgxxDC9Xrpy6d++uXbt2qVGjRrmxOC6VF22Z3vr16xUQECCr1XoblQOuxRkO3JWuXLmiZ555RomJiZozZ47ji4P0/9dnp7/+OiYmRl5eXipXrpzT8MmTJ2vjxo2aOXOmqlatmqX3tz+W8OTJk7ezGHeEvG7Lc+fOqV+/fipevLhmzJjhVvfBuLpfuou8aseCBQvqX//6V4Z5HTt2TIZhuMU9M7nZljdz7tw5nTt3LkMb22/UZ1uZ9ba83unTp7Vv3z7ObuCuR+DAXSc1NVXDhw9XTEyM5syZo1KlSjmNL1eunCpWrKioqCin4ZGRkQoLC3N6Gs3s2bM1b948vfXWWwoLC8tyDfabT3O6E7lT5HVbXrp0SQMGDFBKSopmz56d4Yk2d7M7oV+6g7xuxyZNmmjz5s2Oew7s8/Lx8VGtWrVyccnyXm625a34+fmpQIEC+uWXX5yG//zzz5KkMmXK5HAp7gx52ZbXW79+vSQROHDX45Iq3HXGjx+vrVu3avTo0bp48aL279/vGFe9enV5e3tr2LBhGjVqlMqXL6/69esrMjJSBw8e1MKFCx3Trlu3Tu+++67at2+vsmXLOs2nfPnyjscg9ujRQ4888oj8/f1lsVh04MABzZ07V40bN1ZwcHBeLbYp8rothw0bpl9//VX//e9/dfr0aZ0+fdox3d3+y7l53Zbnzp3T//73P8e/L1265Piy07RpUxUoUMD8hTZBXrdjv379tG7dOr3wwgvq1q2bDh8+rE8++UQjRozI8ZfEO0VutaUkbdu2TUlJSfrpp58kSVu3blWhQoVUpUoVValSRR4eHurcubMWL16swoULq27dujp9+rRmzJihBx988K4PznnZltdbv369ateu7ZZP+cK9xcNwpzu5cE9o3ry54uLiMh23efNmlS1bVpK0YsUKRURE6PTp06pUqZJGjhypZs2aOaYdPXq0Vq9enel8Jk2apE6dOjn+vWPHDp0+fVr58uVT2bJl9fjjj6t79+53/ReSvG7LgICAG9by22+/5XQx7gh53ZZ79uy54Q2r17/f3Sav21G69qvtb731lg4dOiQ/Pz/16NFDAwYMyNHvJdxJcqstbzavoUOHatiwYZKu3fsyd+5cffHFFzp9+rSKFSum+vXra8SIEXrggQdyeenyVl63pSQdOXJEbdq00euvv67u3bvn4tIAeY/AAQAAAMA03MMBAAAAwDQEDgAAAACmIXAAAAAAMA2BAwAAAIBpCBwAAAAATEPgAAAAAGAaAgcAAAAA0xA4AAAAAJiGwAEAAADANAQOAAAAAKYhcAAAAAAwDYEDAAAAgGn+Dx/F+lyPmfqYAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(data=below, errorbar=None, palette=\"bright\").set(title=\"Number of students who performed below proficiency in Algebra I Regents in the given years\")"
]
},
{
"cell_type": "markdown",
"id": "79b00ae0-4388-4345-acf9-5fcd9bfad9ab",
"metadata": {},
"source": [
"Although this bar plot shows us that the number of students who performed **below** proficiency skyrocketed immediately, this alone does not give us a definitive answer to our initial investigation as the number of students who took the examination also changed over the years. Hence we will explore a second research question that deepens our investigation and takes th"
]
},
{
"cell_type": "markdown",
"id": "6c2e8a11-e7d9-40de-ae6c-a27d77438eb7",
"metadata": {},
"source": [
"## Second Research Question:\n",
"## What percentage of the post, during and pre COVID-19 middle schoolers are failed to reach proficiency in Alegebra I in their transition to high-school? ##"
]
},
{
"cell_type": "markdown",
"id": "demographic-future",
"metadata": {},
"source": [
"### Methods"
]
},
{
"cell_type": "markdown",
"id": "incorporate-roller",
"metadata": {},
"source": [
"*Explain how you will approach this research question below. Consider the following:* \n",
" - *Which aspects of the dataset will you use?* \n",
" - *How will you reorganize/store the data?* \n",
" - *What data science tools/functions will you use and why?* \n",
"\n",
"✏️ *Write your answer below:*\n",
"\n",
"- I will use the data frame that I created in the previous section that showed me the total number of below proficiency students per cohort. I will additionally use the row 0 from the original data frame which represents the total number of students who took the Algebra I Regents each year. \n",
"- I want to now compare the number with the overall percentage. So I will use the data that I mentioned in the previous answer to create the percentage barplot.\n",
"- Similar to the first part I will create a barplot to compare and contrast the percentages per cohort. Additionally, I will overlap the first barplot with the second to see if there is another layer of connection (such as percentage increase or decrease with number of below proficiency)\n"
]
},
{
"cell_type": "markdown",
"id": "juvenile-creation",
"metadata": {},
"source": [
"### Results "
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "pursuant-surrey",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>2023</th>\n",
" <th>2022</th>\n",
" <th>2021</th>\n",
" <th>2020</th>\n",
" <th>2018</th>\n",
" <th>2017</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>31.7</td>\n",
" <td>42.0</td>\n",
" <td>33.6</td>\n",
" <td>75.6</td>\n",
" <td>28.9</td>\n",
" <td>28.9</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 2023 2022 2021 2020 2018 2017\n",
"0 31.7 42.0 33.6 75.6 28.9 28.9"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"perc=(100*below)/df.iloc[[0]]\n",
"belowpercentage=pd.DataFrame(perc).round(1)\n",
"belowpercentage.head()"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "located-night",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Text(0.5, 1.0, 'Percentage of students who performed below proficiency in Algebra I Regents in the given years')]"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAG4CAYAAACXanLAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWMdJREFUeJzt3XlcVIX+//E3g6CiAWJmV9FEbXABBDfEJXMpQ82l1K5rt1zS65Ka3bSutpf1zTLFXLCy3NO0RHHJpTJTb2oumbmRilreEhUUlGXO7w9/M9dxAAGR8cTr+Xj0SM45c+ZzPnPmnHnPWcbDMAxDAAAAAGBiFncXAAAAAAA3i2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2BTDHz77bfq3LmzQkNDFRwcrOTkZHeXlK2+ffuqb9++7i6jSCxbtkzBwcHat2+fu0spdLNnz1abNm1Uu3Ztde7c2d3lFJq8rp/BwcF65ZVXCu15T548qeDgYC1btqzQ5mkGe/fu1d///neFh4crODhYBw4c0NSpUxUcHJzvef0Vti3uXg/s26yTJ0/esuewL+OHH354y54DRWf79u0KDg7W9u3bb/lz2bcNSUlJt/y58qp169YaO3asu8sodvIVbOwbNvt/oaGhateunV555RX9+eeft6rGInPkyBFNnTr1lm64i9q5c+c0cuRIlSpVShMmTNDbb7+t0qVLF3h+cXFxmjNnTuEVWMR27dqlqVOn3rbhzuy+++47/d///Z/q16+vN998U6NHj3Z3STChjIwMjRw5UufPn9e4ceP09ttvq1KlSu4u6y+tW7duCg4O1oIFC9xdilvZP4yvWbMm1+nsIcz+X61atdS4cWMNGDBAP/74YxFVW7jmz59/23+BMmPGDK1fv97dZeA2VqIgDxoxYoQCAwOVnp6unTt3auHChfrmm2+0cuXKm/rQ7G5HjhxRTEyMGjdurMDAQHeXUyj27dunS5cu6emnn1bTpk1ven4rV67U4cOH9Y9//OPmi3ODH3/8UTExMeratat8fX3dXc5fzrZt22SxWPT666/L29vb3eXApE6cOKFTp07ptddeU/fu3R3DhwwZokGDBuV7fn+FIwCVK1fW3r17VaJEgXbbuTp27Jj27dunypUrKy4uTr169Sr05/ir6tixo+677z7ZbDYdO3ZMCxYsUL9+/bR06dICHV10p4ULF6pcuXJ65JFHCmV+jRo10t69e+Xl5VUo85OkmTNnql27dmrbtm2hzfNWWbNmjTw8PNxdRrFToC3kfffdp9DQUElS9+7d5e/vr48//lgbNmxQx44db6qgtLQ0U4ej2439sOwdd9zh5krwV2Z/3549e1alSpUqtFBjGIauXLmiUqVKFcr84B6ZmZmy2Wx5Xi9y2m6VKFGiQB/s/woh28PDQyVLlrwl816xYoXKly+vsWPHasSIETp58qQpv9xLTU2Vj49PkT5nnTp1nE65bdCggQYOHKiFCxfqpZdeKtJabjcWi+WWrbNm8FfY7hSVK1euyMvLSxbLzV8hUyjX2DRp0kSSnE7h+vLLL/XII48oLCxMjRs31qhRo/Tbb785Pa5v377q2LGjfvrpJ/Xu3Vv16tXTu+++K+nqQk6dOlXt2rVTaGiomjdvrmHDhunEiROOx9tsNs2ZM0cdOnRQaGiomjZtqgkTJujChQtOz9O6dWs99dRT2rFjh7p166bQ0FC1adNGX3zxhWOaZcuW6emnn5Yk9evXz3F42X5u6Pr16zVo0CA1b95cISEhatu2raZNm6asrCyXfsyfP19t2rRRWFiYunXrph07dmR7jnd6erqmTJmiBx54QCEhIWrZsqXefvttpaen56nvq1evdvQ4MjJSY8aM0ZkzZ5z6+9xzz0n632kGuZ3vefHiRb3++utq3bq1QkJCFBUVpSeeeEL79+93zO/rr7/WqVOnHP1p3bq1o3/ZnX+d0zm2ixcvVtu2bZ16lJ289sh+XcP69evVsWNHhYSEqEOHDvr2228d00ydOlVvv/22JKlNmzaOZbDXvGXLFvXs2VMNGzZURESE2rVr51gfczJs2DB17drVadjgwYMVHBysDRs2OIbt2bNHwcHB+uabb1yW780331STJk0UHh6uoUOHZnuO8Pz589WhQweFhISoefPmevnll/N0Op39vOOjR4/q6aefVv369RUZGanXXntNV65ccZn+Zt639vP/U1NTHb21n9aQmZmpadOmqW3btgoJCVHr1q317rvvuryO9vfq5s2bHXUsWrTIsR7Fx8crJiZGLVq0UEREhEaMGKGUlBSlp6fr9ddfV1RUlCIiIjRu3Lhs30d5WT4p7+tnblasWOHYfj3yyCP64YcfXKY5c+aMxo0bp6ZNmzrW2aVLl+Zp/lu3blWvXr0UHh6uhg0basiQITp69Khj/C+//OKyHv70008KDg52WWcHDBjgdGQkO2PHjlVERIQSExPVv39/hYeHq3nz5oqJiZFhGI7prr1OYs6cOWrbtq1CQ0Mdtd2o7rFjx6pPnz6SpKefflrBwcGObWdO19h8+eWX6tatm+rVq6dGjRqpd+/e+u677xzjb2b7m5dti92ZM2f0/PPPO/YTrVu31osvvqj09HQlJiYqODg421N5d+3apeDgYK1cuTLH/md3jY39NTlz5oz++c9/KiIiQk2aNNFbb72V7b4pJytXrlS7du10//3364477si1jmvZbDZNnTpVzZs3V7169dS3b18dOXIk22sLkpOT9frrr6tly5YKCQnRAw88oFmzZslms2U77zlz5qhVq1YKCwtTnz59dOjQIafx9mU/ceKEBg4cqIiICI0ZM0aStGPHDo0YMUL333+/47V94403dPny5Tz3pKAaNmwoSUpMTHQantflP3funJ599lnVr19fDRs21HPPPed4L19/mtjRo0c1YsQINW7c2LGdufb9Lv1v37xz585c9zWtW7fW4cOH9Z///Mex/ba/ZzIyMhQTE6MHH3xQoaGhioyMVM+ePbVly5Zce5Hd/t++/zhy5Ij69u2revXqqUWLFoqNjb1hb4ODg5Wamqrly5c7arx+PUtJSdHYsWPVsGFDNWjQQOPGjVNaWprLvPK6L8hpuR555BGFhoaqbdu2WrRoUbbbpmvfB/v27VNwcLCWL1/uMr/NmzcrODhYmzZtcgzLy77h2v3i9OnTHQcdHn/8cR0/fjzXZdi2bZuCg4P11VdfuYyLi4tTcHCw0ymVeVnXzp8/r7feeksPP/ywIiIiVL9+fQ0YMEC//PJLtnWvWrVK7733nlq0aKF69erp4sWLBV7XrlUox7TtYcPf31+SNH36dL3//vuKjo5Wt27dlJSUpHnz5ql379764osvnE4BOn/+vAYOHKgOHTqoU6dOKl++vLKysvTUU09p69at6tChg/r166dLly5py5YtOnTokKpWrSpJmjBhgpYvX65HHnlEffv21cmTJzV//nz9/PPPWrhwodPhz+PHj+vpp59Wt27d1LVrV33++ecaO3as6tatq3vvvVeNGjVS3759NXfuXA0ePFjVq1eXJNWoUUOStHz5cvn4+OiJJ56Qj4+Ptm3bpilTpujixYuO8CBJCxYs0CuvvKKGDRvqH//4h06dOqWhQ4fK19dXd999t2M6m82mIUOGaOfOnerRo4dq1KihQ4cO6ZNPPtGxY8f0wQcf5NrzZcuWady4cQoNDdXo0aN19uxZffrpp9q1a5ejx4MHD1ZQUJAWL17sOH3Q3rvsvPjii1q7dq369OmjGjVq6Pz589q5c6eOHj2qunXravDgwUpJSdHvv/+ucePGSZLKlClzw/XjekuWLNGECRMUERGhxx9/XImJiRoyZIj8/Pz0t7/9rcA92rlzp9atW6devXqpTJkymjt3rkaMGKFNmzapXLlyeuCBB3Ts2DGtXLlS48aNU7ly5SRJAQEBOnz4sJ566ikFBwdrxIgR8vb21vHjx7Vr165cl6Vhw4basGGDLl68qLJly8owDO3atUsWi0U7duxQmzZtJF3d0VosFjVo0MDp8a+99pp8fX01bNgwnTp1Sp988oleeeUVTZ482THN1KlTFRMTo6ZNm6pnz5769ddftXDhQu3bt89lPc/JyJEjVblyZT3zzDPavXu35s6dq+TkZEfQk27+fRsSEqLPPvtMe/fu1WuvvSZJql+/viTp3//+t5YvX6527drpiSee0N69ezVz5kwdPXpU06ZNc6r1119/1TPPPKPHHntMPXr0UFBQkGPcrFmzVKpUKQ0aNEjHjx/XvHnzVKJECXl4eCg5OVnDhg3Tnj17tGzZMlWuXFnDhg3L9/Lldf3MzQ8//KD4+Hj17dtX3t7eWrhwoQYMGKAlS5bIarVKkv7880/16NFDHh4e6t27twICAvTtt9/qhRde0MWLF3M93fP777/XwIEDFRgYqGHDhuny5cuaN2+eevbsqWXLlikwMFBWq1W+vr7Zroe//PKLY5212Wz68ccf1aNHjxsuV1ZWlgYMGKB69erp2Wef1ebNmzV16lRlZWU5vhiyW7Zsma5cuaIePXrI29tbfn5+ear7scceU8WKFTVjxgz17dtXoaGhuvPOO3OsKSYmRlOnTnUEXS8vL+3Zs0fbtm1T8+bNs31MYW9bpKsfRLp166aUlBT16NFD1atX15kzZ7R27VpdvnxZVapUUf369bVixQqX1zYuLk5lypRxvE75kZWVpf79+yssLEz/+te/tHXrVn300UeqUqVKnk4p27Nnj44fP6433nhD3t7eeuCBBxQXF6fBgwff8LGTJk3S7Nmz1apVK7Vo0UK//PKL+vfv7/KlSVpamvr06aMzZ87o73//u/72t7/pxx9/1Lvvvqs//vhDL7zwgtP0X3zxhS5duqRevXrpypUrmjt3rh5//HHFxcU5rQuZmZnq37+/GjRooOeee85xZHfNmjW6fPmyevbsKX9/f+3du1fz5s3T77//rilTpuSlrQV26tQpSXLaXuZ1+e3r5d69e9WzZ09Vr15dGzZscPqMYXf48GH17NlTFStW1MCBA+Xj46PVq1dr6NChmjp1qh544AGn6W+0r3n++ef16quvysfHx/Ha23sdExOjmTNnqnv37goLC9PFixf1008/af/+/WrWrFm+e3ThwgUNGDBADzzwgKKjo7V27Vq98847slqtatmyZY6Pe/vtt/Xvf/9bYWFhju3V9Z9pRo4cqcDAQI0ePVo///yzlixZooCAAD377LOOafKzr7vezz//rAEDBqhChQoaPny4bDabpk2bpoCAgFyXOTQ0VFWqVNHq1atdvliKj4+Xn5+fY3uV331DbGysPDw89OSTT+rixYuaPXu2xowZoyVLluRYT2RkpP72t78pLi7OZV2Ji4tT1apVFRERISnv61piYqLWr1+vhx56SIGBgfrzzz+1ePFi9enTR6tWrVLFihWdnueDDz6Ql5eX+vfvr/T0dHl5eRXOumbkw+eff25YrVbj+++/N86ePWv89ttvxqpVq4zGjRsbYWFhxu+//26cPHnSqF27tjF9+nSnxx48eNCoU6eO0/A+ffoYVqvVWLhwodO0S5cuNaxWq/Hxxx+71GCz2QzDMIwffvjBsFqtxooVK5zGf/vtty7DW7VqZVitVuOHH35wDDt79qwREhJiTJw40TFs9erVhtVqNbZt2+byvGlpaS7Dxo8fb9SrV8+4cuWKYRiGceXKFaNx48bGo48+amRkZDimW7ZsmWG1Wo0+ffo4hn3xxRdGrVq1nGoyDMNYuHChYbVajZ07d7o8n116eroRFRVldOzY0bh8+bJj+KZNmwyr1Wq8//77jmH212zv3r05zs+uQYMGxssvv5zrNIMGDTJatWrlMtz+PImJiU7Dt23b5tRTe+2dO3d29M0wDGPx4sU31SOr1WrUrVvXOH78uGPYgQMHDKvVasydO9cxbPbs2dnW+fHHHxtWq9U4e/Zsrst/vb179xpWq9X4+uuvDcMwjF9++cWwWq3GiBEjjO7duzumGzx4sNGlSxfH3/Z+/eMf/3Cs04ZhGG+88YZRu3ZtIzk52TCMq+tp3bp1jSeffNLIyspyTDdv3jzDarUaS5cuzbW+KVOmGFar1Rg8eLDT8JdeesmwWq3GgQMHDMMwCuV9axiG8dxzzxnh4eFOw+yvwwsvvOA0fOLEiYbVajW2bt3qGGZ/r3777bdO09rXo44dOxrp6emO4aNHjzaCg4ONAQMGOE3/2GOPOa2neV2+/KyfObFarYbVajX27dvnGHbq1CkjNDTUGDp0qGPY888/bzRr1sxISkpyevyoUaOMBg0aOLY5iYmJhtVqNT7//HPHNJ07dzaioqKMc+fOOYYdOHDAqFWrlvGvf/3LMWzQoEFGt27dHH8PGzbMGDZsmFG7dm3jm2++MQzDMPbv329YrVZj/fr1uS7Xc889Z1itVuPVV191DLPZbMagQYOMunXrOt479nrr16/v8n7Ka93213v16tVOj7evz3bHjh0zatWqZQwdOtTp/WGvza5Pnz63fNvyr3/9y6hVq1a221p7LYsWLTKsVqtx5MgRx7j09HQjMjLSeO6551wed63s1gP7axITE+M0bZcuXYyuXbvmOj+7V155xWjZsqWjxu+++86wWq3Gzz//7DTd9dv4P/74w6hTp47xz3/+02m6qVOnGlar1Wl5pk2bZoSHhxu//vqr07TvvPOOUbt2beP06dNOy2j/PGG3Z88ew2q1Gm+88YbLsr/zzjsuy5Td/nrmzJlGcHCwcerUqVz7kdO6dz17rVOnTjXOnj1r/PHHH8YPP/xgPProoy6Pz+vyr1271rBarcacOXMc02RlZRn9+vVzee0ff/xxo2PHjk7bKZvNZjz22GPGgw8+6BiW132NYRhGhw4dst3GderUyRg0aFCu/cjO9ft/w/jf/mP58uWOYVeuXDGaNWtmDB8+/IbzDA8Pz/a9Yt82jBs3zmn40KFDjcaNGzv+zs++LjtPPfWUUa9ePaf189ixY0adOnWctk2GcXV/dm2tkyZNMurWrWucP3/eMezKlStGw4YNnerO677B3t/o6Gin9eCTTz4xrFarcfDgwVyXZdKkSUZISIjTOnD27FmjTp06xpQpUxzD8rquXblyxWU7nJiYaISEhDhto+x1t2nTxuW9WtB17VoFOhXtH//4h6KiotSyZUuNGjVKZcqUUUxMjCpWrKivvvpKNptN0dHRSkpKcvx355136p577nE5Jcnb29vlQrV169apXLlyjtMRrmW/EGvNmjW644471KxZM6fnqVu3rnx8fFyep2bNmo5DxNLVb+mDgoJcDhfn5Npz/C9evKikpCQ1bNhQaWlpSkhIkHT1NI/z58+rR48eTueBP/zww/Lz83Oa35o1a1SjRg1Vr17dqX77aX253R7xp59+0tmzZ9WzZ0+n81fvv/9+Va9eXV9//XWelul6vr6+2rNnj9PpbIXNXvvf//53p/NPu3bt6nI+fX571LRpU6dvb2rVqqWyZcvm6TW2f0OzYcOGHE+NyE6dOnXk4+PjOFVpx44duvvuu9WlSxf9/PPPSktLcxzFuf5ojSTHtzJ2DRs2VFZWluNbv++//14ZGRnq16+f07mn3bt3V9myZV1ObctJ7969nf62v7fsp9MUxvs2J/Yan3jiCafhTz75pNN4u8DAQLVo0SLbeXXu3NnpCFVYWJgMw9Cjjz7qNF1YWJh+++03ZWZm5mv58rN+5iYiIkIhISGOvytVqqQ2bdrou+++U1ZWlgzD0Lp169S6dWsZhuFUU/PmzZWSkuI4BfR6//3vf3XgwAF17drVcZRcurq+N23a1KmfDRo00M8//6zU1FRJV4883HfffapVq5Z27twp6eo66+Hhke36mZ1r1yX7N4oZGRnaunWr03QPPvig07eY+ak7r9avXy+bzaahQ4e6nJud20W7hb1tsdlsWr9+vVq1auW4/jS7WqKjo1WyZEnFxcU5xn333Xc6d+6cOnXqlM+l/5+ePXs6/d2gQYM83d0zMzNT8fHxio6OdtTYpEkTlS9fXitWrMj1sVu3blVmZqbLUaHs9ttr1qxRgwYN5Ovr69Tvpk2bKisry+U0zbZt2zp9uxsWFqZ69eplu45cv+yS8/46NTVVSUlJioiIkGEY+vnnn3NdrvyaOnWqoqKi1KxZM/Xu3VtHjx7V2LFj9dBDDzmmyevyb968WV5eXk5HTy0Wi8v2+/z589q2bZuio6Mdn0eSkpJ07tw5NW/eXMeOHXPZj99oX5MbX19fHT58WMeOHStIi1z4+Pg4XZfk7e2t0NDQPH8ey83f//53p78bNmyo8+fP6+LFi5Lyv6+7VlZWlrZu3ao2bdo4rZ/33HNPjvusa7Vv314ZGRlat26dY9iWLVuUnJys9u3bS1KB9g2PPPKI0/4qp9Mhr9e5c2elp6c73QEwPj5emZmZju1RftY1b29vx3Y4KytL586dk4+Pj4KCgrJ933Xp0sXl+tnCWNcKdCrahAkTFBQUJE9PT915550KCgpyLMyxY8dkGIYefPDB7J/wugs/K1as6HKB1YkTJxQUFJTrRaLHjx9XSkqKoqKish1/9uxZp7+zO4XEz8/P5XqcnBw+fFiTJ0/Wtm3bHG8Qu5SUFEnS6dOnJbkeGi1RooQqV67sUv/Ro0fzXP+17M9z7Sk6dtWrV3d8YMmvMWPGaOzYsbr//vtVt25dtWzZUl26dFGVKlUKNL/s2Gu/5557nIZ7eXm5PE9+e5TTa5yXa1Hat2+vJUuW6N///rcmTZqkqKgoPfDAA3rooYdyvZjN09NTERERjmCzc+dOx7m9WVlZ2r17t+68806dP3/eKVjbXX8LW3vAstds75f91Eg7b29vValSJU87Jcm131WrVpXFYnF8+CmM921OTp06JYvF4vK+qFChgnx9fV2WIbeLlq/vlz1sXP/a33HHHbLZbEpJSVG5cuXyvHz5WT9zc/3jJalatWpKS0tTUlKSLBaLkpOTtXjxYi1evDjbeeT0ewy5vf9r1Kih7777znERdcOGDZWZmandu3fr7rvv1tmzZ9WwYUMdOXLEKYzXrFnTKWzkxGKxuPTBXseNXsf81J1XJ06ckMVicZwynFeFvW1JSkrSxYsXde+99+b6vL6+vmrVqpVWrlypkSNHSrp62kfFihUdoSq/SpYs6XIaTF73bVu2bFFSUpLCwsKczsmPjIzUqlWr9Oyzz+a4/ctpf+fv7+/yRd7x48d18ODBHPt9/bqe0/tn9erVTsNKlCjhdIr3tbVNmTJFGzdudOnD9fvvm/XYY4/poYce0pUrV7Rt2zbNnTvX5fqmvC7/6dOnVaFCBZcbKF3f4xMnTsgwDL3//vt6//33s53n2bNnnT5832hfk5sRI0bon//8p9q1ayer1armzZurc+fOqlWr1g0fm527777b5YsHPz8/HTx4sEDzu1ZOy3nhwgWVLVs23/u6a509e1aXL1/Odv3Mbtj1atWqperVq2v16tWOaxrj4+NVrlw5x/s/KSkp3/uGgr62NWrUUGhoqOLi4hz1xMXFKTw83LE8+VnXbDabPv30Uy1YsEAnT550eh9kt3/Jbl9fGOtagYJNWFhYtt9KSVe/ufLw8FBsbKw8PT1dxl+/0yro3Y5sNpvKly+vd955J9vx12/os6slr5KTk9WnTx+VLVtWI0aMUNWqVVWyZEnt379f77zzTr6+4bez2WyyWq2Oa1Wul93G+lZr3769GjZsqK+++kpbtmzRhx9+qNjYWE2dOjXX816lnL8dLUhvrn1sfnqU02tsXHNhc05KlSql+fPna/v27fr666+1efNmxcfHa/Hixfroo49yXX/q16+vGTNm6MqVK9qxY4cGDx4sX19f3Xvvvdq5c6fKly8vSdkGm5w+NOSl5ptx/etVFO/bvN72Mrd559SvG/Uxv8t3q9nfF506dXI539quMG4VGxISopIlS+qHH35QpUqVVL58eQUFBalhw4ZasGCB45b9t+LWqbfzneyKcttyvS5dumjNmjXatWuXrFarNm7cqJ49exb4bkA3s2+zH5Wxh6zr/ec//ylw4LqWzWZTs2bNNGDAgGzHV6tWrUDzvfYbYrusrCw98cQTjus4qlevLh8fH505c0Zjx469qX1Sdu655x7HTym0atVKFotFkyZNUmRkpONzUmEvv30ZnnzyyRyPFFwfhm5mX9OoUSN99dVX2rBhg7Zs2aKlS5fqk08+0csvv3zDm45k52bW2Ru53fcF7du314wZM5SUlKSyZctq48aN6tChgyNQFWTfcDOvbZcuXfT666/r999/V3p6unbv3q0JEyY4xudnXZsxY4bef/99Pfroo3r66afl5+cni8WiN954I9tasttHFMa6Vug3xK9ataoMw1BgYGC238zldR579uxRRkZGjhdGV61aVVu3blX9+vULbQea0wev//znPzp//rxiYmLUqFEjx/DrD/XbU/OJEyecdgaZmZmOO4ldW/8vv/yiqKiofN/n3P48v/76q8s3QL/++utN/ZDdXXfdpd69e6t37946e/asunbtqhkzZjiCTU612r8hsB+9srv+W1x7bcePH3eqPSMjQydPnnRK5TfTo5zkNh+LxaKoqChFRUVp3LhxmjFjht577z1t3749198AatiwoTIyMrRy5UqdOXPGEWAaNWqkHTt2qHz58qpWrVquF0DnxN6vhIQEp2/K09PTdfLkyTz/NtHx48edHn/8+HHZbDbHNyaF8b7NSeXKlWWz2XT8+HGnb9b//PNPJScnuxzNvBXyunz5WT9zk90daY4dO6bSpUs7vnQpU6aMbDZbvn9f6tr3//USEhJUrlw5x87Z29tbYWFh2rFjhypVquRYNxs0aKD09HStWLFCf/75p9N2LTc2m02JiYlOPbTXcaPXMT9151XVqlVls9l09OhR1a5dO1+PK8xtS0BAgMqWLavDhw/fcNoWLVooICBAcXFxqlevntLS0pxOyykqqamp2rhxo9q3b6927dq5jH/ttdcUFxeXY7C5dn937bbl3LlzLkdJqlatqtTU1Hxtr6537NixPG0rDh06pGPHjumtt95Sly5dHMPzc1elmzFkyBAtWbJEkydPdvx+Ul6Xv1KlStq+fbvLz15cezdYSY5+e3l5Fcrv09nl9l7w9/fXo48+qkcffVSXLl1Snz59NHXq1AIFG3e6mX1d+fLlVbJkyWzXzxvdhcyuffv2iomJ0bp163TnnXfq4sWL6tChg2N8QEBAgfcNBdG+fXtNnDhRK1eu1OXLl+Xl5aXo6GjH+Pysa2vXrlVkZKTeeOMNp+HJycmOm6zkxc2ua4Vyu+drPfjgg/L09HS5Bah0NT2eO3cuT/M4d+6c5s+f7zLOPs/o6GhlZWVle/ewzMzMAv2yvH1Dcv2Hc3savnZ50tPTXX6hOSQkRP7+/vrss88c5/ZLVw/tXb+hj46O1pkzZ/TZZ5+51HH58mXHOfHZCQkJUfny5bVo0SKnW5N+8803Onr0qO6///4bLKmrrKwsl+UuX7687rrrLqfnKF26tMt00v8S+7XnSmdlZbksX0hIiAICAlxqX758uctrdjM9yklOr/H58+ddprV/ULrR7bfr1asnLy8vxcbGyt/f33E6SoMGDbRnzx798MMP2R6tyYumTZvKy8tLc+fOdVr/li5dqpSUlBseSbO7/r00b948SVd/k0oqnPdtTuw1fvLJJ07DP/74Y6fxt1Jely8/62dufvzxR6fzoH/77Tdt2LBBzZo1k6enpzw9PdWuXTutXbvW5Ta2Us6noUlXv3yoXbu2vvjiC6eaDh06pC1btrj0s0GDBtq7d6+2b9/uuI4mICBANWrUcNxiNT/r57XrkmEYmj9/vry8vHI8zaagdedF27ZtZbFYNG3aNJdv4nP7trKwty0Wi0Vt27bVpk2btG/fPpfx19ZSokQJdejQQatXr9ayZctktVoLfErPzfjqq6+Umpqq3r1766GHHnL5r1WrVlq3bl2O27+oqCiVKFFCCxcudBqe3X47OjpaP/74ozZv3uwyLjk52Wl/KV29duraa0T27t2rPXv2OLZXucluf20Yhj799NMbPrYw+Pr66rHHHtN3332nAwcOSMr78jdv3lwZGRlO66XNZnPpafny5dW4cWMtXrxY//3vf13mmdv2IzelS5fOdjt3/fa/TJkyqlq1ap5/mqIw+fj4FOjznd3N7Os8PT3VtGlTbdiwwWn9PH78eLavbXZq1Kghq9Wq+Ph4xcfHq0KFCk5fLN3MvqEgAgIC1KJFC61YsUJxcXFq3ry50xlP+VnXPD09XXq6evXqfF23XRjr2i05YjNy5EhNmjRJp06dUtu2bVWmTBmdPHlS69evV48ePdS/f/9c59GlSxd98cUXevPNN7V37141aNBAaWlp2rp1q3r27Km2bduqcePGeuyxxzRz5kwdOHBAzZo1k5eXl44dO6Y1a9bohRdecLp4Ly9q164tT09PxcbGKiUlRd7e3mrSpIkiIiLk5+ensWPHqm/fvvLw8NCXX37p8gJ6e3tr+PDhevXVV/X4448rOjpap06d0rJly1wOC3fu3FmrV6/Wiy++qO3bt6t+/frKyspSQkKC1qxZo9mzZ+d4up+Xl5fGjBmjcePGqU+fPurQoYPjds+VK1fO9TaxObl06ZJatmypdu3aqVatWvLx8dH333+vffv2Od0nvm7duoqPj9ebb76p0NBQ+fj4qHXr1rr33nsVHh6ud999VxcuXJCfn5/jIrTrax85cqQmTJigxx9/XO3bt9fJkye1bNkyl3P3b6ZHOalbt64k6b333lP79u3l5eWlVq1aadq0adqxY4datmypypUr6+zZs1qwYIHuvvvuG15UXbp0adWtW1e7d+9Wq1atHN96NWrUSKmpqUpNTS1wsAkICNBTTz2lmJgYDRgwQK1bt9avv/6qBQsWKDQ0NM8XHJ88eVKDBw9WixYttHv3bq1YsUIdO3Z0fKAqjPdtTmrVqqWuXbtq8eLFSk5OVqNGjbRv3z4tX75cbdu2LZRTXW4kr8uXn/UzN1arVf3793e63bMkDR8+3DHNM888o+3bt6tHjx7q3r27atasqQsXLmj//v3aunWr/vOf/+Q4/3/9618aOHCgHnvsMXXr1s1x2+Q77rjD6RbX0tXQMmPGDP32229O62HDhg21ePFiVa5cOc+nvpYsWVKbN2/Wc889p7CwMG3evFlff/21Bg8efMPbnea37ry45557NHjwYH3wwQfq1auXHnzwQXl7e2vfvn2666679Mwzz2T7uFuxbRk9erS2bNmivn37Om4h/ccff2jNmjVasGCB0y1ku3Tporlz52r79u2O314panFxcfL393fc0vV6rVu31meffaavv/462+sR7rzzTvXr108fffSRY9ty8OBBffvttypXrpzTt//9+/fXxo0bNXjwYHXt2lV169ZVWlqaDh06pLVr12rDhg1O60/VqlXVs2dP9ezZU+np6fr000/l7++f46lc16pevbqqVq2qt956S2fOnFHZsmW1du3am/ownF/9+vXTJ598olmzZum9997L8/Lbfzvrrbfe0okTJ1S9enWn64Su7emLL76oXr166eGHH1aPHj1UpUoV/fnnn9q9e7d+//33G978ITt169bVwoUL9cEHH+iee+5RQECAoqKi1KFDBzVu3Fh169aVv7+/9u3b5/hpiKJWt25dbd26VR9//LHuuusuBQYGql69enl+/M3u64YNG6bvvvvOsX7abDbNmzdP9957ryPI3kj79u01ZcoUlSxZUt26dXM5lexm9g0F0aVLF40YMUKSXG7bL+V9Xbv//vs1bdo0jRs3ThERETp06JDi4uLyte8sjHWt0IONJA0aNEjVqlXTnDlzHL9Rcffdd6tZs2aOH3TMjT1cTJ8+XStXrtS6devk7++v+vXrO53O9corrygkJESLFi3Se++9J09PT1WuXFmdOnVy/H5GflSoUEEvv/yyZs6cqRdeeEFZWVn69NNPFRkZqRkzZuitt97S5MmT5evrq06dOikqKsrlDdCnTx8ZhqGPP/5Yb731lmrVqqXp06frtddec7qDmf1bxjlz5ujLL7/UV199pdKlSyswMFB9+/a94SHSRx55RKVKlVJsbKzeeecd+fj4qG3btnr22WdzvQd7TkqVKuX4EaR169bJMAxVrVrVsULb9erVSwcOHNCyZcs0Z84cVa5c2fGavvPOO5owYYJmzZolX19fdevWTZGRkS53w3rssceUlZWlDz/8UG+//basVqvjvvLXutkeZScsLExPP/20Fi1apM2bN8tms2nDhg1q3bq1Tp06pc8//1znzp1TuXLl1LhxYw0fPjxPd8Nq0KCBdu/e7RSCKlSooHvuuUfHjx8vcLCRrn4YDggI0Lx58/Tmm2/Kz89PPXr00OjRo/P0GzaSNHnyZL3//vuaNGmSSpQooT59+uhf//qX0zQ3+77NzWuvvabAwEAtX75c69ev15133qmnnnqqQB9mCyqvy5fX9TM3jRo1Unh4uKZNm6bTp0+rZs2aevPNN52+mb/zzju1ZMkSTZs2TV999ZUWLlwof39/1axZ84Yfdps2barZs2drypQpmjJlikqUKKFGjRrp2WefddmJREREyNPTU6VKlXJ6fnuwyc+66enpqdmzZ+ull17S//3f/6lMmTIaNmyYhg4dmqfH56fuvHr66acVGBioefPm6b333lPp0qUVHByc6+ldt2LbUrFiRX322Wd6//33FRcXp4sXL6pixYq67777XE6XDgkJ0b333qujR4/e1N3QCurs2bOO34nL6XqHqKgolS5dWitWrMjxQusxY8aoVKlSWrJkibZu3arw8HB9+OGH6tWrl9PNRUqXLq25c+dq5syZWrNmjb744guVLVtW1apVy3Yb26VLF1ksFn3yySc6e/aswsLCNH78eN111103XDYvLy/NmDFDr732mmbOnKmSJUvqgQceUO/evYvslL+KFSvq4Ycf1pdffqkTJ06oatWqeVp+T09PzZw5U6+//rqWL18ui8WiBx54QEOHDnW5C2rNmjX1+eefKyYmRsuXL9f58+cVEBCgOnXq5Pn9eL2hQ4fq9OnTmj17ti5duqTGjRsrKipKffv21caNG7Vlyxalp6erUqVKGjlyZIG/7LoZY8eO1YQJEzR58mRdvnxZXbt2zVewkW5uXxcSEqLY2Fi9/fbbev/99/W3v/1NI0aMUEJCguMOuTfSvn17TZ48WWlpaU6nfdndzL6hIFq1aiU/Pz/ZbLZsf0srr+va4MGDlZaWpri4OMXHx6tOnTqaOXOmJk2alOdaCmNd8zBu9VXKkM1mc9xly/7DhUBRsP+459atW/P0jTqQk7Fjx2rt2rVOv0aNguvSpYv8/PxcTtE0O/tR2ZEjR2rIkCHuLucvYf369Ro6dKgWLFiQ59uyo2j985//1JEjR5xu5WwWmZmZatGihVq1auVyfYwZFfo1NsXdlStXXE5R++KLL3T+/Hk1btzYTVUBAG4X+/bt04EDB5wubjejy5cvuwyzBzX2dwVzfU+zsrI0d+5clS1b1nEqNdzr+tfo2LFj+vbbb027zq9fv15JSUmm3x7Z3ZJT0Yqz3bt3680339RDDz0kf39//fzzz1q6dKmsVmu+r/kBAPx1HDp0SPv379dHH32kChUqOH6Uz6zi4+O1fPly3XffffLx8dGuXbu0cuVKNW/enCMLBfTqq6/q8uXLioiIUHp6utatW6cff/xRo0ePvq1voV6ctG3bVl27dnX8ltyiRYvk5eWVp2vAbid79uzRwYMH9cEHH6hOnTqmDWbXI9gUMvuFuHPnznVcRN+5c2eNGTMmzz9oCAD461m7dq2mTZumoKAgvfvuu07XTJhRcHCw47qrS5cuqXz58urXr1+Ov4uDG2vSpIk+/vhjff3117py5YruuecejR8/3i0X6iN7LVq00KpVq/THH3/I29tb4eHhGj16dIF/j8ldFi5cqBUrVqhWrVqaOHGiu8spNFxjAwAAAMD0uMYGAAAAgOkRbAAAAACYHsEGAAAAgOlx8wDcNgzDkM3GJV8AAJiFxeIhDw8Pd5cBSCLY4DZisxlKSrrk7jIAAEAeBQSUkacnwQa3B05FAwAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6JdxdAAAAkmSxeMhi8XB3GW5nsxmy2Qx3lwEApkOwAQC4ncXioYByPvKwcCKBYbMp6Vwq4QYA8olgAwBwO4vFQx4Wiy5v3yZbSrK7y3Ebyx2+KhXZRBaLB8EGAPKJYAMAuG3YUpJlO3/O3WUAAEyIY/4AAAAATI9gAwAAAMD0CDYAAAAATI9gAwAAAMD0CDYAAAAATI9gAwAAAMD0CDYAAAAATI9gAwAAAMD0CDYAAAAATI9gAwAAAMD0CDYAAAAATI9gAwAAAMD0CDYAAAAATI9gAwAAAMD0CDYAAAAATI9gAwAAAMD0CDYAAAAATI9gAyd9+/ZVcHBwtv+tWrXKMd2SJUvUrl07hYaGqlOnTtq0aZMbqwYAAEBxV8LdBeD28uKLL+rixYtOwz755BOtW7dOUVFRkqRVq1Zp/PjxGjx4sJo0aaL4+HgNGzZM8+fPV3h4uBuqBgAAQHFHsIGTmjVrugx75pln1KxZMwUEBEiSpkyZog4dOmjkyJGSpCZNmujQoUOaNm2aYmNji7JcAAAAQBKnouEGdu3apZMnT+rhhx+WJCUmJurYsWOKjo52mq59+/baunWr0tPT3VEmAAAAijmCDXK1cuVK+fj4qE2bNpKkhIQESVJQUJDTdDVq1FBGRoYSExOLvEYAAACAU9GQo8zMTK1evVqtW7eWj4+PJOnChQuSJF9fX6dp7X/bxxdUiRJkbaA48vTkvX8t+gEA+UewQY62bNmipKQkdezYsUiez2LxULlyZYrkuQDgdubrW9rdJQCA6RBskKOVK1fK399fzZs3dwzz8/OTJKWkpKhChQqO4cnJyU7jC8JmM5ScnFrgxwMwL09PCx/mr5GcnKasLJu7ywBuyNe3NEcYcdsg2CBbly9f1vr169WpUyd5eXk5hlevXl3S1Wtt7P+2/+3l5aUqVarc1PNmZrIjB4CsLBvbQwDIJyI2srVx40alpqY67oZmV6VKFVWrVk1r1qxxGh4fH6+oqCh5e3sXZZkAAACAJI7YIAdxcXGqVKmSGjRo4DJu+PDhGjNmjKpWrarIyEjFx8dr7969mjdvnhsqBQAAAAg2yMaFCxe0efNmPf744/Lw8HAZ37FjR6WlpSk2NlazZs1SUFCQYmJiFBER4YZqAQAAAMnDMAzD3UUA0tVzypOSLrm7DABuUKKEReXKlVHq+nWynT/n7nLcxuJfTj5tH9S5c5e4xgamEBBQhpsH4LbBmggAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYAMAAADA9Ag2AAAAAEyPYINsLV++XF26dFFoaKgiIyM1YMAAXb582TF+48aN6tSpk0JDQ9WuXTt9/vnnbqwWAAAAxV0JdxeA28/06dMVGxurwYMHKzw8XOfOndPWrVuVlZUlSdqxY4eGDRumbt266fnnn9e2bdv0wgsvqEyZMnrooYfcXD0AAACKIw/DMAx3F4HbR0JCgh5++GF98MEHatmyZbbT9O/fX5cuXdKiRYscw5555hkdOHBA8fHxBX7urCybkpIuFfjxAMyrRAmLypUro9T162Q7f87d5biNxb+cfNo+qHPnLikz0+bucoAbCggoI09PTgDC7YE1EU6WLVumwMDAHENNenq6tm/f7nJkpn379jp69KhOnjxZFGUCAAAATjgVDU727Nkjq9WqDz74QHPnzlVKSopCQkI0btw41atXTydOnFBGRoaqV6/u9LgaNWpIunrEJzAwsMDPX6IEWRsojvjG1xn9AID8I9jAyR9//KGffvpJhw4d0osvvqjSpUtrxowZevLJJ7Vu3TpduHBBkuTr6+v0OPvf9vEFYbF4qFy5MgUvHgD+Inx9S7u7BAAwHYINnBiGodTUVL3//vuqVauWJKlevXpq3bq15s2bp+bNm9+y57bZDCUnp96y+QO4fXl6Wvgwf43k5DRlZXGNDW5/vr6lOcKI2wbBBk58fX3l7+/vCDWS5O/vrzp16ujIkSPq0KGDJCklJcXpccnJyZIkPz+/m3p+LpYFgKs3U2F7CAD5Q8SGk5o1a+Y47sqVK6pataq8vLyUkJDgNM7+9/XX3gAAAABFgWADJ61atdL58+d14MABx7Bz585p//79qlu3rry9vRUZGam1a9c6PS4+Pl41atS4qRsHAAAAAAXFqWhw0rZtW4WGhmrEiBEaNWqUSpYsqVmzZsnb21u9evWSJA0ZMkT9+vXTSy+9pOjoaG3fvl0rV67Ue++95+bqAQAAUFzxA51wkZSUpDfffFObNm1SRkaGGjZsqHHjxjmdprZhwwZNnjxZv/76qypVqqRBgwapW7duN/W8/EAnUHzxA51X8QOdMBt+oBO3E4INbhsEG6D4IthcRbCB2RBscDthTQQAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbOFm2bJmCg4Nd/nvnnXecpluyZInatWun0NBQderUSZs2bXJTxQAAAIBUwt0F4PY0e/Zs3XHHHY6/K1as6Pj3qlWrNH78eA0ePFhNmjRRfHy8hg0bpvnz5ys8PNwN1QIAAKC4I9ggW3Xr1lVAQEC246ZMmaIOHTpo5MiRkqQmTZro0KFDmjZtmmJjY4uwSgAAAOAqTkVDviQmJurYsWOKjo52Gt6+fXtt3bpV6enpbqoMAAAAxRnBBtnq2LGjateurTZt2mjmzJnKysqSJCUkJEiSgoKCnKavUaOGMjIylJiYWOS1AgAAAJyKBicVKlTQ8OHDVa9ePXl4eGjjxo2aPHmyzpw5owkTJujChQuSJF9fX6fH2f+2jy+oEiXI2kBx5OnJe/9a9AMA8o9gAyctWrRQixYtHH83b95cJUuW1CeffKLBgwff0ue2WDxUrlyZW/ocAGAGvr6l3V0CAJgOwQY3FB0drY8++kgHDhyQn5+fJCklJUUVKlRwTJOcnCxJjvEFYbMZSk5OvbliAZiSp6eFD/PXSE5OU1aWzd1lADfk61uaI4y4bRBskC/Vq1eXdPVaG/u/7X97eXmpSpUqNzX/zEx25ACQlWVjewgA+UTExg3Fx8fL09NTderUUZUqVVStWjWtWbPGZZqoqCh5e3u7qUoAAAAUZxyxgZP+/fsrMjJSwcHBkqQNGzbos88+U79+/Rynng0fPlxjxoxR1apVFRkZqfj4eO3du1fz5s1zZ+kAAAAoxgg2cBIUFKTPP/9cv//+u2w2m6pVq6bnn39effv2dUzTsWNHpaWlKTY2VrNmzVJQUJBiYmIUERHhxsoBAABQnHkYhmG4uwhAunpOeVLSJXeXAcANSpSwqFy5Mkpdv0628+fcXY7bWPzLyaftgzp37hLX2MAUAgLKcPMA3DZYEwEAAACYHsEGAAAAgOkRbAAAAACYHsEGAAAAgOkRbAAAAACYHsEGAAAAgOkRbAAAAACYHsEGAAAAgOkRbAAAAACYHsEGAAAAgOkRbAAAAACYHsEGAAAAgOkRbAAAAACYHsEGAAAAgOkRbAAAAACYHsEGAAAAgOkRbAAAAACYHsEGAAAAgOkRbAAAAACYHsEGAAAAgOkRbAAAAACYHsEGAAAAgOkRbAAAAACYHsEGAAAAgOkRbAAAAACYHsEGAAAAgOkRbAAAAACYHsEGAAAAgOkRbAAAAACYXgl3FwCg6FksHrJYPNxdxm3BZjNksxnuLgMAANwkgg1QzFgsHgoo5yMPCwdsJcmw2ZR0LpVwAwCAyRFsgGLGYvGQh8WiS3vWynbpnLvLcStLmXIqU6+dLBYPgg0AACZHsAGKKdulc8pK/sPdZQAAABQKzkUBAAAAYHoEG+Tq0qVLuu+++xQcHKx9+/Y5jVuyZInatWun0NBQderUSZs2bXJTlQAAACjuCDbI1QcffKCsrCyX4atWrdL48eMVHR2t2NhYhYeHa9iwYdq9e3fRFwkAAIBij2CDHB09elQLFizQ8OHDXcZNmTJFHTp00MiRI9WkSRO98sorCg0N1bRp09xQKQAAAIo7gg1y9Nprr+nvf/+7goKCnIYnJibq2LFjio6Odhrevn17bd26Venp6UVZJgAAAECwQfbWrFmjQ4cOaejQoS7jEhISJMkl8NSoUUMZGRlKTEwskhoBAAAAO273DBdpaWmaOHGiRo0apbJly7qMv3DhgiTJ19fXabj9b/v4gihRgqx9q3l60uPr0RP34zVwRj8AIP8INnAxffp0lS9fXo8++miRPq/F4qFy5coU6XMCkuTrW9rdJQBOWCcBIP8INnBy6tQpffTRR5o2bZpSUlIkSampqY7/X7p0SX5+fpKklJQUVahQwfHY5ORkSXKMzy+bzVBycurNlI888PS08KHpOsnJacrKsrm7jGKN9dIZ6yTMwte3NEcYcdsg2MDJyZMnlZGRoUGDBrmM69evn+rVq6dJkyZJunqtTfXq1R3jExIS5OXlpSpVqhT4+TMz2ZGj6GVl2Vj3cFthnQSA/CPYwEnt2rX16aefOg07cOCA3nzzTb388ssKDQ1VlSpVVK1aNa1Zs0Zt27Z1TBcfH6+oqCh5e3sXddkAAAAo5gg2cOLr66vIyMhsx9WtW1d169aVJA0fPlxjxoxR1apVFRkZqfj4eO3du1fz5s0rynIBAAAASQQbFFDHjh2Vlpam2NhYzZo1S0FBQYqJiVFERIS7SwMAAEAxRLDBDUVGRurgwYMuw7t3767u3bu7oSIAAADAGbexAAAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6JdxdAACYmcXiIYvFw91luJ3NZshmM9xdBgCgGCPYAEABWSweKlfORxYLB79tNpvOnUsl3AAA3IZgAwAFdPVojUUbft+q8+nJ7i7Hbfy9fdXm7ihZLB4EGwCA2xBsAOAmnU9P1p9Xzrm7DAAAijXOnwAAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgetwVDabCjyFexY8hAgAAOCPYwDSu/hhiGYKNrgabc+cuEW4AAAD+P4INTMN+tGb70WSlpGW5uxy3uaO0pyJr+PJjiAAAANcg2MDJN998o9jYWB05ckQXL15UxYoV1bZtWw0bNkx33HGHY7qNGzdq8uTJ+vXXX1WpUiUNGjRIjz76aJHUmJKWpfOpmUXyXAAAADAHgg2cnD9/XmFhYerbt6/8/f11+PBhTZ06VYcPH9ZHH30kSdqxY4eGDRumbt266fnnn9e2bdv0wgsvqEyZMnrooYfcvAQAAAAojgg2cNK5c2envyMjI+Xt7a3x48frzJkzqlixoqZPn66wsDC98sorkqQmTZooMTFRU6ZMIdgAAADALbjdM27I399fkpSRkaH09HRt377dJcC0b99eR48e1cmTJ91QIQAAAIo7gg2ylZWVpStXrmj//v2aNm2aWrdurcDAQJ04cUIZGRmqXr260/Q1atSQJCUkJLijXAAAABRznIqGbLVq1UpnzpyRJLVo0UKTJk2SJF24cEGS5Ovr6zS9/W/7+IIqUSLnrO3pSQ6/VkH7QR9d0cvCcTP9oJfO6AcA5B/BBtmaNWuW0tLSdOTIEU2fPl2DBw/Wxx9/fEuf0/47NcgbX9/S7i7hL4NeFg76WHjoJQDkH8EG2apVq5YkKSIiQqGhoercubO++uor1axZU5KUkpLiNH1ycrIkyc/Pr8DPabMZSk5OzXG8p6eFnf01kpPTlJVly/fj6KMrelk4CtpHiV5e72Z6CRQlX9/SHGHEbYNggxsKDg6Wl5eXTpw4odatW8vLy0sJCQlq0aKFYxr7tTXXX3uTX5mZ7MjzKivLRr8KCb0sHPSx8NBLAMg/IjZuaM+ePcrIyFBgYKC8vb0VGRmptWvXOk0THx+vGjVqKDAw0E1VAgAAoDjjiA2cDBs2TCEhIQoODlapUqX0yy+/6MMPP1RwcLDatm0rSRoyZIj69eunl156SdHR0dq+fbtWrlyp9957z83VAwAsFg9ZLB7uLuO2YLMZstmMAj+eXl51s30EigrBBk7CwsIUHx+vWbNmyTAMVa5cWd27d1f//v3l7e0tSWrYsKGmTp2qyZMna+nSpapUqZJee+01RUdHu7l6ACje7Ddh4cP4VTaboXPnLhXoQ/nVXvrIYuHkFpvNpnPnUgk3uO0RbOBk0KBBGjRo0A2na9Omjdq0aVMEFQEA8sp+hCHxULqupBbvD6ElfTxUxeoti8WjwMHGYrHo1E/fKf1S8i2o0By8y/iqckjzAvcRKEoEGwAA/mKupBq6fIkPoYUh/VKyLqckubsMAHnA8VUAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewAQAAAGB6BBsAAAAApkewgZPVq1dryJAhuu+++xQeHq7OnTtr6dKlMgzDabolS5aoXbt2Cg0NVadOnbRp0yY3VQwAAAAQbHCdOXPmqHTp0ho7dqymT5+u++67T+PHj9e0adMc06xatUrjx49XdHS0YmNjFR4ermHDhmn37t3uKxwAAADFWgl3F4Dby/Tp0xUQEOD4OyoqSufPn9fHH3+sf/7zn7JYLJoyZYo6dOigkSNHSpKaNGmiQ4cOadq0aYqNjXVT5QAAACjOOGIDJ9eGGrvatWvr4sWLSk1NVWJioo4dO6bo6Ginadq3b6+tW7cqPT29qEoFAAAAHAg2uKGdO3eqYsWKKlu2rBISEiRJQUFBTtPUqFFDGRkZSkxMdEeJAAAAKOY4FQ252rFjh+Lj4/Xcc89Jki5cuCBJ8vX1dZrO/rd9fEGVKJFz1vb0JIdfq6D9oI+u6GXhuJl+0EtnrJOFh14WDvoBMyDYIEe///67Ro0apcjISPXr1++WP5/F4qFy5crc8uf5q/D1Le3uEv4y6GXhoI+Fh14WHnpZOOgjzIBgg2wlJydr4MCB8vf319SpU2WxXP2mxs/PT5KUkpKiChUqOE1/7fiCsNkMJSen5jje09PChvUayclpysqy5ftx9NEVvSwcBe2jRC+vxzpZeOhl4cipj76+pTmag9sGwQYuLl++rKeeekopKSlavHix7rjjDse46tWrS5ISEhIc/7b/7eXlpSpVqtzUc2dmFuxDUXGUlWWjX4WEXhYO+lh46GXhoZeFgz7CDIjYcJKZmamRI0cqISFBs2fPVsWKFZ3GV6lSRdWqVdOaNWuchsfHxysqKkre3t5FWS4AAAAgiSM2uM7LL7+sTZs2aezYsbp48aLTj27WqVNH3t7eGj58uMaMGaOqVasqMjJS8fHx2rt3r+bNm+e+wgEAAFCsEWzgZMuWLZKkiRMnuozbsGGDAgMD1bFjR6WlpSk2NlazZs1SUFCQYmJiFBERUdTlAgAAAJIINrjOxo0b8zRd9+7d1b1791tcDQAAAJA3XGMDAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINgAAAABMj2ADAAAAwPQINnBx/PhxTZgwQZ07d1adOnXUsWPHbKdbsmSJ2rVrp9DQUHXq1EmbNm0q4koBAACAqwg2cHH48GF98803uueee1SjRo1sp1m1apXGjx+v6OhoxcbGKjw8XMOGDdPu3buLtlgAAABAUgl3F4DbT+vWrdW2bVtJ0tixY/XTTz+5TDNlyhR16NBBI0eOlCQ1adJEhw4d0rRp0xQbG1uU5QIAAAAcsYEriyX31SIxMVHHjh1TdHS00/D27dtr69atSk9Pv5XlAQAAAC4INsi3hIQESVJQUJDT8Bo1aigjI0OJiYnuKAsAAADFGKeiId8uXLggSfL19XUabv/bPr4gSpTIOWt7epLDr1XQftBHV/SycNxMP+ilM9bJwkMvCwf9gBkQbHDbsFg8VK5cGXeXYRq+vqXdXcJfBr0sHPSx8NDLwkMvCwd9hBkQbJBvfn5+kqSUlBRVqFDBMTw5OdlpfH7ZbIaSk1NzHO/paWHDeo3k5DRlZdny/Tj66IpeFo6C9lGil9djnSw89LJw5NRHX9/SHM3BbYNgg3yrXr26pKvX2tj/bf/by8tLVapUKfC8MzML9qGoOMrKstGvQkIvCwd9LDz0svDQy8JBH2EGRGzkW5UqVVStWjWtWbPGaXh8fLyioqLk7e3tpsoAAABQXHHEBi7S0tL0zTffSJJOnTqlixcvOkJM48aNFRAQoOHDh2vMmDGqWrWqIiMjFR8fr71792revHnuLB0AAADFFMEGLs6ePaunn37aaZj9708//VSRkZHq2LGj0tLSFBsbq1mzZikoKEgxMTGKiIhwR8kAAAAo5gg2cBEYGKiDBw/ecLru3bure/fuRVARAAAAkDuusQEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsAEAAABgegQbAAAAAKZHsEGBHT16VE888YTCw8PVrFkzvf3220pPT3d3WQAAACiGSri7AJjThQsX9Pjjj6tatWqaOnWqzpw5o4kTJ+ry5cuaMGGCu8sDAABAMUOwQYEsWrRIly5dUkxMjPz9/SVJWVlZevnll/XUU0+pYsWK7i0QAAAAxQqnoqFAvv32W0VFRTlCjSRFR0fLZrNpy5Yt7isMAAAAxRLBBgWSkJCg6tWrOw3z9fVVhQoVlJCQ4KaqAAAAUFxxKhoKJDk5Wb6+vi7D/fz8dOHChQLN02LxUEBAmRzHe3hc/X/zYD/ZDKNAz/FXYPn/jfDzK62CtMHexzINOkmGrRArMyGPq9/t3Gwv21dqKZuKby8turk+Sv/rZanm90m24ttLWQpnnaxWx7vAr8Vfhb0XN9vLKhGtZRTjddLjBuukxeJRxBUBOSPY4Lbh4eEhT88bbyBLeXGgUZIslpvrg6WkTyFVYn4328vSJUoVUiXmdrN9lCRLKXop3XwvS3jzYdPu5nvJOikVzvsbuNVYS1Egvr6+SklJcRl+4cIF+fn5uaEiAAAAFGcEGxRI9erVXa6lSUlJ0R9//OFy7Q0AAABwqxFsUCD33Xefvv/+eyUnJzuGrVmzRhaLRc2aNXNjZQAAACiOPAyjuF9eiIK4cOGCOnTooKCgID311FOOH+h8+OGH+YFOAAAAFDmCDQrs6NGjevXVV/Xjjz+qTJky6ty5s0aNGiVvb293lwYAAIBihmADAAAAwPS4xgYAAACA6RFsAAAAAJgewQYAAACA6RFsAAAAAJgewQYAAACA6RFsAAAAAJheCXcXABSV1atXa8WKFdq/f7+Sk5N1zz33qG/fvnr00Ufl4eHhmG7JkiWaPXu2Tp8+raCgII0aNUqtWrVyjN+7d68WLlyoHTt26L///a8qVqyodu3aaciQIfLx8XFMt3z5ci1cuFDHjh1TWlqaKlWqpE6dOmngwIGm/q2fou7jokWLtG7dOh08eFBpaWmqWbOmBg0apLZt2xbpct8KRd3Lffv2acGCBdq9e7d+/fVXtWzZUjNnzizSZb5VirqXkrRr1y699dZbOnDggMqXL6+ePXtq4MCBTs9nNoXVx/T0dE2ePFl79uzR/v37lZaWpq1btyogIMDlOZcsWaJPP/1UiYmJ8vPzU4sWLTRq1CiVL1++SJb5VinqXrZu3VqnTp3KtpbFixcrPDz8liwncDsh2KDYmDNnjipXrqyxY8eqXLly+v777zV+/Hj9/vvvGjZsmCRp1apVGj9+vAYPHqwmTZooPj5ew4YN0/z58x07hdWrV+v48eMaMGCAqlWrpiNHjmjKlCnas2ePPv30U8fzXbhwQS1atNCgQYNUtmxZ7d27VzExMfr999/16quvuqMFhaKo+zhjxgw1b95cPXv2lI+Pj9asWaOhQ4dq4sSJ6tq1qztaUGiKupe7du3Sjh07FBYWpitXrrhjkW+Zou7l8ePH1b9/fzVr1kwjR47UwYMH9c4778jT01P9+/d3RwsKRWH18fLly1qyZIlCQ0PVoEEDfffdd9k+3xdffKF///vf6t+/v1q0aKHTp0/rvffe05EjR7Ro0aKiWuxboqh7GRMTo/T0dKdh77zzjo4ePaqQkJBbuqzAbcMAiomzZ8+6DPv3v/9t1K9f38jKyjIMwzAefPBBY/To0U7TPPbYY8aAAQNync+KFSsMq9Vq7Nu3L9ca3n33XSMsLMzIzMwsyCLcFoq6j9lN98QTTxgdO3Ys8DLcLoq6l/Z5GoZh9OnTxxg0aNBNL8Ptoqh7OX78eKNVq1bGlStXHMMmTZpkNGzY0GmY2RRWHw3DMGw2m2EYhvH5558bVqs123k/+eSTRp8+fZyGLV261LBarcbp06dvalncrah7eb1Lly4Z4eHhxksvvVTQRQBMh2tsUGxkdwpE7dq1dfHiRaWmpioxMVHHjh1TdHS00zTt27fX1q1bHd+EZTefOnXqSJL++9//5lqDv7+/MjMzZbPZCroYblfUfczp+W7UazMo6l5aLH/dTX5R9/Lbb79VmzZtnE4rbd++vZKTk/Xjjz8WyjK5Q2H1UVKeTsnLzMxU2bJlnYbdcccdkiTDMAqyCLeNou7l9TZs2KDU1FQ9/PDD+S8eMKm/7l4OyIOdO3eqYsWKKlu2rBISEiRJQUFBTtPUqFFDGRkZSkxMzHU+klS9enWXcZmZmUpLS9OOHTv0ySefqGfPnvLy8irEpXC/oujj9dPdaBqzKupe/pXdql6mpqbqt99+c+lt9erV5eHh4Xiuv4rC6mN2unXrps2bN2vNmjW6ePGiDh8+rBkzZqhVq1aqVKlSoS3D7eJW9vJ6K1euVOXKlVW/fv2bmg9gJlxjg2Jrx44dio+P13PPPSfp6jUxkuTr6+s0nf1v+/jrJSUlaerUqWrTpo2qVavmNC4zM1N169Z1/N21a1c9//zzhbUIt4Wi6OO14uLi9OOPP2ratGmFUP3tpah7+Vd2K3uZkpKS7by8vb1VunTpHOdlRoXVx5w8/PDDSktL05gxY5SRkSFJatq0qd57772bLf22c6t7ea1z585py5YtevLJJws8D8CMOGKDYun333/XqFGjFBkZqX79+hV4PhkZGRo9erQk6aWXXnIZX6JECS1dulTz58/XuHHjtGnTJo0bN67Az3e7Kao+2v3yyy968cUX9cgjj/wl7op2raLu5V8ZvSwchdXH3Kxbt04TJ07UkCFDNHfuXL311ls6fvy4Ro4cafpT0a5VFL281urVq5WRkaGOHTve8ucCbiccsUGxk5ycrIEDB8rf319Tp051XHfg5+cn6eq3sRUqVHCa/trxdoZh6Pnnn9fevXu1YMEC3XXXXdk+X2hoqCSpYcOGCgwM1NChQ9WnTx/HcLMq6j6eOnVKAwcOVFhYmF555ZVbsUhuU9S9/Csril7arwGxH7mxS09PV1pamsu8zKiw+pgbwzD04osvqkePHho6dKhjeJUqVdSrVy9t2bJFzZs3L4zFcaui6OX1Vq5cqeDgYFmt1puoHDAfjtigWLl8+bKeeuoppaSkaPbs2Y4PKNL/zp+//vz4hIQEeXl5qUqVKk7D33rrLa1evVrTpk1TrVq18vT89ltunjhx4mYWw+2Kuo9JSUnq37+/ypcvr5iYmL/UNUruXif/Soqqlz4+Pvrb3/7mMq9ff/1VhmGY/rqmwuxjbpKSkpSUlOTSX/vNGsy+nZSKrpfXOn36tHbt2sXRGhRLBBsUG5mZmRo5cqQSEhI0e/ZsVaxY0Wl8lSpVVK1aNa1Zs8ZpeHx8vKKiopzufjRr1izNmTNHEydOVFRUVJ5rsF+EXNAd1u2gqPt46dIlDRw4UBkZGZo1a5bLHZTM7HZYJ/8qirqX9913nzZs2OC4LsQ+L19fX0VERBTikhWtwuzjjQQEBKh06dL6+eefnYbv379fklS5cuUCLsXtoSh7ea2VK1dKEsEGxRKnoqHYePnll7Vp0yaNHTtWFy9e1O7dux3j6tSpI29vbw0fPlxjxoxR1apVFRkZqfj4eO3du1fz5s1zTBsXF6dJkyapU6dOCgwMdJpP1apVHbf47N27tx544AFVr15dFotFe/bs0UcffaQWLVooLCysqBa70BV1H4cPH65ffvlFr7/+uk6fPq3Tp087pjP7L2kXdS+TkpL0n//8x/HvS5cuOT5UtWzZUqVLl771C32LFHUv+/fvr7i4OD3zzDPq2bOnDh06pA8//FCjRo0q8AfS20Fh9VGSvvnmG6Wlpemnn36SJG3atEllypRRzZo1VbNmTXl4eKhHjx5asGCBypYtq0aNGun06dOKiYnRvffea/qAXpS9vNbKlStVv379v+Rd5YAb8TD+SlfnAblo3bq1Tp06le24DRs2KDAwUJK0ZMkSxcbG6vTp0woKCtLo0aPVqlUrx7Rjx47V8uXLs53Pm2++qUceecTx782bN+v06dMqUaKEAgMD1aVLF/Xq1cvUH3yKuo/BwcE51nLw4MGCLsZtoah7uX379hwvXL72+cyoqHspSbt27dLEiRN14MABBQQEqHfv3ho4cGCBfnPkdlFYfcxtXsOGDdPw4cMlXb0u6aOPPtKXX36p06dPq1y5coqMjNSoUaN09913F/LSFa2i7qUkHTlyRB06dNCLL76oXr16FeLSAOZAsAEAAABgelxjAwAAAMD0CDYAAAAATI9gAwAAAMD0CDYAAAAATI9gAwAAAMD0CDYAAAAATI9gAwAAAMD0CDYAAAAATI9gAwAAAMD0CDYAAAAATI9gAwAAAMD0CDYAAAAATO//AXgpdvG/+P6eAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.barplot(data=belowpercentage, errorbar=None, palette=\"pastel\").set(title=\"Percentage of students who performed below proficiency in Algebra I Regents in the given years\")"
]
},
{
"cell_type": "markdown",
"id": "c84c3319-efa4-43b6-96aa-6be0d2e377e0",
"metadata": {},
"source": [
"We can overlap these bar graph to compare and contrast. "
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "da766429-dfc3-4418-b81f-16284cd7f3e2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Axes: >"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGhCAYAAABGRD9PAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKiRJREFUeJzt3Xt0VfWd9/HPb59LEgIJl6G0SihJGBQ0Nji0gRGwiFMmgNhqtWoduiriZYQOUNZIGfFWp+KM1g4XcQh1HAfQWeg4VoiMM5alLaXOgxeoeKES0Ehq9SnkQnKSc9n7+SNPUo6Awsk5Z+eX836t5ZLs63d/2Wfnw74d43meJwAAAAs4fhcAAABwqgguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABrBP0uIN08z5Pr8k49AABs4ThGxphTmrbPBRfX9XT4cKvfZQAAgFM0eHChAoFTCy5cKgIAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWIPgAgAArEFwAQAA1iC4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYI+h3AbCXMZIxxu8yfOd5njzP7yoAIDcQXJASY6R80y5Fj/pdiv/C/dWufMILAGQBwQUpMcZI0aNq3bddbrTN73J844T7qXD0VJlwgTySCwBkHMEFPeJG2+R2tPpdBgAgR3BzLgAAsAbBBQAAWIPgAgAArEFwAQAA1iC4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABrEFwAAIA1CC4AAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWOO0g8t7772n22+/XZdeeqnGjh2rWbNmnXC6zZs3a/r06aqoqNDs2bO1ffv246ZpaWnRsmXL9JWvfEXjxo3T9773PX300UenvxUAACAnnHZw+e1vf6sXX3xRX/ziF1VeXn7CabZu3arly5erurpaNTU1qqys1Pz58/X6668nTbdw4ULt2LFDd955p+6//34dOHBA8+bNUzweT2ljAABA3xY83RkuuugiXXzxxZKkpUuX6o033jhumpUrV2rmzJlauHChJGnChAnat2+f1qxZo5qaGknSa6+9pl/+8pf66U9/qkmTJkmSSktLNWPGDD3//POaMWNGqtsEAAD6qNM+4+I4nz5LfX29Dh48qOrq6qThM2bM0M6dOxWNRiVJL730koqKinTBBRd0T1NWVqYxY8bopZdeOt2yAABADkj7zbl1dXWSOs+eHKu8vFyxWEz19fXd05WWlsoYkzRdWVlZ9zIAAACOddqXij5LU1OTJKmoqChpeNfPXeObm5s1YMCA4+YvLi4+4eWn0xEM8rBUphljZBzJcYzkmM+eoY9ynM4+BAKOHMfzuxwA6PPSHlz85jhGgwYV+l1GTogdCSkvLyTPhP0uxTcmHFI4HFLhwH5+lwIAOSHtwaW4uFhS56POQ4cO7R7e3NycNL6oqEgffvjhcfM3NTV1T5MK1/XU3NyW8vw4NcYYhaIxdXTE5HZE/S7HN44XUigaU2tjmzyPMy4AkIqiogIFAqd2tSTtwaWsrExS5z0sXX/u+jkUCqmkpKR7up07d8rzvKT7XA4cOKDRo0f3qIZ43O3R/PhsjmMUdDuDouvm8C9s15PnSomEm9t9AIAsSfvNICUlJRo5cqS2bduWNLy2tlYTJ05UONx5WWHKlClqamrSzp07u6c5cOCA3nzzTU2ZMiXdZQEAgD7gtM+4RCIRvfjii5KkQ4cO6ejRo90h5Stf+YoGDx6sBQsWaMmSJRoxYoSqqqpUW1urPXv2aMOGDd3LGTdunCZNmqRly5bp1ltvVV5enh588EGdddZZ+trXvpamzQMAAH2J8U7zwvwHH3ygadOmnXDcY489pqqqKkmdr/yvqalRQ0ODSktLtXjxYk2dOjVp+paWFt1777367//+b8XjcU2aNEm33Xabhg0bluLmdJ6yP3y4NeX5cWocxygv+rFa3tgqtyN3++3kFWrAuTPVER7KpSIASNHgwYWnfI/LaQeX3o7gkh0El04EFwDoudMJLrzwBAAAWIPgAgAArEFwAQAA1iC4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABrEFwAAIA1CC4AAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWIPgAgAArEFwAQAA1iC4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABrEFwAAIA1CC4AAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWIPgAgAArEFwAQAA1shYcHnhhRd0xRVXaNy4cZo0aZL+5m/+RvX19cdNt3nzZk2fPl0VFRWaPXu2tm/fnqmSAACA5TISXF5++WXNnz9fo0aN0po1a7Rs2TK9/fbbuu6669Te3t493datW7V8+XJVV1erpqZGlZWVmj9/vl5//fVMlAUAACwXzMRCt27dqjPOOEM/+tGPZIyRJA0ePFjf+c539MYbb2j8+PGSpJUrV2rmzJlauHChJGnChAnat2+f1qxZo5qamkyUBgAALJaRMy7xeFyFhYXdoUWSBgwYIEnyPE+SVF9fr4MHD6q6ujpp3hkzZmjnzp2KRqOZKA0AAFgsI2dcLrvsMj3zzDPauHGjZs+ercbGRv34xz/W2LFjdf7550uS6urqJEmlpaVJ85aXlysWi6m+vl7l5eUprT8Y5J7jTDPGyDiS4xjJMZ89Qx/lOJ19CAQcOY7ndzkA0OdlJLiMHz9eq1ev1ve//33dfffdkqQxY8Zo/fr1CgQCkqSmpiZJUlFRUdK8XT93jT9djmM0aFBhqqXjNMSOhJSXF5Jnwn6X4hsTDikcDqlwYD+/SwGAnJCR4PLqq6/qb//2b3XllVfqq1/9qhobG/XQQw/phhtu0KZNm5Sfn5+J1UqSXNdTc3NbxpaPTsYYhaIxdXTE5Hbk7mU9xwspFI2ptbGt+zIoAOD0FBUVKBA4taslGQku99xzjyZMmKClS5d2D6usrNRXv/pVPfPMM/rWt76l4uJiSVJLS4uGDh3aPV1zc7MkdY9PRTzupjwvTo3jGAXdzqDoujn8C9v15LlSIuHmdh8AIEsycjPI/v37dfbZZycN+/znP69Bgwbp/ffflySVlZVJ+uO9Ll3q6uoUCoVUUlKSidIAAIDFMhJczjjjDL355ptJww4dOqQjR47ozDPPlCSVlJRo5MiR2rZtW9J0tbW1mjhxosLh3L1vAgAAnFhGLhVdddVV+tGPfqR77rlHF110kRobG7V27VoNGTIk6fHnBQsWaMmSJRoxYoSqqqpUW1urPXv2aMOGDZkoCwAAWC4jwWXOnDkKh8N6/PHH9dRTT6mwsFCVlZX6yU9+okGDBnVPN2vWLEUiEdXU1GjdunUqLS3V6tWrNW7cuEyUBQAALGe8PvYoRCLh6vDhVr/L6PMcxygv+rFa3tgqtyN3++3kFWrAuTPVER7KzbkAkKLBgwtP+aki3tQGAACsQXABAADWILgAAABrEFwAAIA1CC4AAMAaGXkcGgD84Dim8xvLc1zOfxUH+jSCC4A+wXGMBg/qJ+NwItlzXR0+0kZ4QZ9EcAHQJziOkXEctb/8a7ktzX6X4xtnQJHyqybIcQzBBX0SwQVAn+K2NMttPOJ3GQAyhHOqAADAGpxxAQAgg4yRjOGmcc/zlI4vGSK4AACQIcZIjhtRLNLidym+CxUMkOsU9Di8EFwAAMgQY4xikRbV/Z//UTTS5nc5vgkX9FPZly9WsH8/9fS7nQkuAABkWDTSpmjkqN9l9AncnAsAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWIPgAgAArEFwAQAA1iC4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABrEFwAAIA1CC4AAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsEbQ7wIAAL2PMZIxxu8yfOd5njzP7ypwLIILACCJMZKTCCgWcf0uxXehgoDcQILw0osQXAAASYwxikVc7X+5UdEcDi/hAkflVQMVHGDkkVx6DYILAOCEohFX0baE32UASbg5FwAAWCOjweXpp5/W17/+dVVUVKiqqkrXX3+92tvbu8f//Oc/1+zZs1VRUaHp06frqaeeymQ5AADAchm7VLR27VrV1NTopptuUmVlpY4cOaKdO3cqkeg87bhr1y7Nnz9f3/zmN7Vs2TL9+te/1t/93d+psLBQf/mXf5mpsgAAgMUyElzq6uq0evVqPfTQQ7rwwgu7h0+fPr37z2vXrtV5552nu+++W5I0YcIE1dfXa+XKlQQXAABwQhm5VPQf//EfGj58eFJoOVY0GtXLL798XECZMWOG9u/frw8++CATZQEAAMtlJLjs3r1bo0eP1kMPPaSJEyfq3HPP1VVXXaXdu3dLkt5//33FYjGVlZUlzVdeXi6p84wNAADAJ2XkUtHHH3+sN954Q/v27dMdd9yhgoICPfzww7ruuuv0/PPPq6mpSZJUVFSUNF/Xz13jUxUM8rBUphljZBzJcYzk5O7bNR2nsw+BgCPH4T0PfgoE+Nwfqyf9MMYoYTw5jun8jOcoxzEyxigQMCl/vo0xco2hl46RY0xajpUZCS6e56mtrU3/9E//pLPPPluS9KUvfUkXXXSRNmzYoEmTJmVitZI6mzNoUGHGlo8/ih0JKS8vJM+E/S7FNyYcUjgcUuHAfn6XAiQpKiro0fxN7R3Kzw8q4OVuIAzlO8rLC6p4YF6PltPUEVRefkiOcvdYGcoPKZwXVHEajpUZCS5FRUUaOHBgd2iRpIEDB2rs2LF69913NXPmTElSS0tL0nzNzc2SpOLi4pTX7bqempvbUp4fp8YYo1A0po6OmNyOqN/l+MbxQgpFY2ptbOPNmj4LBJwe/7LuS5qbI0okUnvrrTFG0Q5P7e1xRSO5+wK6hAmooyOuxsZEyp9vY4xiHXF1tMcUjeTusdJVWNGOuBpPcqwsKio45bOEGQkuo0aN0vvvv3/CcR0dHRoxYoRCoZDq6uo0efLk7nFd97Z88t6X0xWP5+4rqrPFcYyCbmdQdN0c/oXtevJcKZFwc7sP6HUSCTflY6HjGHken2/X9eR5nhKJ1PvgOEau59FL15PreWk5VmbkHODUqVPV2Niot956q3vYkSNHtHfvXp1zzjkKh8OqqqrSf/3XfyXNV1tbq/Lycg0fPjwTZQEAAMtl5IzLxRdfrIqKCn3ve9/TokWLlJeXp3Xr1ikcDuuaa66RJN18882aM2eO7rzzTlVXV+vll1/Wli1b9OCDD2aiJAAA0Adk5IyL4zhat26dKisrdfvtt2vx4sXq37+/Nm7cqKFDh0qSxo8fr1WrVumVV17R3LlztWXLFt1zzz2qrq7OREkAAKAPyNgr/wcPHqx//Md//NRppk2bpmnTpmWqBAAA0Mfk7nNuAADAOgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABrEFwAAIA1CC4AAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBpBvwvINmMkY4zfZfjO8zx5nt9VAABwenIquBgjxdygWtv9rsR/hflSyIkTXgAAVsmx4GLU2i5t39WmtnbX73J80y/f0dTx/TSo0MgjuQAALJJTwaVLW7ur1kjuBhcAAGzFzbkAAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWIPgAgAArEFwAQAA1iC4AAAAawT9LgCAZIxkjPG7DN95nifP87sKAL0ZwQXwmTFSPBRVW6LN71J81y/YT8FYmPAC4KQILoDPjDFqS7TpF7//P4rEI36X45uCYIEmD/uyik2ePJILgJMguAC9RCQeUWsOBxcAOBXcnAsAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWIPgAgAArMGbc5E6IzmOkZzc/XJAxzFS7m4+AGQdwQUpMcYoLxxUPC8kz4T9Lsc3JhxSXjioqIwkvl8HADIt48GltbVV1dXV+v3vf68nn3xSFRUV3eM2b96s9evXq6GhQaWlpVq0aJGmTp2a6ZKQBo5jJM8o/vFBJZo/8rsc3wSKPicZI8cYJRJ+VwMAfV/Gg8tDDz2kxAmO6Fu3btXy5ct10003acKECaqtrdX8+fO1ceNGVVZWZrospIkX65Db0ep3Gb5xYh1+lwAAOSWjN+fu379fmzZt0oIFC44bt3LlSs2cOVMLFy7UhAkTdPfdd6uiokJr1qzJZEkAAMBiGQ0u99xzj6666iqVlpYmDa+vr9fBgwdVXV2dNHzGjBnauXOnotFoJssCAACWytilom3btmnfvn1atWqV9u7dmzSurq5Oko4LNOXl5YrFYqqvr1d5eXnK6w4GT5zHjDEy//9JGCfHn4QxRgoEHDlOajeUBgJGiqe5MIsFAkael9q/A4wxMjLsl46RcYwCSm2/DAR4u8OxetIPY4wSxmOfdIyMMQoETMrHSmOMXMPn23E67wXsye+dLhkJLpFIRCtWrNCiRYvUv3//48Y3NTVJkoqKipKGd/3cNT4VjmM0aFDhSccf7YgpPy8o18vdJ0Dy8zqfCBo4MNSj5cSOpKmgPmDAgIIezd/W1qz8vLDcYO7e4ZsfCHful/36+V1Kn1BU1LN9sqm9Q/n5QQVSDOR9QSjfUV5eUMUD83q0nKaOoPLyQ3KUu09ghvJDCucFVTyw55/vjASXtWvXasiQIbr88sszsfhP5bqempvbTjjOGKOOqFF7R1yRdjfLlfUejnHUEY2rsTEmL8UAFww6yk9zXTZraYkoHk9tnzLGqENxtXdEFYnn7mVSJxjo3C+jbSntl4GA0+Nf1n1Jc3NEiUTq+2S0w1N7e1zRSO6G6YQJqKMjrsbGRMrHSmOMYh1xdbTHFI3k7ufbVVjRjrgaG0/8+S4qKjjls4RpDy6HDh3SI488ojVr1qilpUWS1NbW1v3/1tZWFRcXS5JaWlo0dOjQ7nmbm5slqXt8qk72C8RxjDwvINf15Lq5e8bFdT15npRIuCn3wZjcPeV5IomEl3JwcRwjz3jsl64nz/WU8FLfL/FHiYTbs33SE/uk68nzPCUSqffBcYxcj8+363pyPa9Hv3e6pD24fPDBB4rFYrrhhhuOGzdnzhx96Utf0gMPPCCp816XsrKy7vF1dXUKhUIqKSlJd1kAAKAPSHtwGTNmjB577LGkYW+99Zbuvfde3XXXXaqoqFBJSYlGjhypbdu26eKLL+6erra2VhMnTlQ4nLvXAQEAwMmlPbgUFRWpqqrqhOPOOeccnXPOOZKkBQsWaMmSJRoxYoSqqqpUW1urPXv2aMOGDekuCQAA9BG+fVfRrFmzFIlEVFNTo3Xr1qm0tFSrV6/WuHHj/CoJAAD0clkJLlVVVXrnnXeOG37FFVfoiiuuyEYJAACgD8jdB/QBAIB1CC4AAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA3fvmQRwDGMkeN0/perHMdIxkie35UA6M0ILoDPjDHKCweVnxeWG0z4XY5v8gNh5YWDMh1GpBcAJ0NwAXzmOEbGSO+1HtLHHYf9Lsc3Q/MGy5jOfiRyN78B+AwEF6CX6HCjaku0+12GbzrcqN8lALAAN+cCAABrEFwAAIA1cu5SkZF4esMxyt2tBwDYLKeCizFG4byg8vOCcr3cfWohP6+zD8a44ukNAIBNciq4dJ1p+F1TVH9oyt3HFoYUB2RUyNMb6JvCYZn8fL+r8E847HcFQEblVHDpEot5ao+5fpfhm1iMW5vQN8Ubm+Tl95Pn5OShrVM4rHhjk3L08I4cwJ4NoE8wxijR0qLG/9muxB/+r9/l+CYw5E/0J184Q2bAYL9LATKC4AKgT3GPHlWiqdnvMnxj8nL4MhlyAtcMAACANQguAADAGgQXAABgDe5xAQAcp+sLL3P+ZZ1p2HxjDL10jEw6mimCCwDgE4wxCoeDys8PKuDl7on5UL6jcDgk18SV6ss6O3sZUF5+SI5y9x07ofyQwuGAXGPU0xefElwAAEm6zjS0HEmorTF333nVb6DXfeYp1Zd1dp1paP3DIbUd+Ti9BVqk36Ch3WeeevriU4ILAOCEEjEpHs3drwVJxNK4rGhU8WgkfQu0TCIaTduycvccIAAAsA7BBQAAWIPgAgAArEFwAQAA1iC4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABrEFwAAIA1CC4AAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKxBcAEAANbISHB57rnndPPNN2vKlCmqrKzUpZdeqieffFKe5yVNt3nzZk2fPl0VFRWaPXu2tm/fnolyAABAH5GR4PLoo4+qoKBAS5cu1dq1azVlyhQtX75ca9as6Z5m69atWr58uaqrq1VTU6PKykrNnz9fr7/+eiZKAgAAfUAwEwtdu3atBg8e3P3zxIkT1djYqH/5l3/RX//1X8txHK1cuVIzZ87UwoULJUkTJkzQvn37tGbNGtXU1GSiLAAAYLmMnHE5NrR0GTNmjI4ePaq2tjbV19fr4MGDqq6uTppmxowZ2rlzp6LRaCbKAgAAlsvIGZcTeeWVVzRs2DD1799fr7zyiiSptLQ0aZry8nLFYjHV19ervLw85XUFgyfOY4GASXmZfVEgYOR5qWXXQMBI8TQXZLEe9xLdUu0lfUzW033STXM9NqOX6dOTXnbJSnDZtWuXamtrdeutt0qSmpqaJElFRUVJ03X93DU+FY5jNGhQ4UnHN7XFUl52XzNgQEGP5o8dSVMhfUBPe9nSlvo+39f0pJcdjemrw3Y93SebWjvSVIn9etzLtjQV0gf0tJdSFoLLhx9+qEWLFqmqqkpz5szJ9Orkup6am0+8l3SeicnaSaZer6Ulong8tX8LBIOO8tNcj8162ksF0lyQxVLtZTDoKJyBemzV432St2V063kv0eVkvSwqKlAgcGq9yuhv8ebmZs2bN08DBw7UqlWr5DidRRUXF0uSWlpaNHTo0KTpjx2fqpPtYMZwKvlYiYSX8oeRXibrcS8JLt1S7SX7ZLKe7pN084/oZfr0pJddMhYF29vbdeONN6qlpUXr16/XgAEDuseVlZVJkurq6pLmqaurUygUUklJSabKAgAAFstIcInH41q4cKHq6uq0fv16DRs2LGl8SUmJRo4cqW3btiUNr62t1cSJExUOc8IXAAAcLyOXiu666y5t375dS5cu1dGjR5NeKjd27FiFw2EtWLBAS5Ys0YgRI1RVVaXa2lrt2bNHGzZsyERJAACgD8hIcNmxY4ckacWKFceNe+GFFzR8+HDNmjVLkUhENTU1WrdunUpLS7V69WqNGzcuEyUBAIA+ICPB5ec///kpTXfFFVfoiiuuyEQJAACgD+I5LQAAYA2CCwAAsAbBBQAAWIPgAgAArEFwAQAA1iC4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABrEFwAAIA1CC4AAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWIPgAgAArEFwAQAA1iC4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABrEFwAAIA1CC4AAMAaBBcAAGANggsAALAGwQUAAFiD4AIAAKxBcAEAANYguAAAAGsQXAAAgDUILgAAwBoEFwAAYA2CCwAAsAbBBQAAWMPX4LJ//35997vfVWVlpS644AL9wz/8g6LRqJ8lAQCAXizo14qbmpr0ne98RyNHjtSqVav0+9//XitWrFB7e7tuv/12v8oCAAC9mG/B5YknnlBra6tWr16tgQMHSpISiYTuuusu3XjjjRo2bJhfpQEAgF7Kt0tFL730kiZOnNgdWiSpurparutqx44dfpUFAAB6MeN5nufHiidOnKjLL79cS5YsSRo+efJkXXrppccNP1We58l1T7xJxkiua3S03T3pNLnAcYz65ztyHE+p/u0bIxnPldvRIrluegu0iePIyRsgzzg96qUrV0fjbXK93O2lYxz1D/aTo9R6aYxkXFeJo0dzfp8M9O8vz+nZPinXqCOSUA7vkjKOlFcQkHp4rJTrKhppkZvD+6XjOAoXDJBOsl86jpEx5pSW5duloubmZhUVFR03vLi4WE1NTSkv1xijQODkG+840sD+gZSX37ec2k5yco4C/QalpRLb9byTjgaGj/884DQ5joLHnMXNZT3dJ+VIBQN8+xXRy/Swm46j/AEcK9OFx6EBAIA1fAsuRUVFamlpOW54U1OTiouLfagIAAD0dr4Fl7KyMtXV1SUNa2lp0ccff6yysjKfqgIAAL2Zb8FlypQp+tWvfqXm5ubuYdu2bZPjOLrgggv8KgsAAPRivj1V1NTUpJkzZ6q0tFQ33nhj9wvoLrnkEl5ABwAATsi34CJ1vvL/hz/8oV577TUVFhbq0ksv1aJFixQOh/0qCQAA9GK+BhcAAIDTwePQAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADW4Ks/T8Nzzz2nn/3sZ9q7d6+am5v1xS9+UX/1V3+lyy+/POnruDdv3qz169eroaFBpaWlWrRokaZOndo9fs+ePXr88ce1a9cuffTRRxo2bJimT5+um2++Wf369eue7umnn9bjjz+ugwcPKhKJ6IwzztDs2bM1b9486991k+1ePvHEE3r++ef1zjvvKBKJaNSoUbrhhht08cUXZ3W7MyHbvfzNb36jTZs26fXXX9eBAwd04YUX6p//+Z+zus2ZkO0+StKrr76q++67T2+99ZaGDBmiq6++WvPmzUtan43S1ctoNKqf/OQn2r17t/bu3atIJKKdO3dq8ODBx61z8+bNeuyxx1RfX6/i4mJNnjxZixYt0pAhQ7KyzZmS7V5edNFFOnTo0Alr+fd//3dVVlZmZDtPB8HlNDz66KM688wztXTpUg0aNEi/+tWvtHz5cn344YeaP3++JGnr1q1avny5brrpJk2YMEG1tbWaP3++Nm7c2P0X/txzz+m9997T9ddfr5EjR+rdd9/VypUrtXv3bj322GPd62tqatLkyZN1ww03qH///tqzZ49Wr16tDz/8UD/84Q/9aEHaZLuXDz/8sCZNmqSrr75a/fr107Zt23TLLbdoxYoV+sY3vuFHC9Im27189dVXtWvXLp133nnq6OjwY5MzItt9fO+99zR37lxdcMEFWrhwod555x3df//9CgQCmjt3rh8tSJt09bK9vV2bN29WRUWF/uzP/ky//OUvT7i+//zP/9Rtt92muXPnavLkyWpoaNCDDz6od999V0888US2Njsjst3L1atXKxqNJg27//77tX//fp177rkZ3dZT5uGU/eEPfzhu2G233eadf/75XiKR8DzP8772ta95ixcvTprmW9/6lnf99dd/6nJ+9rOfeaNHj/Z+85vffGoNP/7xj73zzjvPi8fjqWxCr5HtXp5ouu9+97verFmzUt6G3iLbvexapud53rXXXuvdcMMNPd6G3iDbfVy+fLk3depUr6Ojo3vYAw884I0fPz5pmI3S1UvP8zzXdT3P87ynnnrKGz169AmXfd1113nXXntt0rAnn3zSGz16tNfQ0NCjbfFbtnv5Sa2trV5lZaV35513proJacc9LqfhRKcnx4wZo6NHj6qtrU319fU6ePCgqqurk6aZMWOGdu7c2Z1iT7ScsWPHSpI++uijT61h4MCBisfjcl031c3oFbLdy5Ot77P6bYNs99Jx+uZhI9t9fOmllzRt2rSky74zZsxQc3OzXnvttbRsk1/S1UtJp3TZLB6Pq3///knDBgwYIEnyLH85fLZ7+UkvvPCC2tradMkll5x+8RnSN49AWfTKK69o2LBh6t+/v+rq6iRJpaWlSdOUl5crFoupvr7+U5cjSWVlZceNi8fjikQi2rVrl/71X/9VV199tUKhUBq3onfIRi8/Od1nTWOrbPeyr8pUH9va2vS73/3uuL6WlZXJGNO9rr4kXb08kW9+85v6xS9+oW3btuno0aP67W9/q4cfflhTp07VGWeckbZt6C0y2ctP2rJli84880ydf/75PVpOOnGPSw/s2rVLtbW1uvXWWyV13pMiSUVFRUnTdf3cNf6TDh8+rFWrVmnatGkaOXJk0rh4PK5zzjmn++dvfOMbWrZsWbo2odfIRi+P9eyzz+q1117TmjVr0lB975LtXvZVmexjS0vLCZcVDodVUFBw0mXZKl29PJlLLrlEkUhES5YsUSwWkyT9+Z//uR588MGelt7rZLqXxzpy5Ih27Nih6667LuVlZAJnXFL04YcfatGiRaqqqtKcOXNSXk4sFtPixYslSXfeeedx44PBoJ588klt3LhRP/jBD7R9+3b94Ac/SHl9vVG2etnl7bff1h133KHLLrusTzxVdKxs97Kvoo/pk65efprnn39eK1as0M0336x/+7d/03333af33ntPCxcutP5S0bGy0ctjPffcc4rFYpo1a1bG13U6OOOSgubmZs2bN08DBw7UqlWruq/5FxcXS+r819TQoUOTpj92fBfP87Rs2TLt2bNHmzZt0uc+97kTrq+iokKSNH78eA0fPly33HKLrr322u7hNst2Lw8dOqR58+bpvPPO0913352JTfJNtnvZV2Wjj133X3SdeekSjUYViUSOW5at0tXLT+N5nu644w5deeWVuuWWW7qHl5SU6JprrtGOHTs0adKkdGyOr7LRy0/asmWLzjrrLI0ePboHlacfZ1xOU3t7u2688Ua1tLRo/fr13Qcg6Y/Xrz95fbqurk6hUEglJSVJw++77z4999xzWrNmjc4+++xTWn/X42jvv/9+TzajV8h2Lw8fPqy5c+dqyJAhWr16dZ+6T8jv/bKvyFYf+/Xrpy984QvHLevAgQPyPK9P3FOUzl5+msOHD+vw4cPH9bjrhmiOlafey2M1NDTo1Vdf7XVnWySCy2mJx+NauHCh6urqtH79eg0bNixpfElJiUaOHKlt27YlDa+trdXEiROTnh5Yt26dHn30Ua1YsUITJ0485Rq6bvJLdWfsLbLdy9bWVs2bN0+xWEzr1q077gkEm/WG/bIvyHYfp0yZohdeeKH7noyuZRUVFWncuHFp3LLsS2cvP8vgwYNVUFCgN998M2n43r17JUlnnnlmilvRO2Szl8fasmWLJPXK4MKlotNw1113afv27Vq6dKmOHj2q119/vXvc2LFjFQ6HtWDBAi1ZskQjRoxQVVWVamtrtWfPHm3YsKF72meffVYPPPCAZs+ereHDhyctZ8SIEd2Pv33729/WX/zFX6isrEyO42j37t165JFHNHnyZJ133nnZ2uyMyHYvFyxYoLffflt///d/r4aGBjU0NHRP1xveBNkT2e7l4cOH9b//+7/df25tbe0+aF544YUqKCjI/EZnQLb7OHfuXD377LP6/ve/r6uvvlr79u3TT3/6Uy1atMj6N2Onq5eS9OKLLyoSieiNN96QJG3fvl2FhYUaNWqURo0aJWOMrrzySm3atEn9+/fXl7/8ZTU0NGj16tX60z/9U+sDeDZ7eawtW7bo/PPP75VPZRmvL925lGGf9irkF154QcOHD5fU+erlmpqa7lcvL168OOnVy0uXLtXTTz99wuXce++9uuyyy7r//Itf/EINDQ0KBoMaPny4vv71r+uaa66x/sCW7V6eddZZJ63lnXfeSXUzeoVs9/Lll18+6Y2Bx67PNtnuo9T5FuIVK1borbfe0uDBg/Xtb3+7T7zyP129/LRlzZ8/XwsWLJDUeW/QI488omeeeUYNDQ0aNGiQqqqqtGjRIn3+859P89ZlV7Z7KUnvvvuuZs6cqTvuuEPXXHNNGrcmPQguAADAGtzjAgAArEFwAQAA1iC4AAAAaxBcAACANQguAADAGgQXAABgDYILAACwBsEFAABYg+ACAACsQXABAADWILgAAABr/D/HHvrRtJRMUQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"overlap=plt.subplots()\n",
"sns.barplot(data=belowpercentage, errorbar=None, palette=\"pastel\")\n",
"sns.barplot(data=below, errorbar=None, alpha=0.5, palette=\"bright\")"
]
},
{
"cell_type": "markdown",
"id": "infectious-symbol",
"metadata": {},
"source": [
"# Discussion"
]
},
{
"cell_type": "markdown",
"id": "furnished-camping",
"metadata": {
"code_folding": []
},
"source": [
"## Considerations"
]
},
{
"cell_type": "markdown",
"id": "bearing-stadium",
"metadata": {},
"source": [
"*It's important to recognize the limitations of our research.\n",
"Consider the following:*\n",
"\n",
"- *Do the results give an accurate depiction of your research question? Why or why not?*\n",
"- *What were limitations of your datset?*\n",
"- *Are there any known biases in the data?*\n",
"\n",
"✏️ *Write your answer below:*\n",
"- I think that it sort of does! I can see the number of students who remained below proficient in their math skills as they trainsitioned from middle school to high school and I could also cross-analyze this number as a percentage of their cohort.\n",
"- The main limitation is that standardized tests might not paint the best picture for students' capabilities. Although they are supposed to set the bar and provide a fair comparison of achievement across all schools, they do not represent the full reality of the school districts, students' overall performance and math skills.\n",
"- I don't think there are biases in the data set on its own as it is a data pulled directly from the NYSED and it represents a standardized test data. "
]
},
{
"cell_type": "markdown",
"id": "beneficial-invasion",
"metadata": {},
"source": [
"## Summary"
]
},
{
"cell_type": "markdown",
"id": "about-raise",
"metadata": {},
"source": [
"*Summarize what you discovered through the research. Consider the following:*\n",
"\n",
"- *What did you learn about your media consumption/digital habits?*\n",
"- *Did the results make sense?*\n",
"- *What was most surprising?*\n",
"- *How will this project impact you going forward?*\n",
"\n",
"✏️ *Write your answer below:*\n",
"- I am not really sure how this related to my media consumption or digital habits. I think maybe it helped me piecing different data sets together.\n",
"- I think the results made sense. Although not very pronounced, there is an increase of percentage in students that performed below proficiency. The skyrocketing percentage increase in 2020 also makes a lot of sense considering this was the transitioning year and students did not get quality education as the districts struggled to navigate through the transition, keeping structure and motivation afloat.\n",
"- I am surprised that the students were not performing better pre-COVID-19. This kind of comes back to the limitation of this research: singular Regents examination doesn't paint the most comprehensive picture of students' skills. I was expercting to see a more pronounced difference in performance pre and post COVID-19.\n",
"- I think getting to practice data analysis in python helped me refresh my skills. I am more used to just using tabulate and plt, so seaborn is new to me but I enjoyed playing with it. In terms of the research itself, I think I will be questioning what exactly it is that's currently failing our students in their math skills, if it isn't the lasting impacts of COVID-19. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d12500c4-46fe-4573-8c6e-f7597c7fc5fd",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"jupytext": {
"cell_metadata_json": true,
"text_representation": {
"extension": ".Rmd",
"format_name": "rmarkdown",
"format_version": "1.2",
"jupytext_version": "1.9.1"
}
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 5
}