diff --git a/.ipynb_checkpoints/Untitled-checkpoint.ipynb b/.ipynb_checkpoints/Untitled-checkpoint.ipynb new file mode 100644 index 0000000..b4cb262 --- /dev/null +++ b/.ipynb_checkpoints/Untitled-checkpoint.ipynb @@ -0,0 +1,33 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "fb6ae43a-cbeb-45f3-8e70-ef5ccd4350a7", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.ipynb_checkpoints/argument-checkpoint.ipynb b/.ipynb_checkpoints/argument-checkpoint.ipynb new file mode 100644 index 0000000..a11635d --- /dev/null +++ b/.ipynb_checkpoints/argument-checkpoint.ipynb @@ -0,0 +1,591 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "worldwide-blood", + "metadata": {}, + "source": [ + "# Introduction" + ] + }, + { + "cell_type": "markdown", + "id": "understanding-numbers", + "metadata": {}, + "source": [ + "This project explores how the amount of time people spend on social media relates to their happiness. Many people use social media every day, but there is debate about whether spending more time online helps people feel connected or makes them less happy overall. This research aims to find patterns between social media time and happiness levels using survey data." + ] + }, + { + "cell_type": "markdown", + "id": "greater-circular", + "metadata": {}, + "source": [ + "## Overarching Question: How does time spent on social media affect happiness?" + ] + }, + { + "cell_type": "markdown", + "id": "appreciated-testimony", + "metadata": {}, + "source": [ + "I chose this question because social media is part of my daily life, and I often wonder how it impacts how happy I feel. Some people say social media improves their mood, while others say it causes stress or comparison. I want to see whether there’s any data-driven evidence that links time online to happiness levels." + ] + }, + { + "cell_type": "markdown", + "id": "permanent-pollution", + "metadata": {}, + "source": [ + "# Data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "technical-evans", + "metadata": {}, + "outputs": [], + "source": [ + "#Include any import statements you will need\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "overhead-sigma", + "metadata": {}, + "outputs": [], + "source": [ + "### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n", + "\n", + "file_name = \"Mental_Health_and_Social_Media_Balance_Dataset.csv\"\n", + "dataset_path = \"data/\" + file_name\n", + "\n", + "df = pd.read_csv(dataset_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "heated-blade", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
User_IDAgeGenderDaily_Screen_Time(hrs)Sleep_Quality(1-10)Stress_Level(1-10)Days_Without_Social_MediaExercise_Frequency(week)Social_Media_PlatformHappiness_Index(1-10)
0U00144Male3.17.06.02.05.0Facebook10.0
1U00230Other5.17.08.05.03.0LinkedIn10.0
2U00323Other7.46.07.01.03.0YouTube6.0
3U00436Female5.77.08.01.01.0TikTok8.0
4U00534Female7.04.07.05.01.0X (Twitter)8.0
\n", + "
" + ], + "text/plain": [ + " User_ID Age Gender Daily_Screen_Time(hrs) Sleep_Quality(1-10) \\\n", + "0 U001 44 Male 3.1 7.0 \n", + "1 U002 30 Other 5.1 7.0 \n", + "2 U003 23 Other 7.4 6.0 \n", + "3 U004 36 Female 5.7 7.0 \n", + "4 U005 34 Female 7.0 4.0 \n", + "\n", + " Stress_Level(1-10) Days_Without_Social_Media Exercise_Frequency(week) \\\n", + "0 6.0 2.0 5.0 \n", + "1 8.0 5.0 3.0 \n", + "2 7.0 1.0 3.0 \n", + "3 8.0 1.0 1.0 \n", + "4 7.0 5.0 1.0 \n", + "\n", + " Social_Media_Platform Happiness_Index(1-10) \n", + "0 Facebook 10.0 \n", + "1 LinkedIn 10.0 \n", + "2 YouTube 6.0 \n", + "3 TikTok 8.0 \n", + "4 X (Twitter) 8.0 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "continental-franklin", + "metadata": {}, + "source": [ + "**Data Overview**\n", + "\n", + "The dataset comes from Kaggle and was collected from surveys about social media use and mental well-being. It contains responses from individuals about how much time they spend on social media each day, their happiness levels, and basic information like age and gender. This dataset allows me to explore whether heavier social media use is linked to lower happiness." + ] + }, + { + "cell_type": "markdown", + "id": "infinite-instrument", + "metadata": {}, + "source": [ + "# Methods and Results" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "basic-canadian", + "metadata": {}, + "outputs": [], + "source": [ + "#Import any helper files you need here" + ] + }, + { + "cell_type": "markdown", + "id": "recognized-positive", + "metadata": {}, + "source": [ + "## First Research Question: Do people who spend more time on social media report lower happiness?\n" + ] + }, + { + "cell_type": "markdown", + "id": "graduate-palmer", + "metadata": {}, + "source": [ + "### Methods" + ] + }, + { + "cell_type": "markdown", + "id": "endless-variation", + "metadata": {}, + "source": [ + "*Explain how you will approach this research question below. Consider the following:* \n", + " - *Which aspects of the dataset will you use?* \n", + " - *How will you reorganize/store the data?* \n", + " - *What data science tools/functions will you use and why?* \n", + " \n", + "✏️ *Write your answer below:*\n", + "\n", + "To answer this question, I will look at the “time spent on social media” and “happiness score” columns in the dataset. I will use Pandas to calculate averages and Seaborn to make a scatter plot showing how happiness changes with more time online. I will also calculate the correlation between the two variables to see if there is a negative relationship." + ] + }, + { + "cell_type": "markdown", + "id": "portuguese-japan", + "metadata": {}, + "source": [ + "### Results " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "negative-highlight", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYkpJREFUeJzt3Ql4E2X+B/Bf27RNbwoVBAUWKIpyCYLIqSjigeKBuLKoILr+XUFYFQ90FRQ51xNFFOVQQRAPFHU9AeUQEeUWD6qssCIgSFuOtvTI//m+MGEymSSTNGkzzffzPFUymXnfd96ZZH7zHpM4l8vlEiIiIiIbiq/uAhARERGFioEMERER2RYDGSIiIrItBjJERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EM2d7gwYPlL3/5S0jbYjtsH63GjBkjcXFx1V7m//73v6ocs2fPrtJ8yZrPP/9cHR/8nyjWMJChsNq0aZNcffXV0rhxY3E6nXLSSSfJBRdcIM8884zYGS4S+Lv55ptN33/ggQfc6+zdu1fsQAuSAv2de+65EosQMF566aV+A4c333yzystVU/3xxx8yYsQIadGihaSkpEjdunXlrLPOknvvvVcOHjxY3cWjKOao7gJQzfHll19Kz549pVGjRvL3v/9dTjzxRNmxY4d89dVX8vTTT8vtt98ekXxffPFFqaiokEhDYPbWW2/Jc889J0lJSR7vzZs3T71fXFwc8XL8+OOPEh9f+XuQq666SnJzc92vcbH4xz/+IVdeeaV6T1OvXj0VmBYVFUliYmKl86Xw69Gjhzo+xvPSLv7880/p0KGDFBYWypAhQ1Qws2/fPtm4caNMmzZNnZfp6enVXUyKUgxkKGzGjRsnWVlZsmbNGqlVq5bHe3v27IlYvlV1cb3oootk0aJF8uGHH8rll1/uEcBt27ZN+vXrpwKdSEtOTg5LOm3atFF/GrQk4YKBZdddd53X+gjUKDohsLXz8ZkxY4Zs375dVq5cKV26dPF4D8FNVQZohw4dkrS0tCrLjyqPXUsUNj///LO0bNnSK4gBNBPrlZWVydixY6VZs2bqwoxm/Pvvv19KSkq8tkXgcM4550hGRoZkZmZKx44d5bXXXvM7Ruaxxx5TX4h16tRRzdRnnnlmpbsB0E2GO1993jB37lxp3bq1tGrVynS71atXqyAIQV5qaqraF3xhG61YsULtGy5IqJcXXnjBND3jGBnczY4cOVKVAXetqKOLL75YNmzYIJEcI4MyID9cgNAFg3+jjqZOneruZjzvvPPURQEtOsZ6g/z8fPnnP/8pDRs2VOcBWogmTZoUsIUN+TVt2tT0vc6dO6u7e82nn34q3bp1U+clynjqqaeqcy3cfv31V7nttttU+jjncO71799f1Z0e6hB1uWzZMvm///s/tR6O2Q033CD79+837d765JNP5IwzzlDnxumnny5vv/12wDEy6BLEObllyxbVUopzD8dn8uTJXmXH52706NGq/nEccDzuuecer8+jlbpENzK+B5Bfdna2OhZmx9743ZGQkCBnn32213uoG2OQhs/UJZdcotLH+YXgG62+ekuWLJHu3bur91Fe3Hx8//33pt2rqKO//e1vKj3sn2bOnDnquwPHs3bt2nLttdeqVmaKLgxkKGxwsfr2229l8+bNAdfFWJOHHnpI2rdvL08++aS6uE+YMEF9URi/9Pv06aMu1qNGjZKJEyeqL/SPPvrIb/r4UmvXrp088sgjMn78eHE4HOqi8sEHH1RqH/Fl995777n77BGQvfHGG2q5GXyZIvjBXSUuFCgLLt64wH/99dfu9XDR7927t2q5wpfrjTfeqNZfuHBhwDL98ssv8s4776gL3hNPPCF33323Sg91unPnTomk8vJyFTThwocLJC68w4YNU8cNwRsuYghMEITiQo2WK83hw4dVGXGxwHtTpkyRrl27quN85513+s33r3/9q0oLrX/GYAJdmdp59N1336l6wQUZ58Ljjz8uffv2NQ0kzZSWlqqWKuNfQUGB17ooC1rnkDf25dZbb5XFixergAL7aoR6woUVxxv7j4D4iiuuEJfL5bHe1q1b1f6invEZ0c5lBBWBIDDCcWjbtq3ad3TZYMwJbg40CBpRJwj+L7vsMhWIoBz4XCJfjZW6RDfv8OHDVbD11FNPycMPP6w+rwg8An134Fx69dVXA+4T9hufKQQfGFODciBQe//9993rfPbZZ3LhhRe6P084n3BscH4ZA0tAfeIY4fOJbnGthRnHpXnz5upzhYAbxxN54zNMUcRFFCaffPKJKyEhQf117tzZdc8997g+/vhj15EjRzzWW79+Pb6pXTfffLPH8pEjR6rlS5YsUa/z8/NdGRkZrk6dOrmKioo81q2oqHD/e9CgQa7GjRt7vH/48GGP1yhDq1atXOedd57HcmyH7QNBuYYOHer6888/XUlJSa5XX31VLf/ggw9ccXFxrv/+97+u0aNHq/X++OMPdxmbN2/uuvDCCz3Ki7I1adLEdcEFF7iXXXHFFS6n0+n69ddf3cu2bNmi6tL4MTWWubi42FVeXu6xzrZt21zJycmuRx55xGUVyo28sB9GSA/vzZo1y70MZcCy8ePHu5ft37/flZKSoupk/vz57uU//PCDV9pjx451paWluX766SePvO677z6139u3b/dZ1oKCArV/d911l8fyyZMnq7y1enzyySc9jkkwUM/Y1t/fG2+84fOcg1WrVqn1XnnlFfcy1CGWnXnmmR6fDZQdy999912vMrz11lse+16/fn1Xu3bt3MuWLl2q1sP/Neecc45X3iUlJa4TTzzR1a9fP/cynMvx8fGu5cuXe5T9+eefV9uvXLnScl1efvnlrpYtW7qCtWvXLtcJJ5yg0m/RooXr1ltvdb322mvqO0CvrKxMfXZQLzjX9PSfsTPOOMNVt25d1759+9zLNmzYoPbzhhtucC/TPrMDBgzwSAufZ5yD48aN81i+adMml8Ph8FpO1YstMhQ2mJ20atUqdZeGbg3coeOuCM3ZGFui+c9//qP+b7zrvuuuu9T/tVYT3HkdOHBA7rvvPq+mZeOUZCM0BevvSnEHjWbmtWvXVmof0fSMO1wM7gU0maMLC3eURuvXr1d302itwcBF7W4effDnn3++6lrA3TDuRD/++GN1F4yB0prTTjtN1V8g6ArQBv8iLeSlNftXdn+t0M/kQhM+8kVz/jXXXONejmV4D61HGrRk4ZigTvWtHb169VL7gfrxRes+W7BggUcLxuuvv666J7R61Lo533333ZAGhHfq1Emdh8Y/tF74O+fQkoPjgK4alMHsONxyyy0e47swPgmtLdrnQ9OgQQM1AFu/72gpWLdunezatctv+XEe6Mc7YawJZgIZjwPONbTW6I8DWg1h6dKllusS6/zvf//zaikLBAPK8Z2BVix8Xp9//nn1uUGXNLqgtWOMfUZLHFpHjF3Y2nfC77//rj576PpEd5AG3U/4jjLWLyBfPXTdYR9xDuvrBBMY0EKj1QlFBwYyFFYY44EvAXwZoesE3QQIRjAlG03BWvM/Lrz6GTOALwl8OeF9rd8cfI098QfNzLigIQDCl9kJJ5ygZj+YdQkEC1+wuJhhbAi6dHx1KyGIgUGDBqn89X8vvfSSaqJHeTDtFDNO8AVphAAgEHzhohsA2yOoycnJUXlgxkc49tcf1C/y0sNYoJNPPtkr2MRy/RgQ1A+6CI11g0DGygBxdHtgvAKCZ+18QdemvjsE/0Z3AoItXCzR7YPgx2pQg7pEeYx/GDdhhGOI7lJtvI92HNANYXYcjMcbQUf9+vW9uj7wOTHW5SmnnKL+b9ZNomd2HBA4Go8Duo2Mx0HLQzsOVuoS3VbYDwRL2L+hQ4da7sbDvuMzikAEM/PQPYdyoE4xGNjqd4L2/WH22UHApt1M6DVp0sTjNeoEwRP2wVgv6A6M5OQFCh5nLVFE4M4PQQ3+8IWIMR+488O4D6utKqFavny5ahVCXzamSuMLEne+s2bNCjjo0AqkjQsVAhQEI/qWBz3tC/7f//63GidgBl/6ZgOcg4F+/QcffFBNW8XdKwI3BIq4a430tHQM0Axmub71BGXDHTIGlZrRLqS+YDwHBpTiYopWMfwf+43xDvpWErTs4A4aLX0InNBqg9YGDKD1Vc5Q4PECOMdQ7xhwjMAN5zgu+FXxeIDKHAcMFMc4EDMIzKzWJQIFBCG4kcD72uMKEIxgvIwVqDMce/xhfByCCYwf8vUMp3DQt6ZpdYJyYCyRWR1yKnh0YSBDEafNIMGdFqAbBl8UuOvBF59m9+7d6u5V66bBzB3A4GFj640/+PJESwG6a/RTlXGRCdeXHrqBMEgV3Ru48zajlR9dAVorgxnc5SFNrQVHDxeFQDAbC4MdtbtWDerSV9miAeoHg6b91Y0/6L7C4FMEyLgI46KKrip0xeghuEFXHv6wHgI/PMAQF+RQ8/Z1HBDcYvCpBs8V8jUwFMcbx02DusBnBLNx9PLy8lTgoQ/8f/rpJ/X/UJ9obTwO6NZB/QS6ubBSlzguaL3B35EjR9QziTBwFq2zwU4Rx8w0tCBp3x367wRfx077/jD77Pzwww/qMxFoejXyQZ2jpSZQQE3Vj11LFDb4MjPOuACtT1pr6tW+qDGrQU+7I8RdGGAWD2a7YKaG8UFzZvlocAeFL2SMs9CgCR7dQOGC6c5oXUJLiC/ofsAXIsZTmD2ZFF1KWnkxFgblQ3eVBk3YCMYCwfbG+sDF/bfffpNohpYsdAuZ7SMu/pgRFggulpiZha46XIz13UqA2W5GWutYZVvCrBwHzADSn4d606dPV2NpNOhWwT4jONbD/ulnr2EG3CuvvKL2A92x4TgOOFcw48isu0zrhrFSlxgXZGyZxQwm1It+X40wq8nY3QPonkaa2ncHZjkiuMB3hzFA1OoeLbAo18svv+yxDoIftBwZA0UzCL5wPNGKZDymeG3cT6pebJGhsDatYwojBiZi4CDuxjDlEXfKuHNE9xJgKijuXPFFji8aTMHFFxa+eNDSod2loiUDYz/QpIwuKu05D7hgIR+sbwaBEIIiDMrFNujPxrNN0KqDcSPhgH3AX6C7V1xgcWHCczWw/xj4jIsGgj7sH6ZyA74w0RSPFgU8iwQXNO15HIHKjFYJTIdF+uhiwdRrNMX7es5KtMA0cQwCR/kxMBOBHy5mKD9aNxB8BmpRwkUJwS4CS1x48FBCPdQLukNwTuBOHecCujowdkT/vJBwwH5g+jC6lHDxRpCGacB4TowZfD7QsoFAAq0HKBfKhK5LPbQI3HTTTWoALcamzJw5U7VehquF8frrr1fdchjwivMS42AQfKH1AssRaKJV1Upd4uYDwRXSQFkRjD/77LNqGxwnX1BvOGfx3YHzAAEQtsW+ohVHe1YNPlMI+NCtiGAF5zwCF5QV43y0oBjdufjcoYsPdYeADJ8nHBtMxw4ENyCPPvqoakXCeYjvJZQfA40RVGKgNs45ihLVPGuKapAPP/zQNWTIEDV9Mj09XU1Tzs3Ndd1+++2u3bt3e6xbWlrqevjhh9VUysTERFfDhg1do0aNUlOJjRYtWuTq0qWLmtabmZnpOuuss1zz5s3zO/16xowZauozpuiiPJjyqk21rMz0a3+M068169atc1111VWuOnXqqPIgz2uuuca1ePFij/W++OILNSUX9da0aVM1/dVKmVFnmIaMKbmoo65du6ppv5h+i79ITr/G9Gkj5Gk2BRfl7tOnj8eyAwcOqOOO8wT7nZOTo471Y4895jVt35eBAweqsvXq1cvrPdQxpgQ3aNBApY//Y6qtccq3GbPyGqc766dfYzrwjTfeqPYB5z+m3WPaufF4adOvcbxvueUWV3Z2tlof+6GfLqwvAx5j0KZNG/f5rM/X3/Rrs+Ng9nlBXU+aNEmtjzxQJpyL+IxiurfVunzhhRdcPXr0cJ/rzZo1c919993uNHzZuHGjWq99+/au2rVrqynOOJ/79+/vWrt2rdf6K1asUI8vwOMZcA6ibp555hmPdT777DP1WdC+Ny677DL1SAMrn1kNpr1369ZN5YE/1D2+B3788Ue/+0NVKw7/qe5giogoVuBhgWhJQAuL/gnEZtCSiRk6+oe9EZEnjpEhIiIi22IgQ0RERLbFQIaIiIhsi2NkiIiIyLbYIkNERES2xUCGiIiIbKvGPxAPj8LHkzHxMKNI/bYPERERhRdGvuBHh/GzI3gYYswGMghitB89IyIiInvBr9zjCdIxG8hoj8VGReCR8ERERBT98LtiaIjw9/MWMRHIaN1JCGIYyBAREdlLwF9lr7KSEBEREYUZAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyrWr9iYJly5bJv//9b/n222/l999/l4ULF8oVV1zh8cuXo0ePlhdffFHy8/Ola9euMm3aNGnevHl1Flt2FxbL/kNHpLC4TDJTHJKdmiT1Mp1VmrZxvUxnopSUlkt+UalkpiRKTlqSZKUm+d2mTmqSlFa4pKCoVAqLSiUrJVFtmxgfJ/sCpA17D2KdUqmTkijxjng5UFzmTifD6RA8VLrAsAyRc75uWbrTIWVlFbJfl3YxXh/Lv1aqQ1KTHB5pm5UR+3KkvEK9xnq10xMlJdFzO+SVoM8/NVHSkx1ysKRMCg4fLyNo6WjLsJ62v1iWZLK/xu2Q3+HSMtl/8OjrWk6HlBvWyXQ6xKVbVis1UdKSHX7rMjst0bROsG9/6o4l/lKTEvyWG/lLXJz7HNDy19cJ9iM5Lk726tKunZIoR/DLtIb9PVRSJvnHtsMf9s2ddlqipBnL7XSo/LQyaudASVmF/Hns+GalOLzKhPUa1EoJ+HkqOHzEK239uevrs2K2nf689PXZ1G+HcjoTE9S/C4uOblM7NUmSHfEh5W+l3LHGrJ5ivU5iUbUGMocOHZK2bdvKkCFD5KqrrvJ6f/LkyTJlyhR5+eWXpUmTJvLggw/KhRdeKFu2bBGnMzyBQ7C27zskoxZukpV5+9zLuuXWkfFXtpZGddKqJG1f6z14aUv5+yvfqA92j+Y5MrFfG/eXvXGbhtkp8upNZ8kD72z2SmdM35Zy3YzVKh1j2oePlMvMwR1l6pI8WZ63V9qclClTBrSXUW9tdKeDi+fMQR1l6tKtstwk7esNaY+9opUMn7dOikrLZf4tnWX0oqNlQjpTBrSTWSu3+S3jKXXTZfoNHeSBd47uH/btlZvOknt1ZfKX/+CuTVT+2LfuuTkytGczGfLy0X1FGWYM6iDPLcX+mpfJ3/5i30a+scFr3zTdm+fIbec2k5te/ka9Nttf/TrIa+7NZ5vu26NXtJJbXvlGduwvsl5udSy9y62vk6Npt5bHP/5ePvth77Fzp5O7vs22A32d+MpfX0az/UX+vso07srW0tjPZ25nfpGqp+Vb9xr29+i5qzF+Vozb5aQnmR4742dTv10w+xsof6vljjXGeoJYr5NYFedCs0eU/CiUvkUGxWrQoIHcddddMnLkSLWsoKBA6tWrJ7Nnz5Zrr73W8q9nZmVlqW0r+6ORaNG4c8F6jy8z/Zfa49ecEXLLjNW0A613Y9cm7osiPtTPDGin7iSN2ywa1lUmffSDpXT0y9btyJd12/e7t/t85DlewdCw83I91rGS9j0XtZA/DpTITN0Xv9V0Pr2zh4xZ9J17vWD3rWtuHWnXKFueXZLn9dpYBrMyBSqn2b7pafmBr3S0ddo1rOUzHS2vvs+urHS5jXWCtCdc2Vq6//tzv/Xra18qm7+vMk2+uq3pRQt36sPmrfO4yPnLT/usqPUM2yH48Ffn+Gw6HfEe2wW7v/7yt7JdrLVCmB3fWK+Tmsjq9Ttqx8hs27ZNdu3aJb169XIvww516tRJVq1a5XO7kpIStfP6v3BBs7LZlwmsyNun3o902oHWq5uZ7H69bOte1fJgto0jId5yOvpluJDqtysqrfBKx7iOlbRRHizXb2c1nbJyl8d6we4b1kVeZq+NZTArU6Bymu2bWf7+0tHW8ZeOllc4ym2sE6R98FjriL/69bUvlc3fV5nQbWUG573xIucvP+2zYrZdoDrH58u4XbD76y9/K9vFGrN6ivU6iWVRG8ggiAG0wOjhtfaemQkTJqiAR/tr2LBh2MqEvvHKvB+OtAOtd7D46MVGcwD98ybbHPBxAfCVjrYMYxc8ymWSjnEdK2mjPMblVtMxliGUfTPmpb32tTyYcprtm1kagdLB+4HS0fY9HOU2vq+lHah+zfYlHPmblqnYvCwYMxFsfkc/K97bBapzNb7JsF1I54mP/K1sF2vM6inW6ySWRW0gE6pRo0apZijtb8eOHWFLWw2MrMT74Ug70HrpTgz5PC7DeWxAp0FGSmJQ6WjLMFDRo1wm6RjXsZI2ymNcbjUdYxlC2TdjXtprX8uDKafZvpmlESgdvB8oHW3fw1Fu4/ta2oHq12xfwpG/aZmc5mXBAPVg8zv6WfHeLlCd4/Nl3C6k88RH/la2izVm9RTrdRLLojaQOfHEE9X/d+/e7bEcr7X3zCQnJ6u+NP1fuGSnJak+cTNYjvcjnXag9fYUlnj0FWOgotk2ZeUVltPRL8MYGYxV0KQkxnulY1zHStooD5br07KajiMhzmO7YPcNeSAvs9fGMpiVKVA5zfbNLH9/6Wjr+EtHyysc5TbWCdJOT0oIWL++9qWy+fsqE2YGmcF5j/Pfan7aZ8Vsu0B1js+Xcbtg99df/la2izVm9RTrdRLLojaQwSwlBCyLFy92L8N4l9WrV0vnzp2rpUwYbItZCsYvNW32QmWmYFtN2996D13WUo3i1z7Mk/q1UQPezLYZOnetmuVils6Yvq3c6RjTnrlim9x+XnM1swQwiwQzWvTpqHV6NlczgKykPfaK1qo8WI73tbSQDgbmBirj0DlrPcqAtMYGsW/IA3kByoyya6/x/2E9c937a1Ymf/vra980SHfYsfx87a9+HaSDGWRm+/bosbyCKvd55uXW14k2Q+jh9za769d4zI3bGevEV/76Mprtb6Ay+ZqdgvMes1f0FzvjuavRf1bMtvN17PSfTeN2wexvoPytlDvWmNVTrNdJLKvWWUsHDx6UvLyjMxDatWsnTzzxhPTs2VNq164tjRo1kkmTJsnEiRM9pl9v3LgxqOnX4Zy1ZPo8FqdD3ZFF5DkyftI2rofuFTzrBYMf0ayKOxK/z5FxOqRO2vHnyKBPGdtlGZ/R4iNtwIA6bFdb9xwZLZ1M3bNP9Mu058hoyzKOPUcmX5e2/nkdWakO97NH/JUR+6I9Rwbr4ZklqceeI6PPS3uOjH4Znk+CcTb6bjgtHW2Z9hwZLMvUPY9Fv45xu4xjz5HJP3T0dbbuOTLufdE9R0ZLG3n5q0s8/8asTrTnyGjLaumeI+Or3Fm658jo89fXSYbuOTLadnV0z5HR7y+eI6OdJ7V0z5FR5U45/owcff7ac2S0ZTgH9M+RwfNXjGXKCvI5Mvq09eeur8+K2XYez5Hx8dnUb5dpfI6M0yG1044/RybY/K2UO9aY1VOs10lNYvX6Xa2BzOeff64CF6NBgwapKdbaA/GmT5+uHojXrVs3ee655+SUU06xnEckAhkiIiKKLFsEMlWBgQwREZH92P45MkRERESBMJAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2RYDGSIiIrItBjJERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2RYDGSIiIrItBjJERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2RYDGSIiIrItBjJERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2RYDGSIiIrItBjJERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2RYDGSIiIrItBjJERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2ZZDotyBAwfkwQcflIULF8qePXukXbt28vTTT0vHjh2ru2gxreDwEdl78IgUFpdKZkqi5KQlSVZqUsS2M9pdWCz7DyGdMslMcUjt1CRJdsR7pJ2e7JBDJWVSUBRcXmZpu0Tcy7JSHJLhTJTi0nKPtEHLPyslUZUH6xcWHX1dKyVRKlAHRaXuZfhLTUrwKDe2O4hyHz66TobTofZFW6d2SqIkOOLlgC5trOOIi5M/DWlDvrYsNVEykh1SUlbhs9woY3Jiglpfv/9l5RVSoMsv0+mQuLi442mjvp0OOXSkTPIPmZe7TkqixBvKjXRQt/p6wna4w8o/tiw7DXXkkIN4faxM2alJEicifxqOU1mF63j9ph49B/R16avch0tR7uNpOw3nUijnt9k54HVMUKaURGlQKyXg5+TQkaPnm7/trJzP2L96mU4Jh3B9nolqdCBz8803y+bNm+XVV1+VBg0ayJw5c6RXr16yZcsWOemkk6q7eDFpZ36R3PvWRlm+da97WY/mOTKxXxu/X6yhbme0fd8hGbVwk6zM26deIxCYMaiDPLc0T5YfWwbdcuvI4K5NZPi8dXL4SLmlvMzSnjmoo0xdutVn2jBzcEeZugT571XbTBnQTmat3OZOJyc9SebfcraMXvRd0OXG60evaC2DZ30tKYkJMv2GDqoeVxq2GdO3pVw/Y7W6sFhJ21hulHHuzWfLv97dELCM3ZvnyG3nNpObXv5GlVFL+8FLW8rQ19aqMmjl/secb8WZGC9TBrSXUbpym9WJcV8AZTLub/fcHBnas5kMOZa/1ePkq05Q7tvmfqvKfTTtXBny8hr3vgV7fpudA/7qbdyVraVxnTSvdKBhdoq8elMneeCd4+el2XZWzmdtu/FXtpZGfrazIlyfZ6LKinO5XLghikpFRUWSkZEh7777rvTp08e9/Mwzz5SLL75YHn300YBpFBYWSlZWlhQUFEhmZmaES1zz4Q5s2Lx1Hl9e+i+xZwa0M70jC3U7s7vLOxes9/hiHnZerqzbvt9jmaZrbh1p1yhbnl2SFzCvUNMG/Tpm2+ACOtNwUQum3Lj43HNRC0lJSpAxhgu/Buvc2LWJukiGUu7KltFYBu316L4tJTE+Th54Z3PAOjGmA77W0ecfyv76qjtf+xbM+R1KvU2+uq2kJSV4fU4WDesqkz76wWe5sZ1Z4GB2Puu3e/yaM0JumQnX55koHNfvqB4jU1ZWJuXl5eJ0en7YUlJSZMWKFabblJSUqJ3X/1H44I7V7MsLlm3dq94P53ZGaCI3fjG3a1jL9MsasBzvW8kr1LSN65htUzczuVLlXpG3TxwJ8VJW7vK5DdZBPqGWu7JlNJZBe40yF5VWWKoTYzr+1tHnH8r++iu32b4Fc36HUm/oNjL7nOC4+ys3trN6Puu3w/uhCtfnmSgcojqQQWtM586dZezYsbJz504V1KBradWqVfL777+bbjNhwgQVwWl/DRs2rPJy12ToC/fngI/3Q93OO50yr2UY8+GP8X3fZQwtbeM6ZtscLC4PKW29A8fGR/ij5RNKucNRRrN0fJXbLD/j+4HW0fIPZX8Dlcdsfavndyj1hrTNPieoP3+COZ+Ded//tuH5PBPV+EAGMDYGvV8YD5OcnCxTpkyRAQMGSHy8edFHjRqlmqG0vx07dlR5mWuyTOfRwYq+YBBsOLfzTsd7WBcGVPpjfN93GUNL27iO2TbpzoSQ0tbLODbA0x8tn1DKHY4ymqXjq9xm+RnfD7SOln8o+xuoPGbrWz2/Q6k3pG32OUH9+RPM+RzM+/63Dc/nmSgmAplmzZrJF198IQcPHlRByddffy2lpaXStGlT0/UR7KAvTf9H4YMBmugDN4PleD+c2xllpyWp/n29dTvy1bgDM1iO963kFWraxnXMttlTWFKpcmNbzBxyJMR5paNfB/mEWu7KltFYBu01ypySGO+Vtll+xnT8raPPP5T99Vdus30L5vwOpd4wE8nsc4Lj7q+etJlQVs5n/XZ4P1Th+jwTxUQgo0lLS5P69evL/v375eOPP5bLL7+8uosUkzCAD7MSjF9ieD2pXxufA/xC3c4IgxMx40L/BT1zxTYZ1jNXzQgxG8CJ963k5Svt23s2VzNZfKWt1jmvuTt/vMZ7+nQwuwMzcUIptzb7Z+jctTJ0zlr1b+MF6uhMn1YqH6tpG8uNbTF7x0oZ8XpYz+buMmppP3RZS3cZtFk1KDNmDRnLbVYnxn0xK5PKPzdHHRctf6vHyVed6Mut0j7Pc9+CPb/NzgF/9YZ6woBds88JjruvY65tZ/V81rbD8spMwQ7X55moxs9aAgQtKOKpp54qeXl5cvfdd6vBv8uXL5fExMDNl5y1FBna8yPQF45mZNyBBfOcjWC38/tsDKdDaqcdf46MlrZ6rknJ0Wd4BJOXWdr658jgWRyZx54jo08btPy158Fgfa082brnyGjLaumeI6MtS048+hwZLe1M3fNYsE627jky2jaZuufI6NPWnlmiXw/jM3yVO8v4HJlj+689R0ZLJ0v3PBZtWcax58jgmS1m5a6te46MPh3tOTL6MmrPkVFlSk2UNP1zZJwO1Zrg8RwZrZzHniOjHQPtOTLa/voqt/s5MsfS1p4jU5nz2+wcMDsmWX6eI6PPX3uOjL/trJzP2L9wP0emsp9nospcv6M+kFmwYIEa9/K///1PateuLf369ZNx48apnbOCgQwREZH91JhAprIYyBAREdlPjXiODBEREZE/DGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZFgMZIiIisi0GMkRERGRbDGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZFgMZIiIisi0GMkRERGRbDGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZFgMZIiIisi0GMkRERGRbDGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZFgMZIiIisi0GMkRERGRbDGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZFgMZIiIisi0GMkRERGRbDGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtuWQKFZeXi5jxoyROXPmyK5du6RBgwYyePBg+de//iVxcXHVXTwKQcHhI7L34BEpLC6VzJREyUlLkqzUpKjKP9R1IJR9+23/YSksLpPColKplZooackOKSmt8Ejn0JFyKSgqVetkpSZKerJDDh0pk4LDZZKZ4pDs1CRxOuIDlgnrHCjBdqWSlZKoljWoleJRnv/tPywHjpUH66Q7HZKR7PBKu7isQvYfwrIyyU5zSEqiw2O7TKdDHAnx8uexdbRy1st0+tx/bJfhdKg7rHxDGY6UVag6MK2TlET158Kx8VNPtVOTpLQcdXs07ez0REk1lBt5JcbFyZ+GtCtcLo9yYr3isjLZd+Do61pOh5SLeK1jLHdJWYVHnRjLpG13cnaqRz3tLix213etVIekJhnqOyVREuPjZJ8h7WTdeYH1cH4dxHa6Y4lz4kCA/CP52Q3n54liT1QHMpMmTZJp06bJyy+/LC1btpRvvvlGbrzxRsnKypLhw4dXd/EoSDvzi+TetzbK8q173ct6NM+Rif3aeF1Mqyv/UNfp3jxHhvbMlSGz18jhI+WW9+3XfYfk/oWbZGXePklNSpApA9rJrJXb1GtomJ0ir97USR545+g6mm65dWRw1yYyfN46lR9ej+nbSq6dvkp9+SOtmYM7ytQlebI8b6/f7cZd2Voa10nzKo9+m0evaC3/mPOt/LTnoC7trbI8b5/kpCfJ3JvPVnWi3w51ctu5zeSml79x1wnSGn9la2nkJ7/uuajLZjLEsJ1WbtDnD6pMgzrK1KXHlwXazle5j9ZlS7l+xmpVl/72BfUy7oMNsv9wqbx601nywDub/R4nYzoo94xBHeS5pThOntvpj8v2fYdklJ/z5Hh5WsnfX/lGduwv8krbbDvUwfxbOsvoRd7l1ucfyc9uOD9PFJviXC4XbmKi0qWXXir16tWTGTNmuJf169dPUlJSVCuNFYWFhSrwKSgokMzMzAiWlgLdcQ2bt87jy0qDL6hnBrSL6N2WlfyhMut0za0j7Rply7NL8iztG1oi7tFdRIedlyvrtu/3uKAsGtZVJn30g8cyX/nh4nNj1ybqImmWlr/tJl/dVrU4GC/qGqwzum9LueCJZV5p42I503BR9VcnSOvxa86QsvIKj/0PtJ22DIz7ZmV/jdv5K7e+LgPtC4IHtIBYPU761/7KjbRx4U5MiJc7F6z3e57ot7nnohbS99mVXuuZbReoDpA/WuMi9dn197kM9vNENY/V63dUj5Hp0qWLLF68WH766Sf1esOGDbJixQq5+OKLfW5TUlKidl7/R9UPd7ZmX1awbOte951vdeZf2XVwMWjXsJbpdmZw8dNfQLCt8YKCrhmzi4xZfivy9kndzGSfafnbDl0f6FrwtQ3WKSt3maaNPK3mpaWldZEEs522zGzfrOxvMOXW12WgfSkqrQjqOOlf+ys30sYxQV0FOk/026AsZuuZbReoDpB/JD+74fw8UeyqVNdScXGxOJ2e/d3hdN9996lApEWLFpKQkKDGzIwbN04GDhzoc5sJEybIww8/HLEyUWjQz+3PgQDvV0X+gZomrayD8Q9m25mWqag08LaGdQLld7C43Gda/rZT+xZg57Sy+MrTal6AICZQY7DZdr72K9j9tVJus/d9HaNgzwvtdaByHz13PMcDBtzGx3EKpQ6QP1qEApcxMp/LYD5PFLuCbpGpqKiQsWPHykknnSTp6enyyy+/qOUPPvigRxdQOCxYsEDmzp0rr732mqxdu1aNlXnsscfU/30ZNWqUaobS/nbs2BHWMlFoMp2Jft/PCPB+VeQfjnUwsNJsO9MypSQG3jYluPzSnQk+0/K3ndq3AHlpZfGVp9W8AAOBA+Vnth2W+VoeKK1gy232vq9jFOxx0l4HKvfRc87zfjPgNj6Ok9l2gerA6uciVOH8PFHsCjqQefTRR2X27NkyefJkSUo63k/ZqlUreemll8JauLvvvlu1ylx77bXSunVruf766+WOO+5QrS6+JCcnq740/R9VPwwqRP+2GSzH+9Wdf2XXQZ/+uh35ptuZwQUK4xA02BZp6GEciX4df/lhvT2FJT7T8redNlvIV15Y7kiIM00beVoto5ZWdlqS1/4H2k5bZrZvVvY3mHLr6zLQvqQkxgd1nPSv/ZUb6eGYoK4CnSf6bVAWs/XMtgtUB8g/kp/dcH6eKHYFHci88sorMn36dNW9g+4eTdu2beWHH34Ia+EOHz4s8fGeRUSeaBUie8HgPAwcNH5p4fWkfm0iPnjPSv6VWQezLG4/r7nMXLHN8r6dlJ2qZoZoFxJsiwGm+gvL0Llr1cwY48VGG4yq5afNWsJgXS0tlAflCrQdyoCZICcbyqPfBsuHzlnrmXbu0bSR54OXtvTaDnkP6+lZJ9qsJUzBNu6/e7tc77rUl9uYv7tMPT2XBdrOV7mNdelvX1B+zEg6epxaBTxOxnTw/2E9c02PE9LGMUFdjQ9wnmjb4FxBWczSNtsO+4h99XXMkX8kP7vh/DxR7Ap61hJmDCFgady4sWRkZKgBuE2bNpUtW7bIWWedJQcPHgxb4fDMmM8++0xeeOEFNf163bp1csstt8iQIUPU1GwrOGspumjPi0A/N5qIcXdVHc+R8Zd/qOtAKPumPUcF26G7Jf3Yc2T06WjPTNGW4U7Z/XyUY3ft2nNk/JXJmXj0OTIYn4PXWX6eI6PPS3uOjD5t/XNkaqU53M9j0dbJMj5H5lg5fT1HRtsuU/ccGX0Z8DwWrdxmdVJL9xwZX/VUO+34M1uwDp41k3bseSz6bbTnyOjT1p4jo18Pz5H58+DR19m658j4K7fHc2RMyqRt5+85MlmpDq9yZxmfI3Msbe05Mtr5pT1HRn8stefI+Ms/kp/dcH6eqOawev0OOpA588wzVffOdddd5xHIPPLII/Lpp5/K8uXLJVwOHDigxt4sXLhQ9uzZox6IN2DAAHnooYc8urX8YSBDRERkP1av30HPWkIQMWjQIPntt99UF8/bb78tP/74o+pyev/99yWcECg99dRT6o+IiIio0mNkLr/8cnnvvfdUl09aWpoKbL7//nu17IILLgg2OSIiIqKQBdUiU1ZWJuPHj1djVNCNRERERGSbFhmHw6GmXSOgISIiIrJd19L5558vX3zxRWRKQ0RERBSEoAf74neO8JC6TZs2qRlMGCej17dv32CTJCIiIgpJ0NOvjQ+o80gsLk79HlI04fRrIiIi+4nY9Gs+VZeIiIhsO0aGiIiIyNaBDAb7XnbZZZKbm6v+MC4mnE/0JSIiIopIIDNnzhzp1auXpKamyvDhw9Uffn8Js5lee+21YJMjIiIiqrrBvqeddpr64Ub83pLeE088IS+++KJ6ym804WBfIiIi+7F6/Q66ReaXX35R3UpG6F7atu34T64TERERRVrQgUzDhg1l8eLFXsvx20t4j4iIiKiqBD39+q677lLjYtavXy9dunRRy1auXCmzZ8+Wp59+OhJlJCIiIgpPIPOPf/xDTjzxRHn88cdlwYIF7nEzr7/+uvplbCIiIqKoHexrNxzsS0REZD8RG+y7Zs0aWb16tddyLPvmm2+CLykRERFRiIIOZIYOHSo7duzwWv7bb7+p94iIiIiiNpDZsmWLtG/f3mt5u3bt1HtEREREURvIJCcny+7du72W//777+JwBD12mIiIiKjqApnevXvLqFGj1OAbTX5+vtx///1ywQUXhF4SIiIioiAF3YTy2GOPSY8ePaRx48aqOwnwTJl69erJq6++GmxyRERERFUXyJx00kmyceNGmTt3rmzYsEH9YOSNN94oAwYMkMTExNBLQkRERBSkkAa1pKWlqR+OJCIiIrLVGJmXX35ZPvjgA/fre+65R2rVqqV+ruDXX38Nd/mIiIiIwhfIjB8/XnUnwapVq+TZZ5+VyZMnS05Ojtxxxx3BJkdERERUdV1LeBhebm6u+vc777wjV199tepm6tq1q5x77rmhl4SIiIgo0i0y6enpsm/fPvXvTz75xD3l2ul0SlFRUbDJEREREVVdiwwCl5tvvllNvf7pp5/kkksuUcu/++47+ctf/hJ6SYiIiIgi3SIzdepU6dy5s/zxxx/y1ltvSZ06ddTyb7/9Vk3BJiIiIqoqcS6XyyU1mNWfASciIiL7Xb+DbpEhIiIiihYMZIiIiMi2GMgQERGRbTGQISIiotgJZPCsmMOHD7tf42cJnnrqKfVMGSIiIqKoDmQuv/xyeeWVV9S/8/PzpVOnTvL444+r5dOmTYtEGYmIiIjCE8isXbtWunfvrv795ptvSr169VSrDIKbKVOmBJscERERUdUFMuhWysjIUP9Gd9JVV10l8fHxcvbZZ/PXr4mIiCi6Axn8YCR+LBI/Hvnxxx9L79691fI9e/bwgXNEREQU3YHMQw89JCNHjlS/q4TxMfi5Aq11Br+/RERERBTVP1Gwa9cu+f3336Vt27aqWwm+/vpr1SLTokULiSb8iQIiIiL7sXr9DvrXr+HEE09Uf1pGS5YskVNPPTXqghgiIiKq2YLuWrrmmmvk2WefdT9TpkOHDmpZmzZt1K9hExEREUVtILNs2TL39OuFCxcKeqbwPBlMvX700UcjUUYiIiKi8HQtoa+qdu3a6t8fffSR9OvXT1JTU6VPnz5y9913S7hhULHZtO7bbrtNpk6dGvb8qGoVHD4iew8ekcLiUslMSZSctCTJSk2SWGKlDsJVT2bpgLYsKyVR0pIdcrC4zOc6weS/u7BY9h/CdmWSleKQDGeiFJeWS0HR8XQOHTn6urDoaP5Y3qBWis90MlMcUjs1SUrLK9Rr93bOo19nBbpl6U6HHC4tk/xDR7erk5okJeUVcsCwjqusQvbqynSgpMxjHaSdkBDvLkOtVIekJjm80slIdrjrqXZKoiQ44j3WyXA6JF23jq+6NNvfZEe8x3FyJiaofxcWHV0nOzVJ4kTkzwD1hDKclJ3q97xISUyQA8WlUlBknr/VcqNMTkO5zc4vK+dAoPPZV9pWzlN+D8VYINOwYUNZtWqVCmYQyMyfP18t379/vzidzrAXcM2aNVJeXu5+vXnzZrngggukf//+Yc+LqtbO/CK5962NsnzrXveyHs1zZGK/Npa+xGKlDsJVT8Z0UpMSZObgjjJ1SZ4sz9urXk8Z0E5mrdwmK/P2ubfr3jxHhvbMlSGz18jhI+WW89++75CMWrjJI61uuXVkcNcmMnzeOpXf/Fs6y+hFm73WGXdla2lcJ800nePl3irLDeW87dxmctPL37jLibQevLSl3Db3W2mQ5ZQpA9rLA+94l+nRK1rLhP9skeLSCq91ctKTZP4tZ8votzaqZb7qSUvnH3O+Va+n39BB1bdHXeaiLpvJEF0ZjXVptr8zBnWQ55biOPnO35i2r3oy1q/Z+aU/TqDPXxOo3Fo6Y/q2kmunr1JlMpb7aN0GPgfM6Mvtq06snKf8HorBWUvPPfecjBgxQtLT06VRo0aybt06NXPpmWeekbfffluWLl0audKKyD//+U95//33ZevWrRIXh/sP/zhrKTrhDmjYvHUeXx76L5FnBrSr8XdEVuoAwlFPZnkNOy9X1m3f7/7iN77W65pbR9o1ypZnl+RZyh935ncuWO83rXYNa8lMw4VHfyGbfHVbSYiP80on2HIirRu7NpFmJ6TJA+94XjD164y/srVUuFxe6+Airi+nv/yRzui+LdW/xyz6Lui6LC6rCLi/Vvc/UDkn9WujWod8nV9aWuArHX/lNtb/uh35XukY69bsHDALJozns7999Xee8nsoulm9fgc9RgZdOmiRmTlzpqxcudI9/bpp06YRHyNz5MgRmTNnjgwZMsRnEFNSUqJ2Xv9H0QfNuGZfHrBs6171fk1npQ7CVU9m6SCQ0H/xG1/rYTnet5o/uhcCpVU3M9nnOivy9qmuBrN0gi0n0kJeRaUVfvND94bZOsZy+ssf6ZSVu9RfKHVpZX+t7n+gcqL7x9/5paXlLx1/5dbnhTo0S8fKOWDGWG4rZbSSjtXtKLqENP0aM5UwS2nbtm3SrFkzcTgcaoxMpOGJwhhYPHjwYJ/rTJgwQR5++OGIl4UqB33R/qB/vqazUgeBmkut1pNZXiVlFX5fB1rfX/64SAZK62Dx8S5jM0fT9r5hCaWcyCs+LkB+Reb1bSxnoPx9pRMoDezvkXJX2I5TwHIWl0pigv972UBp+Cu3sQ59HZdAaVs5n63sq5V0rG5HNeC3lm666SY1wLdly5ayfft2tfz222+XiRMnSiTNmDFDLr74YmnQoIHPdUaNGqWaobQ//JQCRZ9MZ6Lf9zEotKazUgfhqiezdDB409/rQOv7y18beOsvrXRngoX9904nlHIiLwzi9JvfsUGmZtsGk7+vdAKlYXV/re5/wHJaOL+QhrV0/B9v1KGv4xIobTPGclspo5V0rG5HNg9kEChs2LBBPv/8c4/Bvb169ZLXX39dIgUzlz777DO5+eab/a6XnJys+tL0fxR9MMgPfdBmsBzv13RW6iBc9WSWDsYsYByEr9d6WI73reafnZakxjj4S2tPYYnPdbAcs1DM0gm2nNgeeaUkxvvNLy0pwXQdYzn95Y/1HAlx6i/Q/pvVpZX9tbr/gcqJ4MPf+aWl5S8df+XW54U6NEvHyjlgxlhuK2W0ko7V7cjmgQy6d/BAvG7dunmMU0HrzM8//yyRMmvWLKlbt26VdGFR5GEAHWYFGL9E8BqDEGNhgJ2VOghXPZmlM3PFNrn9vOZqto/2GoMyjRcWvI/18L7V/OtlOtXgWWNa2sBPpIWZIpjRYrYOZqxgkKdZOu5y5+Z4lXNYT89yYruHLmup8sIMHMwq8pXfyDfWm65ztJwt3ct81ZOWztA5a9WfWV4os7+69LW/w3rmBj5OSFu3/77qSSsnpmD7Or/0x8mYv9Vya+ngGKMOzcpt5RwwYyy3rzoJdJ7yeyhGZy2hSwlToDG4NyMjQ7XO4N/4f48ePVR3TrhVVFRIkyZNZMCAAUF3X3HWUnTTnt+Avmg04+IOKNa+PKzUQbjqySwd0JZl6p7F4WudYPI3Plck89hzZPC8EC0d7RkiWtpZgZ4j43RI7bTjz0dxb6d7joy2LEP/HBmnQ+qkHX+OjH4dPEdmn65M2nNk9GnrnyOTleqQtGPPkdGnoz1HBsuydc+R0dbJ1D1Hxl9dmu2v9hwX7Th5PEfG6VCtIh7PkfFRT5l+niOjrZOSpHuOjEn+VsuNMmnPkfF3flk5BwKdz77SDuY5MrH8PRSNrF6/gw5kEKzgGS4YE4NAZuPGjSrIwGtMicazZcINv6x94YUXyo8//iinnHJKUNsykCEiIrKfiP1o5Pjx49WA2y1btkhZWZk8/fTT6t9ffvmlfPHFFxIJvXv3Vj+FQERERFSpMTIYG7N+/XoVxLRu3Vq1lmDsCp4tc+aZZwabHBEREVHIgu5asht2LREREdlPxLqWtMG3eXl5smfPHvVv4xgaIiIioqoQdCDz1Vdfyd/+9jf1XBdjYw6mY+t/4JGIiIgoqgKZW2+9Vf1EwQcffCD169e39MONRERERFERyGCK9Ztvvim5ubkRKRARERFRxGYtderUSY2PISIiIrJdiwwefHfXXXfJrl271PTrxETP38LAr2ITERERReX06/h470YcjJNBMtE42JfTr4mIiOwnYtOvt207/mNnRERERNUp6ECmcePGkSkJERERUSQCmUWLFqnfV8J4GPzbn759+wZbBiIiIqLIjZHBuBgM7sVvKpmNkXEnxjEyREREFG1jZPQ/Q2D8SQIiIiIi2zxHhoiIiMjWgczixYvl0ksvlWbNmqk//Puzzz4Lf+mIiIiIwhnIPPfcc3LRRRdJRkaGjBgxQv2h7+qSSy6RqVOnBpscERERUdU9EO/kk0+W++67T4YNG+axHEHM+PHj5bfffpNowsG+RERE9mP1+h10i0x+fr5qkTHq3bu3yoyIiIioqgQdyOA5MQsXLvRa/u6776qxMkRERERR+2Tf008/XcaNGyeff/65dO7cWS376quvZOXKlerHJKdMmeJed/jw4eEtLREREVFlxsg0adLE0np4ON4vv/wi1Y1jZIiIiOyHPxpJRERENV6lHoiHxpwgG3SIiIiIqjeQmTFjhrRq1UqcTqf6w79feuml8JWKiIiIyIKgu5YeeugheeKJJ+T22293D/ZdtWqV3HHHHbJ9+3Z55JFHgk2SiIiIqGoG+55wwglqZtKAAQM8ls+bN08FN3v37pVowsG+RERE9hOxB+KVlpZKhw4dvJafeeaZUlZWFnxJiYiIiEIUdCBz/fXXy7Rp07yWT58+XQYOHBhqOYiIiIgiP0ZGG+z7ySefyNlnn61er169Wo2PueGGG+TOO+90r4exNERERERRE8hs3rxZ2rdvr/79888/q//n5OSoP7ynfyAeERERUVQFMkuXLo1MSYiIiIiq8oF4RERERLYbI/PNN9/IggUL1LiYI0eOeLz39ttvh6tsREREROFtkZk/f7506dJFvv/+e1m4cKGajv3dd9/JkiVL1HxvIiIioqgNZMaPHy9PPvmkvPfee5KUlCRPP/20/PDDD3LNNddIo0aNIlNKIiIionAEMpip1KdPH/VvBDKHDh1SM5TwEwV4lgwRERFR1AYy2dnZcuDAAfXvk046yT3lOj8/Xw4fPhz+EhIRERGFa7Bvjx495NNPP5XWrVtL//79ZcSIEWp8DJadf/75wSZHREREVHWBzLPPPivFxcXq3w888IAkJibKl19+Kf369ZN//etfoZeEiIiIKNK/fm03/PVrIiKimnv9dgSToBUMFoiIiKiqWA5katWq5ff3k9Cwg/fLy8vDVTYiIiKi8AQy+t9YQtByySWXyEsvvaRmLhERERFFdSBzzjnneLxOSEiQs88+W5o2bRqJchERERFF5reWqtJvv/0m9957r3z44YfqOTW5ubkya9Ys6dChQ3UXjSiqFBw+InsPHpHC4lLJTEmUnLQkyUpNklgu9+7CYtl/CGmXSWaKQ2qnJklZhUsKikqlsKhUslITJT3ZIQdLyqTgcKlkpSSqv9SkhLCUyWzfissqPMqUnZokTke8x3oo0yGUqch8u6wUh2Q4E6W4tNznOki7TmqSlOr3NyVRMpwOKcV6uu1Ay79WSqIkJyao9fX1lmwoo3E7pJ2Guiwu87kOlqUkJsiB4lIpKDq+//UynRE53uFMO5znqTEts+Nth89utIjqQGb//v3StWtX6dmzpwpkTjjhBNm6dat6KB8RHbczv0jufWujLN+6172sR/McmdivjTSolSKxWO7t+w7JqIWbZGXePvUawcnMQR1l6tKtsvzYMuiWW0cGd20iw+etU69nDOogzy3N81gnlDIZ9y0nPUnm39JZRi/a7C4TdM/NkaE9c2XIy2vk8JFy0zLNHNxRpi7xX27jOr7yw3Zjr2ilttt36Mix7bC/e9U2c28+W/717gaPejOrk+7Nj5V79hr1esqAdjJr5TbP+talbVZu7C9ej7+ytTSqkybhPN5aXuFIO5znqVlaxjqxw2e3Rky/zsjIkI0bN0qTJk0kUu677z5ZuXKlLF++POQ0OP2aajrc3Q2bt87ji1GDL8RnBrSLyru7SJYbd+Z3LljvcVEbdl6urNu+32OZpmtuHWnX6OgNkq91gimT2b4hGJipu9Cb5f/skrygyuRvHX/54cJ5z0Ut5JMtuz22M9sm1Hqzsp22vyjP49ecEXLridnx1u9rZdIO53nqLy1jnUTzZ7eqWL1+W/6JgquuusrjDw/Fu/XWW72Wh9OiRYtUFxKeIFy3bl1p166dvPjii363KSkpUTuv/yOqydBEbfbFCMu27lXvx1q50b1gvKi1a1jL9EIHWI73/a0TTJnM9q1uZnLA/IMtk791/OW3Im+fOBLivbYz2ybU/K1spy8Pjlk4j3e40g7neeovLWOdRPNn17ZdS4iK9K677jqJtF9++UWmTZsmd955p9x///2yZs0aGT58uPqxykGDBpluM2HCBHn44YcjXjaiaIF+dn8wHiHWyo0xEkYlZRV+twn0fjBlMtu3g8XlQedvpUy+1gmU34GiUq9tzbYJtd6C3c7smFkVaNvKpR2+8zRQWsY6idbPrm0DGQywrWoVFRWqRWb8+PHqNVpk8COVzz//vM9AZtSoUSrw0aBFpmHDhlVWZqKqlulM9Ps+BoXGWrkznd5fbRis6k+g94Mpk9m+pTsTgs7fSpl8rRMov4yURDXIOdA2odZbsNuZHTOrAm1bubTDd54GSstYJ9H62bX9r19Xpfr168vpp5/usey0006T7du3+9wmOTlZ9aXp/4hqMgzQRH+6GSzH+7FW7uy0JDU2Qm/djnw1DsEMluN9f+sEUyazfdtTWOJVJmP+wZbJ3zr+8sPysvIKr+3Mtgk1fyvb6cuDYxbO4x2utMN5nvpLy1gn0fzZjTZRHchgxtKPP/7oseynn36Sxo0bV1uZiKINBgNihoPxCxKvJ/VrE7WDBSNZbgzsxGwV/cVt5optcnvP5mqWkB7WubFrE/U+/ob1zFUzcipTJrN9w0yVMX1beV1wUZ7bz2uu8vZVJrwfqNzGdXzld3TWUmsZOnft8e2OlRPbPHhpS696M6sTvNbKjT+Uxau+dWmblVt7jWNVmWnSZsc7XGmH8zz1lZaxTqL9sxttovpHIzEmpkuXLmrMyzXXXCNff/21/P3vf5fp06fLwIEDLaXBWUsUK7RnU6BfHU3SuJuzwxdhJMvt8VwRp0Nqpx1/joyWH56rgi4WPDcFr2vpniNT2TKZ7ZvHs16cDtVaoD1HRlsv3Xn0uSJamby2S3Gobgo8R8bnOk6H1Ek7/hwZLe3MY8+RyddtB1r+WcbnyByrN+05Mvp90W+XqXuOjK91sCwlSfccmWP7H5HnyIQ57XCep8a0zI63HT67kWb1+h3VgQy8//77atwLnh+Dqd4Y/4JgxioGMkRERPZTYwKZymIgQ0REZD9hf44MERERUbRhIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLYdEsTFjxsjDDz/ssezUU0+VH374odrKRETRoeDwEdl78IgUFpdKZkqi5KQlSVZqUsS2211YLPsPYbsyyUxxSHZqktTLdFZZua2kc+hIuRQUlUphUalkpSSq5WlJCQHzs7Jv4Sp3TVLV52C0KYiS/YjqQAZatmwpn332mfu1wxH1RSaiCNuZXyT3vrVRlm/d617Wo3mOTOzXRhrUSgn7dtv3HZJRCzfJyrx97mXdcuvI+CtbS6M6aREvd6B0ctKTZP4tnWX0os1eZRzTt5VcO32VuuCY5Wdl38JV7pqkqs/BaLMzivYj6ruWELiceOKJ7r+cnJzqLhIRVfNdoPELFJZt3Sv3vbVRvR/O7dBaYbzQw4q8fXL/wk3q/UiW20o6k/q18QpitDKOWbRZvW+Wn5V9C1e5a5KqPgejTUGU7UfUBzJbt26VBg0aSNOmTWXgwIGyfft2v+uXlJRIYWGhxx8R1RxoWTB+geq/SLWWh3Bthy4X44Vef8HH+5Est5V06mYm+y0j3jfLz8q+havcNUlVn4PRZm+U7UdUBzKdOnWS2bNny0cffSTTpk2Tbdu2Sffu3eXAgQM+t5kwYYJkZWW5/xo2bFilZSaiyEJ/vD8HfLwf+nZlAcrj//3K5m8lnYPF5X63MXsf+VnZt3CVuyap6nMw2hRG2X5EdSBz8cUXS//+/aVNmzZy4YUXyn/+8x/Jz8+XBQsW+Nxm1KhRUlBQ4P7bsWNHlZaZiCIr05no9/0MH++Hvp3/cXmB3q9s/lbSSXcm+N3G7H3kZ2XfwlXumqSqz8Fokxll+xHVgYxRrVq15JRTTpG8vDyf6yQnJ0tmZqbHHxHVHBjYikGFZrAc74dzu+y0JDX41QyW4/1IlttKOnsKS/yWEe+b5Wdl38JV7pqkqs/BaJMTZfthq0Dm4MGD8vPPP0v9+vWruyhEVE0wvRMzI4xfpHiNQa2+pn+Guh2mIWMGj/GCr83ssToFO9T8raSDgZeYnWRWRizH+2b5Wdm3cJW7JqnqczDaZEXZfsS5XC6XRKmRI0fKZZddJo0bN5adO3fK6NGjZf369bJlyxY54YQTLKWBwb4YK4NuJrbOENUc2jMs0B+PpmzcBQbzDI9gt/N41orToVorKvMcmWDzt5KO9hwZbVmW7jky/vKzsm/hKndNUtXnYLQpiPB+WL1+R3Ugc+2118qyZctk3759KnDp1q2bjBs3Tpo1a2Y5DQYyRERE9mP1+h3VT5ebP39+dReBiIiIopitxsgQERER6TGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdmWQ2xk4sSJMmrUKBkxYoQ89dRT1V0cIiKqIgWHj8jeg0eksLhUMlMSJSctSbJSk8KSVnqyQw6VlElBUfjTNksr1H0JZx2EQ7SUxzaBzJo1a+SFF16QNm3aVHdRiIioCu3ML5J739ooy7fudS/r0TxHJvZrIw1qpVQ6rW65dWRw1yYyfN46OXykPKxpG9MKdV/CWQfhEE3lsUXX0sGDB2XgwIHy4osvSnZ2dnUXh4iIqvCu33jBhGVb98p9b21U71c2rRV5+2TWym0ypFuTsKetTyvUfQlnHYRDtJXHFoHM0KFDpU+fPtKrV6+A65aUlEhhYaHHHxER2RO6LowXTP2FE++HI62VefukXcNaEUlbSyvUfQlnHYRDtJUn6ruW5s+fL2vXrlVdS1ZMmDBBHn744YiXi4iIIg/jL/w5EOD9YNIqKauIWNpIyxUgDV/5hbMOwiHayhPVLTI7duxQA3vnzp0rTqfT0jYYDFxQUOD+QxpERGRPmc5Ev+9nBHg/mLSSHfERSxtphbov4ayDcIi28kR1IPPtt9/Knj17pH379uJwONTfF198IVOmTFH/Li8v99omOTlZMjMzPf6IiMiectKT1CBSM1iO98ORVtfcOrJuR35E0tbSCnVfwlkH4RBt5YnqQOb888+XTZs2yfr1691/HTp0UAN/8e+EhITqLiIREUUQpvNiJozxwonXk/q1CWq6r6+0MGvpxq5NZOaKbWFPW59WqPsSzjoIh2grT5zL5QrUbRdVzj33XDnjjDMsP0cGg32zsrJUNxNbZ4iI7El7ZgnGX6DrAnf9lX3Wi5ZWuvPoc2QKi8Kftllaoe5LOOsgHCJdHqvX76gf7EtERKS1aERbWqGkHWr+kSx3KKKlPLYLZD7//PPqLgIRERFFiageI0NERETkDwMZIiIisi0GMkRERGRbDGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZlu2e7Bss7aek8JsNREREZA/adTvQT0LW+EDmwIED6v8NGzas7qIQERFRCNdx/Hhkjfn162BVVFTIzp07JSMjQ+Li4iTWIcJFULdjxw7+GngVYH1XPdZ51WJ9V61Yqm+Xy6WCmAYNGkh8fHzstshg508++eTqLkbUwQegpn8Iognru+qxzqsW67tqxUp9Z/lpidFwsC8RERHZFgMZIiIisi0GMjEmOTlZRo8erf5Pkcf6rnqs86rF+q5arO8YHOxLRERENRdbZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUAmRkyYMEE6duyonnBct25dueKKK+THH3+s7mLFjIkTJ6onS//zn/+s7qLUWL/99ptcd911UqdOHUlJSZHWrVvLN998U93FqpHKy8vlwQcflCZNmqi6btasmYwdOzbgb+KQNcuWLZPLLrtMPdEW3xvvvPOOx/uo54ceekjq16+v6r9Xr16ydetWiVUMZGLEF198IUOHDpWvvvpKPv30UyktLZXevXvLoUOHqrtoNd6aNWvkhRdekDZt2lR3UWqs/fv3S9euXSUxMVE+/PBD2bJlizz++OOSnZ1d3UWrkSZNmiTTpk2TZ599Vr7//nv1evLkyfLMM89Ud9FqBHwvt23bVqZOnWr6Pup6ypQp8vzzz8vq1aslLS1NLrzwQikuLpZYxOnXMeqPP/5QLTMIcHr06FHdxamxDh48KO3bt5fnnntOHn30UTnjjDPkqaeequ5i1Tj33XefrFy5UpYvX17dRYkJl156qdSrV09mzJjhXtavXz/VOjBnzpxqLVtNgxaZhQsXqlZ0wCUbLTV33XWXjBw5Ui0rKChQx2P27Nly7bXXSqxhi0yMwokPtWvXru6i1GhoBevTp49q+qXIWbRokXTo0EH69++vAvR27drJiy++WN3FqrG6dOkiixcvlp9++km93rBhg6xYsUIuvvji6i5ajbdt2zbZtWuXx3dKVlaWdOrUSVatWiWxqMb/aCSZ/yI4xmqgKb5Vq1bVXZwaa/78+bJ27VrVtUSR9csvv6iujjvvvFPuv/9+VefDhw+XpKQkGTRoUHUXr0a2gOFXmFu0aCEJCQlqzMy4ceNk4MCB1V20Gg9BDKAFRq9evXru92INA5kYbSXYvHmzuoOiyNixY4eMGDFCjUdyOp3VXZyYCM7RIjN+/Hj1Gi0yOMcxhoCBTPgtWLBA5s6dK6+99pq0bNlS1q9fr26O0OXB+qaqxq6lGDNs2DB5//33ZenSpXLyySdXd3FqrG+//Vb27Nmjxsc4HA71h/FIGKCHf+MOlsIHszdOP/10j2WnnXaabN++vdrKVJPdfffdqlUG4zEwO+z666+XO+64Q82OpMg68cQT1f93797tsXz37t3u92INA5kYgQFiCGIwaGzJkiVq2iRFzvnnny+bNm1Sd6raH1oM0PSOf6M5nsIH3aTGxwlg/Ebjxo2rrUw12eHDhyU+3vPygXMaLWMUWfjuRsCCMUqawsJCNXupc+fOEovYtRRD3UloBn733XfVs2S0vlQMEsNMAwov1LFx/BGmSOIZJxyXFH5oDcAAVHQtXXPNNfL111/L9OnT1R+FH55xgjExjRo1Ul1L69atkyeeeEKGDBlS3UWrMbMd8/LyPAb44gYIkzNQ5+jGwyzI5s2bq8AGz/RBt542synmYPo11Xw41GZ/s2bNqu6ixYxzzjnHNWLEiOouRo313nvvuVq1auVKTk52tWjRwjV9+vTqLlKNVVhYqM7lRo0auZxOp6tp06auBx54wFVSUlLdRasRli5davp9PWjQIPV+RUWF68EHH3TVq1dPne/nn3++68cff3TFKj5HhoiIiGyLY2SIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZFgMZIiIisi0GMmRrgwcPjt2nWdZgs2fPllq1agW1zV/+8hd56qmnJBrPy3PPPVc9jbWy8DMMeDz9gQMHQq6naBPu47Z3716pW7eu/O9//wtbmhTdGMhQ1IqLi/P7N2bMGHn66afVl3ks+u9//6vqAY8ur2n++te/qt9KqinefvttGTt2bKXTGTVqlNx+++3qJzDs4uWXX5Zu3bpVWX45OTlyww03yOjRo6ssT6pe/K0lilq///67+9+vv/66PPTQQx4/DJienq7+qObB73/VpN8Aw2/kVBZ+yRu/XP/MM89IdcOvtyOINv5wpBn8vlvfvn2lKt14441y5plnyr///e+w1D1FN7bIUNRCE7r2hx+3xBenfhmCGLMmfNyxohk/Oztb6tWrJy+++KIcOnRIfbnhTjY3N1c+/PBDj7w2b94sF198sUoT21x//fWqidqXX3/9Vf1wHvLAj0Hih/P+85//qPc+//xzVdYPPvhA2rRpI06nU84++2yVh96KFSuke/fu6oLdsGFDGT58uCqnvskdP4KIH+JDufFjcfofQdR+wbxdu3YqP+y7L1988YWcddZZkpycLPXr15f77rtPysrKPOoN+d9zzz3qix/1ixYvf7CfSBP7j+4N/AI16kUzbdo0adasmSQlJcmpp54qr776qsf2+fn58n//93+qvlFH+DFNXKjNukx+/vlnufzyy9W6OEYdO3aUzz77TIKhnSuoU6SD9B955BFVD3fffbfa75NPPllmzZrlsd2OHTvUD1FifayDcqA1TH9Rv/POO9X7+FFQ1KHxl1+MXUuoC/waOo4r6vpvf/ub7Nmzx2/5FyxYIG3btpWTTjrJ672PP/5YTjvtNFU3F110kcdNAH6RGvuJfcPxP+OMM+Sjjz5yv6+drzgeGrTyYZm2n9rxWLRokZx++ukqHQRWgc6B4uJi+eSTT9yBDPYRnxuc8zh/586d67Uv+PHJ1q1bqzTxubjtttvUjygCPh+ZmZny5ptvemzzzjvvqPW1Ljd8HvEjigsXLvRbp1QzMJChGgdN2Whexi8gI6j5xz/+If3791e/jrx27Vrp3bu3ClQOHz6s1scX+HnnnacCgm+++UZ9ye/evVtdvPz9mnhJSYksW7ZMNm3aJJMmTfJqHcLF8fHHH5c1a9bICSecoL7AS0tL3RdmXHD69esnGzduVC1OCGyGDRvmkQa2xwUPvy6ML3Tsi9Yqhf0DXNBx4UL3hZnffvtNLrnkEnXx37BhgwowZsyYoX4911hvuBisXr1aJk+erC5+n376qWmauPgjKDjnnHNU+VetWiW33HKLuvgBLiAjRoyQu+66SwVwCFgQSC5dutR9cUXguHLlSpkzZ45s2bJFJk6cKAkJCab54UKGfVi8eLGqC9Qd6hMX02AsWbJEdu7cqY4bLpjofrj00ktVQIr9vvXWW1VZtfEVOF4XXnihCjiWL1+uyqsFC0eOHHEfI1zoZ86cqY7hn3/+GfACinTR1YTjgYswAgYEWv4gf5wLRjiPH3vsMRUcYb9QJyNHjnS/j+5XlBHr4FhhfxBYbN26Nai6Qz44z1966SX57rvvVFDn7xwAHC8EXi1atFCvsY8IDHEeIBh57rnnvAI4tPJMmTJF5YFzEscMwSHg/Lz22mu9gk28vvrqqz263BBgoc4oBlT3r1YSWYFf6c7KyvJajl+Dvfzyyz1+Ybpbt27u12VlZa60tDTX9ddf7172+++/q1+SXbVqlXo9duxYV+/evT3S3bFjh1rH1y/Ktm7d2jVmzBi/v1w7f/5897J9+/a5UlJSXK+//rp6fdNNN7luueUWj+2WL1/uio+PdxUVFanXjRs3dl133XXu9/GLt3Xr1nVNmzZNvd62bZvKZ926dS5/7r//ftepp56qttdMnTrVlZ6e7iovLzetN+jYsaPr3nvvNU0T+4O8P//8c9P3u3Tp4vr73//usax///6uSy65RP37448/Vvvqq359HW+9li1bup555hn3a9TXk08+6XN9nCtYR9tnQL10797d63yZN2+eev3qq6961R1+4RnHEvsA9evXd02ePNn9fmlpqevkk0/2Oi/9/fL5mjVrVH0eOHDA5zpt27Z1PfLII171hO3y8vI8ji1+FVnToEED17hx47yO7W233eZxvu7fv9/9Ps4pLMM5ps9n/fr1ls8BwDkwcuRI9W8ca6z/9ddfu9///vvv1TJ/x+2NN95w1alTx/169erVroSEBNfOnTvV6927d7scDodXOe644w7Xueee6zNdqjnYIkM1DrpzNLjDR3M/mqo16FYA7U4Qd8W4Q9TG3OBPu4NEy4kZdMOgRQNN6birxx2pUefOnd3/xt0rule+//57d564i9fniTtltFRs27bNdF+0rrVAXRBGyBNl0d8po9xo5dDP7NDnBeiC8pUX9gd31ygzWkZw16/vzkCeyEMPr7X9R9cFujpOOeUUS/uAsqKVAd0n6MJAfSGtYFtk0OWgH9eBc0F/bmjni/7cyMvLU3f62nHCvqPLBOdGQUGB2u9OnTq503A4HKYtJ3rffvutqjd0FyJttGqAv/0pKipSXXBGqampqgvP7LgVFhaqFih/x8IqdBHqz5FA5wC619577z13txLyQ91g7IoGnzPjrCu0MJ5//vmqJQd1g9bTffv2uVtQ0dKC44jWGkCLXuPGjaVHjx4e6aD7StuGajYGMlTjJCYmerzGBVy/TLugI2jQLpL4IsbFVf+Hpnfjl6Pm5ptvll9++UV9yaJrCReuYAZhIk90Yejzw0UTeeovSmb7opU73ILNC8356E5Alx26xhCUfPXVV5byCnYgL4IYdNdgfAu6C1BfCEC07p1wnRvaMv25gQuv8dzAjCqMawkFxnng4o+xHhgjgq5HrSvK3/6gu3T//v2W9sk4RscfLbDTb6N1gRqPmT4YDnQOoOsTXZB4zyp0saGrDwHTW2+9pQK+qVOnetUNPn/abEWUAd2WxrKhiw9dulTzMZChmNe+fXvVH4/BtRgIrP9Dn7wvGIiIMRUYm4KxIBhUrKe/qOMChIsfWhS0PDEuxJgf/nDna4W2Hgab+oM8cbHRX6gw1gN3u2gVqQyMK8KU4C+//FIN1n3ttdfceSIPPbzGQFHAhQqtQVanWGNb3P1feeWVKoBBy5R+wG2k4DghuMRzSYzHCQPQ8YcWEIyv0eDijQuwLz/88INqYcCYIAz2RquElVY21DXOmWAgWMKgV3/HQrvY61tTgpnS7+scwGylPn36uMc9YT+NdYPxXvpBxngPQSTG9GCAPAIjtCgZXXfddWpQMcbSoE4GDRrktQ7GZqFsVPMxkKGYh4G7uHsbMGCAujtGlwFmgeAuz1eQgBkoWAfdQBhAjK4pLUjRYLAsBjviCxUXYdxRazOs7r33XvXFj8G9WusPvviNg339wcUVd8na4GR0c5jBIGEMsMTAZ1xEkQ+6wzDTxsr0WTPYb1y8ECDhgoKZKdgHrQ4w0Bl3zBhYjOUYWIuATxuEiq4UtHZhsDMGFCM9zCTTz6bRa968udpea7lCa0ikWqb0Bg4cqI4bZiqhJQjlxEwddC1q3XIY1IygBIN2Ub+ob/3F2QjdSQhC0YKHVj3MBLLyjBm04qC+AwWuRjgWGKSLFhMEDpixhnpEuQFBGYJyzFLDscJsOwQSlT0HsF/6adfoWsUgabREIvBD0IKWFX3rHMqC1iCtbjCA+fnnn/fKG4Ozr7rqKrVvGLxvDMjRpYT08R7VfAxkKOZpd6y4QOCLD3f8CFTQd+/rQo91EQDhSxtfzrhzxAwMPVzccLFA18SuXbvUeAGtFQUtEpgSjRYJ3JXjzhHPyUFZrMJ4A9yRvvDCC2o7XGzNYKwBpoajqR/Td9GKdNNNN8m//vUvCRXGZeCijUAE+47ZKqgPXKQAARvGTGCmDMYzoIzoAtBPEUfXAWZSIYBE6wBmpvi6SCMQwsUL3RToBsRFHa0lkYb9xEwgBB+4cOJ4o+4wRgatHYDWOHQxolUAY5HQ0oWWI1/QAoIg74033lD7jfME9RQIZnnhmAc77RxBF4JWlBPnNoJFBBkIDrWuqXnz5qnjifMSQY9xRluw5wBuBjC2CMdJD+cAzlUEsqhPbIOAXIPzE8caZUDrDrreJkyYYJo/jgO6m/B4AiME6zhm+GxRzReHEb/VXQiimgR37D179lTdSXZ/fDxFF4wXQRCC1sBohmAEAZf2bKVIQGvNHXfcobqejN2x6JZCABfqOCayFz7Zl4jIJtDagW4rPPgtmn+mAF096HaKBHQbYTwPWrJQH8YgBg+yRGsPWvooNrBFhijM2CJDFDkYyzNu3Dg1xgpdSPyZEmIgQ0RERLbFwb5ERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2RYDGSIiIrItBjJEREQkdvX/y+Thsu/VxtMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Daily_Screen_Time(hrs)Happiness_Index(1-10)
Daily_Screen_Time(hrs)1.000000-0.705206
Happiness_Index(1-10)-0.7052061.000000
\n", + "
" + ], + "text/plain": [ + " Daily_Screen_Time(hrs) Happiness_Index(1-10)\n", + "Daily_Screen_Time(hrs) 1.000000 -0.705206\n", + "Happiness_Index(1-10) -0.705206 1.000000" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Scatter plot\n", + "sns.scatterplot(data=df, x=\"Daily_Screen_Time(hrs)\", y=\"Happiness_Index(1-10)\")\n", + "plt.title(\"Social Media Time vs Happiness Score\")\n", + "plt.xlabel(\"Time spent on social media (hours/day)\")\n", + "plt.ylabel(\"Happiness score\")\n", + "plt.show()\n", + "\n", + "# Correlation\n", + "df[[\"Daily_Screen_Time(hrs)\", \"Happiness_Index(1-10)\"]].corr()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "victorian-burning", + "metadata": {}, + "outputs": [], + "source": [ + "# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON " + ] + }, + { + "cell_type": "markdown", + "id": "collectible-puppy", + "metadata": {}, + "source": [ + "## Second Research Question: Does age or gender affect how social media use relates to happiness?" + ] + }, + { + "cell_type": "markdown", + "id": "demographic-future", + "metadata": {}, + "source": [ + "### Methods" + ] + }, + { + "cell_type": "markdown", + "id": "incorporate-roller", + "metadata": {}, + "source": [ + "*Explain how you will approach this research question below. Consider the following:* \n", + " - *Which aspects of the dataset will you use?* \n", + " - *How will you reorganize/store the data?* \n", + " - *What data science tools/functions will you use and why?* \n", + "\n", + "✏️ *Write your answer below:*\n", + "\n", + "I will group the data by gender and compare average happiness scores at different social media usage levels. Then I will use Seaborn to make a regression plot showing trends for each gender. This will help reveal whether men and women are affected differently by social media use." + ] + }, + { + "cell_type": "markdown", + "id": "juvenile-creation", + "metadata": {}, + "source": [ + "### Results " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "pursuant-surrey", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAAIACAYAAACsK4WmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQecFOX5x38zs7P9ej84OiIKKIgiNsCOXbFFY0WNPRp7EktMMf5NjJrExILd2HvHih1FOgLS6/Wyvc7M//O8c7u3e7dXgDu5454vrns79Z3+m+d9imQYhgGGYRiGYRiG6QPIO7sBDMMwDMMwDNNVWLwyDMMwDMMwfQYWrwzDMAzDMEyfgcUrwzAMwzAM02dg8cowDMMwDMP0GVi8MgzDMAzDMH0GFq8MwzAMwzBMn4HFK8MwDMMwDNNnYPHKMAzDMAzD9BlYvDK9nvPPPx9DhgzZrnlpPpq/t3LHHXdAkqSd3ub169eLdjzxxBM/63qZrvHZZ5+J40Pffbn9L7/8MvoztA/ommcYZsdg8cpsE0uWLMGpp56KwYMHw263Y8CAATjiiCPwz3/+E339oUKfiy66KOP43/3ud8lp6urq0BdICOPOPlOnTkV/hF4SjjvuuIzjWGz1bRYvXowLLrgAQ4cOFfcpt9uNvffeGzfeeCPWrl27s5vHMMwOYtnRBTD9h6+//hrTpk3DoEGDcPHFF6O0tBSbNm3Ct99+i/vvvx9XXXVVj6z3kUcega7r6GnoIffKK6/gwQcfhNVqTRv33HPPifHhcLjH27Fy5UrI8o6/V55yyikYMWJE8rff78dll12Gk08+WYxLUFJSIl5GQqEQVFXd4fUy3c8hhxwijk/r85LJfL+g87ywsBBnn302dt99d8TjcSxduhRPPfUU7rvvPrEvFUXZ2U1lGGY7YfHKdJk///nPyMnJwffff4/c3Ny0cTU1NT223p9LUB199NF488038d577+HEE09ME+3r1q3DjBkzhLjtaWw2W7csZ9y4ceKTgCzG9FCnYb/85S/bTE/inOmd0MsMH5/OoWuVzvEDDzwQb7/9NrKystLG//3vfxf3sV0BepGml5nueNFlmL4Gn/VMl1mzZg323HPPNsKVKC4uTvtNlo4//vGPGD58uBBj1EX729/+FpFIpM28JBanTJkiHjTZ2dnYd9998b///a9Dn9e//e1vOOCAA1BQUACHw4F99tlnh7t4yQWCLFyp6yaeffZZjB07FmPGjMk439y5c4XwJWHvdDrFtnz11Vdtpvvyyy/FtpEIof3y0EMPZVxea5/XhoYGXH/99aIN1P1J+2j69OlYtGgRetLnldpA69u4caPoXqe/aR/9+9//TrqQHHrooXC5XMJy23q/EU1NTbjmmmtQUVEhzgOyBN99992dWtJpfcOGDcs4bvLkyZg4cWLy94cffoiDDjpInJfUxlGjRolzrbvZsGEDLr/8crF8Oufo3DvttNPEvkuF9iHty88//xy/+tWvxHR0zM4991w0NjZmdF2YPXu26Namc2OPPfbAq6++2qnPK7l70Dn5448/ih4ROvfo+Pzf//1fm7bTdXf77beL/U/HgY4HdaG3vh67si/JRYjuA7S+vLw8cSwyHftMaJomlke9NnTenHDCCaL3JgG1kV5Wa2tr28x7ySWXiHZ11Pvxhz/8QewnumZbC1eC9i/dl1pbXbtyDSfccFavXi2uDWoLTU/uCcFgMG1a2q/XXnstioqKRDtoOzdv3pyxzVu2bMGFF14oekDo2NC+feyxxzIe/+effx6///3vxXGmdnq93nb3BcPsyrB4ZboMCZQffvhBdL91BvmO3nbbbZgwYQL+8Y9/iIfBXXfdhTPPPLPNg/7YY48VAu2WW27BX//6V/EQf//99ztcPrkpjB8/HnfeeSf+8pe/wGKxCCHxzjvv7NA2nnXWWXjrrbdEF3tChL/00ktieCY++eQTIXjpIUIPXmoLCTYSdd99911yOhJ6Rx55pLBQ00OQHng0/WuvvdZpm8hH7/XXXxci595778UNN9wglkf7dOvWrehJSGyQUCaxQ6KIxNaVV14pjhs97Em4kBilBzSJM7JQJ6AHOrXxmWeeEeMeeOABYRGj4/yb3/ymw/WeccYZYllk5W8tIMlNJXEeLVu2TOwXEgt0LpBljYRCppeHTMRiMWGRbv3xeDxtpqW2kGWP1k3bcumll+Ljjz8WIrK1eCFoPy1fvlwcb9p+ElQnnXQSDMNIm27VqlVie2k/0zWSOJdJSHYGiWE6DnvttZfYduoiv+mmm8QLYQJ6UaB9Qi98xx9/vBCf1A66Lmm9CbqyL6lL/uqrrxYCm7rfSSzS9UriryuQ1ZOuUWojLYe28fDDDxfd+MQ555wjrrkXXnghbb5oNCpeTqn3oz0LNB0Duh7peAwcOBBdpavXcILTTz8dPp9PHCv6m64F2g+t73+0f+iap3saCXK6z7Wmuroa+++/Pz766CNxvtB9jV4wZs6cKeZvDQlv2n/0MkvtZDcSpt9iMEwXmT17tqEoivhMnjzZuPHGG40PPvjAiEajadMtXLiQns7GRRddlDb8+uuvF8M/+eQT8bupqcnIysoyJk2aZIRCobRpdV1P/n3eeecZgwcPThsfDAbTflMbxowZYxx66KFpw2k+mr8zqF1XXHGF0dDQYFitVuPpp58Ww9955x1DkiRj/fr1xu233y6mq62tTbZx5MiRxlFHHZXWXmrb0KFDjSOOOCI57KSTTjLsdruxYcOG5LAff/xR7MvWl2HrNofDYUPTtLRp1q1bZ9hsNuPOO+80ugq1m9ZF29EaWh6Ne/zxx5PDqA007C9/+UtyWGNjo+FwOMQ+ef7555PDV6xY0WbZf/zjHw2Xy2X89NNPaeu6+eabxXZv3Lix3bZ6PB6xfdddd13a8P/7v/8T607sx3/84x9px2RboP1M83b0eemll9o954hvvvlGTPfUU08lh9E+pGH77LNP2rVBbafhb7zxRps2vPLKK2nbXlZWZowfPz457NNPPxXT0XeCKVOmtFl3JBIxSktLjRkzZiSH0bksy7LxxRdfpLX9v//9r5j/q6++6vK+PPHEE40999zT2FYS7R8wYIDh9XqTw1988UUx/P77708Oo3sL3RNSefXVV9tsf2sWLVokprnmmmvajKuvrxfblfjQftrWazhx/V944YVpyz755JONgoKCNve/yy+/PG26s846q801MnPmTHGs6+rq0qY988wzjZycnOQ5l9h/w4YNy3geMkx/gy2vTJehrALffPONsMZQlzVZ4o466ijRhUW+ogneffdd8d3aunbdddeJ74R1lKwuZMG4+eab21hTWqePag1126Zan8hSdvDBB2P+/Pk7tI3UDUqWLArQIqg7lNwTyOrcmoULFwqrGVll6+vrk1a7QCCAww47THQbk9WLrJcffPCBsHZRsFuC0aNHi/3XGdSVmPBro2XRuhJduju6vV0hNQMDdZXSeqnLl6xOCWgYjUuN5CaLNR0T2qepVk2ytNF20P5pj4RrxIsvvphmqSSLHFmqEvsx4cLyxhtvbFdQ36RJk8R52PpDVsqOzjmy2NJxICsZtSHTcaBu7lR/bfLFJKtq4vpIUF5eLoLoUredLLULFixAVVVVh+2n8yDVf5kscfvtt1+b40DnGlllU48DWRaJTz/9tMv7kqah7u/WFvGuQtuV2p1PmUvKysrS9glNQ5ZcclNKQFZrsv6TJb89El3otE9aQy4o1IWf+CTuV129hlMhi3sqdI7TvIn1J7aFLMupkPtMKnRekw89WcPp79RjQ/cFuqe1Pq/OO++8tPOQYforLF6ZbYJ8NskfjwQjdalRFzAJUHoIke9domuXxFZqpDtBfm708KPxROLh1J4vaUdQMAaJGBK9+fn54oH0n//8J2N377ZCDzISMOTrSd317bkM0EMv8UBJfTDS59FHHxXdr9Qe8t+jbtGRI0e2WQaJvs6ghyd18dL8JGQpiprWQemAumN7O4L2L60rFfLzo27Z1i8YNDzVp5P2D7l/tN43JF67EuRHXdrkD0kvTInzhdxWUru66W9yRSCBTT6D1KVPgrerQpb2JbWn9Yd8qFtDx5BcYRL+u4njQF3MmY5D6+NNooqEWmsfWbpOWu/L3XbbTXy3nrY1mY4DvSy0Pg7kEtD6OCTWkTgOXdmX1N1P20ECmbbviiuu6LKLRqZ9Qm2n7U/dTmoH7V8SrATtW7reKXNARy+1CVGccPlJhQR5ppeSrl7DqaS+gCb2N5HY54n7H/m1d3St032Bzp2HH364zbrJrSjTNUKpvxiG4WwDzHZCFh4SsvShhyDdbMnCQz5jXbWebi9ffPGFsP6SnxqltSJBQBauxx9/vMuBIx1By6aHJz3Q6OGVamFMJfFQv+eee4TfXyboQZ8pSG1bIN+2W2+9VQR1kM8biXV6OJIlp6dTiLWXTqi94alWUmobWespMCgTCfHUHmSRoqAUElBk/aZv2m7yB01AViiyjpH1kCz6JJbJOktWRQqC6s50SJQKjs4x2u8UNEZinc5xEnk/Ryq3HTkOFOxH/tKZIDHe1X1JFlxK5UZiksYnUsuRqG/t97m9kBgk31sSr7Rc8nWlayhThoxUSASTZTuTT37CYkvjt+ca3tZ93hUS66btontNJlKzhRBsdWUYExavzA6TiPyurKwU39TFTjdmsmrQwy41OIEsDYku+IRlgh42ra20HUEPTLIIUld8alopEhbdAT0gqIufAo2o65osbJlItJ+6eRPWxEyQJYWWmbDypEJCoDPo4U3R5LNmzUobTvuyvbb1Bmj/kBWso33TEeSaQCKGXopIeJGQoi5a6mZPhQQtdfHSh6YjsU9FJUiEbe+62zsOJDIokCkBRb7TccgEHW86bgloX9A1cswxx6RNR9HrJHxSX/Z++ukn8b29leVaHwdy86H909kLZVf2JR0Xso7ShwKpKGcwBWJRL0xn6bxaXwO03bT9rUUauQ5QujpyTyARS8GZFIXfEdQuCtaaM2eOiOAnd6bO6Oo1vC0k7n/UU5BqbW19rScyEZALTXeepwzTH2C3AabL0AMsk3Uh4eOVuFEnHs6to2UTlp9E1C1F4tLNm6J2W6e/6ciKQZYPegjTTT8BdTtSF393QdG8ZEUmi2d7UNcyPfyoKzJTV2Ui3Q+1l3zYqH3kipCAItFJgHcGzd96f5Cgowd0b4Ys1tTln2kbSfBRVHlnkECijArUhUsCLNVlgKAsFa1JWNB21OLdleNAkfup52Eq1B1MvrEJyK2FtpleiFKh7UvNOkG+k5RMn7aDXG264zjQuUKZAjK5QpB/Z1f3Jfl2tu6BocwDtF9St7U9aLvIzSj1hYAEfet9knhppEwWJEY7s7omIEstHQ+aPtM12fr4dfUa3hYS20IZKVJpfT+k8ymROzqTtXh71s0w/QW2vDLb1G1K6WgouISCP8jqQqmDyCJGFqKEnxal7SELFT28SaRQlx35xz755JPCopmwRpG1g3w5yceO3A/It5S6DEmk0Hpo+kyQ+CUhTIFVNA/5hVHuUbLekh9od0DbQJ/OrFQkquhhRVYh2n6y9pBQIKFP20dptwjqUqVuVrIcUq5QEjGJfJmdtZmsj5S6iJZP3eeUJousUe3lQe0tUEovCoyh9lNeTBIKJJSo/SRa6IWjM8sxvQjRCw69TCQe9qnQfqGubjonyOJF5wJ1Y5MvKOUr7U5oO55++mnhLkCCjYQ5pTiiPK6ZoOuDLJgkHsnqRu2iNpFbSmv3CUqNRFZG8jWlHJ/US9FdPQmUfopcLijQiM5L8mslgbdixQoxnF4uqPekK/uSXjhJUNMyqK30Avavf/1LzJMpr2pryOWFlkXnMm0jCTq6bqliXyrkBkTuGLRsOu6/+MUvurStdH3RPHSvIv/aRIUtOhZkzabrhgR34qVgW67hrkKCn9pL+478ZemapZRqZGFuDaXRovVQ4CDtAzqv6CWCArXo3Mr0QsEwDKfKYraB9957T6SJ2X333Q232y1SSo0YMcK46qqrjOrq6rRpY7GY8Yc//EGkm1FV1aioqDBuueUWkfapNW+++aZxwAEHiBRM2dnZxn777Wc899xzHabKmjVrlkhxQ+mUqD2UniiRymZHUmV1ROtUWQkWLFhgnHLKKSJdDrWH1nn66acbH3/8cdp0c+bMEemTaL9RyhtKVdSVNtM+o5RRlFKH9tGBBx4oUjRRqiT69GSqLEp11RpaZ6Z0SdTuY489Nm2Yz+cTx53OE9ruwsJCcaz/9re/tUmx1h5nn322aNvhhx/eZhztY0rfVF5eLpZP37/4xS/apOfKRKb2JkikJkpNlUVpwi644AKxDXT+U3olShHW+nglUmXR8b7kkkuMvLw8MT1tB6VsytQGSjk3bty45Pmcut6OUmVlOg6Zrhfa13fffbeYntZBbaJzka5RSs3V1X350EMPGYccckjyXB8+fLhxww03JJfRHon203VN50NxcbE4l2nbU9PHpfLdd9+JeY488khjW6Fr8txzzzUGDRoktoXOY9q/dB2tXr064/SdXcPtXf+J403XUAJK/Xf11VeL5dG6jz/+eGPTpk0Zrz+6d9K9h+6RdK+kVGeHHXaY8fDDD7fZf63PC4bpr0j0v50toBmGYXYVKGk9WfDIkppaCSwT1GNB2TYoAIpJh3pgyIpJrgZkPWYYhknAPq8MwzBMr4N8dCnSnwLCGIZhUmGfV4ZhGKbXQD6mlDOafOapZCplEWAYhkmFxSvDMAzTa6BgKwrmomC97sodyzDMrgX7vDIMwzAMwzB9BvZ5ZRiGYRiGYfoMLF4ZhmEYhmGYPsMuL17JK4Iq1rB3BMMwDMMwTN9nlxevVIqQKuKkliRkGIZhGIZh+ia7vHhlGIZhGIZhdh1YvDIMwzAMwzB9BhavDMMwDMMwTJ+BxSvDMAzDMAzTZ2DxyjAMwzAMw/QZWLwyDMMwDMMwfQYWrwzDMAzDMEyfgcUrwzAMwzAM02dg8cowDMMwDMP0GVi8MgzDMAzDMH0GFq8MwzAMwzBMn4HFK8MwDMMwDNNnYPHKMAzDMAzD9BlYvDIMwzAMwzB9BhavDMMwDMMwTJ+BxSvDMAzDMAzTZ2DxyjAMwzAMw/QZWLwyDMMwDMMwfQYWrztIXI8jpsV2djMYhmEYhmH6BSxedxDd0FEZqEQgFtjZTWEYhmEYhtnlYfHaTQK2NliLulAdDMPY2c1hGIZhGIbZZWHx2o34o35hhWU3AoZhGIZhmJ6BxWs3E9Wi7EbAMAzDMAzTQ7B47QHYjYBhGIZhGKZnYPHaw24EWwNb2Y2AYRiGYRimm2Dx2sOQcCUB64v6dnZTGIZhGIZh+jwsXn8GyHWgPlQv3AjIpYBhGIZhGIbZPli87oRsBBTUxTAMwzAMw2w7LF53ghsBCVh2I2AYhmEYhtl2WLzuRDcCykjAbgQMwzAMwzBdh8XrToRywbIbAcMwDMMwTNdh8dpL3Ai8Ue/ObgrDMAzDMEyvh8VrL3EjaAg1sBsBwzAMwzBMJ7B43QG6u3oWuRFs9W9FRIt063IZhmEYhmF2FVi87iALaxZ2q4iN63FUBarYjYBhGIZhGCYDLF53gO+rvsfM2TNxxzd3iC7/7nYjqAnWsBsBwzAMwzBMCixed6CL/7avbxN/z6+Zjys/uRIfbfioW62wwViQ3QgYhmEYhmFSYPG6nZCgHJ47PPk7GA/i/gX3485v7xQ5XLsLdiNgGIZhGIZpQTK6O+qol+H1epGTkwOPx4Ps7OxuXTbtuldWvYJ7vr9HiNcELtWFS8ZegmkV0yBJUretj5Zb4CiALPE7B8MwDMMw/RMWrzsIFRhYXLsY/1zwT+E+kMqk0km4Yu8rkGfP67b1qYqKIkcRrIq125bJMAzDMAzTV2Dx2g3ilfxSaTfO3jAbs5bOQigeSo7PUrNwybhLMGXglG6zwtJy8u35yLJmdcvyGIZhGIZh+gosXrtJvCagDAFkhV1YuzBtusllk3HZXpd1qxWW3QgYhmEYhulvsHjtZvFK0C59f/37eHzZ4+lWWGuWELAHDzi429bPbgQMwzAMw/QnWLz2gHhNUB2oxgMLHsDiusVpww8sP1CI2BxbTpfWYcCAhPZdDtiNgGEYhmGY/sJO7W/+/PPPcfzxx6O8vFwIsNdffz1t/KuvvoojjzwSBQUFYvzCheld8b2dElcJ/njgH3HpuEthU2zJ4V9t/QpXfHwFvt76dZeEa7U3gqjWfrECev+g9Fx1obpuL1nLMAzDMAzTm9ip4jUQCGCvvfbCv//973bHH3TQQbj77rvRVyF/1GOHHYt/HvpP7FmwZ3K4J+rBXd/dhXvm3dNpDtdYXEeNNwJfON7hdP6oH5WBSsS0GH4WWCgzDMMwDNNf3QbIsvraa6/hpJNOajNu/fr1GDp0KBYsWIC99967z7gNtIZKvb699m08+eOTYr4EubZckVJr/7L9M1peNze0+M3aVBn5LissstyhYKZALgro6lFCTYAeB5wFdAB7dl0MwzAMwzA72/LaE0QiESFYUz+9BRKVJww/Af+c9k+Mzh+dHN4UacKf5/4Z9/5wr7CedkQkpqPaE0EgGu9QJNcGa4UrQY+/m5CA9W4BtI6twgzDMAzDMN3BLide77rrLmFpTXwqKirQ2yh3l+Oug+/CzDEzYZVbsgR8uulTXPHJFfi+6vsO59cNAw3+KOr9EfF3e/iiPlFaNqb3sBtBLAx4NgKRjoU3wzAMwzDMjrLLiddbbrlFuAgkPps2bUJvRJEUnDTiJNw37T6MyhuVHN4QbsCd396J++ff36kVNhjVUOUJIxzT2p0mokVQ5a9CMNZSvrZH0HXAVwX4a9kXlmEYhmGYHmOXE682m034tqZ+ejMVWRW4+5C7cf6e50OV1eTwjzZ+hKs+vQrzq9NLzrZG0w3U+iJoCETbtcJqhiaKJ5Aw7nE3grAHaNoIxCM9ux6GYRiGYfolu5x47YuQFXbGyBm4b+p9GJk7MjmcUl/d8c0dePanhxCKd2w5DUTiIqVWJN5+Si1vxCvcCOIUZNWTULYDz2bTH5ZhGIZhGGZXEa9+v1/kbk3kb123bp34e+PGjeJ3Q0OD+P3jjz+K3ytXrhS/q6qqsCsyKHsQ7jnkHpy7x7mwSJbk8K+qPsGffrgeKxrTix20Jq5RSq0wPKGYyFLQnhtBpb+y590IyMIbqAO8lYDevlsDwzAMwzBMn0mV9dlnn2HatGlthp933nl44oknxOeCCy5oM/7222/HHXfc0edSZW0L6z3rcd/8+7DGsyZt+MFlR+DkoWfDbnF0OL9qkVHgskJV2n8/ybZlI8+WJ9KUbRdkWSWB2hmyAmSVAap9+9bDMAzDMAzT2/K89hR9VbwS1L3/8qqX8fyK54XfaoICWxF+OepSjMod0+H8JEpzHCqy7C1W3NZQ5a9CZ2Gav223i1ezMYCrCLD3bh9khmEYhmF6NyxedxDafVQhyxPxiPyq3c26ujAqA2vx9E8PYnNgQ9q4KeVH4cShZ8GudGzRtFtl5DutUNopbEA+t1TUwKk6e068JhuTA7gKuagBwzAMwzDbBYvXbkLTNTRGGjtNb7UtVDZFccGjqzGsyIbzDsrFfM9beH/ja9DRIpIL7SU4Z7dLMTJ3jw6XpcgScp1WOK1K97kRbI94JVQHkFVquhMwDMMwDMNsAyxee8CNgFJShePhHVoOHZYbX9iA79cFxG9VkXDKxFyMGdaAZ356EFuD6flrp5ZPx4lDz4StEyusy2ZBrlOF3I5A3SY3gu0VrwQJ1+xywGLbvvkZhmEYhumXcKqsbsaqWFHqKkWxsxgWuX1f084Ix4y0YKuYZuCFuY149EMbzqy4A0dVnAwJLQL0s63v4S8/3ITVnhVdSqkV1fQOsxEEYqZo7jEoAwGl0wr3nvK9DMMwDMP0ftjy2oPsqD8szf/ZCi/u+6ASnlBLwBYZTaePzcHE3evx3Jr/oCq4pWUcJBw64BgcP+RMIaR3JJjLbXWjwF7QvhvBjlheU3Hkmn6wDMMwDMMwncDi9WdgR/xhKV/ryko/nvu2AXNWpM9fnG3BOQdmY138bXy0+a203K4ljnKcO+oyDM3ebYeCuVRFRZGjKLMQ7i7xKlbEfrAMwzAMw3QOi9efEeqSrw/VC7/YrkKCdHNDSPy9bEsIj31ehxpveoWsg3Zz48Cx9Xhl3UOoDm1Ns8IePvB4HDfkNKiydbuDucjymm/PR5Y1q+fEq2iIBcgiP9j228owDMMwTP+GxetOgFwJmsJNXXIlSBWvRDSu47UfmvDuInJFaJkuyy7jFwdkoUZ+G59seTfNClvqHIBzR12OIVkjOlyX06Ygz2ltN5jLpbpESi1ZkntGvBJkARYFDTouwsAwDMMwTP+ExetOggoQNIYbOw2Mai1eE2yoi2DWnDqsq0u34u41yIFpe9fjrc2PoCZUmRwuQ8YRFSfimMEzOswkYFFk5LussFm64EbQE+KVIPFMLgRWV/cvm2EYhmGYPg2L151MKB4SrgQkZrdFvBKabuCDJV68Mq8R0XjLYbRZJJy8rxNB57v4bOv7aVbYcmeFsMIOyhrWbpvITSDbYUG2Xe3YjUDTeka8misB3CWAzd0zy2cYhmEYpk/C4rUXQIegKdIk3AlaH46OxGuCGm8Mj39Rh6Wb03PLDi+24YiJdfig8lHUhavTrLBHDToZ0wed0mE6r86CuVxaHAWa3uJG0CMCthiwtfK1ZRiGYRim38LitRcR02KoD9enFTjoingV0xkGvlrlx7NfN8AfafGlpVSx0/dyQM99B19UzU6bZ6BrsLDCDnQP2b5grogXatiPIlserEoXihpsL5RGi9JpMQzDMAzT72Hx2guhlFqUWotSbHVVvCagfLDPfl2Pb1an+9KW5ao4cmIt5tTNQn2kNjlclhQcM+gUHFVxEpQOrLAZg7kiXiDYaLoRWHOQpfagj6ojD3AV9NzyGYZhGIbpE7B47aVQJgLhShDxYlNDcJvnX7QxKFwJ6v0txQ2IKaNV2Irfwzc1H6UNr3APwbmjrsAA16CuB3M1i9cELosDBbbcnnMjsDpNP1jOBcswDMMw/RYWr72cSDyCRVu3IKKl+7N2hXBMx8vfNWL2Um9KyBaQ51Rw2MQqfO99Eg2RloArRVJw7ODTcETFCeLv9sh2qCKgS4r40sQrQZkMetSNgISrSKVl75nlMwzDMAzTq2Hx2suhw7OuLoBwPARPtAlxPbbNy1hTQ2m1arGpIX3e8UMl5A58H/PqPk0bPsg9TPjClrsq2l2mapFRYIlCjaSLV6LH3QjIdcGZb7oSMAzDMAzTr2Dx2gfwhmNoDERFaqxAzA9vtGsFDlKJa4YobPD6/CbEtJZD7rTKmDphC5aEnkZTtCE53CJZcNyQ03HYwOPatcIqMT9y4IPLmtlXtufdCFzNbgQ9tHyGYRiGYXodLF77CLpuoDEYhTccF4Fc/pgX/pivTWqtzqhsimLW5/VYWZnuhjCyzEDp0PewsPHztOFUlYussFSlqzVyzAc53AirRUGuQ4WSoTJXj7sRUClZKilLpWUZhmEYhtnlYfHax6DysA2BKIJRErFxeGMeBDup0tUa3TDw2XIfXpjbiGC0xYKrKhIOHLcJq/Vn4Ym2uANYJBUnDD0Dhw44Ns2KmhCv4m8qbGBX4VCVjG4EedYcZPeUG4EoKVvOfrAMwzAM0w9g8dpHIfFa748ipumIaVHhD7utQV1NgTie+qoe369Lz2YwoCCGgSPex4/er9KGD8veDefsdhlKnOWw+StRvvwFbBlxLHSLLTkNiddsO6XUars+p8WBwp5yI+CCBgzDMAzTL2Dx2oehQ+cJxdAUjAlraigeFP6w7ZWabY956wJ48st6NAVb0mqR9py453psUZ6DL+ZJDldlK04cciauWPERCrd8i7CrBGvGXwxv8djkNIokI8ehtqTUSoEqepEbgU2xokegQC76MAzDMAyzS8LidRcgruloCEbhD8eFoDX9Yb1C0HaVQETDi3Mb8clyX9rwguwIBu32LlYH5qYNnxAO40+1DaiIm0K5ZtAUbBh3LuJWd3Ial9WCLLsqhHBrN4JcazZy1JZpuxXVYQZysR8swzAMw+xysHjdhQjHNNQHoojEtO32h6VArlmf16GyKT2t1h4jV6HB/hICcW9ymF3X8ZuGJpzh84NsrFFbDtaPOw/1Aw8wu/GFpVZGjtMKNYMfQY+6EZAfLAlYykjAMAzDMMwuA4vXXZDU1FrkB9sUadym/LAUFPbmAg/eXtgELSUjl9sZxOBR72JjeF7a9PuFwrizrh4D4qbbQWPpBKzdeyaizsLmKSTkOCxwqpaf342Ay8oyDMMwzC4Fi9ddlNTUWrquCzcCX8y7Tam1NtVTWq06UeQglaFDViDofgVBrcXFwKnruK6hCaf5/MJNQLPYsXHPX6Bq2JFAs2XVrirIyRDM1ePZCMiNIKuUy8oyDMMwzC4Ai9ddHLKi1gciCEU1EchFKbCoWte2iOAPl3nx0neNiMRbThWrzY8hu72FyviitOn3D4Xwh7oGlDdbYX35I7Fmwq8Qyq5IBnNRaVm7Rfl5ixpQntnsAewHyzAMwzB9HBav/YRAJC7yw1JqLbPUbOM2ZSWo88XxxJd1WLQxVfgaKC9bjHj+GwjpLem2XLqBG+obcIo/IKywuqRg66iTsHnUyTCaixU4rRaRF1bK4EZQbMvvmaIGZHnNLgdSUnsxDMMwDNO3YPHaj6BD3RiMifRa5EpAKbC2pUoXTfftmgCe/qoevnCLM6xi8WHQyNdQhx/Tpj8wGMIddQ0o1UwrbDCrHGsn/Aq+gt3FbwsFczlUWBW5jRtBvjUHWT3hRkACNmegaYllGIZhGKbPweK1H5LqShDTY/BEGrepwIEvrOF/3zTgy5/8KUMNFBYvBArfRMRosc66dQM31jfgpGYrLFE19AhsHHMWNNUpfrtsKrJsljZW2B5zIyDXgZwK9oFlGIZhmD4Ii9d+TKorQTAeEAUONL2lUEFnLFtfj8e+9KImJRuXZPFiwLBX4VFWpE17cDCE2+saUNJshY3a80RGgsbyfVNSaqniOxVVVkU2gm53I7BYTR9YFrAMwzAM06dg8drPocNPFbqaQjEhXH1R05WgK8gxH6L+BryyxMA7Kwy0nEkGsgt/gFr8NqJGi0U3SzdwS309jvMHk1bW+gGTsG7cBYhRSitIyLJb4LZafh43ArLAZpEPbA+l6WIYhmEYptth8cq0VOkKROGPxBHTomiKNiKqpafIyiRe5XCj+Httg4GH5+rYYP4USBYPioe+gqDlp7T5pgorbD0Km5PIxlUnNoz5JWqGHCqKG1gtCnIdKpTmQgc96kZAlt6sMjOdFsMwDMMwvR4Wr0ybKl11/ojwi6XqXN5Y+64EqeKViOsG3l1h4OUlBmLJWQw487+HreQdxNEihrN14Hd1dZgeaLHCegr3wNrxFyOcVQ5ZosIGapuUWj3iRkAi2ZlvFjRgGIZhGKZXw+KV6bBKV0wzXQkCcX+brAStxWuCKp+BR7/Tsay6ZZhkaUT+4FcQta5Om/bQYAS31taiUDetsLqsYtPoGagceTwM2ZIxpVaPuRFQKVkqKdvK75ZhGIZhmN4Di1emS1W6olq0TVaC9sQrQafVnLUGnllgIBBNDoUtby4cpe9CQ3IgcgwJv6+txdGBllyxgZxBWDP+VwjkjxAptXIzBHP1iBsB+b+SHywXM2AYhmGYXgmLV6ZTyIWA/GGD0XhaVoKOxGuCppCBJ38w8O3GltNMUhuQU/EyNNvatGkPD8Vwa0018putsAYkVI44Bpv2OB26xZExmIuKGpAbgU3pxqArykAg/GDt3bdMhmEYhmG6BRavzDan1orE4/DHvAgGtkIKN3Rp3h82G3hsno6GpHFVh5o3F86Sd6FLseR0uYaC22uqcHiwJVds2FmEteMvgqdk74zBXORGkGvNRo7q7r6NpeW7iwFbVvctk2EYhmGYHYbFK7NN0OlCFboovVYsWAu/dx3CesdZCRIEYwZeWGTgw58MJE46Sa1H1sCXYdjXpU17ZFjHrdVbkdtshSVqKw7G+nHnQrPlINthgVNNt8LaFRsKbXmwdGfuVgrkog/DMAzDML0CFq/MdqfWaqyvRdhThbAWhifmQ8yId2nen2rNtFpbvKlW2G/gKHkfRooVNg8W3FFdjUODLVUQYtYsrB93HuoqDoJNtSDXYYWcEs2lSDIKbHlwWrqxy9/mNgO5WqXuYhiGYRjm54fF6w4Q1+N4b917qAxUosxVhulDpwsfzG5bvqbhnZXzsNVfj3J3AY4dNREWRel0uum7TcAqz09oCjch156L0fmjMwY1ZWo/ZcV65LsvsbGpBoNyi3HxfgdBlqW27SAht+FLRGvXwgsX/NnDsaK2AdWhJpEhYECeHZFoDI8snYP6WCMK1DxcPGYKZEXGq2u/FtM1No7B6qpBaE73Ckmtg3PAi5AdG9PaeWRYwm3VG5Gjt5yq6/OGonKfK/BOYCUatQZUuIoxo+JwyJKCLzevgi8axVB3GY4aOga6puG1uW+h1leFoqxSnDzpeLHP/j7nMdSEqlHsKMF1Uy6ErCj4x/z3sClQI5Z37YTpADTc9/1/sTlYjbKcYbj4gBtw5ce3oia8FcX2cjw6/W9w21xYttWLhmAU+U4r9izPhj8UwoVv3oPq0BaUOAbgsRNuEMfg8rcew9ZAJcpdZXjw+AthVYHH5t6FTd5NqMiuwFnjr8c9c77CRk8NBuUU43eHHSYC5254+z1s8taiIrsI9xw3XRy71su3WlT8+eOP0+alTGMfffci6jybUZgzEIfvdzp0Q0o7xjP3PQBrfKvSzpdwJIabPngam/1bMNA9AHcfdQ4sFhmPLngVm3xbUZFVjovGn4JgNIRz3rkc9ZEqFNhK8fSxD8JtdbRZZzgWx5Xv3outwc0odw7EvUddiRfXPIdNvk2oyKrAhWMupFQTbc49HRru/uY/2OjbhEFZFbhp8mViO5c3LE9rL+2j1ueobuht2kvzdgYtq/XxhGS0WWfGQEHqKahaBATrAWcB4sVj8M5P8zu9hjOtk9rfeptona2no+uz0/ZTRbxO5uvv0P7u0jFmGKZ/i9fPP/8c99xzD3744QdUVlbitddew0knnZQcT027/fbb8cgjj6CpqQkHHngg/vOf/2DkyJE7Xbw+sfQJPLrkUfhiPtFO8rvMUrNw0diLcP6Y83d4+Y/Nm41Hl8yCX6+EIcUhGRa45TJcNHYmLpx4ZPvTwYAsG3CqqrBMkpgemj0UM8fOxKSySR22X4ENsYir2QeVErUqkDQ3LIoMXfIn21ECN27SIjjctxXQIojqCtZqhXg+fijmYzhkSxi1ru/hzVoEKC2WVBInVEULckveWCNUilj1SYiEhyQmgpr/FexF76dN59Ql/LG2Bkem+MIGJQn/ysvBs9lZ0CUJ9M+iOUEa14AOCTKydAU5ug8hRUNcAiwGoBgSmhQgItN0okVQdAmaRNtJQ8yh4k+JXBxSLxHzgZ86xBIbDGfdtYhpBlRFgs/9Agz3XEDS0+ej7ZdbhkmGBEnS2yxf0hVoOhVNUGDETT9eyeJPHhM6XrJKVdBS5jMkGPGsZuuwOZ0rrqBYbkJIjie33aGrqDVy4FdoGk1snywZcKgqXDZVnC++IOCPNwJyS0YIQ7eYFm4p3bqe3nZz76g6kKfryXVGIaPJkr7PxLRp2kkG4lni2CXPPQrZs7TaTpB/cwHsVosQ8NReK7JR64sgrHuT56giqdAkDwypZRsUOHHSkHNwx9Qr0B5fr67Df+aswZoaf/J4FpdsgjX/MzTGtyTXmemawto5wJf/AOpWAXoMXyoWPOi04yeLFRFJbvcazrROZ846eGwfIILq5DbZUIKcyFEIeoYmpxte7MZlU4bjgBGF7S6rwG0GM9b7o+3O19+ZWzkXs5bMwjrvuo6PMcMwvYKdKl7fe+89fPXVV9hnn31wyimntBGvd999N+666y48+eSTGDp0KG699VYsWbIEP/74I+x2+04TryT87p9/PzRDgyIroH8a/dM1KJKCX0/49Q4JWBKk9y/6K3SESIJAhgodMWgIQoYdv97rZvHwaz0diSVNbkg+/AvtJci22+GJeOBSXbht8m3iRpyp/VE9JiwPhBF3AVo2IIcgqR4xTIrnQpVcsBp+qFIjXIaO3wZV7BNX0OD1w4UAonDgKftZeMNSB2/Bl0IYkagyJY2e0H3NWkRuHkZlZSXIDZPgr5sO3TCPq2SthaPsRSjOTWn7ZnIwjL/V1iI7xQq7xGrFHYX5+MlqPqQlXYXNyIZh+BC1mP64hXEDbl1Co6KjSTGtKYphtoLkmJFsm5CySWHXPiStUn6FB2NQ5Casw5OQc+a2P5uYyQJJiMCk52/qSIGs2RDTnZCb978eywE0ByS1EZISbn/xmh1GLA82iwe6xXS3yI9TaV4JftlAfXPHgBJzIQK7qIIGSQMMGblqMUJaEBGj2Z/DoL0jp+0LekEw90+8rRhN2QZFBwbFJVRbDATlzPtMDGne9ORdiNofzwMsLduZyT7osLgxOGcgavyNaIjUmPtMz4ViuBBDEwyFxD41WwaE9cxovi5kzBhySUYBS8Lvt68tEVXm8pxWWBUZPmk5Gp3PQZIjKHHnI9fhaE4bl35NCeH69jVAxC+KXXwmGfiLLYSwZCBLB5qkIgQkS5trONM667Rl8Gc9D8gRsT0WSUXciEGTAoBug9t3JgqVPREl151gDG6bgr+cPFZsQ+tlNYWiqPSY+7EsxyGCHVvP198FLAnXO7+5E4FYADm2HFgVa+ZjzDBMr2Gn9olMnz4df/rTn3DyySe3GUea+r777sPvf/97nHjiiRg3bhyeeuopbN26Fa+//jp2FvRWThZLEn5W2QqLREJEEt/0m4bTeJpuu5av0fyzhCBVkQdFskGSZPGtIhc6wmJ8OBptM50uJ6xUpFAMNIQbYJNtKHYWixszWRbopty6/UTqO4xkIeumBEkxv8V4mSphSSgyfCjWdPglBY9YddQFY4hAhVfKgx1hHBl7D76875qFq9JyiqVVGWj+X/MwiaYt+BZDK+6F27nMXF+0CMENlyFcPR2G3tLN+o3TjsMqBuA9Z0s517HRKJ7fWoWrG5tg03UYsinEDTmaXK1PloRA8jYLV7EOydxbSeGa2s5t7FE17BsQMhohZ3+fYWGtB7W15Lb8bf7WlShkJZj8LYtjgQ6Fa+p4i5xI60Ci1VyG+W3KT1q2RAJPHCeLWI0n2oiIQedQYlYj+YKR3M7mtnf8xitBkyVRTy3YvM72EKdd6sJE+4207cy0rlDcL0Y0RTwtwlgOmsdU7LfmeU3zOahfwbwudLy+/mlE47E2Xe1ksSThV5pth11VIMkGQq6PICsRGFo2PEE6m2XYLfa0a0rX4qbFlYRrVhk01Y5ZlojoGcjTZDgMA/lGk+jZSL2Go7F4m3WSZT7gmC2EqxHPhq5TgQ5ZfNNvGm6O18X0pdk2+CMaHvxsDR78bHV6++mYhmLim46A+FtG2ny0ftr2/grdJ+gY0rGkY0rHllwF2hzj5hd7hmF6B73WoWfdunWoqqrC4YcfnhxGFtRJkybhm2++aXe+SCQirK2pn+6EfESpq50sliRaUxFd77IixtN02wP5uJELAFlSMy4fTjH+r188nzadgSgM0ANZFg87+iZrrScSFOPJokBdYo8tfaxN+zUSfGkSQQcUn9lFTJYrEqFSHLLhh9WIQYcMtw5stgArZF0ESdETMiC5sMzeCEOJNlvtEsIl08ORrGCpogiIqR4MLHkKA4qfgaLQcZMRa5iC4LqroYUGJqcNyzJuLCnCBaXF8DdvA3kyXuzx4pWtVZgYCkODHxp1iQs3ASAmAY0KORM070tzKzO0zDAtkZ3IMzMLbTrV9vtTXAXaF2wSurh8OZa2/4WVtAuoaiPikmFalpu33S8DUanZ2mxAjJfIPSRxnAy5uYs9tV3ttDFDYF5bZwqgWu58n2Vci9q19GsbvVvFOW5agmUYiEMDie9UoUHiPGE1pgZRL0lQ+MKmQv6g1NVOFsvEdRGVNyEmV0Em66csIxLTEWque5x6TS1f9abpKkDlhSUJC7UYNltMiyvJZg2yuG5siKRdw+Tf23qdfm0jDLUW0JxiXnqp1HTqnaB9J4nhNJ6mS7SDCnisrPJhRZUvbVnhmI5IXBdtJ9efSFxDOKqnzUfrp23vr5CPKx1DOpaZ7rfJY9ywfKe1kWGYPiReSbgSJSUlacPpd2JcJsjNgERu4lNRUdGt7aLgJnqQUFd7Jmg4jafptgcKziAfN3IVyAQNp/EbvVvSpjNlWfMDTmCKxihZhajyqWIV1mAKkGnd/ow2hTQBZy5LgulTS39ZhQACPKSrmlcZhwV1pI6SnqTJhWVYfttBGlmIJCDbvQTDBt4LV7bZ/a5HSxBcfxkiNUfDENZck3kOO6YMGoA3Xc7ksMHxOB6vrsGtjdVwN6fZEq2XgHiGs31HbU6pm2FYvNs4U3sCt7UbQfMLQIoPcMfLj4vtNb2AzdnjacZuqdmbo5UFOGNzMsj7Dq3SLSO1tP3ddVO2JM69zonpsZRz3txH5gtcmxa3aQcFcaVCgUzkD0pd7Ql06qaHRp7U4pWQlh5PsVImrqkmWha1xWIzlwVd7G+1eVKzhfQyoaVfw001bdYZk3zNbhwt53nai6V4kdHM6ZqxKbJwBYjF05cVp5dSehdrds+gv2lY6nwx3RDb3l+h4Cw6hnQsM5E8xuGmn71tDMP0QfG6vdxyyy3CvzXx2bQp3WdyR6GofHojJx/XTNBwGk/TbQ8UVUzBGaZFqS00nMYPyh6QNp1pVTIfsCamgLQ2lzkldwEKQqDI7tbtz3gSiIdnqoiiZVuSD+JoczBODj1nm1dpQRyFWkfW1tTltx0kdG8CSxCFxa9gSMG7IgsBvRZE66ciuO4qaKEBycmisozfFRfi7LISeFMsJzMCfry2tRKHB4Km1coALCkqvbW36Y6Q2GKJunW7QnI729tHmXxhKeCri/lrDYvpDZA4G2jbm78Tnf5mXFqa9G6nOW33UIeuwCkLIb/XTMM7bX6KcOsIVVZTzvmEe0Cml75W2wmI7AOpUAQ+BTKRCExAFlcRIIc4qG9CBASmROgnrqlcWha1JW76V+dDFvubLN7m2s0XPk1S0q/h3OI261SNrKRAbWl9Svubha2YrpmIpgvRqlrSl0UWVyFam90z6G8aljqfKkti2/srlFWAjiEdy0wkj7E992dvG8MwfVC8lpaWiu/q6uq04fQ7MS4TNptNBGalfroTSidFWQUoOKt1rJvZxaeJ8TTd9kDpcCgimbo2My4fQTH+5oPPTJtOgrX5wU2PWXqAUee+ihyb0ywsEPGI6FlKSdS6/Qo95NIe8DKgZTX7QurND0wLdMmNqKQKhwTqhh4YB3bXZWi0HMOAywhgz3AeJM3a3H3ekURMFcfmX86UzQ3JQH5MQZEyHFmDH4Q1/1PxaqBHShFcfzkiNUfAEF3eJovtNkwdPBAvuUlwmBRpOu6pq8ffa+tRFouLoKVO7MHNXejpbctM2/Ejgxc1d8OLo9XunGT37sryDV1N2/9GPAddIRbLg8UgsUTWQ9MCSG4eZC1PDKPxhtG8fOEqoUMySMR0vofQ7Cedvk1tpy9pY9JvG7CVcS2xrhWFGJRd3tzzQEKPsktYoCCr1W2t2Zyf7J3QRLc9pc1KhVJHUQQ+BTIlrgurXgFVL4UuBYXF0qbKcJBfaqJYR/M1NXrkCUDhSCDUKK6DvRUVA+MSfCKbBR1tXVw3EdjSrmFKBdZ6nW5lEKRYEaAETckrXJEoK0WzSCdf5ViRmC7RDioYMqo0C7uXZqUty67KsFlk0XbKy2yzKLBb5bT5aP2JVFr9EUqHRceQjmWm+23yGOeP3mltZBimD4lXyi5AIvXjjz9ODiP/1blz52Ly5Mk7rV30Fk7psCirQFSPIm7ExU2Ovuk3Dafx25vvlXJAUiodikimqGnNiMAwdPFNv2k4jbdbrW2mk3V6cNODmjotJeTb8xHRI6gJ1oioWUr7Qt1grdtPpPp7GXEKhjJgaOa3GK87xcOzVspCjSLDbWi4OCqj0GmFHVFkG00Iw46Pbcciq3E/U8QJ61GzgsnkSpkyzBU3/SHJF9OnGLDpQJZ/LyFOCsJjYSueDeeQf0Gxb262wh6G4LoroYVbLNwxScKdRQU4vawUDSn5GQ8NhfBSZRWOCfiRFU+xaDV3qXbWtq5gC5ehiF4hvOMyLKz1oLaWwJa/zd+yZoWuOZO/dXEszGwCHZEYH9cTrhSUZaFZGIlv005JyzY0t2l9Fb7NQI41DzYppRyusMySAkt9yUg4HnTYCii6AepEdzavsz3EaZe6MNF+KW0728s2QCNybQnhZYhzVBxTsd+a5xVtp22m407nuizSZbXO90o5Tyl1FEXgV3kjwrfV0CU4AodD16yQFC9ynHQ26wjHw2nXlEy9Gwddaxaz8FVCiYUxM26D0zBEdouQJKFByoWG9GvYqlrarJPSqblCR4qsApLFC1mOCdFN3/SbhpvjZTE9zUfzXz51OC6fOiK9/QaQ7VDFNx2BHPpbR9p8tP7+nO+VgrPoGNKxpGNKx5aCs9ocY873yjC9ip2aKsvv92P16tXi7/Hjx+Pee+/FtGnTkJ+fj0GDBolUWX/961/TUmUtXrx4p6fK6h95Xkl0yh3nefVXCV+/iCZhrVaEl/RpWISRooBBlXMuGrO/NYO3kt3eqXlezWGKLqNA02BIZJ0yXQfy4wryQnujLjweMcOAKkmI5S9HnWMBwnoM0YbJiNQeCQhLYRzWwk/Fh3KmJiAXgd80NOEcX7of6mKrFX/Pzccyu4pomzyvzb6gXcjzmoojWoahtecgbhhi29dnz0bAvXgH87ySAJNb5Xk1j0nneV7N6TrP80pWXb0X5nltPvd2dp5X3RDd6j9rntfmdXaa57V5ug7zvDZPk5bntZ35+juc55Vh+hY7Vbx+9tlnQqy25rzzzsMTTzyRLFLw8MMPiyIFBx10EB588EHstttuXV4HV9jqwQpbKZWE9JJxWLbFA4+3EYVKGLsVWhGKRHDDZ6+hMlSLMkcR7pl6MhRFblvFSjfw4jdvoMa7FTZnLsbvNllUu9rSGEYgGoPLqoqKXbqh4fvGhWiINkGJF+P7n3bHsuaQdtm+Bfayl6DY04P5jrUOxm/X/YDsaEv6JF22YMOIE/HvqISGWCMKHYW4cL9TIcsKnls+F9UhT4YKW1UY6CzFhWN+iWvmPYjqSC1KbEX47wHXiQpbq2r8IhURWbdGFrsRiEQxc87zqIxUc4UtrrDFFbb6AFxhi2H6DlwelukZKHgl4gMi1NXZtRyJFGxCAtAXCaEx5hGFEzqCTt0v1xt4ar4BP8XKSGSF/RjWgjlpVthiNQ+/D8qYtnlB2vzB7IFYP+FSKAPHCN/ABE6LAwW2HOFascO4iwB713xVGYZhGIbpHBavTM8TDZgJ3GOBLgnZUCwugkmaoj54Yz4RgtYR3rCBp+ebQpaQ7ZtgL38Jis2svJTw1TzWORI3r5mPnHBLHlHytK0adiTqxp8Dd1Z20imALOhFtjzY2kmhs004880PwzAMwzA7DItX5ueDTjUSspQzMdZxpSjypfSF42gIhtEU8yCkdTw9sXCrgVnf66ij9JxSDNbCj2At+Nys4NVMibUAv426cei6L9LmjTgKsGH8xZBG7A+1OZ2QSORuzUaOavqd7hAUzOMqotJWO74shmEYhunHsHhldg4kXsMeIEplPts/BSnND7kSNIT8aIx5RVnbjgjHDLy42MD7P1FVIrLCbmy2wtamW2GzxuDGdQuR59uSNn/dwANQu+9FcOS0BLLYFRsKbXmw7KjwJFHsLATsfB4yDMMwzPbC4pXZuVCEGOXHJCHbwakYjmmoD4TRGPXBHw+0iXJvzeo6Aw9/p2MTFcaRYrAVzYaa/2WaFbbMVoSb9CJMW/Uh5BRRHFdd2Lz3+YjtfgTU5opFVAK3wJYHp6VrWS46xJELuDjKm2EYhmG2BxavTO+AythShDYFebUDCVZ/OI66QAhNsSaE9Y7LWlIpz7eXG3h1iYGYDiiO9cIKK1vrk9PIkHFc7gT8ZsMSFDSsSpu/qWgsava/DNaCgclh2aobedbsNnXQtxmrC8gqbZ0vimEYhmGYTmDxyvQu4lHTEtuBO0HClaA+5EdTF1wJKr0GHvlOx3KK35KisBV9ADX/6zQrbLm9FNcpg3DYirehxFv8azXFiso9z0BkL0rzZaZBoyAuciNQdzQtmsUGZFNpUfaDZRiGYZiuwuKV6b2WWEqzRe4E5FqQgUhcQ0MggvqIt1NXAt0w8OkaA/9bYCAYIyvsWtjLX4ZsbUi3whbsj6s3r0RJVXparUDuUNRMvgJSyW7d60agqKaApW+GYRiGYTqFxSvT+6E0WyRkUwoNpOKPxlDvp9yw3k6zEjSGDDwxT8d3m5qtsMXvwZr/Tdo0A+1luNYxGlOXvQZrxJMcbkgyakYdj+A+v4SkUvFTKqmaJdwIdjiQy11iuhIwDMMwDNMhLF6ZvoMWMy2xGYK7NMOAJ0iuBD54Yj7EjPQypq35fpOBx+bpaAoBinMN7GVkhW1Ms8KeUHQILqveiPINn6XNG3aVoG7y5YgPHN+92QiomAEFcrEfLMMwDMO0C4tXpu9BhQ4SLgUkaFOIauRKEEVD2Atf3N9hgYNg1MBzCw18tNoApAhsJe/Cmjc3bZpBjgG4KmsCpi59GfZAddq4hqHT4Js0E4Y9u9mNIFdU59ohyK+W8sGyFZZhGIZhMsLilenbUHaCQF0bv1hyJWgQqbU8CHbiSrCixgzo2uolK+wq2MtfgaxSji0TKhN7YvGhmFlfg4rV70AyWqqExWw5qNvvIkSGHSIspm7VhQJrTvdkI3AXczAXwzAMw7SCxSvT96FTmDIU0CfldKYgLZGVIBgUVbpiRrqVNpWoZuD1pQbe/NGAJoVhKyYr7Hdp0wxxVuCyvANxyNKX4W5amzbOW74Pmg64HLq7CKqsitKy1h0NwmJfWIZhGIZpA4tXZtdyJ6DSs61ELLkSNInUWqYrgZZiOW3NxiYDj8zVsboeUFw/mb6wqjc53iIpOKH0SJzr9WPI8pegaC25ZjWLHfXjf4ng6GMhKRbkqlkioGuHsTpNf1gWsQzDMAzD4pXZBSEXAvKHbSViTVeCCJqiXgS0YPuz6wZmrzLw/CIDET0Ee8nbUHN/SJtmmHMQLik+HAcuexW5NYvTxgUKdkPDgVdDyx/UfcFcBFlyyRKrdkOVL4ZhGIbpo7B4ZXbx0rNNpjW2+TRPZCVoCpMrgReRDqp01QYMPPa9joVbAcW9AvZS8oVtqQCmShacWHYUzggBw5c+DZUKKyRWLSloGDMD/r3PgGyxiWAu144GcyVw5gOOPM5KwDAMw/RLWLwy/aPgAVlhKUNB8+lOBQ4ag1F4ogGRWqu9Kl10eXy9wcBTPxjwxoLNVtj5adMMdw3GRaXHYtLKt1C06au0ceHsAWg48CpES/aA2+JEvi0HsiTv+DZRdS6ywlqsO74shmEYhulDsHhl+g+UVivYYGYoaMYXiaEpGIEn5u+wSpcvYuCZ+QY+X2dAcf8Ie9mrkC0tllZVUnFK+XScrLkwYuEs2EJ1afM37XY0PBPPg8We2z3BXARZXp0Fpj8sW2EZhmGYfgKLV6b/EY8CwXogGmjlShCCJ+ZBuANXgsWVBmZ9p6MmHIC95C2oOQvTxo90D8MF5Sdi4urZKF3zPqQUMRxz5KNh/0sRHjIZudZs5Kju7tkeEq62LNOVgMvMMgzDMLs4LF6Z/kssbIrYWCjpSkBZCZrCPnjivnazEoTjBl5ZYuCdFWSFXQpb6WuQLaYQJqyyihnlx+JYuQgjFzwMp5dq0bbgGzQZTfv/CtbschTackUe2W4TsVTgwM7nOcMwDLPrwuKVYcgCS4UOmqt1UVaCRqrSFW1CUDOFbSbWNhh4eK6OjV4/bKVvQs1Ozzowyj0c51fMwLj1X2Dgilcg6y0lazXViYZ9L0R41NEosOXBaenGDAI2N+AsNKt1MQzDMMwuBotXhklA6bXIJ1bXRIEDbziOukCgwwIHcd3AuysMvLzEgOFcDFvpG2lWWJtsxakDjsOR1kEYseBhZNevSJs/WLInGg64Eo7C3ZDfHZW5EtByyI2AsxIwDMMwuxgsXhkmFbocKCsBZSfQ4ohqOpqCUdSFvfDFfNDbCeiq8hl49DsdP9aRFfZ1qNlL08aPzhqJcytmYPSW+Ri89FlY4i0WXV1W4dn7DATHnYEiR1H3BHMloPyyIqiLz32GYRhm14DFK8Nkgi4LUeiALLE6QrE46gNh1Ec87boS0KU0Z62BZxboiNgXw17yBiRLSzEEu2zDaQOOxzTnCAxf9DjyK79Pmz+SN0Sk1XIOmNh9wVwJKKWWq5gLHDAMwzB9HhavDNPFkrOGocMXjqPWH0BjrAkxo8WHNZWmkJkX9tstXtjKXoOa9WPa+D2zdsM5g07DiNqVGLrocVjDjclxhiTDO/o4hCdeiAJ3efdU5krFkQs48gG5G3LNMgzDMMxOgMUrw3S5WlejsMbGNU24EtSEOnYl+GGzgVnzNPgsC2EvfQOSEk6Os8t2nDHwBBzsHo0hy/6HkvUfp80bcxWj6YAr4Bp+ePcGcxEkXBP5YRmGYRimj8HilWG2uVpXAxD2itRadYEQ6sKUlaBFmKYSjBl4YaGBj9Z5YCt9FZas9ICtMdm749xBp6LCswXD5z8Mh78ybbx/2BRED7gaeTmDuy+YKwH51lKpWcoRyzAMwzB9BBavDLO9OWIDtUA8Iqp01fh9aIh6EG+nzOxPtQYe+k5DDX4QxQ0kJZIc55AdOLPiREzOHoOKla+h/Kc3IacsR7NlwTPpUrj3OAXWnigHyyKWYRiG6UOweGWYbkivpWlxNAWiqAw2tltmNqYZePNHA6+vbIJa8gos7p/Sxo/LHo1fDjoV5cFGDJv/MLIaV6eNDw2YgNiUG5GdP7JntoWEMfnDUp5YhmEYhumlsHhlmB2FLiHyhw01IhKLozYQQm2ood0ys1s8Bh7+TsO66DzYSt5uY4U9q+Jk7Jc7DmVrP8CgZc9D0VrG6xYb/PucD+f482HpCStswhJL+WHJEss5YhmGYZheBotXhunOoC4qN0s5YSMxbPV64Il7M5aZpSIIH6828NySRqDoZVjc6VbWvXLG4JyKGSiMhTBswaPIq16YNj5SOBLa1N/CWTqu57aHArusWWZgV08JZYZhGIb5OcXrxo0bsWHDBgSDQRQVFWHPPfeEzWZDb4LFK7Oz/GHj0RDqAxHUkCuB1pLvNZX6oIHHvtewJPAdbCXvQJJbrLUO2YVzBp2MibnjULj5KwxZ9ATUqC853pAUBMedBvv+l0NRXT27TSRgKUMBp9hiGIZh+pp4Xb9+Pf7zn//g+eefx+bNm0Vi9gRWqxUHH3wwLrnkEsyYMQNyL3jQsXhldqo/bKAOARHQFUBDtAlRvW2ZWbqGvtsEPLawDrH8l2FxrU0bPz5nHH456BTkaRqGLHkKRRu/SBsfyyqDNvUW2Acf2LPbQ9ezcCfIYRHLMAzD9A3xevXVV+PJJ5/EUUcdheOPPx777bcfysvL4XA40NDQgKVLl+KLL74QwlZRFDz++OPYd999sTNh8crsVLQY4KuEFouI3LC1QS88MW/G3LD+qIFnF2j4quFb2IrfhSS3CF2H7MZ5g0/BhNyxyKlehGELHoE9WJs2f3jUdFgPuh4yFSLoSUi4koAln1h2J2AYhmF6s3i95ZZbcP3116OgoKDTad9//33hTnDKKadgZ8Lildnp0CUWpNywTQhH46gTZWab2i0zu6zawMPzauHLISvsurRx47P3xjmDT0I2FFQsfwllq96BlCKENUce4gdfB9vIo3+eYCuLzXQp4OAuhmEY5meCA7YY5uciHhW+sHo0CE8ohrqgX1hhM5WZjcYNvLxEwwfVX8Na9H6aFdYuuXHBkBkYnzsGrsY1GD7/Ibg8G9Lmjww+AOrU30LOKvtZNg1UxlaI2GxAsfw862QYhmH6JTskXkkQVlVVib9LS0uFSOxtsHhleh0RPxCsQzQaQUMgivqwB752csNuaDTw4Lwa1DpfgsWZLlD3zpqA84acCLdsFRZYssTKKT61uuqAtv8VUMedAUg/o4+q6jAtsWyNZRiGYXqLeH300Udx7733YuXKlWnDR40aheuuuw4zZ85Eb4HFK9Mrocsu3CTcCfyRKOr8IRHQFcmQG1bTDby/UsMrG7+EUvgBJLnFUmtHFmYOPRV75e4Bu79S+MLm1C5Lmz9eMgbKobdDKhiGnxUSrmSNteeyNZZhGIbZeeL1nnvuwR133CGCtyhwq6SkRAyvrq7G7Nmz8cADD4jx5BvbG2DxyvSF3LBayANPMIaaoKfdgK4av4H/zKvGRvUlKM6NaeP2ck/EBUNPgFOxo2jDZxiy5GlYYoHkeEO2QN/nAigTZ5pFCHaGiCWXAg7wYhiGYX5u8Tp48GAhYE8//fSM41944QXccMMNIgdsb4DFK9MniEdEWq1o2I/6YBjVwUaEtHCbyehy/XydhmfWfg7kfZhmhbUhR1hh987dHWq4CUMWPY7CLd+mza/lDRFWWJT1YHGDzgK8yJ2AxCy7FDAMwzA/h3iltFjz58/H6NGjM47/8ccfMXHiRJFpoDfA4pXpU0R8QsQGwxFU+ryojzZlrNDlDRt4ZEEVfjRehOLYnDZujHM/XDzieDgUO/K2zsPQhbNgCzckxxuUn2DsqZAnXwVYe7i4QUcBXs580xrLIpZhGIbpSfF6yCGHYOjQoZg1axYslnQ/Nk3TcOGFF4pCBnPmzEF34PP5cOutt+K1115DTU0Nxo8fj/vvv7/L+WNZvP486IaO5Q3L0RRuQq49F6PzR0PuYpCQrhtYttWLhmAU+U4r9izPhixvn6CJaxreWTkPW/31KHcX4NhRE0U7Wi8fkrFd7Y3Hdby1uBJbmoIYkOvE8ePKxLLarFOW2iwfhtSmHbqm4YsvPoGvoQpZ+aWYtP8heHz+16iqX4chDjuOGzkGlYFGrKprQiAag8uqYkCeHTFNw6trv8bKOgkbg37I+Z9BkrRkOy16Ni4achrG5IzEO6s+w+FbP8XhnlVI3cKA6sKqkSdg1AFX4aUFtE0hDMh14MyJFbBYZKyq8YusCDkOFSOL3UL2LveuQ1PUi1xrNkZnDxXH/b3Kr1AZrEGZsxjTyw5EPG7ggbnfYpOvARVZ+bh60v6wKAbeW/kSKoNVKHOWYtqwE/HPRR9jQ7AO5TlDcOOU82FXVaBqkVlil6p5le6FcDSGB995DPWezSjIGYjLj70QsBj4v+//D5t8m1CRVYEb970R0GX89YvnsdG7BYOyB+Dmg8+ERbakHavpexbjgzXz044TnXuPfPclNjbVYFBuMS7e7yCxTa2XRedG6+noGHfluHflvMp0/ehxPe3cOPjgQ0GvMa3bYVUtnV5PdF10Nt+2XFMWRUF30Z3XP8Mw/YNtFq+LFy8Wvq6xWEwI2VSf188//1xU2SLf1zFjxnRLA8844wxR/ICqelFBhGeeeQb/+Mc/hIV3wIABnc7P4rXnmVs5F7OWzMI67zrE9bgQDUOzh2Lm2JmYVDapw3m/Xl2H/8xZgzU1fsQ0A6oiYXixG5dNGY4DRhRuUzsemzcbjy6ZBb9eCUOKQzIssKEEOZGjEPQMTS6/uGQTrPmfoTG+ZZva+8jna/Dvz9bAF4oJEUGSxJG9DtbCzxCXa5LrtCvZKHJbEYUvufw8ywBEG6aiproi2Y79paWYEXoJQ4ytUKU4vrdb8USOG2usNkQgQ4ICWywXA8P7QwmWIgw/LLIBb9ZS1DsWAIqZWcDQrYg2TIbFvQqKY2tam7VIPhSraXXdKxzBH+oaMDyeXuXrK5sTz8cPxdLgNPGbdEO+yypaENcNWGQJrqIqBAvmoT5eg7gRh0WywCarqIs0IaRFRKYESbRYhRZxAHIcBnRIkGHXdRhqEBGpJZ8CTd2CBFW34LywFb8OeQFKHSareBt2/M8RRZWqQ5MAhdLlSjICmTSXLsOQUm5lmgN64zRE6g8Wx0pxroa1YA4Uay0ga+I4yYYbcU2HofhpBpqKUjRAsviAlDK90K2AlgVDiiWnkzQ3LIoEXQp0eNy7cl5lun6ywg4cv7kGRwZrxLkRMyx431GMWTnZ8FiDyXbI8RKcPPSXuPOok9u9niTnanisH8BQa9qdb1uuKbdchovGzsSFE4/EjtKd1z/DMP2H7co2QNZQEpHffvttWqqsyZMn46yzzuo2kRgKhZCVlYU33ngDxx57bHL4Pvvsg+nTp+NPf/pTp8tg8dqz0IP3zm/uRCAWQI4tB1bFiqgWhSfigUt14bbJt7X74KYH129fWwJ/JI48pxVWRUZU09EYjMFtU/CXk8d2+QFGD9n7F/0VOkJQ4IIMFXEjBk0KALoNbt+ZKFT2hE9ajkbnc5DkCErc+ch1OLrUXhKud7+/UkT+k2ghgWfYV8FS8ppYlqy7oMoqNAShK41injxbkVhHUyiEan8DDN2GvOAvkGWMRoXne9wU/y9cUhhNhhvzHQpmFRqIyAbcGlBrFCAgqZCUIGRdRVnjEaiQh2Ol8hk8ud8Kay9Zckn4geSZBGihAdDCg6HmzU2zwupxF6lFyEoAKnTM9HhxSZMXqWFbXknCC9I++F/ozOZlQhyD0mwH6uW1WO9+D7ocQ4kzG9k2O2pC9WiIecV0FihQJBlRQ4PR7OIgxR2Q427IlibELKYQJPFJLgJaajCaQZJXAiRdvAz8ymvgMsWNj4KNuDdPRlCS4NQkyIaCatVAOGHETHE1SLuDGaRsDYC235ARrT0aUnQAlJJXxXEy4k4osgWQQjAsTeYssRxAd8BQvJAtzUFuBq1Ibt635jYZtB81ymMbgmTxNG9nLlTJlfG4d+W8ynT9NDTVIhqtg8vQcXEtsHvYghX2OB4pAgKSjJCWg5DhMrdRCYrze8agX+Po4Qe3uZ4qI4sRzntJbDs0J2AobeZrT8BmuqZ0xMS2yrDj13vdvEMCtjuvf4Zh+hfblfyRBOVll10mSsV+8MEH4kN/X3rppd0qEOPxuHBFsNvtbfxuv/zyy25bD7N9UFcnWYzowVvsLIbdYhddpPRNv2k4jafp2syrG8LiQg+u0mw77KoiugrpuzTbBn9EE+Npuq50a5J1iB6yKvKgSDZh8dN1FUY8G5AjCDhmw5DjCLk+gqxEYGjZ8ATpAui8veQqQBZXEq5WiwSLLEOSDCj5c0xBFMuGppFokmCQKBBI8ETIiiiJ9dD6ZCUq1g/EcHbsVSFcq4w8BKHijVwgJEvIictwQEcxvMIKSMsm0bjF/QOisgJv9vxm4ZoQVyT8zDUqji1Qc7+F1XcgtHBpsv0kyGQ1AC1ajChk/Dc3B6eVl2KZ2hL5n20YuFifh7+p/0U56sQwOgZkPa1xfwtDiUGJu+CnomA60BTztxxLsrBKkggmS2BYwtAkDZolJe8sCezWWRTIogoDqiEWi6fcEkJaHM+5ycoqoUjT4WrOvRAWXcnNG9tiwm0FDZBNESvpUAs+hZz/SfI4wVChaRIMueU4SQptlAHZkuKnn7DiplhzJQtNJ0GSE5XRzOXQFK2Pu2RInZ5Xma4fEvKOUBOKNA1+ScEruQpikPByriJ+0/ASgwS2DMmwAs3n92vrnsG/Pl2Zdj0Z0BB2f5zcdkNXM84XjcW7dk1JsvhWkQsdYTGeptseuvP6Zxim/9HtmcvJnaC7Mg2QSCZr7h//+Eds3bpVCFmy+H7zzTeorKzMOE8kEhHW1tQP0zOQjx51dZLFiMRLKvSbhtN4mq415ONGXYVkcck0b65TFeNpus4gfzzq1iTrUGJZumEIMSWsepoThloLD+YhJldBNlxCgEZiOkIxrdP2kt8kuQqYFtfmS8a6FbK1RljyEoJKM6IwQGKN/AFlYaWiKlq0HlqfbDjF+rOi32CYtFVYXGneDVagUoWwuNKSNEOBDVE4EDEFEq3DWofF8vcwlGizcE3ss/SHu0RWwqy5kBBDrGkCDDGtiWKvgaFlQY/mYI1VxeXFxfh3Tq4QiQn2kVfjMes9OFP5BDI0VMU2IyTXQ9UdYhuicR31UZ8QrGJ9kIS0jFLKr7S2GFAUms4cRmvILEOE9BPjhVuADDyoB7BRVZCtm8Op/G2TordZfvN/rUgIRDKNK0KYyrbKtOMkXAKkuGmFpP1DfwvXgVbLT35Slq342syrGcE2x90TCXZ6XmW6fvw+H6xGFLqhwK0DW1Xga6eRPD/0tHODtkgW57duqcayuhVp11NjbAOkVudo8jxJmY98YbtyTSXnlcg9xCnG03TbQ3de/wzD9D+6XbySLyoFdHUXTz/9tBAh5N9qs9lEHtlf/OIXkOXMTb/rrruEm0DiU1FR0W1tYdKh4BLy0aOuzkzQcBpP07WGgjPIx426CjNhU2TEdENM1xkUSEL+eNStmSBN1DR3lcbkeuHzJ8Ei/DnJA5N8OjtrLwX8CB/XlGesIZP1i7qmWwJXyNJlCrGEhdBANE6+n4ZYH62X5lFQK/wYI+I34FOAuCTikATkKSosu83d1eY6dMSVuhSpl2KFbEVc1yDb6mHJXoC4bzS0SHFynKz6IFl9iIcGIgoFb7uy8KviUnxra+ndsElx/MryDv6j3o+B+joYkrnPSGPQ+qNaus+sue0ZpKnc1uKeCaOVwN1qAWKSBJVeQJqniSVPk84scanjzf0jJcRmkoQQbnkBMI9d+nwZ1yXcMVrNS8tvfdy1eKfnVabrR9Ni4tgbkiTOB/L1rVNbzo/kuZEU6S3nRwz+tOspBl+bczR9V5nzURBXV66pVGg4jafptofuvP4Zhul//Iw1I7eP4cOHi8wFfr8fmzZtwnfffSesu8OGZa4WdMsttwj/1sSH5mF6BoqKpuAS8u3LBA2n8TRdayiqmIIzyMctExFNhypLYrrOoAhoCiShx3eCNFkn/B8VqHqBsI4ZiAuLoJCTKYq0vfZSpLrwfkzRMpJOKaaa/QeT6yQxYIrihMCxWixJ6yStl+bRUCQCcGziN5ClmcKEBAoh07SGBC1hNRXrkGHRipLr6kjAWigNlRBtBtSsZZCkIGLeMUkrLA23OLfAi2x4Y0WoUyy4taAAd+TnoxG25HJ2k7fg35HncE1DLax6VPiW0tqsGYocmMKtFXrXbi+JeROSsDwOIVxJwCaWqrajg6UOh5gHzBAuBKniNGG5ThxQM9Ss9XwZXw6E4Gs1r/CzbXXcUyqKtXdeZbp+FEUVx14yDHE+kDW6MNZyfiTPjdRbd/P5ocKddj2pyGpzjqbvKnM+yj7QlWsqFRpO42m67aE7r3+GYfof2yxeJ0yY0OHnzDMp4KP7cblcKCsrQ2Njo/CxPfHEEzNOR9ZZ8rtN/TA9A6XzoWhqCkppHfdHv2k4jRdpolpB6XAoqpiCMzLN2xSMifEirVUnUOoeioCmQJLEsmQSPuSHSWJCCUKKFSEHE6HqpdClIOK6Dpsqw6EqnbaX0mFlOVTENaPFbzFaDj1aDEn4SZrrVCQrxc03R3RTAJKKQqdbrIfWR+ul9fusk7HWKEeuZHZVD44CZTHATz3RYjkaIrAiJISkIdZhRItRJh0tougT1r/mLW0jsoqteWm/ZdUP1b0cWmAItEhLAIxs9cDjqseW6HD4JSsWqlk4W78Mbxt7J6chqX+urw7/q16GfYKNsFpkFFizhK+w2G/NVmWrEMzpGQQ0jaZLF6ZtSTgGmFZGpw5cLrswKKbBK5vDSajn08jW8zUPSpfxiVuaGbRlUNaBSFnacRLZAxKClqzb9LdmunC0blf6MOpqz2ozryI52xz3HJuz0/Mq0/XjzspCVLJCljT4ZaA8BhwQlJLnh5x2btAWkStDUGQP2LNw97TrKU8dLM6btG1P7p2W+ShtVleuqeS8Btmpg2I8Tbc9dOf1zzBM/0PeHreAcePGCfGY6TNlypRubSAJ1ffffx/r1q3Dhx9+iGnTpmH33XfHBRdc0K3rYbYd8v+kNEAUTV0TrEE4Hhbijr7pNw2n8ZnyXFJwBqXDoajiKm9E+J5ScAZ9028aTuO7ku+Rck5S6h6KgI6BkvpT6iYdshyDZKHAJxtcoSMh6RY4AodD16yQFC9ynGawUWftpZynV0wdDkWWEI2Tq4FuWr8apogMApLqhSLSVhmQKKJbYCBHJOA3xHpofbReWj/ZxJ5VT0HAsKNUaoQLMZzYBDh0Ax4LhcjIqAEF1MTEsmkdNv/hUGCF4j2sxU+z2Z5LbUngkFxw2FTYJEfLBghtQNbWtZAVL+L+kcl5RBd11lphhfV494MfbvyfcRyu0c/GFrSI4Ip4DA82rMIdjWvg1mPIVd0tx5LsgeRfnOK7KMXtUAwFSrzFSivTe0RrCUtd4+ShS1ZFAzjXb8AhKzjLr8NpGKhVZBHbTtgzBe+0Wlyzx3OzX6qMWP006A2HJo8TpBgUxYCktxwnErg0py58QxODE4FhKVkN4jSdAUNP7FtajsOUuK2OO6Xt6uy8ynT90PEMOXJRq5DPq4ZTmzTqoMdpTRrchiaGV0tk9ddhSFGg+fymtFdXThuVdj2JVGv+w5LbLsmxjPNlyvea8ZoydPFNv2k4jd/efK/def0zDNP/2OZUWVQ9a+bMmSLbQCYWLlwoUllRcFV38OKLLwpXgM2bNyM/Px8zZszAn//8Z+HP2hU4VVYfyvOqG6KrsMfyvDYvvzvyvCYsiduV57W5HR3neTWDf6RYMXKiR8EIjkjOp2V/JrInIBn1TkZAK3KtebBbNcT1GCWvQiiiw6tRztIW/0tZl5Gv6fDFShBSo5CtZnonggSt0bgfchp3Q77dAjviOD3+GWboXwsLbIJGRcF/SirwdW4x6qKebsvzekFIwVVBj5nnVbLgPcmBZ1waqlSzC93SnOeVLJBtzLiUykAMM4+MpNlgaTwIwfqpiJKPc6d5Xpsz93aa59WcbufneTXb0WGe1+bzJT3Pa+b5ekWe1x28/hmG6T9ss3j99a9/LSws9913X8bxa9aswUUXXYRPP/0UvQEWrz8PXGGrGytsLfg2rRISWbdazxeNx9pUgSIL2vK6ZWhqWodc2SYqYNUFPfi/H97A1lA9imz5OGXYAVAkYNmGb1Dnr8NHwQBqrYuEBTYBdTVPzzsd+xaUIBiLoTyyFQeseQLuprVp+8IYfCC0Q27Ee/41211ha1OgBhWuYlw7YTrsVLGvdgVAgU3kH1q0u6iw9eScV1EfqEaBqwTnTTlFOIL+3/InsClQiQpXGW4cfb6wsv5j/ntpyyMR+OnKWmzx6ygoLMER44bgg7ULuMIWV9hiGKY/FinoS7B4ZfoloSazzCoF/ugatgbrURsIIJqhR+SrqnV4ZtOL0CxmfteEFTY3PAXXjjkS5dkqoGsoW/MeKn58AUpqgJ7qAPa/Ehh7GlVBQK+GMpRY3c2fFBcBhmEYpk/B4pVhdlXiEcBXBTSntvLFAtjsb4AnRPlo0y/7cDyCB5a/j1Wxr9KssHqkBNOyTseZoyuEz68tUI1hCx5Fbs3i9HWVjAEOvRUoGIE+gRCyWYAtC1DTi6AwDMMw/UC8jh07Fu+++26vzKnK4pXp19Dl7a8BIr5kDtiaSCNq/L5kgYZUvqtdgyc2vIi40pCyCBnOwFRcvefhGJ6vimUWbvwcQ5Y8BTXaUmlLWF73uQDY50LA0pJyq9djsQL2HEAE2HF3NcMwTL8Qr1QJa9GiRe3mXt2ZsHhlGDKteoFArSlmqZJTLIiqYCMaQxGRPSFt0ngED/70LlZEvk4broXLsL/9dJw3doBZJjfswZAlT6Jo01fp68odbFphy8ejT0HCNSFiSdAyDMMwvRIWrwzTXyD3AXIjIHeCZitsfbQJNQG/qDHfOhfogoZVmLXuJUTl1IwEMqzew/Cr3Q/FuFIz4Ce3aoFwJbCFWnxmBXvOAA64yuya72uQTywJWSulpWIYhmF2OfF6zDHHYNasWaKIQG+DxSvDpECXe7ABCLUI0kA8hKpQI5qCkTYBXWEtjIdXvYOloW/ThmuhARhrOQ0X7V0Ot1WCHA9j0LLnUbrm/eaSA824ioApNwHDpqFPQpWyyBJLQra3B6QxDMP0Ezhgi2H6IxE/4K9OuhFohoaGiAe1IR984Tj0VreFRU0/4dF1LyGCpuQww1AgNx6O80dMxf6DFJFCz92wCsPnPwSnt1VZ5uGHAYfcYIrZvgi5FFCWAhKxHODFMAyza4lXKt/61ltv4dxzz0VvgMUrw3TNjYAIxkOojTShMRhuE9AV0sJ4bO1bWOT/Ln0xoYEYpp2GS/cpQ4FTgqTHUf7Tmxi44lXIupnpQEDi78BrgD1O6tuBURSMJnxjs/r2djAMw/RRul28ku/rhAkTuq3C1o7C4pVhOoAu/0AdEPYkB5EVtjHiRX3YD2841iaga3HTCmGFDcPbshhdgd5wJE4fdAiO2E2BLEmw+7Zi+IKHkV23PH2d5fsA034H5A1GnyZhjbW5AZVqALOQZRiG6ZXilcRgRyxevBhTpkxh8cowfTgbARGMh1EfbURTKNomoIsstE+ufxMLfPPSFqMFB6E0ciou36cUA3IkUrUoXv8JBi95BpZ4SzlbKFZg34uB8ecAioo+D+WNVV0sZBmGYXqjeJVlWfi2tQctjsazeGWYPkYsBPgqqV5nGytsYzQAbyjWJqBrsedHzFr3CkJGqhXWgnjdkTim7GCctKcCVZGghhowdNHjKNia7nKAgpHAob83ixzsKgiLrMv8kKAlYcswDMPsPPFKQvB3v/sdJk2alHH8qlWr8Ktf/YrFK8P0RbS4aYGNBtIGk6W1PtIEXzTaJqArEA/imQ1v4gfvD+mLCg5Gtu80XLZPMXYrMl9487d8h6GLHoM13JLtAJCAvX4BTLps1yvbSkKWLLFCzLpZyDIMw+wM8Tpt2jRMnz4dN954Y7s+r+PHj4feyk9uZ8HilWG2MxtBoKaNFZYyEvhiIXjD0TYBXQs9y/DE+lcQ1M1qXoShq4jWHIUphQfizL0VOFUJSjSAwUufRcn6j9PXmVUGTP0tMPgA7JIIIetIEbKceothGGZ72GYzwFlnnQW7vf1UMaWlpbj99tu3qzEMw/QSyHczpyKt0pQiKSiy56PUkY8Cpx0FLhssKZbEvXP2xJ/2vA775OydHCbJMdhK38aXkYdx/Qe1mL/FgGZ1Ye2ES7D0kNsRcqfkhiaXhbeuAmb/Pi0P7S4D2QmiQcBfCzSuBzxbzEA5vXf0UjEMw/QVOM8rwzDtQ5ZXygfbyo0gYYX1x0MimKt1QNf8piV4csMrCOmBNCtspOYYTMjaH+fvoyDXIUHSoiKlFqXWko0UEUepqA6+Hthtev8IfqLcsSJzQRZbZBmGYTqBxSvDMJ0TqM9oDaXqXA2RJoQ1rU1Aly/mx7ObXsN8z+K0eeKBYZDrTsUvxxZgyjBJBHg6PRsxbP5DyGpcnb6Civ2Bab8Fsgeg30CuBfZsU8z2B+HOMAzTk+L1+eefx5lnntmlaTdt2oSNGzfiwAMPxM6ExSvDdBPUxU05YVvdMuK6hvpoE0LxMALRuAjoMlKssPMaF+GZja8hmGaFtSJSfQxG2ibhkv0UlGSZabVK13yAQcueg6K1FE6AxW4Gc+11JiBb0G8glwxbjilkd4V0YgzDMDtDvFL+1pqaGlxwwQU4/vjjMXr06LTxJBC/+uorPPPMM/jwww8xa9YsnHDCCdiZsHhlmG5E+GxWpQVyJfDFAmiMehHVNXjIChtvscJ6hRX2FSzwLE2bJ+4fgXjNDJw6Oh/H7i5BkSVYg7UYtmAW8qoXpK+geA/g0FuBwt3Q72BrLMMwzPa7Dbz55pv45z//iU8++QQulwslJSUigIvKwlZVVaGwsBDnn38+rr32WjFuZ8PilWG6mXjUDK6i8rKtiOlxkVIrrEUQjMXhDbVYYelW833TIjy78TWE9GByHkOzIVJzLMqlffGrSQqG5pMV1kDB5q8xdPETUCMphVEkxSxssN/FpkW2v0H+sLZstsYyDNOv2W6f17q6Onz55ZfYsGEDQqGQEK2UIos+VMigt8DilWF6AIqQJwEbC2cc7Yn60BTzidKyZIWNpFhhPTEvntn4KhZ5l6XNE/fvhkjVKThmRB5OHSvBZpFgiXgxeMnTKN74efoKKBMClZgduC/6LZQTl4Qspd5iayzDMP0IDthiGGb7oFsHZSKgnLAZiGox1EYaEdNjwgqbWtyAbjtzG+fjuU1vIKSH0qyw4erjkRffBxftp2BcmSnKcqoXY9iCR2AP1qSvZI8TgQOuMS2R/RWyxlJ2BhKySj/yCWYYpt+y3eL1008/FQULMvHQQw+JKlu9ARavDNPDBBvMTwbo9tIQpcIGAegG2hQ3aIp58MzGV7DYuzxtvrh/FMKVp+CgilycM0FClk2CHA+jYvnLKFv1NqSUgDA4C4BDbgCGH84WSLLGkpAlayzDMMwuynaLV5vNhquvvhp/+ctfoKpq0pWAgrnInYB8YHsDLF4Z5mcg7DXLyrZzOwnGw6iPNEIzdITjlFYrLv4m6Bb0TcM8vLD5TYT0FjcEQ7MLK6wjPAHn7SPjgMFmWi1X41oMn/8QXJ716SsZOgWYchPg3vm+9jsdssCSJZatsQzD7IJst3j9+uuvce6558LtduN///sf1q1bh5kzZ2LUqFF46qmnMHjwYPQGWLwyzM8E+b9SSVkK6MoAFTaoi5gptcgK64vEEIxScQOTxmgTntr4Mpb5VqYv1jcakcpTsFdxFi7cT0aRS4Kkx1G26h1ULH8Jst4SOGaoLkgHXAmMOZXKe/XgxvalkrQJa6xzZ7eGYRhm5/u8+v1+XHrppXj55Zeh6zr++Mc/4sYbbxTWkd4Ci1eG+Rmh2wkVM2jHjYDwxPxoinqFxTWqmQFdFNhlzm7gq4bv8eLmNxHWW3K9GnEnwtUnQAnuhTP3knHkSAmyLMHur8KwBQ8jpzY9+AtlewHTbgXyh/bctvZVaywJWa7ixTBMH2aHTBM//fQT5s2bh4EDB8JisWDlypUIBltS4DAM08+gF1dnPpBd1q7/aY7qRpm9CFZZhVWRUei2wWU1u7bpxfeggv1w++jrMDprZMtiLUE4BjwPqeQZPLXQh9s/1LGxyUDYXYofD7oVqydciria4udZuQjG878Avns4Y0qvfokWN18qGtcDviog1hIoxzAM0y/E61//+ldMnjwZRxxxBJYuXYrvvvsOCxYswLhx4/DNN990bysZhulbUMAQpbNqx9/SqqgocxQhW3WDJG62XUWBywa1Oc1egTUP1wy/GL+smAGbbE3Op2Yvg3PYvVgfXYzfvqfjxUU6ojpQO2QaFh5xL+oGTE5OK5E7wXcPAS+cBVSml6hFf7eOU4YIzxagcYNpKc9QdIJhGGaXcxsoKyvDY489hunTpyeHxWIx/Pa3v8UDDzyASCSlvONOhN0GGGYn54P1bmnXD5agggbkCxvXqaABkiVm0ZxRoC7SgCc3voiV/jVp88W8YxGpOhGlTjcuniRjdLFp6c2r/AFDF86CLVSfnNaABGns6cDkKzgSPxNkJafqXeRSoPbD4g8Mw/SfIgVUmCATc+bMEaVkewMsXhlmJ0NWPVHQoP1uat3Q0RDxwB833Y5iugEvlZjVtOT4OXXf4JWt7yCaEqClx12IVJ2MuG8MDhsh4ay9JTitEpRYEIOWPYeStR+mpdUy3CWQptwMDD2kRze5T0Pintw+GIbZZZk6dSr23ntv3HfffehXbgMkXJuamvDoo4/illtuQUODGaAxf/58jBgxojvbyDBMX4ZcAbLLO7R4ypKMQnseiu0FUGQFqiyhwGUV7gQSJDF+WtGBuH336zDSPaxlPksAjoHPwF7+HD5e58d17+j4fpMBTXVi3d4zsXTKHxDMGpCcXqKiCu9cC7x/MxBsscwyKaS8HDAM03NUVVXh17/+tdBMdrsdJSUlOPDAA/Gf//yH44c6YbsTAC5evBiHH364sGquX78eF198MfLz8/Hqq69i48aNIl0WwzBMsluarHk+qsjla3cyp8UOm1IkrLCBeEgEctlVJVlitshWgOtG/Aqf1n6NV7e+i5hhCi01ZxEU1xr4K0/GvV/sif0qIHLDomAUFh96Nwb89DoGrHwdst6cmmv1hzA2zYV04LXA6OO5uAHDMD8ra9euFUI1NzdX5MsfO3asyJ+/ZMkSPPzwwxgwYABOOOEE9FY0TRMBtnJznMLPzXav9dprr8X555+PVatWiTeGBMcccww+/7xVHXKGYRgiqwRw5HY4iSIpKLLni48iyVAkCflOK3IdVsh0s5RkHFZ8EG7b/VoMdw1Jzidb/HBUPA172Qv4bksQN7yj4+PVOjTZgs2jTxMi1pu/W3J6KeIFPvkDjNcvA5o29ehmMwzDpHL55ZeLLE2Usen000/H6NGjMWzYMJx44ol45513cPzxx4vpqIf7oosuQlFRkXB9PPTQQ7Fo0aLkcu644w7R/f/0009jyJAhwqB45plnwudrMRIEAoFkXn6KV/r73//epj0Up3T99dcL0exyuTBp0iR89tlnyfFPPPGEENpvvvkm9thjDyG0yVC5s9hu8Uo7PFMJWNpwMoUzDMNkxFVofjqbzOJAubMYDov5cuxQFRS57cISS5TYi3DDyMtw2oDjoEotnUhq7gK4hv0DEdsKPPqdgT9+rGOr10AoeyCWTfkD1u51IeIWR3J6acv3MJ47A/jhCXKi7ZFNZhiGSVBfX4/Zs2fjiiuuEEIxE4l8+aeddhpqamrw3nvv4YcffsCECRNw2GGHJV01iTVr1uD111/H22+/LT4Ud0QZoRLccMMNYtgbb7wh1kuilFw8U7nyyitFpqjnn39e9KzTeo8++mhhoExArgx33323cBddtmwZiouL0efEK6luCobKlPuV3hAYhmHahayvWaWddteTFbbEXoBCW56wuMoSkOewIsfR4gt7RPEU3Lr7tRjmHJScT1Z9cFY8AXvZS1hRF8LN7+p4bamOuC6hevhRWHT439BQuk9yekmLAN/8E/qL5wI1y3t00xmG6d+sXr1aFGShiqStY4nIOkqfm266CV9++aVIQ/rSSy9h4sSJGDlyJP72t78JCygVh0pARaLIMjpmzBgcfPDBOOecc/Dxxx8ni0nNmjVLzEeil9wTnnzyScTjLS/qZEF9/PHHxXpo/uHDhwsr7EEHHSSGp2aUevDBB3HAAQeItjudzr4nXskX48477xQbk3hLoB1AO3zGjBnd2UaGYXZFbG4zkKsL/qZu1SnywtoVm/jtVC0ozLLBqphW2FJ7MW7c7QrMKD8WljQr7A9wDbsPuuMnvLjYwG/f17G6zkDUWYiVk2/Ayv2uQdSWk5xerlsJ46VzoX95HyfxZxjmZ4WE6sKFC7HnnnuKbnxyDyDxWVBQkBS19Fm3bp2wtiYgd4GsrKzkb3INIGstQdNFo1HhBpCA4pNShTP52ZIP62677Za2HrLWpq7HarWKXP59OmCLfCZOPfVUYTYOhUIiNRa5C1Dhgj//+c/d20qGYXZNVAeQMxDwbjVzwnY0qWxBqaMQ3lgAjVGPuHlRRgLKC+sNx4UV9qiSqRibPRpPbHwB64OmH6useuAc9BiijftiU82xuG22HUftJuGMvSQ0DJwMT/FYDF7yDEo2fCqmlwwd0sKnoa/5GPK03wGD9v9ZdgXDMP0Dyi5ABj+qSpoK+bwSDofp1kTClYRoqu9pgtzcltgBVVXTxtGyyRrbVWg9iqIItwT6ToVEbAJqV8Kdoc+KV3IK/vDDD4VZm/wjaOPJF4MyEDAMw3QZiw3IHQRQGqto5+lhslUXHIpVFDaIaFGRkcBqUZJ5YcsdJbhptyswu3oO3qyaDc0wRbE173tY3KsQ3joD7/80EvM2G5i5n4y9y91Yu8+lqBt0EIbNfwSOgOmzL/u2Am9eAW3UsVAO+k2ngWYMwzBdgSypVJ30X//6F6666qp2/V5JU5FRkAK7yLq6PQwfPlyI27lz52LQINO1qrGxUbh4JvLxjx8/XlheyVpLbgN9gR3OcUA+ERQ1d+ONN7JwZRhm+5AV04XAmd+lyVXZLC+bZ80WlgDKC5vvssJtIwuEJHxlp5ceit+PugaDHC15XmW1Cc7Bs2ArfQ114Qju/kzHv77S4Q0b8BaNweLD78GW3U6EIbXcGpWV70B/9lToP71vllZlGIbZQch3lPxOyZf1hRdewPLly4Ul9plnnsGKFSuEBZQ0FfVmn3TSSSLQitKSfv311/jd734ngua7AllOZ86cKYK2PvnkEyxdulRkikpNcUXuAmeffbbISEDpTsktgVwY7rrrLpH5oDeyTZZXKvvaVa6++urtaQ/DMP0ZEq+K1bTCdkEo5liz4FDsqIs0ispbWTbKCyujKRhDXNcxwFGKm0ddhQ+qP8XbVR+lWGHnwuL6CeHKU/HVhuFYVGXgnPESDh6qYuOYs1A38AAMn/8Q3E1rxfRyuBGY/TvEl78Dy6G/BbK4AhXDMNsPWUQXLFggcrxSoafNmzeLQHhKQ0XBUmQUpBfzd999V4jVCy64ALW1tSgtLcUhhxwiChp0lXvuuUf0jlP6LfKNve6660TV0VQoMOtPf/qTGLdlyxYRPLb//vvjuOOOQ58vDzt06NC037QjKXVCwveC8pFR9Bn5wVIC3t4Al4dlmD5ILAxQt30X/bboNtYY9cIb85u/AfjCMeEPm2BTcCse3/g8Nocq0+aNNkxGpOZowLBhbClw0X4yit2S8MEtW/MeKn58AYoWbVmXxQF9/8uhjDvDtBjvalisphsHwzBML2WbxGsq//vf/4TZm1IwJKLWyORNlbYo/yuZoHsDLF57P7puYNlWLxqCUZGMfs/ybMiUE+nnboehY3nDcjSFm5Brz8Xo/NEiCGh72pppWURny89EOBLDnz/+GBs9NRiUU4zfHXaYmeu0apFZ4tRZAJTuhaim45HvvsTGphoMyi3GxfsdJJb/1uJKbGkKYkCuE8ePKxN6K7Udo3J3x/JKf9o2xfU4Hl3wKjb5tqIiqxwXjT8FVkt6UADhDwdx1ew/oDK4GWXOgfjnkbfDaXW02Uc6NLy37j1UBipR5irDtPLDcfenc9K2yaIo6W3dswCWQGWbQK5wLIp/zH8PmwI1qHAV49oJ0yFLOh5b8ijWBbYi35aHU3Y7FYqsYqVnA6oCHjgUJ8qsJZi95Xss8C3A5tgGGELiNh+vaD7CW0+FFhoGmwJMrghjWG5ABIRNyotg2MKHkV+3NK0d0cLReKBwHH4w4hjoLMEf9j1bbMMTKz7G5mANBjqLMWPQZFzz5TOojtSgxFaMB6deAJvFgtfmvoVaXxWKskpx8qTjoRsSHpj7LTb5GlCRlY+rJ+0Pq6pguXcdmqJe5FqzMTp7qDiv3qv8CpXBGpQ5izGlcALuWPg4NgerMNBZij9NuBhOCoJrRVzT8enKWlR7QyjJdmDaqCLA0DFv3rcIeOrgyinExIn7U51efLDxJ2zUFZS7C3DsqIniHEo9nqNLs7C8ypd2fIORMK58915sDW5GuXMg/nXMb+BuDjrZ1mtsR8h0fUIyenSdDMP0IfFKJm/KM0aOvqlQtBplISCfie6AnIipggT5gZDjcnl5ufDX+P3vf9+lqDcWr72br1fX4T9z1mBNjR8xzYCqSBhe7MZlU4bjgBGdJ7LvLuZWzsWsJbOwzrtOCDeLbMHQ7KGYOXYmJpVN2qa2ZlpWvs305WyINLS7/Exc8uJz+LLuJUhWSntCIk5BdtSJG2JhnKLVm3XoZRVv24rwV8WGRksgOR2ixdCbpiHqGwayX9Lj2p23HgMGf4uYUiXaoWsyYuFCxBumwgiNFNtkyfscHtv70KWWVFEKnDhpyDm4Y+oVyWHHv3AB1ofmpUhAE2t0T9jrL07uI3fJV/BY30dYDwgLKU1v6BIMwwro5LmkQI8UQ2+cinhgeLKtWQ4VVx4yCBftZQc004J67Zwn8InnA+hypNm+KkE2JBiSniZGKQdsnsUJWbFBM+IIxqOI6GQ9bdXaVreQaMMBzVZYK6xSCAXKVsRK5iDiWonjgwHc2NCE3BRrMCUKfCwnGw/n5CBKLzGGLMSSSeZba24csEJHXAIsBuDQFDQYWQhYaBt02iLIcafIZavaI4gbcZH+yyarwj0ipEXFtortzbCKvbPG4ekpf0j+fnHeRjwzdyMCkXjzHgP2UVbjDPljDDRqYJHiiBsWzHYU4Kn8XNRZIohLBiTDAhtKkBM5CkHPUHE8SXxqBuXfpRy7kji+wewXEHfOBaQUK7khY4h1Kt4++/5tusZ2hEzXZ3HJJljzP0NjfEuPrJNhmD4mXsk9gHKA7bvvvmnDycl36tSpwp2gOyB/kHvvvVck1aXcZ+SkTL4flI6rK361LF57L/Sw+e1rS+CPxJHntMKqyMJ62BiMwW1T8JeTx/4sApYeqnd+cycCsQBybDmwKlZEtSg8EQ9cqgu3Tb4NWmB4l9qaaVm0nOpAtVANJc4SMbz18jM9SIVw9TwESY7AiDsBQ4FDDsCpeOAydFzjseBoVw4+Cnnxt6wYApKMkJaDkOGCAQ2SJQhDtyFadTKUyEjAvhqWklfF8grsuXBa7djq8UGXglAkOwpCZ8GjrUc46y0hRCRDac7BajQLYhkzhlwiBCwJ13Wh9gMG5OAeqIhdiQbLbPhdb5JNDIpkgUaSq9nvlDDiWTA0R0tbK0+GEh0J3SBroQFFlnDzkcNx0d4OXPvxw/jIa7ZNiETaoRIty8igRs1hLtkGWbLBp7WUSoTRvE2pwjXlbz1agPDW06CFKLpXhzV/DqyFH0OS48jTNNzY0IjjAun3t3UWC+4ozMd8KpWdUIgZaW6XZqBYk+CXDNSr5sTWuAMx2h9KGLpquj+4pBxUZOehJtyAhqjpoyZDhk4Sv4M7d0LAknB9+PN10A1zX5K+Hqv/hF9bXoJTisBrOBGXLFhm1/HfIgUBSUJcz0FEzkHciEGTAoBug9t3JuzxUdjqCSWPy4A8Bxps/4OR/W277RiiHioEbFeusR0Rk5nuJT5pORqdz4nzvcSdj1yHo1vXyTDMzmO7+06oUgO5B6SWGCOr62WXXdatWQcoso5q/R577LEiVQRZdY888kghkpm+C3XvkZWEHjal2WbJT+p+p+/SbBv8EU2Mp+l6tB2GLqxB9FAtdhbDbrGLLkX6pt80/NEls/DgnFWdtjWuaRmX5Y16k9ZA+pu+U5dP81A7WrsKCIsrCddYNmBQl72MUiOAIk2DX1LwlNNAxDDwmF0Xv2l4CQLCckfT03w0v5o/hzqOYcn/TPzWY9loCAD1/hgMQ4WKXBhSBB77+wi7ZzeLQwsMyGJZEllxRWynjtfXP40Gv0dYXDvcr84fEZV8CDpni/loeRpZSFttp0SWYlpXoq0FcyBJBiyyDKtFgqYb+NfnG+BXC/Gx54PmtinmNravEJPjAno0XbiKUa2Eq2hwy61QttbDMfgh2IrfFuI42jANgXXXIB4YhkZFwS1Fhbi0uAhbUvIhDo3H8WRVDW6ta4C71TZmIqBIwoLpV1IaIodF23QlnBwU1IJCpHpiLdvQnsU1lYW+xfCGAsLiSsJVWNSFeDVwhvKJEK61Rg4isEKDjJdyVfglGUWajgLdL85RXVdhxLMBOYKAYzbqAiHxUkHHhaj1eWFkpd6HpZSPyfroZ/AGA51eY5mugR25l0iygZDrI8hKBIaWDU/QFP3dtU6GYfqoeH3sscdE1BuleaAIOfrst99+IgKO6t52F1SGjMqcUU4ygipOUG7Z6dOnZ5yeqlKQtTX1w/Q+yC+NuvfIStLa/YN+5zpVMZ6m60nIF466MckalKkdNHxVw1qsalzZaVvfWTmvzbLC8TAiWgQWxSLSN9HfYS2ctnyah9qRCvm4kquAsLg2iwGHFIENUeiGArcGbFWB5yIB8U2/dShivB3UpS7WIOaXbTWAezEkay2gucR6SRSGYpqwoNFv2XAiKm8C5JAQh4l1JjpmTLGoQEMQZ755aWfaSVBrfaTZ9cC04JrLSsyZ2I86JCWU1lbNskWMIYFjUST4QjFc/vYTpquAQWLanFcS1uCOWpKwGneBuB1SvNlqKo6NAWvBl3AOfQCyfSOMWCFCmy5BuHKGsBR/5XTg5AFleDorS7g5JDjd78cbWypxaCvLrEl6WxrIs0MCZOqGJ0uzEO1B05pMlmVDhiHFsclfDy1FZKW6R3TE5V/+W7gKmBZXc58N1TdjkFQjLK6JY7BWNc+lLFqtIcOKOBQtLI6X2NeaE4Zag6i8uVkAy2KZ8azPUlwFWr8NNP+WdMx8+7ZOr7FM18CO3EvoXI7JVZANl3gRisR0cb531zoZhumjRQqKiopECgcSlZSTjNh9991FvrDu5OabbxYClJZNec/IB5ZcBtoLCKO8ZH/4Q4u/F9M7oYAK8kuj7r1M2BQZHt0Q0/UkFMRBvnDUjZkJGh7TmxCDv9O2bvXXt1kW/SatQQ/8hMVMSwlAomnJGkvtSIUCmURXvRCSJhYSemSZMyThK0k+k5VSs++kEDWmrFNS5ZSYXwcsjc2iqGV5pCVJChISyNKaaFd7Fk1zeGPMLDvYGZrSmJyP/pE/Z+bFaultVQJkKBZQNzeN3UqBW6Tnmi2utLQODa/bjC78TA3NanbZy2ZbFVstnEP+g2j9IYjWHY6YZ1/E/bvDVvImjKwl+L+CPLznduIPdQ0Y2Vwqu1jTcH9tHT4MOHBXfh5qLZlvs/GE50PzpujCaKmlaG7zj5jRXIJbbHXXeyKqojVi6tR4wmwEhI9rVIhXE59inkt0TpHHrUWi16CUILmU4yKZTTG9SawNXWpHTXgLZHvH11ima2BH7iU6uTuQ6wwsYr9p5GOc0ouzo+tkGGbnssMhlyRWTzjhBPHpbuFKvPjii3j22WdFdgNyUSDf17/97W/iOxOUL438WxOfTZvMEpFM74Iigakrk/xGMxHRdDPxvDPzA6+7oOhjCuIgX7hM0HBKiK/C3WlbKTq79bLoN2kQ8lEUwkMClJT0SjQtTUPtSIUi8E2LZYuIiEOGYZAN1EiKjTJDNoWsabts9k5NuazF/DIQzzNFSMrySIBQqwgD8Wb3APNXZszheSq1rXMULS85n9mydtRmQlAn2qq1VJshvUFzlbsSeVWbA75o6DZ7lLSvdhPbTkFKUswNaJY0K6ytcA6cQ/8J2b4JhpaF8NazEdpyrnDBWGKz4fTyUjyQS93wLRwRDOH1LZU41een4II267TQ6dTsASD2jvhDSdku8w9VMrM8bItwJUqtxaYoTpnNC5cIziLragKyuCZehsQrlkFiLyUFWMpxSYaiUbujXSsoUWwf0Ok1luka2JF7CVlc6fqh85rOcRKwZDXurnUyDNNHxStZQClN1llnnSV8XA899NC0T3dBVSHI+nrmmWdi7NixOOecc3DttdcKC2smyH2BArNSP0zvg1LYUKQ+BTy1jhmk35RknsaLVDc9CKXNoehjCuLI1A4aPjJ/GEbmjeq0rZRWqPWyyMfOptgQ1+IiQT79bVfsacuneRKptBJQ6igjWiwCmRIiJmTYhI+iLGnwK0B5DPiFzSW+6bcMTYwPw5ZonZifIvnhHwcjWiSsZ7Re6vZ1qIpwH6DfFLRl1SsA3ZEWBJXohjWtpiRpnHj+hP92yehZFL0YskHpkkR/dPOy0gOqhFzSHGltVeJmRSzyR6TgIMo68ODxF0JKaZsp+Mii2VFLWgvm9sWfRJkPEjJbicISKUJW5RFpsyi2GmGFtRaR720cmn8PBNb9BtHG/RGDjEdyc3DqgDLMsyX2P5BtGLi9vgGPVdVgSKxFMBL5GmAlEUjWZfEyQsFSZmCe6I4XQXMWVLgLoKSkdkq4TXTGgwddAZfNIo4x+b0S6+SB2GgUI1tqOa+GxcxziSywkqQjCgs0xS6Ol9jTShBSrBhWfaCwXoqMA7oBi29qc+Bcpn3b/NuQMeu4Ozu9xjJdAztyL6FzWdVLxXlNxSpsqizO9+5aJ8MwfVS8/vrXvxYfErFjxozBXnvtlfbpLihrQWoZM4LcB/QuJi9neicU8EQppihSv8obEf5oFHhB3/SbhtP4ns73St35lDaHoo9rgjXCR5UezvRNv2n4RWNn4vIpIzttK+X4zLSsbKspwEkI0N/0nbp8mqd13km7TcVBhaeJCHxJ9cLsr9VRJblQqyhw6xrODQI2ScKFYRluQxPDq0HWMRI+MTEfzR9roPrVFjMdlm6DrHqR7wIK3CokKYYYmiAZNuSEj4bdf2RzuieyxJqpm0x3AhJeskiXle/OwRDHxI73a3APWI0sOINHmrcZKQ6F0i+12k4j7jLXlWhr/RRh+SPBEY2bIvuKqcPhdtpxUOHpybaZNuOOLJHmuCzFhlxLa+sa+R+knFdxm9lBL2vQLSFIugp70xjYImVQPcNbTKNCzOuwFX4K5xCywm4BdDsi1SchuPFX0CLFWK+quLCkGHcU5MOb4t85MRLBy1sqcXGTFxbDENkGKFbLraVshU4+txJkzXy5IZyKU+jvHDUrXbx2cllQtoFshwu/nDRI+LtSt7opPCW8oB2KoGFDkeSBHVHhZnJ6U0wEmtUqMuplt9i3shyDZPGKbAOu0JEodDmECwIdF6IoKxuSb79W+zzVrxkiXVa209XpNZbpGtiRewmlYnMEDoeuWSEpXuQ4zd6P7lonwzB9NFUWlQ576qmncMwxx6AnoZyuH330ER566CGRKovKqV1yySW48MILcffdd3c6P6fK6t2k5WbUDdH93ifyvHbQ1p7L82pmQO08z2tzptSUPK8JG2SHeV7DI8U2dVue1+Z91HGeVzOLQmqe10RbyeJKwvXiQ4Ynl33Zm3/Hl3UvwqDAsmYozytZKVPFLPnyFqpuyBa7yJMajEURoiAksW9M5ScbKqS4Ezq9GDQHSVliOXB5x0IOlCbbESj6FhH3T60D6YXIjtZNQ7SOeprIChyHteAzWAs+hSRrKIrHcUtDo3AfSGWNRcXf8/OwzGb92fO8JtiuPK8kfvWUPK+yJI5vr8zz2nzucZ5Xhtl21q9fLyqqkt7ae++9sUuJVyoW8Nlnn/WIn2sqPp8Pt956K1577TXU1NSI9f7iF7/AbbfdBqu1c39IFq+9H66w1TH9tsLWuDJYLG33TzgaxV+/eB4bvVswKHsAbj74TOEy8diXt2GTbxMqnKW4cOxFsCjWtApVw10D8dTKT5PVr87f/TBh6XxmyXxs9NYiz2XDMSN3E/vs23UNohqVQ7Vg3IAcxPQYHlv1DlZHlsOH9EAlLVwm8sLqkXLxO8cZwu6DFmO3QhkHFY7Fgh9m4aL671EoiiSY0E13fvZorBk0HScdeBpX2OomuMIW0185//zzRSwQpTD973//mzbuiiuuEBVRzzvvPDzxxBP9W7z+/e9/x9q1a/Gvf/2rS5WudhYsXhmmHxGoB0KJLAfbjifqQ1PMl/SdpGAnXziGYIq/6grfajy58UXUR1PWY8iI1B0qLLFkp6Y74hEjJZyxtwSnKkGJBTFo6bMoXfdR2vrirhKEDrgJzt0OEdbMXoHFCuQO2tmtYJg+y84wyJx//vn45JNPhOaprKyEo/nlMRwOo6ysTOifadOm7TLidbtfPynXKmUBoDKxxx9/PE455ZS0D8MwzM+OqwBwbb+7SY41C6X2QpFhgqDnDXXfUw7RRNDU7lkjcPvuv8GUwv1bZiRf2KKP4Bz6b8i2KmFZnb3KwA1v6/hhswFNdWLd+Iux9JDbEXKbFlrCEqhG1oe/Qfid38Lvqd2RLWcYphdA7ivnPf4dfvX0PFz/4iLxTb9peE8zYcIEVFRU4NVXX00Oo78HDRqE8ePHJ4e9//77OOigg5Cbm4uCggIcd9xxWLNmTYfLXrp0qciv73a7RT5/Cp6vq+v5bep28UobffLJJ2PKlCnC/5Wsm6kfhmGYnYIjF8gqbU5Guu3YFCvKHUVwqy0pu+wWBYVuWzJinTJGnF0xA9cMvxh5aktAmGLfCtfQfwq/V8qy0BAC/va5jvu+1NEUMuAr3AOLDrsbm0edAl1qSUflWj8bjhdOR9OC1xBplZWAYZi+QaJM8fJKr8j0UZxlE9/LK31i+M8hYC+88EI8/vjjaQWlLrjggrRpAoEAfvOb32DevHmiCBQFxZOeay8QvqmpSWSRIgFM85D4ra6uxumnn44+5zbQV2C3AYbpp8TCgG8r9eFt9yKC8TDqI41pFa4omt0bjiXTT1Eg2Etb3sKX9eklq/XQQITIFzZaIn67VODsCRKmDjOrmjk8GzF8/kPIalydNl+odF+ED7oJ2SVDdo4rAbsNMMx2uQqQhZWEK5UpTnWnJJlFmTBGl2XhyQv26xEXgvPPP1+IzEceeURYX1euXCmGU4Enynd/0UUXCaNjJrcBsqBS4aklS5aI7FGt3Qb+9Kc/4YsvvsAHH3yQnGfz5s3J9fR07FMm2GudYZhdE9UO5FQAynYXEoTTYkeZoxh2pSV3K1lfyQprs5iWU4dix7mDTsOvh1+EPLWl10l2bIZr2AMiAwFZYQMx4OG5Bv78iY4qn4FQziAsnfpHrBt3PrTU5Vd9j5zXfgnfN4/DFwxtc3EChmH6b8nzoqIiHHvssUKkkgWW/qbe8VRWrVolAt+HDRsmjHpDhgwRwzdu3JhxmYsWLcKnn34qXAYSHxLFRGfuBj3FNt/VyWzclQAtqobFMAyzU1FUU8B6twLx1PpXXcciKyh1FIpgrsao+eAhiygFYlAglzcUFwJzz+xRuH30dXhp81v4quF7c2ZJg634fVizliEorLDFWFYN3PiujlPHSjhmdwlVI6ajoXxfDFvwKPKqF4jZZC2M3Pn/RmT9R6ibfDOyBu5pZphgGKZX0ltKnidcB6688krx97///W+0huKUBg8eLKy0lMGJ3AXI4hqNZm6b3+8X82RKT0rBYH1CvJ500kk90xKGYZiegHKD5QwEfFVAlPLgbn8wF/nD1pIbgW6W2XWqFlgtCjzBGKKaBqfiwHmDT8f43LF4ZtPLaIqZYldybIJ72AMI1RyJWMNBiGkynlto4OsNBi6ZJGNYfiFWHHATCjZ/jaGLn4AaMeezNaxE4bsz4R19JgL7XIzsLDfUVkVbGIbZ+aSWKbanlAD/uUueE0cffbQQomRoPOqoo5BKfX296Oon4XrwwQcnA/A7CwR75ZVXhIXWYtn+nqzuZJtbcfvtt2/T9F999RUmTpwoyrYyDMPsFKi3KLsM8NcA4e3vtiP3AQrmqo94EIybxQcskoQClxX+aBy+MAVbGRiXMxq3u67Di1vexDcNP4jpDCkOe8m7sOcsg3/zaTBihdjQCPz+Ax3HjJJw6jgJ9RUHwlM8DoOXPI3ijXPMphs6cn78H6IbP0PjpJtgHTIJ2XaLqJzFMEzvIFGmmIKzSrPlNj6vVEacfF57uuR5ogrp8uXLk3+nkpeXJzIMPPzww8JqSq4CN998MzqC8sSS2CVXgxtvvBH5+flYvXo1nn/+eTz66KNt1vFz0OOv8JRaYcuWLT29GoZhmM5xFwNOs9rZ9qJICort+Siw5aY9oNxWCwrdVliaLaMuixMXDD4Tlw87H9kWd8sC7BuQPfx+qHlk7dBBcV/vrDBw0zs6FlcaiNuysGbi5fjxwN8h7CxOzmb1b0Xxx7+G/OkfUF1TA3+USgYzDNMb6C0lzxOQL2umIHXKLECi84cffhCuAtdeey3uuecedAS5FpAhUtM0HHnkkRg7diyuueYaEQBGy9slsw1kZWUJZ19yDN4ZcLYBhmHaQNbXQC2ZRHZoMVR5qzbciCiV6W2GlkiFDQLRlpRX/ngAz29+Hd81LkybXw4PgVdYYQuSww4eKuGcCRKybBLkeBgVy19C2ap3IKUEbsVsuWjc9xoYww5HnssKa3daPjjbAMP0+ZLnuzosXhmG6Z9Eg4CvcocFLN1CKZDLG/OnL17T4QnFEE9J1TW/aQme3fQKfPEW31sZKkJVxyDaOCnZGZZtA87dR8IBg820Wq7GtSKtlsuzPm0dvvL94Zt0Pex5A5DrULvHlYDFK8PsEiXPd2VYvDIM03/phlywHeWEzVRe1hfz47nNr2Ne06K0+dXoMDRuPBVGrMWtYe8y4ML9ZBS5JEh6XFhgyRIrp1h6NYsDDXtfhOioU5HjssFtNauDbTcsXhmG6eWweGUYpn8TjwLeLUBzBoEdWpSuoS7SiLCWnpYrHNeEFTZR2ICY17gI/9v8mnApSKDAikj1MQg1kBXWtNTYLMCZe0k4cqQkrDd2fxWGLXgEObVL09YRKBiNpv1vhqVwhLDCJvLQbjMsXhmG6e/ilQTjwoULWbwyDNN70WJmLlj67gbIjYDywqZCVlhPOIpwrEUkk6sBuREs8KQLUXtsBOrWz4ARz0sOG1EAXDxJxqBcSbg6FG34DEOWPA1LrEX86rIF9aPPRHjs+XA6nMh2qNueWovFK8MwvRy2vDIMwxBkeSUfWHIl6AZCWgR14YY0NwIitbABQbfg75sW4blNryGgBZPTqbAhWnss/HX7Jq2wigScsIeEk8ZIsCoS1HAThix6AoVbvklfd3YFGva7AXrJeGTZ1W1LrcXilWGYXVW8hkIhcdN1Op3i94YNG/Daa69hjz32EKkUegssXhmG6TJ0O6RcsJF0q+mOuBHURhoQ0dIr12iU9zEUQzTeYoX1xLx4ZtOrWORZljatW9sNVWvJCttSepZSRV68n4zdi01Bmlf5A4YunAVbqL5lUyChYfgxCEy4AootCzlOtWv+sCxeGYbZVcUrCdRTTjkFl156KZqamkSdW1VVUVdXh3vvvReXXXYZegMsXhmG2WaCDeanG6BbbEPUA19K936CQHNhg1Qr7NzG+Xh+8xsIamYRBMIq2aHXHYfGmn2SVljisBESztpbgtMqQYkFUbHseZSunZ2WViviKEDNxKuBQdOgKjJyHdaOS82yeGUYZlcVr4WFhZgzZw723HNPUWHhn//8JxYsWCBKiN12223J6g47GxavDMNsFxE/4K/e4VRaCfyxIOqjTUKgphI3jGR52QRNMQ+e3vgKlnjT76N5xu7YvPoU6PGWe1meA7hgoox9K0xR665fieHzH4bTtzlt3oaBB8A78VoorhLYVQtyHGrmOuwsXhmG2VXFK7kLrFixAoMGDcLpp58uRCyVjt20aRNGjRqFYLDFd2tnwuKVYZjekEqLiGox1EYaRXGDTFZYb3N5WYJuzd80zMPzm99EWG/xw7VJDiiNx6O6cnyaFXa/CuC8fWTkOyVIWgwDfnoDA1a8CtloEcVx1YWte82EPvJkKLIFbptFBHUpqf6wLF4ZhunlbHddrxEjRuD1118XYvWDDz5I+rnW1NSwSGQYZtdAtQM5FYBi6ZbFWRUVZY5COC2ONuNczeVlE9kBqDjBAQX74g+jr8OeWaOS00WMEIK5L2L4Hk9DVb3J4d9tAm54R8fHq3VosgWbR5+KxYf9H7wFLfNSZoJB8x5A3kdXIdL4E/yRGKo8IfgiXGqWYforTzzxhCj12i/EK7kGXH/99RgyZAgmTZqEyZMni+GzZ8/G+PFkEWAYhtkFUFRTwJKQ7QZkSUaxPR95tpYArAQkXAvcNrhtFFjVHIxlzcXVw2fi3EGnwS7bktPWGD8ib7f7MHjgwqS1NhgDHv3OwB8/1rHVayCUPRDLDrkDa/eeiXiKYKYcscPevxTSoocRigbRFIyi2hdGJCWAjGGYvsWmTZtw4YUXory8HFarFYMHD8avf/1r1Ne3BHKSZrvvvvvQ19lu8Xrqqadi48aNmDdvHt5///3k8MMOOwz/+Mc/uqt9DMMwOx9ZAbIHALasbltkjupGqaMQipR+GybJmmWzoMBlhSXFCntQwX64ffR1GJ01MjltSA+iIet5jB77LJz2lvK0K2qAm97V8epSHXFdQvWwI7Ho8L+joXSflk3SYxi49BmUfvArhKp/QCgWRY0vjIZAVJS3ZBhmOyE3o60LgNUfmd/d5HbUEWvXrsXEiROxatUqPPfcc1i9ejX++9//4uOPPxbGxYaG7glA3RZisVjvE69EaWmpsLLKsix8S8mNgPK6UuYBhmGYXQryC80qAVwF5t/dgF2xocxRLL5bQ8FUhW4bnNYWl4UCax6uGX4xzq44BbYUK+zm+FJkj/gHdh+yODksrgMvLTbw2w90rK4zEHUWYOXkG7Byv2sQTbH6uj3rMfKj38D6/b3wh+rgC8WwqTEoytoyDLONrJ0DPHMK8PwvgdcvN7/pNw3vQa644gphbaXe7ylTpoh4pOnTp+Ojjz7Cli1b8Lvf/Q5Tp04VaU2vvfZa8UJMn1TIBXT06NFwu904+uijUVlZmTaegvNpvN1uFzrvwQcfTI5bv369WN4LL7wg1k/TPPvss71PvFKQ1r/+9a9kzldS/DRs3LhxIuMAwzDMLokjD8guB7a1clU7WGQFJfYCZKvuNuPo0ZJjV5HvtCUttPSAmFI4Gbfv/huMcg9PThvQAtji+B/22ut/yHW1pOXa1ATcNlvHkz/ooHiwhoGTsfCIe1E9eFrKegyUr3oLQz+4DKGNsxGIBlHri2BLU4hdCRimq5BAffsaoHoZYHUB7hLzm37T8B4SsA0NDUJ4Xn755XA4HG2MjGeffbYQlaTNBg4ciDvvvFMI01RxSkH2f/vb3/D000/j888/Fz3r5BqagIQouYv++c9/Ftmk/vKXv+DWW2/Fk08+mba+m2++Wbgq0DRHHXUUeortvvvSxh188MHibypOQJGxlO/1gQcewJ/+9KfubCPDMEzvQnUAOYPMyPxugARpvi1H+MKST2xrbBbTCutIyc9aaMvHtSMuwVkDT4ZVbik+sDa6GI6h/8CEkS3FDsgJ4P2VhgjoWrjVgGZ1Y+0+l2LZwbci5CpNTmcPVGP3z29DwUdXo6mJArrC2NIYEkJWY1cChmkfcg348h9mir2sMvMeQdcyfdNvGk7je8CFYNWqVUKDkVU0EzS8sbERmqZBURTRQ06ilj6pXfzkZkCGyAkTJuDKK68ULgcJKJvU3//+d5Hff+jQoeKbLLgPPfRQ2rquueaa5DRlZWXodeKVUk/l5+eLv8nndcaMGSJ91rHHHit2JMMwzC4NZSDIHghYzSqD3QFlIaBsBKliNIEsQRQYoE+i1CsJ3alFB+C23X+Dke6WEtx+zY9VlqcxccLzKMttscLWBYG7P9Pxr691eMMGvEVjsPjwe7B5t5NgpIjmkjXvYtjH16M2VAVvtAmeUASbG4PwsisBw2SmahFQt8rsmWntVkS/aTiNp+l6CGMHclKTfhs+vKUnh4QnZY8iAoEA1qxZg5kzZwqXgsSHDJU0PBUSvz8H2y1eKyoq8M0334iNIvGaSJVF6p58HRiGYXZ5yHWAXAic5ot8d6DKlE6rCG5LZlFM1leywlotLVbYYlshrhvxK5wx4ESoUovwXRlaCKniHzhoz+VQUp6nX603cN07Or5YR2m1VGwa8//tnQeYG+XVtp+Z0aivtjf3XjA2YAzGNhjb9OIQIPRuSiCEEAhJIAUCJBC+//vSQwmYDgHTOxhTjDGmmGpj44a7d71V2lWXZua/zquVVtrV7mqbd7V7bl+6tHqn6J2RLD0685xzzsE38++EN29MorXstulXiS/DxnADqgIVaAx7UcNWAoZJj78WoPrNptb+dQGN03Jar4cZN26cuHrTVnMoGs/Pz0dxcXGb+6AOqcnQ/uJi2OuNJYPef//9+OqrrxK3tWvX4uOPP07ZzuFwoF+LVwoNk4+C/BOk0MkIHLcTTJ06tSfnyDAM078h8ZpT1mOJXPTFUWTNR5Elv1VSBUFNBQrtZriszSW1KAp7VMnhuHnSdRjrGJVYtzHqxdf6I5g5YwnGFDU3j/GGgLtXGbjzPR1VXgP+vFFYM++P2DbtYuza/3w0Fk9JrKvpGuqDtagJVCWsBDXeEFclYJg49kKArphEQ+mX0zgtp/V6mMLCQhxzzDEigYpykJKprKwUftWzzjpLfJZQUhfZBzpDaWmpKL9FFQ1IKCffyB7QF3RZvJIxmCKvDz74IFauXCkqDhBjxoxhzyvDMIMPi7OpoUHrS/5dxanaUW4tFtHYdDhEYwMLzEpzFLbUWoxfjr8KZww9GarUXKlgjfcLhMv/imMP/A6WpJ4LayqBX72m47X1OjTIqJhwCrYd/JO0zxfSgk1WAg88/jB21QfgDVFXMIYZ5JQdABSNBwL1rVtK02Map+W0Xi/wr3/9C6FQSCRJURCRar7SVXEStUOHDhWJVvE6r7ScKhDU1NRkvP9bb70Vd955p8hr2rhxI9asWYOHHnoIf/nLX9AXdCtdlrwN5HGlkxCNxj7A6PGcOXN6an4MwzDZAyVwkYClDOMeIt6Vqy0bgSpLoiZsToso7DElR+J3k67DaHtzq1dPtBGrQg9j1sHPYuqQ5ghNSAMe/9LA75fq2FbXfkJJzErgEVYCX8SPqoYgKj1BRLTer2XJMP0WCuAdfl3sR2xjBRAJAIYeu6fHVCOalvdQlZKWjB8/XtTdpwAiVX4i/+oVV1yB+fPni0BjPEeJKg1QWSta3p6NoCWXXXaZKJVFgpWurlM5LOrM1VeRV8noosOXyipcc801iTIJpMTppNEYqXwql9AfoPqzubm5IsGM29YyDLPP8NfFbj2IN+JHXdgDnb4U0xDRdbj9EUSTMppp3aVVy/FyxVJEjeYoab6ai4Mtp+OdbyagIZSaGHbiAbk49eA8mE0df9HaTHa4zHlQFRX5dhW5NjWt1YFhBgVUDouqClByFnlc6aoJRVxJuI45sq9nN2DosnilOl5kF6A2Y1TM9ptvvhHi9aWXXsIf/vAHfPnll+gPsHhlGKbPCPuAxsrWlxG7QUSPoiZUj5AWTrucnokaDPjCqZfz9wT24uEdT2Obf2fK+My8QxGoPAkrt6YmmpS6TFg0twj7DU2tG5kOEqtO1YUc1SUSyQqd5pTmCgwzqKAfj1RVgJKzyONKVoFeirgOVrosXqlnLhW9Peyww0TNsK+//lqIV2pJRjXCSDT2B1i8MgzTp2gRoGFP7L6HEHW1I43whBvbXCcU1eEJRKAlRWk1Q8PSvcvxSiVFYZuTNvLVPMx1noGlX49FVXNlLcHciU6cO6sADkuzr7YtFFkRUVi7yQGHxYQChxmqwl/aDMP0LF3+VKmurkZJSUmrcSqdxZeMGIZhmqAErh72wdJnbL7ZhTJbEUxy+ghnusYGiqTghLIF+O3En2OEbWhivD7ixkv192P6gS/i+MnRlKIJH2zw4tdP78YnW3wd1pFMrkrg9vtFQledL8xVCRiG6R/ilZK1XnvttcTjuGAlQ++sWbN6ZnYMwzADph5seSxpowexKhYMaacmbLrGBsRQWxlunHgNTik/TgjaOCvrPsZ35r/g0mPdGFnU3D3ME9Dwr2VV+NtbVajzdlxdgKoSVAUqhZCt9QWEiCUrA8MwTJ/aBj788EOccMIJOP/880XG2Y9//GOsW7cOH330EZYvX46DDz4Y/QG2DTAM06/w1QABd8/vNhpAXcidYhNIRjMMYSNo2WBgp38PHtrxFHYFmvucE3PLj4PNexJe+jyAiNb8NWFVJZw1swAL9stJEcRtQZUPyErgUJ2wqIqojGBNigYzDMPsM/FKUFuwP//5z8LvSh0YyOv661//ul81KWDxyjBMv8NXG6v72MNEdU0kcwW1UNtPHY6iIUjR0+aP/qgexet738Xrle9AR7P4LbKW4uShl+OdL4qwbk8wZT/jSy249MgiDM1vjtC2h1kxI9ecD7NigdNiQj77YRmG6Qvxmg2weGUYZrCU0opDiVyU0NXWx3u6klrEdv8uPLxjCXYnRWElSJg35HgURk/Gko998IWat6FKWgsPyhM3Nbn/bDvYVYeIxJJXl8pq5dlUyORvYBiG2RfiVdd1UV2gqqpK/J3M3Llz0R9g8cowzGAUsFRKqybkRoRqTaaBPvgbAhH4I6ke1ghkvFLzIZbufCklCltiK8epI67AijVFInkrmaH5qiirNaHMmtHcyG6QY86DU82BIksiChtrdcswDNOL4vXjjz/Gueeei+3bt7f6dU/JW53tndtbsHhlGKZfQ/YBshH0AtSgoC7kgTfqb3OdYESDJxiBHv8cl82IOsqwrXEzHt1wNyr9u1OisAuGnogR8g/w+MoG1PmaP+cpdnrUlByceWgBbObM7ADU2ICsBBbFKhoiFDossJnZD8swTC+J1wMPPBATJkwQ/W7Ly8tblcciwdgfYPGandCX7vq69XAH3ciz5mFywWSR+DEYoTJD3+5pQJ0/jAK7GVOGuNJeZs10va6ef6LVmCG1ek6iK/OIahpe27Aae7y1GOIsxEkTZ4jXvOW+dD2KZZ8uQY1nF4pyh+HoQ8+EydQ6aheN6njlmwrsdvsxNM+OYyYV4n9XLcGOht0Y4RqKG484W6z35xVPpYyZFKXVPIKhCH7yyoPY46vAEEc57l64CHarpdXcguEwfv3WY9jl3Y1hzqH401Hn4Z2NdYk5LJxWjmA0iGuW3ooK/y6U24fhn8feArsexPqKz+AONyDP7MJk12jRcvuFT15BdWMlinPKcOrMhTCZTFjfsDVlvZb/L8j3unTbt6j0u1Fmz8Oxo6aIZK4vKyrQEIwgx2rCyAKHCDp8vLUOtd4g8u0WTCx1IqxrWF29E5WGjEJbHg4sH4NXtz6Ld/dQZZnmr4pS2xCcNeZKfLq+CMu+bUhaAuTaDSyaW4IDRlixunoV6oLVKLAWY0bxLEiSgh01ATSGIsixqBhRZIMMKWYlUHOhyCbR3MBlVfD2li8Sr8EJ4w/Ghr2+Dt9n9B66/9MPscNdhRF5Jbj80MNhVjNrltDy/8/kcic2uL/r0mcQf34xDDBq1Cj8/Oc/F7d+I14dDodI1Bo3bhx6++AputuSn/zkJ/j3v//d4fYsXrOPTyo+weI1i7G1YatIJCFv3GjXaFw69VLMLJ+JwcRHm2twz/It2FLlFRnf5CscW+LEVUeOxexxRZ1er6vnv8AS64tdF6pLjOWbhiJcNw9Ve4cnnpM6KxG13nCn5vHg6qV4YM1iePUKGFIUkmGCBaXIDR0Hv2d0Yl/7O5ah0fImqpQwohJgMoBSzYIfjL4AZx97XWJ/93+wBf9+fwsaAxFx4VvN/wBq4fuQlEDzkxqmmB6Tky6b62YohgsGool5GLoCQ2kE5OaOVoZmg9JwFJzBoxJzC9rfRdi5DEh6DlovUjsPkfq5oi6hZdjDkB3fpRw7yXqr7EKezYaoFoJJMkENGlBCdfDLWuI47ZoCzVaAiEUSbV5pvdHOobh07GmYWTRN7OvxdR/hgc3PwWNUw4AOCTIcRhGGBWdD85QiJDVCVgyoJilWeSCii1Mgflo4KhHMX4ug7GkyC8iAboemG5BMjZCUICTJSInCHj1sIRzRqXjmYw3BQF7KcZlda2EufSm2LSSYJTvsoTnw105HVI/5Zcvz7Dh5Whn2K89tshLk4s2Nq/Hc948jYFTAAEV2FSBSAlPDApjCE9t8n0n2zfCY34KhVlFtBbGdHC3FqaPPx23Hndrue77l/x/JtgmmgvehWmsgK3qnPoP484vpCy6++GI88sgjrcY3bdrU6zotq8TrggUL8Ktf/Uq0hu1NqBlCsgVh7dq1OOaYY/Dee+9h3rx5HW7P4jW7oA/+21bdBl/Eh1xLrshQDmtheEIeOFQHbp5186D5AqAv1N+8sAbeUBT5djPMioywpqPeH4HTouCOU6cKQZjpel09/3Tu9/r3CqFX6igV4+5AAHu9dTB0C/L95yDHmAx3IIIKT0y4ledaRW3RTOZBwvXvX/8ZOgJQ4IAMFVEjAk3yAboFzsazUKTsj/zIK6jKfQ1BGXDqEkyGhKhkwCsbsBkSLhlxqRCwJFzvenODEF0mRYKcuxxq8ZuApAOG0iTVNPr0i03AoMc0rsfWoTU0J1TkIWzUA6Ymf6dB8pNuBq0gHuu1J2C0ehJ2aK/DyH+9xXM0rxeuPh6y7XuYclKFazKqZMW4vBHY694Nj+EVY4VRQxyrVzJQq8ai17mSE6WuEoT1CDwRLxyKDTdPvRKbqrz466YHoCEE1bBBlkziPEakIGRdxTDP8SiTx6IqUAd3KGYjoIA4eU6Dlj1oLFwFQ45C0a0wJDM0IwiosU6JeiRHvBaSydskYpvnTXVizZID0boFqK88BIY4/iZkP+ylb8GUu7pJiEqw+I6CMzwLUd0Q71mrKuOSOaOEgF265RO8uP0h6qsL2XDCMEyI6hFIJr94/lzvOZBC41DhiVU+KM+1iYSvitAaBPOXQJJDgGaPvQZ07pXYdqePuLZNAdvy/49u2YRa25Pi+GXDjiG5OTCrekafQfz5xfRV5P3iiy/G3r178dBD9P+nmeLiYiiKMuDEa5fP5jXXXINf/OIXosbr559/jm+++Sbl1lPQiS8rK0vcXn31VYwdOxZHHnlkjz0H03/+w1PEgj74S+wlsJqs4j883dNjGqfltN5Ahy5hUiSIvlDLXFZRF5MuvdN9mcsCb0gTy+nSeCbrZdLhKN35p4hZQ7hB3BOxv2V4/BRVdEFWwgg4lgFyrBUprUXCRvwtocN50GVeiriScFWRD0WyQJJk6LoKI+IC5BB8trdhGCGEHUuFcM2NylANmoUEsyEjX5MRkAy8vPUxBIMhEXEl4Wo2SVBkDabC95tEpanpI09qFq5E/O+kMUPxQSOxRaIpZT06Qjm2L0mHlP8eApEG6Lnvtn6OpPXUwnfbFa7iXBhBMe+A5ms624C3yW7hpchi01hsuSQaFJRYCuDTAiLaev/mZ4VwtSAHimSOvWa6CXLUAV2OoNKxSghqn88CSbPFjrPpuPy5a4VwlaM2EWkWNjARQY49q6yQWJRhRF3Qw3kwhOBvbjkb0BtgLX4foycvgWLblvSmssNfcSp8OxZBDxWLZwzZPxTC0qxIyLerCEZ0vPpNpXgvvLnjRUo1gwynsBiIPGBDBaKx90KD9S24/THxTDOg9xmJ4qBzmRCu9J4xdLKQyJAMc2K7F7Y+jnCLxLR0/88sqoQG61IYUlD8eDEMFbW+CKxKx59B/PnFxH/AXPn2lfj5ez/H71b+TtzTYxrvbSwWS4peohsJ15deekmUMrVarRgzZoywe5ItKQ79f7/vvvtw8sknw263Y/LkyVi1apVIyKcgIV1pnz17tiiPGof+PuWUU1BaWgqn04lDDjkEy5Yta3d+brcbl112mdB1FEykIChdwd+n4vX000/H+vXrsWjRIjFp8sAedNBBifveIBwO4/HHHxfP2VYL2lAoJKKtyTcmO6BfqnSpjSIWLV9fekzjtJzWG+iQ944uYVIkKN25yLOrYjl5OjNZj/bXlfMf1IIIaSERXTMpJvG3J+gTl5tNsiwiUxG5El5thyh+b1JkMR6K6kKUdDQP8paSVYAirvHnJEFBF4TEY80OQ62GaryBGjUChy4J4ULXi+JSk0QaRSf3KiHc/dqDwiogIq6SDMPxdcwqkIiGimdIc/RCJSU9NqAZnlZjyc9K+6R97zG9mOY50GK91Bqp6aA9b2/YIaLJsgEoBhCRSMDG7uNjtNztczf/v1Cd+M6zHR5jr4i4kqwX+zNIUAkZB0WzIqLWozKyKzamW6FEc2JRYVMtNNUDWbOIc0nz0KhCQVPUOBHFlJuqFhjmmIDVUr2kjRE36rAWtpH3wlL6IiA3H7PmHwvftp8hVDsPBsIIq+viZwcOiwkVbj/e2Pg1gkY1JIoa0zwMPWbdaIqGx94LVQjJu8R7jN5r9J6rCm2FZK6CEaUuYy3+D9C50OzQTXuFF7aj/2dhead4P8tG7P1IUWl6rwciWoefQfz5xcQj7xvrN8JusqPIViTu6TGN7wsB25IVK1bgwgsvxLXXXisaSZFIpaDjn/70p5T1br/9drHeV199hUmTJomEfGo+ddNNN2H16tXiM/mnP/1pYn2q7X/iiSfinXfewZdffimuwi9cuBA7duxAW5xxxhmiOtUbb7whgp4kqI866ijU1XW+4kpmTvY0bN26FfuaF198USh3Co+3xZ133il+VTDZB11iIY8YXWpLB41T5I/WG+hQ0gh578gCkA6LIsOjGyIRKJP1aH9dOf/Uqz4uJOkfRY0iehSGkAUyDJhgwI+IRDVFCyGujJGwJJElwmZKu/OghBwSKCQW4qTEZpuEkyFXQSPvp57+RytZCHyygVrPLugYAVN8NVO8EUDydumi0K3HKBLZvFWTDaDZIZq4l9SaNM+RTOZJc3T+RVTRiEVa6XA1GMLZQOIVTWMRrbn8lVlWhYXAkDTISR/prc9jEEFQJDnmXyY/rxTJgW4jb6kOSdgimp5D+GXjxypmkrpH8gIbingPyJIOzYgmorA0f3PBxzDlfItQ5amIevdr2kYV9olowzSY87chXlRLlSX4DKDKR68VPW/sPSN+oIj3XsxuELN36DErQMSAJEugIGYEjTEbSLJdoeWxQxdJXB39P9PJqgINUtN5JBGtQRcWh44+g/jza3DTMvIe/wFDkXeLYkGVv0osP6TskF6zELz66qsiChqHuqDW19fjxhtvxEUXXSTGKPJKQpVsn7fcckti3UsuuQRnnnmm+JuaTc2aNQu///3vcdxxx4kxEr+0TpwDDjhA3OLQPl944QW8/PLLKSI3uSvrp59+KsQrRYiJ//3f/xW67tlnn8UVV1yxb8TryJEjsa9ZvHixeDGGDBnS5jr0K+H6669PPKbI6/Dhw/fRDJnuQN4gSm4gjxj9h28JjdNyWm+gQ9nOlIRCnlGr3PpLOaTp4kufMtgzWY/215Xzr8ixS8hG0z/SEKpsIhmLWKoPiRYFqpGTiIgS9DdFxzqaB2WSk4jSEYECS2upJ6J/CiS9JBF1JMtAS2ickpoK84aJuKOILtJq0fymNVqLzlTi4jRpRDclJWklRVwTxMaMCPl4t7R4jmQyTyug80/VFGgb+oFAmyr0s8EwmmdgAGpSdQUSriRgQyLSGhWWgbbOoxV2JFdoJfGpRgpigjHh142Ni+dPzD8uYlP3Z4KMfEsO/FEfvNHUqLqsNsI67FHojQcgUHkyDC1HjOuhIairLIdmjyLfGUbEMMSPjRJHPtBAz0tiVY6J+MRT0gvadJlTswgpLQlBaUBFDqJi/k2R4pYI8SuL6gMd/T+L/YhSRMKeBLN4j9PPCFOTfaO9zyD+/BrcdCbyPqVwSq/MYf78+bjnnnsSj+ly/7Rp07By5cqUSCvlEQWDQfj9fmETIGi9OGQFIJK7pdIYbUOaii75U+T1D3/4A1577TVUVFQIG0IgEGgz8hrvxFpYWJgyTtsk2xF6RbySoibxqKqq+Ls9fvCDH6AnoYoD5Kd4/vnn212PFH1c1TPZBZnaKSuXLrHQL9XkDwCKwFDSw4T8CYmyTQMZKvtDWfrrKxpR5pJbnQvqjjS5PEeUXnr+y10drhcvLdTZ809eP/qbyjsZugGbakOu1YF61YdAJArZ5IdZHwqnMgIWUxCBcFRoHJuqiEScjuZBZaju+qQcjfpOyEbs0i15diVdEo1PKFFHCpcjIp2Aosg7qDRHkBslS0CzlCJZR0lbw6IW/OSkRXj02+Xw+CMiIij5DoChvQKJonVC9DZ5UYVASqYpZJwkUhUpFxoCLYRrkqCjiLBmx5DoD7FX+6bFc6DFetYOrQO01UjXCOys34SIHBOrFh1w6DHva7hpzKxLyHPkNf+/iHgxKXckNoYa4UGViL4KRzBFaylyaxjQlSDM4SKUqcOwVfILcS8KLUiAhTL5w4WIWKqF51WcIZmS5pQmwUiqWI3d4nNVgjDCRRhTlIs9/h3IsxTCZnKgLlSdiMKK9ejHjmsNZPsWhKqOR8QzI3G0Hr8KX0iBxeLHmBI7TpgwDu9VFiOIvdDpGBLRfoq+0qSCQLgYqmwXVRMQtcOqqsg3jYQvVALZWhHzSSedf6MpUitHhoiyWR39PzPrw6HqZQjLuyHpqvAgk2+b3s8dfQbx59fgpj9E3h0OR6vKAiQY6Wr0aaed1mp98sDGIV0XJ/7eTTcWb0h1ww034O233xbRU3pOm82GH/3oR8LemQ6aB5VVff/991sty8vr/A+6TsWuf/jDH4oQdPzvtm6nntp+WZKuQBl0JSUlOOmkk3p830z/gC6lUDkZysqlSywkmOhSDN3TYxqn5YOhXiIJOCovRVn6lQ0h4bkjLyjd02Map+Umk5zRepnUWU13/kkuucxUOiom4GJ/68i1k4BpgK6ZYfMdDeiyaPUp5J8BuOhvAx3Og2qqXkavKayIwA3NCAmvoyxHIFGmu26BPXAMJMkCs+9YWHXAY9IRkWgWBsKSjnpFF9UGqFyW1WrB1fPGCq9iOGpA0xVEa+fFInJStPnyd3L0Nv530pikOaBQNE/4KJPXM5qqEkTFPo36+bCpLsieBa2fI2m9SO0CRBsntXv+TZIVikmB1UTnWDwhnE2Xqx1ac+TVpjjE6xHUQqgK1YlqA5eNOx2Xj/sRFJgRgheaEY69ZnIUuskHWTejzDdLiNrcpE5W4ogNCc66GWId3RSAJNOle4ps0hdb7Fl1relv8qCavDB0M6Y4j8PxI34ofuB4wnXi/UP1X01yas1dYUEweWEtfxa24feLHzxxopoMn98JI+pEIAKxP4iIpxe6QUl/seeE4hVlzGzBOXBYVEAOAGo9HLYIDEOG2XuUqHxB7xlJeHPJLxsGTLH3EJXLSlfvteX/s2DEgCt4LCTDIt6PkhRBoUMV3u+OPoP482twkxx5T0dfRd6nT5+ODRs2CIHZ8iYnXR3rLBTNJQsn6T2K0FJy2LZt29qdR2VlpahV3XIeRUWdK+dIdGrmpLhJQMb/buvW0921aJ8kXsmzQQfODFyojAyVk6EIhT/qR02gRtzT48FWZobKSlF5KYpY+kNRVHlD4p4eJ5edynS9rp5/EkGT8idhUsEk8TeNUQb3pIIJGCtfhKhvrHhOii5RJEtEV8nDmOE8Fs04FtcecCNy5OHQEUZE8gBSGHYMQ3nkfJhCE8S+vo8ch1GBH2Bo1IyQZMCj6OKeIq7xMlnE5XPH4tfHT0SuXRVCnmqskteSoqTi0jhdRhY6tCmaKJRaU+ks3QJFK4YEVcxDpqx9sgXolthysZ4u9iW7T0Je5Bgxt5zQ0TA3nBwr05R4jth6wudZPxeRPRdD97UWsPT0NtmFIkeeOLdWux3lSjmGhekSvoEGRRciblhIQblSBovNjppQPfzRICbkjBRlsqjO6/n7zcZ14y9DnlSKqBRGSPJClyJwGaWYFDoJjtBI4fFUFRnD8q2wm+kSPflsDaj+4SiqORo5WikkUVvWJ8KmUqQUeoj8e4aILEtyGEa4GAfnnIW7Fi7EQWUH4NzxV2CocwTCWhDeSANyTC7kqXG7RuqBOq0UNQ7CYgmm2CnW7grj10/vglOfglNGXAKrVBoTn7IPihKBHCmG4jkO0eAIsdmoAjtGFVphyA2oCe2FOTIaLu9ZIkpP700hduWQiLi2VyYr3f+fBvcomOvPEO/HPIeBoOHO+DOIP78GL/HIO0XYW1YgjUfeafm+jrzffPPNePTRR0X09dtvvxWJ9k899RR+97vfdWu/48ePF1fCKcGLLAGU4BWPyqbj6KOPFj5aCnAuXbpUCN2PPvoIv/3tb0VC2D6r87ovoQMl0zD9eqCuXp2B67xmJ9yhphnusDUIOmxZrK3ObTQSxX/ffQw17l0oyhuGcxZcAJNqwvqab+Gu/x55ijXjDlu0DtWBpdJSFCEfX+IU75f3NlRjb0MApS4b5k8sFgL9rR0bsUNXUGJ34ZDhIxEIh3DvqlWJ83HlrFmwmJuDCP6whjpfENsbtwrx6lRdGOYcBX/Ei/vX/RWbPLHKAnHKrKNwZPHFMGtD8MY3XmytTo1UTRtuw4WH52Nrw2bUBtyi09eM8knYVR9K6cxFJHfrmlRWBIecg+e+XY0qXy3GFpThJ7PncoctZp/Rl3V+L774YpHQTglQLXnrrbdw2223iaoAZAWgagJUsuryyy9PWAIo2YqEJUHCcvTo0WJ9qiBF0OV+8tTS1Xe6zE/rUOWnjz/+WEROKcnrmWeeEev/7W9/S1vntbGxUYjV5557TtTwp2jt3LlzRaJ9Z3OTuiVeqUTCX//6V6HkCaoNRpMkhd1fYPHKMMyAxFsNBKmcVw9jMgN5I8Sf9PVQF6xDY5gy+ttG03Uh+oLh1pGXdXVf4fGN98Edbi6HQ93BTh51JuYNOQnvfOvDs5/VC5tHHItJwhmH5uOYKZ37ARbv0uUwUQKhJMpwicYd1M6LYfYB3GFt39Bl8Xr33XeL0glk0KVQMEEKnEoekKC9+uqr0R9g8cowzIDFXxe79ZJ4TTxNxI/aQK0ohdUejcForHFAi68Vqkbw3JZHsWpvarLGqJxxuHDiTyBHS/Dwilqs2ZXUvpfK+pRYcNncIgwvNHfuEGQVeZZ8WBSrELE51piIJS80w/Q2HHnvx+J12LBhonZYy3pe//73v3HHHXdg9+7d6A+weGUYZkATbAB81c11ynpBvBIURSIPJ9ke2oPKTtV6w4hqraOwa+u+xBMb74MnXJ8UhVXxg9FnYf6QE/Hx5gAeX1ULb7B5WyrBetIBuThlel6nI6g2kx255jwosklEZalZBtkm2mpywzDMABevVAiXjLotyzJs2rRJdNiisgj9ARavDMMMeMJ+oLGiZwRsG+I1Dvn33CF3q+hqMpTYV++LwBdq3ZKVvLBLtjyMT6tWpIyPcU3ABROugk0qxRMf1eKjzckVaYGyXBWXzi3EpCExv2tnrQTkxSUoYY1EbE5S1QWGYbKLLsexqY4rGXxbQj10qT8uwzAMs48w24Hc4YDS+9VYKBGl3FEOVWlb/FF91gKHGUVOS6tL9XbViYsn/RRXTvklXGpuYvz7ho2444tfYXXtm/jxgiL88oRSFDmbj6fSE8GfXqnEgx/UwBfKvKIN1Yn1hNyoClQgrIUQ0XRUN4aw2x1AINyzlXEYhunnkdc//vGPojjtnDlzUjyvVPvrF7/4RUqU82c/+xn6Co68MgwzaNC1WAQ20v6l/e5EXhNPZegimcsb9naYzFXjCyMcaW0j8EYa8czmh/BZ9cqU8XGuSbhg4lXIMZWIZK6laxtSgsp5dgUXHV6IGaOb2wpnikN1ikisIsW6idnNJiG0OamLYQaBeKUyChk9gSTh+++/R1/B4pVhmEEFfaR7q4BQ+xUCuite41BZIErmIjHb5pRgiK5nlNCVji9rPsF/Nz0gSm3FMcsWnDrmPBxRfgy2VkeweHk1dtZRA4JmZoyy48LDC5Hv6FzEmZJnXOY8IWQJTupimOwiK+q8dgcWrwzDDEq6Womgk+KViOgR1PhrENJC7a4XjFBN2LBou9qSxnADnt7yIL6oXpUyPiF3Cs6fcCXyzMV4/WsPXvzCjYjWvD01WzhrZj7mTc4R/tbOYFYsIqGL7glO6mKYQSRe47voj//ZWbwyDDNooegrRWE78zHfBfEa/x6oD9WjIdQcPe1sTVji8+pVeGrTYviizZFjKnl12ujzcXj50aj0RIXv9buKVGvExHKrSOgqz+tcWa14VQKKxFJNznhSV77DDKeFOzoyTH+kWyafxYsXY//994fVahU3+vuBBx7oudkxDMMwXceSA7iGAt3oYZ4pFLwosBagxF6S8JOmQ5FlFDutyLOb0wY8Di6ehd/P+F8cWHRoYiykBfHfzQ/gn2v+BIvVg5sWlmHR3EIRdY2zoSKI3z67By994UY0KTKbCYGoXyR0eUL1opYtJXVVNQRFUhdFixmGGSCRV+qX+5e//AXXXHNNImFr1apV+Ne//oXrrrtOtCLrD3DklWGYQY8WARr2xO57KfLasiZstb+6QxsB1YQlG0Ek2joKS19Nq6s/wpLND8IXbU4Ksyo2nD7mAswuWwCPX8OjK2vx2VZ/yrbDC1QsmluEcaXWTs+d/LCx0lo5iTHq1EVJXRSRZRgmi8VrcXEx/vGPf+Ccc85JGf/vf/8rBG1NTQ36AyxeGYZhqDyA3lSJILWLVW+I187YCDpK5vKE3fjvpvvxTe3qlPH98g/AeRN+jHxLIVZv9eGRD2vh9jdHSSmme+z+Lvzo0HxY1c6LTioFlmcuSPhhKUqcZ1OFJ7Y/WuQYZjDRZfGal5eHzz77DOPHj08Z37hxIw499FC43W70B1i8MgzDNEEf99SNi7py9bJ47Wxr2VA0FoVN15mLvqY+rfoQS7Y8hEC0uXmBTbHjR2MvwmGlRyIQNvD0p3V4d11qlYVCp4JLjijCASPsXZq/XXUIP2zcCkHR10KnWZTYYhgmy8QrRVdVVRXWgWRuuOEGBAIB0Sa2P8DilWEYpgWBesBXu0/Ea2day1JDAbc/fWcuwh2qwxOb/oNv675MGd+/YDrOHX858iwFwvu6+IMaVLhTLRKzxjlw/uxCuGxt+3Hb79KVl2IlIPFKIpatBAyTZeL10UcfxfDhw3HYYYeJsU8++QQ7duzAhRdeKIRtnJYCd1/C4pVhGCYNYR/QWNm6EkEviNfOtJYlKEmK2stGyerQAtr2473L8cyWhxHUmi0QNpMDZ469GIeWHCFKab38pQevfuVGciDXaZVx3qwCzBnv7NKlf7NiRq45n60EDJOt4nX+/PmZPYEk4d1330VfweKVYRimDaKhWCIXdebaB+KVoOgrRWEpGttRFLbeF4a/jRau9aFaPLHxPqyr/zplfFrhDJwz/nJRv3VnbVhEYbdUpSaO7T/MKqwEJa62W9y2BzU3ICsBJXcRbCVgmH0LNylgGIYZzGjRWCIXCdl9IF4J6sZFPljqztURJF7d/vSNDejr66PKd/Hc94+lRGEdJifOHLcIM4pni8Dy29824JlP6xGKNu/DbJLwo0PyRVJXV7pqkXClKCx5YhPPazGh0GGGia0EDNOrsHhlGIYZ7NDXAFkIyEqwD8RrnMZwI+qD9e22lo1HYSmZK9BGFLYuWIPHN96L79xrUsapVuw54y4Tpa9qGqN4+MMafL0jtdrC6CIzLj2yCCOLYlaAzkINFHIt+VDlWBSXu3QxTD8Xr6tXr8aSJUuEzzUcDqcse/7559EfYPHKMAyTIZTERdHQfSReiYgWQXWgGmEt9TskHd5wFB5fRIjZltBX2YcVy/D8948hpDfbBCjJ6uxxl2J68ayYX3aLD4+trEVjsFkwU+D1xANycerBeTCbOh81JZFKz5Oj5iYEK1kJipwW2MydTxBjGKZ9unxt46mnnsLs2bOxfv16vPDCC4hEIvj222+Fv5XEIsMwDJNlOAoBR/E+fUqqp1ruKIfL0nFwwWk2ocRlgTlN3VYSjUcMOQa/Pfh/MSF3SmLcG2nEA+v/hgfW/VX8PWucE3edNQyHT3Am1iFHwqtfefCbZ3bj290d1MFNA4nixnAD9gb2wN9Uyou6dFV4AqJTV7ryXwzD9EHkddq0afjxj3+Mq6++Gjk5Ofj6668xevRoMVZeXo5bb70V/QGOvDIMw2QHmdaEpcYGjYEoGoLRtJULyIawouJtvPD9EwinRGFdOGf8ZTioaKZ4vGZXAA99UIPqxtTksbkTnTjnsAI4rUrXrQTmPKiKOWElyLebkWvvWoIYwzA9JF4dDoeItI4aNQqFhYV4//33MXXqVBGJXbBgASoqKtAfYPHKMAyTPWi6JmwEHdWE7aixAVEdqMRjG+/FZs/6lPEZxXNw5rhLxKX+YETHC6vdeGONJ6VqmMsm48I5hTh0jKPL3lWqSkB+23iDA7IkkJXAqrKVgGH6xDaQn5+PxsZYJ5OhQ4di7dq14m/qrOX3p/aZZhiGYZhMUGQFZY4y5FvzOxSNFpOMUpdFZPmno9hWhp9PuxlnjL0YqhyLghKrq1fij6t/IVrOUuvYc2YV4NZTh2BkUfM6DQEd/1pWjb++VYU6b/tlvdrCF/Giyl8h7AoUJwpHdexxs5WAYfos8nruuedixowZuP7663H77bfjn//8J0455RS8/fbbmD59OidsMQzDMN0ipIVQ7a/usCYsQZUI6tsoqUVUBSrw2IZ7sKVhQ8o4NTWg5gZ21Sm2ffMbD57/3I1wUlktqyrhrJkFWLBfjrAAdAWTrAorgdVkE4+5KgHD9IF4raurQzAYxJAhQ6DrOv7nf/4HH330EcaPH4/f/e53IjLbH2DxyjAMk72Qf7UuWAdv2Nvhupquo84fRjCst7mv93a/jpe3PYWI3tw+luq1njv+CkwtnC4e7/VE8NCKGny7O9W6ML7UIspqDc1vjtB2FqvJCpe5ubQWNzhgmH0gXkkMZkJ/EYosXhmGYbIfamhAyVwd1YQlGoNReAKRNtvQVvp349ENd2Nb4+aU8Vml83D62AthNznEtis2evHkqjr4Qs3PSZW0Fh6UJ26q0rWIaby0FiWQxbt0kXglEUtilmGYHhavsixndIlD09rPFt1XsHhlGIYZGFC0tMZfI+wEHRHWYslckWjbUdhlu17Bq9uWIGo02xLyzAU4b8KPMaXgQPHY49fw2Ee1+GRLajewofkqFs0twoQya7f8vS41L9Gli75byUaQZ1Mhd6HrF8MMFjotXpcvX574mzY98cQT8cADD4ikrWSOPPJI9AdYvDIMwwwc6HvHHXLDE/J0vC4MNFBJrUCzRaAlFb5deHTj3djeuCVlfE7ZApw25gLYTHbx+IttfjzyYQ3qfM2BGZKXR03JwZmHFsBm7nrE1KxYhB+W7gmTLKPAaYazjUQ0hhnsdLs9bLzG65gxY9AfYfHKMAwz8AhEA6gJ1IjSWt0tqUV1Zd/e+TJe2/5MSo3ZfEshLphwJSblT4s9Z1jHM5/WY9m3DUj+4ixwKLjo8CJMHxUTul2lZWktKqlFVgKLiUtrMUwyLF4ZhmGYrISEKwlYErIdQS1l3f4IfKG2Kxfs9u0QXtid3q0p40eUH4NTR5+XqBSwsTKIBz+owe761Igu1YS9YE4B8uxdj5hSFQISsA5TTsKi57KposmBwlYChhGweGUYhmGyGrIQkJUgk6+zjkpqaXoUb+18Ca/veA56UhS20FKM8ydeiYl5+4vHEc3Aq1+58fIXbiTbau1mGefOKhBdurpTAqtlaS0SrvkOM1xW7tLFMD0iXr/55hvRGrY/wuKVYRhm4EMduagzVyY2go5KahE7vdvw2Ia7scu3PWX8yCHH4YejzxUtYInd9WERhd1YmZpEtt8Qq0joKs3tnthsWVrLQlYCh5m7dDGDmk6L19NOOy3l8SuvvCLawVK72GS4SQHDMAzTX1vLZlJSi5ojvLnjeby588WUKGyRtVR4Ycfn7ZewJLy3vhFPfVyHYKR5X1RK67QZeTh+ai5MXSyrRVAE12GK+WHjpbVyrCoKHGwlYAYnnRavl1xySUbrPfTQQ+gPsHhlGIYZXFBTg4ZQZjXJqaRWrbftZC5iR+P3wgu7x78zMSZBwryhx+OUUeckqgRQG9lHPqzFF9tTW6SPLDSL5gaji2PrdRUSri5znkjsIthKwAxWum0b6O+weGUYhhl8+CN+0dQguXpAeyW16n3tJ3NRjdk3tj+HpTtfgo5moVtiKxdR2LG5k2L7Mgx8ttWPRz+shSeQVFZLAo6f6sJpM/JhVbvXiMCsmIWIjVsX2ErADDZYvDIMwzADErrsT9UIMrURdJTMRVBXrsc23IMK/66UKOyCYSdh4cizhLAkfCEN//24Dsu/S21rW5xjwiVzizB1WCwRqztQDVpK6lLkWHUDthIwgwUWrwzDMMyApj5Yn1FTg3gyV70/IoRsW0T0MF7b/qyoDUtR2ziltiG4cOJVGO2akBhbtzsgErr2NqRGdQ+f4BRVCXKs3YuWUmkth+pCjuoS3lh6TFYC6tTFMAMVFq8MwzDMgKczTQ2IxlAUHn/byVzE1oaNeHTDPdgb2JMShT162EKcPOoMqHIsChuO6njxczde+9qD5KBujlXG+bMLMWuco1tltQiTbBIJXXZTLHnabJJR6LDAZmYrATPwYPHKMAzDDAo6ayOIUDKXL4xIciHXFoS1MF7Z/jTe3fVaShS2zD4UF078CUbljEuMba8JYfEHNdhaHU7Zx7ThNlxyRCGKcrofLSUfLFkJ1Cb7gsNiEg0OSMwyzECBxSvDMAwzqOiMjYAEKUVgqaxWe2zxfCeisNXBysSYDBnHDD8FJ448PVGnlfy0S9c24NnP6hGONn/9WkwSzjg0H8dMcUHuAc9qcqtZiuq6rCbkcZcuZoDA4pVhBhm6oWN93Xq4g27kWfMwuWByonZkNqDrBr7d0yCKzBfYzZgypGe+7JOjc29sfQMVvgqUO8pxwugTxDl7cO2D2Nm4E8NzhmPR/osg6zJWrHgXjXWVyCkowxFHLIBsknvs3KZ7nejYX9uwGnu8tRjiLMQJE6Zjk2djyjowpFbnR4fW6phkKK3Wg6Fjy5qPEHBXwZZXgrFTZyOqG7j/0w+xw12FEXkluHTGHGyq9qduB7R+Tt3AK99UYLfbj6F5diycVi5ep1bPKRmtjrPlMUwuy8H6ysbU/Rt6yrk4aeIMmBSlx6oRkPf1/a1rUOVzo8SRh8OG7YeGgIao3l4UNoSXtz2F93a/kRKFHWIfLqKwI3KaO1FWNUTw0IoarN2VGgUeU2LBZXOLMLwwFjnNFB0GdtQE0BiKIMeiYkSRDTIk1IaqEdHCyLXkY3zeRBQ6rVxai8l6skK87t69G7/+9a/xxhtvwO/3Y9y4caKO7IwZMzrclsUrwzTzScUnWLxmMbY2bBUijXxyo12jcenUSzGzfCb6Ox9trsE9y7dgS5VXtOekIvBjS5y46sixmD2uqNv7f3jtw3hgzQNojDQKryNFrChyRT7J5PJIFFE73KPgNzVuqFIUEcOEpfYSvDKsBI3WQLfPbbrXyYwcVHvDCGoNMCSKAhpQZAN2swqLySTWyTcNRbhuHqr2Dk+cH2fpSnjMbyKo+xLHZJUdyA0fD+/eOYn15lvW40eBZ1Ae2QUTooiCjqkU9+U44VapbimJPAVGuARKwwJYo5PEdoXOmMiiWqnxfVlUGdWNIZH0RGeN5LvVrKAkx4JQRE+sV1K6E+aC91Ef3Z04zpbHQCJVMwClKRmJtrPnboXH8hZC2CvOhWSY4JTLcdnUS7FoxrEZn2d6zmp/NUJaanes59auxDMbn4FPrwYkDTAUOORinD7+R1gw+hD420nmIja51+GxjfeiJrg35T1z/IhTcfyI08RxbqhfK5ofbN2dh/rd86Fr9sS6igycfGAefnBQbkaX+9dVePDqN5WocPtFq1raJK+gEmreJ/BpVdCgQZXMGJ4zCqePuQAzyg5FkdPCpbWYrKXfi9f6+nocdNBBmD9/Pq666ioUFxdj06ZNGDt2rLh1BItXhmkWRLetug2+iA+5llxR0of8enT51KE6cPOsm/u1gCXh+psX1sAbisY8fIosCsxTZrjTouCOU6d2S8CScP37F38XkThFVkD/wno4JYKWoOlj85gGHZfWmvCdNYr7iwGfJMNsLkJBXnGXz22612mvtw71oWqxXNbyIUkyNLk+ISiLraVQZFWsZ+gW5PvPQY4xGXWmpfA6XhZxOUUigasgqmvQDBK/Mpy+H6AgeizGeD/H9aG74ZSC8Eo50GQz1pjDuK/IEMcU0HIRMBwwoEEy+cVz2DxnwRqdgApPLHJYnmtDnk3F3oYAanwRMUYiii5TU/Q23gOA6pGWuaxolNaj3v5fSHIIpc4C5NlscAcCKccgBcdjjyeAqEZCXcLQfBuCygZ4c54C5BAUwwGTpEJHBBr8kGHFtQfc2CkBS1+B9aH6RFMDEq6PfHcfDIQgg6KXJuiIQkcQEsy4aNKPcfyEmXD7IqKzVluEtCBe3Poklu95K2V8mGMk5pYfi7d3vYygFoTd5ISk5aBixyx46yemrFuep2LREYWYNMTWrnB9aOU2BCM6nBZ6jSUE5e/hc7wOyGHkW3PgMFtFndpA1CcSuq6eeiOmFc0Q61NpLROpZYbJIvr9O/auu+7C8OHDRaT10EMPxejRo3HsscdmJFwZholB0SuK5JEgKrGXiH7pdDmb7ukxjdNyWq8/QpegKeJKwpWED0WM6BI03Ze5LPCGNLGc1usKFIGjiCsJV7NshkmK1c1sKVwpk1xKDEl416UgAAPP5SnwSgqKNQ22gFus15Vzm+51kgwJHiGsYtYIXfFBlxvF7ACap4HaYB08PgOG5oKshBFwLIMhR+C3LxXCFYYJuiGLqCvd02Majy0P4+zws0K4Vhr58BtmaJKEZ3LlxDGVGhS1pe1UGBGXEJx++9uo9wVF8X2amWizitiPiebjid0nazx3IAJIupijrITEnD1+2ocs7hPHYH8btb6A2IfZFDv2Wm8APttSIVyNKFkTVLGdIlmgIk8IzAfWLEZUy6yigHgVJQkF1gJxvkmMUsSVhKsJLiiSWfxQoHsTcmAgLJZbTTJKcy0iwtxe4tRZ4xbh2mm/R6GlODG+y7cdT26+H56wGy41H2bZAlUNY8TY5Rg+/nUoarMXt8IdwZ9eqcRDH9TAH9LTWgUo4krCNd+uwqxIkCQDYfsqSEoY0BzwBundKIvncZnz4Yt68fTmB8V7nv4/7aoPwO0Pt1tVgWH6G/1evL788svCHnDGGWegpKRERGHvv//+NtcPhUIi2pp8Y5jBDnkK6RI0RfJaluShxzROy2m9/gj5H8kqQBHXdPPPs6tiOa3XFcgPSlYBirjG95/OCxkTs0aTjIzFPR8vAPaogFMnsabAbIThbWzs0rlN9zp5Qn4RWYx9XNNlXhKJscckSuiellMUzyTLkA07InIlGtW3oUuB2DaSJMQJJQsJkSL2rYjlVryBUdgDN3KEUCMBt9lkxI5Jix2TBWHYEL+0LsGI2iGbqxBWdonnpMhdKKqhpjEiLvHH1oqJVhKfRtIYzaEusk3MUabIqSwLKwGJX7qPH0NY3tu0f7ILyCLyGpJ3wVCrAc0ufiDQscSjn8LiATu8eoXwwnYWu2rHl7v2CKsARVzTvc8oskvLyQtL8yzJsSLXrrZb5mpi3v747cH/D0eUH5MyHtZDqAruEdH9ODm5uzByv/8ip2g1HV1i/N31jfj1kl1YvdWXsg/yuJJVgCKoifekUomoUgNZj/1ApYoJ4SYxT+eMIr27vTvwefVH8Ed94vzV+cJCxPrD7SelMUx/od+L1++//x733HMPxo8fj7feektYB372s5/hkUceSbv+nXfeKWwC8RtFbRlmsEPJMBRpiXf/aQmN03Jarz9CiTrkfySrQDosiowIiSJ/agmiTKFEJhJCZBWI036ktFms7FWBqASYSKRJsciXpkW6dG7TvU5hLeZvbYr7Nv3dPIf4GEU9Sc5KIhqrIaLUJNaLrZO8pdQcyZWroSKKsNguhkfWE8ek09qSAUVKOh8GnScdkuKP7UmKCVSycSSfIiH16by0OM4ISNxrYq40Z5o91UKl+/gxkEUBsi9xpmN6m8RbzIOamErSfmWowgNLSVxdocrvEVFhGen/n5CFgDywlMQVh5KfinMs7V56t5psOGf8Zbhm6m/hVF0pzQ72BnahIVyfiHxaVMA1ZBkuOMqH4QXNiVVuv4a/L63C35fuRb0vJjIpOSvmcW1+P+pysz85Ppp8RYKqHtAPs4awG/XBWtQEqoSlgERupScobvQ3w/Rn+r141XUd06dPxx133CGirldccQUuv/xy3HvvvWnXv+mmm4S/NX7buXPnPp8zw/Q3KIubkkTIh5kOGqfltF5/hDLMKVEnRRwlEdJ0qLIk1usKlIFP0TNKbInTfpWApK5KkZjII7EnGRTZlKAoapfObbrXyayQqIwL1JiITZ5DfIzigjH5R8JGgarF/b/x7ZK3jEWQxXHqxYiAEsKao265upw4JpnWNiRoZBuIQ0lMtESzJwQqicuUHxc01iQ6W8YlVeTEkr+El5Qi2ZJITKL7+DFQHBU6+Wybdkd/aI6mSHLz65S8b4pAU/IWVR/oCrSdRNYIkWbWOpmJvK8knKn6QDIWshG4LKKmantMzp+Gy/a7TlzCT8YTqRdRWBKzJCQpSXBimQO3nTYUPzokX7z346ze6seNS3bj3XUNcJjJ40q2l+b3o6zbm+auJc5dcjWO+P7jIpq8udWBSiFmSUBT9JWisBSN7aoNh2Ew2MVreXk59ttvv5SxyZMnY8eOHWnXt1gsIjEr+cYwgx0qP0SZ75RA1NLbRo9pnJaLMkX9ECqNRFUFyE+Zbv5uf0Qsj5dt6ixUOipHzRFVBeL7py/4lsQjlvEZ0Brn1wFDIoBXJsGrISyZ4czJ6dK5Tfc65VrsIqIovKtCXJPPM/Y4JrIoUqjCqlhFGSdd8kPVy5ATOQayYWuKVDZVTpApitoUJoUmlgdxArZhCHJBFRZ0kdE/LirFjkmJHVMIZgQQF1yGSNrSwyUwa8PEc0Y1HRaTIorsx3WWkNQkfkm8Jo3RHArUUWKONFfanryj1M6U7uPHYNZLm/bfVHFAN2DRh0GKFAOKX0jceDvU+LmmpC2qOkBls7oCbUfb036oXFfMU9y8f/LUUtWBeaOnttqW5kHJTxSFba+W6rjcSRiTOwE2xZ7yHiMbQWVgF+pDtSixl2OYcxRMioRTpufhTz8aiknl1sS6/rCOh1bU4slVHhQ47MK7mnhPamUwaUXQpaA4b6oiw9xUQozOmT/qRaljiNh/HDq2xnCD6BRGVoLY/6mYlYD2zTD9jX4vXufMmYMNGzakjG3cuBEjR47sszkxTLZBUUQq2USZ71X+KtFhiL7Y6J4e0zgt76/1XilyROWwqKpAZUMIgYgmokJ0T49pnJZ3td4rRTsvm3qZEBPkQYyKbPy4WG1GxDATQwaOatDIHYkfuTU4DQ3VioKALU+s15Vzm+51MiQDuRZXc6RUc0DWSRzTRGieEgqtBch1SJCUBuiaGTbf0ZB0FXY/Zd3LgBSFLOlClNA9Pabx2HIznjL/CD7DilKpHnYpDMUwcIan+Zj2StS+lLaLQFIbRDUAu/8Y5DmsCVsAiU+K/pL/uPl4YvfJllCqSABDFnOkudKcc+20D13cJ47BfwwKHTaxj3gx/0KnDY7AsYBugWRqgCzHksQ0I4QI3MKTSuWyOlPvNeV9oChie9oP7U83wmKuVJ0hikZRbeCMCWdAkduxCFASYa4V9jbaslLJrOOG/RBONQc2xQGr0lwiiwjrQXhC9aj2V6ZUHbhpYRkWzS2E3dz83BsqQthSYUY0YkWdL4KQFouSq/5ZMHSzsFk4rTFLCYljT7hO/Mih56d5tIR+vCVbCeiHRFVDEHvcAeFpZpj+Qr8vlfXZZ59h9uzZuPXWW3HmmWfi008/FbaB//znPzjvvPM63J5LZTHMAK3zqhvCKsB1Xtuo89p0fjqs89q0Xsd1XmMVWxN1XrVJYruUOq9N+0qu8xo3OqTUeW1ar8M6rxR11ZPqvMqS2K6n6ry2xYOrl4qqBZT8Fd+/Qy7FmRNPw6lTZmW8H284Ck8bJbWozutbu17EXt8ekWwX1GLR5GRv6sJRZ2HB0JNSfvi4fVE8urIWn22l16QZq6rDYvFBUjRQcYaUOq9U/k1SRMSVhOvE/P07nDu9TxymWJeu+PO7bKpImuQuXUxf0+/FK/Hqq68KLyvVd6VSWddff70QsJnA4pVhUuEOW+3DHbYGR4etDt8HmtZq/zR/6spFpcwy3o+uo9YXRjiSrtSVjl3ebfBGGkS92o8q38OnVStS1hnjmiC6c5XYylPGqfLAox/Wot6f6v+dPtqCE6a5ML6M/MFGYv/kcSWrQLqIa3vQ+9dlzhPtZgkSrvkOM3fpYvqUrBCv3YHFK8MwDNOTeMNe1AXrMq6LTBHVxkBUlAPriG9qV+PJTfeLBKo4qmzGKaPPwbwhx6f8GKLar09/Wod318VKs8UpdCq45IgiHDAi1ZLQHVRFRa45X9SvJSjBrtBhga0NewTD9CYsXhmGYRimk0S0CKoD1W1W8EhHKKqLLH5KcGsPb6QRz2x+CJ9Vr0wZH5c7GRdMuBLFtrKU8Q0VQSz+oEY0NUhm1jgHzp9dCJet5wSmzWRHrjkPihyrrEAVFihRjRLDGGZfweKVYRiGYbpAy9aymUD+13p/GP5QxwlQX9Z8gv9uekBc9o9DZbZOHXOeaHqQHIWlOrmvfOnBK1+5E614CadVxnmzCjBnvLPdZgqdgfZDNoQc1SX+Fs04bKpIxutJCw/DtAWLV4ZhGIbpBv6IX3hh03Vla3ObsIZ6qqXawVcwlbB6esuD+KJ6Vcr4hNwpuGDilSi0lqSM76wLY/HyGmypindEi7H/MKuwEpS4es6rSh3pXGoe7KqjqWqHjHyHihz2wzK9DItXhmEYhumBRL+aQI0ob5b5NjEbAVVg6IjPq1fhqU2L4Ys2+1vJf3ra6PNxePnRKVFVSpZbtq4BSz6pR6ipzBhhNkmi6cGx+7t6tGKAWbEIKwHdi3mpCgodZlE2jGF6AxavDMMwDNND1AfrRZOJztAQjKAhEG3VgKPVemG3sBF8XftZyvikvKk4f8KVKLCmlouraYzi4Q9r8PWOQMr46CIzLj2yCCOLUjt9dReKwLrU3IQf1tnkh22vdS7DdAUWrwzDMAzTxzaCTJO56Ct7dfVHWLL5Qfii3sS4VbHh9DEXYHbZgpQoLK3/8RYfHltZi8ZgUq1iCTjxgFycenCeqBzQU8hNflhnkh+WvLDUvKKnPLcMw+KVYRiGYXrBRlDtr0ZIS/Wetofe1OrYl0FLVo+Iwt4vSmsls1/+ATh3/BWtorCNQQ1PrqrDhxubBS9R6jJh0dwi7DeUWgn3HNRwgurDUnWC2GMZBU6ziMYyTHdh8cowDMMwvQB9vVI92MZwah3WjqDOZFSRQNONDvdPTQ2WbHkYgagvJQp7xtiLcFjpvFbRzjW7AnjogxpUN6YK5CMnOXHOYQVwWHrWp0q+XPLDqkqsExvVhSUrgcXEflim67B4ZRiGYZhebmpQG6zt0NPaMgpLNgISsh3hDtXhiU3/wbd1X6aMTyk4COeNvwJ5loKU8WBExwur3XhjjQfJU8q1Kbjw8EIcMtre45f4qUMXtZqlNrXxVrPULY1LazFdgcUrwzAMw/Qy1Mygyl8l7ASdoTEUhccf6VD4Cm/r3vfxzJZHENSaE7RsJgfOHHsxDi05opUg3VodEmW1ttemNlqYPtKOiw4vRIGzZy/xU11a6tIVL63FrWaZrsLilWEYhmH2AdROlnywgWhq9n9HRDQdtb4wItGOS2rVBWvw5Kb/YF391ynj0wpn4Jzxl4tL+MlENQNvrvHg+dVuRLRmOWBVJZw1swAL9ssRSVg9CZXUyjPnJ6wE1J2r0GmG3cx+WCYzWLwyDMMwzD7EHXTDHXJ3ahsDhiin1RCIdLyuYeCjynfx3PePpURhHSYnzhy3CDOKZ7eKwu71RPDgBzVYtye1Tu2EMotI6BqaHxOaPYlTzRFWgninMBKv1OSA/bBMR7B4ZRiGYZgsKKcV96tSZy5qcJBJFPbxjffiO/ealPEDiw7FOeMuE8IxGZIDKzZ48eTHdfCFmvdPlbQWHpQnbqrSs1FY0aXLnAe7KWYlIKhDFyV19WQjBWZgweKVYRiGYfqAiB4RNgLyw3YGSuYiAUstZjuCvuI/rFiG579/DCE9lBL1PHvcpZhePKvVNh6/hsc+qsUnW5orGBBD81VcOrcI48us6GlEVQJLPlQ55n8lq0K+3QyXzcT1YZlWsHhlGIZhmD6CvoKpEgFVJOgsJF7dGZTUImoCVSIKu9Hzbco4idezxy0STQVa8sU2Px75sAZ1vmaRTDLyqCk5OPPQAtjMPds5i0SqsBKouQnBSn7Y4QWxWrEME4fFK8MwDMP0MVQLlmrCdvYrWdN11PnDCIb1jBLGVlS8jRe+fwLhpCgsicVzxl8m7AQtCYR1PPNpPZZ924DkmRU4FFx8RBEOGtnzwpIaHFBVAqvJJiKwo4qaLQUMQ7B4ZRiGYZgsLqdFNAaj8AQ6LqlFVAcq8djGe7HZsz5lfEbxHJw57hIR/WzJpsogFn9Qg931qQljM8c4cMGcQuTaez7JisRrvqUA40pSvbkMw+KVYRiGYbK8nBYRppJa3jCiWmZR2OV73sKLW59ERG/23LrUXJw74QpRWqslVErrlS/d4pZctcthkUV3rrkTnT3uTzXJCmaNnNij+2SyHxavDMMwDNPP8IQ8qA/Wd3o7Kqnl9kfgDWYWva0KVOCxDfdgS8OGlHFqakDNDeyqs9U2u+vDoqzWxspm6wExeYhVJHSV5vZc0wFFljF75KQe2x8zMGDxyjAMwzD9EIq+1vhrOl1OiwhGNNFeNpNkLorCvrf7dby87SlRASEO+U7PHX8FphZOT7ONgXfXNeLpT+oQjDQ/B5XSOm1GHo6fmgtTD5TVYvHKpIPFK8MwDMP0U8j/SjaCkJYa5cwEEpgkYAMZlNQi9vr34NENd2Nr46aU8Vml83D62AtTarHGqfNG8ciHtfhiuz9lfEShGZceWYQxxRZ0BxavTDpYvDIMwzBMP4a+pqkSAVUk6AqNoSg8/sySuSgK+86uV/HKtiWIGs1R2DxzIc6fcAX2Kzgw7fw+2+rHoytrRY3YOGR/PX6qC6fNyIdV7VpZLRavTDpYvDIMwzBMFuCL+ERXLhKYnSVCyVy+MCLJmVbtUOHbhUc33o3tjVtSxueULcBpYy6AzdS6RJYvpOGpj+vw/nepNWuLc0y45IhCTB3e+bJaLF6ZdLB4ZRiGYZgB3pUrnszVEIiiIZBa7qotyGv79s6X8dr2Z1J8twWWIpw/4ceYlD8t7XbrdgdEQtfehtSkscMnOHHurALkWDMvq8XilUkHi1eGYRiGGSRduYhQVEcdldTSM4vC7vbtEF7Ynd6tKeNHlB+DU0efJ+qxtiQc1fHi52689rUHyTljOVYZ588uxKxxjozKarF4ZdLB4pVhGIZhBpmNgJK56n1h0WI2EzQ9ird2vojXdzwPPSkKW2gpxvkTr8TEvP3Tbre9NoTFy2uwtTo1UjxtuE1YCYpy2i+rxeKVSQeLV4ZhGIbJUiJaBNWBrtkICBKvJGJJzGbCTu82PLbhbuzybU8ZP3LIcThl9LmwKtZW21C5rqVrG/DsZ/UIR5ufx2KScMah+ThmiguynD4Ky+KVSQeLV4ZhGIYZxDYCTY8lc4Uiesblu97c8Tze3PECdDRvU2QtxQUTrsT4vP3SblfVEMHDK2qxZldq97AxJRZcNrcIwwvNrbZh8cqkg8UrwzAMwwxyGwHREIyIhK5MZcGOxu+FF3aPf2fK+PyhJ+CUUefArLSu8Ur7/miTD4+vqoU32DxPRQZOOiAXp0zPg9nUXFaLxSuTDhavDMMwDDNA6K6NIEwltSiZS9Mzrn7wxvbnsHTnSylR2GJrGS6ceBXG5qYXng0BDU+uqsXKTb6U8bJcFZfOLcSkIbEkMBavTDpYvDIMwzDMAKK7NgIqqeX2R+ANppa6ao9tjZvx2IZ7UOHflRiTIGHBsJOwcORZMCutLQHENzv8eGhFLWq8qc81f3IOzpqZD5dNZfHKtILFK8MwDMMMQLprIwhGNNFelhKuMiGih/HqtmewbNcrQgDHKbUNEVHY0a4JbTyPjuc+q8dbaxuQrEjy7AouOaII186f0aX5MwMXFq8MwzAMM0Dpro2AqhCQgA1kWFKL2NqwEY9uuAd7A3tSorBHD1uIk0edAVVOH4XdUkVltaqxsy61icLxU8pw6ylTUOpqXcmAGZyweGUYhmGYAUx3bQSENxyF2xfJOJmLxPIr25/Gu7teS4nCltmH4sKJP8GonHFpt4tqBl7/2oMXv3AjojVvN7zAhvd+MQ8myuxiBj0sXhmGYRhmENBdG0FE01HnDyOcYUktYovnOzy28V5UBSoSYzJkHDP8FJw48nSocvomBRXuiGgx+11FUDz+nx9Nw5kzhndp3szAg8UrwzAMwwwSumsjoCgqldNqCKRe2m+PsBbCy9uewnu730iJwg6xDxdR2BE5Y9q0LKzY4MOuGgX3nD89o3ayzOCAxSvDMAzDDCJ6wkYQiurCC5tpSS1ik3udiMLWBPemRGGPG3EqThhxGkyyqdU2XCqLSQeLV4ZhGIYZhHTXRkCRUWotSy1mMyWkBfHi1iexfM9bKePDHCNFFHaYc1TKOItXJh0sXhmGYRhmkEJNBmr8NQhpoS7vg8QriVgSs5mywb0Wj2+4F7Wh6sSYLCk4ccRpOG74D6E0RWFZvDLpYPHKMMyggKJL6+vWwx10I8+ah8kFkyFLcq9uG43qeOWbCux2+zE0z46F08phSmp92elj0A18u6dBJM0U2M2YMsQFWZZ6bF9RI4IH1z6InY07MTxnOBbtv0hcyu3o2DM9zp6c/0CkO+enO+9vkgF1wTo0hhu7PHdN11HrCyPUiWSuYDSAF7Y+gRUVb6eMD3eOwoUTr0a5Yzh21QYxzDWC3y9MdonXP/zhD7j11ltTxiZOnIjvvvsuo+1ZvDIM80nFJ1i8ZjG2NmxFVI8KQTbaNRqXTr0UM8tn9sq293+wBf9+fwsaAxHRNJNkRI5NxdXzxuLyuWM7fQwfba7BPcu3YEuVV5QQUhUJY0ucuOrIsZg9rqjb+1JLX4Bb+RA6tBQ/YpGtCLIst3nsmR5nT85/INKd89Od93cy/ogfNYGaLtsIiIZgRCR0dUZafFf/DR7feB/qQjWJMRkKXJF58NfMgBwt4/cLk33i9dlnn8WyZcsSYyaTCUVFmb15WbwyzOCGvthvW3Wb8PflWnJFm0rKtPaEPHCoDtw86+Y2v+C7ui0Jurve3CA6E5kUCRQsoiZFVMNSkSX8+viJnRKwJGx+88IaeENR5NvNMCuy6EFf74/AaVFwx6lTM/5CT7evKssTCFpXxlZIE9jKUXMwNGdoq2P/ZlNRRsfZk/MfiHTn/HTn/d1bNgKae623c8lcgagfz3//OFZWvpMyrkTKURK4DEaklN8vTIKsqPZLYrWsrCxxy1S4MgwzuKEIEkWk6Iu9xF4Cq8kqLqXSPT2mcVqeLtLU1W3pEjpFIknQmU0STLIstqN7ekzjtJzWy+gYdENE5EjYlLmssKqKuHRK92UuC7whTSyn9bqyL0OOIGhd1bySQb2QUhVsY6SRaiSlHPsD3zyAf72/qcPjDIe1Hpv/QKQ7r2933t9tQXVXyxxlcFm6Huwh8V2Wa4HT2rp6QFvYTHacN+EK/GT/m6Dozc+tqRWoyLkTIcc7KHWpg/79wmSReN20aROGDBmCMWPG4LzzzsOOHTvaXDcUColoa/KNYZjBCXkA6VIqRaRa1oikxzROy2m9ntqWvJ90CT0WiUz9iBXiTpHEclovE8gDSZeSKSKXbh55dlUsp/W6sq9GlfyGcXHTtp+QSislH/v62i3w6ds7PM57P/i+x+Y/EOnO69ud93d70LYF1gIhgBVJ6dJx0Q8gOqbiHIuIwmeKU58ApWoR1OABSTuLwm9ay+8XJnvE68yZM/Hwww/jzTffxD333IOtW7fiiCOOQGNjemP5nXfeKWwC8dvw4dyRg2EGK5S8Qh5AupSaDhqn5bReT21LSUvC+9nG9zWNG03rZQIl75AHkqJZ6bAoMiK6Idbryr4iSrPPME66mFZyUfvYpekIYPJ3eJzb63w9Nv+BSHde3+68vzPBrtpR5iyDRbGgq4gIcq4VNnNmIrgxFIGmWeHy/wCuxrMh6zmQDAuKAhdAgjzo3y9MlojXE044AWeccQamTZuG4447Dq+//jrcbjeWLFmSdv2bbrpJ+Fvjt507d+7zOTMM0z+grGtKXmmrmxCN03Jar6e2pWx7+mBt66omjUtN62UCZVlTsgr5CNMR0nSosiTW68q+VK21DSudHk0WSHTsZkUFovYOj3NkgaPH5j8Q6c7r2533d2dtBDnmnC7vQ5YkFDktyHe2ji63JMeiggpVRHUDluh45DdehRL/lVCNYrF8sL9fmCwRry3Jy8vDhAkTsHnz5rTLLRaLSMxKvjEMMzihckGUdU3JKy1zU+kxjdNyWq+ntqUyUZRtT0lLLb2G9JjGaTmtlwlUHoiyrClZJd083P6IWE7rdWVfOZFjkr4K2vYRFloLU459cuFYOOSRHR7nlXPH9Nj8ByLdeX278/7uDCQ4C22FKLYXZ1x+Kx1OswmlLgvMatv7GFFkQ3meXXiA6YhkwwabFqvzyu8XJmvFq9frxZYtW1BentkHP8Mwgxf6oqVyQZR1XeWvQjAaFMKK7ukxjdPydF/IXd2W6ptSmSjy+YWjBqK6HhNzui4e0zgtz7TeKyXvUHkgyrKubAghENFEsgrd02Map+WZ1L9Mty9JV2ENzmpeSaLu80aragMURk0+9sumXYafzhvf4XGazUqPzX8g0p3Xtzvv765A+yt3lLdpU8gEVZFRkmOBy6amXS5DwsnTymBVZSHoqQ0tv1+YrCuVdcMNN2DhwoUYOXIk9uzZg1tuuQVfffUV1q1bh+Li2GWE9uBSWQzD9HWdV/qQlXqyzqtuiEunPVLntWlfPVHntb3j7Mn5D0S6c356qs5rppBsoAQ+b9jbrf2QMK3zpS+pta7Cg1e/qUSFOwBJK+H3C5Nd4vXss8/GBx98gNraWiFWDz/8cPzpT3/C2LGZffizeGUYhuAOWx3viztsDc4OW12FSnHVBmq71dSAWsrW+8Pwh7TWy2Bwhy0mO8Vrd2HxyjAMwzC9Q0SLoDpQ3WbSWKb4wxrqfWEhZpNRZBmzR8Y8rwyTtZ5XhmEYhmH6B6qiCh+s0+zs1n7sZiqpZYGlnWQuhonD7xKGYRiGYbpVjYC80d2tRkBR1pIcK3LtaocltZjBDYtXhmEYhmH6RTUCwmVVUeKywNRG4waG4XcGwzAMwzD9ykZAHcfIRuCwmHpsbszAgcUrwzAMwzA9biMQZda6YSOQICGfO2kxaWDxyjAMwzBMj0PR156wETBMS1i8MgzDMAzTr20EDJMMi1eGYRiGYfq9jYBh4vC7iGEYhmGYfWYjoGgsw3QHFq8MwzAMw+wT2EbA9AQsXhmGYRiG2WeQdYAsBIW2Qm5GwHQJFq8MwzAMw+xzcsw5IgprkrmWK9M5WLwyDMMwDNMnUBktErA2k62vp8JkESxeGYZhGIbpMxRZQamjFPnW/L6eCpMlsHhlGIZhGKbPybXkChGrSEpfT4Xp57B4ZRiGYRimX0D2gXJnOawma19PhenHsHhlGIZhGKbfQAlcZY4yEYllmHRwih/DMAzDMP0O8sByBJZJB0deGYZhGIbpl3AVAiYdLF4ZhmEYhmGYrIHFK8MwDMMwDJM1sHhlGIZhGIZhsgYWrwzDMAzDMEzWwOKVYRiGYRiGyRpYvDIMwzAMwzBZA4tXhmEYhmEYJmtg8cowDMMwDMNkDSxeGYZhGIZhmKyBxSvDMAzDMAyTNbB4ZRiGYRiGYbIGFq8MwzAMwzBM1sDilWEYhmEYhskaWLwyDMMwDMMwWQOLV4ZhGIZhGCZrYPHKMAzDMAzDZA0sXhmGYRiGYZisgcUrwzAMwzAMkzWweGUYhmEYhmGyBhavDMMwDMMwTNZg6usJMAzDMMy+RDd0rK9bD3fQjTxrHiYXTIYsyT22LxgSvt3TgDp/GAV2M6YMcUGWpV6da1ePqSfPRU/Tn+fG9C1ZJV7//Oc/46abbsK1116Lv/3tb309HYZhGCbL+KTiEyxesxhbG7Yiqkdhkk0Y7RqNS6deipnlM7u9r3zTUITr5qFq73BENAOqImFsiRNXHTkWs8cV9cpcu3pMPXkuepr+PDem75EMwzCQBXz22Wc488wz4XK5MH/+/IzFa0NDA3Jzc+HxeMS2DMMwzOCEBNFtq26DL+JDriUXZsWMsBaGJ+SBQ3Xg5lk3ZyyM0u3LHQhgr7cOhm5Bvv8c5BiTEdZ01PsjcFoU3HHq1IwFbKZz7eox9eS56Gn689yY/kFWxN+9Xi/OO+883H///cjPz+/r6TAMwzBZBl2CpkgeCaISewmsJqu4BE339JjGaTmt16V9QYbHDxiaC7ISRsCxDJJswKoqKHNZ4A1puGf5Fui60WNzpYhkV46pJ89FT9Of58b0H7JCvF599dU46aSTcPTRR3e4bigUEtHW5BvDMAwzuCHvJF2CpkieJKX6T+kxjdNyWq8r+wpENIQiOkyyDNmwIyJXIizvTOw/z65iS5VXeGF7aq5vbH2jS8fUk+eip+nPc2P6D/1evD711FP44osvcOedd2a0Pq1HNoH4bfjw4b0+R4ZhGKZ/Q0k/FKmkS9DpoHFaTut1ZV9R3QD9kyFBEukkGnTJl1huUWREdEMkcfXUXCt8FV06pp48Fz1Nf54b03/o1+J1586dIjnriSeegNVqzWgbSugif2v8RvtgGIZhBjeUrU5JP+SdTAeN03Jaryv7MskkWiXoQsJGASiQDUdieUjTocqSqD7QU3Mtd5R36Zh68lz0NP15bkz/oV+L188//xxVVVWYPn06TCaTuC1fvhz/+Mc/xN+aprXaxmKxiMSs5BvDMAwzuKEyS5StTkk/LfOU6TGN03JR6qoL+7KpCiyqjKiuQ5f8UPUymPXYlT9ax+2PiKoDVDarp+Z6wugTunRMPXkuepr+PDem/9CvxetRRx2FNWvW4KuvvkrcZsyYIZK36G9FUfp6igzDMEwWQEk/VGaJstWr/FUIRoMi6Yfu6TGN0/JM6oim3Rd05NoBSWmArplh8x0NQ5eEF7ayISSqDVC5rEzqvWY6V4pAduWYevJc9DT9eW5M/yFrSmXFmTdvHg488EAulcUwDMP07zqvuiGsAlzntfP057kxfQ+LV4ZhGGZQwR22ur/dvqA/z43pW7JOvHYWFq8MwzAMwzADB/4JwzAMwzAMw2QNLF4ZhmEYhmGYrIHFK8MwDMMwDJM1sHhlGIZhGIZhsgYWrwzDMAzDMEzWwOKVYRiGYRiGyRpYvDIMwzAMwzBZA4tXhmEYhmEYJmtg8cowDMMwDMNkDSxeGYZhGIZhmKyBxSvDMAzDMAyTNbB4ZRiGYRiGYbIGEwY4hmGI+4aGhr6eCsMwDMMw/ZCcnBxIktTX02AyZMCL18bGRnE/fPjwvp4KwzAMwzD9EI/HA5fL1dfTYDJEMuKhyQGKruvYs2cP/6pqA4pIk7DfuXMn/8ftI/g16Fv4/Pc9/Br0LXz+OfKabQz4yKssyxg2bFhfT6PfQx9Yg/VDq7/Ar0Hfwue/7+HXoG/h889kC5ywxTAMwzAMw2QNLF4ZhmEYhmGYrIHF6yDHYrHglltuEfdM38CvQd/C57/v4degb+Hzz2QbAz5hi2EYhmEYhhk4cOSVYRiGYRiGyRpYvDIMwzAMwzBZA4tXhmEYhmEYJmtg8cowDMMwDMNkDSxeByl33nknDjnkENFVpKSkBD/84Q+xYcOGvp7WoOXPf/6z6O7y85//vK+nMqjYvXs3zj//fBQWFsJms2Hq1KlYvXp1X09rUKBpGn7/+99j9OjR4tyPHTsWt99+OziHuPf44IMPsHDhQgwZMkR83rz44ospy+nc33zzzSgvLxevydFHH41Nmzb12XwZpi1YvA5Sli9fjquvvhoff/wx3n77bUQiERx77LHw+Xx9PbVBx2effYb77rsP06ZN6+upDCrq6+sxZ84cqKqKN954A+vWrcP//d//IT8/v6+nNii46667cM899+Bf//oX1q9fLx7/z//8D/75z3/29dQGLPT5fsABB+Df//532uV0/v/xj3/g3nvvxSeffAKHw4HjjjsOwWBwn8+VYdqDS2UxgurqahGBJVE7d+7cvp7OoMHr9WL69Om4++678cc//hEHHngg/va3v/X1tAYFN954I1auXIkVK1b09VQGJSeffDJKS0uxePHixNjpp58uIn6PP/54n85tMECR1xdeeEFcdSNIClBE9he/+AVuuOEGMebxeMRr9PDDD+Pss8/u4xkzTDMceWUSH1JEQUFBX09lUEHR75NOOklcnmP2LS+//DJmzJiBM844Q/xwO+igg3D//ff39bQGDbNnz8Y777yDjRs3isdff/01PvzwQ5xwwgl9PbVBydatW1FZWZnyWZSbm4uZM2di1apVfTo3hmmJqdUIM+jQdV14LekS6v7779/X0xk0PPXUU/jiiy+EbYDZ93z//ffisvX111+P3/zmN+J1+NnPfgaz2YyLLrqor6c3KCLfDQ0NmDRpEhRFER7YP/3pTzjvvPP6emqDEhKuBEVak6HH8WUM019g8cqI6N/atWtF1IPZN+zcuRPXXnut8Btbrda+ns6g/dFGkdc77rhDPKbIK/0/IL8fi9feZ8mSJXjiiSfw5JNPYsqUKfjqq6/Ej2i6dM3nn2GY9mDbwCDnpz/9KV599VW89957GDZsWF9PZ9Dw+eefo6qqSvhdTSaTuJHfmJIl6G+KQjG9C2VU77fffiljkydPxo4dO/psToOJX/7ylyL6Sl5KqvJwwQUX4LrrrhOVUJh9T1lZmbjfu3dvyjg9ji9jmP4Ci9dBCpnzSbiSYf/dd98V5WqYfcdRRx2FNWvWiGhT/EZRQLpkSn/TZVSmdyGbTMvycOS/HDlyZJ/NaTDh9/shy6lfQfS+p4g4s++h7wASqeRDjkO2Dqo6MGvWrD6dG8O0hG0Dg9gqQJfrXnrpJVHrNe5pIoM+ZfsyvQud85b+YipLQ/VG2Xe8b6AoHyUNkW3gzDPPxKeffor//Oc/4sb0PlRvlDyuI0aMELaBL7/8En/5y1+waNGivp7agK5usnnz5pQkLfqxTIm69DqQbYOqnowfP16IWarDSzaOeEUChukvcKmsQVwmJR0PPfQQLr744n0+HwaYN28el8rax5Bl5qabbhKF2OnLmpK3Lr/88r6e1qCgsbFRiCO6+kMWGhJJ55xzjiiST0lzTM/z/vvvY/78+a3GyWNM5bBIDtxyyy3iB5zb7cbhhx8uyvhNmDChT+bLMG3B4pVhGIZhGIbJGtjzyjAMwzAMw2QNLF4ZhmEYhmGYrIHFK8MwDMMwDJM1sHhlGIZhGIZhsgYWrwzDMAzDMEzWwOKVYRiGYRiGyRpYvDIMwzAMwzBZA4tXhhmkUFHyvLy8xOM//OEPokkC0z2oyce+6khUW1uLkpISbNu2LVGEnhqQUIH5nuTGG2/ENddc06P7ZBiG6SosXhkmC8URCRS6qaqK0tJSHHPMMXjwwQc71Rf+rLPOwsaNG3ttnvfffz8OOOAAOJ1OIZIPOugg3Hnnnchm4ue9rRv9APj73/8ufhjsC6i96imnnIJRo0b16vPccMMNeOSRR/D999/36vMwDMNkgimjtRiG6Vccf/zxopWvpmnYu3cv3nzzTVx77bV49tln8fLLL8Nk6vi/ts1mE7fegIQ09Un/xz/+gSOPPBKhUAjffPMN1q5d2+V9RiIRIdb7koqKisTfTz/9tGhlumHDhsQYCXW67Qv8fj8WL16Mt956q/0MqBAAAAiESURBVFv7CYfDHbZjLSoqwnHHHYd77rkH/+///b9uPR/DMEx34cgrw2QhFosFZWVlGDp0KKZPn47f/OY3eOmll/DGG28kon5/+ctfMHXqVDgcDgwfPhw/+clP4PV627QNJPPBBx8IoVhZWZkyToL0iCOO6HB+JKDPPPNMXHrppRg3bhymTJki+tZTpLClyKVldDzl5eX46U9/mlhGkUwSSz/4wQ/EMcS3peOkY7ZarRgzZgxuvfVWRKPRxHZ0yfyyyy5DcXExXC4XFixYgK+//rqVPeKxxx4TEcvc3FycffbZaGxs7PC46JzHb7QdzTF5jIRrS9vAvHnzxCV3Onf5+fkiUk5RaZ/Ph0suuQQ5OTniHNFrlwwJ/RNOOEHsk7a54IILUFNTk1j++uuvi/N22GGHtZrn559/jhkzZsBut2P27NkpAjt+/A888ABGjx4tziNBP3zo/UI/aAoLC3H00UeLOcZZuHAhnnrqqQ7PEcMwTG/D4pVhBggk0ugy/fPPPy8ey7IsIp/ffvutuOT77rvv4le/+lVG+5o7d64QhiTwkiOfTzzxBBYtWtTh9iTkPv74Y2zfvr3NdUiYXn311bjiiiuwZs0aIXhJxCVDQuvUU08Vy+l5V6xYgQsvvFBEmdetW4f77rtPiPBkUXzGGWegqqpKiEEScSR0jzrqKNTV1SXW2bJlC1588UW8+uqr4rZ8+XL8+c9/Rm9B55+il59++qkQsldddZWYJwnLL774Ascee6wQpxRNjQtwej3JarF69WoRWacIO/0giEPn4uCDD077fL/97W/xf//3f2JbisK3fM02b96M5557TrxXvvrqKxFRph8XtN769euFd/a0006DYRiJbQ499FDs2rUr4a9lGIbpMwyGYbKKiy66yDjllFPSLjvrrLOMyZMnp132zDPPGIWFhYnHDz30kJGbm5t4fMsttxgHHHBA4vFdd92Vsq/nnnvOcDqdhtfr7XCOe/bsMQ477DBSPsaECRPEnJ9++mlD07TEOkOGDDF++9vftrkP2vbnP/95ythRRx1l3HHHHSljjz32mFFeXi7+XrFiheFyuYxgMJiyztixY4377rsvcZx2u91oaGhILP/lL39pzJw50+gMLc9fW6/PkUceaRx++OGJx9Fo1HA4HMYFF1yQGKuoqBDHu2rVKvH49ttvN4499tiU/e7cuVOss2HDBvGYnmPRokUp67z33ntinWXLliXGXnvtNTEWCAQSx6+qqlFVVZVY5/PPPxfrbNu2rc3j9Xg8Yp33338/wzPEMAzTO3DklWEGEKT56FI2sWzZMhFxJGsBXZqmyB5lp8ejex1Bl78pQkcRVIIinBT5o0v4HUEWgFWrVomIKUVJ6bL+RRddJLy6lFRGkdE9e/aI+bUHXfpOhi7/33bbbQlvKd0uv/xyETmk46LlZI2gy97J62zdulVEW+OQXYDOSfJ8aU69xbRp0xJ/K4oi5keX6OOQLYCIz4GO47333ks5hkmTJoll8eMIBAKJS/7tPR8dW/K+iZEjRwpbRRyK2NNrQXOiiDDZGurr61P2GfdHZ/r+YRiG6S04YYthBhB0yZd8jHRp9+STTxaXp+mSekFBAT788EPhQaUEHfJCdgSVYCKfIyWG0T7pMjxdTu4M+++/v7iR3/bKK68Uflm6RN9SlLZFS6FMwpQ8rnRJuyUk5Gg5ibV080z297ZM/CLB35lKDZ0l3fMlj8V/cMTnQMdB5/6uu+5qta+4GCUbQkuBme75Wu473XklQf3222/jo48+wtKlS/HPf/5TWA8++eQT8doTcdtFsuhlGIbpC1i8MswAgTytFOm87rrrhNeTxAr5Hsn7SixZsqTT+6TEJ/JCDhs2DGPHjsWcOXO6PL/99ttP3FMSEEU9Kfr5zjvvYP78+Rnvg/yrlHzU0hubvJySzMjn2dvlo3oTOg7ypNIxtFU5gvywjz/+eI89J4lcen3pRlUUKDr7wgsv4Prrr08kkJEopgQ7hmGYvoRtAwyThVDpKRJpu3fvFgk/d9xxh6j3SdFWSmgicUcJVhRBo9qclHh17733dvp5qDwSZez/8Y9/FJnxmUIR39tvvx0rV64USVtkPaB5UdRu1qxZiWQsEteUVLZp0yZxHDTf9iBR9eijj4roKyWiUaSZMuB/97vfieWUIU/7p2x/iiBSBJqiiRRFpOSlbIES2SjSST8cPvvsM2EVoJJY9BpQebT4a0PnoK3oa2egCCu9h+gc7dixQyRyVVdXY/LkySkJYhQ5763yagzDMJnC4pVhshDKPqfLxxSZIx8p+SNJBFIZKboETB5GKpVFl53psj1VCehKgwCK2pL3lQQTic9MIRFJgpX8kxMmTMDpp58uLutTpJX8ngR5YP/2t7/h7rvvFtE8Et4kYtuDBBtVByBhesghh4gyUX/9619FlDAePaQSUlQtgYQePTeVwSIBHfeVZgNDhgwRwp/OO1UiIC8qldoi60M8kk5jFKHtSkS9JfQDhcqjnXjiieKc0Y8B+mFBpbri0I8E8hczDMP0NRJlbfX1JBiG6b+QT5aicFTKiulfvPbaa/jlL38pLunHRW1vQH7nX/ziF6LRRCYNMBiGYXoT/hRiGCYtHo9HeGiffPJJFq79lJNOOklEq8k+Qo0oegvyKVPiHgtXhmH6Axx5ZRgmLdQZiorq//jHPxaX5pOhy8nkgUwHdfuiWzZCfs94Ylk6qDHCiBEj9umcGIZhmFRYvDIM02ko0kd1RtNBZbnolo1QPdr2Oki1l/3PMAzD7BtYvDIMwzAMwzBZA1cbYBiGYRiGYbIGFq8MwzAMwzBM1sDilWEYhmEYhskaWLwyDMMwDMMwWQOLV4ZhGIZhGCZrYPHKMAzDMAzDZA0sXhmGYRiGYZisgcUrwzAMwzAMg2zh/wOtMzcD0FPizgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.lmplot(\n", + " data=df,\n", + " x=\"Daily_Screen_Time(hrs)\",\n", + " y=\"Happiness_Index(1-10)\",\n", + " hue=\"Gender\",\n", + " aspect=1.2\n", + ")\n", + "plt.title(\"Social Media Time vs Happiness by Gender\")\n", + "plt.xlabel(\"Daily_Screen_Time(hrs)\")\n", + "plt.ylabel(\"Happiness_Index(1-10)\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "located-night", + "metadata": {}, + "outputs": [], + "source": [ + "# 💻 YOU CAN ADD NEW CELLS WITH THE \"+\" BUTTON " + ] + }, + { + "cell_type": "markdown", + "id": "infectious-symbol", + "metadata": {}, + "source": [ + "# Discussion" + ] + }, + { + "cell_type": "markdown", + "id": "furnished-camping", + "metadata": { + "code_folding": [] + }, + "source": [ + "## Considerations" + ] + }, + { + "cell_type": "markdown", + "id": "bearing-stadium", + "metadata": {}, + "source": [ + "*It's important to recognize the limitations of our research.\n", + "Consider the following:*\n", + "\n", + "- *Do the results give an accurate depiction of your research question? Why or why not?*\n", + "- *What were limitations of your datset?*\n", + "- *Are there any known biases in the data?*\n", + "\n", + "✏️ *Write your answer below:*\n", + "\n", + "The results give an estimate of how social media time may influence happiness. If the correlation is weak or near zero, that suggests social media time might not strongly affect happiness for most people. However, the dataset may have limitations; for example, self-reported happiness is subjective, and the survey might not represent all age groups equally. There could also be bias in who chose to respond to the survey." + ] + }, + { + "cell_type": "markdown", + "id": "beneficial-invasion", + "metadata": {}, + "source": [ + "## Summary" + ] + }, + { + "cell_type": "markdown", + "id": "about-raise", + "metadata": {}, + "source": [ + "*Summarize what you discovered through the research. Consider the following:*\n", + "\n", + "- *What did you learn about your media consumption/digital habits?*\n", + "- *Did the results make sense?*\n", + "- *What was most surprising?*\n", + "- *How will this project impact you going forward?*\n", + "\n", + "✏️ *Write your answer below:*\n", + "\n", + "From this project, I learned more about how data can reveal patterns in daily habits like social media use. My results showed that happiness tends to decrease slightly as social media time increases, but the relationship is not very strong. This makes sense because happiness depends on many factors beyond social media. What surprised me most was how small the correlation was; it shows that time online might not be as harmful as people sometimes think. Going forward, I’ll pay more attention to how I use social media and try to balance it in a healthy way." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2ebf4fe8-4f81-4d7e-8ca9-31d6e80a8441", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "jupytext": { + "cell_metadata_json": true, + "text_representation": { + "extension": ".Rmd", + "format_name": "rmarkdown", + "format_version": "1.2", + "jupytext_version": "1.9.1" + } + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.7" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": false, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/.ipynb_checkpoints/poetry-checkpoint.lock b/.ipynb_checkpoints/poetry-checkpoint.lock new file mode 100644 index 0000000..afabeb5 --- /dev/null +++ b/.ipynb_checkpoints/poetry-checkpoint.lock @@ -0,0 +1,3071 @@ +# This file is automatically @generated by Poetry 2.0.0 and should not be changed by hand. + +[[package]] +name = "anyio" +version = "4.8.0" +description = "High level compatibility layer for multiple asynchronous event loop implementations" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "anyio-4.8.0-py3-none-any.whl", hash = "sha256:b5011f270ab5eb0abf13385f851315585cc37ef330dd88e27ec3d34d651fd47a"}, + {file = "anyio-4.8.0.tar.gz", hash = "sha256:1d9fe889df5212298c0c0723fa20479d1b94883a2df44bd3897aa91083316f7a"}, +] + +[package.dependencies] +exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} +idna = ">=2.8" +sniffio = ">=1.1" +typing_extensions = {version = ">=4.5", markers = "python_version < \"3.13\""} + +[package.extras] +doc = ["Sphinx (>=7.4,<8.0)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx_rtd_theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "trustme", "truststore (>=0.9.1)", "uvloop (>=0.21)"] +trio = ["trio (>=0.26.1)"] + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "(python_version <= \"3.11\" or python_version >= \"3.12\") and platform_system == \"Darwin\"" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "argon2-cffi" +version = "23.1.0" +description = "Argon2 for Python" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea"}, + {file = "argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08"}, +] + +[package.dependencies] +argon2-cffi-bindings = "*" + +[package.extras] +dev = ["argon2-cffi[tests,typing]", "tox (>4)"] +docs = ["furo", "myst-parser", "sphinx", "sphinx-copybutton", "sphinx-notfound-page"] +tests = ["hypothesis", "pytest"] +typing = ["mypy"] + +[[package]] +name = "argon2-cffi-bindings" +version = "21.2.0" +description = "Low-level CFFI bindings for Argon2" +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"}, + {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, +] + +[package.dependencies] +cffi = ">=1.0.1" + +[package.extras] +dev = ["cogapp", "pre-commit", "pytest", "wheel"] +tests = ["pytest"] + +[[package]] +name = "arrow" +version = "1.3.0" +description = "Better dates & times for Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80"}, + {file = "arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85"}, +] + +[package.dependencies] +python-dateutil = ">=2.7.0" +types-python-dateutil = ">=2.8.10" + +[package.extras] +doc = ["doc8", "sphinx (>=7.0.0)", "sphinx-autobuild", "sphinx-autodoc-typehints", "sphinx_rtd_theme (>=1.3.0)"] +test = ["dateparser (==1.*)", "pre-commit", "pytest", "pytest-cov", "pytest-mock", "pytz (==2021.1)", "simplejson (==3.*)"] + +[[package]] +name = "asttokens" +version = "3.0.0" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2"}, + {file = "asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7"}, +] + +[package.extras] +astroid = ["astroid (>=2,<4)"] +test = ["astroid (>=2,<4)", "pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "async-lru" +version = "2.0.4" +description = "Simple LRU cache for asyncio" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627"}, + {file = "async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""} + +[[package]] +name = "attrs" +version = "24.3.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "attrs-24.3.0-py3-none-any.whl", hash = "sha256:ac96cd038792094f438ad1f6ff80837353805ac950cd2aa0e0625ef19850c308"}, + {file = "attrs-24.3.0.tar.gz", hash = "sha256:8f5c07333d543103541ba7be0e2ce16eeee8130cb0b3f9238ab904ce1e85baff"}, +] + +[package.extras] +benchmark = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-codspeed", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +cov = ["cloudpickle", "coverage[toml] (>=5.3)", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +dev = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pre-commit-uv", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +docs = ["cogapp", "furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +tests = ["cloudpickle", "hypothesis", "mypy (>=1.11.1)", "pympler", "pytest (>=4.3.0)", "pytest-mypy-plugins", "pytest-xdist[psutil]"] +tests-mypy = ["mypy (>=1.11.1)", "pytest-mypy-plugins"] + +[[package]] +name = "babel" +version = "2.16.0" +description = "Internationalization utilities" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "babel-2.16.0-py3-none-any.whl", hash = "sha256:368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b"}, + {file = "babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316"}, +] + +[package.extras] +dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] + +[[package]] +name = "beautifulsoup4" +version = "4.12.3" +description = "Screen-scraping library" +optional = false +python-versions = ">=3.6.0" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed"}, + {file = "beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051"}, +] + +[package.dependencies] +soupsieve = ">1.2" + +[package.extras] +cchardet = ["cchardet"] +chardet = ["chardet"] +charset-normalizer = ["charset-normalizer"] +html5lib = ["html5lib"] +lxml = ["lxml"] + +[[package]] +name = "bleach" +version = "6.2.0" +description = "An easy safelist-based HTML-sanitizing tool." +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "bleach-6.2.0-py3-none-any.whl", hash = "sha256:117d9c6097a7c3d22fd578fcd8d35ff1e125df6736f554da4e432fdd63f31e5e"}, + {file = "bleach-6.2.0.tar.gz", hash = "sha256:123e894118b8a599fd80d3ec1a6d4cc7ce4e5882b1317a7e1ba69b56e95f991f"}, +] + +[package.dependencies] +tinycss2 = {version = ">=1.1.0,<1.5", optional = true, markers = "extra == \"css\""} +webencodings = "*" + +[package.extras] +css = ["tinycss2 (>=1.1.0,<1.5)"] + +[[package]] +name = "certifi" +version = "2024.12.14" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "certifi-2024.12.14-py3-none-any.whl", hash = "sha256:1275f7a45be9464efc1173084eaa30f866fe2e47d389406136d332ed4967ec56"}, + {file = "certifi-2024.12.14.tar.gz", hash = "sha256:b650d30f370c2b724812bee08008be0c4163b163ddaec3f2546c1caf65f191db"}, +] + +[[package]] +name = "cffi" +version = "1.17.1" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"}, + {file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"}, + {file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"}, + {file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"}, + {file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"}, + {file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"}, + {file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"}, + {file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"}, + {file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"}, + {file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"}, + {file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"}, + {file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"}, + {file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"}, + {file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"}, + {file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"}, + {file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"}, + {file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"}, + {file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"}, + {file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"}, + {file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"}, + {file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"}, + {file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"}, + {file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"}, + {file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"}, + {file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"}, + {file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"}, + {file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"}, + {file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"}, + {file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"}, + {file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"}, + {file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "charset-normalizer" +version = "3.4.1" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "charset_normalizer-3.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:91b36a978b5ae0ee86c394f5a54d6ef44db1de0815eb43de826d41d21e4af3de"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7461baadb4dc00fd9e0acbe254e3d7d2112e7f92ced2adc96e54ef6501c5f176"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e218488cd232553829be0664c2292d3af2eeeb94b32bea483cf79ac6a694e037"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:80ed5e856eb7f30115aaf94e4a08114ccc8813e6ed1b5efa74f9f82e8509858f"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b010a7a4fd316c3c484d482922d13044979e78d1861f0e0650423144c616a46a"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4532bff1b8421fd0a320463030c7520f56a79c9024a4e88f01c537316019005a"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d973f03c0cb71c5ed99037b870f2be986c3c05e63622c017ea9816881d2dd247"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3a3bd0dcd373514dcec91c411ddb9632c0d7d92aed7093b8c3bbb6d69ca74408"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d9c3cdf5390dcd29aa8056d13e8e99526cda0305acc038b96b30352aff5ff2bb"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2bdfe3ac2e1bbe5b59a1a63721eb3b95fc9b6817ae4a46debbb4e11f6232428d"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:eab677309cdb30d047996b36d34caeda1dc91149e4fdca0b1a039b3f79d9a807"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-win32.whl", hash = "sha256:c0429126cf75e16c4f0ad00ee0eae4242dc652290f940152ca8c75c3a4b6ee8f"}, + {file = "charset_normalizer-3.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:9f0b8b1c6d84c8034a44893aba5e767bf9c7a211e313a9605d9c617d7083829f"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8bfa33f4f2672964266e940dd22a195989ba31669bd84629f05fab3ef4e2d125"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28bf57629c75e810b6ae989f03c0828d64d6b26a5e205535585f96093e405ed1"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f08ff5e948271dc7e18a35641d2f11a4cd8dfd5634f55228b691e62b37125eb3"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:234ac59ea147c59ee4da87a0c0f098e9c8d169f4dc2a159ef720f1a61bbe27cd"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd4ec41f914fa74ad1b8304bbc634b3de73d2a0889bd32076342a573e0779e00"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eea6ee1db730b3483adf394ea72f808b6e18cf3cb6454b4d86e04fa8c4327a12"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c96836c97b1238e9c9e3fe90844c947d5afbf4f4c92762679acfe19927d81d77"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d86f7aff21ee58f26dcf5ae81a9addbd914115cdebcbb2217e4f0ed8982e146"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:09b5e6733cbd160dcc09589227187e242a30a49ca5cefa5a7edd3f9d19ed53fd"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:5777ee0881f9499ed0f71cc82cf873d9a0ca8af166dfa0af8ec4e675b7df48e6"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:237bdbe6159cff53b4f24f397d43c6336c6b0b42affbe857970cefbb620911c8"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-win32.whl", hash = "sha256:8417cb1f36cc0bc7eaba8ccb0e04d55f0ee52df06df3ad55259b9a323555fc8b"}, + {file = "charset_normalizer-3.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:d7f50a1f8c450f3925cb367d011448c39239bb3eb4117c36a6d354794de4ce76"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:73d94b58ec7fecbc7366247d3b0b10a21681004153238750bb67bd9012414545"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad3e487649f498dd991eeb901125411559b22e8d7ab25d3aeb1af367df5efd7"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c30197aa96e8eed02200a83fba2657b4c3acd0f0aa4bdc9f6c1af8e8962e0757"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2369eea1ee4a7610a860d88f268eb39b95cb588acd7235e02fd5a5601773d4fa"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc2722592d8998c870fa4e290c2eec2c1569b87fe58618e67d38b4665dfa680d"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffc9202a29ab3920fa812879e95a9e78b2465fd10be7fcbd042899695d75e616"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:804a4d582ba6e5b747c625bf1255e6b1507465494a40a2130978bda7b932c90b"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f55e69f030f7163dffe9fd0752b32f070566451afe180f99dbeeb81f511ad8d"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c4c3e6da02df6fa1410a7680bd3f63d4f710232d3139089536310d027950696a"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5df196eb874dae23dcfb968c83d4f8fdccb333330fe1fc278ac5ceeb101003a9"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e358e64305fe12299a08e08978f51fc21fac060dcfcddd95453eabe5b93ed0e1"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-win32.whl", hash = "sha256:9b23ca7ef998bc739bf6ffc077c2116917eabcc901f88da1b9856b210ef63f35"}, + {file = "charset_normalizer-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ff8a4a60c227ad87030d76e99cd1698345d4491638dfa6673027c48b3cd395f"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:aabfa34badd18f1da5ec1bc2715cadc8dca465868a4e73a0173466b688f29dda"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22e14b5d70560b8dd51ec22863f370d1e595ac3d024cb8ad7d308b4cd95f8313"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8436c508b408b82d87dc5f62496973a1805cd46727c34440b0d29d8a2f50a6c9"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2d074908e1aecee37a7635990b2c6d504cd4766c7bc9fc86d63f9c09af3fa11b"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:955f8851919303c92343d2f66165294848d57e9bba6cf6e3625485a70a038d11"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44ecbf16649486d4aebafeaa7ec4c9fed8b88101f4dd612dcaf65d5e815f837f"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0924e81d3d5e70f8126529951dac65c1010cdf117bb75eb02dd12339b57749dd"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:2967f74ad52c3b98de4c3b32e1a44e32975e008a9cd2a8cc8966d6a5218c5cb2"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c75cb2a3e389853835e84a2d8fb2b81a10645b503eca9bcb98df6b5a43eb8886"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09b26ae6b1abf0d27570633b2b078a2a20419c99d66fb2823173d73f188ce601"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fa88b843d6e211393a37219e6a1c1df99d35e8fd90446f1118f4216e307e48cd"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-win32.whl", hash = "sha256:eb8178fe3dba6450a3e024e95ac49ed3400e506fd4e9e5c32d30adda88cbd407"}, + {file = "charset_normalizer-3.4.1-cp313-cp313-win_amd64.whl", hash = "sha256:b1ac5992a838106edb89654e0aebfc24f5848ae2547d22c2c3f66454daa11971"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f30bf9fd9be89ecb2360c7d94a711f00c09b976258846efe40db3d05828e8089"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:97f68b8d6831127e4787ad15e6757232e14e12060bec17091b85eb1486b91d8d"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7974a0b5ecd505609e3b19742b60cee7aa2aa2fb3151bc917e6e2646d7667dcf"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc54db6c8593ef7d4b2a331b58653356cf04f67c960f584edb7c3d8c97e8f39e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:311f30128d7d333eebd7896965bfcfbd0065f1716ec92bd5638d7748eb6f936a"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:7d053096f67cd1241601111b698f5cad775f97ab25d81567d3f59219b5f1adbd"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:807f52c1f798eef6cf26beb819eeb8819b1622ddfeef9d0977a8502d4db6d534"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:dccbe65bd2f7f7ec22c4ff99ed56faa1e9f785482b9bbd7c717e26fd723a1d1e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_s390x.whl", hash = "sha256:2fb9bd477fdea8684f78791a6de97a953c51831ee2981f8e4f583ff3b9d9687e"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:01732659ba9b5b873fc117534143e4feefecf3b2078b0a6a2e925271bb6f4cfa"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-win32.whl", hash = "sha256:7a4f97a081603d2050bfaffdefa5b02a9ec823f8348a572e39032caa8404a487"}, + {file = "charset_normalizer-3.4.1-cp37-cp37m-win_amd64.whl", hash = "sha256:7b1bef6280950ee6c177b326508f86cad7ad4dff12454483b51d8b7d673a2c5d"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ecddf25bee22fe4fe3737a399d0d177d72bc22be6913acfab364b40bce1ba83c"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c60ca7339acd497a55b0ea5d506b2a2612afb2826560416f6894e8b5770d4a9"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b7b2d86dd06bfc2ade3312a83a5c364c7ec2e3498f8734282c6c3d4b07b346b8"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dd78cfcda14a1ef52584dbb008f7ac81c1328c0f58184bf9a84c49c605002da6"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e27f48bcd0957c6d4cb9d6fa6b61d192d0b13d5ef563e5f2ae35feafc0d179c"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01ad647cdd609225c5350561d084b42ddf732f4eeefe6e678765636791e78b9a"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:619a609aa74ae43d90ed2e89bdd784765de0a25ca761b93e196d938b8fd1dbbd"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:89149166622f4db9b4b6a449256291dc87a99ee53151c74cbd82a53c8c2f6ccd"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:7709f51f5f7c853f0fb938bcd3bc59cdfdc5203635ffd18bf354f6967ea0f824"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:345b0426edd4e18138d6528aed636de7a9ed169b4aaf9d61a8c19e39d26838ca"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0907f11d019260cdc3f94fbdb23ff9125f6b5d1039b76003b5b0ac9d6a6c9d5b"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-win32.whl", hash = "sha256:ea0d8d539afa5eb2728aa1932a988a9a7af94f18582ffae4bc10b3fbdad0626e"}, + {file = "charset_normalizer-3.4.1-cp38-cp38-win_amd64.whl", hash = "sha256:329ce159e82018d646c7ac45b01a430369d526569ec08516081727a20e9e4af4"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:b97e690a2118911e39b4042088092771b4ae3fc3aa86518f84b8cf6888dbdb41"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78baa6d91634dfb69ec52a463534bc0df05dbd546209b79a3880a34487f4b84f"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1a2bc9f351a75ef49d664206d51f8e5ede9da246602dc2d2726837620ea034b2"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75832c08354f595c760a804588b9357d34ec00ba1c940c15e31e96d902093770"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0af291f4fe114be0280cdd29d533696a77b5b49cfde5467176ecab32353395c4"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0167ddc8ab6508fe81860a57dd472b2ef4060e8d378f0cc555707126830f2537"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2a75d49014d118e4198bcee5ee0a6f25856b29b12dbf7cd012791f8a6cc5c496"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:363e2f92b0f0174b2f8238240a1a30142e3db7b957a5dd5689b0e75fb717cc78"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:ab36c8eb7e454e34e60eb55ca5d241a5d18b2c6244f6827a30e451c42410b5f7"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:4c0907b1928a36d5a998d72d64d8eaa7244989f7aaaf947500d3a800c83a3fd6"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:04432ad9479fa40ec0f387795ddad4437a2b50417c69fa275e212933519ff294"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-win32.whl", hash = "sha256:3bed14e9c89dcb10e8f3a29f9ccac4955aebe93c71ae803af79265c9ca5644c5"}, + {file = "charset_normalizer-3.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:49402233c892a461407c512a19435d1ce275543138294f7ef013f0b63d5d3765"}, + {file = "charset_normalizer-3.4.1-py3-none-any.whl", hash = "sha256:d98b1668f06378c6dbefec3b92299716b931cd4e6061f3c875a71ced1780ab85"}, + {file = "charset_normalizer-3.4.1.tar.gz", hash = "sha256:44251f18cd68a75b56585dd00dae26183e102cd5e0f9f1466e6df5da2ed64ea3"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +groups = ["main"] +markers = "(python_version <= \"3.11\" or python_version >= \"3.12\") and sys_platform == \"win32\"" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "contourpy" +version = "1.3.1" +description = "Python library for calculating contours of 2D quadrilateral grids" +optional = false +python-versions = ">=3.10" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "contourpy-1.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a045f341a77b77e1c5de31e74e966537bba9f3c4099b35bf4c2e3939dd54cdab"}, + {file = "contourpy-1.3.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:500360b77259914f7805af7462e41f9cb7ca92ad38e9f94d6c8641b089338124"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2f926efda994cdf3c8d3fdb40b9962f86edbc4457e739277b961eced3d0b4c1"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:adce39d67c0edf383647a3a007de0a45fd1b08dedaa5318404f1a73059c2512b"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:abbb49fb7dac584e5abc6636b7b2a7227111c4f771005853e7d25176daaf8453"}, + {file = "contourpy-1.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0cffcbede75c059f535725c1680dfb17b6ba8753f0c74b14e6a9c68c29d7ea3"}, + {file = "contourpy-1.3.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ab29962927945d89d9b293eabd0d59aea28d887d4f3be6c22deaefbb938a7277"}, + {file = "contourpy-1.3.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:974d8145f8ca354498005b5b981165b74a195abfae9a8129df3e56771961d595"}, + {file = "contourpy-1.3.1-cp310-cp310-win32.whl", hash = "sha256:ac4578ac281983f63b400f7fe6c101bedc10651650eef012be1ccffcbacf3697"}, + {file = "contourpy-1.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:174e758c66bbc1c8576992cec9599ce8b6672b741b5d336b5c74e35ac382b18e"}, + {file = "contourpy-1.3.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3e8b974d8db2c5610fb4e76307e265de0edb655ae8169e8b21f41807ccbeec4b"}, + {file = "contourpy-1.3.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:20914c8c973f41456337652a6eeca26d2148aa96dd7ac323b74516988bea89fc"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:19d40d37c1c3a4961b4619dd9d77b12124a453cc3d02bb31a07d58ef684d3d86"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:113231fe3825ebf6f15eaa8bc1f5b0ddc19d42b733345eae0934cb291beb88b6"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4dbbc03a40f916a8420e420d63e96a1258d3d1b58cbdfd8d1f07b49fcbd38e85"}, + {file = "contourpy-1.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a04ecd68acbd77fa2d39723ceca4c3197cb2969633836ced1bea14e219d077c"}, + {file = "contourpy-1.3.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c414fc1ed8ee1dbd5da626cf3710c6013d3d27456651d156711fa24f24bd1291"}, + {file = "contourpy-1.3.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:31c1b55c1f34f80557d3830d3dd93ba722ce7e33a0b472cba0ec3b6535684d8f"}, + {file = "contourpy-1.3.1-cp311-cp311-win32.whl", hash = "sha256:f611e628ef06670df83fce17805c344710ca5cde01edfdc72751311da8585375"}, + {file = "contourpy-1.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:b2bdca22a27e35f16794cf585832e542123296b4687f9fd96822db6bae17bfc9"}, + {file = "contourpy-1.3.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:0ffa84be8e0bd33410b17189f7164c3589c229ce5db85798076a3fa136d0e509"}, + {file = "contourpy-1.3.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:805617228ba7e2cbbfb6c503858e626ab528ac2a32a04a2fe88ffaf6b02c32bc"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ade08d343436a94e633db932e7e8407fe7de8083967962b46bdfc1b0ced39454"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:47734d7073fb4590b4a40122b35917cd77be5722d80683b249dac1de266aac80"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2ba94a401342fc0f8b948e57d977557fbf4d515f03c67682dd5c6191cb2d16ec"}, + {file = "contourpy-1.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efa874e87e4a647fd2e4f514d5e91c7d493697127beb95e77d2f7561f6905bd9"}, + {file = "contourpy-1.3.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1bf98051f1045b15c87868dbaea84f92408337d4f81d0e449ee41920ea121d3b"}, + {file = "contourpy-1.3.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:61332c87493b00091423e747ea78200659dc09bdf7fd69edd5e98cef5d3e9a8d"}, + {file = "contourpy-1.3.1-cp312-cp312-win32.whl", hash = "sha256:e914a8cb05ce5c809dd0fe350cfbb4e881bde5e2a38dc04e3afe1b3e58bd158e"}, + {file = "contourpy-1.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:08d9d449a61cf53033612cb368f3a1b26cd7835d9b8cd326647efe43bca7568d"}, + {file = "contourpy-1.3.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a761d9ccfc5e2ecd1bf05534eda382aa14c3e4f9205ba5b1684ecfe400716ef2"}, + {file = "contourpy-1.3.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:523a8ee12edfa36f6d2a49407f705a6ef4c5098de4f498619787e272de93f2d5"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece6df05e2c41bd46776fbc712e0996f7c94e0d0543af1656956d150c4ca7c81"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:573abb30e0e05bf31ed067d2f82500ecfdaec15627a59d63ea2d95714790f5c2"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a9fa36448e6a3a1a9a2ba23c02012c43ed88905ec80163f2ffe2421c7192a5d7"}, + {file = "contourpy-1.3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ea9924d28fc5586bf0b42d15f590b10c224117e74409dd7a0be3b62b74a501c"}, + {file = "contourpy-1.3.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5b75aa69cb4d6f137b36f7eb2ace9280cfb60c55dc5f61c731fdf6f037f958a3"}, + {file = "contourpy-1.3.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:041b640d4ec01922083645a94bb3b2e777e6b626788f4095cf21abbe266413c1"}, + {file = "contourpy-1.3.1-cp313-cp313-win32.whl", hash = "sha256:36987a15e8ace5f58d4d5da9dca82d498c2bbb28dff6e5d04fbfcc35a9cb3a82"}, + {file = "contourpy-1.3.1-cp313-cp313-win_amd64.whl", hash = "sha256:a7895f46d47671fa7ceec40f31fae721da51ad34bdca0bee83e38870b1f47ffd"}, + {file = "contourpy-1.3.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9ddeb796389dadcd884c7eb07bd14ef12408aaae358f0e2ae24114d797eede30"}, + {file = "contourpy-1.3.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:19c1555a6801c2f084c7ddc1c6e11f02eb6a6016ca1318dd5452ba3f613a1751"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:841ad858cff65c2c04bf93875e384ccb82b654574a6d7f30453a04f04af71342"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4318af1c925fb9a4fb190559ef3eec206845f63e80fb603d47f2d6d67683901c"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:14c102b0eab282427b662cb590f2e9340a9d91a1c297f48729431f2dcd16e14f"}, + {file = "contourpy-1.3.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05e806338bfeaa006acbdeba0ad681a10be63b26e1b17317bfac3c5d98f36cda"}, + {file = "contourpy-1.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4d76d5993a34ef3df5181ba3c92fabb93f1eaa5729504fb03423fcd9f3177242"}, + {file = "contourpy-1.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:89785bb2a1980c1bd87f0cb1517a71cde374776a5f150936b82580ae6ead44a1"}, + {file = "contourpy-1.3.1-cp313-cp313t-win32.whl", hash = "sha256:8eb96e79b9f3dcadbad2a3891672f81cdcab7f95b27f28f1c67d75f045b6b4f1"}, + {file = "contourpy-1.3.1-cp313-cp313t-win_amd64.whl", hash = "sha256:287ccc248c9e0d0566934e7d606201abd74761b5703d804ff3df8935f523d546"}, + {file = "contourpy-1.3.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b457d6430833cee8e4b8e9b6f07aa1c161e5e0d52e118dc102c8f9bd7dd060d6"}, + {file = "contourpy-1.3.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb76c1a154b83991a3cbbf0dfeb26ec2833ad56f95540b442c73950af2013750"}, + {file = "contourpy-1.3.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:44a29502ca9c7b5ba389e620d44f2fbe792b1fb5734e8b931ad307071ec58c53"}, + {file = "contourpy-1.3.1.tar.gz", hash = "sha256:dfd97abd83335045a913e3bcc4a09c0ceadbe66580cf573fe961f4a825efa699"}, +] + +[package.dependencies] +numpy = ">=1.23" + +[package.extras] +bokeh = ["bokeh", "selenium"] +docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] +mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.11.1)", "types-Pillow"] +test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] +test-no-images = ["pytest", "pytest-cov", "pytest-rerunfailures", "pytest-xdist", "wurlitzer"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "debugpy" +version = "1.8.11" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "debugpy-1.8.11-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:2b26fefc4e31ff85593d68b9022e35e8925714a10ab4858fb1b577a8a48cb8cd"}, + {file = "debugpy-1.8.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61bc8b3b265e6949855300e84dc93d02d7a3a637f2aec6d382afd4ceb9120c9f"}, + {file = "debugpy-1.8.11-cp310-cp310-win32.whl", hash = "sha256:c928bbf47f65288574b78518449edaa46c82572d340e2750889bbf8cd92f3737"}, + {file = "debugpy-1.8.11-cp310-cp310-win_amd64.whl", hash = "sha256:8da1db4ca4f22583e834dcabdc7832e56fe16275253ee53ba66627b86e304da1"}, + {file = "debugpy-1.8.11-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:85de8474ad53ad546ff1c7c7c89230db215b9b8a02754d41cb5a76f70d0be296"}, + {file = "debugpy-1.8.11-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ffc382e4afa4aee367bf413f55ed17bd91b191dcaf979890af239dda435f2a1"}, + {file = "debugpy-1.8.11-cp311-cp311-win32.whl", hash = "sha256:40499a9979c55f72f4eb2fc38695419546b62594f8af194b879d2a18439c97a9"}, + {file = "debugpy-1.8.11-cp311-cp311-win_amd64.whl", hash = "sha256:987bce16e86efa86f747d5151c54e91b3c1e36acc03ce1ddb50f9d09d16ded0e"}, + {file = "debugpy-1.8.11-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:84e511a7545d11683d32cdb8f809ef63fc17ea2a00455cc62d0a4dbb4ed1c308"}, + {file = "debugpy-1.8.11-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce291a5aca4985d82875d6779f61375e959208cdf09fcec40001e65fb0a54768"}, + {file = "debugpy-1.8.11-cp312-cp312-win32.whl", hash = "sha256:28e45b3f827d3bf2592f3cf7ae63282e859f3259db44ed2b129093ca0ac7940b"}, + {file = "debugpy-1.8.11-cp312-cp312-win_amd64.whl", hash = "sha256:44b1b8e6253bceada11f714acf4309ffb98bfa9ac55e4fce14f9e5d4484287a1"}, + {file = "debugpy-1.8.11-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:8988f7163e4381b0da7696f37eec7aca19deb02e500245df68a7159739bbd0d3"}, + {file = "debugpy-1.8.11-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c1f6a173d1140e557347419767d2b14ac1c9cd847e0b4c5444c7f3144697e4e"}, + {file = "debugpy-1.8.11-cp313-cp313-win32.whl", hash = "sha256:bb3b15e25891f38da3ca0740271e63ab9db61f41d4d8541745cfc1824252cb28"}, + {file = "debugpy-1.8.11-cp313-cp313-win_amd64.whl", hash = "sha256:d8768edcbeb34da9e11bcb8b5c2e0958d25218df7a6e56adf415ef262cd7b6d1"}, + {file = "debugpy-1.8.11-cp38-cp38-macosx_14_0_x86_64.whl", hash = "sha256:ad7efe588c8f5cf940f40c3de0cd683cc5b76819446abaa50dc0829a30c094db"}, + {file = "debugpy-1.8.11-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:189058d03a40103a57144752652b3ab08ff02b7595d0ce1f651b9acc3a3a35a0"}, + {file = "debugpy-1.8.11-cp38-cp38-win32.whl", hash = "sha256:32db46ba45849daed7ccf3f2e26f7a386867b077f39b2a974bb5c4c2c3b0a280"}, + {file = "debugpy-1.8.11-cp38-cp38-win_amd64.whl", hash = "sha256:116bf8342062246ca749013df4f6ea106f23bc159305843491f64672a55af2e5"}, + {file = "debugpy-1.8.11-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:654130ca6ad5de73d978057eaf9e582244ff72d4574b3e106fb8d3d2a0d32458"}, + {file = "debugpy-1.8.11-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23dc34c5e03b0212fa3c49a874df2b8b1b8fda95160bd79c01eb3ab51ea8d851"}, + {file = "debugpy-1.8.11-cp39-cp39-win32.whl", hash = "sha256:52d8a3166c9f2815bfae05f386114b0b2d274456980d41f320299a8d9a5615a7"}, + {file = "debugpy-1.8.11-cp39-cp39-win_amd64.whl", hash = "sha256:52c3cf9ecda273a19cc092961ee34eb9ba8687d67ba34cc7b79a521c1c64c4c0"}, + {file = "debugpy-1.8.11-py2.py3-none-any.whl", hash = "sha256:0e22f846f4211383e6a416d04b4c13ed174d24cc5d43f5fd52e7821d0ebc8920"}, + {file = "debugpy-1.8.11.tar.gz", hash = "sha256:6ad2688b69235c43b020e04fecccdf6a96c8943ca9c2fb340b8adc103c655e57"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "defusedxml" +version = "0.7.1" +description = "XML bomb protection for Python stdlib modules" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, + {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, +] + +[[package]] +name = "exceptiongroup" +version = "1.2.2" +description = "Backport of PEP 654 (exception groups)" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version < \"3.11\"" +files = [ + {file = "exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b"}, + {file = "exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc"}, +] + +[package.extras] +test = ["pytest (>=6)"] + +[[package]] +name = "executing" +version = "2.1.0" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf"}, + {file = "executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "fastjsonschema" +version = "2.21.1" +description = "Fastest Python implementation of JSON schema" +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "fastjsonschema-2.21.1-py3-none-any.whl", hash = "sha256:c9e5b7e908310918cf494a434eeb31384dd84a98b57a30bcb1f535015b554667"}, + {file = "fastjsonschema-2.21.1.tar.gz", hash = "sha256:794d4f0a58f848961ba16af7b9c85a3e88cd360df008c59aac6fc5ae9323b5d4"}, +] + +[package.extras] +devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] + +[[package]] +name = "fonttools" +version = "4.55.3" +description = "Tools to manipulate font files" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "fonttools-4.55.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1dcc07934a2165ccdc3a5a608db56fb3c24b609658a5b340aee4ecf3ba679dc0"}, + {file = "fonttools-4.55.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f7d66c15ba875432a2d2fb419523f5d3d347f91f48f57b8b08a2dfc3c39b8a3f"}, + {file = "fonttools-4.55.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27e4ae3592e62eba83cd2c4ccd9462dcfa603ff78e09110680a5444c6925d841"}, + {file = "fonttools-4.55.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:62d65a3022c35e404d19ca14f291c89cc5890032ff04f6c17af0bd1927299674"}, + {file = "fonttools-4.55.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d342e88764fb201286d185093781bf6628bbe380a913c24adf772d901baa8276"}, + {file = "fonttools-4.55.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:dd68c87a2bfe37c5b33bcda0fba39b65a353876d3b9006fde3adae31f97b3ef5"}, + {file = "fonttools-4.55.3-cp310-cp310-win32.whl", hash = "sha256:1bc7ad24ff98846282eef1cbeac05d013c2154f977a79886bb943015d2b1b261"}, + {file = "fonttools-4.55.3-cp310-cp310-win_amd64.whl", hash = "sha256:b54baf65c52952db65df39fcd4820668d0ef4766c0ccdf32879b77f7c804d5c5"}, + {file = "fonttools-4.55.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8c4491699bad88efe95772543cd49870cf756b019ad56294f6498982408ab03e"}, + {file = "fonttools-4.55.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5323a22eabddf4b24f66d26894f1229261021dacd9d29e89f7872dd8c63f0b8b"}, + {file = "fonttools-4.55.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5480673f599ad410695ca2ddef2dfefe9df779a9a5cda89503881e503c9c7d90"}, + {file = "fonttools-4.55.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da9da6d65cd7aa6b0f806556f4985bcbf603bf0c5c590e61b43aa3e5a0f822d0"}, + {file = "fonttools-4.55.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e894b5bd60d9f473bed7a8f506515549cc194de08064d829464088d23097331b"}, + {file = "fonttools-4.55.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:aee3b57643827e237ff6ec6d28d9ff9766bd8b21e08cd13bff479e13d4b14765"}, + {file = "fonttools-4.55.3-cp311-cp311-win32.whl", hash = "sha256:eb6ca911c4c17eb51853143624d8dc87cdcdf12a711fc38bf5bd21521e79715f"}, + {file = "fonttools-4.55.3-cp311-cp311-win_amd64.whl", hash = "sha256:6314bf82c54c53c71805318fcf6786d986461622dd926d92a465199ff54b1b72"}, + {file = "fonttools-4.55.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:f9e736f60f4911061235603a6119e72053073a12c6d7904011df2d8fad2c0e35"}, + {file = "fonttools-4.55.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7a8aa2c5e5b8b3bcb2e4538d929f6589a5c6bdb84fd16e2ed92649fb5454f11c"}, + {file = "fonttools-4.55.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07f8288aacf0a38d174445fc78377a97fb0b83cfe352a90c9d9c1400571963c7"}, + {file = "fonttools-4.55.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8d5e8916c0970fbc0f6f1bece0063363bb5857a7f170121a4493e31c3db3314"}, + {file = "fonttools-4.55.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ae3b6600565b2d80b7c05acb8e24d2b26ac407b27a3f2e078229721ba5698427"}, + {file = "fonttools-4.55.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:54153c49913f45065c8d9e6d0c101396725c5621c8aee744719300f79771d75a"}, + {file = "fonttools-4.55.3-cp312-cp312-win32.whl", hash = "sha256:827e95fdbbd3e51f8b459af5ea10ecb4e30af50221ca103bea68218e9615de07"}, + {file = "fonttools-4.55.3-cp312-cp312-win_amd64.whl", hash = "sha256:e6e8766eeeb2de759e862004aa11a9ea3d6f6d5ec710551a88b476192b64fd54"}, + {file = "fonttools-4.55.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a430178ad3e650e695167cb53242dae3477b35c95bef6525b074d87493c4bf29"}, + {file = "fonttools-4.55.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:529cef2ce91dc44f8e407cc567fae6e49a1786f2fefefa73a294704c415322a4"}, + {file = "fonttools-4.55.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e75f12c82127486fac2d8bfbf5bf058202f54bf4f158d367e41647b972342ca"}, + {file = "fonttools-4.55.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:859c358ebf41db18fb72342d3080bce67c02b39e86b9fbcf1610cca14984841b"}, + {file = "fonttools-4.55.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:546565028e244a701f73df6d8dd6be489d01617863ec0c6a42fa25bf45d43048"}, + {file = "fonttools-4.55.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:aca318b77f23523309eec4475d1fbbb00a6b133eb766a8bdc401faba91261abe"}, + {file = "fonttools-4.55.3-cp313-cp313-win32.whl", hash = "sha256:8c5ec45428edaa7022f1c949a632a6f298edc7b481312fc7dc258921e9399628"}, + {file = "fonttools-4.55.3-cp313-cp313-win_amd64.whl", hash = "sha256:11e5de1ee0d95af4ae23c1a138b184b7f06e0b6abacabf1d0db41c90b03d834b"}, + {file = "fonttools-4.55.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:caf8230f3e10f8f5d7593eb6d252a37caf58c480b19a17e250a63dad63834cf3"}, + {file = "fonttools-4.55.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b586ab5b15b6097f2fb71cafa3c98edfd0dba1ad8027229e7b1e204a58b0e09d"}, + {file = "fonttools-4.55.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a8c2794ded89399cc2169c4d0bf7941247b8d5932b2659e09834adfbb01589aa"}, + {file = "fonttools-4.55.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cf4fe7c124aa3f4e4c1940880156e13f2f4d98170d35c749e6b4f119a872551e"}, + {file = "fonttools-4.55.3-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:86721fbc389ef5cc1e2f477019e5069e8e4421e8d9576e9c26f840dbb04678de"}, + {file = "fonttools-4.55.3-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:89bdc5d88bdeec1b15af790810e267e8332d92561dce4f0748c2b95c9bdf3926"}, + {file = "fonttools-4.55.3-cp38-cp38-win32.whl", hash = "sha256:bc5dbb4685e51235ef487e4bd501ddfc49be5aede5e40f4cefcccabc6e60fb4b"}, + {file = "fonttools-4.55.3-cp38-cp38-win_amd64.whl", hash = "sha256:cd70de1a52a8ee2d1877b6293af8a2484ac82514f10b1c67c1c5762d38073e56"}, + {file = "fonttools-4.55.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:bdcc9f04b36c6c20978d3f060e5323a43f6222accc4e7fcbef3f428e216d96af"}, + {file = "fonttools-4.55.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c3ca99e0d460eff46e033cd3992a969658c3169ffcd533e0a39c63a38beb6831"}, + {file = "fonttools-4.55.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22f38464daa6cdb7b6aebd14ab06609328fe1e9705bb0fcc7d1e69de7109ee02"}, + {file = "fonttools-4.55.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ed63959d00b61959b035c7d47f9313c2c1ece090ff63afea702fe86de00dbed4"}, + {file = "fonttools-4.55.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5e8d657cd7326eeaba27de2740e847c6b39dde2f8d7cd7cc56f6aad404ddf0bd"}, + {file = "fonttools-4.55.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:fb594b5a99943042c702c550d5494bdd7577f6ef19b0bc73877c948a63184a32"}, + {file = "fonttools-4.55.3-cp39-cp39-win32.whl", hash = "sha256:dc5294a3d5c84226e3dbba1b6f61d7ad813a8c0238fceea4e09aa04848c3d851"}, + {file = "fonttools-4.55.3-cp39-cp39-win_amd64.whl", hash = "sha256:aedbeb1db64496d098e6be92b2e63b5fac4e53b1b92032dfc6988e1ea9134a4d"}, + {file = "fonttools-4.55.3-py3-none-any.whl", hash = "sha256:f412604ccbeee81b091b420272841e5ec5ef68967a9790e80bffd0e30b8e2977"}, + {file = "fonttools-4.55.3.tar.gz", hash = "sha256:3983313c2a04d6cc1fe9251f8fc647754cf49a61dac6cb1e7249ae67afaafc45"}, +] + +[package.extras] +all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] +graphite = ["lz4 (>=1.7.4.2)"] +interpolatable = ["munkres", "pycairo", "scipy"] +lxml = ["lxml (>=4.0)"] +pathops = ["skia-pathops (>=0.5.0)"] +plot = ["matplotlib"] +repacker = ["uharfbuzz (>=0.23.0)"] +symfont = ["sympy"] +type1 = ["xattr"] +ufo = ["fs (>=2.2.0,<3)"] +unicode = ["unicodedata2 (>=15.1.0)"] +woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] + +[[package]] +name = "fqdn" +version = "1.5.1" +description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers" +optional = false +python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"}, + {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"}, +] + +[[package]] +name = "h11" +version = "0.14.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] + +[[package]] +name = "httpcore" +version = "1.0.7" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "httpcore-1.0.7-py3-none-any.whl", hash = "sha256:a3fff8f43dc260d5bd363d9f9cf1830fa3a458b332856f34282de498ed420edd"}, + {file = "httpcore-1.0.7.tar.gz", hash = "sha256:8551cb62a169ec7162ac7be8d4817d561f60e08eaa485234898414bb5a8a0b4c"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.13,<0.15" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<1.0)"] + +[[package]] +name = "httpx" +version = "0.28.1" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "httpx-0.28.1-py3-none-any.whl", hash = "sha256:d909fcccc110f8c7faf814ca82a9a4d816bc5a6dbfea25d6591d6985b8ba59ad"}, + {file = "httpx-0.28.1.tar.gz", hash = "sha256:75e98c5f16b0f35b567856f597f06ff2270a374470a5c2392242528e3e3e42fc"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" + +[package.extras] +brotli = ["brotli", "brotlicffi"] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "idna" +version = "3.10" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3"}, + {file = "idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9"}, +] + +[package.extras] +all = ["flake8 (>=7.1.1)", "mypy (>=1.11.2)", "pytest (>=8.3.2)", "ruff (>=0.6.2)"] + +[[package]] +name = "ipykernel" +version = "6.29.5" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.31.0" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.10" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "ipython-8.31.0-py3-none-any.whl", hash = "sha256:46ec58f8d3d076a61d128fe517a51eb730e3aaf0c184ea8c17d16e366660c6a6"}, + {file = "ipython-8.31.0.tar.gz", hash = "sha256:b6a2274606bec6166405ff05e54932ed6e5cfecaca1fc05f2cacde7bb074d70b"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +exceptiongroup = {version = "*", markers = "python_version < \"3.11\""} +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\" and sys_platform != \"emscripten\""} +prompt_toolkit = ">=3.0.41,<3.1.0" +pygments = ">=2.4.0" +stack_data = "*" +traitlets = ">=5.13.0" +typing_extensions = {version = ">=4.6", markers = "python_version < \"3.12\""} + +[package.extras] +all = ["ipython[black,doc,kernel,matplotlib,nbconvert,nbformat,notebook,parallel,qtconsole]", "ipython[test,test-extra]"] +black = ["black"] +doc = ["docrepr", "exceptiongroup", "intersphinx_registry", "ipykernel", "ipython[test]", "matplotlib", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "sphinxcontrib-jquery", "tomli", "typing_extensions"] +kernel = ["ipykernel"] +matplotlib = ["matplotlib"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["packaging", "pickleshare", "pytest", "pytest-asyncio (<0.22)", "testpath"] +test-extra = ["curio", "ipython[test]", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.23)", "pandas", "trio"] + +[[package]] +name = "ipywidgets" +version = "8.1.5" +description = "Jupyter interactive widgets" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "ipywidgets-8.1.5-py3-none-any.whl", hash = "sha256:3290f526f87ae6e77655555baba4f36681c555b8bdbbff430b70e52c34c86245"}, + {file = "ipywidgets-8.1.5.tar.gz", hash = "sha256:870e43b1a35656a80c18c9503bbf2d16802db1cb487eec6fab27d683381dde17"}, +] + +[package.dependencies] +comm = ">=0.1.3" +ipython = ">=6.1.0" +jupyterlab-widgets = ">=3.0.12,<3.1.0" +traitlets = ">=4.3.1" +widgetsnbextension = ">=4.0.12,<4.1.0" + +[package.extras] +test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] + +[[package]] +name = "isoduration" +version = "20.11.0" +description = "Operations with ISO 8601 durations" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"}, + {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"}, +] + +[package.dependencies] +arrow = ">=0.15.0" + +[[package]] +name = "jedi" +version = "0.19.2" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9"}, + {file = "jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0"}, +] + +[package.dependencies] +parso = ">=0.8.4,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<9.0.0)"] + +[[package]] +name = "jinja2" +version = "3.1.5" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jinja2-3.1.5-py3-none-any.whl", hash = "sha256:aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb"}, + {file = "jinja2-3.1.5.tar.gz", hash = "sha256:8fefff8dc3034e27bb80d67c671eb8a9bc424c0ef4c0826edbff304cceff43bb"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + +[[package]] +name = "json5" +version = "0.10.0" +description = "A Python implementation of the JSON5 data format." +optional = false +python-versions = ">=3.8.0" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "json5-0.10.0-py3-none-any.whl", hash = "sha256:19b23410220a7271e8377f81ba8aacba2fdd56947fbb137ee5977cbe1f5e8dfa"}, + {file = "json5-0.10.0.tar.gz", hash = "sha256:e66941c8f0a02026943c52c2eb34ebeb2a6f819a0be05920a6f5243cd30fd559"}, +] + +[package.extras] +dev = ["build (==1.2.2.post1)", "coverage (==7.5.3)", "mypy (==1.13.0)", "pip (==24.3.1)", "pylint (==3.2.3)", "ruff (==0.7.3)", "twine (==5.1.1)", "uv (==0.5.1)"] + +[[package]] +name = "jsonpointer" +version = "3.0.0" +description = "Identify specific nodes in a JSON document (RFC 6901)" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, + {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, +] + +[[package]] +name = "jsonschema" +version = "4.23.0" +description = "An implementation of JSON Schema validation for Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566"}, + {file = "jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4"}, +] + +[package.dependencies] +attrs = ">=22.2.0" +fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} +jsonschema-specifications = ">=2023.03.6" +referencing = ">=0.28.4" +rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} +rpds-py = ">=0.7.1" +uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +webcolors = {version = ">=24.6.0", optional = true, markers = "extra == \"format-nongpl\""} + +[package.extras] +format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] +format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=24.6.0)"] + +[[package]] +name = "jsonschema-specifications" +version = "2024.10.1" +description = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jsonschema_specifications-2024.10.1-py3-none-any.whl", hash = "sha256:a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf"}, + {file = "jsonschema_specifications-2024.10.1.tar.gz", hash = "sha256:0f38b83639958ce1152d02a7f062902c41c8fd20d558b0c34344292d417ae272"}, +] + +[package.dependencies] +referencing = ">=0.31.0" + +[[package]] +name = "jupyter" +version = "1.1.1" +description = "Jupyter metapackage. Install all the Jupyter components in one go." +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter-1.1.1-py2.py3-none-any.whl", hash = "sha256:7a59533c22af65439b24bbe60373a4e95af8f16ac65a6c00820ad378e3f7cc83"}, + {file = "jupyter-1.1.1.tar.gz", hash = "sha256:d55467bceabdea49d7e3624af7e33d59c37fff53ed3a350e1ac957bed731de7a"}, +] + +[package.dependencies] +ipykernel = "*" +ipywidgets = "*" +jupyter-console = "*" +jupyterlab = "*" +nbconvert = "*" +notebook = "*" + +[[package]] +name = "jupyter-client" +version = "8.6.3" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f"}, + {file = "jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419"}, +] + +[package.dependencies] +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-console" +version = "6.6.3" +description = "Jupyter terminal console" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485"}, + {file = "jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539"}, +] + +[package.dependencies] +ipykernel = ">=6.14" +ipython = "*" +jupyter-client = ">=7.0.0" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +prompt-toolkit = ">=3.0.30" +pygments = "*" +pyzmq = ">=17" +traitlets = ">=5.4" + +[package.extras] +test = ["flaky", "pexpect", "pytest"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "jupyter-events" +version = "0.11.0" +description = "Jupyter Event System library" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter_events-0.11.0-py3-none-any.whl", hash = "sha256:36399b41ce1ca45fe8b8271067d6a140ffa54cec4028e95491c93b78a855cacf"}, + {file = "jupyter_events-0.11.0.tar.gz", hash = "sha256:c0bc56a37aac29c1fbc3bcfbddb8c8c49533f9cf11f1c4e6adadba936574ab90"}, +] + +[package.dependencies] +jsonschema = {version = ">=4.18.0", extras = ["format-nongpl"]} +python-json-logger = ">=2.0.4" +pyyaml = ">=5.3" +referencing = "*" +rfc3339-validator = "*" +rfc3986-validator = ">=0.1.1" +traitlets = ">=5.3" + +[package.extras] +cli = ["click", "rich"] +docs = ["jupyterlite-sphinx", "myst-parser", "pydata-sphinx-theme (>=0.16)", "sphinx (>=8)", "sphinxcontrib-spelling"] +test = ["click", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.19.0)", "pytest-console-scripts", "rich"] + +[[package]] +name = "jupyter-lsp" +version = "2.2.5" +description = "Multi-Language Server WebSocket proxy for Jupyter Notebook/Lab server" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter-lsp-2.2.5.tar.gz", hash = "sha256:793147a05ad446f809fd53ef1cd19a9f5256fd0a2d6b7ce943a982cb4f545001"}, + {file = "jupyter_lsp-2.2.5-py3-none-any.whl", hash = "sha256:45fbddbd505f3fbfb0b6cb2f1bc5e15e83ab7c79cd6e89416b248cb3c00c11da"}, +] + +[package.dependencies] +jupyter-server = ">=1.1.2" + +[[package]] +name = "jupyter-server" +version = "2.15.0" +description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter_server-2.15.0-py3-none-any.whl", hash = "sha256:872d989becf83517012ee669f09604aa4a28097c0bd90b2f424310156c2cdae3"}, + {file = "jupyter_server-2.15.0.tar.gz", hash = "sha256:9d446b8697b4f7337a1b7cdcac40778babdd93ba614b6d68ab1c0c918f1c4084"}, +] + +[package.dependencies] +anyio = ">=3.1.0" +argon2-cffi = ">=21.1" +jinja2 = ">=3.0.3" +jupyter-client = ">=7.4.4" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +jupyter-events = ">=0.11.0" +jupyter-server-terminals = ">=0.4.4" +nbconvert = ">=6.4.4" +nbformat = ">=5.3.0" +overrides = ">=5.0" +packaging = ">=22.0" +prometheus-client = ">=0.9" +pywinpty = {version = ">=2.0.1", markers = "os_name == \"nt\""} +pyzmq = ">=24" +send2trash = ">=1.8.2" +terminado = ">=0.8.3" +tornado = ">=6.2.0" +traitlets = ">=5.6.0" +websocket-client = ">=1.7" + +[package.extras] +docs = ["ipykernel", "jinja2", "jupyter-client", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] +test = ["flaky", "ipykernel", "pre-commit", "pytest (>=7.0,<9)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.7)", "pytest-timeout", "requests"] + +[[package]] +name = "jupyter-server-terminals" +version = "0.5.3" +description = "A Jupyter Server Extension Providing Terminals." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa"}, + {file = "jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269"}, +] + +[package.dependencies] +pywinpty = {version = ">=2.0.3", markers = "os_name == \"nt\""} +terminado = ">=0.8.3" + +[package.extras] +docs = ["jinja2", "jupyter-server", "mistune (<4.0)", "myst-parser", "nbformat", "packaging", "pydata-sphinx-theme", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado"] +test = ["jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-jupyter[server] (>=0.5.3)", "pytest-timeout"] + +[[package]] +name = "jupyterlab" +version = "4.3.4" +description = "JupyterLab computational environment" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyterlab-4.3.4-py3-none-any.whl", hash = "sha256:b754c2601c5be6adf87cb5a1d8495d653ffb945f021939f77776acaa94dae952"}, + {file = "jupyterlab-4.3.4.tar.gz", hash = "sha256:f0bb9b09a04766e3423cccc2fc23169aa2ffedcdf8713e9e0fb33cac0b6859d0"}, +] + +[package.dependencies] +async-lru = ">=1.0.0" +httpx = ">=0.25.0" +ipykernel = ">=6.5.0" +jinja2 = ">=3.0.3" +jupyter-core = "*" +jupyter-lsp = ">=2.0.0" +jupyter-server = ">=2.4.0,<3" +jupyterlab-server = ">=2.27.1,<3" +notebook-shim = ">=0.2" +packaging = "*" +setuptools = ">=40.8.0" +tomli = {version = ">=1.2.2", markers = "python_version < \"3.11\""} +tornado = ">=6.2.0" +traitlets = "*" + +[package.extras] +dev = ["build", "bump2version", "coverage", "hatch", "pre-commit", "pytest-cov", "ruff (==0.6.9)"] +docs = ["jsx-lexer", "myst-parser", "pydata-sphinx-theme (>=0.13.0)", "pytest", "pytest-check-links", "pytest-jupyter", "sphinx (>=1.8,<8.1.0)", "sphinx-copybutton"] +docs-screenshots = ["altair (==5.4.1)", "ipython (==8.16.1)", "ipywidgets (==8.1.5)", "jupyterlab-geojson (==3.4.0)", "jupyterlab-language-pack-zh-cn (==4.2.post3)", "matplotlib (==3.9.2)", "nbconvert (>=7.0.0)", "pandas (==2.2.3)", "scipy (==1.14.1)", "vega-datasets (==0.9.0)"] +test = ["coverage", "pytest (>=7.0)", "pytest-check-links (>=0.7)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter (>=0.5.3)", "pytest-timeout", "pytest-tornasync", "requests", "requests-cache", "virtualenv"] +upgrade-extension = ["copier (>=9,<10)", "jinja2-time (<0.3)", "pydantic (<3.0)", "pyyaml-include (<3.0)", "tomli-w (<2.0)"] + +[[package]] +name = "jupyterlab-pygments" +version = "0.3.0" +description = "Pygments theme using JupyterLab CSS variables" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780"}, + {file = "jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d"}, +] + +[[package]] +name = "jupyterlab-server" +version = "2.27.3" +description = "A set of server components for JupyterLab and JupyterLab like applications." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyterlab_server-2.27.3-py3-none-any.whl", hash = "sha256:e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4"}, + {file = "jupyterlab_server-2.27.3.tar.gz", hash = "sha256:eb36caca59e74471988f0ae25c77945610b887f777255aa21f8065def9e51ed4"}, +] + +[package.dependencies] +babel = ">=2.10" +jinja2 = ">=3.0.3" +json5 = ">=0.9.0" +jsonschema = ">=4.18.0" +jupyter-server = ">=1.21,<3" +packaging = ">=21.3" +requests = ">=2.31" + +[package.extras] +docs = ["autodoc-traits", "jinja2 (<3.2.0)", "mistune (<4)", "myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-copybutton", "sphinxcontrib-openapi (>0.8)"] +openapi = ["openapi-core (>=0.18.0,<0.19.0)", "ruamel-yaml"] +test = ["hatch", "ipykernel", "openapi-core (>=0.18.0,<0.19.0)", "openapi-spec-validator (>=0.6.0,<0.8.0)", "pytest (>=7.0,<8)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter[server] (>=0.6.2)", "pytest-timeout", "requests-mock", "ruamel-yaml", "sphinxcontrib-spelling", "strict-rfc3339", "werkzeug"] + +[[package]] +name = "jupyterlab-widgets" +version = "3.0.13" +description = "Jupyter interactive widgets for JupyterLab" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "jupyterlab_widgets-3.0.13-py3-none-any.whl", hash = "sha256:e3cda2c233ce144192f1e29914ad522b2f4c40e77214b0cc97377ca3d323db54"}, + {file = "jupyterlab_widgets-3.0.13.tar.gz", hash = "sha256:a2966d385328c1942b683a8cd96b89b8dd82c8b8f81dda902bb2bc06d46f5bed"}, +] + +[[package]] +name = "kiwisolver" +version = "1.4.8" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.10" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "kiwisolver-1.4.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:88c6f252f6816a73b1f8c904f7bbe02fd67c09a69f7cb8a0eecdbf5ce78e63db"}, + {file = "kiwisolver-1.4.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c72941acb7b67138f35b879bbe85be0f6c6a70cab78fe3ef6db9c024d9223e5b"}, + {file = "kiwisolver-1.4.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ce2cf1e5688edcb727fdf7cd1bbd0b6416758996826a8be1d958f91880d0809d"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:c8bf637892dc6e6aad2bc6d4d69d08764166e5e3f69d469e55427b6ac001b19d"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:034d2c891f76bd3edbdb3ea11140d8510dca675443da7304205a2eaa45d8334c"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d47b28d1dfe0793d5e96bce90835e17edf9a499b53969b03c6c47ea5985844c3"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb158fe28ca0c29f2260cca8c43005329ad58452c36f0edf298204de32a9a3ed"}, + {file = "kiwisolver-1.4.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5536185fce131780ebd809f8e623bf4030ce1b161353166c49a3c74c287897f"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:369b75d40abedc1da2c1f4de13f3482cb99e3237b38726710f4a793432b1c5ff"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:641f2ddf9358c80faa22e22eb4c9f54bd3f0e442e038728f500e3b978d00aa7d"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d561d2d8883e0819445cfe58d7ddd673e4015c3c57261d7bdcd3710d0d14005c"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:1732e065704b47c9afca7ffa272f845300a4eb959276bf6970dc07265e73b605"}, + {file = "kiwisolver-1.4.8-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:bcb1ebc3547619c3b58a39e2448af089ea2ef44b37988caf432447374941574e"}, + {file = "kiwisolver-1.4.8-cp310-cp310-win_amd64.whl", hash = "sha256:89c107041f7b27844179ea9c85d6da275aa55ecf28413e87624d033cf1f6b751"}, + {file = "kiwisolver-1.4.8-cp310-cp310-win_arm64.whl", hash = "sha256:b5773efa2be9eb9fcf5415ea3ab70fc785d598729fd6057bea38d539ead28271"}, + {file = "kiwisolver-1.4.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a4d3601908c560bdf880f07d94f31d734afd1bb71e96585cace0e38ef44c6d84"}, + {file = "kiwisolver-1.4.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:856b269c4d28a5c0d5e6c1955ec36ebfd1651ac00e1ce0afa3e28da95293b561"}, + {file = "kiwisolver-1.4.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c2b9a96e0f326205af81a15718a9073328df1173a2619a68553decb7097fd5d7"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c5020c83e8553f770cb3b5fc13faac40f17e0b205bd237aebd21d53d733adb03"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dace81d28c787956bfbfbbfd72fdcef014f37d9b48830829e488fdb32b49d954"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11e1022b524bd48ae56c9b4f9296bce77e15a2e42a502cceba602f804b32bb79"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b9b4d2892fefc886f30301cdd80debd8bb01ecdf165a449eb6e78f79f0fabd6"}, + {file = "kiwisolver-1.4.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a96c0e790ee875d65e340ab383700e2b4891677b7fcd30a699146f9384a2bb0"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:23454ff084b07ac54ca8be535f4174170c1094a4cff78fbae4f73a4bcc0d4dab"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:87b287251ad6488e95b4f0b4a79a6d04d3ea35fde6340eb38fbd1ca9cd35bbbc"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:b21dbe165081142b1232a240fc6383fd32cdd877ca6cc89eab93e5f5883e1c25"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:768cade2c2df13db52475bd28d3a3fac8c9eff04b0e9e2fda0f3760f20b3f7fc"}, + {file = "kiwisolver-1.4.8-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d47cfb2650f0e103d4bf68b0b5804c68da97272c84bb12850d877a95c056bd67"}, + {file = "kiwisolver-1.4.8-cp311-cp311-win_amd64.whl", hash = "sha256:ed33ca2002a779a2e20eeb06aea7721b6e47f2d4b8a8ece979d8ba9e2a167e34"}, + {file = "kiwisolver-1.4.8-cp311-cp311-win_arm64.whl", hash = "sha256:16523b40aab60426ffdebe33ac374457cf62863e330a90a0383639ce14bf44b2"}, + {file = "kiwisolver-1.4.8-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:d6af5e8815fd02997cb6ad9bbed0ee1e60014438ee1a5c2444c96f87b8843502"}, + {file = "kiwisolver-1.4.8-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:bade438f86e21d91e0cf5dd7c0ed00cda0f77c8c1616bd83f9fc157fa6760d31"}, + {file = "kiwisolver-1.4.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b83dc6769ddbc57613280118fb4ce3cd08899cc3369f7d0e0fab518a7cf37fdb"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:111793b232842991be367ed828076b03d96202c19221b5ebab421ce8bcad016f"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:257af1622860e51b1a9d0ce387bf5c2c4f36a90594cb9514f55b074bcc787cfc"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:69b5637c3f316cab1ec1c9a12b8c5f4750a4c4b71af9157645bf32830e39c03a"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:782bb86f245ec18009890e7cb8d13a5ef54dcf2ebe18ed65f795e635a96a1c6a"}, + {file = "kiwisolver-1.4.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cc978a80a0db3a66d25767b03688f1147a69e6237175c0f4ffffaaedf744055a"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:36dbbfd34838500a31f52c9786990d00150860e46cd5041386f217101350f0d3"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:eaa973f1e05131de5ff3569bbba7f5fd07ea0595d3870ed4a526d486fe57fa1b"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:a66f60f8d0c87ab7f59b6fb80e642ebb29fec354a4dfad687ca4092ae69d04f4"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858416b7fb777a53f0c59ca08190ce24e9abbd3cffa18886a5781b8e3e26f65d"}, + {file = "kiwisolver-1.4.8-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:085940635c62697391baafaaeabdf3dd7a6c3643577dde337f4d66eba021b2b8"}, + {file = "kiwisolver-1.4.8-cp312-cp312-win_amd64.whl", hash = "sha256:01c3d31902c7db5fb6182832713d3b4122ad9317c2c5877d0539227d96bb2e50"}, + {file = "kiwisolver-1.4.8-cp312-cp312-win_arm64.whl", hash = "sha256:a3c44cb68861de93f0c4a8175fbaa691f0aa22550c331fefef02b618a9dcb476"}, + {file = "kiwisolver-1.4.8-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:1c8ceb754339793c24aee1c9fb2485b5b1f5bb1c2c214ff13368431e51fc9a09"}, + {file = "kiwisolver-1.4.8-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:54a62808ac74b5e55a04a408cda6156f986cefbcf0ada13572696b507cc92fa1"}, + {file = "kiwisolver-1.4.8-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:68269e60ee4929893aad82666821aaacbd455284124817af45c11e50a4b42e3c"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:34d142fba9c464bc3bbfeff15c96eab0e7310343d6aefb62a79d51421fcc5f1b"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc373e0eef45b59197de815b1b28ef89ae3955e7722cc9710fb91cd77b7f47"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:77e6f57a20b9bd4e1e2cedda4d0b986ebd0216236f0106e55c28aea3d3d69b16"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08e77738ed7538f036cd1170cbed942ef749137b1311fa2bbe2a7fda2f6bf3cc"}, + {file = "kiwisolver-1.4.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a5ce1e481a74b44dd5e92ff03ea0cb371ae7a0268318e202be06c8f04f4f1246"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:fc2ace710ba7c1dfd1a3b42530b62b9ceed115f19a1656adefce7b1782a37794"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:3452046c37c7692bd52b0e752b87954ef86ee2224e624ef7ce6cb21e8c41cc1b"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:7e9a60b50fe8b2ec6f448fe8d81b07e40141bfced7f896309df271a0b92f80f3"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:918139571133f366e8362fa4a297aeba86c7816b7ecf0bc79168080e2bd79957"}, + {file = "kiwisolver-1.4.8-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e063ef9f89885a1d68dd8b2e18f5ead48653176d10a0e324e3b0030e3a69adeb"}, + {file = "kiwisolver-1.4.8-cp313-cp313-win_amd64.whl", hash = "sha256:a17b7c4f5b2c51bb68ed379defd608a03954a1845dfed7cc0117f1cc8a9b7fd2"}, + {file = "kiwisolver-1.4.8-cp313-cp313-win_arm64.whl", hash = "sha256:3cd3bc628b25f74aedc6d374d5babf0166a92ff1317f46267f12d2ed54bc1d30"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:370fd2df41660ed4e26b8c9d6bbcad668fbe2560462cba151a721d49e5b6628c"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:84a2f830d42707de1d191b9490ac186bf7997a9495d4e9072210a1296345f7dc"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:7a3ad337add5148cf51ce0b55642dc551c0b9d6248458a757f98796ca7348712"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7506488470f41169b86d8c9aeff587293f530a23a23a49d6bc64dab66bedc71e"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f0121b07b356a22fb0414cec4666bbe36fd6d0d759db3d37228f496ed67c880"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d6d6bd87df62c27d4185de7c511c6248040afae67028a8a22012b010bc7ad062"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:291331973c64bb9cce50bbe871fb2e675c4331dab4f31abe89f175ad7679a4d7"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:893f5525bb92d3d735878ec00f781b2de998333659507d29ea4466208df37bed"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:b47a465040146981dc9db8647981b8cb96366fbc8d452b031e4f8fdffec3f26d"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:99cea8b9dd34ff80c521aef46a1dddb0dcc0283cf18bde6d756f1e6f31772165"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:151dffc4865e5fe6dafce5480fab84f950d14566c480c08a53c663a0020504b6"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:577facaa411c10421314598b50413aa1ebcf5126f704f1e5d72d7e4e9f020d90"}, + {file = "kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:be4816dc51c8a471749d664161b434912eee82f2ea66bd7628bd14583a833e85"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e7a019419b7b510f0f7c9dceff8c5eae2392037eae483a7f9162625233802b0a"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:286b18e86682fd2217a48fc6be6b0f20c1d0ed10958d8dc53453ad58d7be0bf8"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4191ee8dfd0be1c3666ccbac178c5a05d5f8d689bbe3fc92f3c4abec817f8fe0"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7cd2785b9391f2873ad46088ed7599a6a71e762e1ea33e87514b1a441ed1da1c"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c07b29089b7ba090b6f1a669f1411f27221c3662b3a1b7010e67b59bb5a6f10b"}, + {file = "kiwisolver-1.4.8-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:65ea09a5a3faadd59c2ce96dc7bf0f364986a315949dc6374f04396b0d60e09b"}, + {file = "kiwisolver-1.4.8.tar.gz", hash = "sha256:23d5f023bdc8c7e54eb65f03ca5d5bb25b601eac4d7f1a042888a1f45237987e"}, +] + +[[package]] +name = "markupsafe" +version = "3.0.2" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "MarkupSafe-3.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7e94c425039cde14257288fd61dcfb01963e658efbc0ff54f5306b06054700f8"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9e2d922824181480953426608b81967de705c3cef4d1af983af849d7bd619158"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:38a9ef736c01fccdd6600705b09dc574584b89bea478200c5fbf112a6b0d5579"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bbcb445fa71794da8f178f0f6d66789a28d7319071af7a496d4d507ed566270d"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:57cb5a3cf367aeb1d316576250f65edec5bb3be939e9247ae594b4bcbc317dfb"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:3809ede931876f5b2ec92eef964286840ed3540dadf803dd570c3b7e13141a3b"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e07c3764494e3776c602c1e78e298937c3315ccc9043ead7e685b7f2b8d47b3c"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:b424c77b206d63d500bcb69fa55ed8d0e6a3774056bdc4839fc9298a7edca171"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-win32.whl", hash = "sha256:fcabf5ff6eea076f859677f5f0b6b5c1a51e70a376b0579e0eadef8db48c6b50"}, + {file = "MarkupSafe-3.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:6af100e168aa82a50e186c82875a5893c5597a0c1ccdb0d8b40240b1f28b969a"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9025b4018f3a1314059769c7bf15441064b2207cb3f065e6ea1e7359cb46db9d"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:93335ca3812df2f366e80509ae119189886b0f3c2b81325d39efdb84a1e2ae93"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2cb8438c3cbb25e220c2ab33bb226559e7afb3baec11c4f218ffa7308603c832"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a123e330ef0853c6e822384873bef7507557d8e4a082961e1defa947aa59ba84"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e084f686b92e5b83186b07e8a17fc09e38fff551f3602b249881fec658d3eca"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d8213e09c917a951de9d09ecee036d5c7d36cb6cb7dbaece4c71a60d79fb9798"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:5b02fb34468b6aaa40dfc198d813a641e3a63b98c2b05a16b9f80b7ec314185e"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0bff5e0ae4ef2e1ae4fdf2dfd5b76c75e5c2fa4132d05fc1b0dabcd20c7e28c4"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-win32.whl", hash = "sha256:6c89876f41da747c8d3677a2b540fb32ef5715f97b66eeb0c6b66f5e3ef6f59d"}, + {file = "MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:70a87b411535ccad5ef2f1df5136506a10775d267e197e4cf531ced10537bd6b"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30"}, + {file = "MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-win32.whl", hash = "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1"}, + {file = "MarkupSafe-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-win32.whl", hash = "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6"}, + {file = "MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:eaa0a10b7f72326f1372a713e73c3f739b524b3af41feb43e4921cb529f5929a"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:48032821bbdf20f5799ff537c7ac3d1fba0ba032cfc06194faffa8cda8b560ff"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a9d3f5f0901fdec14d8d2f66ef7d035f2157240a433441719ac9a3fba440b13"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88b49a3b9ff31e19998750c38e030fc7bb937398b1f78cfa599aaef92d693144"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cfad01eed2c2e0c01fd0ecd2ef42c492f7f93902e39a42fc9ee1692961443a29"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:1225beacc926f536dc82e45f8a4d68502949dc67eea90eab715dea3a21c1b5f0"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:3169b1eefae027567d1ce6ee7cae382c57fe26e82775f460f0b2778beaad66c0"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:eb7972a85c54febfb25b5c4b4f3af4dcc731994c7da0d8a0b4a6eb0640e1d178"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-win32.whl", hash = "sha256:8c4e8c3ce11e1f92f6536ff07154f9d49677ebaaafc32db9db4620bc11ed480f"}, + {file = "MarkupSafe-3.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:6e296a513ca3d94054c2c881cc913116e90fd030ad1c656b3869762b754f5f8a"}, + {file = "markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0"}, +] + +[[package]] +name = "matplotlib" +version = "3.10.0" +description = "Python plotting package" +optional = false +python-versions = ">=3.10" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "matplotlib-3.10.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:2c5829a5a1dd5a71f0e31e6e8bb449bc0ee9dbfb05ad28fc0c6b55101b3a4be6"}, + {file = "matplotlib-3.10.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2a43cbefe22d653ab34bb55d42384ed30f611bcbdea1f8d7f431011a2e1c62e"}, + {file = "matplotlib-3.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:607b16c8a73943df110f99ee2e940b8a1cbf9714b65307c040d422558397dac5"}, + {file = "matplotlib-3.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01d2b19f13aeec2e759414d3bfe19ddfb16b13a1250add08d46d5ff6f9be83c6"}, + {file = "matplotlib-3.10.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:5e6c6461e1fc63df30bf6f80f0b93f5b6784299f721bc28530477acd51bfc3d1"}, + {file = "matplotlib-3.10.0-cp310-cp310-win_amd64.whl", hash = "sha256:994c07b9d9fe8d25951e3202a68c17900679274dadfc1248738dcfa1bd40d7f3"}, + {file = "matplotlib-3.10.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:fd44fc75522f58612ec4a33958a7e5552562b7705b42ef1b4f8c0818e304a363"}, + {file = "matplotlib-3.10.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c58a9622d5dbeb668f407f35f4e6bfac34bb9ecdcc81680c04d0258169747997"}, + {file = "matplotlib-3.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:845d96568ec873be63f25fa80e9e7fae4be854a66a7e2f0c8ccc99e94a8bd4ef"}, + {file = "matplotlib-3.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5439f4c5a3e2e8eab18e2f8c3ef929772fd5641876db71f08127eed95ab64683"}, + {file = "matplotlib-3.10.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4673ff67a36152c48ddeaf1135e74ce0d4bce1bbf836ae40ed39c29edf7e2765"}, + {file = "matplotlib-3.10.0-cp311-cp311-win_amd64.whl", hash = "sha256:7e8632baebb058555ac0cde75db885c61f1212e47723d63921879806b40bec6a"}, + {file = "matplotlib-3.10.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4659665bc7c9b58f8c00317c3c2a299f7f258eeae5a5d56b4c64226fca2f7c59"}, + {file = "matplotlib-3.10.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d44cb942af1693cced2604c33a9abcef6205601c445f6d0dc531d813af8a2f5a"}, + {file = "matplotlib-3.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a994f29e968ca002b50982b27168addfd65f0105610b6be7fa515ca4b5307c95"}, + {file = "matplotlib-3.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9b0558bae37f154fffda54d779a592bc97ca8b4701f1c710055b609a3bac44c8"}, + {file = "matplotlib-3.10.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:503feb23bd8c8acc75541548a1d709c059b7184cde26314896e10a9f14df5f12"}, + {file = "matplotlib-3.10.0-cp312-cp312-win_amd64.whl", hash = "sha256:c40ba2eb08b3f5de88152c2333c58cee7edcead0a2a0d60fcafa116b17117adc"}, + {file = "matplotlib-3.10.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:96f2886f5c1e466f21cc41b70c5a0cd47bfa0015eb2d5793c88ebce658600e25"}, + {file = "matplotlib-3.10.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:12eaf48463b472c3c0f8dbacdbf906e573013df81a0ab82f0616ea4b11281908"}, + {file = "matplotlib-3.10.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2fbbabc82fde51391c4da5006f965e36d86d95f6ee83fb594b279564a4c5d0d2"}, + {file = "matplotlib-3.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad2e15300530c1a94c63cfa546e3b7864bd18ea2901317bae8bbf06a5ade6dcf"}, + {file = "matplotlib-3.10.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3547d153d70233a8496859097ef0312212e2689cdf8d7ed764441c77604095ae"}, + {file = "matplotlib-3.10.0-cp313-cp313-win_amd64.whl", hash = "sha256:c55b20591ced744aa04e8c3e4b7543ea4d650b6c3c4b208c08a05b4010e8b442"}, + {file = "matplotlib-3.10.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9ade1003376731a971e398cc4ef38bb83ee8caf0aee46ac6daa4b0506db1fd06"}, + {file = "matplotlib-3.10.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:95b710fea129c76d30be72c3b38f330269363fbc6e570a5dd43580487380b5ff"}, + {file = "matplotlib-3.10.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5cdbaf909887373c3e094b0318d7ff230b2ad9dcb64da7ade654182872ab2593"}, + {file = "matplotlib-3.10.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d907fddb39f923d011875452ff1eca29a9e7f21722b873e90db32e5d8ddff12e"}, + {file = "matplotlib-3.10.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:3b427392354d10975c1d0f4ee18aa5844640b512d5311ef32efd4dd7db106ede"}, + {file = "matplotlib-3.10.0-cp313-cp313t-win_amd64.whl", hash = "sha256:5fd41b0ec7ee45cd960a8e71aea7c946a28a0b8a4dcee47d2856b2af051f334c"}, + {file = "matplotlib-3.10.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:81713dd0d103b379de4516b861d964b1d789a144103277769238c732229d7f03"}, + {file = "matplotlib-3.10.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:359f87baedb1f836ce307f0e850d12bb5f1936f70d035561f90d41d305fdacea"}, + {file = "matplotlib-3.10.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ae80dc3a4add4665cf2faa90138384a7ffe2a4e37c58d83e115b54287c4f06ef"}, + {file = "matplotlib-3.10.0.tar.gz", hash = "sha256:b886d02a581b96704c9d1ffe55709e49b4d2d52709ccebc4be42db856e511278"}, +] + +[package.dependencies] +contourpy = ">=1.0.1" +cycler = ">=0.10" +fonttools = ">=4.22.0" +kiwisolver = ">=1.3.1" +numpy = ">=1.23" +packaging = ">=20.0" +pillow = ">=8" +pyparsing = ">=2.3.1" +python-dateutil = ">=2.7" + +[package.extras] +dev = ["meson-python (>=0.13.1,<0.17.0)", "pybind11 (>=2.13.2,!=2.13.3)", "setuptools (>=64)", "setuptools_scm (>=7)"] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mistune" +version = "3.1.0" +description = "A sane and fast Markdown parser with useful plugins and renderers" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "mistune-3.1.0-py3-none-any.whl", hash = "sha256:b05198cf6d671b3deba6c87ec6cf0d4eb7b72c524636eddb6dbf13823b52cee1"}, + {file = "mistune-3.1.0.tar.gz", hash = "sha256:dbcac2f78292b9dc066cd03b7a3a26b62d85f8159f2ea5fd28e55df79908d667"}, +] + +[package.dependencies] +typing-extensions = {version = "*", markers = "python_version < \"3.11\""} + +[[package]] +name = "nbclient" +version = "0.10.2" +description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." +optional = false +python-versions = ">=3.9.0" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "nbclient-0.10.2-py3-none-any.whl", hash = "sha256:4ffee11e788b4a27fabeb7955547e4318a5298f34342a4bfd01f2e1faaeadc3d"}, + {file = "nbclient-0.10.2.tar.gz", hash = "sha256:90b7fc6b810630db87a6d0c2250b1f0ab4cf4d3c27a299b0cde78a4ed3fd9193"}, +] + +[package.dependencies] +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +nbformat = ">=5.1" +traitlets = ">=5.4" + +[package.extras] +dev = ["pre-commit"] +docs = ["autodoc-traits", "flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "mock", "moto", "myst-parser", "nbconvert (>=7.1.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling", "testpath", "xmltodict"] +test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.1.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] + +[[package]] +name = "nbconvert" +version = "7.16.5" +description = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "nbconvert-7.16.5-py3-none-any.whl", hash = "sha256:e12eac052d6fd03040af4166c563d76e7aeead2e9aadf5356db552a1784bd547"}, + {file = "nbconvert-7.16.5.tar.gz", hash = "sha256:c83467bb5777fdfaac5ebbb8e864f300b277f68692ecc04d6dab72f2d8442344"}, +] + +[package.dependencies] +beautifulsoup4 = "*" +bleach = {version = "!=5.0.0", extras = ["css"]} +defusedxml = "*" +jinja2 = ">=3.0" +jupyter-core = ">=4.7" +jupyterlab-pygments = "*" +markupsafe = ">=2.0" +mistune = ">=2.0.3,<4" +nbclient = ">=0.5.0" +nbformat = ">=5.7" +packaging = "*" +pandocfilters = ">=1.4.1" +pygments = ">=2.4.1" +traitlets = ">=5.1" + +[package.extras] +all = ["flaky", "ipykernel", "ipython", "ipywidgets (>=7.5)", "myst-parser", "nbsphinx (>=0.2.12)", "playwright", "pydata-sphinx-theme", "pyqtwebengine (>=5.15)", "pytest (>=7)", "sphinx (==5.0.2)", "sphinxcontrib-spelling", "tornado (>=6.1)"] +docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] +qtpdf = ["pyqtwebengine (>=5.15)"] +qtpng = ["pyqtwebengine (>=5.15)"] +serve = ["tornado (>=6.1)"] +test = ["flaky", "ipykernel", "ipywidgets (>=7.5)", "pytest (>=7)"] +webpdf = ["playwright"] + +[[package]] +name = "nbformat" +version = "5.10.4" +description = "The Jupyter Notebook format" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b"}, + {file = "nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a"}, +] + +[package.dependencies] +fastjsonschema = ">=2.15" +jsonschema = ">=2.6" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +traitlets = ">=5.1" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["pep440", "pre-commit", "pytest", "testpath"] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "notebook" +version = "7.3.2" +description = "Jupyter Notebook - A web-based notebook environment for interactive computing" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "notebook-7.3.2-py3-none-any.whl", hash = "sha256:e5f85fc59b69d3618d73cf27544418193ff8e8058d5bf61d315ce4f473556288"}, + {file = "notebook-7.3.2.tar.gz", hash = "sha256:705e83a1785f45b383bf3ee13cb76680b92d24f56fb0c7d2136fe1d850cd3ca8"}, +] + +[package.dependencies] +jupyter-server = ">=2.4.0,<3" +jupyterlab = ">=4.3.4,<4.4" +jupyterlab-server = ">=2.27.1,<3" +notebook-shim = ">=0.2,<0.3" +tornado = ">=6.2.0" + +[package.extras] +dev = ["hatch", "pre-commit"] +docs = ["myst-parser", "nbsphinx", "pydata-sphinx-theme", "sphinx (>=1.3.6)", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.27.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"] + +[[package]] +name = "notebook-shim" +version = "0.2.4" +description = "A shim layer for notebook traits and config" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef"}, + {file = "notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb"}, +] + +[package.dependencies] +jupyter-server = ">=1.8,<3" + +[package.extras] +test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"] + +[[package]] +name = "numpy" +version = "2.2.1" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.10" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5edb4e4caf751c1518e6a26a83501fda79bff41cc59dac48d70e6d65d4ec4440"}, + {file = "numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa3017c40d513ccac9621a2364f939d39e550c542eb2a894b4c8da92b38896ab"}, + {file = "numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:61048b4a49b1c93fe13426e04e04fdf5a03f456616f6e98c7576144677598675"}, + {file = "numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:7671dc19c7019103ca44e8d94917eba8534c76133523ca8406822efdd19c9308"}, + {file = "numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4250888bcb96617e00bfa28ac24850a83c9f3a16db471eca2ee1f1714df0f957"}, + {file = "numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7746f235c47abc72b102d3bce9977714c2444bdfaea7888d241b4c4bb6a78bf"}, + {file = "numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:059e6a747ae84fce488c3ee397cee7e5f905fd1bda5fb18c66bc41807ff119b2"}, + {file = "numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:f62aa6ee4eb43b024b0e5a01cf65a0bb078ef8c395e8713c6e8a12a697144528"}, + {file = "numpy-2.2.1-cp310-cp310-win32.whl", hash = "sha256:48fd472630715e1c1c89bf1feab55c29098cb403cc184b4859f9c86d4fcb6a95"}, + {file = "numpy-2.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:b541032178a718c165a49638d28272b771053f628382d5e9d1c93df23ff58dbf"}, + {file = "numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:40f9e544c1c56ba8f1cf7686a8c9b5bb249e665d40d626a23899ba6d5d9e1484"}, + {file = "numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f9b57eaa3b0cd8db52049ed0330747b0364e899e8a606a624813452b8203d5f7"}, + {file = "numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:bc8a37ad5b22c08e2dbd27df2b3ef7e5c0864235805b1e718a235bcb200cf1cb"}, + {file = "numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:9036d6365d13b6cbe8f27a0eaf73ddcc070cae584e5ff94bb45e3e9d729feab5"}, + {file = "numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51faf345324db860b515d3f364eaa93d0e0551a88d6218a7d61286554d190d73"}, + {file = "numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38efc1e56b73cc9b182fe55e56e63b044dd26a72128fd2fbd502f75555d92591"}, + {file = "numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:31b89fa67a8042e96715c68e071a1200c4e172f93b0fbe01a14c0ff3ff820fc8"}, + {file = "numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4c86e2a209199ead7ee0af65e1d9992d1dce7e1f63c4b9a616500f93820658d0"}, + {file = "numpy-2.2.1-cp311-cp311-win32.whl", hash = "sha256:b34d87e8a3090ea626003f87f9392b3929a7bbf4104a05b6667348b6bd4bf1cd"}, + {file = "numpy-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:360137f8fb1b753c5cde3ac388597ad680eccbbbb3865ab65efea062c4a1fd16"}, + {file = "numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:694f9e921a0c8f252980e85bce61ebbd07ed2b7d4fa72d0e4246f2f8aa6642ab"}, + {file = "numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3683a8d166f2692664262fd4900f207791d005fb088d7fdb973cc8d663626faa"}, + {file = "numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:780077d95eafc2ccc3ced969db22377b3864e5b9a0ea5eb347cc93b3ea900315"}, + {file = "numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:55ba24ebe208344aa7a00e4482f65742969a039c2acfcb910bc6fcd776eb4355"}, + {file = "numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b1d07b53b78bf84a96898c1bc139ad7f10fda7423f5fd158fd0f47ec5e01ac7"}, + {file = "numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5062dc1a4e32a10dc2b8b13cedd58988261416e811c1dc4dbdea4f57eea61b0d"}, + {file = "numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:fce4f615f8ca31b2e61aa0eb5865a21e14f5629515c9151850aa936c02a1ee51"}, + {file = "numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:67d4cda6fa6ffa073b08c8372aa5fa767ceb10c9a0587c707505a6d426f4e046"}, + {file = "numpy-2.2.1-cp312-cp312-win32.whl", hash = "sha256:32cb94448be47c500d2c7a95f93e2f21a01f1fd05dd2beea1ccd049bb6001cd2"}, + {file = "numpy-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:ba5511d8f31c033a5fcbda22dd5c813630af98c70b2661f2d2c654ae3cdfcfc8"}, + {file = "numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f1d09e520217618e76396377c81fba6f290d5f926f50c35f3a5f72b01a0da780"}, + {file = "numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3ecc47cd7f6ea0336042be87d9e7da378e5c7e9b3c8ad0f7c966f714fc10d821"}, + {file = "numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:f419290bc8968a46c4933158c91a0012b7a99bb2e465d5ef5293879742f8797e"}, + {file = "numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:5b6c390bfaef8c45a260554888966618328d30e72173697e5cabe6b285fb2348"}, + {file = "numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:526fc406ab991a340744aad7e25251dd47a6720a685fa3331e5c59fef5282a59"}, + {file = "numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af"}, + {file = "numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:53c09385ff0b72ba79d8715683c1168c12e0b6e84fb0372e97553d1ea91efe51"}, + {file = "numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f3eac17d9ec51be534685ba877b6ab5edc3ab7ec95c8f163e5d7b39859524716"}, + {file = "numpy-2.2.1-cp313-cp313-win32.whl", hash = "sha256:9ad014faa93dbb52c80d8f4d3dcf855865c876c9660cb9bd7553843dd03a4b1e"}, + {file = "numpy-2.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:164a829b6aacf79ca47ba4814b130c4020b202522a93d7bff2202bfb33b61c60"}, + {file = "numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:4dfda918a13cc4f81e9118dea249e192ab167a0bb1966272d5503e39234d694e"}, + {file = "numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:733585f9f4b62e9b3528dd1070ec4f52b8acf64215b60a845fa13ebd73cd0712"}, + {file = "numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:89b16a18e7bba224ce5114db863e7029803c179979e1af6ad6a6b11f70545008"}, + {file = "numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:676f4eebf6b2d430300f1f4f4c2461685f8269f94c89698d832cdf9277f30b84"}, + {file = "numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27f5cdf9f493b35f7e41e8368e7d7b4bbafaf9660cba53fb21d2cd174ec09631"}, + {file = "numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c1ad395cf254c4fbb5b2132fee391f361a6e8c1adbd28f2cd8e79308a615fe9d"}, + {file = "numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:08ef779aed40dbc52729d6ffe7dd51df85796a702afbf68a4f4e41fafdc8bda5"}, + {file = "numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:26c9c4382b19fcfbbed3238a14abf7ff223890ea1936b8890f058e7ba35e8d71"}, + {file = "numpy-2.2.1-cp313-cp313t-win32.whl", hash = "sha256:93cf4e045bae74c90ca833cba583c14b62cb4ba2cba0abd2b141ab52548247e2"}, + {file = "numpy-2.2.1-cp313-cp313t-win_amd64.whl", hash = "sha256:bff7d8ec20f5f42607599f9994770fa65d76edca264a87b5e4ea5629bce12268"}, + {file = "numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:7ba9cc93a91d86365a5d270dee221fdc04fb68d7478e6bf6af650de78a8339e3"}, + {file = "numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:3d03883435a19794e41f147612a77a8f56d4e52822337844fff3d4040a142964"}, + {file = "numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4511d9e6071452b944207c8ce46ad2f897307910b402ea5fa975da32e0102800"}, + {file = "numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:5c5cc0cbabe9452038ed984d05ac87910f89370b9242371bd9079cb4af61811e"}, + {file = "numpy-2.2.1.tar.gz", hash = "sha256:45681fd7128c8ad1c379f0ca0776a8b0c6583d2f69889ddac01559dfe4390918"}, +] + +[[package]] +name = "overrides" +version = "7.7.0" +description = "A decorator to automatically detect mismatch when overriding a method." +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "overrides-7.7.0-py3-none-any.whl", hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49"}, + {file = "overrides-7.7.0.tar.gz", hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a"}, +] + +[[package]] +name = "packaging" +version = "24.2" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759"}, + {file = "packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f"}, +] + +[[package]] +name = "pandas" +version = "2.2.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pandas-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1948ddde24197a0f7add2bdc4ca83bf2b1ef84a1bc8ccffd95eda17fd836ecb5"}, + {file = "pandas-2.2.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:381175499d3802cde0eabbaf6324cce0c4f5d52ca6f8c377c29ad442f50f6348"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d9c45366def9a3dd85a6454c0e7908f2b3b8e9c138f5dc38fed7ce720d8453ed"}, + {file = "pandas-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:86976a1c5b25ae3f8ccae3a5306e443569ee3c3faf444dfd0f41cda24667ad57"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:b8661b0238a69d7aafe156b7fa86c44b881387509653fdf857bebc5e4008ad42"}, + {file = "pandas-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:37e0aced3e8f539eccf2e099f65cdb9c8aa85109b0be6e93e2baff94264bdc6f"}, + {file = "pandas-2.2.3-cp310-cp310-win_amd64.whl", hash = "sha256:56534ce0746a58afaf7942ba4863e0ef81c9c50d3f0ae93e9497d6a41a057645"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:66108071e1b935240e74525006034333f98bcdb87ea116de573a6a0dccb6c039"}, + {file = "pandas-2.2.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:7c2875855b0ff77b2a64a0365e24455d9990730d6431b9e0ee18ad8acee13dbd"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd8d0c3be0515c12fed0bdbae072551c8b54b7192c7b1fda0ba56059a0179698"}, + {file = "pandas-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c124333816c3a9b03fbeef3a9f230ba9a737e9e5bb4060aa2107a86cc0a497fc"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:63cc132e40a2e084cf01adf0775b15ac515ba905d7dcca47e9a251819c575ef3"}, + {file = "pandas-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:29401dbfa9ad77319367d36940cd8a0b3a11aba16063e39632d98b0e931ddf32"}, + {file = "pandas-2.2.3-cp311-cp311-win_amd64.whl", hash = "sha256:3fc6873a41186404dad67245896a6e440baacc92f5b716ccd1bc9ed2995ab2c5"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9"}, + {file = "pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3"}, + {file = "pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8"}, + {file = "pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a"}, + {file = "pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015"}, + {file = "pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0"}, + {file = "pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659"}, + {file = "pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb"}, + {file = "pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468"}, + {file = "pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2"}, + {file = "pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d"}, + {file = "pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bc6b93f9b966093cb0fd62ff1a7e4c09e6d546ad7c1de191767baffc57628f39"}, + {file = "pandas-2.2.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5dbca4c1acd72e8eeef4753eeca07de9b1db4f398669d5994086f788a5d7cc30"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8cd6d7cc958a3910f934ea8dbdf17b2364827bb4dafc38ce6eef6bb3d65ff09c"}, + {file = "pandas-2.2.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99df71520d25fade9db7c1076ac94eb994f4d2673ef2aa2e86ee039b6746d20c"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:31d0ced62d4ea3e231a9f228366919a5ea0b07440d9d4dac345376fd8e1477ea"}, + {file = "pandas-2.2.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:7eee9e7cea6adf3e3d24e304ac6b8300646e2a5d1cd3a3c2abed9101b0846761"}, + {file = "pandas-2.2.3-cp39-cp39-win_amd64.whl", hash = "sha256:4850ba03528b6dd51d6c5d273c46f183f39a9baf3f0143e566b89450965b105e"}, + {file = "pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667"}, +] + +[package.dependencies] +numpy = [ + {version = ">=1.22.4", markers = "python_version < \"3.11\""}, + {version = ">=1.23.2", markers = "python_version == \"3.11\""}, + {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, +] +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.7" + +[package.extras] +all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] +aws = ["s3fs (>=2022.11.0)"] +clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] +compression = ["zstandard (>=0.19.0)"] +computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] +feather = ["pyarrow (>=10.0.1)"] +fss = ["fsspec (>=2022.11.0)"] +gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] +hdf5 = ["tables (>=3.8.0)"] +html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] +mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] +parquet = ["pyarrow (>=10.0.1)"] +performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] +plot = ["matplotlib (>=3.6.3)"] +postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] +pyarrow = ["pyarrow (>=10.0.1)"] +spss = ["pyreadstat (>=1.2.0)"] +sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.9.2)"] + +[[package]] +name = "pandocfilters" +version = "1.5.1" +description = "Utilities for writing pandoc filters in python" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc"}, + {file = "pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e"}, +] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +groups = ["main"] +markers = "(python_version <= \"3.11\" or python_version >= \"3.12\") and (sys_platform != \"win32\" and sys_platform != \"emscripten\")" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pillow" +version = "11.1.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pillow-11.1.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:e1abe69aca89514737465752b4bcaf8016de61b3be1397a8fc260ba33321b3a8"}, + {file = "pillow-11.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c640e5a06869c75994624551f45e5506e4256562ead981cce820d5ab39ae2192"}, + {file = "pillow-11.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a07dba04c5e22824816b2615ad7a7484432d7f540e6fa86af60d2de57b0fcee2"}, + {file = "pillow-11.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e267b0ed063341f3e60acd25c05200df4193e15a4a5807075cd71225a2386e26"}, + {file = "pillow-11.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:bd165131fd51697e22421d0e467997ad31621b74bfc0b75956608cb2906dda07"}, + {file = "pillow-11.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:abc56501c3fd148d60659aae0af6ddc149660469082859fa7b066a298bde9482"}, + {file = "pillow-11.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:54ce1c9a16a9561b6d6d8cb30089ab1e5eb66918cb47d457bd996ef34182922e"}, + {file = "pillow-11.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:73ddde795ee9b06257dac5ad42fcb07f3b9b813f8c1f7f870f402f4dc54b5269"}, + {file = "pillow-11.1.0-cp310-cp310-win32.whl", hash = "sha256:3a5fe20a7b66e8135d7fd617b13272626a28278d0e578c98720d9ba4b2439d49"}, + {file = "pillow-11.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:b6123aa4a59d75f06e9dd3dac5bf8bc9aa383121bb3dd9a7a612e05eabc9961a"}, + {file = "pillow-11.1.0-cp310-cp310-win_arm64.whl", hash = "sha256:a76da0a31da6fcae4210aa94fd779c65c75786bc9af06289cd1c184451ef7a65"}, + {file = "pillow-11.1.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:e06695e0326d05b06833b40b7ef477e475d0b1ba3a6d27da1bb48c23209bf457"}, + {file = "pillow-11.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:96f82000e12f23e4f29346e42702b6ed9a2f2fea34a740dd5ffffcc8c539eb35"}, + {file = "pillow-11.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3cd561ded2cf2bbae44d4605837221b987c216cff94f49dfeed63488bb228d2"}, + {file = "pillow-11.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f189805c8be5ca5add39e6f899e6ce2ed824e65fb45f3c28cb2841911da19070"}, + {file = "pillow-11.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:dd0052e9db3474df30433f83a71b9b23bd9e4ef1de13d92df21a52c0303b8ab6"}, + {file = "pillow-11.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:837060a8599b8f5d402e97197d4924f05a2e0d68756998345c829c33186217b1"}, + {file = "pillow-11.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:aa8dd43daa836b9a8128dbe7d923423e5ad86f50a7a14dc688194b7be5c0dea2"}, + {file = "pillow-11.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:0a2f91f8a8b367e7a57c6e91cd25af510168091fb89ec5146003e424e1558a96"}, + {file = "pillow-11.1.0-cp311-cp311-win32.whl", hash = "sha256:c12fc111ef090845de2bb15009372175d76ac99969bdf31e2ce9b42e4b8cd88f"}, + {file = "pillow-11.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:fbd43429d0d7ed6533b25fc993861b8fd512c42d04514a0dd6337fb3ccf22761"}, + {file = "pillow-11.1.0-cp311-cp311-win_arm64.whl", hash = "sha256:f7955ecf5609dee9442cbface754f2c6e541d9e6eda87fad7f7a989b0bdb9d71"}, + {file = "pillow-11.1.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:2062ffb1d36544d42fcaa277b069c88b01bb7298f4efa06731a7fd6cc290b81a"}, + {file = "pillow-11.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a85b653980faad27e88b141348707ceeef8a1186f75ecc600c395dcac19f385b"}, + {file = "pillow-11.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9409c080586d1f683df3f184f20e36fb647f2e0bc3988094d4fd8c9f4eb1b3b3"}, + {file = "pillow-11.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7fdadc077553621911f27ce206ffcbec7d3f8d7b50e0da39f10997e8e2bb7f6a"}, + {file = "pillow-11.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:93a18841d09bcdd774dcdc308e4537e1f867b3dec059c131fde0327899734aa1"}, + {file = "pillow-11.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9aa9aeddeed452b2f616ff5507459e7bab436916ccb10961c4a382cd3e03f47f"}, + {file = "pillow-11.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3cdcdb0b896e981678eee140d882b70092dac83ac1cdf6b3a60e2216a73f2b91"}, + {file = "pillow-11.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:36ba10b9cb413e7c7dfa3e189aba252deee0602c86c309799da5a74009ac7a1c"}, + {file = "pillow-11.1.0-cp312-cp312-win32.whl", hash = "sha256:cfd5cd998c2e36a862d0e27b2df63237e67273f2fc78f47445b14e73a810e7e6"}, + {file = "pillow-11.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:a697cd8ba0383bba3d2d3ada02b34ed268cb548b369943cd349007730c92bddf"}, + {file = "pillow-11.1.0-cp312-cp312-win_arm64.whl", hash = "sha256:4dd43a78897793f60766563969442020e90eb7847463eca901e41ba186a7d4a5"}, + {file = "pillow-11.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ae98e14432d458fc3de11a77ccb3ae65ddce70f730e7c76140653048c71bfcbc"}, + {file = "pillow-11.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:cc1331b6d5a6e144aeb5e626f4375f5b7ae9934ba620c0ac6b3e43d5e683a0f0"}, + {file = "pillow-11.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:758e9d4ef15d3560214cddbc97b8ef3ef86ce04d62ddac17ad39ba87e89bd3b1"}, + {file = "pillow-11.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b523466b1a31d0dcef7c5be1f20b942919b62fd6e9a9be199d035509cbefc0ec"}, + {file = "pillow-11.1.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:9044b5e4f7083f209c4e35aa5dd54b1dd5b112b108648f5c902ad586d4f945c5"}, + {file = "pillow-11.1.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:3764d53e09cdedd91bee65c2527815d315c6b90d7b8b79759cc48d7bf5d4f114"}, + {file = "pillow-11.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:31eba6bbdd27dde97b0174ddf0297d7a9c3a507a8a1480e1e60ef914fe23d352"}, + {file = "pillow-11.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b5d658fbd9f0d6eea113aea286b21d3cd4d3fd978157cbf2447a6035916506d3"}, + {file = "pillow-11.1.0-cp313-cp313-win32.whl", hash = "sha256:f86d3a7a9af5d826744fabf4afd15b9dfef44fe69a98541f666f66fbb8d3fef9"}, + {file = "pillow-11.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:593c5fd6be85da83656b93ffcccc2312d2d149d251e98588b14fbc288fd8909c"}, + {file = "pillow-11.1.0-cp313-cp313-win_arm64.whl", hash = "sha256:11633d58b6ee5733bde153a8dafd25e505ea3d32e261accd388827ee987baf65"}, + {file = "pillow-11.1.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:70ca5ef3b3b1c4a0812b5c63c57c23b63e53bc38e758b37a951e5bc466449861"}, + {file = "pillow-11.1.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:8000376f139d4d38d6851eb149b321a52bb8893a88dae8ee7d95840431977081"}, + {file = "pillow-11.1.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ee85f0696a17dd28fbcfceb59f9510aa71934b483d1f5601d1030c3c8304f3c"}, + {file = "pillow-11.1.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:dd0e081319328928531df7a0e63621caf67652c8464303fd102141b785ef9547"}, + {file = "pillow-11.1.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:e63e4e5081de46517099dc30abe418122f54531a6ae2ebc8680bcd7096860eab"}, + {file = "pillow-11.1.0-cp313-cp313t-win32.whl", hash = "sha256:dda60aa465b861324e65a78c9f5cf0f4bc713e4309f83bc387be158b077963d9"}, + {file = "pillow-11.1.0-cp313-cp313t-win_amd64.whl", hash = "sha256:ad5db5781c774ab9a9b2c4302bbf0c1014960a0a7be63278d13ae6fdf88126fe"}, + {file = "pillow-11.1.0-cp313-cp313t-win_arm64.whl", hash = "sha256:67cd427c68926108778a9005f2a04adbd5e67c442ed21d95389fe1d595458756"}, + {file = "pillow-11.1.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:bf902d7413c82a1bfa08b06a070876132a5ae6b2388e2712aab3a7cbc02205c6"}, + {file = "pillow-11.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c1eec9d950b6fe688edee07138993e54ee4ae634c51443cfb7c1e7613322718e"}, + {file = "pillow-11.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e275ee4cb11c262bd108ab2081f750db2a1c0b8c12c1897f27b160c8bd57bbc"}, + {file = "pillow-11.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4db853948ce4e718f2fc775b75c37ba2efb6aaea41a1a5fc57f0af59eee774b2"}, + {file = "pillow-11.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:ab8a209b8485d3db694fa97a896d96dd6533d63c22829043fd9de627060beade"}, + {file = "pillow-11.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:54251ef02a2309b5eec99d151ebf5c9904b77976c8abdcbce7891ed22df53884"}, + {file = "pillow-11.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5bb94705aea800051a743aa4874bb1397d4695fb0583ba5e425ee0328757f196"}, + {file = "pillow-11.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:89dbdb3e6e9594d512780a5a1c42801879628b38e3efc7038094430844e271d8"}, + {file = "pillow-11.1.0-cp39-cp39-win32.whl", hash = "sha256:e5449ca63da169a2e6068dd0e2fcc8d91f9558aba89ff6d02121ca8ab11e79e5"}, + {file = "pillow-11.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:3362c6ca227e65c54bf71a5f88b3d4565ff1bcbc63ae72c34b07bbb1cc59a43f"}, + {file = "pillow-11.1.0-cp39-cp39-win_arm64.whl", hash = "sha256:b20be51b37a75cc54c2c55def3fa2c65bb94ba859dde241cd0a4fd302de5ae0a"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:8c730dc3a83e5ac137fbc92dfcfe1511ce3b2b5d7578315b63dbbb76f7f51d90"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:7d33d2fae0e8b170b6a6c57400e077412240f6f5bb2a342cf1ee512a787942bb"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a8d65b38173085f24bc07f8b6c505cbb7418009fa1a1fcb111b1f4961814a442"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:015c6e863faa4779251436db398ae75051469f7c903b043a48f078e437656f83"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:d44ff19eea13ae4acdaaab0179fa68c0c6f2f45d66a4d8ec1eda7d6cecbcc15f"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:d3d8da4a631471dfaf94c10c85f5277b1f8e42ac42bade1ac67da4b4a7359b73"}, + {file = "pillow-11.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:4637b88343166249fe8aa94e7c4a62a180c4b3898283bb5d3d2fd5fe10d8e4e0"}, + {file = "pillow-11.1.0.tar.gz", hash = "sha256:368da70808b36d73b4b390a8ffac11069f8a5c85f29eff1f1b01bcf3ef5b2a20"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=8.1)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage (>=7.4.2)", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout", "trove-classifiers (>=2024.10.12)"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] + +[[package]] +name = "platformdirs" +version = "4.3.6" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb"}, + {file = "platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907"}, +] + +[package.extras] +docs = ["furo (>=2024.8.6)", "proselint (>=0.14)", "sphinx (>=8.0.2)", "sphinx-autodoc-typehints (>=2.4)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=8.3.2)", "pytest-cov (>=5)", "pytest-mock (>=3.14)"] +type = ["mypy (>=1.11.2)"] + +[[package]] +name = "prometheus-client" +version = "0.21.1" +description = "Python client for the Prometheus monitoring system." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "prometheus_client-0.21.1-py3-none-any.whl", hash = "sha256:594b45c410d6f4f8888940fe80b5cc2521b305a1fafe1c58609ef715a001f301"}, + {file = "prometheus_client-0.21.1.tar.gz", hash = "sha256:252505a722ac04b0456be05c05f75f45d760c2911ffc45f2a06bcaed9f3ae3fb"}, +] + +[package.extras] +twisted = ["twisted"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.48" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e"}, + {file = "prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "psutil" +version = "6.1.1" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "psutil-6.1.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:9ccc4316f24409159897799b83004cb1e24f9819b0dcf9c0b68bdcb6cefee6a8"}, + {file = "psutil-6.1.1-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ca9609c77ea3b8481ab005da74ed894035936223422dc591d6772b147421f777"}, + {file = "psutil-6.1.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:8df0178ba8a9e5bc84fed9cfa61d54601b371fbec5c8eebad27575f1e105c0d4"}, + {file = "psutil-6.1.1-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:1924e659d6c19c647e763e78670a05dbb7feaf44a0e9c94bf9e14dfc6ba50468"}, + {file = "psutil-6.1.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:018aeae2af92d943fdf1da6b58665124897cfc94faa2ca92098838f83e1b1bca"}, + {file = "psutil-6.1.1-cp27-none-win32.whl", hash = "sha256:6d4281f5bbca041e2292be3380ec56a9413b790579b8e593b1784499d0005dac"}, + {file = "psutil-6.1.1-cp27-none-win_amd64.whl", hash = "sha256:c777eb75bb33c47377c9af68f30e9f11bc78e0f07fbf907be4a5d70b2fe5f030"}, + {file = "psutil-6.1.1-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:fc0ed7fe2231a444fc219b9c42d0376e0a9a1a72f16c5cfa0f68d19f1a0663e8"}, + {file = "psutil-6.1.1-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:0bdd4eab935276290ad3cb718e9809412895ca6b5b334f5a9111ee6d9aff9377"}, + {file = "psutil-6.1.1-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b6e06c20c05fe95a3d7302d74e7097756d4ba1247975ad6905441ae1b5b66003"}, + {file = "psutil-6.1.1-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:97f7cb9921fbec4904f522d972f0c0e1f4fabbdd4e0287813b21215074a0f160"}, + {file = "psutil-6.1.1-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33431e84fee02bc84ea36d9e2c4a6d395d479c9dd9bba2376c1f6ee8f3a4e0b3"}, + {file = "psutil-6.1.1-cp36-cp36m-win32.whl", hash = "sha256:384636b1a64b47814437d1173be1427a7c83681b17a450bfc309a1953e329603"}, + {file = "psutil-6.1.1-cp36-cp36m-win_amd64.whl", hash = "sha256:8be07491f6ebe1a693f17d4f11e69d0dc1811fa082736500f649f79df7735303"}, + {file = "psutil-6.1.1-cp37-abi3-win32.whl", hash = "sha256:eaa912e0b11848c4d9279a93d7e2783df352b082f40111e078388701fd479e53"}, + {file = "psutil-6.1.1-cp37-abi3-win_amd64.whl", hash = "sha256:f35cfccb065fff93529d2afb4a2e89e363fe63ca1e4a5da22b603a85833c2649"}, + {file = "psutil-6.1.1.tar.gz", hash = "sha256:cf8496728c18f2d0b45198f06895be52f36611711746b7f30c464b422b50e2f5"}, +] + +[package.extras] +dev = ["abi3audit", "black", "check-manifest", "coverage", "packaging", "pylint", "pyperf", "pypinfo", "pytest-cov", "requests", "rstcheck", "ruff", "sphinx", "sphinx_rtd_theme", "toml-sort", "twine", "virtualenv", "vulture", "wheel"] +test = ["pytest", "pytest-xdist", "setuptools"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +groups = ["main"] +markers = "(os_name != \"nt\" or sys_platform != \"win32\" and sys_platform != \"emscripten\") and (python_version <= \"3.11\" or python_version >= \"3.12\")" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0"}, + {file = "pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pygments" +version = "2.19.1" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pygments-2.19.1-py3-none-any.whl", hash = "sha256:9ea1544ad55cecf4b8242fab6dd35a93bbce657034b0611ee383099054ab6d8c"}, + {file = "pygments-2.19.1.tar.gz", hash = "sha256:61c16d2a8576dc0649d9f39e089b5f02bcd27fba10d8fb4dcc28173f7a45151f"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pyparsing" +version = "3.2.1" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pyparsing-3.2.1-py3-none-any.whl", hash = "sha256:506ff4f4386c4cec0590ec19e6302d3aedb992fdc02c761e90416f158dacf8e1"}, + {file = "pyparsing-3.2.1.tar.gz", hash = "sha256:61980854fd66de3a90028d679a954d5f2623e83144b5afe5ee86f43d762e5f0a"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "python-json-logger" +version = "3.2.1" +description = "JSON Log Formatter for the Python Logging Package" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "python_json_logger-3.2.1-py3-none-any.whl", hash = "sha256:cdc17047eb5374bd311e748b42f99d71223f3b0e186f4206cc5d52aefe85b090"}, + {file = "python_json_logger-3.2.1.tar.gz", hash = "sha256:8eb0554ea17cb75b05d2848bc14fb02fbdbd9d6972120781b974380bfa162008"}, +] + +[package.extras] +dev = ["backports.zoneinfo", "black", "build", "freezegun", "mdx_truly_sane_lists", "mike", "mkdocs", "mkdocs-awesome-pages-plugin", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-material (>=8.5)", "mkdocstrings[python]", "msgspec", "msgspec-python313-pre", "mypy", "orjson", "pylint", "pytest", "tzdata", "validate-pyproject[all]"] + +[[package]] +name = "pytz" +version = "2024.2" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725"}, + {file = "pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a"}, +] + +[[package]] +name = "pywin32" +version = "308" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +groups = ["main"] +markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\" and (python_version <= \"3.11\" or python_version >= \"3.12\")" +files = [ + {file = "pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e"}, + {file = "pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e"}, + {file = "pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c"}, + {file = "pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a"}, + {file = "pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b"}, + {file = "pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6"}, + {file = "pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897"}, + {file = "pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47"}, + {file = "pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091"}, + {file = "pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed"}, + {file = "pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4"}, + {file = "pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd"}, + {file = "pywin32-308-cp37-cp37m-win32.whl", hash = "sha256:1f696ab352a2ddd63bd07430080dd598e6369152ea13a25ebcdd2f503a38f1ff"}, + {file = "pywin32-308-cp37-cp37m-win_amd64.whl", hash = "sha256:13dcb914ed4347019fbec6697a01a0aec61019c1046c2b905410d197856326a6"}, + {file = "pywin32-308-cp38-cp38-win32.whl", hash = "sha256:5794e764ebcabf4ff08c555b31bd348c9025929371763b2183172ff4708152f0"}, + {file = "pywin32-308-cp38-cp38-win_amd64.whl", hash = "sha256:3b92622e29d651c6b783e368ba7d6722b1634b8e70bd376fd7610fe1992e19de"}, + {file = "pywin32-308-cp39-cp39-win32.whl", hash = "sha256:7873ca4dc60ab3287919881a7d4f88baee4a6e639aa6962de25a98ba6b193341"}, + {file = "pywin32-308-cp39-cp39-win_amd64.whl", hash = "sha256:71b3322d949b4cc20776436a9c9ba0eeedcbc9c650daa536df63f0ff111bb920"}, +] + +[[package]] +name = "pywinpty" +version = "2.0.14" +description = "Pseudo terminal support for Windows from Python." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "(python_version <= \"3.11\" or python_version >= \"3.12\") and os_name == \"nt\"" +files = [ + {file = "pywinpty-2.0.14-cp310-none-win_amd64.whl", hash = "sha256:0b149c2918c7974f575ba79f5a4aad58bd859a52fa9eb1296cc22aa412aa411f"}, + {file = "pywinpty-2.0.14-cp311-none-win_amd64.whl", hash = "sha256:cf2a43ac7065b3e0dc8510f8c1f13a75fb8fde805efa3b8cff7599a1ef497bc7"}, + {file = "pywinpty-2.0.14-cp312-none-win_amd64.whl", hash = "sha256:55dad362ef3e9408ade68fd173e4f9032b3ce08f68cfe7eacb2c263ea1179737"}, + {file = "pywinpty-2.0.14-cp313-none-win_amd64.whl", hash = "sha256:074fb988a56ec79ca90ed03a896d40707131897cefb8f76f926e3834227f2819"}, + {file = "pywinpty-2.0.14-cp39-none-win_amd64.whl", hash = "sha256:5725fd56f73c0531ec218663bd8c8ff5acc43c78962fab28564871b5fce053fd"}, + {file = "pywinpty-2.0.14.tar.gz", hash = "sha256:18bd9529e4a5daf2d9719aa17788ba6013e594ae94c5a0c27e83df3278b0660e"}, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +description = "YAML parser and emitter for Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086"}, + {file = "PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b"}, + {file = "PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180"}, + {file = "PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68"}, + {file = "PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99"}, + {file = "PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774"}, + {file = "PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317"}, + {file = "PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4"}, + {file = "PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e"}, + {file = "PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5"}, + {file = "PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab"}, + {file = "PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425"}, + {file = "PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48"}, + {file = "PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b"}, + {file = "PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4"}, + {file = "PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba"}, + {file = "PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484"}, + {file = "PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc"}, + {file = "PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652"}, + {file = "PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183"}, + {file = "PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563"}, + {file = "PyYAML-6.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:24471b829b3bf607e04e88d79542a9d48bb037c2267d7927a874e6c205ca7e9a"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7fded462629cfa4b685c5416b949ebad6cec74af5e2d42905d41e257e0869f5"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d84a1718ee396f54f3a086ea0a66d8e552b2ab2017ef8b420e92edbc841c352d"}, + {file = "PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9056c1ecd25795207ad294bcf39f2db3d845767be0ea6e6a34d856f006006083"}, + {file = "PyYAML-6.0.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:82d09873e40955485746739bcb8b4586983670466c23382c19cffecbf1fd8706"}, + {file = "PyYAML-6.0.2-cp38-cp38-win32.whl", hash = "sha256:43fa96a3ca0d6b1812e01ced1044a003533c47f6ee8aca31724f78e93ccc089a"}, + {file = "PyYAML-6.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:01179a4a8559ab5de078078f37e5c1a30d76bb88519906844fd7bdea1b7729ff"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:688ba32a1cffef67fd2e9398a2efebaea461578b0923624778664cc1c914db5d"}, + {file = "PyYAML-6.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a8786accb172bd8afb8be14490a16625cbc387036876ab6ba70912730faf8e1f"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8e03406cac8513435335dbab54c0d385e4a49e4945d2909a581c83647ca0290"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f753120cb8181e736c57ef7636e83f31b9c0d1722c516f7e86cf15b7aa57ff12"}, + {file = "PyYAML-6.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b1fdb9dc17f5a7677423d508ab4f243a726dea51fa5e70992e59a7411c89d19"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0b69e4ce7a131fe56b7e4d770c67429700908fc0752af059838b1cfb41960e4e"}, + {file = "PyYAML-6.0.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a9f8c2e67970f13b16084e04f134610fd1d374bf477b17ec1599185cf611d725"}, + {file = "PyYAML-6.0.2-cp39-cp39-win32.whl", hash = "sha256:6395c297d42274772abc367baaa79683958044e5d3835486c16da75d2a694631"}, + {file = "PyYAML-6.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:39693e1f8320ae4f43943590b49779ffb98acb81f788220ea932a6b6c51004d8"}, + {file = "pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e"}, +] + +[[package]] +name = "pyzmq" +version = "26.2.0" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629"}, + {file = "pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a"}, + {file = "pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282"}, + {file = "pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea"}, + {file = "pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971"}, + {file = "pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218"}, + {file = "pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf"}, + {file = "pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3"}, + {file = "pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6"}, + {file = "pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5"}, + {file = "pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9"}, + {file = "pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae"}, + {file = "pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3"}, + {file = "pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b"}, + {file = "pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a"}, + {file = "pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726"}, + {file = "pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187"}, + {file = "pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115"}, + {file = "pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e"}, + {file = "pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad"}, + {file = "pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a"}, + {file = "pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797"}, + {file = "pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6"}, + {file = "pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0"}, + {file = "pyzmq-26.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3b55a4229ce5da9497dd0452b914556ae58e96a4381bb6f59f1305dfd7e53fc8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9cb3a6460cdea8fe8194a76de8895707e61ded10ad0be97188cc8463ffa7e3a8"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8ab5cad923cc95c87bffee098a27856c859bd5d0af31bd346035aa816b081fe1"}, + {file = "pyzmq-26.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9ed69074a610fad1c2fda66180e7b2edd4d31c53f2d1872bc2d1211563904cd9"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:cccba051221b916a4f5e538997c45d7d136a5646442b1231b916d0164067ea27"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0eaa83fc4c1e271c24eaf8fb083cbccef8fde77ec8cd45f3c35a9a123e6da097"}, + {file = "pyzmq-26.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9edda2df81daa129b25a39b86cb57dfdfe16f7ec15b42b19bfac503360d27a93"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win32.whl", hash = "sha256:ea0eb6af8a17fa272f7b98d7bebfab7836a0d62738e16ba380f440fceca2d951"}, + {file = "pyzmq-26.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:4ff9dc6bc1664bb9eec25cd17506ef6672d506115095411e237d571e92a58231"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2eb7735ee73ca1b0d71e0e67c3739c689067f055c764f73aac4cc8ecf958ee3f"}, + {file = "pyzmq-26.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1a534f43bc738181aa7cbbaf48e3eca62c76453a40a746ab95d4b27b1111a7d2"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:aedd5dd8692635813368e558a05266b995d3d020b23e49581ddd5bbe197a8ab6"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:8be4700cd8bb02cc454f630dcdf7cfa99de96788b80c51b60fe2fe1dac480289"}, + {file = "pyzmq-26.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fcc03fa4997c447dce58264e93b5aa2d57714fbe0f06c07b7785ae131512732"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:402b190912935d3db15b03e8f7485812db350d271b284ded2b80d2e5704be780"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8685fa9c25ff00f550c1fec650430c4b71e4e48e8d852f7ddcf2e48308038640"}, + {file = "pyzmq-26.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:76589c020680778f06b7e0b193f4b6dd66d470234a16e1df90329f5e14a171cd"}, + {file = "pyzmq-26.2.0-cp38-cp38-win32.whl", hash = "sha256:8423c1877d72c041f2c263b1ec6e34360448decfb323fa8b94e85883043ef988"}, + {file = "pyzmq-26.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:76589f2cd6b77b5bdea4fca5992dc1c23389d68b18ccc26a53680ba2dc80ff2f"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:b1d464cb8d72bfc1a3adc53305a63a8e0cac6bc8c5a07e8ca190ab8d3faa43c2"}, + {file = "pyzmq-26.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4da04c48873a6abdd71811c5e163bd656ee1b957971db7f35140a2d573f6949c"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d049df610ac811dcffdc147153b414147428567fbbc8be43bb8885f04db39d98"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:05590cdbc6b902101d0e65d6a4780af14dc22914cc6ab995d99b85af45362cc9"}, + {file = "pyzmq-26.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c811cfcd6a9bf680236c40c6f617187515269ab2912f3d7e8c0174898e2519db"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6835dd60355593de10350394242b5757fbbd88b25287314316f266e24c61d073"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc6bee759a6bddea5db78d7dcd609397449cb2d2d6587f48f3ca613b19410cfc"}, + {file = "pyzmq-26.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c530e1eecd036ecc83c3407f77bb86feb79916d4a33d11394b8234f3bd35b940"}, + {file = "pyzmq-26.2.0-cp39-cp39-win32.whl", hash = "sha256:367b4f689786fca726ef7a6c5ba606958b145b9340a5e4808132cc65759abd44"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:e6fa2e3e683f34aea77de8112f6483803c96a44fd726d7358b9888ae5bb394ec"}, + {file = "pyzmq-26.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:7445be39143a8aa4faec43b076e06944b8f9d0701b669df4af200531b21e40bb"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca"}, + {file = "pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2ea4ad4e6a12e454de05f2949d4beddb52460f3de7c8b9d5c46fbb7d7222e02c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fc4f7a173a5609631bb0c42c23d12c49df3966f89f496a51d3eb0ec81f4519d6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:878206a45202247781472a2d99df12a176fef806ca175799e1c6ad263510d57c"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:17c412bad2eb9468e876f556eb4ee910e62d721d2c7a53c7fa31e643d35352e6"}, + {file = "pyzmq-26.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:0d987a3ae5a71c6226b203cfd298720e0086c7fe7c74f35fa8edddfbd6597eed"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:39887ac397ff35b7b775db7201095fc6310a35fdbae85bac4523f7eb3b840e20"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:fdb5b3e311d4d4b0eb8b3e8b4d1b0a512713ad7e6a68791d0923d1aec433d919"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:226af7dcb51fdb0109f0016449b357e182ea0ceb6b47dfb5999d569e5db161d5"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bed0e799e6120b9c32756203fb9dfe8ca2fb8467fed830c34c877e25638c3fc"}, + {file = "pyzmq-26.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:29c7947c594e105cb9e6c466bace8532dc1ca02d498684128b339799f5248277"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:cdeabcff45d1c219636ee2e54d852262e5c2e085d6cb476d938aee8d921356b3"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35cffef589bcdc587d06f9149f8d5e9e8859920a071df5a2671de2213bef592a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18c8dc3b7468d8b4bdf60ce9d7141897da103c7a4690157b32b60acb45e333e6"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7133d0a1677aec369d67dd78520d3fa96dd7f3dcec99d66c1762870e5ea1a50a"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:6a96179a24b14fa6428cbfc08641c779a53f8fcec43644030328f44034c7f1f4"}, + {file = "pyzmq-26.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4f78c88905461a9203eac9faac157a2a0dbba84a0fd09fd29315db27be40af9f"}, + {file = "pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "referencing" +version = "0.35.1" +description = "JSON Referencing + Python" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"}, + {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"}, +] + +[package.dependencies] +attrs = ">=22.2.0" +rpds-py = ">=0.7.0" + +[[package]] +name = "requests" +version = "2.32.3" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "rfc3339-validator" +version = "0.1.4" +description = "A pure python RFC3339 validator" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"}, + {file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"}, +] + +[package.dependencies] +six = "*" + +[[package]] +name = "rfc3986-validator" +version = "0.1.1" +description = "Pure python rfc3986 validator" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"}, + {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"}, +] + +[[package]] +name = "rpds-py" +version = "0.22.3" +description = "Python bindings to Rust's persistent data structures (rpds)" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "rpds_py-0.22.3-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:6c7b99ca52c2c1752b544e310101b98a659b720b21db00e65edca34483259967"}, + {file = "rpds_py-0.22.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be2eb3f2495ba669d2a985f9b426c1797b7d48d6963899276d22f23e33d47e37"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70eb60b3ae9245ddea20f8a4190bd79c705a22f8028aaf8bbdebe4716c3fab24"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4041711832360a9b75cfb11b25a6a97c8fb49c07b8bd43d0d02b45d0b499a4ff"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:64607d4cbf1b7e3c3c8a14948b99345eda0e161b852e122c6bb71aab6d1d798c"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e69b0a0e2537f26d73b4e43ad7bc8c8efb39621639b4434b76a3de50c6966e"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc27863442d388870c1809a87507727b799c8460573cfbb6dc0eeaef5a11b5ec"}, + {file = "rpds_py-0.22.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e79dd39f1e8c3504be0607e5fc6e86bb60fe3584bec8b782578c3b0fde8d932c"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e0fa2d4ec53dc51cf7d3bb22e0aa0143966119f42a0c3e4998293a3dd2856b09"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fda7cb070f442bf80b642cd56483b5548e43d366fe3f39b98e67cce780cded00"}, + {file = "rpds_py-0.22.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:cff63a0272fcd259dcc3be1657b07c929c466b067ceb1c20060e8d10af56f5bf"}, + {file = "rpds_py-0.22.3-cp310-cp310-win32.whl", hash = "sha256:9bd7228827ec7bb817089e2eb301d907c0d9827a9e558f22f762bb690b131652"}, + {file = "rpds_py-0.22.3-cp310-cp310-win_amd64.whl", hash = "sha256:9beeb01d8c190d7581a4d59522cd3d4b6887040dcfc744af99aa59fef3e041a8"}, + {file = "rpds_py-0.22.3-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d20cfb4e099748ea39e6f7b16c91ab057989712d31761d3300d43134e26e165f"}, + {file = "rpds_py-0.22.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:68049202f67380ff9aa52f12e92b1c30115f32e6895cd7198fa2a7961621fc5a"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb4f868f712b2dd4bcc538b0a0c1f63a2b1d584c925e69a224d759e7070a12d5"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:bc51abd01f08117283c5ebf64844a35144a0843ff7b2983e0648e4d3d9f10dbb"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0f3cec041684de9a4684b1572fe28c7267410e02450f4561700ca5a3bc6695a2"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7ef9d9da710be50ff6809fed8f1963fecdfecc8b86656cadfca3bc24289414b0"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59f4a79c19232a5774aee369a0c296712ad0e77f24e62cad53160312b1c1eaa1"}, + {file = "rpds_py-0.22.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1a60bce91f81ddaac922a40bbb571a12c1070cb20ebd6d49c48e0b101d87300d"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:e89391e6d60251560f0a8f4bd32137b077a80d9b7dbe6d5cab1cd80d2746f648"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e3fb866d9932a3d7d0c82da76d816996d1667c44891bd861a0f97ba27e84fc74"}, + {file = "rpds_py-0.22.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1352ae4f7c717ae8cba93421a63373e582d19d55d2ee2cbb184344c82d2ae55a"}, + {file = "rpds_py-0.22.3-cp311-cp311-win32.whl", hash = "sha256:b0b4136a252cadfa1adb705bb81524eee47d9f6aab4f2ee4fa1e9d3cd4581f64"}, + {file = "rpds_py-0.22.3-cp311-cp311-win_amd64.whl", hash = "sha256:8bd7c8cfc0b8247c8799080fbff54e0b9619e17cdfeb0478ba7295d43f635d7c"}, + {file = "rpds_py-0.22.3-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:27e98004595899949bd7a7b34e91fa7c44d7a97c40fcaf1d874168bb652ec67e"}, + {file = "rpds_py-0.22.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1978d0021e943aae58b9b0b196fb4895a25cc53d3956b8e35e0b7682eefb6d56"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:655ca44a831ecb238d124e0402d98f6212ac527a0ba6c55ca26f616604e60a45"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:feea821ee2a9273771bae61194004ee2fc33f8ec7db08117ef9147d4bbcbca8e"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:22bebe05a9ffc70ebfa127efbc429bc26ec9e9b4ee4d15a740033efda515cf3d"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3af6e48651c4e0d2d166dc1b033b7042ea3f871504b6805ba5f4fe31581d8d38"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e67ba3c290821343c192f7eae1d8fd5999ca2dc99994114643e2f2d3e6138b15"}, + {file = "rpds_py-0.22.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:02fbb9c288ae08bcb34fb41d516d5eeb0455ac35b5512d03181d755d80810059"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f56a6b404f74ab372da986d240e2e002769a7d7102cc73eb238a4f72eec5284e"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0a0461200769ab3b9ab7e513f6013b7a97fdeee41c29b9db343f3c5a8e2b9e61"}, + {file = "rpds_py-0.22.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:8633e471c6207a039eff6aa116e35f69f3156b3989ea3e2d755f7bc41754a4a7"}, + {file = "rpds_py-0.22.3-cp312-cp312-win32.whl", hash = "sha256:593eba61ba0c3baae5bc9be2f5232430453fb4432048de28399ca7376de9c627"}, + {file = "rpds_py-0.22.3-cp312-cp312-win_amd64.whl", hash = "sha256:d115bffdd417c6d806ea9069237a4ae02f513b778e3789a359bc5856e0404cc4"}, + {file = "rpds_py-0.22.3-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:ea7433ce7e4bfc3a85654aeb6747babe3f66eaf9a1d0c1e7a4435bbdf27fea84"}, + {file = "rpds_py-0.22.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6dd9412824c4ce1aca56c47b0991e65bebb7ac3f4edccfd3f156150c96a7bf25"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20070c65396f7373f5df4005862fa162db5d25d56150bddd0b3e8214e8ef45b4"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0b09865a9abc0ddff4e50b5ef65467cd94176bf1e0004184eb915cbc10fc05c5"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3453e8d41fe5f17d1f8e9c383a7473cd46a63661628ec58e07777c2fff7196dc"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f5d36399a1b96e1a5fdc91e0522544580dbebeb1f77f27b2b0ab25559e103b8b"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:009de23c9c9ee54bf11303a966edf4d9087cd43a6003672e6aa7def643d06518"}, + {file = "rpds_py-0.22.3-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1aef18820ef3e4587ebe8b3bc9ba6e55892a6d7b93bac6d29d9f631a3b4befbd"}, + {file = "rpds_py-0.22.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f60bd8423be1d9d833f230fdbccf8f57af322d96bcad6599e5a771b151398eb2"}, + {file = "rpds_py-0.22.3-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:62d9cfcf4948683a18a9aff0ab7e1474d407b7bab2ca03116109f8464698ab16"}, + {file = "rpds_py-0.22.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9253fc214112405f0afa7db88739294295f0e08466987f1d70e29930262b4c8f"}, + {file = "rpds_py-0.22.3-cp313-cp313-win32.whl", hash = "sha256:fb0ba113b4983beac1a2eb16faffd76cb41e176bf58c4afe3e14b9c681f702de"}, + {file = "rpds_py-0.22.3-cp313-cp313-win_amd64.whl", hash = "sha256:c58e2339def52ef6b71b8f36d13c3688ea23fa093353f3a4fee2556e62086ec9"}, + {file = "rpds_py-0.22.3-cp313-cp313t-macosx_10_12_x86_64.whl", hash = "sha256:f82a116a1d03628a8ace4859556fb39fd1424c933341a08ea3ed6de1edb0283b"}, + {file = "rpds_py-0.22.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3dfcbc95bd7992b16f3f7ba05af8a64ca694331bd24f9157b49dadeeb287493b"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59259dc58e57b10e7e18ce02c311804c10c5a793e6568f8af4dead03264584d1"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5725dd9cc02068996d4438d397e255dcb1df776b7ceea3b9cb972bdb11260a83"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99b37292234e61325e7a5bb9689e55e48c3f5f603af88b1642666277a81f1fbd"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:27b1d3b3915a99208fee9ab092b8184c420f2905b7d7feb4aeb5e4a9c509b8a1"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f612463ac081803f243ff13cccc648578e2279295048f2a8d5eb430af2bae6e3"}, + {file = "rpds_py-0.22.3-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f73d3fef726b3243a811121de45193c0ca75f6407fe66f3f4e183c983573e130"}, + {file = "rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:3f21f0495edea7fdbaaa87e633a8689cd285f8f4af5c869f27bc8074638ad69c"}, + {file = "rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:1e9663daaf7a63ceccbbb8e3808fe90415b0757e2abddbfc2e06c857bf8c5e2b"}, + {file = "rpds_py-0.22.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:a76e42402542b1fae59798fab64432b2d015ab9d0c8c47ba7addddbaf7952333"}, + {file = "rpds_py-0.22.3-cp313-cp313t-win32.whl", hash = "sha256:69803198097467ee7282750acb507fba35ca22cc3b85f16cf45fb01cb9097730"}, + {file = "rpds_py-0.22.3-cp313-cp313t-win_amd64.whl", hash = "sha256:f5cf2a0c2bdadf3791b5c205d55a37a54025c6e18a71c71f82bb536cf9a454bf"}, + {file = "rpds_py-0.22.3-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:378753b4a4de2a7b34063d6f95ae81bfa7b15f2c1a04a9518e8644e81807ebea"}, + {file = "rpds_py-0.22.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:3445e07bf2e8ecfeef6ef67ac83de670358abf2996916039b16a218e3d95e97e"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7b2513ba235829860b13faa931f3b6846548021846ac808455301c23a101689d"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eaf16ae9ae519a0e237a0f528fd9f0197b9bb70f40263ee57ae53c2b8d48aeb3"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:583f6a1993ca3369e0f80ba99d796d8e6b1a3a2a442dd4e1a79e652116413091"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4617e1915a539a0d9a9567795023de41a87106522ff83fbfaf1f6baf8e85437e"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c150c7a61ed4a4f4955a96626574e9baf1adf772c2fb61ef6a5027e52803543"}, + {file = "rpds_py-0.22.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2fa4331c200c2521512595253f5bb70858b90f750d39b8cbfd67465f8d1b596d"}, + {file = "rpds_py-0.22.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:214b7a953d73b5e87f0ebece4a32a5bd83c60a3ecc9d4ec8f1dca968a2d91e99"}, + {file = "rpds_py-0.22.3-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:f47ad3d5f3258bd7058d2d506852217865afefe6153a36eb4b6928758041d831"}, + {file = "rpds_py-0.22.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:f276b245347e6e36526cbd4a266a417796fc531ddf391e43574cf6466c492520"}, + {file = "rpds_py-0.22.3-cp39-cp39-win32.whl", hash = "sha256:bbb232860e3d03d544bc03ac57855cd82ddf19c7a07651a7c0fdb95e9efea8b9"}, + {file = "rpds_py-0.22.3-cp39-cp39-win_amd64.whl", hash = "sha256:cfbc454a2880389dbb9b5b398e50d439e2e58669160f27b60e5eca11f68ae17c"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:d48424e39c2611ee1b84ad0f44fb3b2b53d473e65de061e3f460fc0be5f1939d"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:24e8abb5878e250f2eb0d7859a8e561846f98910326d06c0d51381fed59357bd"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b232061ca880db21fa14defe219840ad9b74b6158adb52ddf0e87bead9e8493"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ac0a03221cdb5058ce0167ecc92a8c89e8d0decdc9e99a2ec23380793c4dcb96"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eb0c341fa71df5a4595f9501df4ac5abfb5a09580081dffbd1ddd4654e6e9123"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf9db5488121b596dbfc6718c76092fda77b703c1f7533a226a5a9f65248f8ad"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b8db6b5b2d4491ad5b6bdc2bc7c017eec108acbf4e6785f42a9eb0ba234f4c9"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b3d504047aba448d70cf6fa22e06cb09f7cbd761939fdd47604f5e007675c24e"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:e61b02c3f7a1e0b75e20c3978f7135fd13cb6cf551bf4a6d29b999a88830a338"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:e35ba67d65d49080e8e5a1dd40101fccdd9798adb9b050ff670b7d74fa41c566"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:26fd7cac7dd51011a245f29a2cc6489c4608b5a8ce8d75661bb4a1066c52dfbe"}, + {file = "rpds_py-0.22.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:177c7c0fce2855833819c98e43c262007f42ce86651ffbb84f37883308cb0e7d"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:bb47271f60660803ad11f4c61b42242b8c1312a31c98c578f79ef9387bbde21c"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:70fb28128acbfd264eda9bf47015537ba3fe86e40d046eb2963d75024be4d055"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:44d61b4b7d0c2c9ac019c314e52d7cbda0ae31078aabd0f22e583af3e0d79723"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f0e260eaf54380380ac3808aa4ebe2d8ca28b9087cf411649f96bad6900c728"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b25bc607423935079e05619d7de556c91fb6adeae9d5f80868dde3468657994b"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fb6116dfb8d1925cbdb52595560584db42a7f664617a1f7d7f6e32f138cdf37d"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a63cbdd98acef6570c62b92a1e43266f9e8b21e699c363c0fef13bd530799c11"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2b8f60e1b739a74bab7e01fcbe3dddd4657ec685caa04681df9d562ef15b625f"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:2e8b55d8517a2fda8d95cb45d62a5a8bbf9dd0ad39c5b25c8833efea07b880ca"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:2de29005e11637e7a2361fa151f780ff8eb2543a0da1413bb951e9f14b699ef3"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:666ecce376999bf619756a24ce15bb14c5bfaf04bf00abc7e663ce17c3f34fe7"}, + {file = "rpds_py-0.22.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:5246b14ca64a8675e0a7161f7af68fe3e910e6b90542b4bfb5439ba752191df6"}, + {file = "rpds_py-0.22.3.tar.gz", hash = "sha256:e32fee8ab45d3c2db6da19a5323bc3362237c8b653c70194414b892fd06a080d"}, +] + +[[package]] +name = "seaborn" +version = "0.13.2" +description = "Statistical data visualization" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987"}, + {file = "seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7"}, +] + +[package.dependencies] +matplotlib = ">=3.4,<3.6.1 || >3.6.1" +numpy = ">=1.20,<1.24.0 || >1.24.0" +pandas = ">=1.2" + +[package.extras] +dev = ["flake8", "flit", "mypy", "pandas-stubs", "pre-commit", "pytest", "pytest-cov", "pytest-xdist"] +docs = ["ipykernel", "nbconvert", "numpydoc", "pydata_sphinx_theme (==0.10.0rc2)", "pyyaml", "sphinx (<6.0.0)", "sphinx-copybutton", "sphinx-design", "sphinx-issues"] +stats = ["scipy (>=1.7)", "statsmodels (>=0.12)"] + +[[package]] +name = "send2trash" +version = "1.8.3" +description = "Send file to trash natively under Mac OS X, Windows and Linux" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9"}, + {file = "Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf"}, +] + +[package.extras] +nativelib = ["pyobjc-framework-Cocoa", "pywin32"] +objc = ["pyobjc-framework-Cocoa"] +win32 = ["pywin32"] + +[[package]] +name = "setuptools" +version = "75.8.0" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "setuptools-75.8.0-py3-none-any.whl", hash = "sha256:e3982f444617239225d675215d51f6ba05f845d4eec313da4418fdbb56fb27e3"}, + {file = "setuptools-75.8.0.tar.gz", hash = "sha256:c5afc8f407c626b8313a86e10311dd3f661c6cd9c09d4bf8c15c0e11f9f2b0e6"}, +] + +[package.extras] +check = ["pytest-checkdocs (>=2.4)", "pytest-ruff (>=0.2.1)", "ruff (>=0.8.0)"] +core = ["importlib_metadata (>=6)", "jaraco.collections", "jaraco.functools (>=4)", "jaraco.text (>=3.7)", "more_itertools", "more_itertools (>=8.8)", "packaging", "packaging (>=24.2)", "platformdirs (>=4.2.2)", "tomli (>=2.0.1)", "wheel (>=0.43.0)"] +cover = ["pytest-cov"] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier", "towncrier (<24.7)"] +enabler = ["pytest-enabler (>=2.2)"] +test = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.7.2)", "jaraco.test (>=5.5)", "packaging (>=24.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.*)", "pytest-home (>=0.5)", "pytest-perf", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel (>=0.44.0)"] +type = ["importlib_metadata (>=7.0.2)", "jaraco.develop (>=7.21)", "mypy (==1.14.*)", "pytest-mypy"] + +[[package]] +name = "six" +version = "1.17.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274"}, + {file = "six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"}, +] + +[[package]] +name = "sniffio" +version = "1.3.1" +description = "Sniff out which async library your code is running under" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, + {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, +] + +[[package]] +name = "soupsieve" +version = "2.6" +description = "A modern CSS selector implementation for Beautiful Soup." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9"}, + {file = "soupsieve-2.6.tar.gz", hash = "sha256:e2e68417777af359ec65daac1057404a3c8a5455bb8abc36f1a9866ab1a51abb"}, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "terminado" +version = "0.18.1" +description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0"}, + {file = "terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e"}, +] + +[package.dependencies] +ptyprocess = {version = "*", markers = "os_name != \"nt\""} +pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} +tornado = ">=6.1.0" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] +typing = ["mypy (>=1.6,<2.0)", "traitlets (>=5.11.1)"] + +[[package]] +name = "tinycss2" +version = "1.4.0" +description = "A tiny CSS parser" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "tinycss2-1.4.0-py3-none-any.whl", hash = "sha256:3a49cf47b7675da0b15d0c6e1df8df4ebd96e9394bb905a5775adb0d884c5289"}, + {file = "tinycss2-1.4.0.tar.gz", hash = "sha256:10c0972f6fc0fbee87c3edb76549357415e94548c1ae10ebccdea16fb404a9b7"}, +] + +[package.dependencies] +webencodings = ">=0.4" + +[package.extras] +doc = ["sphinx", "sphinx_rtd_theme"] +test = ["pytest", "ruff"] + +[[package]] +name = "tomli" +version = "2.2.1" +description = "A lil' TOML parser" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version < \"3.11\"" +files = [ + {file = "tomli-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:678e4fa69e4575eb77d103de3df8a895e1591b48e740211bd1067378c69e8249"}, + {file = "tomli-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:023aa114dd824ade0100497eb2318602af309e5a55595f76b626d6d9f3b7b0a6"}, + {file = "tomli-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece47d672db52ac607a3d9599a9d48dcb2f2f735c6c2d1f34130085bb12b112a"}, + {file = "tomli-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6972ca9c9cc9f0acaa56a8ca1ff51e7af152a9f87fb64623e31d5c83700080ee"}, + {file = "tomli-2.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c954d2250168d28797dd4e3ac5cf812a406cd5a92674ee4c8f123c889786aa8e"}, + {file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8dd28b3e155b80f4d54beb40a441d366adcfe740969820caf156c019fb5c7ec4"}, + {file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e59e304978767a54663af13c07b3d1af22ddee3bb2fb0618ca1593e4f593a106"}, + {file = "tomli-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:33580bccab0338d00994d7f16f4c4ec25b776af3ffaac1ed74e0b3fc95e885a8"}, + {file = "tomli-2.2.1-cp311-cp311-win32.whl", hash = "sha256:465af0e0875402f1d226519c9904f37254b3045fc5084697cefb9bdde1ff99ff"}, + {file = "tomli-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2d0f2fdd22b02c6d81637a3c95f8cd77f995846af7414c5c4b8d0545afa1bc4b"}, + {file = "tomli-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4a8f6e44de52d5e6c657c9fe83b562f5f4256d8ebbfe4ff922c495620a7f6cea"}, + {file = "tomli-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8d57ca8095a641b8237d5b079147646153d22552f1c637fd3ba7f4b0b29167a8"}, + {file = "tomli-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e340144ad7ae1533cb897d406382b4b6fede8890a03738ff1683af800d54192"}, + {file = "tomli-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db2b95f9de79181805df90bedc5a5ab4c165e6ec3fe99f970d0e302f384ad222"}, + {file = "tomli-2.2.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40741994320b232529c802f8bc86da4e1aa9f413db394617b9a256ae0f9a7f77"}, + {file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:400e720fe168c0f8521520190686ef8ef033fb19fc493da09779e592861b78c6"}, + {file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:02abe224de6ae62c19f090f68da4e27b10af2b93213d36cf44e6e1c5abd19fdd"}, + {file = "tomli-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b82ebccc8c8a36f2094e969560a1b836758481f3dc360ce9a3277c65f374285e"}, + {file = "tomli-2.2.1-cp312-cp312-win32.whl", hash = "sha256:889f80ef92701b9dbb224e49ec87c645ce5df3fa2cc548664eb8a25e03127a98"}, + {file = "tomli-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:7fc04e92e1d624a4a63c76474610238576942d6b8950a2d7f908a340494e67e4"}, + {file = "tomli-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f4039b9cbc3048b2416cc57ab3bda989a6fcf9b36cf8937f01a6e731b64f80d7"}, + {file = "tomli-2.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:286f0ca2ffeeb5b9bd4fcc8d6c330534323ec51b2f52da063b11c502da16f30c"}, + {file = "tomli-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a92ef1a44547e894e2a17d24e7557a5e85a9e1d0048b0b5e7541f76c5032cb13"}, + {file = "tomli-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9316dc65bed1684c9a98ee68759ceaed29d229e985297003e494aa825ebb0281"}, + {file = "tomli-2.2.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e85e99945e688e32d5a35c1ff38ed0b3f41f43fad8df0bdf79f72b2ba7bc5272"}, + {file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ac065718db92ca818f8d6141b5f66369833d4a80a9d74435a268c52bdfa73140"}, + {file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:d920f33822747519673ee656a4b6ac33e382eca9d331c87770faa3eef562aeb2"}, + {file = "tomli-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:a198f10c4d1b1375d7687bc25294306e551bf1abfa4eace6650070a5c1ae2744"}, + {file = "tomli-2.2.1-cp313-cp313-win32.whl", hash = "sha256:d3f5614314d758649ab2ab3a62d4f2004c825922f9e370b29416484086b264ec"}, + {file = "tomli-2.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:a38aa0308e754b0e3c67e344754dff64999ff9b513e691d0e786265c93583c69"}, + {file = "tomli-2.2.1-py3-none-any.whl", hash = "sha256:cb55c73c5f4408779d0cf3eef9f762b9c9f147a77de7b258bef0a5628adc85cc"}, + {file = "tomli-2.2.1.tar.gz", hash = "sha256:cd45e1dc79c835ce60f7404ec8119f2eb06d38b1deba146f07ced3bbc44505ff"}, +] + +[[package]] +name = "tornado" +version = "6.4.2" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "tornado-6.4.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e828cce1123e9e44ae2a50a9de3055497ab1d0aeb440c5ac23064d9e44880da1"}, + {file = "tornado-6.4.2-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:072ce12ada169c5b00b7d92a99ba089447ccc993ea2143c9ede887e0937aa803"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a017d239bd1bb0919f72af256a970624241f070496635784d9bf0db640d3fec"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c36e62ce8f63409301537222faffcef7dfc5284f27eec227389f2ad11b09d946"}, + {file = "tornado-6.4.2-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bca9eb02196e789c9cb5c3c7c0f04fb447dc2adffd95265b2c7223a8a615ccbf"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:304463bd0772442ff4d0f5149c6f1c2135a1fae045adf070821c6cdc76980634"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:c82c46813ba483a385ab2a99caeaedf92585a1f90defb5693351fa7e4ea0bf73"}, + {file = "tornado-6.4.2-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:932d195ca9015956fa502c6b56af9eb06106140d844a335590c1ec7f5277d10c"}, + {file = "tornado-6.4.2-cp38-abi3-win32.whl", hash = "sha256:2876cef82e6c5978fde1e0d5b1f919d756968d5b4282418f3146b79b58556482"}, + {file = "tornado-6.4.2-cp38-abi3-win_amd64.whl", hash = "sha256:908b71bf3ff37d81073356a5fadcc660eb10c1476ee6e2725588626ce7e5ca38"}, + {file = "tornado-6.4.2.tar.gz", hash = "sha256:92bad5b4746e9879fd7bf1eb21dce4e3fc5128d71601f80005afa39237ad620b"}, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "types-python-dateutil" +version = "2.9.0.20241206" +description = "Typing stubs for python-dateutil" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "types_python_dateutil-2.9.0.20241206-py3-none-any.whl", hash = "sha256:e248a4bc70a486d3e3ec84d0dc30eec3a5f979d6e7ee4123ae043eedbb987f53"}, + {file = "types_python_dateutil-2.9.0.20241206.tar.gz", hash = "sha256:18f493414c26ffba692a72369fea7a154c502646301ebfe3d56a04b3767284cb"}, +] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version >= \"3.12\" and python_version < \"3.13\" or python_version <= \"3.11\"" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.2" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd"}, + {file = "tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc"}, +] + +[[package]] +name = "uri-template" +version = "1.3.0" +description = "RFC 6570 URI Template Processor" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7"}, + {file = "uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363"}, +] + +[package.extras] +dev = ["flake8", "flake8-annotations", "flake8-bandit", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-modern-annotations", "flake8-noqa", "flake8-pyproject", "flake8-requirements", "flake8-typechecking-import", "flake8-use-fstring", "mypy", "pep8-naming", "types-PyYAML"] + +[[package]] +name = "urllib3" +version = "2.3.0" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "urllib3-2.3.0-py3-none-any.whl", hash = "sha256:1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df"}, + {file = "urllib3-2.3.0.tar.gz", hash = "sha256:f8c5449b3cf0861679ce7e0503c7b44b5ec981bec0d1d3795a07f1ba96f0204d"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "webcolors" +version = "24.11.1" +description = "A library for working with the color formats defined by HTML and CSS." +optional = false +python-versions = ">=3.9" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "webcolors-24.11.1-py3-none-any.whl", hash = "sha256:515291393b4cdf0eb19c155749a096f779f7d909f7cceea072791cb9095b92e9"}, + {file = "webcolors-24.11.1.tar.gz", hash = "sha256:ecb3d768f32202af770477b8b65f318fa4f566c22948673a977b00d589dd80f6"}, +] + +[[package]] +name = "webencodings" +version = "0.5.1" +description = "Character encoding aliases for legacy web content" +optional = false +python-versions = "*" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, + {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, +] + +[[package]] +name = "websocket-client" +version = "1.8.0" +description = "WebSocket client for Python with low level API options" +optional = false +python-versions = ">=3.8" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526"}, + {file = "websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da"}, +] + +[package.extras] +docs = ["Sphinx (>=6.0)", "myst-parser (>=2.0.0)", "sphinx-rtd-theme (>=1.1.0)"] +optional = ["python-socks", "wsaccel"] +test = ["websockets"] + +[[package]] +name = "widgetsnbextension" +version = "4.0.13" +description = "Jupyter interactive widgets for Jupyter Notebook" +optional = false +python-versions = ">=3.7" +groups = ["main"] +markers = "python_version <= \"3.11\" or python_version >= \"3.12\"" +files = [ + {file = "widgetsnbextension-4.0.13-py3-none-any.whl", hash = "sha256:74b2692e8500525cc38c2b877236ba51d34541e6385eeed5aec15a70f88a6c71"}, + {file = "widgetsnbextension-4.0.13.tar.gz", hash = "sha256:ffcb67bc9febd10234a362795f643927f4e0c05d9342c727b65d2384f8feacb6"}, +] + +[metadata] +lock-version = "2.1" +python-versions = ">=3.10,<4.0" +content-hash = "87f33994ad4002b4c000a579a55a765768aad142f0bedb0b4872007c0094bbe7" diff --git a/.ipynb_checkpoints/proposal-checkpoint.md b/.ipynb_checkpoints/proposal-checkpoint.md new file mode 100644 index 0000000..da2a548 --- /dev/null +++ b/.ipynb_checkpoints/proposal-checkpoint.md @@ -0,0 +1,61 @@ +# Project proposal + +This planning document will also form the introduction of your +argument. + +## Overarching Question + +### What central question are you interested in exploring? Why are you interested in exploring this question? + +The central question I am interested in is I’m interested in this question because social media is a major part of daily life, especially for young people. Some say it helps them connect with others, while others say it makes them feel less satisfied or distracted. I’m curious about this topic because I use social media every day and often wonder if the amount of time I spend online affects how happy I feel. I want to explore whether people who spend more time on social media report lower levels of happiness. + +### What specific research questions will you investigate? + +Do people who spend more time on social media report lower happiness? + +Is there a difference in happiness between people who use social media daily versus occasionally? + +Does age or gender affect how social media use relates to happiness? + +## Data source + +### What data set will you use to answer your overarching question? + +Dataset name: Mental Health & Solcial Media Balance Dataset + +Data source: Kaggle (public dataset) + +About the data: The dataset includes information about how many hours people spend on social media each day, their reported happiness levels, and demographic details such as age and gender. + +### Where is this data from? + +The data will come from Kaggle, which is a trusted website where researchers and data scientists share datasets for learning and analysis. The specific dataset I plan to use was gathered from survey responses about social media use and happiness, collected by researchers studying the effects of screen time on well-being. I trust this data because Kaggle only allows verified datasets to be posted, and the information is based on real surveys where participants reported their habits and feelings. + +### What is this data about? + +The dataset contains survey results from people who were asked about their daily social media use and how happy they feel on a scale (for example, 1–10). It includes hundreds to thousands of rows, with each row representing one person’s response. +Important columns include: + +Daily_Screen_Time(hrs) – number of hours per day on social media + +Happiness_Index(1-10) – how happy the person feels on a scale from 1 to 10 + +Age – age of the respondent + +Gender – male, female, or other + +These columns will help me compare how time online relates to happiness and whether age or gender makes a difference. + +## Methods + +### How will you use your data set to answer your quantitative questions? + +To answer my research questions, I will use Python’s Pandas library to organize and analyze the data. + +For my first question, I will group the data by time spent online and calculate the average happiness score for each group. I’ll show this with a bar chart. + +For my second question, I will compare the mean happiness scores of these two groups in a table or bar graph. + +For my third question, I will create scatter plots or grouped bar charts to see if certain age groups or genders show stronger effects. + +I will use Seaborn to make clear, easy-to-read charts and provide a short written explanation for each result. diff --git a/.ipynb_checkpoints/pyproject-checkpoint.toml b/.ipynb_checkpoints/pyproject-checkpoint.toml new file mode 100644 index 0000000..85318b8 --- /dev/null +++ b/.ipynb_checkpoints/pyproject-checkpoint.toml @@ -0,0 +1,23 @@ +[project] +name = "project-argument" +version = "0.1.0" +description = "" +authors = [ + {name = "Chris Proctor",email = "chris@chrisproctor.net"} +] +license = {text = "MIT"} +readme = "README.md" +requires-python = ">=3.10,<4.0" +dependencies = [ + "jupyter (>=1.1.1,<2.0.0)", + "seaborn (>=0.13.2,<0.14.0)", + "pandas (>=2.2.3,<3.0.0)" +] + + +[build-system] +requires = ["poetry-core>=2.0.0,<3.0.0"] +build-backend = "poetry.core.masonry.api" + +[tool.poetry] +package-mode = false diff --git a/Untitled.ipynb b/Untitled.ipynb new file mode 100644 index 0000000..b4cb262 --- /dev/null +++ b/Untitled.ipynb @@ -0,0 +1,33 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "fb6ae43a-cbeb-45f3-8e70-ef5ccd4350a7", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/argument.ipynb b/argument.ipynb index 4ed27b4..a11635d 100644 --- a/argument.ipynb +++ b/argument.ipynb @@ -13,7 +13,7 @@ "id": "understanding-numbers", "metadata": {}, "source": [ - "*✏️ Write 2-3 sentences describing your research.*" + "This project explores how the amount of time people spend on social media relates to their happiness. Many people use social media every day, but there is debate about whether spending more time online helps people feel connected or makes them less happy overall. This research aims to find patterns between social media time and happiness levels using survey data." ] }, { @@ -21,7 +21,7 @@ "id": "greater-circular", "metadata": {}, "source": [ - "## Overarching Question: [✏️ PUT YOUR QUESTION HERE ✏️]" + "## Overarching Question: How does time spent on social media affect happiness?" ] }, { @@ -29,7 +29,7 @@ "id": "appreciated-testimony", "metadata": {}, "source": [ - "*✏️ Write 2-3 sentences explaining why this question.*" + "I chose this question because social media is part of my daily life, and I often wonder how it impacts how happy I feel. Some people say social media improves their mood, while others say it causes stress or comparison. I want to see whether there’s any data-driven evidence that links time online to happiness levels." ] }, { @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "technical-evans", "metadata": {}, "outputs": [], @@ -54,14 +54,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "overhead-sigma", "metadata": {}, "outputs": [], "source": [ "### 💻 FILL IN YOUR DATASET FILE NAME BELOW 💻 ###\n", "\n", - "file_name = \"YOUR_DATASET_FILE_NAME.csv\"\n", + "file_name = \"Mental_Health_and_Social_Media_Balance_Dataset.csv\"\n", "dataset_path = \"data/\" + file_name\n", "\n", "df = pd.read_csv(dataset_path)" @@ -69,10 +69,141 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "heated-blade", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
User_IDAgeGenderDaily_Screen_Time(hrs)Sleep_Quality(1-10)Stress_Level(1-10)Days_Without_Social_MediaExercise_Frequency(week)Social_Media_PlatformHappiness_Index(1-10)
0U00144Male3.17.06.02.05.0Facebook10.0
1U00230Other5.17.08.05.03.0LinkedIn10.0
2U00323Other7.46.07.01.03.0YouTube6.0
3U00436Female5.77.08.01.01.0TikTok8.0
4U00534Female7.04.07.05.01.0X (Twitter)8.0
\n", + "
" + ], + "text/plain": [ + " User_ID Age Gender Daily_Screen_Time(hrs) Sleep_Quality(1-10) \\\n", + "0 U001 44 Male 3.1 7.0 \n", + "1 U002 30 Other 5.1 7.0 \n", + "2 U003 23 Other 7.4 6.0 \n", + "3 U004 36 Female 5.7 7.0 \n", + "4 U005 34 Female 7.0 4.0 \n", + "\n", + " Stress_Level(1-10) Days_Without_Social_Media Exercise_Frequency(week) \\\n", + "0 6.0 2.0 5.0 \n", + "1 8.0 5.0 3.0 \n", + "2 7.0 1.0 3.0 \n", + "3 8.0 1.0 1.0 \n", + "4 7.0 5.0 1.0 \n", + "\n", + " Social_Media_Platform Happiness_Index(1-10) \n", + "0 Facebook 10.0 \n", + "1 LinkedIn 10.0 \n", + "2 YouTube 6.0 \n", + "3 TikTok 8.0 \n", + "4 X (Twitter) 8.0 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "df.head()" ] @@ -84,7 +215,7 @@ "source": [ "**Data Overview**\n", "\n", - "*✏️ Write 2-3 sentences describing this dataset. Be sure to include where the data comes from and what it contains.*" + "The dataset comes from Kaggle and was collected from surveys about social media use and mental well-being. It contains responses from individuals about how much time they spend on social media each day, their happiness levels, and basic information like age and gender. This dataset allows me to explore whether heavier social media use is linked to lower happiness." ] }, { @@ -97,7 +228,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "basic-canadian", "metadata": {}, "outputs": [], @@ -110,7 +241,7 @@ "id": "recognized-positive", "metadata": {}, "source": [ - "## First Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n" + "## First Research Question: Do people who spend more time on social media report lower happiness?\n" ] }, { @@ -132,7 +263,8 @@ " - *What data science tools/functions will you use and why?* \n", " \n", "✏️ *Write your answer below:*\n", - "\n" + "\n", + "To answer this question, I will look at the “time spent on social media” and “happiness score” columns in the dataset. I will use Pandas to calculate averages and Seaborn to make a scatter plot showing how happiness changes with more time online. I will also calculate the correlation between the two variables to see if there is a negative relationship." ] }, { @@ -145,16 +277,84 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 12, "id": "negative-highlight", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHHCAYAAACle7JuAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYkpJREFUeJzt3Ql4E2X+B/Bf27RNbwoVBAUWKIpyCYLIqSjigeKBuLKoILr+XUFYFQ90FRQ51xNFFOVQQRAPFHU9AeUQEeUWD6qssCIgSFuOtvTI//m+MGEymSSTNGkzzffzPFUymXnfd96ZZH7zHpM4l8vlEiIiIiIbiq/uAhARERGFioEMERER2RYDGSIiIrItBjJERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EM2d7gwYPlL3/5S0jbYjtsH63GjBkjcXFx1V7m//73v6ocs2fPrtJ8yZrPP/9cHR/8nyjWMJChsNq0aZNcffXV0rhxY3E6nXLSSSfJBRdcIM8884zYGS4S+Lv55ptN33/ggQfc6+zdu1fsQAuSAv2de+65EosQMF566aV+A4c333yzystVU/3xxx8yYsQIadGihaSkpEjdunXlrLPOknvvvVcOHjxY3cWjKOao7gJQzfHll19Kz549pVGjRvL3v/9dTjzxRNmxY4d89dVX8vTTT8vtt98ekXxffPFFqaiokEhDYPbWW2/Jc889J0lJSR7vzZs3T71fXFwc8XL8+OOPEh9f+XuQq666SnJzc92vcbH4xz/+IVdeeaV6T1OvXj0VmBYVFUliYmKl86Xw69Gjhzo+xvPSLv7880/p0KGDFBYWypAhQ1Qws2/fPtm4caNMmzZNnZfp6enVXUyKUgxkKGzGjRsnWVlZsmbNGqlVq5bHe3v27IlYvlV1cb3oootk0aJF8uGHH8rll1/uEcBt27ZN+vXrpwKdSEtOTg5LOm3atFF/GrQk4YKBZdddd53X+gjUKDohsLXz8ZkxY4Zs375dVq5cKV26dPF4D8FNVQZohw4dkrS0tCrLjyqPXUsUNj///LO0bNnSK4gBNBPrlZWVydixY6VZs2bqwoxm/Pvvv19KSkq8tkXgcM4550hGRoZkZmZKx44d5bXXXvM7Ruaxxx5TX4h16tRRzdRnnnlmpbsB0E2GO1993jB37lxp3bq1tGrVynS71atXqyAIQV5qaqraF3xhG61YsULtGy5IqJcXXnjBND3jGBnczY4cOVKVAXetqKOLL75YNmzYIJEcI4MyID9cgNAFg3+jjqZOneruZjzvvPPURQEtOsZ6g/z8fPnnP/8pDRs2VOcBWogmTZoUsIUN+TVt2tT0vc6dO6u7e82nn34q3bp1U+clynjqqaeqcy3cfv31V7nttttU+jjncO71799f1Z0e6hB1uWzZMvm///s/tR6O2Q033CD79+837d765JNP5IwzzlDnxumnny5vv/12wDEy6BLEObllyxbVUopzD8dn8uTJXmXH52706NGq/nEccDzuuecer8+jlbpENzK+B5Bfdna2OhZmx9743ZGQkCBnn32213uoG2OQhs/UJZdcotLH+YXgG62+ekuWLJHu3bur91Fe3Hx8//33pt2rqKO//e1vKj3sn2bOnDnquwPHs3bt2nLttdeqVmaKLgxkKGxwsfr2229l8+bNAdfFWJOHHnpI2rdvL08++aS6uE+YMEF9URi/9Pv06aMu1qNGjZKJEyeqL/SPPvrIb/r4UmvXrp088sgjMn78eHE4HOqi8sEHH1RqH/Fl995777n77BGQvfHGG2q5GXyZIvjBXSUuFCgLLt64wH/99dfu9XDR7927t2q5wpfrjTfeqNZfuHBhwDL98ssv8s4776gL3hNPPCF33323Sg91unPnTomk8vJyFTThwocLJC68w4YNU8cNwRsuYghMEITiQo2WK83hw4dVGXGxwHtTpkyRrl27quN85513+s33r3/9q0oLrX/GYAJdmdp59N1336l6wQUZ58Ljjz8uffv2NQ0kzZSWlqqWKuNfQUGB17ooC1rnkDf25dZbb5XFixergAL7aoR6woUVxxv7j4D4iiuuEJfL5bHe1q1b1f6invEZ0c5lBBWBIDDCcWjbtq3ad3TZYMwJbg40CBpRJwj+L7vsMhWIoBz4XCJfjZW6RDfv8OHDVbD11FNPycMPP6w+rwg8An134Fx69dVXA+4T9hufKQQfGFODciBQe//9993rfPbZZ3LhhRe6P084n3BscH4ZA0tAfeIY4fOJbnGthRnHpXnz5upzhYAbxxN54zNMUcRFFCaffPKJKyEhQf117tzZdc8997g+/vhj15EjRzzWW79+Pb6pXTfffLPH8pEjR6rlS5YsUa/z8/NdGRkZrk6dOrmKioo81q2oqHD/e9CgQa7GjRt7vH/48GGP1yhDq1atXOedd57HcmyH7QNBuYYOHer6888/XUlJSa5XX31VLf/ggw9ccXFxrv/+97+u0aNHq/X++OMPdxmbN2/uuvDCCz3Ki7I1adLEdcEFF7iXXXHFFS6n0+n69ddf3cu2bNmi6tL4MTWWubi42FVeXu6xzrZt21zJycmuRx55xGUVyo28sB9GSA/vzZo1y70MZcCy8ePHu5ft37/flZKSoupk/vz57uU//PCDV9pjx451paWluX766SePvO677z6139u3b/dZ1oKCArV/d911l8fyyZMnq7y1enzyySc9jkkwUM/Y1t/fG2+84fOcg1WrVqn1XnnlFfcy1CGWnXnmmR6fDZQdy999912vMrz11lse+16/fn1Xu3bt3MuWLl2q1sP/Neecc45X3iUlJa4TTzzR1a9fP/cynMvx8fGu5cuXe5T9+eefV9uvXLnScl1efvnlrpYtW7qCtWvXLtcJJ5yg0m/RooXr1ltvdb322mvqO0CvrKxMfXZQLzjX9PSfsTPOOMNVt25d1759+9zLNmzYoPbzhhtucC/TPrMDBgzwSAufZ5yD48aN81i+adMml8Ph8FpO1YstMhQ2mJ20atUqdZeGbg3coeOuCM3ZGFui+c9//qP+b7zrvuuuu9T/tVYT3HkdOHBA7rvvPq+mZeOUZCM0BevvSnEHjWbmtWvXVmof0fSMO1wM7gU0maMLC3eURuvXr1d302itwcBF7W4effDnn3++6lrA3TDuRD/++GN1F4yB0prTTjtN1V8g6ArQBv8iLeSlNftXdn+t0M/kQhM+8kVz/jXXXONejmV4D61HGrRk4ZigTvWtHb169VL7gfrxRes+W7BggUcLxuuvv666J7R61Lo533333ZAGhHfq1Emdh8Y/tF74O+fQkoPjgK4alMHsONxyyy0e47swPgmtLdrnQ9OgQQM1AFu/72gpWLdunezatctv+XEe6Mc7YawJZgIZjwPONbTW6I8DWg1h6dKllusS6/zvf//zaikLBAPK8Z2BVix8Xp9//nn1uUGXNLqgtWOMfUZLHFpHjF3Y2nfC77//rj576PpEd5AG3U/4jjLWLyBfPXTdYR9xDuvrBBMY0EKj1QlFBwYyFFYY44EvAXwZoesE3QQIRjAlG03BWvM/Lrz6GTOALwl8OeF9rd8cfI098QfNzLigIQDCl9kJJ5ygZj+YdQkEC1+wuJhhbAi6dHx1KyGIgUGDBqn89X8vvfSSaqJHeTDtFDNO8AVphAAgEHzhohsA2yOoycnJUXlgxkc49tcf1C/y0sNYoJNPPtkr2MRy/RgQ1A+6CI11g0DGygBxdHtgvAKCZ+18QdemvjsE/0Z3AoItXCzR7YPgx2pQg7pEeYx/GDdhhGOI7lJtvI92HNANYXYcjMcbQUf9+vW9uj7wOTHW5SmnnKL+b9ZNomd2HBA4Go8Duo2Mx0HLQzsOVuoS3VbYDwRL2L+hQ4da7sbDvuMzikAEM/PQPYdyoE4xGNjqd4L2/WH22UHApt1M6DVp0sTjNeoEwRP2wVgv6A6M5OQFCh5nLVFE4M4PQQ3+8IWIMR+488O4D6utKqFavny5ahVCXzamSuMLEne+s2bNCjjo0AqkjQsVAhQEI/qWBz3tC/7f//63GidgBl/6ZgOcg4F+/QcffFBNW8XdKwI3BIq4a430tHQM0Axmub71BGXDHTIGlZrRLqS+YDwHBpTiYopWMfwf+43xDvpWErTs4A4aLX0InNBqg9YGDKD1Vc5Q4PECOMdQ7xhwjMAN5zgu+FXxeIDKHAcMFMc4EDMIzKzWJQIFBCG4kcD72uMKEIxgvIwVqDMce/xhfByCCYwf8vUMp3DQt6ZpdYJyYCyRWR1yKnh0YSBDEafNIMGdFqAbBl8UuOvBF59m9+7d6u5V66bBzB3A4GFj640/+PJESwG6a/RTlXGRCdeXHrqBMEgV3Ru48zajlR9dAVorgxnc5SFNrQVHDxeFQDAbC4MdtbtWDerSV9miAeoHg6b91Y0/6L7C4FMEyLgI46KKrip0xeghuEFXHv6wHgI/PMAQF+RQ8/Z1HBDcYvCpBs8V8jUwFMcbx02DusBnBLNx9PLy8lTgoQ/8f/rpJ/X/UJ9obTwO6NZB/QS6ubBSlzguaL3B35EjR9QziTBwFq2zwU4Rx8w0tCBp3x367wRfx077/jD77Pzwww/qMxFoejXyQZ2jpSZQQE3Vj11LFDb4MjPOuACtT1pr6tW+qDGrQU+7I8RdGGAWD2a7YKaG8UFzZvlocAeFL2SMs9CgCR7dQOGC6c5oXUJLiC/ofsAXIsZTmD2ZFF1KWnkxFgblQ3eVBk3YCMYCwfbG+sDF/bfffpNohpYsdAuZ7SMu/pgRFggulpiZha46XIz13UqA2W5GWutYZVvCrBwHzADSn4d606dPV2NpNOhWwT4jONbD/ulnr2EG3CuvvKL2A92x4TgOOFcw48isu0zrhrFSlxgXZGyZxQwm1It+X40wq8nY3QPonkaa2ncHZjkiuMB3hzFA1OoeLbAo18svv+yxDoIftBwZA0UzCL5wPNGKZDymeG3cT6pebJGhsDatYwojBiZi4CDuxjDlEXfKuHNE9xJgKijuXPFFji8aTMHFFxa+eNDSod2loiUDYz/QpIwuKu05D7hgIR+sbwaBEIIiDMrFNujPxrNN0KqDcSPhgH3AX6C7V1xgcWHCczWw/xj4jIsGgj7sH6ZyA74w0RSPFgU8iwQXNO15HIHKjFYJTIdF+uhiwdRrNMX7es5KtMA0cQwCR/kxMBOBHy5mKD9aNxB8BmpRwkUJwS4CS1x48FBCPdQLukNwTuBOHecCujowdkT/vJBwwH5g+jC6lHDxRpCGacB4TowZfD7QsoFAAq0HKBfKhK5LPbQI3HTTTWoALcamzJw5U7VehquF8frrr1fdchjwivMS42AQfKH1AssRaKJV1Upd4uYDwRXSQFkRjD/77LNqGxwnX1BvOGfx3YHzAAEQtsW+ohVHe1YNPlMI+NCtiGAF5zwCF5QV43y0oBjdufjcoYsPdYeADJ8nHBtMxw4ENyCPPvqoakXCeYjvJZQfA40RVGKgNs45ihLVPGuKapAPP/zQNWTIEDV9Mj09XU1Tzs3Ndd1+++2u3bt3e6xbWlrqevjhh9VUysTERFfDhg1do0aNUlOJjRYtWuTq0qWLmtabmZnpOuuss1zz5s3zO/16xowZauozpuiiPJjyqk21rMz0a3+M068169atc1111VWuOnXqqPIgz2uuuca1ePFij/W++OILNSUX9da0aVM1/dVKmVFnmIaMKbmoo65du6ppv5h+i79ITr/G9Gkj5Gk2BRfl7tOnj8eyAwcOqOOO8wT7nZOTo471Y4895jVt35eBAweqsvXq1cvrPdQxpgQ3aNBApY//Y6qtccq3GbPyGqc766dfYzrwjTfeqPYB5z+m3WPaufF4adOvcbxvueUWV3Z2tlof+6GfLqwvAx5j0KZNG/f5rM/X3/Rrs+Ng9nlBXU+aNEmtjzxQJpyL+IxiurfVunzhhRdcPXr0cJ/rzZo1c919993uNHzZuHGjWq99+/au2rVrqynOOJ/79+/vWrt2rdf6K1asUI8vwOMZcA6ibp555hmPdT777DP1WdC+Ny677DL1SAMrn1kNpr1369ZN5YE/1D2+B3788Ue/+0NVKw7/qe5giogoVuBhgWhJQAuL/gnEZtCSiRk6+oe9EZEnjpEhIiIi22IgQ0RERLbFQIaIiIhsi2NkiIiIyLbYIkNERES2xUCGiIiIbKvGPxAPj8LHkzHxMKNI/bYPERERhRdGvuBHh/GzI3gYYswGMghitB89IyIiInvBr9zjCdIxG8hoj8VGReCR8ERERBT98LtiaIjw9/MWMRHIaN1JCGIYyBAREdlLwF9lr7KSEBEREYUZAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyrWr9iYJly5bJv//9b/n222/l999/l4ULF8oVV1zh8cuXo0ePlhdffFHy8/Ola9euMm3aNGnevHl1Flt2FxbL/kNHpLC4TDJTHJKdmiT1Mp1VmrZxvUxnopSUlkt+UalkpiRKTlqSZKUm+d2mTmqSlFa4pKCoVAqLSiUrJVFtmxgfJ/sCpA17D2KdUqmTkijxjng5UFzmTifD6RA8VLrAsAyRc75uWbrTIWVlFbJfl3YxXh/Lv1aqQ1KTHB5pm5UR+3KkvEK9xnq10xMlJdFzO+SVoM8/NVHSkx1ysKRMCg4fLyNo6WjLsJ62v1iWZLK/xu2Q3+HSMtl/8OjrWk6HlBvWyXQ6xKVbVis1UdKSHX7rMjst0bROsG9/6o4l/lKTEvyWG/lLXJz7HNDy19cJ9iM5Lk726tKunZIoR/DLtIb9PVRSJvnHtsMf9s2ddlqipBnL7XSo/LQyaudASVmF/Hns+GalOLzKhPUa1EoJ+HkqOHzEK239uevrs2K2nf689PXZ1G+HcjoTE9S/C4uOblM7NUmSHfEh5W+l3LHGrJ5ivU5iUbUGMocOHZK2bdvKkCFD5KqrrvJ6f/LkyTJlyhR5+eWXpUmTJvLggw/KhRdeKFu2bBGnMzyBQ7C27zskoxZukpV5+9zLuuXWkfFXtpZGddKqJG1f6z14aUv5+yvfqA92j+Y5MrFfG/eXvXGbhtkp8upNZ8kD72z2SmdM35Zy3YzVKh1j2oePlMvMwR1l6pI8WZ63V9qclClTBrSXUW9tdKeDi+fMQR1l6tKtstwk7esNaY+9opUMn7dOikrLZf4tnWX0oqNlQjpTBrSTWSu3+S3jKXXTZfoNHeSBd47uH/btlZvOknt1ZfKX/+CuTVT+2LfuuTkytGczGfLy0X1FGWYM6iDPLcX+mpfJ3/5i30a+scFr3zTdm+fIbec2k5te/ka9Nttf/TrIa+7NZ5vu26NXtJJbXvlGduwvsl5udSy9y62vk6Npt5bHP/5ePvth77Fzp5O7vs22A32d+MpfX0az/UX+vso07srW0tjPZ25nfpGqp+Vb9xr29+i5qzF+Vozb5aQnmR4742dTv10w+xsof6vljjXGeoJYr5NYFedCs0eU/CiUvkUGxWrQoIHcddddMnLkSLWsoKBA6tWrJ7Nnz5Zrr73W8q9nZmVlqW0r+6ORaNG4c8F6jy8z/Zfa49ecEXLLjNW0A613Y9cm7osiPtTPDGin7iSN2ywa1lUmffSDpXT0y9btyJd12/e7t/t85DlewdCw83I91rGS9j0XtZA/DpTITN0Xv9V0Pr2zh4xZ9J17vWD3rWtuHWnXKFueXZLn9dpYBrMyBSqn2b7pafmBr3S0ddo1rOUzHS2vvs+urHS5jXWCtCdc2Vq6//tzv/Xra18qm7+vMk2+uq3pRQt36sPmrfO4yPnLT/usqPUM2yH48Ffn+Gw6HfEe2wW7v/7yt7JdrLVCmB3fWK+Tmsjq9Ttqx8hs27ZNdu3aJb169XIvww516tRJVq1a5XO7kpIStfP6v3BBs7LZlwmsyNun3o902oHWq5uZ7H69bOte1fJgto0jId5yOvpluJDqtysqrfBKx7iOlbRRHizXb2c1nbJyl8d6we4b1kVeZq+NZTArU6Bymu2bWf7+0tHW8ZeOllc4ym2sE6R98FjriL/69bUvlc3fV5nQbWUG573xIucvP+2zYrZdoDrH58u4XbD76y9/K9vFGrN6ivU6iWVRG8ggiAG0wOjhtfaemQkTJqiAR/tr2LBh2MqEvvHKvB+OtAOtd7D46MVGcwD98ybbHPBxAfCVjrYMYxc8ymWSjnEdK2mjPMblVtMxliGUfTPmpb32tTyYcprtm1kagdLB+4HS0fY9HOU2vq+lHah+zfYlHPmblqnYvCwYMxFsfkc/K97bBapzNb7JsF1I54mP/K1sF2vM6inW6ySWRW0gE6pRo0apZijtb8eOHWFLWw2MrMT74Ug70HrpTgz5PC7DeWxAp0FGSmJQ6WjLMFDRo1wm6RjXsZI2ymNcbjUdYxlC2TdjXtprX8uDKafZvpmlESgdvB8oHW3fw1Fu4/ta2oHq12xfwpG/aZmc5mXBAPVg8zv6WfHeLlCd4/Nl3C6k88RH/la2izVm9RTrdRLLojaQOfHEE9X/d+/e7bEcr7X3zCQnJ6u+NP1fuGSnJak+cTNYjvcjnXag9fYUlnj0FWOgotk2ZeUVltPRL8MYGYxV0KQkxnulY1zHStooD5br07KajiMhzmO7YPcNeSAvs9fGMpiVKVA5zfbNLH9/6Wjr+EtHyysc5TbWCdJOT0oIWL++9qWy+fsqE2YGmcF5j/Pfan7aZ8Vsu0B1js+Xcbtg99df/la2izVm9RTrdRLLojaQwSwlBCyLFy92L8N4l9WrV0vnzp2rpUwYbItZCsYvNW32QmWmYFtN2996D13WUo3i1z7Mk/q1UQPezLYZOnetmuVils6Yvq3c6RjTnrlim9x+XnM1swQwiwQzWvTpqHV6NlczgKykPfaK1qo8WI73tbSQDgbmBirj0DlrPcqAtMYGsW/IA3kByoyya6/x/2E9c937a1Ymf/vra980SHfYsfx87a9+HaSDGWRm+/bosbyCKvd55uXW14k2Q+jh9za769d4zI3bGevEV/76Mprtb6Ay+ZqdgvMes1f0FzvjuavRf1bMtvN17PSfTeN2wexvoPytlDvWmNVTrNdJLKvWWUsHDx6UvLyjMxDatWsnTzzxhPTs2VNq164tjRo1kkmTJsnEiRM9pl9v3LgxqOnX4Zy1ZPo8FqdD3ZFF5DkyftI2rofuFTzrBYMf0ayKOxK/z5FxOqRO2vHnyKBPGdtlGZ/R4iNtwIA6bFdb9xwZLZ1M3bNP9Mu058hoyzKOPUcmX5e2/nkdWakO97NH/JUR+6I9Rwbr4ZklqceeI6PPS3uOjH4Znk+CcTb6bjgtHW2Z9hwZLMvUPY9Fv45xu4xjz5HJP3T0dbbuOTLufdE9R0ZLG3n5q0s8/8asTrTnyGjLaumeI+Or3Fm658jo89fXSYbuOTLadnV0z5HR7y+eI6OdJ7V0z5FR5U45/owcff7ac2S0ZTgH9M+RwfNXjGXKCvI5Mvq09eeur8+K2XYez5Hx8dnUb5dpfI6M0yG1044/RybY/K2UO9aY1VOs10lNYvX6Xa2BzOeff64CF6NBgwapKdbaA/GmT5+uHojXrVs3ee655+SUU06xnEckAhkiIiKKLFsEMlWBgQwREZH92P45MkRERESBMJAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2RYDGSIiIrItBjJERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2RYDGSIiIrItBjJERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2RYDGSIiIrItBjJERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2RYDGSIiIrItBjJERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2RYDGSIiIrItBjJERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2ZZDotyBAwfkwQcflIULF8qePXukXbt28vTTT0vHjh2ru2gxreDwEdl78IgUFpdKZkqi5KQlSVZqUsS2M9pdWCz7DyGdMslMcUjt1CRJdsR7pJ2e7JBDJWVSUBRcXmZpu0Tcy7JSHJLhTJTi0nKPtEHLPyslUZUH6xcWHX1dKyVRKlAHRaXuZfhLTUrwKDe2O4hyHz66TobTofZFW6d2SqIkOOLlgC5trOOIi5M/DWlDvrYsNVEykh1SUlbhs9woY3Jiglpfv/9l5RVSoMsv0+mQuLi442mjvp0OOXSkTPIPmZe7TkqixBvKjXRQt/p6wna4w8o/tiw7DXXkkIN4faxM2alJEicifxqOU1mF63j9ph49B/R16avch0tR7uNpOw3nUijnt9k54HVMUKaURGlQKyXg5+TQkaPnm7/trJzP2L96mU4Jh3B9nolqdCBz8803y+bNm+XVV1+VBg0ayJw5c6RXr16yZcsWOemkk6q7eDFpZ36R3PvWRlm+da97WY/mOTKxXxu/X6yhbme0fd8hGbVwk6zM26deIxCYMaiDPLc0T5YfWwbdcuvI4K5NZPi8dXL4SLmlvMzSnjmoo0xdutVn2jBzcEeZugT571XbTBnQTmat3OZOJyc9SebfcraMXvRd0OXG60evaC2DZ30tKYkJMv2GDqoeVxq2GdO3pVw/Y7W6sFhJ21hulHHuzWfLv97dELCM3ZvnyG3nNpObXv5GlVFL+8FLW8rQ19aqMmjl/secb8WZGC9TBrSXUbpym9WJcV8AZTLub/fcHBnas5kMOZa/1ePkq05Q7tvmfqvKfTTtXBny8hr3vgV7fpudA/7qbdyVraVxnTSvdKBhdoq8elMneeCd4+el2XZWzmdtu/FXtpZGfrazIlyfZ6LKinO5XLghikpFRUWSkZEh7777rvTp08e9/Mwzz5SLL75YHn300YBpFBYWSlZWlhQUFEhmZmaES1zz4Q5s2Lx1Hl9e+i+xZwa0M70jC3U7s7vLOxes9/hiHnZerqzbvt9jmaZrbh1p1yhbnl2SFzCvUNMG/Tpm2+ACOtNwUQum3Lj43HNRC0lJSpAxhgu/Buvc2LWJukiGUu7KltFYBu316L4tJTE+Th54Z3PAOjGmA77W0ecfyv76qjtf+xbM+R1KvU2+uq2kJSV4fU4WDesqkz76wWe5sZ1Z4GB2Puu3e/yaM0JumQnX55koHNfvqB4jU1ZWJuXl5eJ0en7YUlJSZMWKFabblJSUqJ3X/1H44I7V7MsLlm3dq94P53ZGaCI3fjG3a1jL9MsasBzvW8kr1LSN65htUzczuVLlXpG3TxwJ8VJW7vK5DdZBPqGWu7JlNJZBe40yF5VWWKoTYzr+1tHnH8r++iu32b4Fc36HUm/oNjL7nOC4+ys3trN6Puu3w/uhCtfnmSgcojqQQWtM586dZezYsbJz504V1KBradWqVfL777+bbjNhwgQVwWl/DRs2rPJy12ToC/fngI/3Q93OO50yr2UY8+GP8X3fZQwtbeM6ZtscLC4PKW29A8fGR/ij5RNKucNRRrN0fJXbLD/j+4HW0fIPZX8Dlcdsfavndyj1hrTNPieoP3+COZ+Ded//tuH5PBPV+EAGMDYGvV8YD5OcnCxTpkyRAQMGSHy8edFHjRqlmqG0vx07dlR5mWuyTOfRwYq+YBBsOLfzTsd7WBcGVPpjfN93GUNL27iO2TbpzoSQ0tbLODbA0x8tn1DKHY4ymqXjq9xm+RnfD7SOln8o+xuoPGbrWz2/Q6k3pG32OUH9+RPM+RzM+/63Dc/nmSgmAplmzZrJF198IQcPHlRByddffy2lpaXStGlT0/UR7KAvTf9H4YMBmugDN4PleD+c2xllpyWp/n29dTvy1bgDM1iO963kFWraxnXMttlTWFKpcmNbzBxyJMR5paNfB/mEWu7KltFYBu01ypySGO+Vtll+xnT8raPPP5T99Vdus30L5vwOpd4wE8nsc4Lj7q+etJlQVs5n/XZ4P1Th+jwTxUQgo0lLS5P69evL/v375eOPP5bLL7+8uosUkzCAD7MSjF9ieD2pXxufA/xC3c4IgxMx40L/BT1zxTYZ1jNXzQgxG8CJ963k5Svt23s2VzNZfKWt1jmvuTt/vMZ7+nQwuwMzcUIptzb7Z+jctTJ0zlr1b+MF6uhMn1YqH6tpG8uNbTF7x0oZ8XpYz+buMmppP3RZS3cZtFk1KDNmDRnLbVYnxn0xK5PKPzdHHRctf6vHyVed6Mut0j7Pc9+CPb/NzgF/9YZ6woBds88JjruvY65tZ/V81rbD8spMwQ7X55moxs9aAgQtKOKpp54qeXl5cvfdd6vBv8uXL5fExMDNl5y1FBna8yPQF45mZNyBBfOcjWC38/tsDKdDaqcdf46MlrZ6rknJ0Wd4BJOXWdr658jgWRyZx54jo08btPy158Fgfa082brnyGjLaumeI6MtS048+hwZLe1M3fNYsE627jky2jaZuufI6NPWnlmiXw/jM3yVO8v4HJlj+689R0ZLJ0v3PBZtWcax58jgmS1m5a6te46MPh3tOTL6MmrPkVFlSk2UNP1zZJwO1Zrg8RwZrZzHniOjHQPtOTLa/voqt/s5MsfS1p4jU5nz2+wcMDsmWX6eI6PPX3uOjL/trJzP2L9wP0emsp9nospcv6M+kFmwYIEa9/K///1PateuLf369ZNx48apnbOCgQwREZH91JhAprIYyBAREdlPjXiODBEREZE/DGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZFgMZIiIisi0GMkRERGRbDGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZFgMZIiIisi0GMkRERGRbDGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZFgMZIiIisi0GMkRERGRbDGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZFgMZIiIisi0GMkRERGRbDGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZFgMZIiIisi0GMkRERGRbDGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtuWQKFZeXi5jxoyROXPmyK5du6RBgwYyePBg+de//iVxcXHVXTwKQcHhI7L34BEpLC6VzJREyUlLkqzUpKjKP9R1IJR9+23/YSksLpPColKplZooackOKSmt8Ejn0JFyKSgqVetkpSZKerJDDh0pk4LDZZKZ4pDs1CRxOuIDlgnrHCjBdqWSlZKoljWoleJRnv/tPywHjpUH66Q7HZKR7PBKu7isQvYfwrIyyU5zSEqiw2O7TKdDHAnx8uexdbRy1st0+tx/bJfhdKg7rHxDGY6UVag6MK2TlET158Kx8VNPtVOTpLQcdXs07ez0REk1lBt5JcbFyZ+GtCtcLo9yYr3isjLZd+Do61pOh5SLeK1jLHdJWYVHnRjLpG13cnaqRz3tLix213etVIekJhnqOyVREuPjZJ8h7WTdeYH1cH4dxHa6Y4lz4kCA/CP52Q3n54liT1QHMpMmTZJp06bJyy+/LC1btpRvvvlGbrzxRsnKypLhw4dXd/EoSDvzi+TetzbK8q173ct6NM+Rif3aeF1Mqyv/UNfp3jxHhvbMlSGz18jhI+WW9+3XfYfk/oWbZGXePklNSpApA9rJrJXb1GtomJ0ir97USR545+g6mm65dWRw1yYyfN46lR9ej+nbSq6dvkp9+SOtmYM7ytQlebI8b6/f7cZd2Voa10nzKo9+m0evaC3/mPOt/LTnoC7trbI8b5/kpCfJ3JvPVnWi3w51ctu5zeSml79x1wnSGn9la2nkJ7/uuajLZjLEsJ1WbtDnD6pMgzrK1KXHlwXazle5j9ZlS7l+xmpVl/72BfUy7oMNsv9wqbx601nywDub/R4nYzoo94xBHeS5pThOntvpj8v2fYdklJ/z5Hh5WsnfX/lGduwv8krbbDvUwfxbOsvoRd7l1ucfyc9uOD9PFJviXC4XbmKi0qWXXir16tWTGTNmuJf169dPUlJSVCuNFYWFhSrwKSgokMzMzAiWlgLdcQ2bt87jy0qDL6hnBrSL6N2WlfyhMut0za0j7Rply7NL8iztG1oi7tFdRIedlyvrtu/3uKAsGtZVJn30g8cyX/nh4nNj1ybqImmWlr/tJl/dVrU4GC/qGqwzum9LueCJZV5p42I503BR9VcnSOvxa86QsvIKj/0PtJ22DIz7ZmV/jdv5K7e+LgPtC4IHtIBYPU761/7KjbRx4U5MiJc7F6z3e57ot7nnohbS99mVXuuZbReoDpA/WuMi9dn197kM9vNENY/V63dUj5Hp0qWLLF68WH766Sf1esOGDbJixQq5+OKLfW5TUlKidl7/R9UPd7ZmX1awbOte951vdeZf2XVwMWjXsJbpdmZw8dNfQLCt8YKCrhmzi4xZfivy9kndzGSfafnbDl0f6FrwtQ3WKSt3maaNPK3mpaWldZEEs522zGzfrOxvMOXW12WgfSkqrQjqOOlf+ys30sYxQV0FOk/026AsZuuZbReoDpB/JD+74fw8UeyqVNdScXGxOJ2e/d3hdN9996lApEWLFpKQkKDGzIwbN04GDhzoc5sJEybIww8/HLEyUWjQz+3PgQDvV0X+gZomrayD8Q9m25mWqag08LaGdQLld7C43Gda/rZT+xZg57Sy+MrTal6AICZQY7DZdr72K9j9tVJus/d9HaNgzwvtdaByHz13PMcDBtzGx3EKpQ6QP1qEApcxMp/LYD5PFLuCbpGpqKiQsWPHykknnSTp6enyyy+/qOUPPvigRxdQOCxYsEDmzp0rr732mqxdu1aNlXnsscfU/30ZNWqUaobS/nbs2BHWMlFoMp2Jft/PCPB+VeQfjnUwsNJsO9MypSQG3jYluPzSnQk+0/K3ndq3AHlpZfGVp9W8AAOBA+Vnth2W+VoeKK1gy232vq9jFOxx0l4HKvfRc87zfjPgNj6Ok9l2gerA6uciVOH8PFHsCjqQefTRR2X27NkyefJkSUo63k/ZqlUreemll8JauLvvvlu1ylx77bXSunVruf766+WOO+5QrS6+JCcnq740/R9VPwwqRP+2GSzH+9Wdf2XXQZ/+uh35ptuZwQUK4xA02BZp6GEciX4df/lhvT2FJT7T8redNlvIV15Y7kiIM00beVoto5ZWdlqS1/4H2k5bZrZvVvY3mHLr6zLQvqQkxgd1nPSv/ZUb6eGYoK4CnSf6bVAWs/XMtgtUB8g/kp/dcH6eKHYFHci88sorMn36dNW9g+4eTdu2beWHH34Ia+EOHz4s8fGeRUSeaBUie8HgPAwcNH5p4fWkfm0iPnjPSv6VWQezLG4/r7nMXLHN8r6dlJ2qZoZoFxJsiwGm+gvL0Llr1cwY48VGG4yq5afNWsJgXS0tlAflCrQdyoCZICcbyqPfBsuHzlnrmXbu0bSR54OXtvTaDnkP6+lZJ9qsJUzBNu6/e7tc77rUl9uYv7tMPT2XBdrOV7mNdelvX1B+zEg6epxaBTxOxnTw/2E9c02PE9LGMUFdjQ9wnmjb4FxBWczSNtsO+4h99XXMkX8kP7vh/DxR7Ap61hJmDCFgady4sWRkZKgBuE2bNpUtW7bIWWedJQcPHgxb4fDMmM8++0xeeOEFNf163bp1csstt8iQIUPU1GwrOGspumjPi0A/N5qIcXdVHc+R8Zd/qOtAKPumPUcF26G7Jf3Yc2T06WjPTNGW4U7Z/XyUY3ft2nNk/JXJmXj0OTIYn4PXWX6eI6PPS3uOjD5t/XNkaqU53M9j0dbJMj5H5lg5fT1HRtsuU/ccGX0Z8DwWrdxmdVJL9xwZX/VUO+34M1uwDp41k3bseSz6bbTnyOjT1p4jo18Pz5H58+DR19m658j4K7fHc2RMyqRt5+85MlmpDq9yZxmfI3Msbe05Mtr5pT1HRn8stefI+Ms/kp/dcH6eqOawev0OOpA588wzVffOdddd5xHIPPLII/Lpp5/K8uXLJVwOHDigxt4sXLhQ9uzZox6IN2DAAHnooYc8urX8YSBDRERkP1av30HPWkIQMWjQIPntt99UF8/bb78tP/74o+pyev/99yWcECg99dRT6o+IiIio0mNkLr/8cnnvvfdUl09aWpoKbL7//nu17IILLgg2OSIiIqKQBdUiU1ZWJuPHj1djVNCNRERERGSbFhmHw6GmXSOgISIiIrJd19L5558vX3zxRWRKQ0RERBSEoAf74neO8JC6TZs2qRlMGCej17dv32CTJCIiIgpJ0NOvjQ+o80gsLk79HlI04fRrIiIi+4nY9Gs+VZeIiIhsO0aGiIiIyNaBDAb7XnbZZZKbm6v+MC4mnE/0JSIiIopIIDNnzhzp1auXpKamyvDhw9Uffn8Js5lee+21YJMjIiIiqrrBvqeddpr64Ub83pLeE088IS+++KJ6ym804WBfIiIi+7F6/Q66ReaXX35R3UpG6F7atu34T64TERERRVrQgUzDhg1l8eLFXsvx20t4j4iIiKiqBD39+q677lLjYtavXy9dunRRy1auXCmzZ8+Wp59+OhJlJCIiIgpPIPOPf/xDTjzxRHn88cdlwYIF7nEzr7/+uvplbCIiIqKoHexrNxzsS0REZD8RG+y7Zs0aWb16tddyLPvmm2+CLykRERFRiIIOZIYOHSo7duzwWv7bb7+p94iIiIiiNpDZsmWLtG/f3mt5u3bt1HtEREREURvIJCcny+7du72W//777+JwBD12mIiIiKjqApnevXvLqFGj1OAbTX5+vtx///1ywQUXhF4SIiIioiAF3YTy2GOPSY8ePaRx48aqOwnwTJl69erJq6++GmxyRERERFUXyJx00kmyceNGmTt3rmzYsEH9YOSNN94oAwYMkMTExNBLQkRERBSkkAa1pKWlqR+OJCIiIrLVGJmXX35ZPvjgA/fre+65R2rVqqV+ruDXX38Nd/mIiIiIwhfIjB8/XnUnwapVq+TZZ5+VyZMnS05Ojtxxxx3BJkdERERUdV1LeBhebm6u+vc777wjV199tepm6tq1q5x77rmhl4SIiIgo0i0y6enpsm/fPvXvTz75xD3l2ul0SlFRUbDJEREREVVdiwwCl5tvvllNvf7pp5/kkksuUcu/++47+ctf/hJ6SYiIiIgi3SIzdepU6dy5s/zxxx/y1ltvSZ06ddTyb7/9Vk3BJiIiIqoqcS6XyyU1mNWfASciIiL7Xb+DbpEhIiIiihYMZIiIiMi2GMgQERGRbTGQISIiotgJZPCsmMOHD7tf42cJnnrqKfVMGSIiIqKoDmQuv/xyeeWVV9S/8/PzpVOnTvL444+r5dOmTYtEGYmIiIjCE8isXbtWunfvrv795ptvSr169VSrDIKbKVOmBJscERERUdUFMuhWysjIUP9Gd9JVV10l8fHxcvbZZ/PXr4mIiCi6Axn8YCR+LBI/Hvnxxx9L79691fI9e/bwgXNEREQU3YHMQw89JCNHjlS/q4TxMfi5Aq11Br+/RERERBTVP1Gwa9cu+f3336Vt27aqWwm+/vpr1SLTokULiSb8iQIiIiL7sXr9DvrXr+HEE09Uf1pGS5YskVNPPTXqghgiIiKq2YLuWrrmmmvk2WefdT9TpkOHDmpZmzZt1K9hExEREUVtILNs2TL39OuFCxcKeqbwPBlMvX700UcjUUYiIiKi8HQtoa+qdu3a6t8fffSR9OvXT1JTU6VPnz5y9913S7hhULHZtO7bbrtNpk6dGvb8qGoVHD4iew8ekcLiUslMSZSctCTJSk2SWGKlDsJVT2bpgLYsKyVR0pIdcrC4zOc6weS/u7BY9h/CdmWSleKQDGeiFJeWS0HR8XQOHTn6urDoaP5Y3qBWis90MlMcUjs1SUrLK9Rr93bOo19nBbpl6U6HHC4tk/xDR7erk5okJeUVcsCwjqusQvbqynSgpMxjHaSdkBDvLkOtVIekJjm80slIdrjrqXZKoiQ44j3WyXA6JF23jq+6NNvfZEe8x3FyJiaofxcWHV0nOzVJ4kTkzwD1hDKclJ3q97xISUyQA8WlUlBknr/VcqNMTkO5zc4vK+dAoPPZV9pWzlN+D8VYINOwYUNZtWqVCmYQyMyfP18t379/vzidzrAXcM2aNVJeXu5+vXnzZrngggukf//+Yc+LqtbO/CK5962NsnzrXveyHs1zZGK/Npa+xGKlDsJVT8Z0UpMSZObgjjJ1SZ4sz9urXk8Z0E5mrdwmK/P2ubfr3jxHhvbMlSGz18jhI+WW89++75CMWrjJI61uuXVkcNcmMnzeOpXf/Fs6y+hFm73WGXdla2lcJ800nePl3irLDeW87dxmctPL37jLibQevLSl3Db3W2mQ5ZQpA9rLA+94l+nRK1rLhP9skeLSCq91ctKTZP4tZ8votzaqZb7qSUvnH3O+Va+n39BB1bdHXeaiLpvJEF0ZjXVptr8zBnWQ55biOPnO35i2r3oy1q/Z+aU/TqDPXxOo3Fo6Y/q2kmunr1JlMpb7aN0GPgfM6Mvtq06snKf8HorBWUvPPfecjBgxQtLT06VRo0aybt06NXPpmWeekbfffluWLl0audKKyD//+U95//33ZevWrRIXh/sP/zhrKTrhDmjYvHUeXx76L5FnBrSr8XdEVuoAwlFPZnkNOy9X1m3f7/7iN77W65pbR9o1ypZnl+RZyh935ncuWO83rXYNa8lMw4VHfyGbfHVbSYiP80on2HIirRu7NpFmJ6TJA+94XjD164y/srVUuFxe6+Airi+nv/yRzui+LdW/xyz6Lui6LC6rCLi/Vvc/UDkn9WujWod8nV9aWuArHX/lNtb/uh35XukY69bsHDALJozns7999Xee8nsoulm9fgc9RgZdOmiRmTlzpqxcudI9/bpp06YRHyNz5MgRmTNnjgwZMsRnEFNSUqJ2Xv9H0QfNuGZfHrBs6171fk1npQ7CVU9m6SCQ0H/xG1/rYTnet5o/uhcCpVU3M9nnOivy9qmuBrN0gi0n0kJeRaUVfvND94bZOsZy+ssf6ZSVu9RfKHVpZX+t7n+gcqL7x9/5paXlLx1/5dbnhTo0S8fKOWDGWG4rZbSSjtXtKLqENP0aM5UwS2nbtm3SrFkzcTgcaoxMpOGJwhhYPHjwYJ/rTJgwQR5++OGIl4UqB33R/qB/vqazUgeBmkut1pNZXiVlFX5fB1rfX/64SAZK62Dx8S5jM0fT9r5hCaWcyCs+LkB+Reb1bSxnoPx9pRMoDezvkXJX2I5TwHIWl0pigv972UBp+Cu3sQ59HZdAaVs5n63sq5V0rG5HNeC3lm666SY1wLdly5ayfft2tfz222+XiRMnSiTNmDFDLr74YmnQoIHPdUaNGqWaobQ//JQCRZ9MZ6Lf9zEotKazUgfhqiezdDB409/rQOv7y18beOsvrXRngoX9904nlHIiLwzi9JvfsUGmZtsGk7+vdAKlYXV/re5/wHJaOL+QhrV0/B9v1KGv4xIobTPGclspo5V0rG5HNg9kEChs2LBBPv/8c4/Bvb169ZLXX39dIgUzlz777DO5+eab/a6XnJys+tL0fxR9MMgPfdBmsBzv13RW6iBc9WSWDsYsYByEr9d6WI73reafnZakxjj4S2tPYYnPdbAcs1DM0gm2nNgeeaUkxvvNLy0pwXQdYzn95Y/1HAlx6i/Q/pvVpZX9tbr/gcqJ4MPf+aWl5S8df+XW54U6NEvHyjlgxlhuK2W0ko7V7cjmgQy6d/BAvG7dunmMU0HrzM8//yyRMmvWLKlbt26VdGFR5GEAHWYFGL9E8BqDEGNhgJ2VOghXPZmlM3PFNrn9vOZqto/2GoMyjRcWvI/18L7V/OtlOtXgWWNa2sBPpIWZIpjRYrYOZqxgkKdZOu5y5+Z4lXNYT89yYruHLmup8sIMHMwq8pXfyDfWm65ztJwt3ct81ZOWztA5a9WfWV4os7+69LW/w3rmBj5OSFu3/77qSSsnpmD7Or/0x8mYv9Vya+ngGKMOzcpt5RwwYyy3rzoJdJ7yeyhGZy2hSwlToDG4NyMjQ7XO4N/4f48ePVR3TrhVVFRIkyZNZMCAAUF3X3HWUnTTnt+Avmg04+IOKNa+PKzUQbjqySwd0JZl6p7F4WudYPI3Plck89hzZPC8EC0d7RkiWtpZgZ4j43RI7bTjz0dxb6d7joy2LEP/HBmnQ+qkHX+OjH4dPEdmn65M2nNk9GnrnyOTleqQtGPPkdGnoz1HBsuydc+R0dbJ1D1Hxl9dmu2v9hwX7Th5PEfG6VCtIh7PkfFRT5l+niOjrZOSpHuOjEn+VsuNMmnPkfF3flk5BwKdz77SDuY5MrH8PRSNrF6/gw5kEKzgGS4YE4NAZuPGjSrIwGtMicazZcINv6x94YUXyo8//iinnHJKUNsykCEiIrKfiP1o5Pjx49WA2y1btkhZWZk8/fTT6t9ffvmlfPHFFxIJvXv3Vj+FQERERFSpMTIYG7N+/XoVxLRu3Vq1lmDsCp4tc+aZZwabHBEREVHIgu5asht2LREREdlPxLqWtMG3eXl5smfPHvVv4xgaIiIioqoQdCDz1Vdfyd/+9jf1XBdjYw6mY+t/4JGIiIgoqgKZW2+9Vf1EwQcffCD169e39MONRERERFERyGCK9Ztvvim5ubkRKRARERFRxGYtderUSY2PISIiIrJdiwwefHfXXXfJrl271PTrxETP38LAr2ITERERReX06/h470YcjJNBMtE42JfTr4mIiOwnYtOvt207/mNnRERERNUp6ECmcePGkSkJERERUSQCmUWLFqnfV8J4GPzbn759+wZbBiIiIqLIjZHBuBgM7sVvKpmNkXEnxjEyREREFG1jZPQ/Q2D8SQIiIiIi2zxHhoiIiMjWgczixYvl0ksvlWbNmqk//Puzzz4Lf+mIiIiIwhnIPPfcc3LRRRdJRkaGjBgxQv2h7+qSSy6RqVOnBpscERERUdU9EO/kk0+W++67T4YNG+axHEHM+PHj5bfffpNowsG+RERE9mP1+h10i0x+fr5qkTHq3bu3yoyIiIioqgQdyOA5MQsXLvRa/u6776qxMkRERERR+2Tf008/XcaNGyeff/65dO7cWS376quvZOXKlerHJKdMmeJed/jw4eEtLREREVFlxsg0adLE0np4ON4vv/wi1Y1jZIiIiOyHPxpJRERENV6lHoiHxpwgG3SIiIiIqjeQmTFjhrRq1UqcTqf6w79feuml8JWKiIiIyIKgu5YeeugheeKJJ+T22293D/ZdtWqV3HHHHbJ9+3Z55JFHgk2SiIiIqGoG+55wwglqZtKAAQM8ls+bN08FN3v37pVowsG+RERE9hOxB+KVlpZKhw4dvJafeeaZUlZWFnxJiYiIiEIUdCBz/fXXy7Rp07yWT58+XQYOHBhqOYiIiIgiP0ZGG+z7ySefyNlnn61er169Wo2PueGGG+TOO+90r4exNERERERRE8hs3rxZ2rdvr/79888/q//n5OSoP7ynfyAeERERUVQFMkuXLo1MSYiIiIiq8oF4RERERLYbI/PNN9/IggUL1LiYI0eOeLz39ttvh6tsREREROFtkZk/f7506dJFvv/+e1m4cKGajv3dd9/JkiVL1HxvIiIioqgNZMaPHy9PPvmkvPfee5KUlCRPP/20/PDDD3LNNddIo0aNIlNKIiIionAEMpip1KdPH/VvBDKHDh1SM5TwEwV4lgwRERFR1AYy2dnZcuDAAfXvk046yT3lOj8/Xw4fPhz+EhIRERGFa7Bvjx495NNPP5XWrVtL//79ZcSIEWp8DJadf/75wSZHREREVHWBzLPPPivFxcXq3w888IAkJibKl19+Kf369ZN//etfoZeEiIiIKNK/fm03/PVrIiKimnv9dgSToBUMFoiIiKiqWA5katWq5ff3k9Cwg/fLy8vDVTYiIiKi8AQy+t9YQtByySWXyEsvvaRmLhERERFFdSBzzjnneLxOSEiQs88+W5o2bRqJchERERFF5reWqtJvv/0m9957r3z44YfqOTW5ubkya9Ys6dChQ3UXjSiqFBw+InsPHpHC4lLJTEmUnLQkyUpNklgu9+7CYtl/CGmXSWaKQ2qnJklZhUsKikqlsKhUslITJT3ZIQdLyqTgcKlkpSSqv9SkhLCUyWzfissqPMqUnZokTke8x3oo0yGUqch8u6wUh2Q4E6W4tNznOki7TmqSlOr3NyVRMpwOKcV6uu1Ay79WSqIkJyao9fX1lmwoo3E7pJ2Guiwu87kOlqUkJsiB4lIpKDq+//UynRE53uFMO5znqTEts+Nth89utIjqQGb//v3StWtX6dmzpwpkTjjhBNm6dat6KB8RHbczv0jufWujLN+6172sR/McmdivjTSolSKxWO7t+w7JqIWbZGXePvUawcnMQR1l6tKtsvzYMuiWW0cGd20iw+etU69nDOogzy3N81gnlDIZ9y0nPUnm39JZRi/a7C4TdM/NkaE9c2XIy2vk8JFy0zLNHNxRpi7xX27jOr7yw3Zjr2ilttt36Mix7bC/e9U2c28+W/717gaPejOrk+7Nj5V79hr1esqAdjJr5TbP+talbVZu7C9ej7+ytTSqkybhPN5aXuFIO5znqVlaxjqxw2e3Rky/zsjIkI0bN0qTJk0kUu677z5ZuXKlLF++POQ0OP2aajrc3Q2bt87ji1GDL8RnBrSLyru7SJYbd+Z3LljvcVEbdl6urNu+32OZpmtuHWnX6OgNkq91gimT2b4hGJipu9Cb5f/skrygyuRvHX/54cJ5z0Ut5JMtuz22M9sm1Hqzsp22vyjP49ecEXLridnx1u9rZdIO53nqLy1jnUTzZ7eqWL1+W/6JgquuusrjDw/Fu/XWW72Wh9OiRYtUFxKeIFy3bl1p166dvPjii363KSkpUTuv/yOqydBEbfbFCMu27lXvx1q50b1gvKi1a1jL9EIHWI73/a0TTJnM9q1uZnLA/IMtk791/OW3Im+fOBLivbYz2ybU/K1spy8Pjlk4j3e40g7neeovLWOdRPNn17ZdS4iK9K677jqJtF9++UWmTZsmd955p9x///2yZs0aGT58uPqxykGDBpluM2HCBHn44YcjXjaiaIF+dn8wHiHWyo0xEkYlZRV+twn0fjBlMtu3g8XlQedvpUy+1gmU34GiUq9tzbYJtd6C3c7smFkVaNvKpR2+8zRQWsY6idbPrm0DGQywrWoVFRWqRWb8+PHqNVpk8COVzz//vM9AZtSoUSrw0aBFpmHDhlVWZqKqlulM9Ps+BoXGWrkznd5fbRis6k+g94Mpk9m+pTsTgs7fSpl8rRMov4yURDXIOdA2odZbsNuZHTOrAm1bubTDd54GSstYJ9H62bX9r19Xpfr168vpp5/usey0006T7du3+9wmOTlZ9aXp/4hqMgzQRH+6GSzH+7FW7uy0JDU2Qm/djnw1DsEMluN9f+sEUyazfdtTWOJVJmP+wZbJ3zr+8sPysvIKr+3Mtgk1fyvb6cuDYxbO4x2utMN5nvpLy1gn0fzZjTZRHchgxtKPP/7oseynn36Sxo0bV1uZiKINBgNihoPxCxKvJ/VrE7WDBSNZbgzsxGwV/cVt5optcnvP5mqWkB7WubFrE/U+/ob1zFUzcipTJrN9w0yVMX1beV1wUZ7bz2uu8vZVJrwfqNzGdXzld3TWUmsZOnft8e2OlRPbPHhpS696M6sTvNbKjT+Uxau+dWmblVt7jWNVmWnSZsc7XGmH8zz1lZaxTqL9sxttovpHIzEmpkuXLmrMyzXXXCNff/21/P3vf5fp06fLwIEDLaXBWUsUK7RnU6BfHU3SuJuzwxdhJMvt8VwRp0Nqpx1/joyWH56rgi4WPDcFr2vpniNT2TKZ7ZvHs16cDtVaoD1HRlsv3Xn0uSJamby2S3Gobgo8R8bnOk6H1Ek7/hwZLe3MY8+RyddtB1r+WcbnyByrN+05Mvp90W+XqXuOjK91sCwlSfccmWP7H5HnyIQ57XCep8a0zI63HT67kWb1+h3VgQy8//77atwLnh+Dqd4Y/4JgxioGMkRERPZTYwKZymIgQ0REZD9hf44MERERUbRhIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLYdEsTFjxsjDDz/ssezUU0+VH374odrKRETRoeDwEdl78IgUFpdKZkqi5KQlSVZqUsS2211YLPsPYbsyyUxxSHZqktTLdFZZua2kc+hIuRQUlUphUalkpSSq5WlJCQHzs7Jv4Sp3TVLV52C0KYiS/YjqQAZatmwpn332mfu1wxH1RSaiCNuZXyT3vrVRlm/d617Wo3mOTOzXRhrUSgn7dtv3HZJRCzfJyrx97mXdcuvI+CtbS6M6aREvd6B0ctKTZP4tnWX0os1eZRzTt5VcO32VuuCY5Wdl38JV7pqkqs/BaLMzivYj6ruWELiceOKJ7r+cnJzqLhIRVfNdoPELFJZt3Sv3vbVRvR/O7dBaYbzQw4q8fXL/wk3q/UiW20o6k/q18QpitDKOWbRZvW+Wn5V9C1e5a5KqPgejTUGU7UfUBzJbt26VBg0aSNOmTWXgwIGyfft2v+uXlJRIYWGhxx8R1RxoWTB+geq/SLWWh3Bthy4X44Vef8HH+5Est5V06mYm+y0j3jfLz8q+havcNUlVn4PRZm+U7UdUBzKdOnWS2bNny0cffSTTpk2Tbdu2Sffu3eXAgQM+t5kwYYJkZWW5/xo2bFilZSaiyEJ/vD8HfLwf+nZlAcrj//3K5m8lnYPF5X63MXsf+VnZt3CVuyap6nMw2hRG2X5EdSBz8cUXS//+/aVNmzZy4YUXyn/+8x/Jz8+XBQsW+Nxm1KhRUlBQ4P7bsWNHlZaZiCIr05no9/0MH++Hvp3/cXmB3q9s/lbSSXcm+N3G7H3kZ2XfwlXumqSqz8Fokxll+xHVgYxRrVq15JRTTpG8vDyf6yQnJ0tmZqbHHxHVHBjYikGFZrAc74dzu+y0JDX41QyW4/1IlttKOnsKS/yWEe+b5Wdl38JV7pqkqs/BaJMTZfthq0Dm4MGD8vPPP0v9+vWruyhEVE0wvRMzI4xfpHiNQa2+pn+Guh2mIWMGj/GCr83ssToFO9T8raSDgZeYnWRWRizH+2b5Wdm3cJW7JqnqczDaZEXZfsS5XC6XRKmRI0fKZZddJo0bN5adO3fK6NGjZf369bJlyxY54YQTLKWBwb4YK4NuJrbOENUc2jMs0B+PpmzcBQbzDI9gt/N41orToVorKvMcmWDzt5KO9hwZbVmW7jky/vKzsm/hKndNUtXnYLQpiPB+WL1+R3Ugc+2118qyZctk3759KnDp1q2bjBs3Tpo1a2Y5DQYyRERE9mP1+h3VT5ebP39+dReBiIiIopitxsgQERER6TGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdkWAxkiIiKyLQYyREREZFsMZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUCGiIiIbIuBDBEREdmWQ2xk4sSJMmrUKBkxYoQ89dRT1V0cIiKqIgWHj8jeg0eksLhUMlMSJSctSbJSk8KSVnqyQw6VlElBUfjTNksr1H0JZx2EQ7SUxzaBzJo1a+SFF16QNm3aVHdRiIioCu3ML5J739ooy7fudS/r0TxHJvZrIw1qpVQ6rW65dWRw1yYyfN46OXykPKxpG9MKdV/CWQfhEE3lsUXX0sGDB2XgwIHy4osvSnZ2dnUXh4iIqvCu33jBhGVb98p9b21U71c2rRV5+2TWym0ypFuTsKetTyvUfQlnHYRDtJXHFoHM0KFDpU+fPtKrV6+A65aUlEhhYaHHHxER2RO6LowXTP2FE++HI62VefukXcNaEUlbSyvUfQlnHYRDtJUn6ruW5s+fL2vXrlVdS1ZMmDBBHn744YiXi4iIIg/jL/w5EOD9YNIqKauIWNpIyxUgDV/5hbMOwiHayhPVLTI7duxQA3vnzp0rTqfT0jYYDFxQUOD+QxpERGRPmc5Ev+9nBHg/mLSSHfERSxtphbov4ayDcIi28kR1IPPtt9/Knj17pH379uJwONTfF198IVOmTFH/Li8v99omOTlZMjMzPf6IiMiectKT1CBSM1iO98ORVtfcOrJuR35E0tbSCnVfwlkH4RBt5YnqQOb888+XTZs2yfr1691/HTp0UAN/8e+EhITqLiIREUUQpvNiJozxwonXk/q1CWq6r6+0MGvpxq5NZOaKbWFPW59WqPsSzjoIh2grT5zL5QrUbRdVzj33XDnjjDMsP0cGg32zsrJUNxNbZ4iI7El7ZgnGX6DrAnf9lX3Wi5ZWuvPoc2QKi8Kftllaoe5LOOsgHCJdHqvX76gf7EtERKS1aERbWqGkHWr+kSx3KKKlPLYLZD7//PPqLgIRERFFiageI0NERETkDwMZIiIisi0GMkRERGRbDGSIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZlu2e7Bss7aek8JsNREREZA/adTvQT0LW+EDmwIED6v8NGzas7qIQERFRCNdx/Hhkjfn162BVVFTIzp07JSMjQ+Li4iTWIcJFULdjxw7+GngVYH1XPdZ51WJ9V61Yqm+Xy6WCmAYNGkh8fHzstshg508++eTqLkbUwQegpn8Iognru+qxzqsW67tqxUp9Z/lpidFwsC8RERHZFgMZIiIisi0GMjEmOTlZRo8erf5Pkcf6rnqs86rF+q5arO8YHOxLRERENRdbZIiIiMi2GMgQERGRbTGQISIiIttiIENERES2xUAmRkyYMEE6duyonnBct25dueKKK+THH3+s7mLFjIkTJ6onS//zn/+s7qLUWL/99ptcd911UqdOHUlJSZHWrVvLN998U93FqpHKy8vlwQcflCZNmqi6btasmYwdOzbgb+KQNcuWLZPLLrtMPdEW3xvvvPOOx/uo54ceekjq16+v6r9Xr16ydetWiVUMZGLEF198IUOHDpWvvvpKPv30UyktLZXevXvLoUOHqrtoNd6aNWvkhRdekDZt2lR3UWqs/fv3S9euXSUxMVE+/PBD2bJlizz++OOSnZ1d3UWrkSZNmiTTpk2TZ599Vr7//nv1evLkyfLMM89Ud9FqBHwvt23bVqZOnWr6Pup6ypQp8vzzz8vq1aslLS1NLrzwQikuLpZYxOnXMeqPP/5QLTMIcHr06FHdxamxDh48KO3bt5fnnntOHn30UTnjjDPkqaeequ5i1Tj33XefrFy5UpYvX17dRYkJl156qdSrV09mzJjhXtavXz/VOjBnzpxqLVtNgxaZhQsXqlZ0wCUbLTV33XWXjBw5Ui0rKChQx2P27Nly7bXXSqxhi0yMwokPtWvXru6i1GhoBevTp49q+qXIWbRokXTo0EH69++vAvR27drJiy++WN3FqrG6dOkiixcvlp9++km93rBhg6xYsUIuvvji6i5ajbdt2zbZtWuXx3dKVlaWdOrUSVatWiWxqMb/aCSZ/yI4xmqgKb5Vq1bVXZwaa/78+bJ27VrVtUSR9csvv6iujjvvvFPuv/9+VefDhw+XpKQkGTRoUHUXr0a2gOFXmFu0aCEJCQlqzMy4ceNk4MCB1V20Gg9BDKAFRq9evXru92INA5kYbSXYvHmzuoOiyNixY4eMGDFCjUdyOp3VXZyYCM7RIjN+/Hj1Gi0yOMcxhoCBTPgtWLBA5s6dK6+99pq0bNlS1q9fr26O0OXB+qaqxq6lGDNs2DB5//33ZenSpXLyySdXd3FqrG+//Vb27Nmjxsc4HA71h/FIGKCHf+MOlsIHszdOP/10j2WnnXaabN++vdrKVJPdfffdqlUG4zEwO+z666+XO+64Q82OpMg68cQT1f93797tsXz37t3u92INA5kYgQFiCGIwaGzJkiVq2iRFzvnnny+bNm1Sd6raH1oM0PSOf6M5nsIH3aTGxwlg/Ebjxo2rrUw12eHDhyU+3vPygXMaLWMUWfjuRsCCMUqawsJCNXupc+fOEovYtRRD3UloBn733XfVs2S0vlQMEsNMAwov1LFx/BGmSOIZJxyXFH5oDcAAVHQtXXPNNfL111/L9OnT1R+FH55xgjExjRo1Ul1L69atkyeeeEKGDBlS3UWrMbMd8/LyPAb44gYIkzNQ5+jGwyzI5s2bq8AGz/RBt542synmYPo11Xw41GZ/s2bNqu6ixYxzzjnHNWLEiOouRo313nvvuVq1auVKTk52tWjRwjV9+vTqLlKNVVhYqM7lRo0auZxOp6tp06auBx54wFVSUlLdRasRli5davp9PWjQIPV+RUWF68EHH3TVq1dPne/nn3++68cff3TFKj5HhoiIiGyLY2SIiIjIthjIEBERkW0xkCEiIiLbYiBDREREtsVAhoiIiGyLgQwRERHZFgMZIiIisi0GMmRrgwcPjt2nWdZgs2fPllq1agW1zV/+8hd56qmnJBrPy3PPPVc9jbWy8DMMeDz9gQMHQq6naBPu47Z3716pW7eu/O9//wtbmhTdGMhQ1IqLi/P7N2bMGHn66afVl3ks+u9//6vqAY8ur2n++te/qt9KqinefvttGTt2bKXTGTVqlNx+++3qJzDs4uWXX5Zu3bpVWX45OTlyww03yOjRo6ssT6pe/K0lilq///67+9+vv/66PPTQQx4/DJienq7+qObB73/VpN8Aw2/kVBZ+yRu/XP/MM89IdcOvtyOINv5wpBn8vlvfvn2lKt14441y5plnyr///e+w1D1FN7bIUNRCE7r2hx+3xBenfhmCGLMmfNyxohk/Oztb6tWrJy+++KIcOnRIfbnhTjY3N1c+/PBDj7w2b94sF198sUoT21x//fWqidqXX3/9Vf1wHvLAj0Hih/P+85//qPc+//xzVdYPPvhA2rRpI06nU84++2yVh96KFSuke/fu6oLdsGFDGT58uCqnvskdP4KIH+JDufFjcfofQdR+wbxdu3YqP+y7L1988YWcddZZkpycLPXr15f77rtPysrKPOoN+d9zzz3qix/1ixYvf7CfSBP7j+4N/AI16kUzbdo0adasmSQlJcmpp54qr776qsf2+fn58n//93+qvlFH+DFNXKjNukx+/vlnufzyy9W6OEYdO3aUzz77TIKhnSuoU6SD9B955BFVD3fffbfa75NPPllmzZrlsd2OHTvUD1FifayDcqA1TH9Rv/POO9X7+FFQ1KHxl1+MXUuoC/waOo4r6vpvf/ub7Nmzx2/5FyxYIG3btpWTTjrJ672PP/5YTjvtNFU3F110kcdNAH6RGvuJfcPxP+OMM+Sjjz5yv6+drzgeGrTyYZm2n9rxWLRokZx++ukqHQRWgc6B4uJi+eSTT9yBDPYRnxuc8zh/586d67Uv+PHJ1q1bqzTxubjtttvUjygCPh+ZmZny5ptvemzzzjvvqPW1Ljd8HvEjigsXLvRbp1QzMJChGgdN2Whexi8gI6j5xz/+If3791e/jrx27Vrp3bu3ClQOHz6s1scX+HnnnacCgm+++UZ9ye/evVtdvPz9mnhJSYksW7ZMNm3aJJMmTfJqHcLF8fHHH5c1a9bICSecoL7AS0tL3RdmXHD69esnGzduVC1OCGyGDRvmkQa2xwUPvy6ML3Tsi9Yqhf0DXNBx4UL3hZnffvtNLrnkEnXx37BhgwowZsyYoX4911hvuBisXr1aJk+erC5+n376qWmauPgjKDjnnHNU+VetWiW33HKLuvgBLiAjRoyQu+66SwVwCFgQSC5dutR9cUXguHLlSpkzZ45s2bJFJk6cKAkJCab54UKGfVi8eLGqC9Qd6hMX02AsWbJEdu7cqY4bLpjofrj00ktVQIr9vvXWW1VZtfEVOF4XXnihCjiWL1+uyqsFC0eOHHEfI1zoZ86cqY7hn3/+GfACinTR1YTjgYswAgYEWv4gf5wLRjiPH3vsMRUcYb9QJyNHjnS/j+5XlBHr4FhhfxBYbN26Nai6Qz44z1966SX57rvvVFDn7xwAHC8EXi1atFCvsY8IDHEeIBh57rnnvAI4tPJMmTJF5YFzEscMwSHg/Lz22mu9gk28vvrqqz263BBgoc4oBlT3r1YSWYFf6c7KyvJajl+Dvfzyyz1+Ybpbt27u12VlZa60tDTX9ddf7172+++/q1+SXbVqlXo9duxYV+/evT3S3bFjh1rH1y/Ktm7d2jVmzBi/v1w7f/5897J9+/a5UlJSXK+//rp6fdNNN7luueUWj+2WL1/uio+PdxUVFanXjRs3dl133XXu9/GLt3Xr1nVNmzZNvd62bZvKZ926dS5/7r//ftepp56qttdMnTrVlZ6e7iovLzetN+jYsaPr3nvvNU0T+4O8P//8c9P3u3Tp4vr73//usax///6uSy65RP37448/Vvvqq359HW+9li1bup555hn3a9TXk08+6XN9nCtYR9tnQL10797d63yZN2+eev3qq6961R1+4RnHEvsA9evXd02ePNn9fmlpqevkk0/2Oi/9/fL5mjVrVH0eOHDA5zpt27Z1PfLII171hO3y8vI8ji1+FVnToEED17hx47yO7W233eZxvu7fv9/9Ps4pLMM5ps9n/fr1ls8BwDkwcuRI9W8ca6z/9ddfu9///vvv1TJ/x+2NN95w1alTx/169erVroSEBNfOnTvV6927d7scDodXOe644w7Xueee6zNdqjnYIkM1DrpzNLjDR3M/mqo16FYA7U4Qd8W4Q9TG3OBPu4NEy4kZdMOgRQNN6birxx2pUefOnd3/xt0rule+//57d564i9fniTtltFRs27bNdF+0rrVAXRBGyBNl0d8po9xo5dDP7NDnBeiC8pUX9gd31ygzWkZw16/vzkCeyEMPr7X9R9cFujpOOeUUS/uAsqKVAd0n6MJAfSGtYFtk0OWgH9eBc0F/bmjni/7cyMvLU3f62nHCvqPLBOdGQUGB2u9OnTq503A4HKYtJ3rffvutqjd0FyJttGqAv/0pKipSXXBGqampqgvP7LgVFhaqFih/x8IqdBHqz5FA5wC619577z13txLyQ91g7IoGnzPjrCu0MJ5//vmqJQd1g9bTffv2uVtQ0dKC44jWGkCLXuPGjaVHjx4e6aD7StuGajYGMlTjJCYmerzGBVy/TLugI2jQLpL4IsbFVf+Hpnfjl6Pm5ptvll9++UV9yaJrCReuYAZhIk90Yejzw0UTeeovSmb7opU73ILNC8356E5Alx26xhCUfPXVV5byCnYgL4IYdNdgfAu6C1BfCEC07p1wnRvaMv25gQuv8dzAjCqMawkFxnng4o+xHhgjgq5HrSvK3/6gu3T//v2W9sk4RscfLbDTb6N1gRqPmT4YDnQOoOsTXZB4zyp0saGrDwHTW2+9pQK+qVOnetUNPn/abEWUAd2WxrKhiw9dulTzMZChmNe+fXvVH4/BtRgIrP9Dn7wvGIiIMRUYm4KxIBhUrKe/qOMChIsfWhS0PDEuxJgf/nDna4W2Hgab+oM8cbHRX6gw1gN3u2gVqQyMK8KU4C+//FIN1n3ttdfceSIPPbzGQFHAhQqtQVanWGNb3P1feeWVKoBBy5R+wG2k4DghuMRzSYzHCQPQ8YcWEIyv0eDijQuwLz/88INqYcCYIAz2RquElVY21DXOmWAgWMKgV3/HQrvY61tTgpnS7+scwGylPn36uMc9YT+NdYPxXvpBxngPQSTG9GCAPAIjtCgZXXfddWpQMcbSoE4GDRrktQ7GZqFsVPMxkKGYh4G7uHsbMGCAujtGlwFmgeAuz1eQgBkoWAfdQBhAjK4pLUjRYLAsBjviCxUXYdxRazOs7r33XvXFj8G9WusPvviNg339wcUVd8na4GR0c5jBIGEMsMTAZ1xEkQ+6wzDTxsr0WTPYb1y8ECDhgoKZKdgHrQ4w0Bl3zBhYjOUYWIuATxuEiq4UtHZhsDMGFCM9zCTTz6bRa968udpea7lCa0ikWqb0Bg4cqI4bZiqhJQjlxEwddC1q3XIY1IygBIN2Ub+ob/3F2QjdSQhC0YKHVj3MBLLyjBm04qC+AwWuRjgWGKSLFhMEDpixhnpEuQFBGYJyzFLDscJsOwQSlT0HsF/6adfoWsUgabREIvBD0IKWFX3rHMqC1iCtbjCA+fnnn/fKG4Ozr7rqKrVvGLxvDMjRpYT08R7VfAxkKOZpd6y4QOCLD3f8CFTQd+/rQo91EQDhSxtfzrhzxAwMPVzccLFA18SuXbvUeAGtFQUtEpgSjRYJ3JXjzhHPyUFZrMJ4A9yRvvDCC2o7XGzNYKwBpoajqR/Td9GKdNNNN8m//vUvCRXGZeCijUAE+47ZKqgPXKQAARvGTGCmDMYzoIzoAtBPEUfXAWZSIYBE6wBmpvi6SCMQwsUL3RToBsRFHa0lkYb9xEwgBB+4cOJ4o+4wRgatHYDWOHQxolUAY5HQ0oWWI1/QAoIg74033lD7jfME9RQIZnnhmAc77RxBF4JWlBPnNoJFBBkIDrWuqXnz5qnjifMSQY9xRluw5wBuBjC2CMdJD+cAzlUEsqhPbIOAXIPzE8caZUDrDrreJkyYYJo/jgO6m/B4AiME6zhm+GxRzReHEb/VXQiimgR37D179lTdSXZ/fDxFF4wXQRCC1sBohmAEAZf2bKVIQGvNHXfcobqejN2x6JZCABfqOCayFz7Zl4jIJtDagW4rPPgtmn+mAF096HaKBHQbYTwPWrJQH8YgBg+yRGsPWvooNrBFhijM2CJDFDkYyzNu3Dg1xgpdSPyZEmIgQ0RERLbFwb5ERERkWwxkiIiIyLYYyBAREZFtMZAhIiIi22IgQ0RERLbFQIaIiIhsi4EMERER2RYDGSIiIrItBjJEREQkdvX/y+Thsu/VxtMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Daily_Screen_Time(hrs)Happiness_Index(1-10)
Daily_Screen_Time(hrs)1.000000-0.705206
Happiness_Index(1-10)-0.7052061.000000
\n", + "
" + ], + "text/plain": [ + " Daily_Screen_Time(hrs) Happiness_Index(1-10)\n", + "Daily_Screen_Time(hrs) 1.000000 -0.705206\n", + "Happiness_Index(1-10) -0.705206 1.000000" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "#######################################################################\n", - "### 💻 YOUR WORK GOES HERE TO ANSWER THE FIRST RESEARCH QUESTION 💻 \n", - "### \n", - "### Your data analysis may include a statistic and/or a data visualization\n", - "#######################################################################" + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Scatter plot\n", + "sns.scatterplot(data=df, x=\"Daily_Screen_Time(hrs)\", y=\"Happiness_Index(1-10)\")\n", + "plt.title(\"Social Media Time vs Happiness Score\")\n", + "plt.xlabel(\"Time spent on social media (hours/day)\")\n", + "plt.ylabel(\"Happiness score\")\n", + "plt.show()\n", + "\n", + "# Correlation\n", + "df[[\"Daily_Screen_Time(hrs)\", \"Happiness_Index(1-10)\"]].corr()" ] }, { @@ -172,7 +372,7 @@ "id": "collectible-puppy", "metadata": {}, "source": [ - "## Second Research Question: [✏️ PUT YOUR QUESTION HERE ✏️]\n" + "## Second Research Question: Does age or gender affect how social media use relates to happiness?" ] }, { @@ -193,7 +393,9 @@ " - *How will you reorganize/store the data?* \n", " - *What data science tools/functions will you use and why?* \n", "\n", - "✏️ *Write your answer below:*\n" + "✏️ *Write your answer below:*\n", + "\n", + "I will group the data by gender and compare average happiness scores at different social media usage levels. Then I will use Seaborn to make a regression plot showing trends for each gender. This will help reveal whether men and women are affected differently by social media use." ] }, { @@ -206,16 +408,33 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "id": "pursuant-surrey", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAAIACAYAAACsK4WmAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQecFOX5x38zs7P9ej84OiIKKIgiNsCOXbFFY0WNPRp7EktMMf5NjJrExILd2HvHih1FOgLS6/Wyvc7M//O8c7u3e7dXgDu5454vrns79Z3+m+d9imQYhgGGYRiGYRiG6QPIO7sBDMMwDMMwDNNVWLwyDMMwDMMwfQYWrwzDMAzDMEyfgcUrwzAMwzAM02dg8cowDMMwDMP0GVi8MgzDMAzDMH0GFq8MwzAMwzBMn4HFK8MwDMMwDNNnYPHKMAzDMAzD9BlYvDK9nvPPPx9DhgzZrnlpPpq/t3LHHXdAkqSd3ub169eLdjzxxBM/63qZrvHZZ5+J40Pffbn9L7/8MvoztA/ommcYZsdg8cpsE0uWLMGpp56KwYMHw263Y8CAATjiiCPwz3/+E339oUKfiy66KOP43/3ud8lp6urq0BdICOPOPlOnTkV/hF4SjjvuuIzjWGz1bRYvXowLLrgAQ4cOFfcpt9uNvffeGzfeeCPWrl27s5vHMMwOYtnRBTD9h6+//hrTpk3DoEGDcPHFF6O0tBSbNm3Ct99+i/vvvx9XXXVVj6z3kUcega7r6GnoIffKK6/gwQcfhNVqTRv33HPPifHhcLjH27Fy5UrI8o6/V55yyikYMWJE8rff78dll12Gk08+WYxLUFJSIl5GQqEQVFXd4fUy3c8hhxwijk/r85LJfL+g87ywsBBnn302dt99d8TjcSxduhRPPfUU7rvvPrEvFUXZ2U1lGGY7YfHKdJk///nPyMnJwffff4/c3Ny0cTU1NT223p9LUB199NF488038d577+HEE09ME+3r1q3DjBkzhLjtaWw2W7csZ9y4ceKTgCzG9FCnYb/85S/bTE/inOmd0MsMH5/OoWuVzvEDDzwQb7/9NrKystLG//3vfxf3sV0BepGml5nueNFlmL4Gn/VMl1mzZg323HPPNsKVKC4uTvtNlo4//vGPGD58uBBj1EX729/+FpFIpM28JBanTJkiHjTZ2dnYd9998b///a9Dn9e//e1vOOCAA1BQUACHw4F99tlnh7t4yQWCLFyp6yaeffZZjB07FmPGjMk439y5c4XwJWHvdDrFtnz11Vdtpvvyyy/FtpEIof3y0EMPZVxea5/XhoYGXH/99aIN1P1J+2j69OlYtGgRetLnldpA69u4caPoXqe/aR/9+9//TrqQHHrooXC5XMJy23q/EU1NTbjmmmtQUVEhzgOyBN99992dWtJpfcOGDcs4bvLkyZg4cWLy94cffoiDDjpInJfUxlGjRolzrbvZsGEDLr/8crF8Oufo3DvttNPEvkuF9iHty88//xy/+tWvxHR0zM4991w0NjZmdF2YPXu26Namc2OPPfbAq6++2qnPK7l70Dn5448/ih4ROvfo+Pzf//1fm7bTdXf77beL/U/HgY4HdaG3vh67si/JRYjuA7S+vLw8cSwyHftMaJomlke9NnTenHDCCaL3JgG1kV5Wa2tr28x7ySWXiHZ11Pvxhz/8QewnumZbC1eC9i/dl1pbXbtyDSfccFavXi2uDWoLTU/uCcFgMG1a2q/XXnstioqKRDtoOzdv3pyxzVu2bMGFF14oekDo2NC+feyxxzIe/+effx6///3vxXGmdnq93nb3BcPsyrB4ZboMCZQffvhBdL91BvmO3nbbbZgwYQL+8Y9/iIfBXXfdhTPPPLPNg/7YY48VAu2WW27BX//6V/EQf//99ztcPrkpjB8/HnfeeSf+8pe/wGKxCCHxzjvv7NA2nnXWWXjrrbdEF3tChL/00ktieCY++eQTIXjpIUIPXmoLCTYSdd99911yOhJ6Rx55pLBQ00OQHng0/WuvvdZpm8hH7/XXXxci595778UNN9wglkf7dOvWrehJSGyQUCaxQ6KIxNaVV14pjhs97Em4kBilBzSJM7JQJ6AHOrXxmWeeEeMeeOABYRGj4/yb3/ymw/WeccYZYllk5W8tIMlNJXEeLVu2TOwXEgt0LpBljYRCppeHTMRiMWGRbv3xeDxtpqW2kGWP1k3bcumll+Ljjz8WIrK1eCFoPy1fvlwcb9p+ElQnnXQSDMNIm27VqlVie2k/0zWSOJdJSHYGiWE6DnvttZfYduoiv+mmm8QLYQJ6UaB9Qi98xx9/vBCf1A66Lmm9CbqyL6lL/uqrrxYCm7rfSSzS9UriryuQ1ZOuUWojLYe28fDDDxfd+MQ555wjrrkXXnghbb5oNCpeTqn3oz0LNB0Duh7peAwcOBBdpavXcILTTz8dPp9PHCv6m64F2g+t73+0f+iap3saCXK6z7Wmuroa+++/Pz766CNxvtB9jV4wZs6cKeZvDQlv2n/0MkvtZDcSpt9iMEwXmT17tqEoivhMnjzZuPHGG40PPvjAiEajadMtXLiQns7GRRddlDb8+uuvF8M/+eQT8bupqcnIysoyJk2aZIRCobRpdV1P/n3eeecZgwcPThsfDAbTflMbxowZYxx66KFpw2k+mr8zqF1XXHGF0dDQYFitVuPpp58Ww9955x1DkiRj/fr1xu233y6mq62tTbZx5MiRxlFHHZXWXmrb0KFDjSOOOCI57KSTTjLsdruxYcOG5LAff/xR7MvWl2HrNofDYUPTtLRp1q1bZ9hsNuPOO+80ugq1m9ZF29EaWh6Ne/zxx5PDqA007C9/+UtyWGNjo+FwOMQ+ef7555PDV6xY0WbZf/zjHw2Xy2X89NNPaeu6+eabxXZv3Lix3bZ6PB6xfdddd13a8P/7v/8T607sx3/84x9px2RboP1M83b0eemll9o954hvvvlGTPfUU08lh9E+pGH77LNP2rVBbafhb7zxRps2vPLKK2nbXlZWZowfPz457NNPPxXT0XeCKVOmtFl3JBIxSktLjRkzZiSH0bksy7LxxRdfpLX9v//9r5j/q6++6vK+PPHEE40999zT2FYS7R8wYIDh9XqTw1988UUx/P77708Oo3sL3RNSefXVV9tsf2sWLVokprnmmmvajKuvrxfblfjQftrWazhx/V944YVpyz755JONgoKCNve/yy+/PG26s846q801MnPmTHGs6+rq0qY988wzjZycnOQ5l9h/w4YNy3geMkx/gy2vTJehrALffPONsMZQlzVZ4o466ijRhUW+ogneffdd8d3aunbdddeJ74R1lKwuZMG4+eab21hTWqePag1126Zan8hSdvDBB2P+/Pk7tI3UDUqWLArQIqg7lNwTyOrcmoULFwqrGVll6+vrk1a7QCCAww47THQbk9WLrJcffPCBsHZRsFuC0aNHi/3XGdSVmPBro2XRuhJduju6vV0hNQMDdZXSeqnLl6xOCWgYjUuN5CaLNR0T2qepVk2ytNF20P5pj4RrxIsvvphmqSSLHFmqEvsx4cLyxhtvbFdQ36RJk8R52PpDVsqOzjmy2NJxICsZtSHTcaBu7lR/bfLFJKtq4vpIUF5eLoLoUredLLULFixAVVVVh+2n8yDVf5kscfvtt1+b40DnGlllU48DWRaJTz/9tMv7kqah7u/WFvGuQtuV2p1PmUvKysrS9glNQ5ZcclNKQFZrsv6TJb89El3otE9aQy4o1IWf+CTuV129hlMhi3sqdI7TvIn1J7aFLMupkPtMKnRekw89WcPp79RjQ/cFuqe1Pq/OO++8tPOQYforLF6ZbYJ8NskfjwQjdalRFzAJUHoIke9domuXxFZqpDtBfm708KPxROLh1J4vaUdQMAaJGBK9+fn54oH0n//8J2N377ZCDzISMOTrSd317bkM0EMv8UBJfTDS59FHHxXdr9Qe8t+jbtGRI0e2WQaJvs6ghyd18dL8JGQpiprWQemAumN7O4L2L60rFfLzo27Z1i8YNDzVp5P2D7l/tN43JF67EuRHXdrkD0kvTInzhdxWUru66W9yRSCBTT6D1KVPgrerQpb2JbWn9Yd8qFtDx5BcYRL+u4njQF3MmY5D6+NNooqEWmsfWbpOWu/L3XbbTXy3nrY1mY4DvSy0Pg7kEtD6OCTWkTgOXdmX1N1P20ECmbbviiuu6LKLRqZ9Qm2n7U/dTmoH7V8SrATtW7reKXNARy+1CVGccPlJhQR5ppeSrl7DqaS+gCb2N5HY54n7H/m1d3St032Bzp2HH364zbrJrSjTNUKpvxiG4WwDzHZCFh4SsvShhyDdbMnCQz5jXbWebi9ffPGFsP6SnxqltSJBQBauxx9/vMuBIx1By6aHJz3Q6OGVamFMJfFQv+eee4TfXyboQZ8pSG1bIN+2W2+9VQR1kM8biXV6OJIlp6dTiLWXTqi94alWUmobWespMCgTCfHUHmSRoqAUElBk/aZv2m7yB01AViiyjpH1kCz6JJbJOktWRQqC6s50SJQKjs4x2u8UNEZinc5xEnk/Ryq3HTkOFOxH/tKZIDHe1X1JFlxK5UZiksYnUsuRqG/t97m9kBgk31sSr7Rc8nWlayhThoxUSASTZTuTT37CYkvjt+ca3tZ93hUS66btontNJlKzhRBsdWUYExavzA6TiPyurKwU39TFTjdmsmrQwy41OIEsDYku+IRlgh42ra20HUEPTLIIUld8alopEhbdAT0gqIufAo2o65osbJlItJ+6eRPWxEyQJYWWmbDypEJCoDPo4U3R5LNmzUobTvuyvbb1Bmj/kBWso33TEeSaQCKGXopIeJGQoi5a6mZPhQQtdfHSh6YjsU9FJUiEbe+62zsOJDIokCkBRb7TccgEHW86bgloX9A1cswxx6RNR9HrJHxSX/Z++ukn8b29leVaHwdy86H909kLZVf2JR0Xso7ShwKpKGcwBWJRL0xn6bxaXwO03bT9rUUauQ5QujpyTyARS8GZFIXfEdQuCtaaM2eOiOAnd6bO6Oo1vC0k7n/UU5BqbW19rScyEZALTXeepwzTH2C3AabL0AMsk3Uh4eOVuFEnHs6to2UTlp9E1C1F4tLNm6J2W6e/6ciKQZYPegjTTT8BdTtSF393QdG8ZEUmi2d7UNcyPfyoKzJTV2Ui3Q+1l3zYqH3kipCAItFJgHcGzd96f5Cgowd0b4Ys1tTln2kbSfBRVHlnkECijArUhUsCLNVlgKAsFa1JWNB21OLdleNAkfup52Eq1B1MvrEJyK2FtpleiFKh7UvNOkG+k5RMn7aDXG264zjQuUKZAjK5QpB/Z1f3Jfl2tu6BocwDtF9St7U9aLvIzSj1hYAEfet9knhppEwWJEY7s7omIEstHQ+aPtM12fr4dfUa3hYS20IZKVJpfT+k8ymROzqTtXh71s0w/QW2vDLb1G1K6WgouISCP8jqQqmDyCJGFqKEnxal7SELFT28SaRQlx35xz755JPCopmwRpG1g3w5yceO3A/It5S6DEmk0Hpo+kyQ+CUhTIFVNA/5hVHuUbLekh9od0DbQJ/OrFQkquhhRVYh2n6y9pBQIKFP20dptwjqUqVuVrIcUq5QEjGJfJmdtZmsj5S6iJZP3eeUJousUe3lQe0tUEovCoyh9lNeTBIKJJSo/SRa6IWjM8sxvQjRCw69TCQe9qnQfqGubjonyOJF5wJ1Y5MvKOUr7U5oO55++mnhLkCCjYQ5pTiiPK6ZoOuDLJgkHsnqRu2iNpFbSmv3CUqNRFZG8jWlHJ/US9FdPQmUfopcLijQiM5L8mslgbdixQoxnF4uqPekK/uSXjhJUNMyqK30Avavf/1LzJMpr2pryOWFlkXnMm0jCTq6bqliXyrkBkTuGLRsOu6/+MUvurStdH3RPHSvIv/aRIUtOhZkzabrhgR34qVgW67hrkKCn9pL+478ZemapZRqZGFuDaXRovVQ4CDtAzqv6CWCArXo3Mr0QsEwDKfKYraB9957T6SJ2X333Q232y1SSo0YMcK46qqrjOrq6rRpY7GY8Yc//EGkm1FV1aioqDBuueUWkfapNW+++aZxwAEHiBRM2dnZxn777Wc899xzHabKmjVrlkhxQ+mUqD2UniiRymZHUmV1ROtUWQkWLFhgnHLKKSJdDrWH1nn66acbH3/8cdp0c+bMEemTaL9RyhtKVdSVNtM+o5RRlFKH9tGBBx4oUjRRqiT69GSqLEp11RpaZ6Z0SdTuY489Nm2Yz+cTx53OE9ruwsJCcaz/9re/tUmx1h5nn322aNvhhx/eZhztY0rfVF5eLpZP37/4xS/apOfKRKb2JkikJkpNlUVpwi644AKxDXT+U3olShHW+nglUmXR8b7kkkuMvLw8MT1tB6VsytQGSjk3bty45Pmcut6OUmVlOg6Zrhfa13fffbeYntZBbaJzka5RSs3V1X350EMPGYccckjyXB8+fLhxww03JJfRHon203VN50NxcbE4l2nbU9PHpfLdd9+JeY488khjW6Fr8txzzzUGDRoktoXOY9q/dB2tXr064/SdXcPtXf+J403XUAJK/Xf11VeL5dG6jz/+eGPTpk0Zrz+6d9K9h+6RdK+kVGeHHXaY8fDDD7fZf63PC4bpr0j0v50toBmGYXYVKGk9WfDIkppaCSwT1GNB2TYoAIpJh3pgyIpJrgZkPWYYhknAPq8MwzBMr4N8dCnSnwLCGIZhUmGfV4ZhGKbXQD6mlDOafOapZCplEWAYhkmFxSvDMAzTa6BgKwrmomC97sodyzDMrgX7vDIMwzAMwzB9BvZ5ZRiGYRiGYfoMLF4ZhmEYhmGYPsMuL17JK4Iq1rB3BMMwDMMwTN9nlxevVIqQKuKkliRkGIZhGIZh+ia7vHhlGIZhGIZhdh1YvDIMwzAMwzB9BhavDMMwDMMwTJ+BxSvDMAzDMAzTZ2DxyjAMwzAMw/QZWLwyDMMwDMMwfQYWrwzDMAzDMEyfgcUrwzAMwzAM02dg8cowDMMwDMP0GVi8MgzDMAzDMH0GFq8MwzAMwzBMn4HFK8MwDMMwDNNnYPHKMAzDMAzD9BlYvDIMwzAMwzB9BhavDMMwDMMwTJ+BxSvDMAzDMAzTZ2DxyjAMwzAMw/QZWLwyDMMwDMMwfQYWrztIXI8jpsV2djMYhmEYhmH6BSxedxDd0FEZqEQgFtjZTWEYhmEYhtnlYfHaTQK2NliLulAdDMPY2c1hGIZhGIbZZWHx2o34o35hhWU3AoZhGIZhmJ6BxWs3E9Wi7EbAMAzDMAzTQ7B47QHYjYBhGIZhGKZnYPHaw24EWwNb2Y2AYRiGYRimm2Dx2sOQcCUB64v6dnZTGIZhGIZh+jwsXn8GyHWgPlQv3AjIpYBhGIZhGIbZPli87oRsBBTUxTAMwzAMw2w7LF53ghsBCVh2I2AYhmEYhtl2WLzuRDcCykjAbgQMwzAMwzBdh8XrToRywbIbAcMwDMMwTNdh8dpL3Ai8Ue/ObgrDMAzDMEyvh8VrL3EjaAg1sBsBwzAMwzBMJ7B43QG6u3oWuRFs9W9FRIt063IZhmEYhmF2FVi87iALaxZ2q4iN63FUBarYjYBhGIZhGCYDLF53gO+rvsfM2TNxxzd3iC7/7nYjqAnWsBsBwzAMwzBMCixed6CL/7avbxN/z6+Zjys/uRIfbfioW62wwViQ3QgYhmEYhmFSYPG6nZCgHJ47PPk7GA/i/gX3485v7xQ5XLsLdiNgGIZhGIZpQTK6O+qol+H1epGTkwOPx4Ps7OxuXTbtuldWvYJ7vr9HiNcELtWFS8ZegmkV0yBJUretj5Zb4CiALPE7B8MwDMMw/RMWrzsIFRhYXLsY/1zwT+E+kMqk0km4Yu8rkGfP67b1qYqKIkcRrIq125bJMAzDMAzTV2Dx2g3ilfxSaTfO3jAbs5bOQigeSo7PUrNwybhLMGXglG6zwtJy8u35yLJmdcvyGIZhGIZh+gosXrtJvCagDAFkhV1YuzBtusllk3HZXpd1qxWW3QgYhmEYhulvsHjtZvFK0C59f/37eHzZ4+lWWGuWELAHDzi429bPbgQMwzAMw/QnWLz2gHhNUB2oxgMLHsDiusVpww8sP1CI2BxbTpfWYcCAhPZdDtiNgGEYhmGY/sJO7W/+/PPPcfzxx6O8vFwIsNdffz1t/KuvvoojjzwSBQUFYvzCheld8b2dElcJ/njgH3HpuEthU2zJ4V9t/QpXfHwFvt76dZeEa7U3gqjWfrECev+g9Fx1obpuL1nLMAzDMAzTm9ip4jUQCGCvvfbCv//973bHH3TQQbj77rvRVyF/1GOHHYt/HvpP7FmwZ3K4J+rBXd/dhXvm3dNpDtdYXEeNNwJfON7hdP6oH5WBSsS0GH4WWCgzDMMwDNNf3QbIsvraa6/hpJNOajNu/fr1GDp0KBYsWIC99967z7gNtIZKvb699m08+eOTYr4EubZckVJr/7L9M1peNze0+M3aVBn5LissstyhYKZALgro6lFCTYAeB5wFdAB7dl0MwzAMwzA72/LaE0QiESFYUz+9BRKVJww/Af+c9k+Mzh+dHN4UacKf5/4Z9/5wr7CedkQkpqPaE0EgGu9QJNcGa4UrQY+/m5CA9W4BtI6twgzDMAzDMN3BLide77rrLmFpTXwqKirQ2yh3l+Oug+/CzDEzYZVbsgR8uulTXPHJFfi+6vsO59cNAw3+KOr9EfF3e/iiPlFaNqb3sBtBLAx4NgKRjoU3wzAMwzDMjrLLiddbbrlFuAgkPps2bUJvRJEUnDTiJNw37T6MyhuVHN4QbsCd396J++ff36kVNhjVUOUJIxzT2p0mokVQ5a9CMNZSvrZH0HXAVwX4a9kXlmEYhmGYHmOXE682m034tqZ+ejMVWRW4+5C7cf6e50OV1eTwjzZ+hKs+vQrzq9NLzrZG0w3U+iJoCETbtcJqhiaKJ5Aw7nE3grAHaNoIxCM9ux6GYRiGYfolu5x47YuQFXbGyBm4b+p9GJk7MjmcUl/d8c0dePanhxCKd2w5DUTiIqVWJN5+Si1vxCvcCOIUZNWTULYDz2bTH5ZhGIZhGGZXEa9+v1/kbk3kb123bp34e+PGjeJ3Q0OD+P3jjz+K3ytXrhS/q6qqsCsyKHsQ7jnkHpy7x7mwSJbk8K+qPsGffrgeKxrTix20Jq5RSq0wPKGYyFLQnhtBpb+y590IyMIbqAO8lYDevlsDwzAMwzBMn0mV9dlnn2HatGlthp933nl44oknxOeCCy5oM/7222/HHXfc0edSZW0L6z3rcd/8+7DGsyZt+MFlR+DkoWfDbnF0OL9qkVHgskJV2n8/ybZlI8+WJ9KUbRdkWSWB2hmyAmSVAap9+9bDMAzDMAzT2/K89hR9VbwS1L3/8qqX8fyK54XfaoICWxF+OepSjMod0+H8JEpzHCqy7C1W3NZQ5a9CZ2Gav223i1ezMYCrCLD3bh9khmEYhmF6NyxedxDafVQhyxPxiPyq3c26ujAqA2vx9E8PYnNgQ9q4KeVH4cShZ8GudGzRtFtl5DutUNopbEA+t1TUwKk6e068JhuTA7gKuagBwzAMwzDbBYvXbkLTNTRGGjtNb7UtVDZFccGjqzGsyIbzDsrFfM9beH/ja9DRIpIL7SU4Z7dLMTJ3jw6XpcgScp1WOK1K97kRbI94JVQHkFVquhMwDMMwDMNsAyxee8CNgFJShePhHVoOHZYbX9iA79cFxG9VkXDKxFyMGdaAZ356EFuD6flrp5ZPx4lDz4StEyusy2ZBrlOF3I5A3SY3gu0VrwQJ1+xywGLbvvkZhmEYhumXcKqsbsaqWFHqKkWxsxgWuX1f084Ix4y0YKuYZuCFuY149EMbzqy4A0dVnAwJLQL0s63v4S8/3ITVnhVdSqkV1fQOsxEEYqZo7jEoAwGl0wr3nvK9DMMwDMP0ftjy2oPsqD8szf/ZCi/u+6ASnlBLwBYZTaePzcHE3evx3Jr/oCq4pWUcJBw64BgcP+RMIaR3JJjLbXWjwF7QvhvBjlheU3Hkmn6wDMMwDMMwncDi9WdgR/xhKV/ryko/nvu2AXNWpM9fnG3BOQdmY138bXy0+a203K4ljnKcO+oyDM3ebYeCuVRFRZGjKLMQ7i7xKlbEfrAMwzAMw3QOi9efEeqSrw/VC7/YrkKCdHNDSPy9bEsIj31ehxpveoWsg3Zz48Cx9Xhl3UOoDm1Ns8IePvB4HDfkNKiydbuDucjymm/PR5Y1q+fEq2iIBcgiP9j228owDMMwTP+GxetOgFwJmsJNXXIlSBWvRDSu47UfmvDuInJFaJkuyy7jFwdkoUZ+G59seTfNClvqHIBzR12OIVkjOlyX06Ygz2ltN5jLpbpESi1ZkntGvBJkARYFDTouwsAwDMMwTP+ExetOggoQNIYbOw2Mai1eE2yoi2DWnDqsq0u34u41yIFpe9fjrc2PoCZUmRwuQ8YRFSfimMEzOswkYFFk5LussFm64EbQE+KVIPFMLgRWV/cvm2EYhmGYPg2L151MKB4SrgQkZrdFvBKabuCDJV68Mq8R0XjLYbRZJJy8rxNB57v4bOv7aVbYcmeFsMIOyhrWbpvITSDbYUG2Xe3YjUDTeka8misB3CWAzd0zy2cYhmEYpk/C4rUXQIegKdIk3AlaH46OxGuCGm8Mj39Rh6Wb03PLDi+24YiJdfig8lHUhavTrLBHDToZ0wed0mE6r86CuVxaHAWa3uJG0CMCthiwtfK1ZRiGYRim38LitRcR02KoD9enFTjoingV0xkGvlrlx7NfN8AfafGlpVSx0/dyQM99B19UzU6bZ6BrsLDCDnQP2b5grogXatiPIlserEoXihpsL5RGi9JpMQzDMAzT72Hx2guhlFqUWotSbHVVvCagfLDPfl2Pb1an+9KW5ao4cmIt5tTNQn2kNjlclhQcM+gUHFVxEpQOrLAZg7kiXiDYaLoRWHOQpfagj6ojD3AV9NzyGYZhGIbpE7B47aVQJgLhShDxYlNDcJvnX7QxKFwJ6v0txQ2IKaNV2Irfwzc1H6UNr3APwbmjrsAA16CuB3M1i9cELosDBbbcnnMjsDpNP1jOBcswDMMw/RYWr72cSDyCRVu3IKKl+7N2hXBMx8vfNWL2Um9KyBaQ51Rw2MQqfO99Eg2RloArRVJw7ODTcETFCeLv9sh2qCKgS4r40sQrQZkMetSNgISrSKVl75nlMwzDMAzTq2Hx2suhw7OuLoBwPARPtAlxPbbNy1hTQ2m1arGpIX3e8UMl5A58H/PqPk0bPsg9TPjClrsq2l2mapFRYIlCjaSLV6LH3QjIdcGZb7oSMAzDMAzTr2Dx2gfwhmNoDERFaqxAzA9vtGsFDlKJa4YobPD6/CbEtJZD7rTKmDphC5aEnkZTtCE53CJZcNyQ03HYwOPatcIqMT9y4IPLmtlXtufdCFzNbgQ9tHyGYRiGYXodLF77CLpuoDEYhTccF4Fc/pgX/pivTWqtzqhsimLW5/VYWZnuhjCyzEDp0PewsPHztOFUlYussFSlqzVyzAc53AirRUGuQ4WSoTJXj7sRUClZKilLpWUZhmEYhtnlYfHax6DysA2BKIJRErFxeGMeBDup0tUa3TDw2XIfXpjbiGC0xYKrKhIOHLcJq/Vn4Ym2uANYJBUnDD0Dhw44Ns2KmhCv4m8qbGBX4VCVjG4EedYcZPeUG4EoKVvOfrAMwzAM0w9g8dpHIfFa748ipumIaVHhD7utQV1NgTie+qoe369Lz2YwoCCGgSPex4/er9KGD8veDefsdhlKnOWw+StRvvwFbBlxLHSLLTkNiddsO6XUars+p8WBwp5yI+CCBgzDMAzTL2Dx2oehQ+cJxdAUjAlraigeFP6w7ZWabY956wJ48st6NAVb0mqR9py453psUZ6DL+ZJDldlK04cciauWPERCrd8i7CrBGvGXwxv8djkNIokI8ehtqTUSoEqepEbgU2xokegQC76MAzDMAyzS8LidRcgruloCEbhD8eFoDX9Yb1C0HaVQETDi3Mb8clyX9rwguwIBu32LlYH5qYNnxAO40+1DaiIm0K5ZtAUbBh3LuJWd3Ial9WCLLsqhHBrN4JcazZy1JZpuxXVYQZysR8swzAMw+xysHjdhQjHNNQHoojEtO32h6VArlmf16GyKT2t1h4jV6HB/hICcW9ymF3X8ZuGJpzh84NsrFFbDtaPOw/1Aw8wu/GFpVZGjtMKNYMfQY+6EZAfLAlYykjAMAzDMMwuA4vXXZDU1FrkB9sUadym/LAUFPbmAg/eXtgELSUjl9sZxOBR72JjeF7a9PuFwrizrh4D4qbbQWPpBKzdeyaizsLmKSTkOCxwqpaf342Ay8oyDMMwzC4Fi9ddlNTUWrquCzcCX8y7Tam1NtVTWq06UeQglaFDViDofgVBrcXFwKnruK6hCaf5/MJNQLPYsXHPX6Bq2JFAs2XVrirIyRDM1ePZCMiNIKuUy8oyDMMwzC4Ai9ddHLKi1gciCEU1EchFKbCoWte2iOAPl3nx0neNiMRbThWrzY8hu72FyviitOn3D4Xwh7oGlDdbYX35I7Fmwq8Qyq5IBnNRaVm7Rfl5ixpQntnsAewHyzAMwzB9HBav/YRAJC7yw1JqLbPUbOM2ZSWo88XxxJd1WLQxVfgaKC9bjHj+GwjpLem2XLqBG+obcIo/IKywuqRg66iTsHnUyTCaixU4rRaRF1bK4EZQbMvvmaIGZHnNLgdSUnsxDMMwDNO3YPHaj6BD3RiMifRa5EpAKbC2pUoXTfftmgCe/qoevnCLM6xi8WHQyNdQhx/Tpj8wGMIddQ0o1UwrbDCrHGsn/Aq+gt3FbwsFczlUWBW5jRtBvjUHWT3hRkACNmegaYllGIZhGKbPweK1H5LqShDTY/BEGrepwIEvrOF/3zTgy5/8KUMNFBYvBArfRMRosc66dQM31jfgpGYrLFE19AhsHHMWNNUpfrtsKrJsljZW2B5zIyDXgZwK9oFlGIZhmD4Ii9d+TKorQTAeEAUONL2lUEFnLFtfj8e+9KImJRuXZPFiwLBX4VFWpE17cDCE2+saUNJshY3a80RGgsbyfVNSaqniOxVVVkU2gm53I7BYTR9YFrAMwzAM06dg8drPocNPFbqaQjEhXH1R05WgK8gxH6L+BryyxMA7Kwy0nEkGsgt/gFr8NqJGi0U3SzdwS309jvMHk1bW+gGTsG7cBYhRSitIyLJb4LZafh43ArLAZpEPbA+l6WIYhmEYptth8cq0VOkKROGPxBHTomiKNiKqpafIyiRe5XCj+Httg4GH5+rYYP4USBYPioe+gqDlp7T5pgorbD0Km5PIxlUnNoz5JWqGHCqKG1gtCnIdKpTmQgc96kZAlt6sMjOdFsMwDMMwvR4Wr0ybKl11/ojwi6XqXN5Y+64EqeKViOsG3l1h4OUlBmLJWQw487+HreQdxNEihrN14Hd1dZgeaLHCegr3wNrxFyOcVQ5ZosIGapuUWj3iRkAi2ZlvFjRgGIZhGKZXw+KV6bBKV0wzXQkCcX+brAStxWuCKp+BR7/Tsay6ZZhkaUT+4FcQta5Om/bQYAS31taiUDetsLqsYtPoGagceTwM2ZIxpVaPuRFQKVkqKdvK75ZhGIZhmN4Di1emS1W6olq0TVaC9sQrQafVnLUGnllgIBBNDoUtby4cpe9CQ3IgcgwJv6+txdGBllyxgZxBWDP+VwjkjxAptXIzBHP1iBsB+b+SHywXM2AYhmGYXgmLV6ZTyIWA/GGD0XhaVoKOxGuCppCBJ38w8O3GltNMUhuQU/EyNNvatGkPD8Vwa0018putsAYkVI44Bpv2OB26xZExmIuKGpAbgU3pxqArykAg/GDt3bdMhmEYhmG6BRavzDan1orE4/DHvAgGtkIKN3Rp3h82G3hsno6GpHFVh5o3F86Sd6FLseR0uYaC22uqcHiwJVds2FmEteMvgqdk74zBXORGkGvNRo7q7r6NpeW7iwFbVvctk2EYhmGYHYbFK7NN0OlCFboovVYsWAu/dx3CesdZCRIEYwZeWGTgw58MJE46Sa1H1sCXYdjXpU17ZFjHrdVbkdtshSVqKw7G+nHnQrPlINthgVNNt8LaFRsKbXmwdGfuVgrkog/DMAzDML0CFq/MdqfWaqyvRdhThbAWhifmQ8yId2nen2rNtFpbvKlW2G/gKHkfRooVNg8W3FFdjUODLVUQYtYsrB93HuoqDoJNtSDXYYWcEs2lSDIKbHlwWrqxy9/mNgO5WqXuYhiGYRjm54fF6w4Q1+N4b917qAxUosxVhulDpwsfzG5bvqbhnZXzsNVfj3J3AY4dNREWRel0uum7TcAqz09oCjch156L0fmjMwY1ZWo/ZcV65LsvsbGpBoNyi3HxfgdBlqW27SAht+FLRGvXwgsX/NnDsaK2AdWhJpEhYECeHZFoDI8snYP6WCMK1DxcPGYKZEXGq2u/FtM1No7B6qpBaE73Ckmtg3PAi5AdG9PaeWRYwm3VG5Gjt5yq6/OGonKfK/BOYCUatQZUuIoxo+JwyJKCLzevgi8axVB3GY4aOga6puG1uW+h1leFoqxSnDzpeLHP/j7nMdSEqlHsKMF1Uy6ErCj4x/z3sClQI5Z37YTpADTc9/1/sTlYjbKcYbj4gBtw5ce3oia8FcX2cjw6/W9w21xYttWLhmAU+U4r9izPhj8UwoVv3oPq0BaUOAbgsRNuEMfg8rcew9ZAJcpdZXjw+AthVYHH5t6FTd5NqMiuwFnjr8c9c77CRk8NBuUU43eHHSYC5254+z1s8taiIrsI9xw3XRy71su3WlT8+eOP0+alTGMfffci6jybUZgzEIfvdzp0Q0o7xjP3PQBrfKvSzpdwJIabPngam/1bMNA9AHcfdQ4sFhmPLngVm3xbUZFVjovGn4JgNIRz3rkc9ZEqFNhK8fSxD8JtdbRZZzgWx5Xv3outwc0odw7EvUddiRfXPIdNvk2oyKrAhWMupFQTbc49HRru/uY/2OjbhEFZFbhp8mViO5c3LE9rL+2j1ueobuht2kvzdgYtq/XxhGS0WWfGQEHqKahaBATrAWcB4sVj8M5P8zu9hjOtk9rfeptona2no+uz0/ZTRbxO5uvv0P7u0jFmGKZ/i9fPP/8c99xzD3744QdUVlbitddew0knnZQcT027/fbb8cgjj6CpqQkHHngg/vOf/2DkyJE7Xbw+sfQJPLrkUfhiPtFO8rvMUrNw0diLcP6Y83d4+Y/Nm41Hl8yCX6+EIcUhGRa45TJcNHYmLpx4ZPvTwYAsG3CqqrBMkpgemj0UM8fOxKSySR22X4ENsYir2QeVErUqkDQ3LIoMXfIn21ECN27SIjjctxXQIojqCtZqhXg+fijmYzhkSxi1ru/hzVoEKC2WVBInVEULckveWCNUilj1SYiEhyQmgpr/FexF76dN59Ql/LG2Bkem+MIGJQn/ysvBs9lZ0CUJ9M+iOUEa14AOCTKydAU5ug8hRUNcAiwGoBgSmhQgItN0okVQdAmaRNtJQ8yh4k+JXBxSLxHzgZ86xBIbDGfdtYhpBlRFgs/9Agz3XEDS0+ej7ZdbhkmGBEnS2yxf0hVoOhVNUGDETT9eyeJPHhM6XrJKVdBS5jMkGPGsZuuwOZ0rrqBYbkJIjie33aGrqDVy4FdoGk1snywZcKgqXDZVnC++IOCPNwJyS0YIQ7eYFm4p3bqe3nZz76g6kKfryXVGIaPJkr7PxLRp2kkG4lni2CXPPQrZs7TaTpB/cwHsVosQ8NReK7JR64sgrHuT56giqdAkDwypZRsUOHHSkHNwx9Qr0B5fr67Df+aswZoaf/J4FpdsgjX/MzTGtyTXmemawto5wJf/AOpWAXoMXyoWPOi04yeLFRFJbvcazrROZ846eGwfIILq5DbZUIKcyFEIeoYmpxte7MZlU4bjgBGF7S6rwG0GM9b7o+3O19+ZWzkXs5bMwjrvuo6PMcMwvYKdKl7fe+89fPXVV9hnn31wyimntBGvd999N+666y48+eSTGDp0KG699VYsWbIEP/74I+x2+04TryT87p9/PzRDgyIroH8a/dM1KJKCX0/49Q4JWBKk9y/6K3SESIJAhgodMWgIQoYdv97rZvHwaz0diSVNbkg+/AvtJci22+GJeOBSXbht8m3iRpyp/VE9JiwPhBF3AVo2IIcgqR4xTIrnQpVcsBp+qFIjXIaO3wZV7BNX0OD1w4UAonDgKftZeMNSB2/Bl0IYkagyJY2e0H3NWkRuHkZlZSXIDZPgr5sO3TCPq2SthaPsRSjOTWn7ZnIwjL/V1iI7xQq7xGrFHYX5+MlqPqQlXYXNyIZh+BC1mP64hXEDbl1Co6KjSTGtKYphtoLkmJFsm5CySWHXPiStUn6FB2NQ5Casw5OQc+a2P5uYyQJJiMCk52/qSIGs2RDTnZCb978eywE0ByS1EZISbn/xmh1GLA82iwe6xXS3yI9TaV4JftlAfXPHgBJzIQK7qIIGSQMMGblqMUJaEBGj2Z/DoL0jp+0LekEw90+8rRhN2QZFBwbFJVRbDATlzPtMDGne9ORdiNofzwMsLduZyT7osLgxOGcgavyNaIjUmPtMz4ViuBBDEwyFxD41WwaE9cxovi5kzBhySUYBS8Lvt68tEVXm8pxWWBUZPmk5Gp3PQZIjKHHnI9fhaE4bl35NCeH69jVAxC+KXXwmGfiLLYSwZCBLB5qkIgQkS5trONM667Rl8Gc9D8gRsT0WSUXciEGTAoBug9t3JgqVPREl151gDG6bgr+cPFZsQ+tlNYWiqPSY+7EsxyGCHVvP198FLAnXO7+5E4FYADm2HFgVa+ZjzDBMr2Gn9olMnz4df/rTn3DyySe3GUea+r777sPvf/97nHjiiRg3bhyeeuopbN26Fa+//jp2FvRWThZLEn5W2QqLREJEEt/0m4bTeJpuu5av0fyzhCBVkQdFskGSZPGtIhc6wmJ8OBptM50uJ6xUpFAMNIQbYJNtKHYWixszWRbopty6/UTqO4xkIeumBEkxv8V4mSphSSgyfCjWdPglBY9YddQFY4hAhVfKgx1hHBl7D76875qFq9JyiqVVGWj+X/MwiaYt+BZDK+6F27nMXF+0CMENlyFcPR2G3tLN+o3TjsMqBuA9Z0s517HRKJ7fWoWrG5tg03UYsinEDTmaXK1PloRA8jYLV7EOydxbSeGa2s5t7FE17BsQMhohZ3+fYWGtB7W15Lb8bf7WlShkJZj8LYtjgQ6Fa+p4i5xI60Ci1VyG+W3KT1q2RAJPHCeLWI0n2oiIQedQYlYj+YKR3M7mtnf8xitBkyVRTy3YvM72EKdd6sJE+4207cy0rlDcL0Y0RTwtwlgOmsdU7LfmeU3zOahfwbwudLy+/mlE47E2Xe1ksSThV5pth11VIMkGQq6PICsRGFo2PEE6m2XYLfa0a0rX4qbFlYRrVhk01Y5ZlojoGcjTZDgMA/lGk+jZSL2Go7F4m3WSZT7gmC2EqxHPhq5TgQ5ZfNNvGm6O18X0pdk2+CMaHvxsDR78bHV6++mYhmLim46A+FtG2ny0ftr2/grdJ+gY0rGkY0rHllwF2hzj5hd7hmF6B73WoWfdunWoqqrC4YcfnhxGFtRJkybhm2++aXe+SCQirK2pn+6EfESpq50sliRaUxFd77IixtN02wP5uJELAFlSMy4fTjH+r188nzadgSgM0ANZFg87+iZrrScSFOPJokBdYo8tfaxN+zUSfGkSQQcUn9lFTJYrEqFSHLLhh9WIQYcMtw5stgArZF0ESdETMiC5sMzeCEOJNlvtEsIl08ORrGCpogiIqR4MLHkKA4qfgaLQcZMRa5iC4LqroYUGJqcNyzJuLCnCBaXF8DdvA3kyXuzx4pWtVZgYCkODHxp1iQs3ASAmAY0KORM070tzKzO0zDAtkZ3IMzMLbTrV9vtTXAXaF2wSurh8OZa2/4WVtAuoaiPikmFalpu33S8DUanZ2mxAjJfIPSRxnAy5uYs9tV3ttDFDYF5bZwqgWu58n2Vci9q19GsbvVvFOW5agmUYiEMDie9UoUHiPGE1pgZRL0lQ+MKmQv6g1NVOFsvEdRGVNyEmV0Em66csIxLTEWque5x6TS1f9abpKkDlhSUJC7UYNltMiyvJZg2yuG5siKRdw+Tf23qdfm0jDLUW0JxiXnqp1HTqnaB9J4nhNJ6mS7SDCnisrPJhRZUvbVnhmI5IXBdtJ9efSFxDOKqnzUfrp23vr5CPKx1DOpaZ7rfJY9ywfKe1kWGYPiReSbgSJSUlacPpd2JcJsjNgERu4lNRUdGt7aLgJnqQUFd7Jmg4jafptgcKziAfN3IVyAQNp/EbvVvSpjNlWfMDTmCKxihZhajyqWIV1mAKkGnd/ow2hTQBZy5LgulTS39ZhQACPKSrmlcZhwV1pI6SnqTJhWVYfttBGlmIJCDbvQTDBt4LV7bZ/a5HSxBcfxkiNUfDENZck3kOO6YMGoA3Xc7ksMHxOB6vrsGtjdVwN6fZEq2XgHiGs31HbU6pm2FYvNs4U3sCt7UbQfMLQIoPcMfLj4vtNb2AzdnjacZuqdmbo5UFOGNzMsj7Dq3SLSO1tP3ddVO2JM69zonpsZRz3txH5gtcmxa3aQcFcaVCgUzkD0pd7Ql06qaHRp7U4pWQlh5PsVImrqkmWha1xWIzlwVd7G+1eVKzhfQyoaVfw001bdYZk3zNbhwt53nai6V4kdHM6ZqxKbJwBYjF05cVp5dSehdrds+gv2lY6nwx3RDb3l+h4Cw6hnQsM5E8xuGmn71tDMP0QfG6vdxyyy3CvzXx2bQp3WdyR6GofHojJx/XTNBwGk/TbQ8UVUzBGaZFqS00nMYPyh6QNp1pVTIfsCamgLQ2lzkldwEKQqDI7tbtz3gSiIdnqoiiZVuSD+JoczBODj1nm1dpQRyFWkfW1tTltx0kdG8CSxCFxa9gSMG7IgsBvRZE66ciuO4qaKEBycmisozfFRfi7LISeFMsJzMCfry2tRKHB4Km1coALCkqvbW36Y6Q2GKJunW7QnI729tHmXxhKeCri/lrDYvpDZA4G2jbm78Tnf5mXFqa9G6nOW33UIeuwCkLIb/XTMM7bX6KcOsIVVZTzvmEe0Cml75W2wmI7AOpUAQ+BTKRCExAFlcRIIc4qG9CBASmROgnrqlcWha1JW76V+dDFvubLN7m2s0XPk1S0q/h3OI261SNrKRAbWl9Svubha2YrpmIpgvRqlrSl0UWVyFam90z6G8aljqfKkti2/srlFWAjiEdy0wkj7E992dvG8MwfVC8lpaWiu/q6uq04fQ7MS4TNptNBGalfroTSidFWQUoOKt1rJvZxaeJ8TTd9kDpcCgimbo2My4fQTH+5oPPTJtOgrX5wU2PWXqAUee+ihyb0ywsEPGI6FlKSdS6/Qo95NIe8DKgZTX7QurND0wLdMmNqKQKhwTqhh4YB3bXZWi0HMOAywhgz3AeJM3a3H3ekURMFcfmX86UzQ3JQH5MQZEyHFmDH4Q1/1PxaqBHShFcfzkiNUfAEF3eJovtNkwdPBAvuUlwmBRpOu6pq8ffa+tRFouLoKVO7MHNXejpbctM2/Ejgxc1d8OLo9XunGT37sryDV1N2/9GPAddIRbLg8UgsUTWQ9MCSG4eZC1PDKPxhtG8fOEqoUMySMR0vofQ7Cedvk1tpy9pY9JvG7CVcS2xrhWFGJRd3tzzQEKPsktYoCCr1W2t2Zyf7J3QRLc9pc1KhVJHUQQ+BTIlrgurXgFVL4UuBYXF0qbKcJBfaqJYR/M1NXrkCUDhSCDUKK6DvRUVA+MSfCKbBR1tXVw3EdjSrmFKBdZ6nW5lEKRYEaAETckrXJEoK0WzSCdf5ViRmC7RDioYMqo0C7uXZqUty67KsFlk0XbKy2yzKLBb5bT5aP2JVFr9EUqHRceQjmWm+23yGOeP3mltZBimD4lXyi5AIvXjjz9ODiP/1blz52Ly5Mk7rV30Fk7psCirQFSPIm7ExU2Ovuk3Dafx25vvlXJAUiodikimqGnNiMAwdPFNv2k4jbdbrW2mk3V6cNODmjotJeTb8xHRI6gJ1oioWUr7Qt1grdtPpPp7GXEKhjJgaOa3GK87xcOzVspCjSLDbWi4OCqj0GmFHVFkG00Iw46Pbcciq3E/U8QJ61GzgsnkSpkyzBU3/SHJF9OnGLDpQJZ/LyFOCsJjYSueDeeQf0Gxb262wh6G4LoroYVbLNwxScKdRQU4vawUDSn5GQ8NhfBSZRWOCfiRFU+xaDV3qXbWtq5gC5ehiF4hvOMyLKz1oLaWwJa/zd+yZoWuOZO/dXEszGwCHZEYH9cTrhSUZaFZGIlv005JyzY0t2l9Fb7NQI41DzYppRyusMySAkt9yUg4HnTYCii6AepEdzavsz3EaZe6MNF+KW0728s2QCNybQnhZYhzVBxTsd+a5xVtp22m407nuizSZbXO90o5Tyl1FEXgV3kjwrfV0CU4AodD16yQFC9ynHQ26wjHw2nXlEy9Gwddaxaz8FVCiYUxM26D0zBEdouQJKFByoWG9GvYqlrarJPSqblCR4qsApLFC1mOCdFN3/SbhpvjZTE9zUfzXz51OC6fOiK9/QaQ7VDFNx2BHPpbR9p8tP7+nO+VgrPoGNKxpGNKx5aCs9ocY873yjC9ip2aKsvv92P16tXi7/Hjx+Pee+/FtGnTkJ+fj0GDBolUWX/961/TUmUtXrx4p6fK6h95Xkl0yh3nefVXCV+/iCZhrVaEl/RpWISRooBBlXMuGrO/NYO3kt3eqXlezWGKLqNA02BIZJ0yXQfy4wryQnujLjweMcOAKkmI5S9HnWMBwnoM0YbJiNQeCQhLYRzWwk/Fh3KmJiAXgd80NOEcX7of6mKrFX/Pzccyu4pomzyvzb6gXcjzmoojWoahtecgbhhi29dnz0bAvXgH87ySAJNb5Xk1j0nneV7N6TrP80pWXb0X5nltPvd2dp5X3RDd6j9rntfmdXaa57V5ug7zvDZPk5bntZ35+juc55Vh+hY7Vbx+9tlnQqy25rzzzsMTTzyRLFLw8MMPiyIFBx10EB588EHstttuXV4HV9jqwQpbKZWE9JJxWLbFA4+3EYVKGLsVWhGKRHDDZ6+hMlSLMkcR7pl6MhRFblvFSjfw4jdvoMa7FTZnLsbvNllUu9rSGEYgGoPLqoqKXbqh4fvGhWiINkGJF+P7n3bHsuaQdtm+Bfayl6DY04P5jrUOxm/X/YDsaEv6JF22YMOIE/HvqISGWCMKHYW4cL9TIcsKnls+F9UhT4YKW1UY6CzFhWN+iWvmPYjqSC1KbEX47wHXiQpbq2r8IhURWbdGFrsRiEQxc87zqIxUc4UtrrDFFbb6AFxhi2H6DlwelukZKHgl4gMi1NXZtRyJFGxCAtAXCaEx5hGFEzqCTt0v1xt4ar4BP8XKSGSF/RjWgjlpVthiNQ+/D8qYtnlB2vzB7IFYP+FSKAPHCN/ABE6LAwW2HOFascO4iwB713xVGYZhGIbpHBavTM8TDZgJ3GOBLgnZUCwugkmaoj54Yz4RgtYR3rCBp+ebQpaQ7ZtgL38Jis2svJTw1TzWORI3r5mPnHBLHlHytK0adiTqxp8Dd1Z20imALOhFtjzY2kmhs004880PwzAMwzA7DItX5ueDTjUSspQzMdZxpSjypfSF42gIhtEU8yCkdTw9sXCrgVnf66ij9JxSDNbCj2At+Nys4NVMibUAv426cei6L9LmjTgKsGH8xZBG7A+1OZ2QSORuzUaOavqd7hAUzOMqotJWO74shmEYhunHsHhldg4kXsMeIEplPts/BSnND7kSNIT8aIx5RVnbjgjHDLy42MD7P1FVIrLCbmy2wtamW2GzxuDGdQuR59uSNn/dwANQu+9FcOS0BLLYFRsKbXmw7KjwJFHsLATsfB4yDMMwzPbC4pXZuVCEGOXHJCHbwakYjmmoD4TRGPXBHw+0iXJvzeo6Aw9/p2MTFcaRYrAVzYaa/2WaFbbMVoSb9CJMW/Uh5BRRHFdd2Lz3+YjtfgTU5opFVAK3wJYHp6VrWS46xJELuDjKm2EYhmG2BxavTO+AythShDYFebUDCVZ/OI66QAhNsSaE9Y7LWlIpz7eXG3h1iYGYDiiO9cIKK1vrk9PIkHFc7gT8ZsMSFDSsSpu/qWgsava/DNaCgclh2aobedbsNnXQtxmrC8gqbZ0vimEYhmGYTmDxyvQu4lHTEtuBO0HClaA+5EdTF1wJKr0GHvlOx3KK35KisBV9ADX/6zQrbLm9FNcpg3DYirehxFv8azXFiso9z0BkL0rzZaZBoyAuciNQdzQtmsUGZFNpUfaDZRiGYZiuwuKV6b2WWEqzRe4E5FqQgUhcQ0MggvqIt1NXAt0w8OkaA/9bYCAYIyvsWtjLX4ZsbUi3whbsj6s3r0RJVXparUDuUNRMvgJSyW7d60agqKaApW+GYRiGYTqFxSvT+6E0WyRkUwoNpOKPxlDvp9yw3k6zEjSGDDwxT8d3m5qtsMXvwZr/Tdo0A+1luNYxGlOXvQZrxJMcbkgyakYdj+A+v4SkUvFTKqmaJdwIdjiQy11iuhIwDMMwDNMhLF6ZvoMWMy2xGYK7NMOAJ0iuBD54Yj7EjPQypq35fpOBx+bpaAoBinMN7GVkhW1Ms8KeUHQILqveiPINn6XNG3aVoG7y5YgPHN+92QiomAEFcrEfLMMwDMO0C4tXpu9BhQ4SLgUkaFOIauRKEEVD2Atf3N9hgYNg1MBzCw18tNoApAhsJe/Cmjc3bZpBjgG4KmsCpi59GfZAddq4hqHT4Js0E4Y9u9mNIFdU59ohyK+W8sGyFZZhGIZhMsLilenbUHaCQF0bv1hyJWgQqbU8CHbiSrCixgzo2uolK+wq2MtfgaxSji0TKhN7YvGhmFlfg4rV70AyWqqExWw5qNvvIkSGHSIspm7VhQJrTvdkI3AXczAXwzAMw7SCxSvT96FTmDIU0CfldKYgLZGVIBgUVbpiRrqVNpWoZuD1pQbe/NGAJoVhKyYr7Hdp0wxxVuCyvANxyNKX4W5amzbOW74Pmg64HLq7CKqsitKy1h0NwmJfWIZhGIZpA4tXZtdyJ6DSs61ELLkSNInUWqYrgZZiOW3NxiYDj8zVsboeUFw/mb6wqjc53iIpOKH0SJzr9WPI8pegaC25ZjWLHfXjf4ng6GMhKRbkqlkioGuHsTpNf1gWsQzDMAzD4pXZBSEXAvKHbSViTVeCCJqiXgS0YPuz6wZmrzLw/CIDET0Ee8nbUHN/SJtmmHMQLik+HAcuexW5NYvTxgUKdkPDgVdDyx/UfcFcBFlyyRKrdkOVL4ZhGIbpo7B4ZXbx0rNNpjW2+TRPZCVoCpMrgReRDqp01QYMPPa9joVbAcW9AvZS8oVtqQCmShacWHYUzggBw5c+DZUKKyRWLSloGDMD/r3PgGyxiWAu144GcyVw5gOOPM5KwDAMw/RLWLwy/aPgAVlhKUNB8+lOBQ4ag1F4ogGRWqu9Kl10eXy9wcBTPxjwxoLNVtj5adMMdw3GRaXHYtLKt1C06au0ceHsAWg48CpES/aA2+JEvi0HsiTv+DZRdS6ywlqsO74shmEYhulDsHhl+g+UVivYYGYoaMYXiaEpGIEn5u+wSpcvYuCZ+QY+X2dAcf8Ie9mrkC0tllZVUnFK+XScrLkwYuEs2EJ1afM37XY0PBPPg8We2z3BXARZXp0Fpj8sW2EZhmGYfgKLV6b/EY8CwXogGmjlShCCJ+ZBuANXgsWVBmZ9p6MmHIC95C2oOQvTxo90D8MF5Sdi4urZKF3zPqQUMRxz5KNh/0sRHjIZudZs5Kju7tkeEq62LNOVgMvMMgzDMLs4LF6Z/kssbIrYWCjpSkBZCZrCPnjivnazEoTjBl5ZYuCdFWSFXQpb6WuQLaYQJqyyihnlx+JYuQgjFzwMp5dq0bbgGzQZTfv/CtbschTackUe2W4TsVTgwM7nOcMwDLPrwuKVYcgCS4UOmqt1UVaCRqrSFW1CUDOFbSbWNhh4eK6OjV4/bKVvQs1Ozzowyj0c51fMwLj1X2Dgilcg6y0lazXViYZ9L0R41NEosOXBaenGDAI2N+AsNKt1MQzDMMwuBotXhklA6bXIJ1bXRIEDbziOukCgwwIHcd3AuysMvLzEgOFcDFvpG2lWWJtsxakDjsOR1kEYseBhZNevSJs/WLInGg64Eo7C3ZDfHZW5EtByyI2AsxIwDMMwuxgsXhkmFbocKCsBZSfQ4ohqOpqCUdSFvfDFfNDbCeiq8hl49DsdP9aRFfZ1qNlL08aPzhqJcytmYPSW+Ri89FlY4i0WXV1W4dn7DATHnYEiR1H3BHMloPyyIqiLz32GYRhm14DFK8Nkgi4LUeiALLE6QrE46gNh1Ec87boS0KU0Z62BZxboiNgXw17yBiRLSzEEu2zDaQOOxzTnCAxf9DjyK79Pmz+SN0Sk1XIOmNh9wVwJKKWWq5gLHDAMwzB9HhavDNPFkrOGocMXjqPWH0BjrAkxo8WHNZWmkJkX9tstXtjKXoOa9WPa+D2zdsM5g07DiNqVGLrocVjDjclxhiTDO/o4hCdeiAJ3efdU5krFkQs48gG5G3LNMgzDMMxOgMUrw3S5WlejsMbGNU24EtSEOnYl+GGzgVnzNPgsC2EvfQOSEk6Os8t2nDHwBBzsHo0hy/6HkvUfp80bcxWj6YAr4Bp+ePcGcxEkXBP5YRmGYRimj8HilWG2uVpXAxD2itRadYEQ6sKUlaBFmKYSjBl4YaGBj9Z5YCt9FZas9ICtMdm749xBp6LCswXD5z8Mh78ybbx/2BRED7gaeTmDuy+YKwH51lKpWcoRyzAMwzB9BBavDLO9OWIDtUA8Iqp01fh9aIh6EG+nzOxPtQYe+k5DDX4QxQ0kJZIc55AdOLPiREzOHoOKla+h/Kc3IacsR7NlwTPpUrj3OAXWnigHyyKWYRiG6UOweGWYbkivpWlxNAWiqAw2tltmNqYZePNHA6+vbIJa8gos7p/Sxo/LHo1fDjoV5cFGDJv/MLIaV6eNDw2YgNiUG5GdP7JntoWEMfnDUp5YhmEYhumlsHhlmB2FLiHyhw01IhKLozYQQm2ood0ys1s8Bh7+TsO66DzYSt5uY4U9q+Jk7Jc7DmVrP8CgZc9D0VrG6xYb/PucD+f482HpCStswhJL+WHJEss5YhmGYZheBotXhunOoC4qN0s5YSMxbPV64Il7M5aZpSIIH6828NySRqDoZVjc6VbWvXLG4JyKGSiMhTBswaPIq16YNj5SOBLa1N/CWTqu57aHArusWWZgV08JZYZhGIb5OcXrxo0bsWHDBgSDQRQVFWHPPfeEzWZDb4LFK7Oz/GHj0RDqAxHUkCuB1pLvNZX6oIHHvtewJPAdbCXvQJJbrLUO2YVzBp2MibnjULj5KwxZ9ATUqC853pAUBMedBvv+l0NRXT27TSRgKUMBp9hiGIZh+pp4Xb9+Pf7zn//g+eefx+bNm0Vi9gRWqxUHH3wwLrnkEsyYMQNyL3jQsXhldqo/bKAOARHQFUBDtAlRvW2ZWbqGvtsEPLawDrH8l2FxrU0bPz5nHH456BTkaRqGLHkKRRu/SBsfyyqDNvUW2Acf2LPbQ9ezcCfIYRHLMAzD9A3xevXVV+PJJ5/EUUcdheOPPx777bcfysvL4XA40NDQgKVLl+KLL74QwlZRFDz++OPYd999sTNh8crsVLQY4KuEFouI3LC1QS88MW/G3LD+qIFnF2j4quFb2IrfhSS3CF2H7MZ5g0/BhNyxyKlehGELHoE9WJs2f3jUdFgPuh4yFSLoSUi4koAln1h2J2AYhmF6s3i95ZZbcP3116OgoKDTad9//33hTnDKKadgZ8Lildnp0CUWpNywTQhH46gTZWab2i0zu6zawMPzauHLISvsurRx47P3xjmDT0I2FFQsfwllq96BlCKENUce4gdfB9vIo3+eYCuLzXQp4OAuhmEY5meCA7YY5uciHhW+sHo0CE8ohrqgX1hhM5WZjcYNvLxEwwfVX8Na9H6aFdYuuXHBkBkYnzsGrsY1GD7/Ibg8G9Lmjww+AOrU30LOKvtZNg1UxlaI2GxAsfw862QYhmH6JTskXkkQVlVVib9LS0uFSOxtsHhleh0RPxCsQzQaQUMgivqwB752csNuaDTw4Lwa1DpfgsWZLlD3zpqA84acCLdsFRZYssTKKT61uuqAtv8VUMedAUg/o4+q6jAtsWyNZRiGYXqLeH300Udx7733YuXKlWnDR40aheuuuw4zZ85Eb4HFK9Mrocsu3CTcCfyRKOr8IRHQFcmQG1bTDby/UsMrG7+EUvgBJLnFUmtHFmYOPRV75e4Bu79S+MLm1C5Lmz9eMgbKobdDKhiGnxUSrmSNteeyNZZhGIbZeeL1nnvuwR133CGCtyhwq6SkRAyvrq7G7Nmz8cADD4jx5BvbG2DxyvSF3LBayANPMIaaoKfdgK4av4H/zKvGRvUlKM6NaeP2ck/EBUNPgFOxo2jDZxiy5GlYYoHkeEO2QN/nAigTZ5pFCHaGiCWXAg7wYhiGYX5u8Tp48GAhYE8//fSM41944QXccMMNIgdsb4DFK9MniEdEWq1o2I/6YBjVwUaEtHCbyehy/XydhmfWfg7kfZhmhbUhR1hh987dHWq4CUMWPY7CLd+mza/lDRFWWJT1YHGDzgK8yJ2AxCy7FDAMwzA/h3iltFjz58/H6NGjM47/8ccfMXHiRJFpoDfA4pXpU0R8QsQGwxFU+ryojzZlrNDlDRt4ZEEVfjRehOLYnDZujHM/XDzieDgUO/K2zsPQhbNgCzckxxuUn2DsqZAnXwVYe7i4QUcBXs580xrLIpZhGIbpSfF6yCGHYOjQoZg1axYslnQ/Nk3TcOGFF4pCBnPmzEF34PP5cOutt+K1115DTU0Nxo8fj/vvv7/L+WNZvP486IaO5Q3L0RRuQq49F6PzR0PuYpCQrhtYttWLhmAU+U4r9izPhixvn6CJaxreWTkPW/31KHcX4NhRE0U7Wi8fkrFd7Y3Hdby1uBJbmoIYkOvE8ePKxLLarFOW2iwfhtSmHbqm4YsvPoGvoQpZ+aWYtP8heHz+16iqX4chDjuOGzkGlYFGrKprQiAag8uqYkCeHTFNw6trv8bKOgkbg37I+Z9BkrRkOy16Ni4achrG5IzEO6s+w+FbP8XhnlVI3cKA6sKqkSdg1AFX4aUFtE0hDMh14MyJFbBYZKyq8YusCDkOFSOL3UL2LveuQ1PUi1xrNkZnDxXH/b3Kr1AZrEGZsxjTyw5EPG7ggbnfYpOvARVZ+bh60v6wKAbeW/kSKoNVKHOWYtqwE/HPRR9jQ7AO5TlDcOOU82FXVaBqkVlil6p5le6FcDSGB995DPWezSjIGYjLj70QsBj4v+//D5t8m1CRVYEb970R0GX89YvnsdG7BYOyB+Dmg8+ERbakHavpexbjgzXz044TnXuPfPclNjbVYFBuMS7e7yCxTa2XRedG6+noGHfluHflvMp0/ehxPe3cOPjgQ0GvMa3bYVUtnV5PdF10Nt+2XFMWRUF30Z3XP8Mw/YNtFq+LFy8Wvq6xWEwI2VSf188//1xU2SLf1zFjxnRLA8844wxR/ICqelFBhGeeeQb/+Mc/hIV3wIABnc7P4rXnmVs5F7OWzMI67zrE9bgQDUOzh2Lm2JmYVDapw3m/Xl2H/8xZgzU1fsQ0A6oiYXixG5dNGY4DRhRuUzsemzcbjy6ZBb9eCUOKQzIssKEEOZGjEPQMTS6/uGQTrPmfoTG+ZZva+8jna/Dvz9bAF4oJEUGSxJG9DtbCzxCXa5LrtCvZKHJbEYUvufw8ywBEG6aiproi2Y79paWYEXoJQ4ytUKU4vrdb8USOG2usNkQgQ4ICWywXA8P7QwmWIgw/LLIBb9ZS1DsWAIqZWcDQrYg2TIbFvQqKY2tam7VIPhSraXXdKxzBH+oaMDyeXuXrK5sTz8cPxdLgNPGbdEO+yypaENcNWGQJrqIqBAvmoT5eg7gRh0WywCarqIs0IaRFRKYESbRYhRZxAHIcBnRIkGHXdRhqEBGpJZ8CTd2CBFW34LywFb8OeQFKHSareBt2/M8RRZWqQ5MAhdLlSjICmTSXLsOQUm5lmgN64zRE6g8Wx0pxroa1YA4Uay0ga+I4yYYbcU2HofhpBpqKUjRAsviAlDK90K2AlgVDiiWnkzQ3LIoEXQp0eNy7cl5lun6ywg4cv7kGRwZrxLkRMyx431GMWTnZ8FiDyXbI8RKcPPSXuPOok9u9niTnanisH8BQa9qdb1uuKbdchovGzsSFE4/EjtKd1z/DMP2H7co2QNZQEpHffvttWqqsyZMn46yzzuo2kRgKhZCVlYU33ngDxx57bHL4Pvvsg+nTp+NPf/pTp8tg8dqz0IP3zm/uRCAWQI4tB1bFiqgWhSfigUt14bbJt7X74KYH129fWwJ/JI48pxVWRUZU09EYjMFtU/CXk8d2+QFGD9n7F/0VOkJQ4IIMFXEjBk0KALoNbt+ZKFT2hE9ajkbnc5DkCErc+ch1OLrUXhKud7+/UkT+k2ghgWfYV8FS8ppYlqy7oMoqNAShK41injxbkVhHUyiEan8DDN2GvOAvkGWMRoXne9wU/y9cUhhNhhvzHQpmFRqIyAbcGlBrFCAgqZCUIGRdRVnjEaiQh2Ol8hk8ud8Kay9Zckn4geSZBGihAdDCg6HmzU2zwupxF6lFyEoAKnTM9HhxSZMXqWFbXknCC9I++F/ozOZlQhyD0mwH6uW1WO9+D7ocQ4kzG9k2O2pC9WiIecV0FihQJBlRQ4PR7OIgxR2Q427IlibELKYQJPFJLgJaajCaQZJXAiRdvAz8ymvgMsWNj4KNuDdPRlCS4NQkyIaCatVAOGHETHE1SLuDGaRsDYC235ARrT0aUnQAlJJXxXEy4k4osgWQQjAsTeYssRxAd8BQvJAtzUFuBq1Ibt635jYZtB81ymMbgmTxNG9nLlTJlfG4d+W8ynT9NDTVIhqtg8vQcXEtsHvYghX2OB4pAgKSjJCWg5DhMrdRCYrze8agX+Po4Qe3uZ4qI4sRzntJbDs0J2AobeZrT8BmuqZ0xMS2yrDj13vdvEMCtjuvf4Zh+hfblfyRBOVll10mSsV+8MEH4kN/X3rppd0qEOPxuHBFsNvtbfxuv/zyy25bD7N9UFcnWYzowVvsLIbdYhddpPRNv2k4jafp2syrG8LiQg+u0mw77KoiugrpuzTbBn9EE+Npuq50a5J1iB6yKvKgSDZh8dN1FUY8G5AjCDhmw5DjCLk+gqxEYGjZ8ATpAui8veQqQBZXEq5WiwSLLEOSDCj5c0xBFMuGppFokmCQKBBI8ETIiiiJ9dD6ZCUq1g/EcHbsVSFcq4w8BKHijVwgJEvIictwQEcxvMIKSMsm0bjF/QOisgJv9vxm4ZoQVyT8zDUqji1Qc7+F1XcgtHBpsv0kyGQ1AC1ajChk/Dc3B6eVl2KZ2hL5n20YuFifh7+p/0U56sQwOgZkPa1xfwtDiUGJu+CnomA60BTztxxLsrBKkggmS2BYwtAkDZolJe8sCezWWRTIogoDqiEWi6fcEkJaHM+5ycoqoUjT4WrOvRAWXcnNG9tiwm0FDZBNESvpUAs+hZz/SfI4wVChaRIMueU4SQptlAHZkuKnn7DiplhzJQtNJ0GSE5XRzOXQFK2Pu2RInZ5Xma4fEvKOUBOKNA1+ScEruQpikPByriJ+0/ASgwS2DMmwAs3n92vrnsG/Pl2Zdj0Z0BB2f5zcdkNXM84XjcW7dk1JsvhWkQsdYTGeptseuvP6Zxim/9HtmcvJnaC7Mg2QSCZr7h//+Eds3bpVCFmy+H7zzTeorKzMOE8kEhHW1tQP0zOQjx51dZLFiMRLKvSbhtN4mq415ONGXYVkcck0b65TFeNpus4gfzzq1iTrUGJZumEIMSWsepoThloLD+YhJldBNlxCgEZiOkIxrdP2kt8kuQqYFtfmS8a6FbK1RljyEoJKM6IwQGKN/AFlYaWiKlq0HlqfbDjF+rOi32CYtFVYXGneDVagUoWwuNKSNEOBDVE4EDEFEq3DWofF8vcwlGizcE3ss/SHu0RWwqy5kBBDrGkCDDGtiWKvgaFlQY/mYI1VxeXFxfh3Tq4QiQn2kVfjMes9OFP5BDI0VMU2IyTXQ9UdYhuicR31UZ8QrGJ9kIS0jFLKr7S2GFAUms4cRmvILEOE9BPjhVuADDyoB7BRVZCtm8Op/G2TordZfvN/rUgIRDKNK0KYyrbKtOMkXAKkuGmFpP1DfwvXgVbLT35Slq342syrGcE2x90TCXZ6XmW6fvw+H6xGFLqhwK0DW1Xga6eRPD/0tHODtkgW57duqcayuhVp11NjbAOkVudo8jxJmY98YbtyTSXnlcg9xCnG03TbQ3de/wzD9D+6XbySLyoFdHUXTz/9tBAh5N9qs9lEHtlf/OIXkOXMTb/rrruEm0DiU1FR0W1tYdKh4BLy0aOuzkzQcBpP07WGgjPIx426CjNhU2TEdENM1xkUSEL+eNStmSBN1DR3lcbkeuHzJ8Ei/DnJA5N8OjtrLwX8CB/XlGesIZP1i7qmWwJXyNJlCrGEhdBANE6+n4ZYH62X5lFQK/wYI+I34FOAuCTikATkKSosu83d1eY6dMSVuhSpl2KFbEVc1yDb6mHJXoC4bzS0SHFynKz6IFl9iIcGIgoFb7uy8KviUnxra+ndsElx/MryDv6j3o+B+joYkrnPSGPQ+qNaus+sue0ZpKnc1uKeCaOVwN1qAWKSBJVeQJqniSVPk84scanjzf0jJcRmkoQQbnkBMI9d+nwZ1yXcMVrNS8tvfdy1eKfnVabrR9Ni4tgbkiTOB/L1rVNbzo/kuZEU6S3nRwz+tOspBl+bczR9V5nzURBXV66pVGg4jafptofuvP4Zhul//Iw1I7eP4cOHi8wFfr8fmzZtwnfffSesu8OGZa4WdMsttwj/1sSH5mF6BoqKpuAS8u3LBA2n8TRdayiqmIIzyMctExFNhypLYrrOoAhoCiShx3eCNFkn/B8VqHqBsI4ZiAuLoJCTKYq0vfZSpLrwfkzRMpJOKaaa/QeT6yQxYIrihMCxWixJ6yStl+bRUCQCcGziN5ClmcKEBAoh07SGBC1hNRXrkGHRipLr6kjAWigNlRBtBtSsZZCkIGLeMUkrLA23OLfAi2x4Y0WoUyy4taAAd+TnoxG25HJ2k7fg35HncE1DLax6VPiW0tqsGYocmMKtFXrXbi+JeROSsDwOIVxJwCaWqrajg6UOh5gHzBAuBKniNGG5ThxQM9Ss9XwZXw6E4Gs1r/CzbXXcUyqKtXdeZbp+FEUVx14yDHE+kDW6MNZyfiTPjdRbd/P5ocKddj2pyGpzjqbvKnM+yj7QlWsqFRpO42m67aE7r3+GYfof2yxeJ0yY0OHnzDMp4KP7cblcKCsrQ2Njo/CxPfHEEzNOR9ZZ8rtN/TA9A6XzoWhqCkppHfdHv2k4jRdpolpB6XAoqpiCMzLN2xSMifEirVUnUOoeioCmQJLEsmQSPuSHSWJCCUKKFSEHE6HqpdClIOK6Dpsqw6EqnbaX0mFlOVTENaPFbzFaDj1aDEn4SZrrVCQrxc03R3RTAJKKQqdbrIfWR+ul9fusk7HWKEeuZHZVD44CZTHATz3RYjkaIrAiJISkIdZhRItRJh0tougT1r/mLW0jsoqteWm/ZdUP1b0cWmAItEhLAIxs9cDjqseW6HD4JSsWqlk4W78Mbxt7J6chqX+urw7/q16GfYKNsFpkFFizhK+w2G/NVmWrEMzpGQQ0jaZLF6ZtSTgGmFZGpw5cLrswKKbBK5vDSajn08jW8zUPSpfxiVuaGbRlUNaBSFnacRLZAxKClqzb9LdmunC0blf6MOpqz2ozryI52xz3HJuz0/Mq0/XjzspCVLJCljT4ZaA8BhwQlJLnh5x2btAWkStDUGQP2LNw97TrKU8dLM6btG1P7p2W+ShtVleuqeS8Btmpg2I8Tbc9dOf1zzBM/0PeHreAcePGCfGY6TNlypRubSAJ1ffffx/r1q3Dhx9+iGnTpmH33XfHBRdc0K3rYbYd8v+kNEAUTV0TrEE4Hhbijr7pNw2n8ZnyXFJwBqXDoajiKm9E+J5ScAZ9028aTuO7ku+Rck5S6h6KgI6BkvpT6iYdshyDZKHAJxtcoSMh6RY4AodD16yQFC9ynGawUWftpZynV0wdDkWWEI2Tq4FuWr8apogMApLqhSLSVhmQKKJbYCBHJOA3xHpofbReWj/ZxJ5VT0HAsKNUaoQLMZzYBDh0Ax4LhcjIqAEF1MTEsmkdNv/hUGCF4j2sxU+z2Z5LbUngkFxw2FTYJEfLBghtQNbWtZAVL+L+kcl5RBd11lphhfV494MfbvyfcRyu0c/GFrSI4Ip4DA82rMIdjWvg1mPIVd0tx5LsgeRfnOK7KMXtUAwFSrzFSivTe0RrCUtd4+ShS1ZFAzjXb8AhKzjLr8NpGKhVZBHbTtgzBe+0Wlyzx3OzX6qMWP006A2HJo8TpBgUxYCktxwnErg0py58QxODE4FhKVkN4jSdAUNP7FtajsOUuK2OO6Xt6uy8ynT90PEMOXJRq5DPq4ZTmzTqoMdpTRrchiaGV0tk9ddhSFGg+fymtFdXThuVdj2JVGv+w5LbLsmxjPNlyvea8ZoydPFNv2k4jd/efK/def0zDNP/2OZUWVQ9a+bMmSLbQCYWLlwoUllRcFV38OKLLwpXgM2bNyM/Px8zZszAn//8Z+HP2hU4VVYfyvOqG6KrsMfyvDYvvzvyvCYsiduV57W5HR3neTWDf6RYMXKiR8EIjkjOp2V/JrInIBn1TkZAK3KtebBbNcT1GCWvQiiiw6tRztIW/0tZl5Gv6fDFShBSo5CtZnonggSt0bgfchp3Q77dAjviOD3+GWboXwsLbIJGRcF/SirwdW4x6qKebsvzekFIwVVBj5nnVbLgPcmBZ1waqlSzC93SnOeVLJBtzLiUykAMM4+MpNlgaTwIwfqpiJKPc6d5Xpsz93aa59WcbufneTXb0WGe1+bzJT3Pa+b5ekWe1x28/hmG6T9ss3j99a9/LSws9913X8bxa9aswUUXXYRPP/0UvQEWrz8PXGGrGytsLfg2rRISWbdazxeNx9pUgSIL2vK6ZWhqWodc2SYqYNUFPfi/H97A1lA9imz5OGXYAVAkYNmGb1Dnr8NHwQBqrYuEBTYBdTVPzzsd+xaUIBiLoTyyFQeseQLuprVp+8IYfCC0Q27Ee/41211ha1OgBhWuYlw7YTrsVLGvdgVAgU3kH1q0u6iw9eScV1EfqEaBqwTnTTlFOIL+3/InsClQiQpXGW4cfb6wsv5j/ntpyyMR+OnKWmzx6ygoLMER44bgg7ULuMIWV9hiGKY/FinoS7B4ZfoloSazzCoF/ugatgbrURsIIJqhR+SrqnV4ZtOL0CxmfteEFTY3PAXXjjkS5dkqoGsoW/MeKn58AUpqgJ7qAPa/Ehh7GlVBQK+GMpRY3c2fFBcBhmEYpk/B4pVhdlXiEcBXBTSntvLFAtjsb4AnRPlo0y/7cDyCB5a/j1Wxr9KssHqkBNOyTseZoyuEz68tUI1hCx5Fbs3i9HWVjAEOvRUoGIE+gRCyWYAtC1DTi6AwDMMw/UC8jh07Fu+++26vzKnK4pXp19Dl7a8BIr5kDtiaSCNq/L5kgYZUvqtdgyc2vIi40pCyCBnOwFRcvefhGJ6vimUWbvwcQ5Y8BTXaUmlLWF73uQDY50LA0pJyq9djsQL2HEAE2HF3NcMwTL8Qr1QJa9GiRe3mXt2ZsHhlGDKteoFArSlmqZJTLIiqYCMaQxGRPSFt0ngED/70LlZEvk4broXLsL/9dJw3doBZJjfswZAlT6Jo01fp68odbFphy8ejT0HCNSFiSdAyDMMwvRIWrwzTXyD3AXIjIHeCZitsfbQJNQG/qDHfOhfogoZVmLXuJUTl1IwEMqzew/Cr3Q/FuFIz4Ce3aoFwJbCFWnxmBXvOAA64yuya72uQTywJWSulpWIYhmF2OfF6zDHHYNasWaKIQG+DxSvDpECXe7ABCLUI0kA8hKpQI5qCkTYBXWEtjIdXvYOloW/ThmuhARhrOQ0X7V0Ot1WCHA9j0LLnUbrm/eaSA824ioApNwHDpqFPQpWyyBJLQra3B6QxDMP0Ezhgi2H6IxE/4K9OuhFohoaGiAe1IR984Tj0VreFRU0/4dF1LyGCpuQww1AgNx6O80dMxf6DFJFCz92wCsPnPwSnt1VZ5uGHAYfcYIrZvgi5FFCWAhKxHODFMAyza4lXKt/61ltv4dxzz0VvgMUrw3TNjYAIxkOojTShMRhuE9AV0sJ4bO1bWOT/Ln0xoYEYpp2GS/cpQ4FTgqTHUf7Tmxi44lXIupnpQEDi78BrgD1O6tuBURSMJnxjs/r2djAMw/RRul28ku/rhAkTuq3C1o7C4pVhOoAu/0AdEPYkB5EVtjHiRX3YD2841iaga3HTCmGFDcPbshhdgd5wJE4fdAiO2E2BLEmw+7Zi+IKHkV23PH2d5fsA034H5A1GnyZhjbW5AZVqALOQZRiG6ZXilcRgRyxevBhTpkxh8cowfTgbARGMh1EfbURTKNomoIsstE+ufxMLfPPSFqMFB6E0ciou36cUA3IkUrUoXv8JBi95BpZ4SzlbKFZg34uB8ecAioo+D+WNVV0sZBmGYXqjeJVlWfi2tQctjsazeGWYPkYsBPgqqV5nGytsYzQAbyjWJqBrsedHzFr3CkJGqhXWgnjdkTim7GCctKcCVZGghhowdNHjKNia7nKAgpHAob83ixzsKgiLrMv8kKAlYcswDMPsPPFKQvB3v/sdJk2alHH8qlWr8Ktf/YrFK8P0RbS4aYGNBtIGk6W1PtIEXzTaJqArEA/imQ1v4gfvD+mLCg5Gtu80XLZPMXYrMl9487d8h6GLHoM13JLtAJCAvX4BTLps1yvbSkKWLLFCzLpZyDIMw+wM8Tpt2jRMnz4dN954Y7s+r+PHj4feyk9uZ8HilWG2MxtBoKaNFZYyEvhiIXjD0TYBXQs9y/DE+lcQ1M1qXoShq4jWHIUphQfizL0VOFUJSjSAwUufRcn6j9PXmVUGTP0tMPgA7JIIIetIEbKceothGGZ72GYzwFlnnQW7vf1UMaWlpbj99tu3qzEMw/QSyHczpyKt0pQiKSiy56PUkY8Cpx0FLhssKZbEvXP2xJ/2vA775OydHCbJMdhK38aXkYdx/Qe1mL/FgGZ1Ye2ES7D0kNsRcqfkhiaXhbeuAmb/Pi0P7S4D2QmiQcBfCzSuBzxbzEA5vXf0UjEMw/QVOM8rwzDtQ5ZXygfbyo0gYYX1x0MimKt1QNf8piV4csMrCOmBNCtspOYYTMjaH+fvoyDXIUHSoiKlFqXWko0UEUepqA6+Hthtev8IfqLcsSJzQRZbZBmGYTqBxSvDMJ0TqM9oDaXqXA2RJoQ1rU1Aly/mx7ObXsN8z+K0eeKBYZDrTsUvxxZgyjBJBHg6PRsxbP5DyGpcnb6Civ2Bab8Fsgeg30CuBfZsU8z2B+HOMAzTk+L1+eefx5lnntmlaTdt2oSNGzfiwAMPxM6ExSvDdBPUxU05YVvdMuK6hvpoE0LxMALRuAjoMlKssPMaF+GZja8hmGaFtSJSfQxG2ibhkv0UlGSZabVK13yAQcueg6K1FE6AxW4Gc+11JiBb0G8glwxbjilkd4V0YgzDMDtDvFL+1pqaGlxwwQU4/vjjMXr06LTxJBC/+uorPPPMM/jwww8xa9YsnHDCCdiZsHhlmG5E+GxWpQVyJfDFAmiMehHVNXjIChtvscJ6hRX2FSzwLE2bJ+4fgXjNDJw6Oh/H7i5BkSVYg7UYtmAW8qoXpK+geA/g0FuBwt3Q72BrLMMwzPa7Dbz55pv45z//iU8++QQulwslJSUigIvKwlZVVaGwsBDnn38+rr32WjFuZ8PilWG6mXjUDK6i8rKtiOlxkVIrrEUQjMXhDbVYYelW833TIjy78TWE9GByHkOzIVJzLMqlffGrSQqG5pMV1kDB5q8xdPETUCMphVEkxSxssN/FpkW2v0H+sLZstsYyDNOv2W6f17q6Onz55ZfYsGEDQqGQEK2UIos+VMigt8DilWF6AIqQJwEbC2cc7Yn60BTzidKyZIWNpFhhPTEvntn4KhZ5l6XNE/fvhkjVKThmRB5OHSvBZpFgiXgxeMnTKN74efoKKBMClZgduC/6LZQTl4Qspd5iayzDMP0IDthiGGb7oFsHZSKgnLAZiGox1EYaEdNjwgqbWtyAbjtzG+fjuU1vIKSH0qyw4erjkRffBxftp2BcmSnKcqoXY9iCR2AP1qSvZI8TgQOuMS2R/RWyxlJ2BhKySj/yCWYYpt+y3eL1008/FQULMvHQQw+JKlu9ARavDNPDBBvMTwbo9tIQpcIGAegG2hQ3aIp58MzGV7DYuzxtvrh/FMKVp+CgilycM0FClk2CHA+jYvnLKFv1NqSUgDA4C4BDbgCGH84WSLLGkpAlayzDMMwuynaLV5vNhquvvhp/+ctfoKpq0pWAgrnInYB8YHsDLF4Z5mcg7DXLyrZzOwnGw6iPNEIzdITjlFYrLv4m6Bb0TcM8vLD5TYT0FjcEQ7MLK6wjPAHn7SPjgMFmWi1X41oMn/8QXJ716SsZOgWYchPg3vm+9jsdssCSJZatsQzD7IJst3j9+uuvce6558LtduN///sf1q1bh5kzZ2LUqFF46qmnMHjwYPQGWLwyzM8E+b9SSVkK6MoAFTaoi5gptcgK64vEEIxScQOTxmgTntr4Mpb5VqYv1jcakcpTsFdxFi7cT0aRS4Kkx1G26h1ULH8Jst4SOGaoLkgHXAmMOZXKe/XgxvalkrQJa6xzZ7eGYRhm5/u8+v1+XHrppXj55Zeh6zr++Mc/4sYbbxTWkd4Ci1eG+Rmh2wkVM2jHjYDwxPxoinqFxTWqmQFdFNhlzm7gq4bv8eLmNxHWW3K9GnEnwtUnQAnuhTP3knHkSAmyLMHur8KwBQ8jpzY9+AtlewHTbgXyh/bctvZVaywJWa7ixTBMH2aHTBM//fQT5s2bh4EDB8JisWDlypUIBltS4DAM08+gF1dnPpBd1q7/aY7qRpm9CFZZhVWRUei2wWU1u7bpxfeggv1w++jrMDprZMtiLUE4BjwPqeQZPLXQh9s/1LGxyUDYXYofD7oVqydciria4udZuQjG878Avns4Y0qvfokWN18qGtcDviog1hIoxzAM0y/E61//+ldMnjwZRxxxBJYuXYrvvvsOCxYswLhx4/DNN990bysZhulbUMAQpbNqx9/SqqgocxQhW3WDJG62XUWBywa1Oc1egTUP1wy/GL+smAGbbE3Op2Yvg3PYvVgfXYzfvqfjxUU6ojpQO2QaFh5xL+oGTE5OK5E7wXcPAS+cBVSml6hFf7eOU4YIzxagcYNpKc9QdIJhGGaXcxsoKyvDY489hunTpyeHxWIx/Pa3v8UDDzyASCSlvONOhN0GGGYn54P1bmnXD5agggbkCxvXqaABkiVm0ZxRoC7SgCc3voiV/jVp88W8YxGpOhGlTjcuniRjdLFp6c2r/AFDF86CLVSfnNaABGns6cDkKzgSPxNkJafqXeRSoPbD4g8Mw/SfIgVUmCATc+bMEaVkewMsXhlmJ0NWPVHQoP1uat3Q0RDxwB833Y5iugEvlZjVtOT4OXXf4JWt7yCaEqClx12IVJ2MuG8MDhsh4ay9JTitEpRYEIOWPYeStR+mpdUy3CWQptwMDD2kRze5T0Pintw+GIbZZZk6dSr23ntv3HfffehXbgMkXJuamvDoo4/illtuQUODGaAxf/58jBgxojvbyDBMX4ZcAbLLO7R4ypKMQnseiu0FUGQFqiyhwGUV7gQSJDF+WtGBuH336zDSPaxlPksAjoHPwF7+HD5e58d17+j4fpMBTXVi3d4zsXTKHxDMGpCcXqKiCu9cC7x/MxBsscwyKaS8HDAM03NUVVXh17/+tdBMdrsdJSUlOPDAA/Gf//yH44c6YbsTAC5evBiHH364sGquX78eF198MfLz8/Hqq69i48aNIl0WwzBMsluarHk+qsjla3cyp8UOm1IkrLCBeEgEctlVJVlitshWgOtG/Aqf1n6NV7e+i5hhCi01ZxEU1xr4K0/GvV/sif0qIHLDomAUFh96Nwb89DoGrHwdst6cmmv1hzA2zYV04LXA6OO5uAHDMD8ra9euFUI1NzdX5MsfO3asyJ+/ZMkSPPzwwxgwYABOOOEE9FY0TRMBtnJznMLPzXav9dprr8X555+PVatWiTeGBMcccww+/7xVHXKGYRgiqwRw5HY4iSIpKLLni48iyVAkCflOK3IdVsh0s5RkHFZ8EG7b/VoMdw1Jzidb/HBUPA172Qv4bksQN7yj4+PVOjTZgs2jTxMi1pu/W3J6KeIFPvkDjNcvA5o29ehmMwzDpHL55ZeLLE2Usen000/H6NGjMWzYMJx44ol45513cPzxx4vpqIf7oosuQlFRkXB9PPTQQ7Fo0aLkcu644w7R/f/0009jyJAhwqB45plnwudrMRIEAoFkXn6KV/r73//epj0Up3T99dcL0exyuTBp0iR89tlnyfFPPPGEENpvvvkm9thjDyG0yVC5s9hu8Uo7PFMJWNpwMoUzDMNkxFVofjqbzOJAubMYDov5cuxQFRS57cISS5TYi3DDyMtw2oDjoEotnUhq7gK4hv0DEdsKPPqdgT9+rGOr10AoeyCWTfkD1u51IeIWR3J6acv3MJ47A/jhCXKi7ZFNZhiGSVBfX4/Zs2fjiiuuEEIxE4l8+aeddhpqamrw3nvv4YcffsCECRNw2GGHJV01iTVr1uD111/H22+/LT4Ud0QZoRLccMMNYtgbb7wh1kuilFw8U7nyyitFpqjnn39e9KzTeo8++mhhoExArgx33323cBddtmwZiouL0efEK6luCobKlPuV3hAYhmHahayvWaWddteTFbbEXoBCW56wuMoSkOewIsfR4gt7RPEU3Lr7tRjmHJScT1Z9cFY8AXvZS1hRF8LN7+p4bamOuC6hevhRWHT439BQuk9yekmLAN/8E/qL5wI1y3t00xmG6d+sXr1aFGShiqStY4nIOkqfm266CV9++aVIQ/rSSy9h4sSJGDlyJP72t78JCygVh0pARaLIMjpmzBgcfPDBOOecc/Dxxx8ni0nNmjVLzEeil9wTnnzyScTjLS/qZEF9/PHHxXpo/uHDhwsr7EEHHSSGp2aUevDBB3HAAQeItjudzr4nXskX48477xQbk3hLoB1AO3zGjBnd2UaGYXZFbG4zkKsL/qZu1SnywtoVm/jtVC0ozLLBqphW2FJ7MW7c7QrMKD8WljQr7A9wDbsPuuMnvLjYwG/f17G6zkDUWYiVk2/Ayv2uQdSWk5xerlsJ46VzoX95HyfxZxjmZ4WE6sKFC7HnnnuKbnxyDyDxWVBQkBS19Fm3bp2wtiYgd4GsrKzkb3INIGstQdNFo1HhBpCA4pNShTP52ZIP62677Za2HrLWpq7HarWKXP59OmCLfCZOPfVUYTYOhUIiNRa5C1Dhgj//+c/d20qGYXZNVAeQMxDwbjVzwnY0qWxBqaMQ3lgAjVGPuHlRRgLKC+sNx4UV9qiSqRibPRpPbHwB64OmH6useuAc9BiijftiU82xuG22HUftJuGMvSQ0DJwMT/FYDF7yDEo2fCqmlwwd0sKnoa/5GPK03wGD9v9ZdgXDMP0Dyi5ABj+qSpoK+bwSDofp1kTClYRoqu9pgtzcltgBVVXTxtGyyRrbVWg9iqIItwT6ToVEbAJqV8Kdoc+KV3IK/vDDD4VZm/wjaOPJF4MyEDAMw3QZiw3IHQRQGqto5+lhslUXHIpVFDaIaFGRkcBqUZJ5YcsdJbhptyswu3oO3qyaDc0wRbE173tY3KsQ3joD7/80EvM2G5i5n4y9y91Yu8+lqBt0EIbNfwSOgOmzL/u2Am9eAW3UsVAO+k2ngWYMwzBdgSypVJ30X//6F6666qp2/V5JU5FRkAK7yLq6PQwfPlyI27lz52LQINO1qrGxUbh4JvLxjx8/XlheyVpLbgN9gR3OcUA+ERQ1d+ONN7JwZRhm+5AV04XAmd+lyVXZLC+bZ80WlgDKC5vvssJtIwuEJHxlp5ceit+PugaDHC15XmW1Cc7Bs2ArfQ114Qju/kzHv77S4Q0b8BaNweLD78GW3U6EIbXcGpWV70B/9lToP71vllZlGIbZQch3lPxOyZf1hRdewPLly4Ul9plnnsGKFSuEBZQ0FfVmn3TSSSLQitKSfv311/jd734ngua7AllOZ86cKYK2PvnkEyxdulRkikpNcUXuAmeffbbISEDpTsktgVwY7rrrLpH5oDeyTZZXKvvaVa6++urtaQ/DMP0ZEq+K1bTCdkEo5liz4FDsqIs0ispbWTbKCyujKRhDXNcxwFGKm0ddhQ+qP8XbVR+lWGHnwuL6CeHKU/HVhuFYVGXgnPESDh6qYuOYs1A38AAMn/8Q3E1rxfRyuBGY/TvEl78Dy6G/BbK4AhXDMNsPWUQXLFggcrxSoafNmzeLQHhKQ0XBUmQUpBfzd999V4jVCy64ALW1tSgtLcUhhxwiChp0lXvuuUf0jlP6LfKNve6660TV0VQoMOtPf/qTGLdlyxYRPLb//vvjuOOOQ58vDzt06NC037QjKXVCwveC8pFR9Bn5wVIC3t4Al4dlmD5ILAxQt30X/bboNtYY9cIb85u/AfjCMeEPm2BTcCse3/g8Nocq0+aNNkxGpOZowLBhbClw0X4yit2S8MEtW/MeKn58AYoWbVmXxQF9/8uhjDvDtBjvalisphsHwzBML2WbxGsq//vf/4TZm1IwJKLWyORNlbYo/yuZoHsDLF57P7puYNlWLxqCUZGMfs/ybMiUE+nnboehY3nDcjSFm5Brz8Xo/NEiCGh72pppWURny89EOBLDnz/+GBs9NRiUU4zfHXaYmeu0apFZ4tRZAJTuhaim45HvvsTGphoMyi3GxfsdJJb/1uJKbGkKYkCuE8ePKxN6K7Udo3J3x/JKf9o2xfU4Hl3wKjb5tqIiqxwXjT8FVkt6UADhDwdx1ew/oDK4GWXOgfjnkbfDaXW02Uc6NLy37j1UBipR5irDtPLDcfenc9K2yaIo6W3dswCWQGWbQK5wLIp/zH8PmwI1qHAV49oJ0yFLOh5b8ijWBbYi35aHU3Y7FYqsYqVnA6oCHjgUJ8qsJZi95Xss8C3A5tgGGELiNh+vaD7CW0+FFhoGmwJMrghjWG5ABIRNyotg2MKHkV+3NK0d0cLReKBwHH4w4hjoLMEf9j1bbMMTKz7G5mANBjqLMWPQZFzz5TOojtSgxFaMB6deAJvFgtfmvoVaXxWKskpx8qTjoRsSHpj7LTb5GlCRlY+rJ+0Pq6pguXcdmqJe5FqzMTp7qDiv3qv8CpXBGpQ5izGlcALuWPg4NgerMNBZij9NuBhOCoJrRVzT8enKWlR7QyjJdmDaqCLA0DFv3rcIeOrgyinExIn7U51efLDxJ2zUFZS7C3DsqIniHEo9nqNLs7C8ypd2fIORMK58915sDW5GuXMg/nXMb+BuDjrZ1mtsR8h0fUIyenSdDMP0IfFKJm/KM0aOvqlQtBplISCfie6AnIipggT5gZDjcnl5ufDX+P3vf9+lqDcWr72br1fX4T9z1mBNjR8xzYCqSBhe7MZlU4bjgBGdJ7LvLuZWzsWsJbOwzrtOCDeLbMHQ7KGYOXYmJpVN2qa2ZlpWvs305WyINLS7/Exc8uJz+LLuJUhWSntCIk5BdtSJG2JhnKLVm3XoZRVv24rwV8WGRksgOR2ixdCbpiHqGwayX9Lj2p23HgMGf4uYUiXaoWsyYuFCxBumwgiNFNtkyfscHtv70KWWVFEKnDhpyDm4Y+oVyWHHv3AB1ofmpUhAE2t0T9jrL07uI3fJV/BY30dYDwgLKU1v6BIMwwro5LmkQI8UQ2+cinhgeLKtWQ4VVx4yCBftZQc004J67Zwn8InnA+hypNm+KkE2JBiSniZGKQdsnsUJWbFBM+IIxqOI6GQ9bdXaVreQaMMBzVZYK6xSCAXKVsRK5iDiWonjgwHc2NCE3BRrMCUKfCwnGw/n5CBKLzGGLMSSSeZba24csEJHXAIsBuDQFDQYWQhYaBt02iLIcafIZavaI4gbcZH+yyarwj0ipEXFtortzbCKvbPG4ekpf0j+fnHeRjwzdyMCkXjzHgP2UVbjDPljDDRqYJHiiBsWzHYU4Kn8XNRZIohLBiTDAhtKkBM5CkHPUHE8SXxqBuXfpRy7kji+wewXEHfOBaQUK7khY4h1Kt4++/5tusZ2hEzXZ3HJJljzP0NjfEuPrJNhmD4mXsk9gHKA7bvvvmnDycl36tSpwp2gOyB/kHvvvVck1aXcZ+SkTL4flI6rK361LF57L/Sw+e1rS+CPxJHntMKqyMJ62BiMwW1T8JeTx/4sApYeqnd+cycCsQBybDmwKlZEtSg8EQ9cqgu3Tb4NWmB4l9qaaVm0nOpAtVANJc4SMbz18jM9SIVw9TwESY7AiDsBQ4FDDsCpeOAydFzjseBoVw4+Cnnxt6wYApKMkJaDkOGCAQ2SJQhDtyFadTKUyEjAvhqWklfF8grsuXBa7djq8UGXglAkOwpCZ8GjrUc46y0hRCRDac7BajQLYhkzhlwiBCwJ13Wh9gMG5OAeqIhdiQbLbPhdb5JNDIpkgUaSq9nvlDDiWTA0R0tbK0+GEh0J3SBroQFFlnDzkcNx0d4OXPvxw/jIa7ZNiETaoRIty8igRs1hLtkGWbLBp7WUSoTRvE2pwjXlbz1agPDW06CFKLpXhzV/DqyFH0OS48jTNNzY0IjjAun3t3UWC+4ozMd8KpWdUIgZaW6XZqBYk+CXDNSr5sTWuAMx2h9KGLpquj+4pBxUZOehJtyAhqjpoyZDhk4Sv4M7d0LAknB9+PN10A1zX5K+Hqv/hF9bXoJTisBrOBGXLFhm1/HfIgUBSUJcz0FEzkHciEGTAoBug9t3JuzxUdjqCSWPy4A8Bxps/4OR/W277RiiHioEbFeusR0Rk5nuJT5pORqdz4nzvcSdj1yHo1vXyTDMzmO7+06oUgO5B6SWGCOr62WXXdatWQcoso5q/R577LEiVQRZdY888kghkpm+C3XvkZWEHjal2WbJT+p+p+/SbBv8EU2Mp+l6tB2GLqxB9FAtdhbDbrGLLkX6pt80/NEls/DgnFWdtjWuaRmX5Y16k9ZA+pu+U5dP81A7WrsKCIsrCddYNmBQl72MUiOAIk2DX1LwlNNAxDDwmF0Xv2l4CQLCckfT03w0v5o/hzqOYcn/TPzWY9loCAD1/hgMQ4WKXBhSBB77+wi7ZzeLQwsMyGJZEllxRWynjtfXP40Gv0dYXDvcr84fEZV8CDpni/loeRpZSFttp0SWYlpXoq0FcyBJBiyyDKtFgqYb+NfnG+BXC/Gx54PmtinmNravEJPjAno0XbiKUa2Eq2hwy61QttbDMfgh2IrfFuI42jANgXXXIB4YhkZFwS1Fhbi0uAhbUvIhDo3H8WRVDW6ta4C71TZmIqBIwoLpV1IaIodF23QlnBwU1IJCpHpiLdvQnsU1lYW+xfCGAsLiSsJVWNSFeDVwhvKJEK61Rg4isEKDjJdyVfglGUWajgLdL85RXVdhxLMBOYKAYzbqAiHxUkHHhaj1eWFkpd6HpZSPyfroZ/AGA51eY5mugR25l0iygZDrI8hKBIaWDU/QFP3dtU6GYfqoeH3sscdE1BuleaAIOfrst99+IgKO6t52F1SGjMqcUU4ygipOUG7Z6dOnZ5yeqlKQtTX1w/Q+yC+NuvfIStLa/YN+5zpVMZ6m60nIF466MckalKkdNHxVw1qsalzZaVvfWTmvzbLC8TAiWgQWxSLSN9HfYS2ctnyah9qRCvm4kquAsLg2iwGHFIENUeiGArcGbFWB5yIB8U2/dShivB3UpS7WIOaXbTWAezEkay2gucR6SRSGYpqwoNFv2XAiKm8C5JAQh4l1JjpmTLGoQEMQZ755aWfaSVBrfaTZ9cC04JrLSsyZ2I86JCWU1lbNskWMIYFjUST4QjFc/vYTpquAQWLanFcS1uCOWpKwGneBuB1SvNlqKo6NAWvBl3AOfQCyfSOMWCFCmy5BuHKGsBR/5XTg5AFleDorS7g5JDjd78cbWypxaCvLrEl6WxrIs0MCZOqGJ0uzEO1B05pMlmVDhiHFsclfDy1FZKW6R3TE5V/+W7gKmBZXc58N1TdjkFQjLK6JY7BWNc+lLFqtIcOKOBQtLI6X2NeaE4Zag6i8uVkAy2KZ8azPUlwFWr8NNP+WdMx8+7ZOr7FM18CO3EvoXI7JVZANl3gRisR0cb531zoZhumjRQqKiopECgcSlZSTjNh9991FvrDu5OabbxYClJZNec/IB5ZcBtoLCKO8ZH/4Q4u/F9M7oYAK8kuj7r1M2BQZHt0Q0/UkFMRBvnDUjZkJGh7TmxCDv9O2bvXXt1kW/SatQQ/8hMVMSwlAomnJGkvtSIUCmURXvRCSJhYSemSZMyThK0k+k5VSs++kEDWmrFNS5ZSYXwcsjc2iqGV5pCVJChISyNKaaFd7Fk1zeGPMLDvYGZrSmJyP/pE/Z+bFaultVQJkKBZQNzeN3UqBW6Tnmi2utLQODa/bjC78TA3NanbZy2ZbFVstnEP+g2j9IYjWHY6YZ1/E/bvDVvImjKwl+L+CPLznduIPdQ0Y2Vwqu1jTcH9tHT4MOHBXfh5qLZlvs/GE50PzpujCaKmlaG7zj5jRXIJbbHXXeyKqojVi6tR4wmwEhI9rVIhXE59inkt0TpHHrUWi16CUILmU4yKZTTG9SawNXWpHTXgLZHvH11ima2BH7iU6uTuQ6wwsYr9p5GOc0ouzo+tkGGbnssMhlyRWTzjhBPHpbuFKvPjii3j22WdFdgNyUSDf17/97W/iOxOUL438WxOfTZvMEpFM74Iigakrk/xGMxHRdDPxvDPzA6+7oOhjCuIgX7hM0HBKiK/C3WlbKTq79bLoN2kQ8lEUwkMClJT0SjQtTUPtSIUi8E2LZYuIiEOGYZAN1EiKjTJDNoWsabts9k5NuazF/DIQzzNFSMrySIBQqwgD8Wb3APNXZszheSq1rXMULS85n9mydtRmQlAn2qq1VJshvUFzlbsSeVWbA75o6DZ7lLSvdhPbTkFKUswNaJY0K6ytcA6cQ/8J2b4JhpaF8NazEdpyrnDBWGKz4fTyUjyQS93wLRwRDOH1LZU41een4II267TQ6dTsASD2jvhDSdku8w9VMrM8bItwJUqtxaYoTpnNC5cIziLragKyuCZehsQrlkFiLyUFWMpxSYaiUbujXSsoUWwf0Ok1luka2JF7CVlc6fqh85rOcRKwZDXurnUyDNNHxStZQClN1llnnSV8XA899NC0T3dBVSHI+nrmmWdi7NixOOecc3DttdcKC2smyH2BArNSP0zvg1LYUKQ+BTy1jhmk35RknsaLVDc9CKXNoehjCuLI1A4aPjJ/GEbmjeq0rZRWqPWyyMfOptgQ1+IiQT79bVfsacuneRKptBJQ6igjWiwCmRIiJmTYhI+iLGnwK0B5DPiFzSW+6bcMTYwPw5ZonZifIvnhHwcjWiSsZ7Re6vZ1qIpwH6DfFLRl1SsA3ZEWBJXohjWtpiRpnHj+hP92yehZFL0YskHpkkR/dPOy0gOqhFzSHGltVeJmRSzyR6TgIMo68ODxF0JKaZsp+Mii2VFLWgvm9sWfRJkPEjJbicISKUJW5RFpsyi2GmGFtRaR720cmn8PBNb9BtHG/RGDjEdyc3DqgDLMsyX2P5BtGLi9vgGPVdVgSKxFMBL5GmAlEUjWZfEyQsFSZmCe6I4XQXMWVLgLoKSkdkq4TXTGgwddAZfNIo4x+b0S6+SB2GgUI1tqOa+GxcxziSywkqQjCgs0xS6Ol9jTShBSrBhWfaCwXoqMA7oBi29qc+Bcpn3b/NuQMeu4Ozu9xjJdAztyL6FzWdVLxXlNxSpsqizO9+5aJ8MwfVS8/vrXvxYfErFjxozBXnvtlfbpLihrQWoZM4LcB/QuJi9neicU8EQppihSv8obEf5oFHhB3/SbhtP4ns73St35lDaHoo9rgjXCR5UezvRNv2n4RWNn4vIpIzttK+X4zLSsbKspwEkI0N/0nbp8mqd13km7TcVBhaeJCHxJ9cLsr9VRJblQqyhw6xrODQI2ScKFYRluQxPDq0HWMRI+MTEfzR9roPrVFjMdlm6DrHqR7wIK3CokKYYYmiAZNuSEj4bdf2RzuieyxJqpm0x3AhJeskiXle/OwRDHxI73a3APWI0sOINHmrcZKQ6F0i+12k4j7jLXlWhr/RRh+SPBEY2bIvuKqcPhdtpxUOHpybaZNuOOLJHmuCzFhlxLa+sa+R+knFdxm9lBL2vQLSFIugp70xjYImVQPcNbTKNCzOuwFX4K5xCywm4BdDsi1SchuPFX0CLFWK+quLCkGHcU5MOb4t85MRLBy1sqcXGTFxbDENkGKFbLraVshU4+txJkzXy5IZyKU+jvHDUrXbx2cllQtoFshwu/nDRI+LtSt7opPCW8oB2KoGFDkeSBHVHhZnJ6U0wEmtUqMuplt9i3shyDZPGKbAOu0JEodDmECwIdF6IoKxuSb79W+zzVrxkiXVa209XpNZbpGtiRewmlYnMEDoeuWSEpXuQ4zd6P7lonwzB9NFUWlQ576qmncMwxx6AnoZyuH330ER566CGRKovKqV1yySW48MILcffdd3c6P6fK6t2k5WbUDdH93ifyvHbQ1p7L82pmQO08z2tzptSUPK8JG2SHeV7DI8U2dVue1+Z91HGeVzOLQmqe10RbyeJKwvXiQ4Ynl33Zm3/Hl3UvwqDAsmYozytZKVPFLPnyFqpuyBa7yJMajEURoiAksW9M5ScbKqS4Ezq9GDQHSVliOXB5x0IOlCbbESj6FhH3T60D6YXIjtZNQ7SOeprIChyHteAzWAs+hSRrKIrHcUtDo3AfSGWNRcXf8/OwzGb92fO8JtiuPK8kfvWUPK+yJI5vr8zz2nzucZ5Xhtl21q9fLyqqkt7ae++9sUuJVyoW8Nlnn/WIn2sqPp8Pt956K1577TXU1NSI9f7iF7/AbbfdBqu1c39IFq+9H66w1TH9tsLWuDJYLG33TzgaxV+/eB4bvVswKHsAbj74TOEy8diXt2GTbxMqnKW4cOxFsCjWtApVw10D8dTKT5PVr87f/TBh6XxmyXxs9NYiz2XDMSN3E/vs23UNohqVQ7Vg3IAcxPQYHlv1DlZHlsOH9EAlLVwm8sLqkXLxO8cZwu6DFmO3QhkHFY7Fgh9m4aL671EoiiSY0E13fvZorBk0HScdeBpX2OomuMIW0185//zzRSwQpTD973//mzbuiiuuEBVRzzvvPDzxxBP9W7z+/e9/x9q1a/Gvf/2rS5WudhYsXhmmHxGoB0KJLAfbjifqQ1PMl/SdpGAnXziGYIq/6grfajy58UXUR1PWY8iI1B0qLLFkp6Y74hEjJZyxtwSnKkGJBTFo6bMoXfdR2vrirhKEDrgJzt0OEdbMXoHFCuQO2tmtYJg+y84wyJx//vn45JNPhOaprKyEo/nlMRwOo6ysTOifadOm7TLidbtfPynXKmUBoDKxxx9/PE455ZS0D8MwzM+OqwBwbb+7SY41C6X2QpFhgqDnDXXfUw7RRNDU7lkjcPvuv8GUwv1bZiRf2KKP4Bz6b8i2KmFZnb3KwA1v6/hhswFNdWLd+Iux9JDbEXKbFlrCEqhG1oe/Qfid38Lvqd2RLWcYphdA7ivnPf4dfvX0PFz/4iLxTb9peE8zYcIEVFRU4NVXX00Oo78HDRqE8ePHJ4e9//77OOigg5Cbm4uCggIcd9xxWLNmTYfLXrp0qciv73a7RT5/Cp6vq+v5bep28UobffLJJ2PKlCnC/5Wsm6kfhmGYnYIjF8gqbU5Guu3YFCvKHUVwqy0pu+wWBYVuWzJinTJGnF0xA9cMvxh5aktAmGLfCtfQfwq/V8qy0BAC/va5jvu+1NEUMuAr3AOLDrsbm0edAl1qSUflWj8bjhdOR9OC1xBplZWAYZi+QaJM8fJKr8j0UZxlE9/LK31i+M8hYC+88EI8/vjjaQWlLrjggrRpAoEAfvOb32DevHmiCBQFxZOeay8QvqmpSWSRIgFM85D4ra6uxumnn44+5zbQV2C3AYbpp8TCgG8r9eFt9yKC8TDqI41pFa4omt0bjiXTT1Eg2Etb3sKX9eklq/XQQITIFzZaIn67VODsCRKmDjOrmjk8GzF8/kPIalydNl+odF+ED7oJ2SVDdo4rAbsNMMx2uQqQhZWEK5UpTnWnJJlFmTBGl2XhyQv26xEXgvPPP1+IzEceeURYX1euXCmGU4Enynd/0UUXCaNjJrcBsqBS4aklS5aI7FGt3Qb+9Kc/4YsvvsAHH3yQnGfz5s3J9fR07FMm2GudYZhdE9UO5FQAynYXEoTTYkeZoxh2pSV3K1lfyQprs5iWU4dix7mDTsOvh1+EPLWl10l2bIZr2AMiAwFZYQMx4OG5Bv78iY4qn4FQziAsnfpHrBt3PrTU5Vd9j5zXfgnfN4/DFwxtc3EChmH6b8nzoqIiHHvssUKkkgWW/qbe8VRWrVolAt+HDRsmjHpDhgwRwzdu3JhxmYsWLcKnn34qXAYSHxLFRGfuBj3FNt/VyWzclQAtqobFMAyzU1FUU8B6twLx1PpXXcciKyh1FIpgrsao+eAhiygFYlAglzcUFwJzz+xRuH30dXhp81v4quF7c2ZJg634fVizliEorLDFWFYN3PiujlPHSjhmdwlVI6ajoXxfDFvwKPKqF4jZZC2M3Pn/RmT9R6ibfDOyBu5pZphgGKZX0ltKnidcB6688krx97///W+0huKUBg8eLKy0lMGJ3AXI4hqNZm6b3+8X82RKT0rBYH1CvJ500kk90xKGYZiegHKD5QwEfFVAlPLgbn8wF/nD1pIbgW6W2XWqFlgtCjzBGKKaBqfiwHmDT8f43LF4ZtPLaIqZYldybIJ72AMI1RyJWMNBiGkynlto4OsNBi6ZJGNYfiFWHHATCjZ/jaGLn4AaMeezNaxE4bsz4R19JgL7XIzsLDfUVkVbGIbZ+aSWKbanlAD/uUueE0cffbQQomRoPOqoo5BKfX296Oon4XrwwQcnA/A7CwR75ZVXhIXWYtn+nqzuZJtbcfvtt2/T9F999RUmTpwoyrYyDMPsFKi3KLsM8NcA4e3vtiP3AQrmqo94EIybxQcskoQClxX+aBy+MAVbGRiXMxq3u67Di1vexDcNP4jpDCkOe8m7sOcsg3/zaTBihdjQCPz+Ax3HjJJw6jgJ9RUHwlM8DoOXPI3ijXPMphs6cn78H6IbP0PjpJtgHTIJ2XaLqJzFMEzvIFGmmIKzSrPlNj6vVEacfF57uuR5ogrp8uXLk3+nkpeXJzIMPPzww8JqSq4CN998MzqC8sSS2CVXgxtvvBH5+flYvXo1nn/+eTz66KNt1vFz0OOv8JRaYcuWLT29GoZhmM5xFwNOs9rZ9qJICort+Siw5aY9oNxWCwrdVliaLaMuixMXDD4Tlw87H9kWd8sC7BuQPfx+qHlk7dBBcV/vrDBw0zs6FlcaiNuysGbi5fjxwN8h7CxOzmb1b0Xxx7+G/OkfUF1TA3+USgYzDNMb6C0lzxOQL2umIHXKLECi84cffhCuAtdeey3uuecedAS5FpAhUtM0HHnkkRg7diyuueYaEQBGy9slsw1kZWUJZ19yDN4ZcLYBhmHaQNbXQC2ZRHZoMVR5qzbciCiV6W2GlkiFDQLRlpRX/ngAz29+Hd81LkybXw4PgVdYYQuSww4eKuGcCRKybBLkeBgVy19C2ap3IKUEbsVsuWjc9xoYww5HnssKa3daPjjbAMP0+ZLnuzosXhmG6Z9Eg4CvcocFLN1CKZDLG/OnL17T4QnFEE9J1TW/aQme3fQKfPEW31sZKkJVxyDaOCnZGZZtA87dR8IBg820Wq7GtSKtlsuzPm0dvvL94Zt0Pex5A5DrULvHlYDFK8PsEiXPd2VYvDIM03/phlywHeWEzVRe1hfz47nNr2Ne06K0+dXoMDRuPBVGrMWtYe8y4ML9ZBS5JEh6XFhgyRIrp1h6NYsDDXtfhOioU5HjssFtNauDbTcsXhmG6eWweGUYpn8TjwLeLUBzBoEdWpSuoS7SiLCWnpYrHNeEFTZR2ICY17gI/9v8mnApSKDAikj1MQg1kBXWtNTYLMCZe0k4cqQkrDd2fxWGLXgEObVL09YRKBiNpv1vhqVwhLDCJvLQbjMsXhmG6e/ilQTjwoULWbwyDNN70WJmLlj67gbIjYDywqZCVlhPOIpwrEUkk6sBuREs8KQLUXtsBOrWz4ARz0sOG1EAXDxJxqBcSbg6FG34DEOWPA1LrEX86rIF9aPPRHjs+XA6nMh2qNueWovFK8MwvRy2vDIMwxBkeSUfWHIl6AZCWgR14YY0NwIitbABQbfg75sW4blNryGgBZPTqbAhWnss/HX7Jq2wigScsIeEk8ZIsCoS1HAThix6AoVbvklfd3YFGva7AXrJeGTZ1W1LrcXilWGYXVW8hkIhcdN1Op3i94YNG/Daa69hjz32EKkUegssXhmG6TJ0O6RcsJF0q+mOuBHURhoQ0dIr12iU9zEUQzTeYoX1xLx4ZtOrWORZljatW9sNVWvJCttSepZSRV68n4zdi01Bmlf5A4YunAVbqL5lUyChYfgxCEy4AootCzlOtWv+sCxeGYbZVcUrCdRTTjkFl156KZqamkSdW1VVUVdXh3vvvReXXXYZegMsXhmG2WaCDeanG6BbbEPUA19K936CQHNhg1Qr7NzG+Xh+8xsIamYRBMIq2aHXHYfGmn2SVljisBESztpbgtMqQYkFUbHseZSunZ2WViviKEDNxKuBQdOgKjJyHdaOS82yeGUYZlcVr4WFhZgzZw723HNPUWHhn//8JxYsWCBKiN12223J6g47GxavDMNsFxE/4K/e4VRaCfyxIOqjTUKgphI3jGR52QRNMQ+e3vgKlnjT76N5xu7YvPoU6PGWe1meA7hgoox9K0xR665fieHzH4bTtzlt3oaBB8A78VoorhLYVQtyHGrmOuwsXhmG2VXFK7kLrFixAoMGDcLpp58uRCyVjt20aRNGjRqFYLDFd2tnwuKVYZjekEqLiGox1EYaRXGDTFZYb3N5WYJuzd80zMPzm99EWG/xw7VJDiiNx6O6cnyaFXa/CuC8fWTkOyVIWgwDfnoDA1a8CtloEcVx1YWte82EPvJkKLIFbptFBHUpqf6wLF4ZhunlbHddrxEjRuD1118XYvWDDz5I+rnW1NSwSGQYZtdAtQM5FYBi6ZbFWRUVZY5COC2ONuNczeVlE9kBqDjBAQX74g+jr8OeWaOS00WMEIK5L2L4Hk9DVb3J4d9tAm54R8fHq3VosgWbR5+KxYf9H7wFLfNSZoJB8x5A3kdXIdL4E/yRGKo8IfgiXGqWYforTzzxhCj12i/EK7kGXH/99RgyZAgmTZqEyZMni+GzZ8/G+PFkEWAYhtkFUFRTwJKQ7QZkSUaxPR95tpYArAQkXAvcNrhtFFjVHIxlzcXVw2fi3EGnwS7bktPWGD8ib7f7MHjgwqS1NhgDHv3OwB8/1rHVayCUPRDLDrkDa/eeiXiKYKYcscPevxTSoocRigbRFIyi2hdGJCWAjGGYvsWmTZtw4YUXory8HFarFYMHD8avf/1r1Ne3BHKSZrvvvvvQ19lu8Xrqqadi48aNmDdvHt5///3k8MMOOwz/+Mc/uqt9DMMwOx9ZAbIHALasbltkjupGqaMQipR+GybJmmWzoMBlhSXFCntQwX64ffR1GJ01MjltSA+iIet5jB77LJz2lvK0K2qAm97V8epSHXFdQvWwI7Ho8L+joXSflk3SYxi49BmUfvArhKp/QCgWRY0vjIZAVJS3ZBhmOyE3o60LgNUfmd/d5HbUEWvXrsXEiROxatUqPPfcc1i9ejX++9//4uOPPxbGxYaG7glA3RZisVjvE69EaWmpsLLKsix8S8mNgPK6UuYBhmGYXQryC80qAVwF5t/dgF2xocxRLL5bQ8FUhW4bnNYWl4UCax6uGX4xzq44BbYUK+zm+FJkj/gHdh+yODksrgMvLTbw2w90rK4zEHUWYOXkG7Byv2sQTbH6uj3rMfKj38D6/b3wh+rgC8WwqTEoytoyDLONrJ0DPHMK8PwvgdcvN7/pNw3vQa644gphbaXe7ylTpoh4pOnTp+Ojjz7Cli1b8Lvf/Q5Tp04VaU2vvfZa8UJMn1TIBXT06NFwu904+uijUVlZmTaegvNpvN1uFzrvwQcfTI5bv369WN4LL7wg1k/TPPvss71PvFKQ1r/+9a9kzldS/DRs3LhxIuMAwzDMLokjD8guB7a1clU7WGQFJfYCZKvuNuPo0ZJjV5HvtCUttPSAmFI4Gbfv/huMcg9PThvQAtji+B/22ut/yHW1pOXa1ATcNlvHkz/ooHiwhoGTsfCIe1E9eFrKegyUr3oLQz+4DKGNsxGIBlHri2BLU4hdCRimq5BAffsaoHoZYHUB7hLzm37T8B4SsA0NDUJ4Xn755XA4HG2MjGeffbYQlaTNBg4ciDvvvFMI01RxSkH2f/vb3/D000/j888/Fz3r5BqagIQouYv++c9/Ftmk/vKXv+DWW2/Fk08+mba+m2++Wbgq0DRHHXUUeortvvvSxh188MHibypOQJGxlO/1gQcewJ/+9KfubCPDMEzvQnUAOYPMyPxugARpvi1H+MKST2xrbBbTCutIyc9aaMvHtSMuwVkDT4ZVbik+sDa6GI6h/8CEkS3FDsgJ4P2VhgjoWrjVgGZ1Y+0+l2LZwbci5CpNTmcPVGP3z29DwUdXo6mJArrC2NIYEkJWY1cChmkfcg348h9mir2sMvMeQdcyfdNvGk7je8CFYNWqVUKDkVU0EzS8sbERmqZBURTRQ06ilj6pXfzkZkCGyAkTJuDKK68ULgcJKJvU3//+d5Hff+jQoeKbLLgPPfRQ2rquueaa5DRlZWXodeKVUk/l5+eLv8nndcaMGSJ91rHHHit2JMMwzC4NZSDIHghYzSqD3QFlIaBsBKliNIEsQRQYoE+i1CsJ3alFB+C23X+Dke6WEtx+zY9VlqcxccLzKMttscLWBYG7P9Pxr691eMMGvEVjsPjwe7B5t5NgpIjmkjXvYtjH16M2VAVvtAmeUASbG4PwsisBw2SmahFQt8rsmWntVkS/aTiNp+l6CGMHclKTfhs+vKUnh4QnZY8iAoEA1qxZg5kzZwqXgsSHDJU0PBUSvz8H2y1eKyoq8M0334iNIvGaSJVF6p58HRiGYXZ5yHWAXAic5ot8d6DKlE6rCG5LZlFM1leywlotLVbYYlshrhvxK5wx4ESoUovwXRlaCKniHzhoz+VQUp6nX603cN07Or5YR2m1VGwa8//tnQeYG+XVtp+Z0aivtjf3XjA2YAzGNhjb9OIQIPRuSiCEEAhJIAUCJBC+//vSQwmYDgHTOxhTjDGmmGpj44a7d71V2lWXZua/zquVVtrV7mqbd7V7bl+6tHqn6J2RLD0685xzzsE38++EN29MorXstulXiS/DxnADqgIVaAx7UcNWAoZJj78WoPrNptb+dQGN03Jar4cZN26cuHrTVnMoGs/Pz0dxcXGb+6AOqcnQ/uJi2OuNJYPef//9+OqrrxK3tWvX4uOPP07ZzuFwoF+LVwoNk4+C/BOk0MkIHLcTTJ06tSfnyDAM078h8ZpT1mOJXPTFUWTNR5Elv1VSBUFNBQrtZriszSW1KAp7VMnhuHnSdRjrGJVYtzHqxdf6I5g5YwnGFDU3j/GGgLtXGbjzPR1VXgP+vFFYM++P2DbtYuza/3w0Fk9JrKvpGuqDtagJVCWsBDXeEFclYJg49kKArphEQ+mX0zgtp/V6mMLCQhxzzDEigYpykJKprKwUftWzzjpLfJZQUhfZBzpDaWmpKL9FFQ1IKCffyB7QF3RZvJIxmCKvDz74IFauXCkqDhBjxoxhzyvDMIMPi7OpoUHrS/5dxanaUW4tFtHYdDhEYwMLzEpzFLbUWoxfjr8KZww9GarUXKlgjfcLhMv/imMP/A6WpJ4LayqBX72m47X1OjTIqJhwCrYd/JO0zxfSgk1WAg88/jB21QfgDVFXMIYZ5JQdABSNBwL1rVtK02Map+W0Xi/wr3/9C6FQSCRJURCRar7SVXEStUOHDhWJVvE6r7ScKhDU1NRkvP9bb70Vd955p8hr2rhxI9asWYOHHnoIf/nLX9AXdCtdlrwN5HGlkxCNxj7A6PGcOXN6an4MwzDZAyVwkYClDOMeIt6Vqy0bgSpLoiZsToso7DElR+J3k67DaHtzq1dPtBGrQg9j1sHPYuqQ5ghNSAMe/9LA75fq2FbXfkJJzErgEVYCX8SPqoYgKj1BRLTer2XJMP0WCuAdfl3sR2xjBRAJAIYeu6fHVCOalvdQlZKWjB8/XtTdpwAiVX4i/+oVV1yB+fPni0BjPEeJKg1QWSta3p6NoCWXXXaZKJVFgpWurlM5LOrM1VeRV8noosOXyipcc801iTIJpMTppNEYqXwql9AfoPqzubm5IsGM29YyDLPP8NfFbj2IN+JHXdgDnb4U0xDRdbj9EUSTMppp3aVVy/FyxVJEjeYoab6ai4Mtp+OdbyagIZSaGHbiAbk49eA8mE0df9HaTHa4zHlQFRX5dhW5NjWt1YFhBgVUDouqClByFnlc6aoJRVxJuI45sq9nN2DosnilOl5kF6A2Y1TM9ptvvhHi9aWXXsIf/vAHfPnll+gPsHhlGKbPCPuAxsrWlxG7QUSPoiZUj5AWTrucnokaDPjCqZfz9wT24uEdT2Obf2fK+My8QxGoPAkrt6YmmpS6TFg0twj7DU2tG5kOEqtO1YUc1SUSyQqd5pTmCgwzqKAfj1RVgJKzyONKVoFeirgOVrosXqlnLhW9Peyww0TNsK+//lqIV2pJRjXCSDT2B1i8MgzTp2gRoGFP7L6HEHW1I43whBvbXCcU1eEJRKAlRWk1Q8PSvcvxSiVFYZuTNvLVPMx1noGlX49FVXNlLcHciU6cO6sADkuzr7YtFFkRUVi7yQGHxYQChxmqwl/aDMP0LF3+VKmurkZJSUmrcSqdxZeMGIZhmqAErh72wdJnbL7ZhTJbEUxy+ghnusYGiqTghLIF+O3En2OEbWhivD7ixkv192P6gS/i+MnRlKIJH2zw4tdP78YnW3wd1pFMrkrg9vtFQledL8xVCRiG6R/ilZK1XnvttcTjuGAlQ++sWbN6ZnYMwzADph5seSxpowexKhYMaacmbLrGBsRQWxlunHgNTik/TgjaOCvrPsZ35r/g0mPdGFnU3D3ME9Dwr2VV+NtbVajzdlxdgKoSVAUqhZCt9QWEiCUrA8MwTJ/aBj788EOccMIJOP/880XG2Y9//GOsW7cOH330EZYvX46DDz4Y/QG2DTAM06/w1QABd8/vNhpAXcidYhNIRjMMYSNo2WBgp38PHtrxFHYFmvucE3PLj4PNexJe+jyAiNb8NWFVJZw1swAL9stJEcRtQZUPyErgUJ2wqIqojGBNigYzDMPsM/FKUFuwP//5z8LvSh0YyOv661//ul81KWDxyjBMv8NXG6v72MNEdU0kcwW1UNtPHY6iIUjR0+aP/qgexet738Xrle9AR7P4LbKW4uShl+OdL4qwbk8wZT/jSy249MgiDM1vjtC2h1kxI9ecD7NigdNiQj77YRmG6Qvxmg2weGUYZrCU0opDiVyU0NXWx3u6klrEdv8uPLxjCXYnRWElSJg35HgURk/Gko998IWat6FKWgsPyhM3Nbn/bDvYVYeIxJJXl8pq5dlUyORvYBiG2RfiVdd1UV2gqqpK/J3M3Llz0R9g8cowzGAUsFRKqybkRoRqTaaBPvgbAhH4I6ke1ghkvFLzIZbufCklCltiK8epI67AijVFInkrmaH5qiirNaHMmtHcyG6QY86DU82BIksiChtrdcswDNOL4vXjjz/Gueeei+3bt7f6dU/JW53tndtbsHhlGKZfQ/YBshH0AtSgoC7kgTfqb3OdYESDJxiBHv8cl82IOsqwrXEzHt1wNyr9u1OisAuGnogR8g/w+MoG1PmaP+cpdnrUlByceWgBbObM7ADU2ICsBBbFKhoiFDossJnZD8swTC+J1wMPPBATJkwQ/W7Ly8tblcciwdgfYPGandCX7vq69XAH3ciz5mFywWSR+DEYoTJD3+5pQJ0/jAK7GVOGuNJeZs10va6ef6LVmCG1ek6iK/OIahpe27Aae7y1GOIsxEkTZ4jXvOW+dD2KZZ8uQY1nF4pyh+HoQ8+EydQ6aheN6njlmwrsdvsxNM+OYyYV4n9XLcGOht0Y4RqKG484W6z35xVPpYyZFKXVPIKhCH7yyoPY46vAEEc57l64CHarpdXcguEwfv3WY9jl3Y1hzqH401Hn4Z2NdYk5LJxWjmA0iGuW3ooK/y6U24fhn8feArsexPqKz+AONyDP7MJk12jRcvuFT15BdWMlinPKcOrMhTCZTFjfsDVlvZb/L8j3unTbt6j0u1Fmz8Oxo6aIZK4vKyrQEIwgx2rCyAKHCDp8vLUOtd4g8u0WTCx1IqxrWF29E5WGjEJbHg4sH4NXtz6Ld/dQZZnmr4pS2xCcNeZKfLq+CMu+bUhaAuTaDSyaW4IDRlixunoV6oLVKLAWY0bxLEiSgh01ATSGIsixqBhRZIMMKWYlUHOhyCbR3MBlVfD2li8Sr8EJ4w/Ghr2+Dt9n9B66/9MPscNdhRF5Jbj80MNhVjNrltDy/8/kcic2uL/r0mcQf34xDDBq1Cj8/Oc/F7d+I14dDodI1Bo3bhx6++AputuSn/zkJ/j3v//d4fYsXrOPTyo+weI1i7G1YatIJCFv3GjXaFw69VLMLJ+JwcRHm2twz/It2FLlFRnf5CscW+LEVUeOxexxRZ1er6vnv8AS64tdF6pLjOWbhiJcNw9Ve4cnnpM6KxG13nCn5vHg6qV4YM1iePUKGFIUkmGCBaXIDR0Hv2d0Yl/7O5ah0fImqpQwohJgMoBSzYIfjL4AZx97XWJ/93+wBf9+fwsaAxFx4VvN/wBq4fuQlEDzkxqmmB6Tky6b62YohgsGool5GLoCQ2kE5OaOVoZmg9JwFJzBoxJzC9rfRdi5DEh6DlovUjsPkfq5oi6hZdjDkB3fpRw7yXqr7EKezYaoFoJJMkENGlBCdfDLWuI47ZoCzVaAiEUSbV5pvdHOobh07GmYWTRN7OvxdR/hgc3PwWNUw4AOCTIcRhGGBWdD85QiJDVCVgyoJilWeSCii1Mgflo4KhHMX4ug7GkyC8iAboemG5BMjZCUICTJSInCHj1sIRzRqXjmYw3BQF7KcZlda2EufSm2LSSYJTvsoTnw105HVI/5Zcvz7Dh5Whn2K89tshLk4s2Nq/Hc948jYFTAAEV2FSBSAlPDApjCE9t8n0n2zfCY34KhVlFtBbGdHC3FqaPPx23Hndrue77l/x/JtgmmgvehWmsgK3qnPoP484vpCy6++GI88sgjrcY3bdrU6zotq8TrggUL8Ktf/Uq0hu1NqBlCsgVh7dq1OOaYY/Dee+9h3rx5HW7P4jW7oA/+21bdBl/Eh1xLrshQDmtheEIeOFQHbp5186D5AqAv1N+8sAbeUBT5djPMioywpqPeH4HTouCOU6cKQZjpel09/3Tu9/r3CqFX6igV4+5AAHu9dTB0C/L95yDHmAx3IIIKT0y4ledaRW3RTOZBwvXvX/8ZOgJQ4IAMFVEjAk3yAboFzsazUKTsj/zIK6jKfQ1BGXDqEkyGhKhkwCsbsBkSLhlxqRCwJFzvenODEF0mRYKcuxxq8ZuApAOG0iTVNPr0i03AoMc0rsfWoTU0J1TkIWzUA6Ymf6dB8pNuBq0gHuu1J2C0ehJ2aK/DyH+9xXM0rxeuPh6y7XuYclKFazKqZMW4vBHY694Nj+EVY4VRQxyrVzJQq8ai17mSE6WuEoT1CDwRLxyKDTdPvRKbqrz466YHoCEE1bBBlkziPEakIGRdxTDP8SiTx6IqUAd3KGYjoIA4eU6Dlj1oLFwFQ45C0a0wJDM0IwiosU6JeiRHvBaSydskYpvnTXVizZID0boFqK88BIY4/iZkP+ylb8GUu7pJiEqw+I6CMzwLUd0Q71mrKuOSOaOEgF265RO8uP0h6qsL2XDCMEyI6hFIJr94/lzvOZBC41DhiVU+KM+1iYSvitAaBPOXQJJDgGaPvQZ07pXYdqePuLZNAdvy/49u2YRa25Pi+GXDjiG5OTCrekafQfz5xfRV5P3iiy/G3r178dBD9P+nmeLiYiiKMuDEa5fP5jXXXINf/OIXosbr559/jm+++Sbl1lPQiS8rK0vcXn31VYwdOxZHHnlkjz0H03/+w1PEgj74S+wlsJqs4j883dNjGqfltN5Ahy5hUiSIvlDLXFZRF5MuvdN9mcsCb0gTy+nSeCbrZdLhKN35p4hZQ7hB3BOxv2V4/BRVdEFWwgg4lgFyrBUprUXCRvwtocN50GVeiriScFWRD0WyQJJk6LoKI+IC5BB8trdhGCGEHUuFcM2NylANmoUEsyEjX5MRkAy8vPUxBIMhEXEl4Wo2SVBkDabC95tEpanpI09qFq5E/O+kMUPxQSOxRaIpZT06Qjm2L0mHlP8eApEG6Lnvtn6OpPXUwnfbFa7iXBhBMe+A5ms624C3yW7hpchi01hsuSQaFJRYCuDTAiLaev/mZ4VwtSAHimSOvWa6CXLUAV2OoNKxSghqn88CSbPFjrPpuPy5a4VwlaM2EWkWNjARQY49q6yQWJRhRF3Qw3kwhOBvbjkb0BtgLX4foycvgWLblvSmssNfcSp8OxZBDxWLZwzZPxTC0qxIyLerCEZ0vPpNpXgvvLnjRUo1gwynsBiIPGBDBaKx90KD9S24/THxTDOg9xmJ4qBzmRCu9J4xdLKQyJAMc2K7F7Y+jnCLxLR0/88sqoQG61IYUlD8eDEMFbW+CKxKx59B/PnFxH/AXPn2lfj5ez/H71b+TtzTYxrvbSwWS4peohsJ15deekmUMrVarRgzZoywe5ItKQ79f7/vvvtw8sknw263Y/LkyVi1apVIyKcgIV1pnz17tiiPGof+PuWUU1BaWgqn04lDDjkEy5Yta3d+brcbl112mdB1FEykIChdwd+n4vX000/H+vXrsWjRIjFp8sAedNBBifveIBwO4/HHHxfP2VYL2lAoJKKtyTcmO6BfqnSpjSIWLV9fekzjtJzWG+iQ944uYVIkKN25yLOrYjl5OjNZj/bXlfMf1IIIaSERXTMpJvG3J+gTl5tNsiwiUxG5El5thyh+b1JkMR6K6kKUdDQP8paSVYAirvHnJEFBF4TEY80OQ62GaryBGjUChy4J4ULXi+JSk0QaRSf3KiHc/dqDwiogIq6SDMPxdcwqkIiGimdIc/RCJSU9NqAZnlZjyc9K+6R97zG9mOY50GK91Bqp6aA9b2/YIaLJsgEoBhCRSMDG7uNjtNztczf/v1Cd+M6zHR5jr4i4kqwX+zNIUAkZB0WzIqLWozKyKzamW6FEc2JRYVMtNNUDWbOIc0nz0KhCQVPUOBHFlJuqFhjmmIDVUr2kjRE36rAWtpH3wlL6IiA3H7PmHwvftp8hVDsPBsIIq+viZwcOiwkVbj/e2Pg1gkY1JIoa0zwMPWbdaIqGx94LVQjJu8R7jN5r9J6rCm2FZK6CEaUuYy3+D9C50OzQTXuFF7aj/2dhead4P8tG7P1IUWl6rwciWoefQfz5xcQj7xvrN8JusqPIViTu6TGN7wsB25IVK1bgwgsvxLXXXisaSZFIpaDjn/70p5T1br/9drHeV199hUmTJomEfGo+ddNNN2H16tXiM/mnP/1pYn2q7X/iiSfinXfewZdffimuwi9cuBA7duxAW5xxxhmiOtUbb7whgp4kqI866ijU1XW+4kpmTvY0bN26FfuaF198USh3Co+3xZ133il+VTDZB11iIY8YXWpLB41T5I/WG+hQ0gh578gCkA6LIsOjGyIRKJP1aH9dOf/Uqz4uJOkfRY0iehSGkAUyDJhgwI+IRDVFCyGujJGwJJElwmZKu/OghBwSKCQW4qTEZpuEkyFXQSPvp57+RytZCHyygVrPLugYAVN8NVO8EUDydumi0K3HKBLZvFWTDaDZIZq4l9SaNM+RTOZJc3T+RVTRiEVa6XA1GMLZQOIVTWMRrbn8lVlWhYXAkDTISR/prc9jEEFQJDnmXyY/rxTJgW4jb6kOSdgimp5D+GXjxypmkrpH8gIbingPyJIOzYgmorA0f3PBxzDlfItQ5amIevdr2kYV9olowzSY87chXlRLlSX4DKDKR68VPW/sPSN+oIj3XsxuELN36DErQMSAJEugIGYEjTEbSLJdoeWxQxdJXB39P9PJqgINUtN5JBGtQRcWh44+g/jza3DTMvIe/wFDkXeLYkGVv0osP6TskF6zELz66qsiChqHuqDW19fjxhtvxEUXXSTGKPJKQpVsn7fcckti3UsuuQRnnnmm+JuaTc2aNQu///3vcdxxx4kxEr+0TpwDDjhA3OLQPl944QW8/PLLKSI3uSvrp59+KsQrRYiJ//3f/xW67tlnn8UVV1yxb8TryJEjsa9ZvHixeDGGDBnS5jr0K+H6669PPKbI6/Dhw/fRDJnuQN4gSm4gjxj9h28JjdNyWm+gQ9nOlIRCnlGr3PpLOaTp4kufMtgzWY/215Xzr8ixS8hG0z/SEKpsIhmLWKoPiRYFqpGTiIgS9DdFxzqaB2WSk4jSEYECS2upJ6J/CiS9JBF1JMtAS2ickpoK84aJuKOILtJq0fymNVqLzlTi4jRpRDclJWklRVwTxMaMCPl4t7R4jmQyTyug80/VFGgb+oFAmyr0s8EwmmdgAGpSdQUSriRgQyLSGhWWgbbOoxV2JFdoJfGpRgpigjHh142Ni+dPzD8uYlP3Z4KMfEsO/FEfvNHUqLqsNsI67FHojQcgUHkyDC1HjOuhIairLIdmjyLfGUbEMMSPjRJHPtBAz0tiVY6J+MRT0gvadJlTswgpLQlBaUBFDqJi/k2R4pYI8SuL6gMd/T+L/YhSRMKeBLN4j9PPCFOTfaO9zyD+/BrcdCbyPqVwSq/MYf78+bjnnnsSj+ly/7Rp07By5cqUSCvlEQWDQfj9fmETIGi9OGQFIJK7pdIYbUOaii75U+T1D3/4A1577TVUVFQIG0IgEGgz8hrvxFpYWJgyTtsk2xF6RbySoibxqKqq+Ls9fvCDH6AnoYoD5Kd4/vnn212PFH1c1TPZBZnaKSuXLrHQL9XkDwCKwFDSw4T8CYmyTQMZKvtDWfrrKxpR5pJbnQvqjjS5PEeUXnr+y10drhcvLdTZ809eP/qbyjsZugGbakOu1YF61YdAJArZ5IdZHwqnMgIWUxCBcFRoHJuqiEScjuZBZaju+qQcjfpOyEbs0i15diVdEo1PKFFHCpcjIp2Aosg7qDRHkBslS0CzlCJZR0lbw6IW/OSkRXj02+Xw+CMiIij5DoChvQKJonVC9DZ5UYVASqYpZJwkUhUpFxoCLYRrkqCjiLBmx5DoD7FX+6bFc6DFetYOrQO01UjXCOys34SIHBOrFh1w6DHva7hpzKxLyHPkNf+/iHgxKXckNoYa4UGViL4KRzBFaylyaxjQlSDM4SKUqcOwVfILcS8KLUiAhTL5w4WIWKqF51WcIZmS5pQmwUiqWI3d4nNVgjDCRRhTlIs9/h3IsxTCZnKgLlSdiMKK9ejHjmsNZPsWhKqOR8QzI3G0Hr8KX0iBxeLHmBI7TpgwDu9VFiOIvdDpGBLRfoq+0qSCQLgYqmwXVRMQtcOqqsg3jYQvVALZWhHzSSedf6MpUitHhoiyWR39PzPrw6HqZQjLuyHpqvAgk2+b3s8dfQbx59fgpj9E3h0OR6vKAiQY6Wr0aaed1mp98sDGIV0XJ/7eTTcWb0h1ww034O233xbRU3pOm82GH/3oR8LemQ6aB5VVff/991sty8vr/A+6TsWuf/jDH4oQdPzvtm6nntp+WZKuQBl0JSUlOOmkk3p830z/gC6lUDkZysqlSywkmOhSDN3TYxqn5YOhXiIJOCovRVn6lQ0h4bkjLyjd02Map+Umk5zRepnUWU13/kkuucxUOiom4GJ/68i1k4BpgK6ZYfMdDeiyaPUp5J8BuOhvAx3Og2qqXkavKayIwA3NCAmvoyxHIFGmu26BPXAMJMkCs+9YWHXAY9IRkWgWBsKSjnpFF9UGqFyW1WrB1fPGCq9iOGpA0xVEa+fFInJStPnyd3L0Nv530pikOaBQNE/4KJPXM5qqEkTFPo36+bCpLsieBa2fI2m9SO0CRBsntXv+TZIVikmB1UTnWDwhnE2Xqx1ac+TVpjjE6xHUQqgK1YlqA5eNOx2Xj/sRFJgRgheaEY69ZnIUuskHWTejzDdLiNrcpE5W4ogNCc66GWId3RSAJNOle4ps0hdb7Fl1relv8qCavDB0M6Y4j8PxI34ofuB4wnXi/UP1X01yas1dYUEweWEtfxa24feLHzxxopoMn98JI+pEIAKxP4iIpxe6QUl/seeE4hVlzGzBOXBYVEAOAGo9HLYIDEOG2XuUqHxB7xlJeHPJLxsGTLH3EJXLSlfvteX/s2DEgCt4LCTDIt6PkhRBoUMV3u+OPoP482twkxx5T0dfRd6nT5+ODRs2CIHZ8iYnXR3rLBTNJQsn6T2K0FJy2LZt29qdR2VlpahV3XIeRUWdK+dIdGrmpLhJQMb/buvW0921aJ8kXsmzQQfODFyojAyVk6EIhT/qR02gRtzT48FWZobKSlF5KYpY+kNRVHlD4p4eJ5edynS9rp5/EkGT8idhUsEk8TeNUQb3pIIJGCtfhKhvrHhOii5RJEtEV8nDmOE8Fs04FtcecCNy5OHQEUZE8gBSGHYMQ3nkfJhCE8S+vo8ch1GBH2Bo1IyQZMCj6OKeIq7xMlnE5XPH4tfHT0SuXRVCnmqskteSoqTi0jhdRhY6tCmaKJRaU+ks3QJFK4YEVcxDpqx9sgXolthysZ4u9iW7T0Je5Bgxt5zQ0TA3nBwr05R4jth6wudZPxeRPRdD97UWsPT0NtmFIkeeOLdWux3lSjmGhekSvoEGRRciblhIQblSBovNjppQPfzRICbkjBRlsqjO6/n7zcZ14y9DnlSKqBRGSPJClyJwGaWYFDoJjtBI4fFUFRnD8q2wm+kSPflsDaj+4SiqORo5WikkUVvWJ8KmUqQUeoj8e4aILEtyGEa4GAfnnIW7Fi7EQWUH4NzxV2CocwTCWhDeSANyTC7kqXG7RuqBOq0UNQ7CYgmm2CnW7grj10/vglOfglNGXAKrVBoTn7IPihKBHCmG4jkO0eAIsdmoAjtGFVphyA2oCe2FOTIaLu9ZIkpP700hduWQiLi2VyYr3f+fBvcomOvPEO/HPIeBoOHO+DOIP78GL/HIO0XYW1YgjUfeafm+jrzffPPNePTRR0X09dtvvxWJ9k899RR+97vfdWu/48ePF1fCKcGLLAGU4BWPyqbj6KOPFj5aCnAuXbpUCN2PPvoIv/3tb0VC2D6r87ovoQMl0zD9eqCuXp2B67xmJ9yhphnusDUIOmxZrK3ObTQSxX/ffQw17l0oyhuGcxZcAJNqwvqab+Gu/x55ijXjDlu0DtWBpdJSFCEfX+IU75f3NlRjb0MApS4b5k8sFgL9rR0bsUNXUGJ34ZDhIxEIh3DvqlWJ83HlrFmwmJuDCP6whjpfENsbtwrx6lRdGOYcBX/Ei/vX/RWbPLHKAnHKrKNwZPHFMGtD8MY3XmytTo1UTRtuw4WH52Nrw2bUBtyi09eM8knYVR9K6cxFJHfrmlRWBIecg+e+XY0qXy3GFpThJ7PncoctZp/Rl3V+L774YpHQTglQLXnrrbdw2223iaoAZAWgagJUsuryyy9PWAIo2YqEJUHCcvTo0WJ9qiBF0OV+8tTS1Xe6zE/rUOWnjz/+WEROKcnrmWeeEev/7W9/S1vntbGxUYjV5557TtTwp2jt3LlzRaJ9Z3OTuiVeqUTCX//6V6HkCaoNRpMkhd1fYPHKMMyAxFsNBKmcVw9jMgN5I8Sf9PVQF6xDY5gy+ttG03Uh+oLh1pGXdXVf4fGN98Edbi6HQ93BTh51JuYNOQnvfOvDs5/VC5tHHItJwhmH5uOYKZ37ARbv0uUwUQKhJMpwicYd1M6LYfYB3GFt39Bl8Xr33XeL0glk0KVQMEEKnEoekKC9+uqr0R9g8cowzIDFXxe79ZJ4TTxNxI/aQK0ohdUejcForHFAi68Vqkbw3JZHsWpvarLGqJxxuHDiTyBHS/Dwilqs2ZXUvpfK+pRYcNncIgwvNHfuEGQVeZZ8WBSrELE51piIJS80w/Q2HHnvx+J12LBhonZYy3pe//73v3HHHXdg9+7d6A+weGUYZkATbAB81c11ynpBvBIURSIPJ9ke2oPKTtV6w4hqraOwa+u+xBMb74MnXJ8UhVXxg9FnYf6QE/Hx5gAeX1ULb7B5WyrBetIBuThlel6nI6g2kx255jwosklEZalZBtkm2mpywzDMABevVAiXjLotyzJs2rRJdNiisgj9ARavDMMMeMJ+oLGiZwRsG+I1Dvn33CF3q+hqMpTYV++LwBdq3ZKVvLBLtjyMT6tWpIyPcU3ABROugk0qxRMf1eKjzckVaYGyXBWXzi3EpCExv2tnrQTkxSUoYY1EbE5S1QWGYbKLLsexqY4rGXxbQj10qT8uwzAMs48w24Hc4YDS+9VYKBGl3FEOVWlb/FF91gKHGUVOS6tL9XbViYsn/RRXTvklXGpuYvz7ho2444tfYXXtm/jxgiL88oRSFDmbj6fSE8GfXqnEgx/UwBfKvKIN1Yn1hNyoClQgrIUQ0XRUN4aw2x1AINyzlXEYhunnkdc//vGPojjtnDlzUjyvVPvrF7/4RUqU82c/+xn6Co68MgwzaNC1WAQ20v6l/e5EXhNPZegimcsb9naYzFXjCyMcaW0j8EYa8czmh/BZ9cqU8XGuSbhg4lXIMZWIZK6laxtSgsp5dgUXHV6IGaOb2wpnikN1ikisIsW6idnNJiG0OamLYQaBeKUyChk9gSTh+++/R1/B4pVhmEEFfaR7q4BQ+xUCuite41BZIErmIjHb5pRgiK5nlNCVji9rPsF/Nz0gSm3FMcsWnDrmPBxRfgy2VkeweHk1dtZRA4JmZoyy48LDC5Hv6FzEmZJnXOY8IWQJTupimOwiK+q8dgcWrwzDDEq6Womgk+KViOgR1PhrENJC7a4XjFBN2LBou9qSxnADnt7yIL6oXpUyPiF3Cs6fcCXyzMV4/WsPXvzCjYjWvD01WzhrZj7mTc4R/tbOYFYsIqGL7glO6mKYQSRe47voj//ZWbwyDDNooegrRWE78zHfBfEa/x6oD9WjIdQcPe1sTVji8+pVeGrTYviizZFjKnl12ujzcXj50aj0RIXv9buKVGvExHKrSOgqz+tcWa14VQKKxFJNznhSV77DDKeFOzoyTH+kWyafxYsXY//994fVahU3+vuBBx7oudkxDMMwXceSA7iGAt3oYZ4pFLwosBagxF6S8JOmQ5FlFDutyLOb0wY8Di6ehd/P+F8cWHRoYiykBfHfzQ/gn2v+BIvVg5sWlmHR3EIRdY2zoSKI3z67By994UY0KTKbCYGoXyR0eUL1opYtJXVVNQRFUhdFixmGGSCRV+qX+5e//AXXXHNNImFr1apV+Ne//oXrrrtOtCLrD3DklWGYQY8WARr2xO57KfLasiZstb+6QxsB1YQlG0Ek2joKS19Nq6s/wpLND8IXbU4Ksyo2nD7mAswuWwCPX8OjK2vx2VZ/yrbDC1QsmluEcaXWTs+d/LCx0lo5iTHq1EVJXRSRZRgmi8VrcXEx/vGPf+Ccc85JGf/vf/8rBG1NTQ36AyxeGYZhqDyA3lSJILWLVW+I187YCDpK5vKE3fjvpvvxTe3qlPH98g/AeRN+jHxLIVZv9eGRD2vh9jdHSSmme+z+Lvzo0HxY1c6LTioFlmcuSPhhKUqcZ1OFJ7Y/WuQYZjDRZfGal5eHzz77DOPHj08Z37hxIw499FC43W70B1i8MgzDNEEf99SNi7py9bJ47Wxr2VA0FoVN15mLvqY+rfoQS7Y8hEC0uXmBTbHjR2MvwmGlRyIQNvD0p3V4d11qlYVCp4JLjijCASPsXZq/XXUIP2zcCkHR10KnWZTYYhgmy8QrRVdVVRXWgWRuuOEGBAIB0Sa2P8DilWEYpgWBesBXu0/Ea2day1JDAbc/fWcuwh2qwxOb/oNv675MGd+/YDrOHX858iwFwvu6+IMaVLhTLRKzxjlw/uxCuGxt+3Hb79KVl2IlIPFKIpatBAyTZeL10UcfxfDhw3HYYYeJsU8++QQ7duzAhRdeKIRtnJYCd1/C4pVhGCYNYR/QWNm6EkEviNfOtJYlKEmK2stGyerQAtr2473L8cyWhxHUmi0QNpMDZ469GIeWHCFKab38pQevfuVGciDXaZVx3qwCzBnv7NKlf7NiRq45n60EDJOt4nX+/PmZPYEk4d1330VfweKVYRimDaKhWCIXdebaB+KVoOgrRWEpGttRFLbeF4a/jRau9aFaPLHxPqyr/zplfFrhDJwz/nJRv3VnbVhEYbdUpSaO7T/MKqwEJa62W9y2BzU3ICsBJXcRbCVgmH0LNylgGIYZzGjRWCIXCdl9IF4J6sZFPljqztURJF7d/vSNDejr66PKd/Hc94+lRGEdJifOHLcIM4pni8Dy29824JlP6xGKNu/DbJLwo0PyRVJXV7pqkXClKCx5YhPPazGh0GGGia0EDNOrsHhlGIYZ7NDXAFkIyEqwD8RrnMZwI+qD9e22lo1HYSmZK9BGFLYuWIPHN96L79xrUsapVuw54y4Tpa9qGqN4+MMafL0jtdrC6CIzLj2yCCOLYlaAzkINFHIt+VDlWBSXu3QxTD8Xr6tXr8aSJUuEzzUcDqcse/7559EfYPHKMAyTIZTERdHQfSReiYgWQXWgGmEt9TskHd5wFB5fRIjZltBX2YcVy/D8948hpDfbBCjJ6uxxl2J68ayYX3aLD4+trEVjsFkwU+D1xANycerBeTCbOh81JZFKz5Oj5iYEK1kJipwW2MydTxBjGKZ9unxt46mnnsLs2bOxfv16vPDCC4hEIvj222+Fv5XEIsMwDJNlOAoBR/E+fUqqp1ruKIfL0nFwwWk2ocRlgTlN3VYSjUcMOQa/Pfh/MSF3SmLcG2nEA+v/hgfW/VX8PWucE3edNQyHT3Am1iFHwqtfefCbZ3bj290d1MFNA4nixnAD9gb2wN9Uyou6dFV4AqJTV7ryXwzD9EHkddq0afjxj3+Mq6++Gjk5Ofj6668xevRoMVZeXo5bb70V/QGOvDIMw2QHmdaEpcYGjYEoGoLRtJULyIawouJtvPD9EwinRGFdOGf8ZTioaKZ4vGZXAA99UIPqxtTksbkTnTjnsAI4rUrXrQTmPKiKOWElyLebkWvvWoIYwzA9JF4dDoeItI4aNQqFhYV4//33MXXqVBGJXbBgASoqKtAfYPHKMAyTPWi6JmwEHdWE7aixAVEdqMRjG+/FZs/6lPEZxXNw5rhLxKX+YETHC6vdeGONJ6VqmMsm48I5hTh0jKPL3lWqSkB+23iDA7IkkJXAqrKVgGH6xDaQn5+PxsZYJ5OhQ4di7dq14m/qrOX3p/aZZhiGYZhMUGQFZY4y5FvzOxSNFpOMUpdFZPmno9hWhp9PuxlnjL0YqhyLghKrq1fij6t/IVrOUuvYc2YV4NZTh2BkUfM6DQEd/1pWjb++VYU6b/tlvdrCF/Giyl8h7AoUJwpHdexxs5WAYfos8nruuedixowZuP7663H77bfjn//8J0455RS8/fbbmD59OidsMQzDMN0ipIVQ7a/usCYsQZUI6tsoqUVUBSrw2IZ7sKVhQ8o4NTWg5gZ21Sm2ffMbD57/3I1wUlktqyrhrJkFWLBfjrAAdAWTrAorgdVkE4+5KgHD9IF4raurQzAYxJAhQ6DrOv7nf/4HH330EcaPH4/f/e53IjLbH2DxyjAMk72Qf7UuWAdv2Nvhupquo84fRjCst7mv93a/jpe3PYWI3tw+luq1njv+CkwtnC4e7/VE8NCKGny7O9W6ML7UIspqDc1vjtB2FqvJCpe5ubQWNzhgmH0gXkkMZkJ/EYosXhmGYbIfamhAyVwd1YQlGoNReAKRNtvQVvp349ENd2Nb4+aU8Vml83D62AthNznEtis2evHkqjr4Qs3PSZW0Fh6UJ26q0rWIaby0FiWQxbt0kXglEUtilmGYHhavsixndIlD09rPFt1XsHhlGIYZGFC0tMZfI+wEHRHWYslckWjbUdhlu17Bq9uWIGo02xLyzAU4b8KPMaXgQPHY49fw2Ee1+GRLajewofkqFs0twoQya7f8vS41L9Gli75byUaQZ1Mhd6HrF8MMFjotXpcvX574mzY98cQT8cADD4ikrWSOPPJI9AdYvDIMwwwc6HvHHXLDE/J0vC4MNFBJrUCzRaAlFb5deHTj3djeuCVlfE7ZApw25gLYTHbx+IttfjzyYQ3qfM2BGZKXR03JwZmHFsBm7nrE1KxYhB+W7gmTLKPAaYazjUQ0hhnsdLs9bLzG65gxY9AfYfHKMAwz8AhEA6gJ1IjSWt0tqUV1Zd/e+TJe2/5MSo3ZfEshLphwJSblT4s9Z1jHM5/WY9m3DUj+4ixwKLjo8CJMHxUTul2lZWktKqlFVgKLiUtrMUwyLF4ZhmGYrISEKwlYErIdQS1l3f4IfKG2Kxfs9u0QXtid3q0p40eUH4NTR5+XqBSwsTKIBz+owe761Igu1YS9YE4B8uxdj5hSFQISsA5TTsKi57KposmBwlYChhGweGUYhmGyGrIQkJUgk6+zjkpqaXoUb+18Ca/veA56UhS20FKM8ydeiYl5+4vHEc3Aq1+58fIXbiTbau1mGefOKhBdurpTAqtlaS0SrvkOM1xW7tLFMD0iXr/55hvRGrY/wuKVYRhm4EMduagzVyY2go5KahE7vdvw2Ia7scu3PWX8yCHH4YejzxUtYInd9WERhd1YmZpEtt8Qq0joKs3tnthsWVrLQlYCh5m7dDGDmk6L19NOOy3l8SuvvCLawVK72GS4SQHDMAzTX1vLZlJSi5ojvLnjeby588WUKGyRtVR4Ycfn7ZewJLy3vhFPfVyHYKR5X1RK67QZeTh+ai5MXSyrRVAE12GK+WHjpbVyrCoKHGwlYAYnnRavl1xySUbrPfTQQ+gPsHhlGIYZXFBTg4ZQZjXJqaRWrbftZC5iR+P3wgu7x78zMSZBwryhx+OUUeckqgRQG9lHPqzFF9tTW6SPLDSL5gaji2PrdRUSri5znkjsIthKwAxWum0b6O+weGUYhhl8+CN+0dQguXpAeyW16n3tJ3NRjdk3tj+HpTtfgo5moVtiKxdR2LG5k2L7Mgx8ttWPRz+shSeQVFZLAo6f6sJpM/JhVbvXiMCsmIWIjVsX2ErADDZYvDIMwzADErrsT9UIMrURdJTMRVBXrsc23IMK/66UKOyCYSdh4cizhLAkfCEN//24Dsu/S21rW5xjwiVzizB1WCwRqztQDVpK6lLkWHUDthIwgwUWrwzDMMyApj5Yn1FTg3gyV70/IoRsW0T0MF7b/qyoDUtR2ziltiG4cOJVGO2akBhbtzsgErr2NqRGdQ+f4BRVCXKs3YuWUmkth+pCjuoS3lh6TFYC6tTFMAMVFq8MwzDMgKczTQ2IxlAUHn/byVzE1oaNeHTDPdgb2JMShT162EKcPOoMqHIsChuO6njxczde+9qD5KBujlXG+bMLMWuco1tltQiTbBIJXXZTLHnabJJR6LDAZmYrATPwYPHKMAzDDAo6ayOIUDKXL4xIciHXFoS1MF7Z/jTe3fVaShS2zD4UF078CUbljEuMba8JYfEHNdhaHU7Zx7ThNlxyRCGKcrofLSUfLFkJ1Cb7gsNiEg0OSMwyzECBxSvDMAwzqOiMjYAEKUVgqaxWe2zxfCeisNXBysSYDBnHDD8FJ448PVGnlfy0S9c24NnP6hGONn/9WkwSzjg0H8dMcUHuAc9qcqtZiuq6rCbkcZcuZoDA4pVhBhm6oWN93Xq4g27kWfMwuWByonZkNqDrBr7d0yCKzBfYzZgypGe+7JOjc29sfQMVvgqUO8pxwugTxDl7cO2D2Nm4E8NzhmPR/osg6zJWrHgXjXWVyCkowxFHLIBsknvs3KZ7nejYX9uwGnu8tRjiLMQJE6Zjk2djyjowpFbnR4fW6phkKK3Wg6Fjy5qPEHBXwZZXgrFTZyOqG7j/0w+xw12FEXkluHTGHGyq9qduB7R+Tt3AK99UYLfbj6F5diycVi5ep1bPKRmtjrPlMUwuy8H6ysbU/Rt6yrk4aeIMmBSlx6oRkPf1/a1rUOVzo8SRh8OG7YeGgIao3l4UNoSXtz2F93a/kRKFHWIfLqKwI3KaO1FWNUTw0IoarN2VGgUeU2LBZXOLMLwwFjnNFB0GdtQE0BiKIMeiYkSRDTIk1IaqEdHCyLXkY3zeRBQ6rVxai8l6skK87t69G7/+9a/xxhtvwO/3Y9y4caKO7IwZMzrclsUrwzTzScUnWLxmMbY2bBUijXxyo12jcenUSzGzfCb6Ox9trsE9y7dgS5VXtOekIvBjS5y46sixmD2uqNv7f3jtw3hgzQNojDQKryNFrChyRT7J5PJIFFE73KPgNzVuqFIUEcOEpfYSvDKsBI3WQLfPbbrXyYwcVHvDCGoNMCSKAhpQZAN2swqLySTWyTcNRbhuHqr2Dk+cH2fpSnjMbyKo+xLHZJUdyA0fD+/eOYn15lvW40eBZ1Ae2QUTooiCjqkU9+U44VapbimJPAVGuARKwwJYo5PEdoXOmMiiWqnxfVlUGdWNIZH0RGeN5LvVrKAkx4JQRE+sV1K6E+aC91Ef3Z04zpbHQCJVMwClKRmJtrPnboXH8hZC2CvOhWSY4JTLcdnUS7FoxrEZn2d6zmp/NUJaanes59auxDMbn4FPrwYkDTAUOORinD7+R1gw+hD420nmIja51+GxjfeiJrg35T1z/IhTcfyI08RxbqhfK5ofbN2dh/rd86Fr9sS6igycfGAefnBQbkaX+9dVePDqN5WocPtFq1raJK+gEmreJ/BpVdCgQZXMGJ4zCqePuQAzyg5FkdPCpbWYrKXfi9f6+nocdNBBmD9/Pq666ioUFxdj06ZNGDt2rLh1BItXhmkWRLetug2+iA+5llxR0of8enT51KE6cPOsm/u1gCXh+psX1sAbisY8fIosCsxTZrjTouCOU6d2S8CScP37F38XkThFVkD/wno4JYKWoOlj85gGHZfWmvCdNYr7iwGfJMNsLkJBXnGXz22612mvtw71oWqxXNbyIUkyNLk+ISiLraVQZFWsZ+gW5PvPQY4xGXWmpfA6XhZxOUUigasgqmvQDBK/Mpy+H6AgeizGeD/H9aG74ZSC8Eo50GQz1pjDuK/IEMcU0HIRMBwwoEEy+cVz2DxnwRqdgApPLHJYnmtDnk3F3oYAanwRMUYiii5TU/Q23gOA6pGWuaxolNaj3v5fSHIIpc4C5NlscAcCKccgBcdjjyeAqEZCXcLQfBuCygZ4c54C5BAUwwGTpEJHBBr8kGHFtQfc2CkBS1+B9aH6RFMDEq6PfHcfDIQgg6KXJuiIQkcQEsy4aNKPcfyEmXD7IqKzVluEtCBe3Poklu95K2V8mGMk5pYfi7d3vYygFoTd5ISk5aBixyx46yemrFuep2LREYWYNMTWrnB9aOU2BCM6nBZ6jSUE5e/hc7wOyGHkW3PgMFtFndpA1CcSuq6eeiOmFc0Q61NpLROpZYbJIvr9O/auu+7C8OHDRaT10EMPxejRo3HsscdmJFwZholB0SuK5JEgKrGXiH7pdDmb7ukxjdNyWq8/QpegKeJKwpWED0WM6BI03Ze5LPCGNLGc1usKFIGjiCsJV7NshkmK1c1sKVwpk1xKDEl416UgAAPP5SnwSgqKNQ22gFus15Vzm+51kgwJHiGsYtYIXfFBlxvF7ACap4HaYB08PgOG5oKshBFwLIMhR+C3LxXCFYYJuiGLqCvd02Majy0P4+zws0K4Vhr58BtmaJKEZ3LlxDGVGhS1pe1UGBGXEJx++9uo9wVF8X2amWizitiPiebjid0nazx3IAJIupijrITEnD1+2ocs7hPHYH8btb6A2IfZFDv2Wm8APttSIVyNKFkTVLGdIlmgIk8IzAfWLEZUy6yigHgVJQkF1gJxvkmMUsSVhKsJLiiSWfxQoHsTcmAgLJZbTTJKcy0iwtxe4tRZ4xbh2mm/R6GlODG+y7cdT26+H56wGy41H2bZAlUNY8TY5Rg+/nUoarMXt8IdwZ9eqcRDH9TAH9LTWgUo4krCNd+uwqxIkCQDYfsqSEoY0BzwBundKIvncZnz4Yt68fTmB8V7nv4/7aoPwO0Pt1tVgWH6G/1evL788svCHnDGGWegpKRERGHvv//+NtcPhUIi2pp8Y5jBDnkK6RI0RfJaluShxzROy2m9/gj5H8kqQBHXdPPPs6tiOa3XFcgPSlYBirjG95/OCxkTs0aTjIzFPR8vAPaogFMnsabAbIThbWzs0rlN9zp5Qn4RWYx9XNNlXhKJscckSuiellMUzyTLkA07InIlGtW3oUuB2DaSJMQJJQsJkSL2rYjlVryBUdgDN3KEUCMBt9lkxI5Jix2TBWHYEL+0LsGI2iGbqxBWdonnpMhdKKqhpjEiLvHH1oqJVhKfRtIYzaEusk3MUabIqSwLKwGJX7qPH0NY3tu0f7ILyCLyGpJ3wVCrAc0ufiDQscSjn8LiATu8eoXwwnYWu2rHl7v2CKsARVzTvc8oskvLyQtL8yzJsSLXrrZb5mpi3v747cH/D0eUH5MyHtZDqAruEdH9ODm5uzByv/8ip2g1HV1i/N31jfj1kl1YvdWXsg/yuJJVgCKoifekUomoUgNZj/1ApYoJ4SYxT+eMIr27vTvwefVH8Ed94vzV+cJCxPrD7SelMUx/od+L1++//x733HMPxo8fj7feektYB372s5/hkUceSbv+nXfeKWwC8RtFbRlmsEPJMBRpiXf/aQmN03Jarz9CiTrkfySrQDosiowIiSJ/agmiTKFEJhJCZBWI036ktFms7FWBqASYSKRJsciXpkW6dG7TvU5hLeZvbYr7Nv3dPIf4GEU9Sc5KIhqrIaLUJNaLrZO8pdQcyZWroSKKsNguhkfWE8ek09qSAUVKOh8GnScdkuKP7UmKCVSycSSfIiH16by0OM4ISNxrYq40Z5o91UKl+/gxkEUBsi9xpmN6m8RbzIOamErSfmWowgNLSVxdocrvEVFhGen/n5CFgDywlMQVh5KfinMs7V56t5psOGf8Zbhm6m/hVF0pzQ72BnahIVyfiHxaVMA1ZBkuOMqH4QXNiVVuv4a/L63C35fuRb0vJjIpOSvmcW1+P+pysz85Ppp8RYKqHtAPs4awG/XBWtQEqoSlgERupScobvQ3w/Rn+r141XUd06dPxx133CGirldccQUuv/xy3HvvvWnXv+mmm4S/NX7buXPnPp8zw/Q3KIubkkTIh5kOGqfltF5/hDLMKVEnRRwlEdJ0qLIk1usKlIFP0TNKbInTfpWApK5KkZjII7EnGRTZlKAoapfObbrXyayQqIwL1JiITZ5DfIzigjH5R8JGgarF/b/x7ZK3jEWQxXHqxYiAEsKao265upw4JpnWNiRoZBuIQ0lMtESzJwQqicuUHxc01iQ6W8YlVeTEkr+El5Qi2ZJITKL7+DFQHBU6+Wybdkd/aI6mSHLz65S8b4pAU/IWVR/oCrSdRNYIkWbWOpmJvK8knKn6QDIWshG4LKKmantMzp+Gy/a7TlzCT8YTqRdRWBKzJCQpSXBimQO3nTYUPzokX7z346ze6seNS3bj3XUNcJjJ40q2l+b3o6zbm+auJc5dcjWO+P7jIpq8udWBSiFmSUBT9JWisBSN7aoNh2Ew2MVreXk59ttvv5SxyZMnY8eOHWnXt1gsIjEr+cYwgx0qP0SZ75RA1NLbRo9pnJaLMkX9ECqNRFUFyE+Zbv5uf0Qsj5dt6ixUOipHzRFVBeL7py/4lsQjlvEZ0Brn1wFDIoBXJsGrISyZ4czJ6dK5Tfc65VrsIqIovKtCXJPPM/Y4JrIoUqjCqlhFGSdd8kPVy5ATOQayYWuKVDZVTpApitoUJoUmlgdxArZhCHJBFRZ0kdE/LirFjkmJHVMIZgQQF1yGSNrSwyUwa8PEc0Y1HRaTIorsx3WWkNQkfkm8Jo3RHArUUWKONFfanryj1M6U7uPHYNZLm/bfVHFAN2DRh0GKFAOKX0jceDvU+LmmpC2qOkBls7oCbUfb036oXFfMU9y8f/LUUtWBeaOnttqW5kHJTxSFba+W6rjcSRiTOwE2xZ7yHiMbQWVgF+pDtSixl2OYcxRMioRTpufhTz8aiknl1sS6/rCOh1bU4slVHhQ47MK7mnhPamUwaUXQpaA4b6oiw9xUQozOmT/qRaljiNh/HDq2xnCD6BRGVoLY/6mYlYD2zTD9jX4vXufMmYMNGzakjG3cuBEjR47sszkxTLZBUUQq2USZ71X+KtFhiL7Y6J4e0zgt76/1XilyROWwqKpAZUMIgYgmokJ0T49pnJZ3td4rRTsvm3qZEBPkQYyKbPy4WG1GxDATQwaOatDIHYkfuTU4DQ3VioKALU+s15Vzm+51MiQDuRZXc6RUc0DWSRzTRGieEgqtBch1SJCUBuiaGTbf0ZB0FXY/Zd3LgBSFLOlClNA9Pabx2HIznjL/CD7DilKpHnYpDMUwcIan+Zj2StS+lLaLQFIbRDUAu/8Y5DmsCVsAiU+K/pL/uPl4YvfJllCqSABDFnOkudKcc+20D13cJ47BfwwKHTaxj3gx/0KnDY7AsYBugWRqgCzHksQ0I4QI3MKTSuWyOlPvNeV9oChie9oP7U83wmKuVJ0hikZRbeCMCWdAkduxCFASYa4V9jbaslLJrOOG/RBONQc2xQGr0lwiiwjrQXhC9aj2V6ZUHbhpYRkWzS2E3dz83BsqQthSYUY0YkWdL4KQFouSq/5ZMHSzsFk4rTFLCYljT7hO/Mih56d5tIR+vCVbCeiHRFVDEHvcAeFpZpj+Qr8vlfXZZ59h9uzZuPXWW3HmmWfi008/FbaB//znPzjvvPM63J5LZTHMAK3zqhvCKsB1Xtuo89p0fjqs89q0Xsd1XmMVWxN1XrVJYruUOq9N+0qu8xo3OqTUeW1ar8M6rxR11ZPqvMqS2K6n6ry2xYOrl4qqBZT8Fd+/Qy7FmRNPw6lTZmW8H284Ck8bJbWozutbu17EXt8ekWwX1GLR5GRv6sJRZ2HB0JNSfvi4fVE8urIWn22l16QZq6rDYvFBUjRQcYaUOq9U/k1SRMSVhOvE/P07nDu9TxymWJeu+PO7bKpImuQuXUxf0+/FK/Hqq68KLyvVd6VSWddff70QsJnA4pVhUuEOW+3DHbYGR4etDt8HmtZq/zR/6spFpcwy3o+uo9YXRjiSrtSVjl3ebfBGGkS92o8q38OnVStS1hnjmiC6c5XYylPGqfLAox/Wot6f6v+dPtqCE6a5ML6M/MFGYv/kcSWrQLqIa3vQ+9dlzhPtZgkSrvkOM3fpYvqUrBCv3YHFK8MwDNOTeMNe1AXrMq6LTBHVxkBUlAPriG9qV+PJTfeLBKo4qmzGKaPPwbwhx6f8GKLar09/Wod318VKs8UpdCq45IgiHDAi1ZLQHVRFRa45X9SvJSjBrtBhga0NewTD9CYsXhmGYRimk0S0CKoD1W1W8EhHKKqLLH5KcGsPb6QRz2x+CJ9Vr0wZH5c7GRdMuBLFtrKU8Q0VQSz+oEY0NUhm1jgHzp9dCJet5wSmzWRHrjkPihyrrEAVFihRjRLDGGZfweKVYRiGYbpAy9aymUD+13p/GP5QxwlQX9Z8gv9uekBc9o9DZbZOHXOeaHqQHIWlOrmvfOnBK1+5E614CadVxnmzCjBnvLPdZgqdgfZDNoQc1SX+Fs04bKpIxutJCw/DtAWLV4ZhGIbpBv6IX3hh03Vla3ObsIZ6qqXawVcwlbB6esuD+KJ6Vcr4hNwpuGDilSi0lqSM76wLY/HyGmypindEi7H/MKuwEpS4es6rSh3pXGoe7KqjqWqHjHyHihz2wzK9DItXhmEYhumBRL+aQI0ob5b5NjEbAVVg6IjPq1fhqU2L4Ys2+1vJf3ra6PNxePnRKVFVSpZbtq4BSz6pR6ipzBhhNkmi6cGx+7t6tGKAWbEIKwHdi3mpCgodZlE2jGF6AxavDMMwDNND1AfrRZOJztAQjKAhEG3VgKPVemG3sBF8XftZyvikvKk4f8KVKLCmlouraYzi4Q9r8PWOQMr46CIzLj2yCCOLUjt9dReKwLrU3IQf1tnkh22vdS7DdAUWrwzDMAzTxzaCTJO56Ct7dfVHWLL5Qfii3sS4VbHh9DEXYHbZgpQoLK3/8RYfHltZi8ZgUq1iCTjxgFycenCeqBzQU8hNflhnkh+WvLDUvKKnPLcMw+KVYRiGYXrBRlDtr0ZIS/Wetofe1OrYl0FLVo+Iwt4vSmsls1/+ATh3/BWtorCNQQ1PrqrDhxubBS9R6jJh0dwi7DeUWgn3HNRwgurDUnWC2GMZBU6ziMYyTHdh8cowDMMwvQB9vVI92MZwah3WjqDOZFSRQNONDvdPTQ2WbHkYgagvJQp7xtiLcFjpvFbRzjW7AnjogxpUN6YK5CMnOXHOYQVwWHrWp0q+XPLDqkqsExvVhSUrgcXEflim67B4ZRiGYZhebmpQG6zt0NPaMgpLNgISsh3hDtXhiU3/wbd1X6aMTyk4COeNvwJ5loKU8WBExwur3XhjjQfJU8q1Kbjw8EIcMtre45f4qUMXtZqlNrXxVrPULY1LazFdgcUrwzAMw/Qy1Mygyl8l7ASdoTEUhccf6VD4Cm/r3vfxzJZHENSaE7RsJgfOHHsxDi05opUg3VodEmW1ttemNlqYPtKOiw4vRIGzZy/xU11a6tIVL63FrWaZrsLilWEYhmH2AdROlnywgWhq9n9HRDQdtb4wItGOS2rVBWvw5Kb/YF391ynj0wpn4Jzxl4tL+MlENQNvrvHg+dVuRLRmOWBVJZw1swAL9ssRSVg9CZXUyjPnJ6wE1J2r0GmG3cx+WCYzWLwyDMMwzD7EHXTDHXJ3ahsDhiin1RCIdLyuYeCjynfx3PePpURhHSYnzhy3CDOKZ7eKwu71RPDgBzVYtye1Tu2EMotI6BqaHxOaPYlTzRFWgninMBKv1OSA/bBMR7B4ZRiGYZgsKKcV96tSZy5qcJBJFPbxjffiO/ealPEDiw7FOeMuE8IxGZIDKzZ48eTHdfCFmvdPlbQWHpQnbqrSs1FY0aXLnAe7KWYlIKhDFyV19WQjBWZgweKVYRiGYfqAiB4RNgLyw3YGSuYiAUstZjuCvuI/rFiG579/DCE9lBL1PHvcpZhePKvVNh6/hsc+qsUnW5orGBBD81VcOrcI48us6GlEVQJLPlQ55n8lq0K+3QyXzcT1YZlWsHhlGIZhmD6CvoKpEgFVJOgsJF7dGZTUImoCVSIKu9Hzbco4idezxy0STQVa8sU2Px75sAZ1vmaRTDLyqCk5OPPQAtjMPds5i0SqsBKouQnBSn7Y4QWxWrEME4fFK8MwDMP0MVQLlmrCdvYrWdN11PnDCIb1jBLGVlS8jRe+fwLhpCgsicVzxl8m7AQtCYR1PPNpPZZ924DkmRU4FFx8RBEOGtnzwpIaHFBVAqvJJiKwo4qaLQUMQ7B4ZRiGYZgsLqdFNAaj8AQ6LqlFVAcq8djGe7HZsz5lfEbxHJw57hIR/WzJpsogFn9Qg931qQljM8c4cMGcQuTaez7JisRrvqUA40pSvbkMw+KVYRiGYbK8nBYRppJa3jCiWmZR2OV73sKLW59ERG/23LrUXJw74QpRWqslVErrlS/d4pZctcthkUV3rrkTnT3uTzXJCmaNnNij+2SyHxavDMMwDNPP8IQ8qA/Wd3o7Kqnl9kfgDWYWva0KVOCxDfdgS8OGlHFqakDNDeyqs9U2u+vDoqzWxspm6wExeYhVJHSV5vZc0wFFljF75KQe2x8zMGDxyjAMwzD9EIq+1vhrOl1OiwhGNNFeNpNkLorCvrf7dby87SlRASEO+U7PHX8FphZOT7ONgXfXNeLpT+oQjDQ/B5XSOm1GHo6fmgtTD5TVYvHKpIPFK8MwDMP0U8j/SjaCkJYa5cwEEpgkYAMZlNQi9vr34NENd2Nr46aU8Vml83D62AtTarHGqfNG8ciHtfhiuz9lfEShGZceWYQxxRZ0BxavTDpYvDIMwzBMP4a+pqkSAVUk6AqNoSg8/sySuSgK+86uV/HKtiWIGs1R2DxzIc6fcAX2Kzgw7fw+2+rHoytrRY3YOGR/PX6qC6fNyIdV7VpZLRavTDpYvDIMwzBMFuCL+ERXLhKYnSVCyVy+MCLJmVbtUOHbhUc33o3tjVtSxueULcBpYy6AzdS6RJYvpOGpj+vw/nepNWuLc0y45IhCTB3e+bJaLF6ZdLB4ZRiGYZgB3pUrnszVEIiiIZBa7qotyGv79s6X8dr2Z1J8twWWIpw/4ceYlD8t7XbrdgdEQtfehtSkscMnOHHurALkWDMvq8XilUkHi1eGYRiGGSRduYhQVEcdldTSM4vC7vbtEF7Ynd6tKeNHlB+DU0efJ+qxtiQc1fHi52689rUHyTljOVYZ588uxKxxjozKarF4ZdLB4pVhGIZhBpmNgJK56n1h0WI2EzQ9ird2vojXdzwPPSkKW2gpxvkTr8TEvP3Tbre9NoTFy2uwtTo1UjxtuE1YCYpy2i+rxeKVSQeLV4ZhGIbJUiJaBNWBrtkICBKvJGJJzGbCTu82PLbhbuzybU8ZP3LIcThl9LmwKtZW21C5rqVrG/DsZ/UIR5ufx2KScMah+ThmiguynD4Ky+KVSQeLV4ZhGIYZxDYCTY8lc4Uiesblu97c8Tze3PECdDRvU2QtxQUTrsT4vP3SblfVEMHDK2qxZldq97AxJRZcNrcIwwvNrbZh8cqkg8UrwzAMwwxyGwHREIyIhK5MZcGOxu+FF3aPf2fK+PyhJ+CUUefArLSu8Ur7/miTD4+vqoU32DxPRQZOOiAXp0zPg9nUXFaLxSuTDhavDMMwDDNA6K6NIEwltSiZS9Mzrn7wxvbnsHTnSylR2GJrGS6ceBXG5qYXng0BDU+uqsXKTb6U8bJcFZfOLcSkIbEkMBavTDpYvDIMwzDMAKK7NgIqqeX2R+ANppa6ao9tjZvx2IZ7UOHflRiTIGHBsJOwcORZMCutLQHENzv8eGhFLWq8qc81f3IOzpqZD5dNZfHKtILFK8MwDMMMQLprIwhGNNFelhKuMiGih/HqtmewbNcrQgDHKbUNEVHY0a4JbTyPjuc+q8dbaxuQrEjy7AouOaII186f0aX5MwMXFq8MwzAMM0Dpro2AqhCQgA1kWFKL2NqwEY9uuAd7A3tSorBHD1uIk0edAVVOH4XdUkVltaqxsy61icLxU8pw6ylTUOpqXcmAGZyweGUYhmGYAUx3bQSENxyF2xfJOJmLxPIr25/Gu7teS4nCltmH4sKJP8GonHFpt4tqBl7/2oMXv3AjojVvN7zAhvd+MQ8myuxiBj0sXhmGYRhmENBdG0FE01HnDyOcYUktYovnOzy28V5UBSoSYzJkHDP8FJw48nSocvomBRXuiGgx+11FUDz+nx9Nw5kzhndp3szAg8UrwzAMwwwSumsjoCgqldNqCKRe2m+PsBbCy9uewnu730iJwg6xDxdR2BE5Y9q0LKzY4MOuGgX3nD89o3ayzOCAxSvDMAzDDCJ6wkYQiurCC5tpSS1ik3udiMLWBPemRGGPG3EqThhxGkyyqdU2XCqLSQeLV4ZhGIYZhHTXRkCRUWotSy1mMyWkBfHi1iexfM9bKePDHCNFFHaYc1TKOItXJh0sXhmGYRhmkEJNBmr8NQhpoS7vg8QriVgSs5mywb0Wj2+4F7Wh6sSYLCk4ccRpOG74D6E0RWFZvDLpYPHKMMyggKJL6+vWwx10I8+ah8kFkyFLcq9uG43qeOWbCux2+zE0z46F08phSmp92elj0A18u6dBJM0U2M2YMsQFWZZ6bF9RI4IH1z6InY07MTxnOBbtv0hcyu3o2DM9zp6c/0CkO+enO+9vkgF1wTo0hhu7PHdN11HrCyPUiWSuYDSAF7Y+gRUVb6eMD3eOwoUTr0a5Yzh21QYxzDWC3y9MdonXP/zhD7j11ltTxiZOnIjvvvsuo+1ZvDIM80nFJ1i8ZjG2NmxFVI8KQTbaNRqXTr0UM8tn9sq293+wBf9+fwsaAxHRNJNkRI5NxdXzxuLyuWM7fQwfba7BPcu3YEuVV5QQUhUJY0ucuOrIsZg9rqjb+1JLX4Bb+RA6tBQ/YpGtCLIst3nsmR5nT85/INKd89Od93cy/ogfNYGaLtsIiIZgRCR0dUZafFf/DR7feB/qQjWJMRkKXJF58NfMgBwt4/cLk33i9dlnn8WyZcsSYyaTCUVFmb15WbwyzOCGvthvW3Wb8PflWnJFm0rKtPaEPHCoDtw86+Y2v+C7ui0Jurve3CA6E5kUCRQsoiZFVMNSkSX8+viJnRKwJGx+88IaeENR5NvNMCuy6EFf74/AaVFwx6lTM/5CT7evKssTCFpXxlZIE9jKUXMwNGdoq2P/ZlNRRsfZk/MfiHTn/HTn/d1bNgKae623c8lcgagfz3//OFZWvpMyrkTKURK4DEaklN8vTIKsqPZLYrWsrCxxy1S4MgwzuKEIEkWk6Iu9xF4Cq8kqLqXSPT2mcVqeLtLU1W3pEjpFIknQmU0STLIstqN7ekzjtJzWy+gYdENE5EjYlLmssKqKuHRK92UuC7whTSyn9bqyL0OOIGhd1bySQb2QUhVsY6SRaiSlHPsD3zyAf72/qcPjDIe1Hpv/QKQ7r2933t9tQXVXyxxlcFm6Huwh8V2Wa4HT2rp6QFvYTHacN+EK/GT/m6Dozc+tqRWoyLkTIcc7KHWpg/79wmSReN20aROGDBmCMWPG4LzzzsOOHTvaXDcUColoa/KNYZjBCXkA6VIqRaRa1oikxzROy2m9ntqWvJ90CT0WiUz9iBXiTpHEclovE8gDSZeSKSKXbh55dlUsp/W6sq9GlfyGcXHTtp+QSislH/v62i3w6ds7PM57P/i+x+Y/EOnO69ud93d70LYF1gIhgBVJ6dJx0Q8gOqbiHIuIwmeKU58ApWoR1OABSTuLwm9ay+8XJnvE68yZM/Hwww/jzTffxD333IOtW7fiiCOOQGNjemP5nXfeKWwC8dvw4dyRg2EGK5S8Qh5AupSaDhqn5bReT21LSUvC+9nG9zWNG03rZQIl75AHkqJZ6bAoMiK6Idbryr4iSrPPME66mFZyUfvYpekIYPJ3eJzb63w9Nv+BSHde3+68vzPBrtpR5iyDRbGgq4gIcq4VNnNmIrgxFIGmWeHy/wCuxrMh6zmQDAuKAhdAgjzo3y9MlojXE044AWeccQamTZuG4447Dq+//jrcbjeWLFmSdv2bbrpJ+Fvjt507d+7zOTMM0z+grGtKXmmrmxCN03Jar6e2pWx7+mBt66omjUtN62UCZVlTsgr5CNMR0nSosiTW68q+VK21DSudHk0WSHTsZkUFovYOj3NkgaPH5j8Q6c7r2533d2dtBDnmnC7vQ5YkFDktyHe2ji63JMeiggpVRHUDluh45DdehRL/lVCNYrF8sL9fmCwRry3Jy8vDhAkTsHnz5rTLLRaLSMxKvjEMMzihckGUdU3JKy1zU+kxjdNyWq+ntqUyUZRtT0lLLb2G9JjGaTmtlwlUHoiyrClZJd083P6IWE7rdWVfOZFjkr4K2vYRFloLU459cuFYOOSRHR7nlXPH9Nj8ByLdeX278/7uDCQ4C22FKLYXZ1x+Kx1OswmlLgvMatv7GFFkQ3meXXiA6YhkwwabFqvzyu8XJmvFq9frxZYtW1BentkHP8Mwgxf6oqVyQZR1XeWvQjAaFMKK7ukxjdPydF/IXd2W6ptSmSjy+YWjBqK6HhNzui4e0zgtz7TeKyXvUHkgyrKubAghENFEsgrd02Map+WZ1L9Mty9JV2ENzmpeSaLu80aragMURk0+9sumXYafzhvf4XGazUqPzX8g0p3Xtzvv765A+yt3lLdpU8gEVZFRkmOBy6amXS5DwsnTymBVZSHoqQ0tv1+YrCuVdcMNN2DhwoUYOXIk9uzZg1tuuQVfffUV1q1bh+Li2GWE9uBSWQzD9HWdV/qQlXqyzqtuiEunPVLntWlfPVHntb3j7Mn5D0S6c356qs5rppBsoAQ+b9jbrf2QMK3zpS+pta7Cg1e/qUSFOwBJK+H3C5Nd4vXss8/GBx98gNraWiFWDz/8cPzpT3/C2LGZffizeGUYhuAOWx3viztsDc4OW12FSnHVBmq71dSAWsrW+8Pwh7TWy2Bwhy0mO8Vrd2HxyjAMwzC9Q0SLoDpQ3WbSWKb4wxrqfWEhZpNRZBmzR8Y8rwyTtZ5XhmEYhmH6B6qiCh+s0+zs1n7sZiqpZYGlnWQuhonD7xKGYRiGYbpVjYC80d2tRkBR1pIcK3LtaocltZjBDYtXhmEYhmH6RTUCwmVVUeKywNRG4waG4XcGwzAMwzD9ykZAHcfIRuCwmHpsbszAgcUrwzAMwzA9biMQZda6YSOQICGfO2kxaWDxyjAMwzBMj0PR156wETBMS1i8MgzDMAzTr20EDJMMi1eGYRiGYfq9jYBh4vC7iGEYhmGYfWYjoGgsw3QHFq8MwzAMw+wT2EbA9AQsXhmGYRiG2WeQdYAsBIW2Qm5GwHQJFq8MwzAMw+xzcsw5IgprkrmWK9M5WLwyDMMwDNMnUBktErA2k62vp8JkESxeGYZhGIbpMxRZQamjFPnW/L6eCpMlsHhlGIZhGKbPybXkChGrSEpfT4Xp57B4ZRiGYRimX0D2gXJnOawma19PhenHsHhlGIZhGKbfQAlcZY4yEYllmHRwih/DMAzDMP0O8sByBJZJB0deGYZhGIbpl3AVAiYdLF4ZhmEYhmGYrIHFK8MwDMMwDJM1sHhlGIZhGIZhsgYWrwzDMAzDMEzWwOKVYRiGYRiGyRpYvDIMwzAMwzBZA4tXhmEYhmEYJmtg8cowDMMwDMNkDSxeGYZhGIZhmKyBxSvDMAzDMAyTNbB4ZRiGYRiGYbIGFq8MwzAMwzBM1sDilWEYhmEYhskaWLwyDMMwDMMwWQOLV4ZhGIZhGCZrYPHKMAzDMAzDZA0sXhmGYRiGYZisgcUrwzAMwzAMkzWweGUYhmEYhmGyBhavDMMwDMMwTNZg6usJMAzDMMy+RDd0rK9bD3fQjTxrHiYXTIYsyT22LxgSvt3TgDp/GAV2M6YMcUGWpV6da1ePqSfPRU/Tn+fG9C1ZJV7//Oc/46abbsK1116Lv/3tb309HYZhGCbL+KTiEyxesxhbG7Yiqkdhkk0Y7RqNS6deipnlM7u9r3zTUITr5qFq73BENAOqImFsiRNXHTkWs8cV9cpcu3pMPXkuepr+PDem75EMwzCQBXz22Wc488wz4XK5MH/+/IzFa0NDA3Jzc+HxeMS2DMMwzOCEBNFtq26DL+JDriUXZsWMsBaGJ+SBQ3Xg5lk3ZyyM0u3LHQhgr7cOhm5Bvv8c5BiTEdZ01PsjcFoU3HHq1IwFbKZz7eox9eS56Gn689yY/kFWxN+9Xi/OO+883H///cjPz+/r6TAMwzBZBl2CpkgeCaISewmsJqu4BE339JjGaTmt16V9QYbHDxiaC7ISRsCxDJJswKoqKHNZ4A1puGf5Fui60WNzpYhkV46pJ89FT9Of58b0H7JCvF599dU46aSTcPTRR3e4bigUEtHW5BvDMAwzuCHvJF2CpkieJKX6T+kxjdNyWq8r+wpENIQiOkyyDNmwIyJXIizvTOw/z65iS5VXeGF7aq5vbH2jS8fUk+eip+nPc2P6D/1evD711FP44osvcOedd2a0Pq1HNoH4bfjw4b0+R4ZhGKZ/Q0k/FKmkS9DpoHFaTut1ZV9R3QD9kyFBEukkGnTJl1huUWREdEMkcfXUXCt8FV06pp48Fz1Nf54b03/o1+J1586dIjnriSeegNVqzWgbSugif2v8RvtgGIZhBjeUrU5JP+SdTAeN03Jaryv7MskkWiXoQsJGASiQDUdieUjTocqSqD7QU3Mtd5R36Zh68lz0NP15bkz/oV+L188//xxVVVWYPn06TCaTuC1fvhz/+Mc/xN+aprXaxmKxiMSs5BvDMAwzuKEyS5StTkk/LfOU6TGN03JR6qoL+7KpCiyqjKiuQ5f8UPUymPXYlT9ax+2PiKoDVDarp+Z6wugTunRMPXkuepr+PDem/9CvxetRRx2FNWvW4KuvvkrcZsyYIZK36G9FUfp6igzDMEwWQEk/VGaJstWr/FUIRoMi6Yfu6TGN0/JM6oim3Rd05NoBSWmArplh8x0NQ5eEF7ayISSqDVC5rEzqvWY6V4pAduWYevJc9DT9eW5M/yFrSmXFmTdvHg488EAulcUwDMP07zqvuiGsAlzntfP057kxfQ+LV4ZhGGZQwR22ur/dvqA/z43pW7JOvHYWFq8MwzAMwzADB/4JwzAMwzAMw2QNLF4ZhmEYhmGYrIHFK8MwDMMwDJM1sHhlGIZhGIZhsgYWrwzDMAzDMEzWwOKVYRiGYRiGyRpYvDIMwzAMwzBZA4tXhmEYhmEYJmtg8cowDMMwDMNkDSxeGYZhGIZhmKyBxSvDMAzDMAyTNbB4ZRiGYRiGYbIGEwY4hmGI+4aGhr6eCsMwDMMw/ZCcnBxIktTX02AyZMCL18bGRnE/fPjwvp4KwzAMwzD9EI/HA5fL1dfTYDJEMuKhyQGKruvYs2cP/6pqA4pIk7DfuXMn/8ftI/g16Fv4/Pc9/Br0LXz+OfKabQz4yKssyxg2bFhfT6PfQx9Yg/VDq7/Ar0Hfwue/7+HXoG/h889kC5ywxTAMwzAMw2QNLF4ZhmEYhmGYrIHF6yDHYrHglltuEfdM38CvQd/C57/v4degb+Hzz2QbAz5hi2EYhmEYhhk4cOSVYRiGYRiGyRpYvDIMwzAMwzBZA4tXhmEYhmEYJmtg8cowDMMwDMNkDSxeByl33nknDjnkENFVpKSkBD/84Q+xYcOGvp7WoOXPf/6z6O7y85//vK+nMqjYvXs3zj//fBQWFsJms2Hq1KlYvXp1X09rUKBpGn7/+99j9OjR4tyPHTsWt99+OziHuPf44IMPsHDhQgwZMkR83rz44ospy+nc33zzzSgvLxevydFHH41Nmzb12XwZpi1YvA5Sli9fjquvvhoff/wx3n77bUQiERx77LHw+Xx9PbVBx2effYb77rsP06ZN6+upDCrq6+sxZ84cqKqKN954A+vWrcP//d//IT8/v6+nNii46667cM899+Bf//oX1q9fLx7/z//8D/75z3/29dQGLPT5fsABB+Df//532uV0/v/xj3/g3nvvxSeffAKHw4HjjjsOwWBwn8+VYdqDS2UxgurqahGBJVE7d+7cvp7OoMHr9WL69Om4++678cc//hEHHngg/va3v/X1tAYFN954I1auXIkVK1b09VQGJSeffDJKS0uxePHixNjpp58uIn6PP/54n85tMECR1xdeeEFcdSNIClBE9he/+AVuuOEGMebxeMRr9PDDD+Pss8/u4xkzTDMceWUSH1JEQUFBX09lUEHR75NOOklcnmP2LS+//DJmzJiBM844Q/xwO+igg3D//ff39bQGDbNnz8Y777yDjRs3isdff/01PvzwQ5xwwgl9PbVBydatW1FZWZnyWZSbm4uZM2di1apVfTo3hmmJqdUIM+jQdV14LekS6v7779/X0xk0PPXUU/jiiy+EbYDZ93z//ffisvX111+P3/zmN+J1+NnPfgaz2YyLLrqor6c3KCLfDQ0NmDRpEhRFER7YP/3pTzjvvPP6emqDEhKuBEVak6HH8WUM019g8cqI6N/atWtF1IPZN+zcuRPXXnut8Btbrda+ns6g/dFGkdc77rhDPKbIK/0/IL8fi9feZ8mSJXjiiSfw5JNPYsqUKfjqq6/Ej2i6dM3nn2GY9mDbwCDnpz/9KV599VW89957GDZsWF9PZ9Dw+eefo6qqSvhdTSaTuJHfmJIl6G+KQjG9C2VU77fffiljkydPxo4dO/psToOJX/7ylyL6Sl5KqvJwwQUX4LrrrhOVUJh9T1lZmbjfu3dvyjg9ji9jmP4Ci9dBCpnzSbiSYf/dd98V5WqYfcdRRx2FNWvWiGhT/EZRQLpkSn/TZVSmdyGbTMvycOS/HDlyZJ/NaTDh9/shy6lfQfS+p4g4s++h7wASqeRDjkO2Dqo6MGvWrD6dG8O0hG0Dg9gqQJfrXnrpJVHrNe5pIoM+ZfsyvQud85b+YipLQ/VG2Xe8b6AoHyUNkW3gzDPPxKeffor//Oc/4sb0PlRvlDyuI0aMELaBL7/8En/5y1+waNGivp7agK5usnnz5pQkLfqxTIm69DqQbYOqnowfP16IWarDSzaOeEUChukvcKmsQVwmJR0PPfQQLr744n0+HwaYN28el8rax5Bl5qabbhKF2OnLmpK3Lr/88r6e1qCgsbFRiCO6+kMWGhJJ55xzjiiST0lzTM/z/vvvY/78+a3GyWNM5bBIDtxyyy3iB5zb7cbhhx8uyvhNmDChT+bLMG3B4pVhGIZhGIbJGtjzyjAMwzAMw2QNLF4ZhmEYhmGYrIHFK8MwDMMwDJM1sHhlGIZhGIZhsgYWrwzDMAzDMEzWwOKVYRiGYRiGyRpYvDIMwzAMwzBZA4tXhhmkUFHyvLy8xOM//OEPokkC0z2oyce+6khUW1uLkpISbNu2LVGEnhqQUIH5nuTGG2/ENddc06P7ZBiG6SosXhkmC8URCRS6qaqK0tJSHHPMMXjwwQc71Rf+rLPOwsaNG3ttnvfffz8OOOAAOJ1OIZIPOugg3Hnnnchm4ue9rRv9APj73/8ufhjsC6i96imnnIJRo0b16vPccMMNeOSRR/D999/36vMwDMNkgimjtRiG6Vccf/zxopWvpmnYu3cv3nzzTVx77bV49tln8fLLL8Nk6vi/ts1mE7fegIQ09Un/xz/+gSOPPBKhUAjffPMN1q5d2+V9RiIRIdb7koqKisTfTz/9tGhlumHDhsQYCXW67Qv8fj8WL16Mt956q/0MqBAAAAiESURBVFv7CYfDHbZjLSoqwnHHHYd77rkH/+///b9uPR/DMEx34cgrw2QhFosFZWVlGDp0KKZPn47f/OY3eOmll/DGG28kon5/+ctfMHXqVDgcDgwfPhw/+clP4PV627QNJPPBBx8IoVhZWZkyToL0iCOO6HB+JKDPPPNMXHrppRg3bhymTJki+tZTpLClyKVldDzl5eX46U9/mlhGkUwSSz/4wQ/EMcS3peOkY7ZarRgzZgxuvfVWRKPRxHZ0yfyyyy5DcXExXC4XFixYgK+//rqVPeKxxx4TEcvc3FycffbZaGxs7PC46JzHb7QdzTF5jIRrS9vAvHnzxCV3Onf5+fkiUk5RaZ/Ph0suuQQ5OTniHNFrlwwJ/RNOOEHsk7a54IILUFNTk1j++uuvi/N22GGHtZrn559/jhkzZsBut2P27NkpAjt+/A888ABGjx4tziNBP3zo/UI/aAoLC3H00UeLOcZZuHAhnnrqqQ7PEcMwTG/D4pVhBggk0ugy/fPPPy8ey7IsIp/ffvutuOT77rvv4le/+lVG+5o7d64QhiTwkiOfTzzxBBYtWtTh9iTkPv74Y2zfvr3NdUiYXn311bjiiiuwZs0aIXhJxCVDQuvUU08Vy+l5V6xYgQsvvFBEmdetW4f77rtPiPBkUXzGGWegqqpKiEEScSR0jzrqKNTV1SXW2bJlC1588UW8+uqr4rZ8+XL8+c9/Rm9B55+il59++qkQsldddZWYJwnLL774Ascee6wQpxRNjQtwej3JarF69WoRWacIO/0giEPn4uCDD077fL/97W/xf//3f2JbisK3fM02b96M5557TrxXvvrqKxFRph8XtN769euFd/a0006DYRiJbQ499FDs2rUr4a9lGIbpMwyGYbKKiy66yDjllFPSLjvrrLOMyZMnp132zDPPGIWFhYnHDz30kJGbm5t4fMsttxgHHHBA4vFdd92Vsq/nnnvOcDqdhtfr7XCOe/bsMQ477DBSPsaECRPEnJ9++mlD07TEOkOGDDF++9vftrkP2vbnP/95ythRRx1l3HHHHSljjz32mFFeXi7+XrFiheFyuYxgMJiyztixY4377rsvcZx2u91oaGhILP/lL39pzJw50+gMLc9fW6/PkUceaRx++OGJx9Fo1HA4HMYFF1yQGKuoqBDHu2rVKvH49ttvN4499tiU/e7cuVOss2HDBvGYnmPRokUp67z33ntinWXLliXGXnvtNTEWCAQSx6+qqlFVVZVY5/PPPxfrbNu2rc3j9Xg8Yp33338/wzPEMAzTO3DklWEGEKT56FI2sWzZMhFxJGsBXZqmyB5lp8ejex1Bl78pQkcRVIIinBT5o0v4HUEWgFWrVomIKUVJ6bL+RRddJLy6lFRGkdE9e/aI+bUHXfpOhi7/33bbbQlvKd0uv/xyETmk46LlZI2gy97J62zdulVEW+OQXYDOSfJ8aU69xbRp0xJ/K4oi5keX6OOQLYCIz4GO47333ks5hkmTJoll8eMIBAKJS/7tPR8dW/K+iZEjRwpbRRyK2NNrQXOiiDDZGurr61P2GfdHZ/r+YRiG6S04YYthBhB0yZd8jHRp9+STTxaXp+mSekFBAT788EPhQaUEHfJCdgSVYCKfIyWG0T7pMjxdTu4M+++/v7iR3/bKK68Uflm6RN9SlLZFS6FMwpQ8rnRJuyUk5Gg5ibV080z297ZM/CLB35lKDZ0l3fMlj8V/cMTnQMdB5/6uu+5qta+4GCUbQkuBme75Wu473XklQf3222/jo48+wtKlS/HPf/5TWA8++eQT8doTcdtFsuhlGIbpC1i8MswAgTytFOm87rrrhNeTxAr5Hsn7SixZsqTT+6TEJ/JCDhs2DGPHjsWcOXO6PL/99ttP3FMSEEU9Kfr5zjvvYP78+Rnvg/yrlHzU0hubvJySzMjn2dvlo3oTOg7ypNIxtFU5gvywjz/+eI89J4lcen3pRlUUKDr7wgsv4Prrr08kkJEopgQ7hmGYvoRtAwyThVDpKRJpu3fvFgk/d9xxh6j3SdFWSmgicUcJVhRBo9qclHh17733dvp5qDwSZez/8Y9/FJnxmUIR39tvvx0rV64USVtkPaB5UdRu1qxZiWQsEteUVLZp0yZxHDTf9iBR9eijj4roKyWiUaSZMuB/97vfieWUIU/7p2x/iiBSBJqiiRRFpOSlbIES2SjSST8cPvvsM2EVoJJY9BpQebT4a0PnoK3oa2egCCu9h+gc7dixQyRyVVdXY/LkySkJYhQ5763yagzDMJnC4pVhshDKPqfLxxSZIx8p+SNJBFIZKboETB5GKpVFl53psj1VCehKgwCK2pL3lQQTic9MIRFJgpX8kxMmTMDpp58uLutTpJX8ngR5YP/2t7/h7rvvFtE8Et4kYtuDBBtVByBhesghh4gyUX/9619FlDAePaQSUlQtgYQePTeVwSIBHfeVZgNDhgwRwp/OO1UiIC8qldoi60M8kk5jFKHtSkS9JfQDhcqjnXjiieKc0Y8B+mFBpbri0I8E8hczDMP0NRJlbfX1JBiG6b+QT5aicFTKiulfvPbaa/jlL38pLunHRW1vQH7nX/ziF6LRRCYNMBiGYXoT/hRiGCYtHo9HeGiffPJJFq79lJNOOklEq8k+Qo0oegvyKVPiHgtXhmH6Axx5ZRgmLdQZiorq//jHPxaX5pOhy8nkgUwHdfuiWzZCfs94Ylk6qDHCiBEj9umcGIZhmFRYvDIM02ko0kd1RtNBZbnolo1QPdr2Oki1l/3PMAzD7BtYvDIMwzAMwzBZA1cbYBiGYRiGYbIGFq8MwzAMwzBM1sDilWEYhmEYhskaWLwyDMMwDMMwWQOLV4ZhGIZhGCZrYPHKMAzDMAzDZA0sXhmGYRiGYZisgcUrwzAMwzAMg2zh/wOtMzcD0FPizgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "#######################################################################\n", - "### 💻 YOUR WORK GOES HERE TO ANSWER THE SECOND RESEARCH QUESTION 💻 \n", - "###\n", - "### Your data analysis may include a statistic and/or a data visualization\n", - "#######################################################################" + "sns.lmplot(\n", + " data=df,\n", + " x=\"Daily_Screen_Time(hrs)\",\n", + " y=\"Happiness_Index(1-10)\",\n", + " hue=\"Gender\",\n", + " aspect=1.2\n", + ")\n", + "plt.title(\"Social Media Time vs Happiness by Gender\")\n", + "plt.xlabel(\"Daily_Screen_Time(hrs)\")\n", + "plt.ylabel(\"Happiness_Index(1-10)\")\n", + "plt.show()" ] }, { @@ -258,7 +477,9 @@ "- *What were limitations of your datset?*\n", "- *Are there any known biases in the data?*\n", "\n", - "✏️ *Write your answer below:*" + "✏️ *Write your answer below:*\n", + "\n", + "The results give an estimate of how social media time may influence happiness. If the correlation is weak or near zero, that suggests social media time might not strongly affect happiness for most people. However, the dataset may have limitations; for example, self-reported happiness is subjective, and the survey might not represent all age groups equally. There could also be bias in who chose to respond to the survey." ] }, { @@ -281,8 +502,18 @@ "- *What was most surprising?*\n", "- *How will this project impact you going forward?*\n", "\n", - "✏️ *Write your answer below:*" + "✏️ *Write your answer below:*\n", + "\n", + "From this project, I learned more about how data can reveal patterns in daily habits like social media use. My results showed that happiness tends to decrease slightly as social media time increases, but the relationship is not very strong. This makes sense because happiness depends on many factors beyond social media. What surprised me most was how small the correlation was; it shows that time online might not be as harmful as people sometimes think. Going forward, I’ll pay more attention to how I use social media and try to balance it in a healthy way." ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2ebf4fe8-4f81-4d7e-8ca9-31d6e80a8441", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -310,7 +541,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.13.7" }, "toc": { "base_numbering": 1, diff --git a/data/.ipynb_checkpoints/Mental_Health_and_Social_Media_Balance_Dataset-checkpoint.csv b/data/.ipynb_checkpoints/Mental_Health_and_Social_Media_Balance_Dataset-checkpoint.csv new file mode 100644 index 0000000..7457ea2 --- /dev/null +++ b/data/.ipynb_checkpoints/Mental_Health_and_Social_Media_Balance_Dataset-checkpoint.csv @@ -0,0 +1,501 @@ +User_ID,Age,Gender,Daily_Screen_Time(hrs),Sleep_Quality(1-10),Stress_Level(1-10),Days_Without_Social_Media,Exercise_Frequency(week),Social_Media_Platform,Happiness_Index(1-10) +U001,44,Male,3.1,7.0,6.0,2.0,5.0,Facebook,10.0 +U002,30,Other,5.1,7.0,8.0,5.0,3.0,LinkedIn,10.0 +U003,23,Other,7.4,6.0,7.0,1.0,3.0,YouTube,6.0 +U004,36,Female,5.7,7.0,8.0,1.0,1.0,TikTok,8.0 +U005,34,Female,7.0,4.0,7.0,5.0,1.0,X (Twitter),8.0 +U006,38,Male,6.6,5.0,7.0,4.0,3.0,LinkedIn,8.0 +U007,26,Female,7.8,4.0,8.0,2.0,0.0,TikTok,7.0 +U008,26,Female,7.4,5.0,6.0,1.0,4.0,Instagram,7.0 +U009,39,Male,4.7,7.0,7.0,6.0,1.0,YouTube,9.0 +U010,39,Female,6.6,6.0,8.0,0.0,2.0,Facebook,7.0 +U011,18,Female,2.8,7.0,6.0,2.0,0.0,Instagram,7.0 +U012,37,Other,5.4,5.0,7.0,3.0,2.0,Instagram,9.0 +U013,17,Female,7.0,7.0,10.0,7.0,1.0,YouTube,8.0 +U014,39,Female,5.7,5.0,7.0,4.0,0.0,Facebook,8.0 +U015,45,Male,6.3,7.0,7.0,4.0,3.0,X (Twitter),9.0 +U016,17,Female,5.1,7.0,6.0,2.0,5.0,LinkedIn,10.0 +U017,36,Female,7.5,5.0,8.0,4.0,4.0,Facebook,7.0 +U018,48,Male,5.4,6.0,4.0,3.0,4.0,TikTok,10.0 +U019,27,Male,4.7,6.0,6.0,0.0,2.0,Instagram,9.0 +U020,37,Male,7.1,6.0,6.0,5.0,4.0,TikTok,10.0 +U021,40,Female,3.0,8.0,5.0,5.0,4.0,X (Twitter),10.0 +U022,42,Other,6.4,7.0,6.0,5.0,3.0,TikTok,10.0 +U023,43,Male,3.6,8.0,5.0,3.0,1.0,Facebook,9.0 +U024,31,Female,7.8,5.0,8.0,1.0,2.0,TikTok,7.0 +U025,30,Male,5.0,6.0,6.0,0.0,5.0,X (Twitter),8.0 +U026,18,Other,5.7,6.0,7.0,3.0,2.0,X (Twitter),8.0 +U027,22,Female,6.2,5.0,8.0,5.0,0.0,X (Twitter),6.0 +U028,36,Female,2.0,8.0,4.0,5.0,0.0,Facebook,10.0 +U029,24,Male,4.3,6.0,6.0,5.0,2.0,X (Twitter),10.0 +U030,33,Male,7.4,6.0,10.0,3.0,4.0,Instagram,8.0 +U031,19,Male,7.1,5.0,8.0,5.0,2.0,X (Twitter),9.0 +U032,40,Male,6.0,6.0,7.0,5.0,4.0,TikTok,7.0 +U033,29,Female,3.1,8.0,4.0,2.0,2.0,LinkedIn,10.0 +U034,24,Female,6.6,6.0,7.0,4.0,0.0,TikTok,7.0 +U035,41,Other,6.8,8.0,7.0,2.0,2.0,LinkedIn,9.0 +U036,17,Other,5.6,6.0,7.0,4.0,3.0,TikTok,7.0 +U037,35,Female,7.7,4.0,8.0,0.0,3.0,Facebook,8.0 +U038,43,Female,4.3,8.0,4.0,1.0,1.0,TikTok,10.0 +U039,22,Other,4.6,4.0,6.0,5.0,2.0,Facebook,9.0 +U040,23,Female,1.0,9.0,5.0,5.0,7.0,Facebook,10.0 +U041,29,Male,7.2,5.0,7.0,4.0,1.0,X (Twitter),10.0 +U042,32,Male,6.1,5.0,6.0,3.0,3.0,Instagram,7.0 +U043,19,Male,2.5,9.0,3.0,0.0,0.0,LinkedIn,10.0 +U044,17,Other,2.3,9.0,3.0,3.0,4.0,X (Twitter),10.0 +U045,21,Female,3.9,6.0,6.0,4.0,1.0,X (Twitter),8.0 +U046,19,Male,6.9,5.0,7.0,2.0,3.0,Facebook,9.0 +U047,44,Female,5.0,4.0,7.0,2.0,1.0,Facebook,8.0 +U048,33,Female,4.1,8.0,7.0,6.0,3.0,LinkedIn,9.0 +U049,41,Male,3.7,8.0,6.0,3.0,1.0,TikTok,9.0 +U050,49,Male,3.6,7.0,5.0,4.0,1.0,TikTok,9.0 +U051,25,Female,2.0,9.0,4.0,5.0,3.0,X (Twitter),10.0 +U052,29,Female,3.3,7.0,5.0,1.0,2.0,YouTube,10.0 +U053,46,Female,3.6,7.0,5.0,3.0,3.0,YouTube,10.0 +U054,30,Female,6.7,6.0,8.0,6.0,2.0,TikTok,7.0 +U055,23,Female,5.2,6.0,6.0,7.0,3.0,YouTube,8.0 +U056,29,Female,4.0,7.0,3.0,3.0,3.0,TikTok,10.0 +U057,38,Female,9.7,3.0,9.0,3.0,2.0,Facebook,4.0 +U058,36,Female,4.3,7.0,6.0,4.0,1.0,X (Twitter),9.0 +U059,31,Male,7.6,5.0,10.0,3.0,2.0,Instagram,6.0 +U060,33,Male,8.4,4.0,8.0,6.0,4.0,X (Twitter),7.0 +U061,39,Male,2.7,9.0,5.0,1.0,3.0,TikTok,10.0 +U062,41,Female,5.6,6.0,7.0,2.0,1.0,TikTok,9.0 +U063,40,Female,4.6,7.0,7.0,1.0,3.0,X (Twitter),10.0 +U064,44,Female,4.4,6.0,7.0,1.0,3.0,LinkedIn,9.0 +U065,30,Male,6.5,4.0,9.0,4.0,3.0,TikTok,5.0 +U066,16,Male,4.4,8.0,4.0,5.0,1.0,YouTube,10.0 +U067,40,Male,4.6,7.0,6.0,2.0,1.0,YouTube,10.0 +U068,22,Male,5.2,9.0,7.0,5.0,1.0,TikTok,10.0 +U069,24,Female,4.8,6.0,7.0,5.0,2.0,TikTok,7.0 +U070,39,Male,3.4,8.0,6.0,7.0,3.0,LinkedIn,10.0 +U071,16,Male,6.9,5.0,8.0,3.0,3.0,YouTube,5.0 +U072,23,Female,7.4,6.0,7.0,2.0,3.0,TikTok,8.0 +U073,39,Male,6.1,5.0,5.0,1.0,5.0,TikTok,10.0 +U074,26,Female,4.8,6.0,6.0,1.0,4.0,LinkedIn,8.0 +U075,32,Female,4.2,8.0,8.0,5.0,2.0,LinkedIn,8.0 +U076,23,Male,4.2,7.0,5.0,0.0,1.0,X (Twitter),10.0 +U077,48,Female,9.7,4.0,8.0,5.0,1.0,LinkedIn,5.0 +U078,20,Female,7.2,6.0,9.0,1.0,2.0,Instagram,6.0 +U079,43,Other,4.0,7.0,7.0,2.0,4.0,YouTube,9.0 +U080,22,Male,5.8,6.0,8.0,3.0,2.0,X (Twitter),7.0 +U081,24,Female,4.8,6.0,7.0,2.0,2.0,Instagram,8.0 +U082,23,Female,6.6,6.0,8.0,5.0,1.0,TikTok,8.0 +U083,27,Male,6.5,7.0,9.0,7.0,2.0,TikTok,8.0 +U084,49,Male,7.5,4.0,7.0,2.0,4.0,X (Twitter),8.0 +U085,48,Other,4.0,7.0,5.0,2.0,5.0,LinkedIn,10.0 +U086,38,Female,5.7,5.0,6.0,3.0,2.0,TikTok,9.0 +U087,39,Male,2.4,7.0,4.0,4.0,2.0,Facebook,10.0 +U088,37,Female,3.2,8.0,7.0,3.0,1.0,X (Twitter),10.0 +U089,42,Male,7.1,3.0,8.0,6.0,5.0,Instagram,6.0 +U090,16,Male,3.8,10.0,6.0,5.0,0.0,X (Twitter),10.0 +U091,29,Male,4.0,6.0,4.0,1.0,4.0,YouTube,9.0 +U092,18,Male,5.5,6.0,6.0,4.0,2.0,LinkedIn,9.0 +U093,16,Male,6.8,7.0,6.0,6.0,2.0,LinkedIn,9.0 +U094,20,Male,3.6,7.0,7.0,2.0,1.0,X (Twitter),8.0 +U095,41,Female,1.0,7.0,5.0,2.0,6.0,TikTok,10.0 +U096,29,Male,3.9,7.0,6.0,2.0,3.0,TikTok,10.0 +U097,42,Male,7.7,4.0,7.0,2.0,3.0,Facebook,8.0 +U098,24,Female,6.1,4.0,9.0,0.0,4.0,Facebook,6.0 +U099,30,Female,7.9,5.0,8.0,0.0,2.0,LinkedIn,8.0 +U100,30,Female,3.5,8.0,4.0,3.0,3.0,Facebook,10.0 +U101,41,Male,2.5,9.0,4.0,6.0,3.0,Instagram,10.0 +U102,28,Male,6.3,5.0,7.0,2.0,2.0,Facebook,7.0 +U103,47,Male,5.9,4.0,7.0,2.0,4.0,Instagram,7.0 +U104,47,Male,6.0,6.0,7.0,6.0,2.0,Facebook,9.0 +U105,19,Male,7.2,5.0,6.0,1.0,0.0,LinkedIn,9.0 +U106,45,Male,6.3,7.0,8.0,0.0,2.0,LinkedIn,6.0 +U107,38,Male,6.2,7.0,7.0,1.0,3.0,Instagram,9.0 +U108,30,Male,6.8,7.0,7.0,2.0,1.0,X (Twitter),10.0 +U109,44,Male,6.4,6.0,8.0,0.0,1.0,LinkedIn,7.0 +U110,28,Male,7.0,6.0,6.0,3.0,2.0,X (Twitter),8.0 +U111,47,Male,7.3,4.0,6.0,5.0,4.0,TikTok,8.0 +U112,22,Female,8.3,5.0,10.0,0.0,2.0,Instagram,6.0 +U113,37,Female,4.3,6.0,8.0,3.0,5.0,LinkedIn,9.0 +U114,43,Male,6.4,6.0,7.0,4.0,2.0,YouTube,7.0 +U115,17,Female,4.8,7.0,6.0,3.0,3.0,TikTok,10.0 +U116,21,Female,4.0,9.0,5.0,3.0,2.0,X (Twitter),10.0 +U117,43,Male,4.3,7.0,6.0,3.0,4.0,LinkedIn,9.0 +U118,43,Female,6.4,6.0,7.0,1.0,1.0,Instagram,9.0 +U119,35,Female,6.3,6.0,7.0,6.0,4.0,Facebook,9.0 +U120,45,Male,6.2,5.0,8.0,5.0,3.0,YouTube,8.0 +U121,26,Male,5.1,6.0,5.0,5.0,2.0,X (Twitter),9.0 +U122,43,Female,5.5,8.0,6.0,5.0,2.0,TikTok,10.0 +U123,40,Female,7.0,4.0,6.0,0.0,5.0,Instagram,8.0 +U124,48,Male,2.8,7.0,5.0,5.0,3.0,YouTube,10.0 +U125,16,Male,5.5,7.0,7.0,4.0,1.0,Instagram,9.0 +U126,42,Male,5.7,7.0,7.0,0.0,1.0,LinkedIn,9.0 +U127,28,Female,6.9,5.0,8.0,3.0,3.0,Facebook,8.0 +U128,18,Female,3.1,7.0,6.0,4.0,3.0,TikTok,9.0 +U129,21,Male,8.2,5.0,7.0,6.0,4.0,Instagram,7.0 +U130,23,Male,5.9,5.0,5.0,4.0,0.0,X (Twitter),9.0 +U131,42,Female,6.0,5.0,8.0,1.0,1.0,LinkedIn,7.0 +U132,24,Male,4.8,8.0,4.0,6.0,4.0,LinkedIn,10.0 +U133,48,Male,6.5,6.0,8.0,3.0,3.0,TikTok,8.0 +U134,39,Female,5.6,8.0,6.0,2.0,3.0,LinkedIn,9.0 +U135,30,Female,7.7,4.0,10.0,2.0,1.0,X (Twitter),8.0 +U136,47,Female,2.9,8.0,5.0,0.0,1.0,Instagram,10.0 +U137,47,Female,5.8,6.0,7.0,3.0,4.0,TikTok,10.0 +U138,39,Male,6.2,5.0,8.0,4.0,4.0,LinkedIn,7.0 +U139,27,Male,5.2,7.0,5.0,2.0,1.0,LinkedIn,10.0 +U140,17,Female,4.8,8.0,5.0,4.0,1.0,X (Twitter),10.0 +U141,18,Male,4.8,6.0,5.0,1.0,2.0,Facebook,10.0 +U142,32,Male,5.8,6.0,6.0,3.0,1.0,Facebook,10.0 +U143,17,Male,2.2,10.0,5.0,4.0,1.0,LinkedIn,10.0 +U144,17,Male,7.2,7.0,8.0,3.0,1.0,Instagram,8.0 +U145,43,Male,4.6,8.0,7.0,0.0,2.0,TikTok,9.0 +U146,38,Male,5.7,7.0,5.0,2.0,1.0,LinkedIn,10.0 +U147,47,Male,6.2,5.0,7.0,6.0,1.0,YouTube,9.0 +U148,48,Male,4.6,7.0,5.0,2.0,3.0,TikTok,10.0 +U149,16,Female,5.3,7.0,6.0,3.0,2.0,Facebook,10.0 +U150,34,Female,1.8,9.0,7.0,3.0,3.0,LinkedIn,10.0 +U151,17,Female,6.8,5.0,8.0,6.0,0.0,X (Twitter),6.0 +U152,41,Female,7.4,4.0,9.0,6.0,3.0,YouTube,5.0 +U153,47,Female,2.4,7.0,7.0,5.0,6.0,LinkedIn,9.0 +U154,21,Male,4.8,5.0,7.0,1.0,2.0,Instagram,8.0 +U155,47,Female,3.3,8.0,5.0,4.0,4.0,YouTube,10.0 +U156,19,Female,5.2,7.0,5.0,4.0,4.0,LinkedIn,10.0 +U157,26,Female,6.7,5.0,7.0,2.0,4.0,Instagram,8.0 +U158,32,Male,7.3,5.0,7.0,1.0,3.0,YouTube,8.0 +U159,39,Male,7.5,5.0,6.0,6.0,3.0,Instagram,7.0 +U160,20,Male,7.9,5.0,9.0,2.0,4.0,Instagram,5.0 +U161,49,Male,5.1,5.0,7.0,6.0,3.0,YouTube,8.0 +U162,21,Female,3.4,9.0,7.0,5.0,1.0,YouTube,8.0 +U163,37,Female,5.3,7.0,6.0,4.0,0.0,Instagram,10.0 +U164,26,Male,6.6,6.0,8.0,4.0,0.0,Facebook,8.0 +U165,31,Other,3.3,9.0,5.0,0.0,2.0,YouTube,10.0 +U166,48,Female,8.5,4.0,10.0,3.0,3.0,LinkedIn,8.0 +U167,24,Male,7.1,6.0,8.0,6.0,1.0,TikTok,7.0 +U168,21,Male,5.1,6.0,5.0,4.0,4.0,X (Twitter),10.0 +U169,31,Male,4.2,8.0,6.0,3.0,2.0,Instagram,10.0 +U170,44,Male,4.3,8.0,6.0,6.0,2.0,Instagram,10.0 +U171,18,Male,5.6,5.0,7.0,3.0,1.0,X (Twitter),6.0 +U172,35,Male,5.1,7.0,7.0,2.0,0.0,Facebook,7.0 +U173,34,Male,7.2,6.0,6.0,3.0,3.0,X (Twitter),8.0 +U174,41,Male,4.9,7.0,5.0,5.0,5.0,YouTube,10.0 +U175,18,Female,6.4,6.0,8.0,0.0,2.0,X (Twitter),8.0 +U176,34,Male,5.4,6.0,6.0,4.0,0.0,Instagram,10.0 +U177,35,Female,6.0,7.0,7.0,5.0,4.0,X (Twitter),8.0 +U178,47,Male,5.1,7.0,4.0,2.0,0.0,TikTok,9.0 +U179,22,Other,6.8,5.0,10.0,5.0,1.0,LinkedIn,7.0 +U180,48,Male,6.8,4.0,7.0,4.0,2.0,YouTube,7.0 +U181,33,Male,6.3,6.0,8.0,7.0,3.0,X (Twitter),6.0 +U182,16,Other,6.6,6.0,7.0,1.0,1.0,Instagram,8.0 +U183,26,Female,3.8,10.0,6.0,5.0,2.0,LinkedIn,10.0 +U184,43,Female,6.1,7.0,9.0,1.0,4.0,YouTube,7.0 +U185,40,Male,7.7,3.0,9.0,0.0,4.0,Instagram,5.0 +U186,38,Male,6.4,6.0,7.0,0.0,4.0,Facebook,8.0 +U187,46,Female,3.6,9.0,5.0,4.0,5.0,TikTok,10.0 +U188,45,Female,5.4,7.0,8.0,3.0,4.0,Facebook,7.0 +U189,22,Female,6.2,6.0,9.0,2.0,2.0,TikTok,6.0 +U190,31,Female,4.1,8.0,6.0,0.0,4.0,X (Twitter),10.0 +U191,41,Male,3.1,7.0,7.0,2.0,3.0,YouTube,9.0 +U192,17,Female,4.9,7.0,6.0,3.0,3.0,X (Twitter),10.0 +U193,16,Male,4.2,7.0,7.0,5.0,3.0,TikTok,8.0 +U194,27,Male,5.5,6.0,8.0,3.0,1.0,TikTok,7.0 +U195,20,Male,2.6,9.0,4.0,4.0,1.0,TikTok,10.0 +U196,47,Female,6.5,5.0,7.0,2.0,2.0,LinkedIn,8.0 +U197,24,Male,4.4,8.0,7.0,6.0,3.0,Instagram,10.0 +U198,34,Male,7.3,5.0,7.0,1.0,1.0,YouTube,6.0 +U199,31,Female,5.0,7.0,5.0,2.0,3.0,X (Twitter),10.0 +U200,18,Male,5.5,5.0,6.0,2.0,6.0,X (Twitter),9.0 +U201,35,Female,5.2,7.0,6.0,4.0,0.0,Facebook,10.0 +U202,39,Male,4.3,9.0,7.0,1.0,3.0,TikTok,9.0 +U203,48,Female,10.0,3.0,10.0,3.0,2.0,TikTok,4.0 +U204,39,Female,4.6,6.0,7.0,3.0,3.0,TikTok,6.0 +U205,26,Male,7.3,5.0,8.0,2.0,2.0,X (Twitter),7.0 +U206,23,Male,3.5,9.0,5.0,4.0,2.0,Facebook,10.0 +U207,35,Male,6.2,4.0,8.0,1.0,3.0,Instagram,7.0 +U208,40,Male,6.4,5.0,8.0,1.0,2.0,LinkedIn,7.0 +U209,40,Other,5.5,6.0,7.0,3.0,0.0,YouTube,9.0 +U210,44,Male,4.5,6.0,6.0,0.0,2.0,Instagram,9.0 +U211,33,Female,5.0,6.0,6.0,0.0,0.0,X (Twitter),8.0 +U212,33,Male,4.8,5.0,6.0,4.0,3.0,LinkedIn,9.0 +U213,17,Female,9.8,4.0,9.0,5.0,0.0,LinkedIn,6.0 +U214,31,Female,5.5,7.0,7.0,2.0,4.0,LinkedIn,9.0 +U215,48,Female,6.4,4.0,6.0,2.0,3.0,TikTok,7.0 +U216,19,Female,8.7,6.0,7.0,5.0,3.0,YouTube,10.0 +U217,48,Male,3.9,9.0,5.0,1.0,0.0,X (Twitter),10.0 +U218,29,Male,5.6,6.0,6.0,0.0,2.0,X (Twitter),8.0 +U219,36,Female,5.0,8.0,6.0,4.0,4.0,LinkedIn,10.0 +U220,35,Female,5.3,6.0,6.0,3.0,2.0,X (Twitter),9.0 +U221,23,Other,5.2,7.0,6.0,5.0,1.0,YouTube,9.0 +U222,22,Male,4.2,6.0,6.0,0.0,2.0,YouTube,8.0 +U223,18,Female,5.9,8.0,6.0,0.0,2.0,Facebook,8.0 +U224,32,Female,3.6,7.0,5.0,3.0,1.0,Facebook,10.0 +U225,48,Male,7.3,5.0,9.0,4.0,4.0,Instagram,5.0 +U226,27,Male,6.6,5.0,7.0,5.0,2.0,YouTube,7.0 +U227,37,Female,4.6,9.0,6.0,3.0,2.0,YouTube,8.0 +U228,37,Female,4.7,9.0,6.0,3.0,1.0,YouTube,10.0 +U229,45,Female,6.0,8.0,7.0,2.0,3.0,Facebook,9.0 +U230,23,Male,4.1,8.0,5.0,6.0,3.0,LinkedIn,10.0 +U231,42,Female,8.8,4.0,8.0,1.0,1.0,LinkedIn,6.0 +U232,42,Male,6.1,7.0,6.0,4.0,0.0,X (Twitter),8.0 +U233,49,Male,6.2,6.0,8.0,1.0,3.0,LinkedIn,8.0 +U234,36,Male,6.7,7.0,7.0,4.0,2.0,TikTok,8.0 +U235,45,Female,4.5,8.0,6.0,1.0,3.0,Facebook,10.0 +U236,48,Female,7.5,4.0,9.0,4.0,5.0,YouTube,5.0 +U237,43,Female,5.7,7.0,7.0,3.0,2.0,LinkedIn,9.0 +U238,48,Male,7.2,6.0,8.0,6.0,2.0,Facebook,9.0 +U239,20,Female,5.1,4.0,5.0,2.0,1.0,LinkedIn,9.0 +U240,34,Male,7.9,6.0,8.0,4.0,2.0,Instagram,7.0 +U241,19,Female,6.2,5.0,7.0,1.0,3.0,YouTube,8.0 +U242,32,Male,9.4,3.0,9.0,2.0,3.0,Instagram,5.0 +U243,43,Male,4.8,6.0,5.0,3.0,5.0,YouTube,10.0 +U244,45,Male,5.9,6.0,8.0,0.0,3.0,Facebook,7.0 +U245,44,Male,3.6,8.0,5.0,0.0,2.0,X (Twitter),10.0 +U246,21,Female,4.5,6.0,6.0,4.0,1.0,LinkedIn,9.0 +U247,39,Female,6.6,6.0,7.0,3.0,3.0,LinkedIn,7.0 +U248,44,Male,7.5,6.0,9.0,2.0,1.0,TikTok,6.0 +U249,46,Female,10.8,5.0,10.0,2.0,3.0,Instagram,4.0 +U250,48,Male,5.3,5.0,5.0,2.0,3.0,LinkedIn,8.0 +U251,36,Female,3.8,7.0,5.0,3.0,2.0,Facebook,9.0 +U252,47,Female,6.9,6.0,8.0,4.0,2.0,X (Twitter),8.0 +U253,38,Female,3.5,9.0,4.0,0.0,0.0,Facebook,10.0 +U254,48,Male,6.5,5.0,8.0,6.0,4.0,Instagram,8.0 +U255,18,Female,4.6,8.0,7.0,6.0,3.0,TikTok,9.0 +U256,33,Female,5.9,4.0,7.0,0.0,3.0,LinkedIn,5.0 +U257,40,Male,7.5,4.0,8.0,5.0,0.0,Facebook,7.0 +U258,46,Male,5.3,7.0,8.0,5.0,5.0,YouTube,9.0 +U259,18,Female,7.2,4.0,7.0,3.0,2.0,X (Twitter),6.0 +U260,39,Female,7.1,4.0,8.0,0.0,2.0,Facebook,7.0 +U261,47,Female,2.1,8.0,4.0,5.0,1.0,X (Twitter),10.0 +U262,37,Female,3.9,8.0,6.0,3.0,0.0,LinkedIn,10.0 +U263,38,Female,2.7,6.0,3.0,4.0,4.0,YouTube,10.0 +U264,17,Male,9.1,4.0,9.0,7.0,4.0,TikTok,4.0 +U265,42,Male,5.3,7.0,7.0,4.0,2.0,TikTok,8.0 +U266,17,Male,8.7,4.0,8.0,1.0,1.0,YouTube,7.0 +U267,41,Female,2.6,8.0,4.0,2.0,2.0,X (Twitter),10.0 +U268,32,Male,4.5,7.0,6.0,1.0,2.0,LinkedIn,8.0 +U269,48,Female,6.9,5.0,9.0,4.0,1.0,Facebook,6.0 +U270,24,Female,5.8,8.0,6.0,1.0,2.0,YouTube,10.0 +U271,44,Female,6.5,5.0,6.0,2.0,3.0,Instagram,8.0 +U272,41,Male,3.2,8.0,6.0,0.0,4.0,X (Twitter),10.0 +U273,40,Female,8.0,5.0,8.0,3.0,3.0,TikTok,6.0 +U274,39,Male,6.9,5.0,7.0,3.0,0.0,YouTube,9.0 +U275,28,Female,6.2,3.0,8.0,0.0,3.0,TikTok,5.0 +U276,22,Male,4.3,7.0,5.0,4.0,2.0,X (Twitter),10.0 +U277,35,Male,6.1,7.0,8.0,3.0,5.0,TikTok,9.0 +U278,16,Female,5.0,7.0,6.0,1.0,5.0,YouTube,10.0 +U279,23,Male,2.5,9.0,5.0,7.0,5.0,X (Twitter),10.0 +U280,31,Male,5.4,5.0,8.0,5.0,2.0,Instagram,7.0 +U281,29,Female,5.2,7.0,6.0,1.0,5.0,YouTube,10.0 +U282,27,Female,7.4,4.0,9.0,5.0,3.0,Facebook,5.0 +U283,38,Female,1.5,9.0,4.0,5.0,5.0,LinkedIn,10.0 +U284,30,Female,5.9,6.0,9.0,3.0,2.0,YouTube,7.0 +U285,43,Female,3.4,7.0,7.0,4.0,2.0,X (Twitter),10.0 +U286,49,Male,6.1,5.0,6.0,4.0,3.0,LinkedIn,9.0 +U287,17,Male,6.2,6.0,8.0,0.0,3.0,YouTube,7.0 +U288,47,Male,5.3,6.0,6.0,3.0,4.0,Instagram,9.0 +U289,38,Female,7.0,4.0,8.0,3.0,2.0,Instagram,6.0 +U290,37,Female,3.3,7.0,5.0,6.0,4.0,Facebook,9.0 +U291,40,Male,7.5,5.0,7.0,4.0,4.0,TikTok,9.0 +U292,37,Male,4.2,9.0,7.0,2.0,2.0,LinkedIn,8.0 +U293,37,Other,2.7,8.0,5.0,3.0,3.0,X (Twitter),10.0 +U294,21,Male,5.0,7.0,6.0,5.0,2.0,X (Twitter),10.0 +U295,30,Female,1.7,9.0,4.0,3.0,6.0,TikTok,10.0 +U296,48,Female,6.0,5.0,7.0,2.0,0.0,Instagram,7.0 +U297,23,Female,5.0,5.0,7.0,2.0,4.0,Instagram,8.0 +U298,20,Male,7.7,4.0,8.0,5.0,0.0,YouTube,5.0 +U299,19,Female,6.7,6.0,5.0,4.0,2.0,Facebook,9.0 +U300,21,Female,3.0,8.0,5.0,3.0,2.0,LinkedIn,10.0 +U301,47,Female,4.0,8.0,4.0,3.0,5.0,Facebook,10.0 +U302,45,Female,6.4,6.0,7.0,2.0,1.0,Facebook,7.0 +U303,31,Female,7.0,5.0,6.0,3.0,4.0,YouTube,8.0 +U304,28,Female,7.7,4.0,7.0,2.0,1.0,Facebook,7.0 +U305,45,Male,7.7,6.0,9.0,2.0,5.0,TikTok,6.0 +U306,34,Female,5.3,6.0,6.0,6.0,2.0,YouTube,10.0 +U307,32,Female,6.2,5.0,7.0,1.0,3.0,TikTok,7.0 +U308,34,Male,7.8,5.0,9.0,2.0,2.0,YouTube,6.0 +U309,43,Female,5.0,5.0,6.0,0.0,4.0,Facebook,8.0 +U310,41,Female,6.2,8.0,9.0,0.0,4.0,TikTok,7.0 +U311,41,Female,4.9,7.0,6.0,3.0,3.0,TikTok,9.0 +U312,38,Male,4.5,7.0,6.0,2.0,1.0,TikTok,9.0 +U313,24,Male,5.6,5.0,8.0,7.0,1.0,YouTube,7.0 +U314,27,Other,4.3,7.0,7.0,2.0,1.0,X (Twitter),8.0 +U315,16,Female,5.3,6.0,6.0,6.0,0.0,Facebook,9.0 +U316,16,Male,3.6,7.0,5.0,5.0,4.0,TikTok,10.0 +U317,49,Female,5.2,7.0,8.0,3.0,2.0,LinkedIn,8.0 +U318,47,Female,6.3,5.0,8.0,7.0,2.0,X (Twitter),8.0 +U319,40,Female,4.4,8.0,7.0,4.0,5.0,LinkedIn,8.0 +U320,16,Female,5.5,9.0,5.0,6.0,2.0,Facebook,10.0 +U321,31,Male,5.8,6.0,8.0,6.0,1.0,Facebook,7.0 +U322,20,Male,6.3,6.0,6.0,4.0,2.0,TikTok,8.0 +U323,37,Male,5.3,7.0,7.0,5.0,1.0,TikTok,8.0 +U324,44,Female,7.5,7.0,8.0,4.0,3.0,YouTube,9.0 +U325,18,Male,1.7,9.0,3.0,1.0,2.0,X (Twitter),10.0 +U326,27,Male,10.8,2.0,9.0,3.0,2.0,X (Twitter),5.0 +U327,41,Male,3.9,6.0,4.0,5.0,2.0,TikTok,9.0 +U328,31,Female,6.2,6.0,7.0,6.0,2.0,Facebook,8.0 +U329,37,Female,3.8,7.0,4.0,2.0,3.0,TikTok,10.0 +U330,44,Male,6.7,8.0,6.0,4.0,2.0,Facebook,10.0 +U331,29,Male,6.0,8.0,7.0,3.0,2.0,Facebook,7.0 +U332,43,Female,4.3,6.0,3.0,3.0,2.0,TikTok,10.0 +U333,20,Male,7.4,4.0,9.0,4.0,2.0,Instagram,6.0 +U334,45,Male,5.2,7.0,4.0,3.0,3.0,X (Twitter),10.0 +U335,20,Male,6.5,7.0,7.0,4.0,1.0,LinkedIn,7.0 +U336,27,Male,3.8,8.0,6.0,6.0,4.0,Facebook,10.0 +U337,31,Male,5.4,6.0,7.0,5.0,3.0,Facebook,8.0 +U338,41,Female,9.1,4.0,9.0,4.0,2.0,Instagram,7.0 +U339,41,Male,7.2,5.0,10.0,7.0,3.0,LinkedIn,7.0 +U340,36,Female,6.1,7.0,7.0,5.0,2.0,YouTube,9.0 +U341,48,Male,4.7,6.0,7.0,3.0,0.0,Instagram,8.0 +U342,45,Female,5.6,6.0,6.0,1.0,3.0,LinkedIn,7.0 +U343,38,Female,5.9,7.0,7.0,1.0,1.0,Instagram,8.0 +U344,25,Male,6.3,5.0,9.0,5.0,4.0,Facebook,8.0 +U345,20,Female,3.6,6.0,5.0,2.0,2.0,X (Twitter),10.0 +U346,49,Male,6.7,6.0,8.0,1.0,4.0,Instagram,8.0 +U347,46,Other,3.5,7.0,6.0,1.0,2.0,YouTube,10.0 +U348,25,Male,8.4,5.0,8.0,2.0,3.0,TikTok,8.0 +U349,34,Male,4.1,8.0,4.0,5.0,4.0,LinkedIn,10.0 +U350,47,Male,6.0,6.0,7.0,3.0,2.0,Instagram,8.0 +U351,16,Other,7.3,5.0,9.0,0.0,2.0,Instagram,8.0 +U352,20,Female,5.0,6.0,5.0,3.0,3.0,YouTube,9.0 +U353,19,Female,6.1,6.0,8.0,3.0,3.0,X (Twitter),9.0 +U354,31,Male,8.1,5.0,9.0,2.0,2.0,Instagram,6.0 +U355,39,Female,6.5,5.0,5.0,5.0,0.0,Instagram,10.0 +U356,31,Male,6.1,6.0,6.0,2.0,2.0,X (Twitter),8.0 +U357,17,Female,2.5,9.0,4.0,5.0,4.0,YouTube,10.0 +U358,43,Male,3.8,8.0,5.0,4.0,1.0,LinkedIn,10.0 +U359,47,Male,7.4,6.0,7.0,5.0,2.0,LinkedIn,7.0 +U360,42,Male,6.5,5.0,7.0,1.0,2.0,Instagram,8.0 +U361,35,Female,6.8,4.0,9.0,3.0,0.0,X (Twitter),7.0 +U362,39,Female,6.6,6.0,7.0,3.0,1.0,Instagram,7.0 +U363,27,Male,7.8,5.0,8.0,0.0,4.0,TikTok,6.0 +U364,48,Female,5.0,8.0,6.0,5.0,0.0,LinkedIn,10.0 +U365,48,Male,5.7,7.0,7.0,1.0,3.0,Facebook,9.0 +U366,27,Female,3.6,8.0,5.0,2.0,1.0,TikTok,10.0 +U367,18,Male,3.2,9.0,5.0,1.0,3.0,Instagram,10.0 +U368,16,Male,2.5,8.0,4.0,4.0,4.0,YouTube,10.0 +U369,48,Female,3.9,6.0,5.0,0.0,2.0,LinkedIn,10.0 +U370,25,Male,8.3,5.0,8.0,4.0,2.0,Facebook,7.0 +U371,44,Male,2.7,9.0,5.0,5.0,1.0,TikTok,10.0 +U372,28,Female,5.0,7.0,5.0,4.0,0.0,LinkedIn,9.0 +U373,27,Other,3.2,9.0,6.0,4.0,5.0,X (Twitter),10.0 +U374,46,Male,4.4,7.0,7.0,5.0,1.0,YouTube,8.0 +U375,17,Male,5.8,6.0,7.0,1.0,5.0,TikTok,9.0 +U376,38,Female,4.2,8.0,5.0,6.0,1.0,X (Twitter),10.0 +U377,32,Male,7.5,4.0,7.0,2.0,3.0,Instagram,6.0 +U378,41,Male,8.3,4.0,10.0,3.0,1.0,X (Twitter),6.0 +U379,23,Male,1.5,9.0,3.0,2.0,3.0,TikTok,10.0 +U380,44,Female,4.3,8.0,7.0,4.0,2.0,TikTok,10.0 +U381,41,Female,5.6,6.0,7.0,2.0,2.0,Instagram,9.0 +U382,25,Male,7.5,4.0,8.0,3.0,3.0,X (Twitter),7.0 +U383,41,Male,4.7,6.0,6.0,1.0,2.0,X (Twitter),9.0 +U384,49,Male,5.5,7.0,5.0,5.0,0.0,Instagram,10.0 +U385,22,Female,3.4,8.0,6.0,4.0,4.0,X (Twitter),10.0 +U386,19,Male,2.7,8.0,5.0,2.0,1.0,LinkedIn,9.0 +U387,26,Male,8.1,5.0,7.0,2.0,3.0,Instagram,7.0 +U388,44,Female,2.2,9.0,4.0,4.0,4.0,YouTube,10.0 +U389,40,Male,9.7,4.0,10.0,2.0,2.0,TikTok,6.0 +U390,36,Female,6.8,5.0,8.0,3.0,4.0,YouTube,8.0 +U391,25,Male,6.7,7.0,7.0,5.0,3.0,LinkedIn,8.0 +U392,24,Male,6.5,7.0,6.0,1.0,1.0,LinkedIn,7.0 +U393,39,Male,5.0,5.0,6.0,4.0,5.0,Facebook,8.0 +U394,33,Female,6.2,6.0,7.0,4.0,1.0,Facebook,9.0 +U395,47,Female,5.2,7.0,7.0,3.0,2.0,Facebook,9.0 +U396,39,Female,6.5,5.0,7.0,2.0,2.0,Instagram,8.0 +U397,38,Male,5.4,8.0,9.0,5.0,3.0,X (Twitter),8.0 +U398,47,Female,3.8,8.0,4.0,2.0,4.0,LinkedIn,10.0 +U399,27,Male,3.9,7.0,5.0,0.0,4.0,YouTube,10.0 +U400,28,Male,3.7,8.0,5.0,4.0,3.0,YouTube,10.0 +U401,38,Female,7.2,5.0,8.0,1.0,2.0,YouTube,9.0 +U402,40,Male,4.4,7.0,5.0,4.0,0.0,YouTube,10.0 +U403,45,Male,2.1,10.0,5.0,6.0,1.0,Facebook,10.0 +U404,32,Male,6.2,6.0,8.0,4.0,5.0,YouTube,7.0 +U405,35,Male,8.2,4.0,9.0,5.0,0.0,X (Twitter),6.0 +U406,40,Male,6.9,3.0,8.0,7.0,1.0,Facebook,6.0 +U407,37,Female,4.4,7.0,6.0,5.0,4.0,YouTube,10.0 +U408,28,Male,2.6,10.0,3.0,4.0,3.0,Instagram,10.0 +U409,34,Female,5.3,6.0,6.0,6.0,4.0,TikTok,8.0 +U410,27,Female,5.2,4.0,7.0,7.0,3.0,TikTok,9.0 +U411,34,Male,3.8,7.0,6.0,7.0,5.0,TikTok,10.0 +U412,27,Male,6.5,7.0,7.0,2.0,3.0,Facebook,10.0 +U413,24,Male,8.8,5.0,9.0,0.0,3.0,YouTube,6.0 +U414,22,Female,5.9,5.0,6.0,2.0,1.0,LinkedIn,9.0 +U415,43,Male,5.8,6.0,7.0,4.0,3.0,LinkedIn,9.0 +U416,29,Female,3.8,7.0,6.0,3.0,2.0,LinkedIn,8.0 +U417,46,Male,8.0,4.0,8.0,3.0,2.0,Facebook,9.0 +U418,34,Female,5.4,4.0,5.0,4.0,4.0,X (Twitter),10.0 +U419,31,Male,4.5,8.0,5.0,0.0,4.0,Instagram,10.0 +U420,20,Male,5.6,8.0,8.0,3.0,5.0,Instagram,8.0 +U421,27,Other,6.3,4.0,9.0,5.0,5.0,TikTok,6.0 +U422,40,Female,5.8,7.0,8.0,4.0,4.0,TikTok,8.0 +U423,36,Male,7.7,5.0,8.0,4.0,0.0,LinkedIn,8.0 +U424,38,Female,6.2,7.0,6.0,6.0,5.0,LinkedIn,10.0 +U425,31,Female,5.0,7.0,6.0,3.0,4.0,TikTok,10.0 +U426,29,Female,6.2,6.0,9.0,2.0,1.0,YouTube,8.0 +U427,46,Female,6.4,6.0,8.0,5.0,4.0,X (Twitter),8.0 +U428,20,Male,3.2,7.0,5.0,5.0,1.0,X (Twitter),9.0 +U429,38,Male,7.6,6.0,9.0,4.0,3.0,X (Twitter),8.0 +U430,44,Male,5.0,6.0,5.0,3.0,1.0,X (Twitter),10.0 +U431,26,Female,5.0,6.0,6.0,3.0,1.0,TikTok,10.0 +U432,33,Female,6.9,6.0,7.0,0.0,4.0,Instagram,7.0 +U433,27,Male,6.8,5.0,8.0,5.0,4.0,TikTok,7.0 +U434,24,Male,4.2,8.0,7.0,5.0,3.0,X (Twitter),7.0 +U435,25,Female,6.9,7.0,7.0,0.0,2.0,TikTok,9.0 +U436,32,Other,4.5,8.0,5.0,5.0,0.0,X (Twitter),10.0 +U437,22,Female,8.8,2.0,9.0,4.0,2.0,Facebook,7.0 +U438,28,Male,4.0,7.0,5.0,1.0,3.0,LinkedIn,9.0 +U439,24,Male,5.9,7.0,6.0,1.0,2.0,Instagram,8.0 +U440,42,Male,4.1,6.0,6.0,4.0,2.0,Facebook,9.0 +U441,17,Female,9.5,4.0,9.0,2.0,2.0,YouTube,4.0 +U442,20,Male,3.3,8.0,4.0,7.0,2.0,TikTok,10.0 +U443,44,Female,6.4,5.0,6.0,5.0,3.0,YouTube,6.0 +U444,34,Male,4.2,8.0,4.0,4.0,2.0,TikTok,10.0 +U445,23,Female,4.9,7.0,7.0,4.0,5.0,LinkedIn,7.0 +U446,16,Female,6.3,6.0,7.0,6.0,0.0,Facebook,8.0 +U447,37,Female,7.7,4.0,8.0,5.0,2.0,LinkedIn,8.0 +U448,32,Male,8.4,5.0,9.0,4.0,1.0,X (Twitter),7.0 +U449,22,Male,2.7,6.0,6.0,1.0,3.0,LinkedIn,8.0 +U450,40,Male,6.0,4.0,6.0,9.0,3.0,LinkedIn,8.0 +U451,19,Female,8.1,5.0,9.0,1.0,5.0,X (Twitter),7.0 +U452,21,Female,2.5,9.0,3.0,2.0,5.0,TikTok,10.0 +U453,46,Female,6.1,6.0,8.0,0.0,1.0,X (Twitter),6.0 +U454,34,Female,5.5,6.0,5.0,4.0,3.0,Facebook,10.0 +U455,42,Female,6.2,6.0,6.0,3.0,3.0,LinkedIn,6.0 +U456,25,Male,4.1,6.0,5.0,5.0,1.0,X (Twitter),9.0 +U457,41,Female,2.9,8.0,3.0,0.0,3.0,LinkedIn,10.0 +U458,34,Male,2.1,9.0,4.0,5.0,2.0,Facebook,10.0 +U459,18,Male,7.3,5.0,8.0,1.0,1.0,YouTube,7.0 +U460,28,Female,7.5,6.0,8.0,3.0,2.0,Facebook,6.0 +U461,43,Male,6.0,6.0,5.0,5.0,1.0,Instagram,9.0 +U462,35,Male,4.5,7.0,8.0,4.0,4.0,Instagram,8.0 +U463,43,Female,2.6,9.0,5.0,4.0,5.0,Instagram,10.0 +U464,23,Male,6.5,5.0,10.0,5.0,3.0,LinkedIn,5.0 +U465,16,Female,3.5,8.0,5.0,4.0,3.0,TikTok,10.0 +U466,18,Male,4.2,7.0,7.0,2.0,3.0,TikTok,10.0 +U467,28,Male,4.4,7.0,7.0,3.0,4.0,TikTok,8.0 +U468,43,Male,5.1,6.0,6.0,3.0,4.0,LinkedIn,9.0 +U469,40,Male,4.1,6.0,7.0,1.0,2.0,Facebook,10.0 +U470,48,Female,5.6,6.0,6.0,5.0,3.0,TikTok,8.0 +U471,21,Male,4.4,5.0,6.0,4.0,3.0,YouTube,7.0 +U472,47,Female,6.8,5.0,4.0,3.0,1.0,Instagram,10.0 +U473,36,Female,7.4,3.0,8.0,5.0,4.0,Facebook,5.0 +U474,31,Female,5.7,7.0,5.0,3.0,5.0,Instagram,10.0 +U475,36,Female,6.3,7.0,7.0,3.0,4.0,TikTok,8.0 +U476,26,Female,9.3,3.0,8.0,2.0,1.0,Facebook,6.0 +U477,34,Male,3.4,8.0,5.0,4.0,0.0,X (Twitter),10.0 +U478,35,Male,3.3,9.0,6.0,4.0,4.0,YouTube,10.0 +U479,33,Male,6.8,6.0,8.0,2.0,1.0,TikTok,9.0 +U480,29,Female,9.0,4.0,10.0,3.0,3.0,TikTok,4.0 +U481,30,Male,5.0,7.0,8.0,2.0,5.0,YouTube,7.0 +U482,46,Female,8.6,4.0,8.0,2.0,2.0,YouTube,4.0 +U483,16,Female,5.7,6.0,6.0,0.0,2.0,X (Twitter),8.0 +U484,18,Male,4.3,7.0,7.0,3.0,3.0,TikTok,10.0 +U485,31,Female,3.7,7.0,7.0,0.0,1.0,LinkedIn,9.0 +U486,38,Male,6.6,6.0,8.0,2.0,1.0,TikTok,7.0 +U487,26,Male,3.9,8.0,5.0,2.0,3.0,Instagram,10.0 +U488,27,Female,5.6,7.0,7.0,5.0,2.0,Facebook,8.0 +U489,25,Female,8.4,5.0,9.0,1.0,3.0,Facebook,7.0 +U490,47,Female,4.9,7.0,7.0,1.0,7.0,Instagram,10.0 +U491,31,Male,7.9,5.0,8.0,2.0,3.0,Facebook,6.0 +U492,23,Male,3.3,10.0,4.0,2.0,1.0,YouTube,10.0 +U493,27,Female,4.5,5.0,7.0,6.0,5.0,Facebook,9.0 +U494,39,Female,3.0,7.0,2.0,1.0,0.0,Facebook,10.0 +U495,43,Female,5.6,8.0,6.0,2.0,0.0,Instagram,10.0 +U496,23,Male,6.9,5.0,7.0,4.0,2.0,X (Twitter),10.0 +U497,43,Female,5.6,7.0,6.0,5.0,2.0,Facebook,9.0 +U498,41,Male,7.7,5.0,7.0,2.0,2.0,LinkedIn,8.0 +U499,23,Male,4.2,9.0,7.0,0.0,2.0,Facebook,9.0 +U500,43,Female,5.9,5.0,8.0,3.0,3.0,X (Twitter),7.0 diff --git a/data/Mental_Health_and_Social_Media_Balance_Dataset.csv b/data/Mental_Health_and_Social_Media_Balance_Dataset.csv new file mode 100644 index 0000000..7457ea2 --- /dev/null +++ b/data/Mental_Health_and_Social_Media_Balance_Dataset.csv @@ -0,0 +1,501 @@ +User_ID,Age,Gender,Daily_Screen_Time(hrs),Sleep_Quality(1-10),Stress_Level(1-10),Days_Without_Social_Media,Exercise_Frequency(week),Social_Media_Platform,Happiness_Index(1-10) +U001,44,Male,3.1,7.0,6.0,2.0,5.0,Facebook,10.0 +U002,30,Other,5.1,7.0,8.0,5.0,3.0,LinkedIn,10.0 +U003,23,Other,7.4,6.0,7.0,1.0,3.0,YouTube,6.0 +U004,36,Female,5.7,7.0,8.0,1.0,1.0,TikTok,8.0 +U005,34,Female,7.0,4.0,7.0,5.0,1.0,X (Twitter),8.0 +U006,38,Male,6.6,5.0,7.0,4.0,3.0,LinkedIn,8.0 +U007,26,Female,7.8,4.0,8.0,2.0,0.0,TikTok,7.0 +U008,26,Female,7.4,5.0,6.0,1.0,4.0,Instagram,7.0 +U009,39,Male,4.7,7.0,7.0,6.0,1.0,YouTube,9.0 +U010,39,Female,6.6,6.0,8.0,0.0,2.0,Facebook,7.0 +U011,18,Female,2.8,7.0,6.0,2.0,0.0,Instagram,7.0 +U012,37,Other,5.4,5.0,7.0,3.0,2.0,Instagram,9.0 +U013,17,Female,7.0,7.0,10.0,7.0,1.0,YouTube,8.0 +U014,39,Female,5.7,5.0,7.0,4.0,0.0,Facebook,8.0 +U015,45,Male,6.3,7.0,7.0,4.0,3.0,X (Twitter),9.0 +U016,17,Female,5.1,7.0,6.0,2.0,5.0,LinkedIn,10.0 +U017,36,Female,7.5,5.0,8.0,4.0,4.0,Facebook,7.0 +U018,48,Male,5.4,6.0,4.0,3.0,4.0,TikTok,10.0 +U019,27,Male,4.7,6.0,6.0,0.0,2.0,Instagram,9.0 +U020,37,Male,7.1,6.0,6.0,5.0,4.0,TikTok,10.0 +U021,40,Female,3.0,8.0,5.0,5.0,4.0,X (Twitter),10.0 +U022,42,Other,6.4,7.0,6.0,5.0,3.0,TikTok,10.0 +U023,43,Male,3.6,8.0,5.0,3.0,1.0,Facebook,9.0 +U024,31,Female,7.8,5.0,8.0,1.0,2.0,TikTok,7.0 +U025,30,Male,5.0,6.0,6.0,0.0,5.0,X (Twitter),8.0 +U026,18,Other,5.7,6.0,7.0,3.0,2.0,X (Twitter),8.0 +U027,22,Female,6.2,5.0,8.0,5.0,0.0,X (Twitter),6.0 +U028,36,Female,2.0,8.0,4.0,5.0,0.0,Facebook,10.0 +U029,24,Male,4.3,6.0,6.0,5.0,2.0,X (Twitter),10.0 +U030,33,Male,7.4,6.0,10.0,3.0,4.0,Instagram,8.0 +U031,19,Male,7.1,5.0,8.0,5.0,2.0,X (Twitter),9.0 +U032,40,Male,6.0,6.0,7.0,5.0,4.0,TikTok,7.0 +U033,29,Female,3.1,8.0,4.0,2.0,2.0,LinkedIn,10.0 +U034,24,Female,6.6,6.0,7.0,4.0,0.0,TikTok,7.0 +U035,41,Other,6.8,8.0,7.0,2.0,2.0,LinkedIn,9.0 +U036,17,Other,5.6,6.0,7.0,4.0,3.0,TikTok,7.0 +U037,35,Female,7.7,4.0,8.0,0.0,3.0,Facebook,8.0 +U038,43,Female,4.3,8.0,4.0,1.0,1.0,TikTok,10.0 +U039,22,Other,4.6,4.0,6.0,5.0,2.0,Facebook,9.0 +U040,23,Female,1.0,9.0,5.0,5.0,7.0,Facebook,10.0 +U041,29,Male,7.2,5.0,7.0,4.0,1.0,X (Twitter),10.0 +U042,32,Male,6.1,5.0,6.0,3.0,3.0,Instagram,7.0 +U043,19,Male,2.5,9.0,3.0,0.0,0.0,LinkedIn,10.0 +U044,17,Other,2.3,9.0,3.0,3.0,4.0,X (Twitter),10.0 +U045,21,Female,3.9,6.0,6.0,4.0,1.0,X (Twitter),8.0 +U046,19,Male,6.9,5.0,7.0,2.0,3.0,Facebook,9.0 +U047,44,Female,5.0,4.0,7.0,2.0,1.0,Facebook,8.0 +U048,33,Female,4.1,8.0,7.0,6.0,3.0,LinkedIn,9.0 +U049,41,Male,3.7,8.0,6.0,3.0,1.0,TikTok,9.0 +U050,49,Male,3.6,7.0,5.0,4.0,1.0,TikTok,9.0 +U051,25,Female,2.0,9.0,4.0,5.0,3.0,X (Twitter),10.0 +U052,29,Female,3.3,7.0,5.0,1.0,2.0,YouTube,10.0 +U053,46,Female,3.6,7.0,5.0,3.0,3.0,YouTube,10.0 +U054,30,Female,6.7,6.0,8.0,6.0,2.0,TikTok,7.0 +U055,23,Female,5.2,6.0,6.0,7.0,3.0,YouTube,8.0 +U056,29,Female,4.0,7.0,3.0,3.0,3.0,TikTok,10.0 +U057,38,Female,9.7,3.0,9.0,3.0,2.0,Facebook,4.0 +U058,36,Female,4.3,7.0,6.0,4.0,1.0,X (Twitter),9.0 +U059,31,Male,7.6,5.0,10.0,3.0,2.0,Instagram,6.0 +U060,33,Male,8.4,4.0,8.0,6.0,4.0,X (Twitter),7.0 +U061,39,Male,2.7,9.0,5.0,1.0,3.0,TikTok,10.0 +U062,41,Female,5.6,6.0,7.0,2.0,1.0,TikTok,9.0 +U063,40,Female,4.6,7.0,7.0,1.0,3.0,X (Twitter),10.0 +U064,44,Female,4.4,6.0,7.0,1.0,3.0,LinkedIn,9.0 +U065,30,Male,6.5,4.0,9.0,4.0,3.0,TikTok,5.0 +U066,16,Male,4.4,8.0,4.0,5.0,1.0,YouTube,10.0 +U067,40,Male,4.6,7.0,6.0,2.0,1.0,YouTube,10.0 +U068,22,Male,5.2,9.0,7.0,5.0,1.0,TikTok,10.0 +U069,24,Female,4.8,6.0,7.0,5.0,2.0,TikTok,7.0 +U070,39,Male,3.4,8.0,6.0,7.0,3.0,LinkedIn,10.0 +U071,16,Male,6.9,5.0,8.0,3.0,3.0,YouTube,5.0 +U072,23,Female,7.4,6.0,7.0,2.0,3.0,TikTok,8.0 +U073,39,Male,6.1,5.0,5.0,1.0,5.0,TikTok,10.0 +U074,26,Female,4.8,6.0,6.0,1.0,4.0,LinkedIn,8.0 +U075,32,Female,4.2,8.0,8.0,5.0,2.0,LinkedIn,8.0 +U076,23,Male,4.2,7.0,5.0,0.0,1.0,X (Twitter),10.0 +U077,48,Female,9.7,4.0,8.0,5.0,1.0,LinkedIn,5.0 +U078,20,Female,7.2,6.0,9.0,1.0,2.0,Instagram,6.0 +U079,43,Other,4.0,7.0,7.0,2.0,4.0,YouTube,9.0 +U080,22,Male,5.8,6.0,8.0,3.0,2.0,X (Twitter),7.0 +U081,24,Female,4.8,6.0,7.0,2.0,2.0,Instagram,8.0 +U082,23,Female,6.6,6.0,8.0,5.0,1.0,TikTok,8.0 +U083,27,Male,6.5,7.0,9.0,7.0,2.0,TikTok,8.0 +U084,49,Male,7.5,4.0,7.0,2.0,4.0,X (Twitter),8.0 +U085,48,Other,4.0,7.0,5.0,2.0,5.0,LinkedIn,10.0 +U086,38,Female,5.7,5.0,6.0,3.0,2.0,TikTok,9.0 +U087,39,Male,2.4,7.0,4.0,4.0,2.0,Facebook,10.0 +U088,37,Female,3.2,8.0,7.0,3.0,1.0,X (Twitter),10.0 +U089,42,Male,7.1,3.0,8.0,6.0,5.0,Instagram,6.0 +U090,16,Male,3.8,10.0,6.0,5.0,0.0,X (Twitter),10.0 +U091,29,Male,4.0,6.0,4.0,1.0,4.0,YouTube,9.0 +U092,18,Male,5.5,6.0,6.0,4.0,2.0,LinkedIn,9.0 +U093,16,Male,6.8,7.0,6.0,6.0,2.0,LinkedIn,9.0 +U094,20,Male,3.6,7.0,7.0,2.0,1.0,X (Twitter),8.0 +U095,41,Female,1.0,7.0,5.0,2.0,6.0,TikTok,10.0 +U096,29,Male,3.9,7.0,6.0,2.0,3.0,TikTok,10.0 +U097,42,Male,7.7,4.0,7.0,2.0,3.0,Facebook,8.0 +U098,24,Female,6.1,4.0,9.0,0.0,4.0,Facebook,6.0 +U099,30,Female,7.9,5.0,8.0,0.0,2.0,LinkedIn,8.0 +U100,30,Female,3.5,8.0,4.0,3.0,3.0,Facebook,10.0 +U101,41,Male,2.5,9.0,4.0,6.0,3.0,Instagram,10.0 +U102,28,Male,6.3,5.0,7.0,2.0,2.0,Facebook,7.0 +U103,47,Male,5.9,4.0,7.0,2.0,4.0,Instagram,7.0 +U104,47,Male,6.0,6.0,7.0,6.0,2.0,Facebook,9.0 +U105,19,Male,7.2,5.0,6.0,1.0,0.0,LinkedIn,9.0 +U106,45,Male,6.3,7.0,8.0,0.0,2.0,LinkedIn,6.0 +U107,38,Male,6.2,7.0,7.0,1.0,3.0,Instagram,9.0 +U108,30,Male,6.8,7.0,7.0,2.0,1.0,X (Twitter),10.0 +U109,44,Male,6.4,6.0,8.0,0.0,1.0,LinkedIn,7.0 +U110,28,Male,7.0,6.0,6.0,3.0,2.0,X (Twitter),8.0 +U111,47,Male,7.3,4.0,6.0,5.0,4.0,TikTok,8.0 +U112,22,Female,8.3,5.0,10.0,0.0,2.0,Instagram,6.0 +U113,37,Female,4.3,6.0,8.0,3.0,5.0,LinkedIn,9.0 +U114,43,Male,6.4,6.0,7.0,4.0,2.0,YouTube,7.0 +U115,17,Female,4.8,7.0,6.0,3.0,3.0,TikTok,10.0 +U116,21,Female,4.0,9.0,5.0,3.0,2.0,X (Twitter),10.0 +U117,43,Male,4.3,7.0,6.0,3.0,4.0,LinkedIn,9.0 +U118,43,Female,6.4,6.0,7.0,1.0,1.0,Instagram,9.0 +U119,35,Female,6.3,6.0,7.0,6.0,4.0,Facebook,9.0 +U120,45,Male,6.2,5.0,8.0,5.0,3.0,YouTube,8.0 +U121,26,Male,5.1,6.0,5.0,5.0,2.0,X (Twitter),9.0 +U122,43,Female,5.5,8.0,6.0,5.0,2.0,TikTok,10.0 +U123,40,Female,7.0,4.0,6.0,0.0,5.0,Instagram,8.0 +U124,48,Male,2.8,7.0,5.0,5.0,3.0,YouTube,10.0 +U125,16,Male,5.5,7.0,7.0,4.0,1.0,Instagram,9.0 +U126,42,Male,5.7,7.0,7.0,0.0,1.0,LinkedIn,9.0 +U127,28,Female,6.9,5.0,8.0,3.0,3.0,Facebook,8.0 +U128,18,Female,3.1,7.0,6.0,4.0,3.0,TikTok,9.0 +U129,21,Male,8.2,5.0,7.0,6.0,4.0,Instagram,7.0 +U130,23,Male,5.9,5.0,5.0,4.0,0.0,X (Twitter),9.0 +U131,42,Female,6.0,5.0,8.0,1.0,1.0,LinkedIn,7.0 +U132,24,Male,4.8,8.0,4.0,6.0,4.0,LinkedIn,10.0 +U133,48,Male,6.5,6.0,8.0,3.0,3.0,TikTok,8.0 +U134,39,Female,5.6,8.0,6.0,2.0,3.0,LinkedIn,9.0 +U135,30,Female,7.7,4.0,10.0,2.0,1.0,X (Twitter),8.0 +U136,47,Female,2.9,8.0,5.0,0.0,1.0,Instagram,10.0 +U137,47,Female,5.8,6.0,7.0,3.0,4.0,TikTok,10.0 +U138,39,Male,6.2,5.0,8.0,4.0,4.0,LinkedIn,7.0 +U139,27,Male,5.2,7.0,5.0,2.0,1.0,LinkedIn,10.0 +U140,17,Female,4.8,8.0,5.0,4.0,1.0,X (Twitter),10.0 +U141,18,Male,4.8,6.0,5.0,1.0,2.0,Facebook,10.0 +U142,32,Male,5.8,6.0,6.0,3.0,1.0,Facebook,10.0 +U143,17,Male,2.2,10.0,5.0,4.0,1.0,LinkedIn,10.0 +U144,17,Male,7.2,7.0,8.0,3.0,1.0,Instagram,8.0 +U145,43,Male,4.6,8.0,7.0,0.0,2.0,TikTok,9.0 +U146,38,Male,5.7,7.0,5.0,2.0,1.0,LinkedIn,10.0 +U147,47,Male,6.2,5.0,7.0,6.0,1.0,YouTube,9.0 +U148,48,Male,4.6,7.0,5.0,2.0,3.0,TikTok,10.0 +U149,16,Female,5.3,7.0,6.0,3.0,2.0,Facebook,10.0 +U150,34,Female,1.8,9.0,7.0,3.0,3.0,LinkedIn,10.0 +U151,17,Female,6.8,5.0,8.0,6.0,0.0,X (Twitter),6.0 +U152,41,Female,7.4,4.0,9.0,6.0,3.0,YouTube,5.0 +U153,47,Female,2.4,7.0,7.0,5.0,6.0,LinkedIn,9.0 +U154,21,Male,4.8,5.0,7.0,1.0,2.0,Instagram,8.0 +U155,47,Female,3.3,8.0,5.0,4.0,4.0,YouTube,10.0 +U156,19,Female,5.2,7.0,5.0,4.0,4.0,LinkedIn,10.0 +U157,26,Female,6.7,5.0,7.0,2.0,4.0,Instagram,8.0 +U158,32,Male,7.3,5.0,7.0,1.0,3.0,YouTube,8.0 +U159,39,Male,7.5,5.0,6.0,6.0,3.0,Instagram,7.0 +U160,20,Male,7.9,5.0,9.0,2.0,4.0,Instagram,5.0 +U161,49,Male,5.1,5.0,7.0,6.0,3.0,YouTube,8.0 +U162,21,Female,3.4,9.0,7.0,5.0,1.0,YouTube,8.0 +U163,37,Female,5.3,7.0,6.0,4.0,0.0,Instagram,10.0 +U164,26,Male,6.6,6.0,8.0,4.0,0.0,Facebook,8.0 +U165,31,Other,3.3,9.0,5.0,0.0,2.0,YouTube,10.0 +U166,48,Female,8.5,4.0,10.0,3.0,3.0,LinkedIn,8.0 +U167,24,Male,7.1,6.0,8.0,6.0,1.0,TikTok,7.0 +U168,21,Male,5.1,6.0,5.0,4.0,4.0,X (Twitter),10.0 +U169,31,Male,4.2,8.0,6.0,3.0,2.0,Instagram,10.0 +U170,44,Male,4.3,8.0,6.0,6.0,2.0,Instagram,10.0 +U171,18,Male,5.6,5.0,7.0,3.0,1.0,X (Twitter),6.0 +U172,35,Male,5.1,7.0,7.0,2.0,0.0,Facebook,7.0 +U173,34,Male,7.2,6.0,6.0,3.0,3.0,X (Twitter),8.0 +U174,41,Male,4.9,7.0,5.0,5.0,5.0,YouTube,10.0 +U175,18,Female,6.4,6.0,8.0,0.0,2.0,X (Twitter),8.0 +U176,34,Male,5.4,6.0,6.0,4.0,0.0,Instagram,10.0 +U177,35,Female,6.0,7.0,7.0,5.0,4.0,X (Twitter),8.0 +U178,47,Male,5.1,7.0,4.0,2.0,0.0,TikTok,9.0 +U179,22,Other,6.8,5.0,10.0,5.0,1.0,LinkedIn,7.0 +U180,48,Male,6.8,4.0,7.0,4.0,2.0,YouTube,7.0 +U181,33,Male,6.3,6.0,8.0,7.0,3.0,X (Twitter),6.0 +U182,16,Other,6.6,6.0,7.0,1.0,1.0,Instagram,8.0 +U183,26,Female,3.8,10.0,6.0,5.0,2.0,LinkedIn,10.0 +U184,43,Female,6.1,7.0,9.0,1.0,4.0,YouTube,7.0 +U185,40,Male,7.7,3.0,9.0,0.0,4.0,Instagram,5.0 +U186,38,Male,6.4,6.0,7.0,0.0,4.0,Facebook,8.0 +U187,46,Female,3.6,9.0,5.0,4.0,5.0,TikTok,10.0 +U188,45,Female,5.4,7.0,8.0,3.0,4.0,Facebook,7.0 +U189,22,Female,6.2,6.0,9.0,2.0,2.0,TikTok,6.0 +U190,31,Female,4.1,8.0,6.0,0.0,4.0,X (Twitter),10.0 +U191,41,Male,3.1,7.0,7.0,2.0,3.0,YouTube,9.0 +U192,17,Female,4.9,7.0,6.0,3.0,3.0,X (Twitter),10.0 +U193,16,Male,4.2,7.0,7.0,5.0,3.0,TikTok,8.0 +U194,27,Male,5.5,6.0,8.0,3.0,1.0,TikTok,7.0 +U195,20,Male,2.6,9.0,4.0,4.0,1.0,TikTok,10.0 +U196,47,Female,6.5,5.0,7.0,2.0,2.0,LinkedIn,8.0 +U197,24,Male,4.4,8.0,7.0,6.0,3.0,Instagram,10.0 +U198,34,Male,7.3,5.0,7.0,1.0,1.0,YouTube,6.0 +U199,31,Female,5.0,7.0,5.0,2.0,3.0,X (Twitter),10.0 +U200,18,Male,5.5,5.0,6.0,2.0,6.0,X (Twitter),9.0 +U201,35,Female,5.2,7.0,6.0,4.0,0.0,Facebook,10.0 +U202,39,Male,4.3,9.0,7.0,1.0,3.0,TikTok,9.0 +U203,48,Female,10.0,3.0,10.0,3.0,2.0,TikTok,4.0 +U204,39,Female,4.6,6.0,7.0,3.0,3.0,TikTok,6.0 +U205,26,Male,7.3,5.0,8.0,2.0,2.0,X (Twitter),7.0 +U206,23,Male,3.5,9.0,5.0,4.0,2.0,Facebook,10.0 +U207,35,Male,6.2,4.0,8.0,1.0,3.0,Instagram,7.0 +U208,40,Male,6.4,5.0,8.0,1.0,2.0,LinkedIn,7.0 +U209,40,Other,5.5,6.0,7.0,3.0,0.0,YouTube,9.0 +U210,44,Male,4.5,6.0,6.0,0.0,2.0,Instagram,9.0 +U211,33,Female,5.0,6.0,6.0,0.0,0.0,X (Twitter),8.0 +U212,33,Male,4.8,5.0,6.0,4.0,3.0,LinkedIn,9.0 +U213,17,Female,9.8,4.0,9.0,5.0,0.0,LinkedIn,6.0 +U214,31,Female,5.5,7.0,7.0,2.0,4.0,LinkedIn,9.0 +U215,48,Female,6.4,4.0,6.0,2.0,3.0,TikTok,7.0 +U216,19,Female,8.7,6.0,7.0,5.0,3.0,YouTube,10.0 +U217,48,Male,3.9,9.0,5.0,1.0,0.0,X (Twitter),10.0 +U218,29,Male,5.6,6.0,6.0,0.0,2.0,X (Twitter),8.0 +U219,36,Female,5.0,8.0,6.0,4.0,4.0,LinkedIn,10.0 +U220,35,Female,5.3,6.0,6.0,3.0,2.0,X (Twitter),9.0 +U221,23,Other,5.2,7.0,6.0,5.0,1.0,YouTube,9.0 +U222,22,Male,4.2,6.0,6.0,0.0,2.0,YouTube,8.0 +U223,18,Female,5.9,8.0,6.0,0.0,2.0,Facebook,8.0 +U224,32,Female,3.6,7.0,5.0,3.0,1.0,Facebook,10.0 +U225,48,Male,7.3,5.0,9.0,4.0,4.0,Instagram,5.0 +U226,27,Male,6.6,5.0,7.0,5.0,2.0,YouTube,7.0 +U227,37,Female,4.6,9.0,6.0,3.0,2.0,YouTube,8.0 +U228,37,Female,4.7,9.0,6.0,3.0,1.0,YouTube,10.0 +U229,45,Female,6.0,8.0,7.0,2.0,3.0,Facebook,9.0 +U230,23,Male,4.1,8.0,5.0,6.0,3.0,LinkedIn,10.0 +U231,42,Female,8.8,4.0,8.0,1.0,1.0,LinkedIn,6.0 +U232,42,Male,6.1,7.0,6.0,4.0,0.0,X (Twitter),8.0 +U233,49,Male,6.2,6.0,8.0,1.0,3.0,LinkedIn,8.0 +U234,36,Male,6.7,7.0,7.0,4.0,2.0,TikTok,8.0 +U235,45,Female,4.5,8.0,6.0,1.0,3.0,Facebook,10.0 +U236,48,Female,7.5,4.0,9.0,4.0,5.0,YouTube,5.0 +U237,43,Female,5.7,7.0,7.0,3.0,2.0,LinkedIn,9.0 +U238,48,Male,7.2,6.0,8.0,6.0,2.0,Facebook,9.0 +U239,20,Female,5.1,4.0,5.0,2.0,1.0,LinkedIn,9.0 +U240,34,Male,7.9,6.0,8.0,4.0,2.0,Instagram,7.0 +U241,19,Female,6.2,5.0,7.0,1.0,3.0,YouTube,8.0 +U242,32,Male,9.4,3.0,9.0,2.0,3.0,Instagram,5.0 +U243,43,Male,4.8,6.0,5.0,3.0,5.0,YouTube,10.0 +U244,45,Male,5.9,6.0,8.0,0.0,3.0,Facebook,7.0 +U245,44,Male,3.6,8.0,5.0,0.0,2.0,X (Twitter),10.0 +U246,21,Female,4.5,6.0,6.0,4.0,1.0,LinkedIn,9.0 +U247,39,Female,6.6,6.0,7.0,3.0,3.0,LinkedIn,7.0 +U248,44,Male,7.5,6.0,9.0,2.0,1.0,TikTok,6.0 +U249,46,Female,10.8,5.0,10.0,2.0,3.0,Instagram,4.0 +U250,48,Male,5.3,5.0,5.0,2.0,3.0,LinkedIn,8.0 +U251,36,Female,3.8,7.0,5.0,3.0,2.0,Facebook,9.0 +U252,47,Female,6.9,6.0,8.0,4.0,2.0,X (Twitter),8.0 +U253,38,Female,3.5,9.0,4.0,0.0,0.0,Facebook,10.0 +U254,48,Male,6.5,5.0,8.0,6.0,4.0,Instagram,8.0 +U255,18,Female,4.6,8.0,7.0,6.0,3.0,TikTok,9.0 +U256,33,Female,5.9,4.0,7.0,0.0,3.0,LinkedIn,5.0 +U257,40,Male,7.5,4.0,8.0,5.0,0.0,Facebook,7.0 +U258,46,Male,5.3,7.0,8.0,5.0,5.0,YouTube,9.0 +U259,18,Female,7.2,4.0,7.0,3.0,2.0,X (Twitter),6.0 +U260,39,Female,7.1,4.0,8.0,0.0,2.0,Facebook,7.0 +U261,47,Female,2.1,8.0,4.0,5.0,1.0,X (Twitter),10.0 +U262,37,Female,3.9,8.0,6.0,3.0,0.0,LinkedIn,10.0 +U263,38,Female,2.7,6.0,3.0,4.0,4.0,YouTube,10.0 +U264,17,Male,9.1,4.0,9.0,7.0,4.0,TikTok,4.0 +U265,42,Male,5.3,7.0,7.0,4.0,2.0,TikTok,8.0 +U266,17,Male,8.7,4.0,8.0,1.0,1.0,YouTube,7.0 +U267,41,Female,2.6,8.0,4.0,2.0,2.0,X (Twitter),10.0 +U268,32,Male,4.5,7.0,6.0,1.0,2.0,LinkedIn,8.0 +U269,48,Female,6.9,5.0,9.0,4.0,1.0,Facebook,6.0 +U270,24,Female,5.8,8.0,6.0,1.0,2.0,YouTube,10.0 +U271,44,Female,6.5,5.0,6.0,2.0,3.0,Instagram,8.0 +U272,41,Male,3.2,8.0,6.0,0.0,4.0,X (Twitter),10.0 +U273,40,Female,8.0,5.0,8.0,3.0,3.0,TikTok,6.0 +U274,39,Male,6.9,5.0,7.0,3.0,0.0,YouTube,9.0 +U275,28,Female,6.2,3.0,8.0,0.0,3.0,TikTok,5.0 +U276,22,Male,4.3,7.0,5.0,4.0,2.0,X (Twitter),10.0 +U277,35,Male,6.1,7.0,8.0,3.0,5.0,TikTok,9.0 +U278,16,Female,5.0,7.0,6.0,1.0,5.0,YouTube,10.0 +U279,23,Male,2.5,9.0,5.0,7.0,5.0,X (Twitter),10.0 +U280,31,Male,5.4,5.0,8.0,5.0,2.0,Instagram,7.0 +U281,29,Female,5.2,7.0,6.0,1.0,5.0,YouTube,10.0 +U282,27,Female,7.4,4.0,9.0,5.0,3.0,Facebook,5.0 +U283,38,Female,1.5,9.0,4.0,5.0,5.0,LinkedIn,10.0 +U284,30,Female,5.9,6.0,9.0,3.0,2.0,YouTube,7.0 +U285,43,Female,3.4,7.0,7.0,4.0,2.0,X (Twitter),10.0 +U286,49,Male,6.1,5.0,6.0,4.0,3.0,LinkedIn,9.0 +U287,17,Male,6.2,6.0,8.0,0.0,3.0,YouTube,7.0 +U288,47,Male,5.3,6.0,6.0,3.0,4.0,Instagram,9.0 +U289,38,Female,7.0,4.0,8.0,3.0,2.0,Instagram,6.0 +U290,37,Female,3.3,7.0,5.0,6.0,4.0,Facebook,9.0 +U291,40,Male,7.5,5.0,7.0,4.0,4.0,TikTok,9.0 +U292,37,Male,4.2,9.0,7.0,2.0,2.0,LinkedIn,8.0 +U293,37,Other,2.7,8.0,5.0,3.0,3.0,X (Twitter),10.0 +U294,21,Male,5.0,7.0,6.0,5.0,2.0,X (Twitter),10.0 +U295,30,Female,1.7,9.0,4.0,3.0,6.0,TikTok,10.0 +U296,48,Female,6.0,5.0,7.0,2.0,0.0,Instagram,7.0 +U297,23,Female,5.0,5.0,7.0,2.0,4.0,Instagram,8.0 +U298,20,Male,7.7,4.0,8.0,5.0,0.0,YouTube,5.0 +U299,19,Female,6.7,6.0,5.0,4.0,2.0,Facebook,9.0 +U300,21,Female,3.0,8.0,5.0,3.0,2.0,LinkedIn,10.0 +U301,47,Female,4.0,8.0,4.0,3.0,5.0,Facebook,10.0 +U302,45,Female,6.4,6.0,7.0,2.0,1.0,Facebook,7.0 +U303,31,Female,7.0,5.0,6.0,3.0,4.0,YouTube,8.0 +U304,28,Female,7.7,4.0,7.0,2.0,1.0,Facebook,7.0 +U305,45,Male,7.7,6.0,9.0,2.0,5.0,TikTok,6.0 +U306,34,Female,5.3,6.0,6.0,6.0,2.0,YouTube,10.0 +U307,32,Female,6.2,5.0,7.0,1.0,3.0,TikTok,7.0 +U308,34,Male,7.8,5.0,9.0,2.0,2.0,YouTube,6.0 +U309,43,Female,5.0,5.0,6.0,0.0,4.0,Facebook,8.0 +U310,41,Female,6.2,8.0,9.0,0.0,4.0,TikTok,7.0 +U311,41,Female,4.9,7.0,6.0,3.0,3.0,TikTok,9.0 +U312,38,Male,4.5,7.0,6.0,2.0,1.0,TikTok,9.0 +U313,24,Male,5.6,5.0,8.0,7.0,1.0,YouTube,7.0 +U314,27,Other,4.3,7.0,7.0,2.0,1.0,X (Twitter),8.0 +U315,16,Female,5.3,6.0,6.0,6.0,0.0,Facebook,9.0 +U316,16,Male,3.6,7.0,5.0,5.0,4.0,TikTok,10.0 +U317,49,Female,5.2,7.0,8.0,3.0,2.0,LinkedIn,8.0 +U318,47,Female,6.3,5.0,8.0,7.0,2.0,X (Twitter),8.0 +U319,40,Female,4.4,8.0,7.0,4.0,5.0,LinkedIn,8.0 +U320,16,Female,5.5,9.0,5.0,6.0,2.0,Facebook,10.0 +U321,31,Male,5.8,6.0,8.0,6.0,1.0,Facebook,7.0 +U322,20,Male,6.3,6.0,6.0,4.0,2.0,TikTok,8.0 +U323,37,Male,5.3,7.0,7.0,5.0,1.0,TikTok,8.0 +U324,44,Female,7.5,7.0,8.0,4.0,3.0,YouTube,9.0 +U325,18,Male,1.7,9.0,3.0,1.0,2.0,X (Twitter),10.0 +U326,27,Male,10.8,2.0,9.0,3.0,2.0,X (Twitter),5.0 +U327,41,Male,3.9,6.0,4.0,5.0,2.0,TikTok,9.0 +U328,31,Female,6.2,6.0,7.0,6.0,2.0,Facebook,8.0 +U329,37,Female,3.8,7.0,4.0,2.0,3.0,TikTok,10.0 +U330,44,Male,6.7,8.0,6.0,4.0,2.0,Facebook,10.0 +U331,29,Male,6.0,8.0,7.0,3.0,2.0,Facebook,7.0 +U332,43,Female,4.3,6.0,3.0,3.0,2.0,TikTok,10.0 +U333,20,Male,7.4,4.0,9.0,4.0,2.0,Instagram,6.0 +U334,45,Male,5.2,7.0,4.0,3.0,3.0,X (Twitter),10.0 +U335,20,Male,6.5,7.0,7.0,4.0,1.0,LinkedIn,7.0 +U336,27,Male,3.8,8.0,6.0,6.0,4.0,Facebook,10.0 +U337,31,Male,5.4,6.0,7.0,5.0,3.0,Facebook,8.0 +U338,41,Female,9.1,4.0,9.0,4.0,2.0,Instagram,7.0 +U339,41,Male,7.2,5.0,10.0,7.0,3.0,LinkedIn,7.0 +U340,36,Female,6.1,7.0,7.0,5.0,2.0,YouTube,9.0 +U341,48,Male,4.7,6.0,7.0,3.0,0.0,Instagram,8.0 +U342,45,Female,5.6,6.0,6.0,1.0,3.0,LinkedIn,7.0 +U343,38,Female,5.9,7.0,7.0,1.0,1.0,Instagram,8.0 +U344,25,Male,6.3,5.0,9.0,5.0,4.0,Facebook,8.0 +U345,20,Female,3.6,6.0,5.0,2.0,2.0,X (Twitter),10.0 +U346,49,Male,6.7,6.0,8.0,1.0,4.0,Instagram,8.0 +U347,46,Other,3.5,7.0,6.0,1.0,2.0,YouTube,10.0 +U348,25,Male,8.4,5.0,8.0,2.0,3.0,TikTok,8.0 +U349,34,Male,4.1,8.0,4.0,5.0,4.0,LinkedIn,10.0 +U350,47,Male,6.0,6.0,7.0,3.0,2.0,Instagram,8.0 +U351,16,Other,7.3,5.0,9.0,0.0,2.0,Instagram,8.0 +U352,20,Female,5.0,6.0,5.0,3.0,3.0,YouTube,9.0 +U353,19,Female,6.1,6.0,8.0,3.0,3.0,X (Twitter),9.0 +U354,31,Male,8.1,5.0,9.0,2.0,2.0,Instagram,6.0 +U355,39,Female,6.5,5.0,5.0,5.0,0.0,Instagram,10.0 +U356,31,Male,6.1,6.0,6.0,2.0,2.0,X (Twitter),8.0 +U357,17,Female,2.5,9.0,4.0,5.0,4.0,YouTube,10.0 +U358,43,Male,3.8,8.0,5.0,4.0,1.0,LinkedIn,10.0 +U359,47,Male,7.4,6.0,7.0,5.0,2.0,LinkedIn,7.0 +U360,42,Male,6.5,5.0,7.0,1.0,2.0,Instagram,8.0 +U361,35,Female,6.8,4.0,9.0,3.0,0.0,X (Twitter),7.0 +U362,39,Female,6.6,6.0,7.0,3.0,1.0,Instagram,7.0 +U363,27,Male,7.8,5.0,8.0,0.0,4.0,TikTok,6.0 +U364,48,Female,5.0,8.0,6.0,5.0,0.0,LinkedIn,10.0 +U365,48,Male,5.7,7.0,7.0,1.0,3.0,Facebook,9.0 +U366,27,Female,3.6,8.0,5.0,2.0,1.0,TikTok,10.0 +U367,18,Male,3.2,9.0,5.0,1.0,3.0,Instagram,10.0 +U368,16,Male,2.5,8.0,4.0,4.0,4.0,YouTube,10.0 +U369,48,Female,3.9,6.0,5.0,0.0,2.0,LinkedIn,10.0 +U370,25,Male,8.3,5.0,8.0,4.0,2.0,Facebook,7.0 +U371,44,Male,2.7,9.0,5.0,5.0,1.0,TikTok,10.0 +U372,28,Female,5.0,7.0,5.0,4.0,0.0,LinkedIn,9.0 +U373,27,Other,3.2,9.0,6.0,4.0,5.0,X (Twitter),10.0 +U374,46,Male,4.4,7.0,7.0,5.0,1.0,YouTube,8.0 +U375,17,Male,5.8,6.0,7.0,1.0,5.0,TikTok,9.0 +U376,38,Female,4.2,8.0,5.0,6.0,1.0,X (Twitter),10.0 +U377,32,Male,7.5,4.0,7.0,2.0,3.0,Instagram,6.0 +U378,41,Male,8.3,4.0,10.0,3.0,1.0,X (Twitter),6.0 +U379,23,Male,1.5,9.0,3.0,2.0,3.0,TikTok,10.0 +U380,44,Female,4.3,8.0,7.0,4.0,2.0,TikTok,10.0 +U381,41,Female,5.6,6.0,7.0,2.0,2.0,Instagram,9.0 +U382,25,Male,7.5,4.0,8.0,3.0,3.0,X (Twitter),7.0 +U383,41,Male,4.7,6.0,6.0,1.0,2.0,X (Twitter),9.0 +U384,49,Male,5.5,7.0,5.0,5.0,0.0,Instagram,10.0 +U385,22,Female,3.4,8.0,6.0,4.0,4.0,X (Twitter),10.0 +U386,19,Male,2.7,8.0,5.0,2.0,1.0,LinkedIn,9.0 +U387,26,Male,8.1,5.0,7.0,2.0,3.0,Instagram,7.0 +U388,44,Female,2.2,9.0,4.0,4.0,4.0,YouTube,10.0 +U389,40,Male,9.7,4.0,10.0,2.0,2.0,TikTok,6.0 +U390,36,Female,6.8,5.0,8.0,3.0,4.0,YouTube,8.0 +U391,25,Male,6.7,7.0,7.0,5.0,3.0,LinkedIn,8.0 +U392,24,Male,6.5,7.0,6.0,1.0,1.0,LinkedIn,7.0 +U393,39,Male,5.0,5.0,6.0,4.0,5.0,Facebook,8.0 +U394,33,Female,6.2,6.0,7.0,4.0,1.0,Facebook,9.0 +U395,47,Female,5.2,7.0,7.0,3.0,2.0,Facebook,9.0 +U396,39,Female,6.5,5.0,7.0,2.0,2.0,Instagram,8.0 +U397,38,Male,5.4,8.0,9.0,5.0,3.0,X (Twitter),8.0 +U398,47,Female,3.8,8.0,4.0,2.0,4.0,LinkedIn,10.0 +U399,27,Male,3.9,7.0,5.0,0.0,4.0,YouTube,10.0 +U400,28,Male,3.7,8.0,5.0,4.0,3.0,YouTube,10.0 +U401,38,Female,7.2,5.0,8.0,1.0,2.0,YouTube,9.0 +U402,40,Male,4.4,7.0,5.0,4.0,0.0,YouTube,10.0 +U403,45,Male,2.1,10.0,5.0,6.0,1.0,Facebook,10.0 +U404,32,Male,6.2,6.0,8.0,4.0,5.0,YouTube,7.0 +U405,35,Male,8.2,4.0,9.0,5.0,0.0,X (Twitter),6.0 +U406,40,Male,6.9,3.0,8.0,7.0,1.0,Facebook,6.0 +U407,37,Female,4.4,7.0,6.0,5.0,4.0,YouTube,10.0 +U408,28,Male,2.6,10.0,3.0,4.0,3.0,Instagram,10.0 +U409,34,Female,5.3,6.0,6.0,6.0,4.0,TikTok,8.0 +U410,27,Female,5.2,4.0,7.0,7.0,3.0,TikTok,9.0 +U411,34,Male,3.8,7.0,6.0,7.0,5.0,TikTok,10.0 +U412,27,Male,6.5,7.0,7.0,2.0,3.0,Facebook,10.0 +U413,24,Male,8.8,5.0,9.0,0.0,3.0,YouTube,6.0 +U414,22,Female,5.9,5.0,6.0,2.0,1.0,LinkedIn,9.0 +U415,43,Male,5.8,6.0,7.0,4.0,3.0,LinkedIn,9.0 +U416,29,Female,3.8,7.0,6.0,3.0,2.0,LinkedIn,8.0 +U417,46,Male,8.0,4.0,8.0,3.0,2.0,Facebook,9.0 +U418,34,Female,5.4,4.0,5.0,4.0,4.0,X (Twitter),10.0 +U419,31,Male,4.5,8.0,5.0,0.0,4.0,Instagram,10.0 +U420,20,Male,5.6,8.0,8.0,3.0,5.0,Instagram,8.0 +U421,27,Other,6.3,4.0,9.0,5.0,5.0,TikTok,6.0 +U422,40,Female,5.8,7.0,8.0,4.0,4.0,TikTok,8.0 +U423,36,Male,7.7,5.0,8.0,4.0,0.0,LinkedIn,8.0 +U424,38,Female,6.2,7.0,6.0,6.0,5.0,LinkedIn,10.0 +U425,31,Female,5.0,7.0,6.0,3.0,4.0,TikTok,10.0 +U426,29,Female,6.2,6.0,9.0,2.0,1.0,YouTube,8.0 +U427,46,Female,6.4,6.0,8.0,5.0,4.0,X (Twitter),8.0 +U428,20,Male,3.2,7.0,5.0,5.0,1.0,X (Twitter),9.0 +U429,38,Male,7.6,6.0,9.0,4.0,3.0,X (Twitter),8.0 +U430,44,Male,5.0,6.0,5.0,3.0,1.0,X (Twitter),10.0 +U431,26,Female,5.0,6.0,6.0,3.0,1.0,TikTok,10.0 +U432,33,Female,6.9,6.0,7.0,0.0,4.0,Instagram,7.0 +U433,27,Male,6.8,5.0,8.0,5.0,4.0,TikTok,7.0 +U434,24,Male,4.2,8.0,7.0,5.0,3.0,X (Twitter),7.0 +U435,25,Female,6.9,7.0,7.0,0.0,2.0,TikTok,9.0 +U436,32,Other,4.5,8.0,5.0,5.0,0.0,X (Twitter),10.0 +U437,22,Female,8.8,2.0,9.0,4.0,2.0,Facebook,7.0 +U438,28,Male,4.0,7.0,5.0,1.0,3.0,LinkedIn,9.0 +U439,24,Male,5.9,7.0,6.0,1.0,2.0,Instagram,8.0 +U440,42,Male,4.1,6.0,6.0,4.0,2.0,Facebook,9.0 +U441,17,Female,9.5,4.0,9.0,2.0,2.0,YouTube,4.0 +U442,20,Male,3.3,8.0,4.0,7.0,2.0,TikTok,10.0 +U443,44,Female,6.4,5.0,6.0,5.0,3.0,YouTube,6.0 +U444,34,Male,4.2,8.0,4.0,4.0,2.0,TikTok,10.0 +U445,23,Female,4.9,7.0,7.0,4.0,5.0,LinkedIn,7.0 +U446,16,Female,6.3,6.0,7.0,6.0,0.0,Facebook,8.0 +U447,37,Female,7.7,4.0,8.0,5.0,2.0,LinkedIn,8.0 +U448,32,Male,8.4,5.0,9.0,4.0,1.0,X (Twitter),7.0 +U449,22,Male,2.7,6.0,6.0,1.0,3.0,LinkedIn,8.0 +U450,40,Male,6.0,4.0,6.0,9.0,3.0,LinkedIn,8.0 +U451,19,Female,8.1,5.0,9.0,1.0,5.0,X (Twitter),7.0 +U452,21,Female,2.5,9.0,3.0,2.0,5.0,TikTok,10.0 +U453,46,Female,6.1,6.0,8.0,0.0,1.0,X (Twitter),6.0 +U454,34,Female,5.5,6.0,5.0,4.0,3.0,Facebook,10.0 +U455,42,Female,6.2,6.0,6.0,3.0,3.0,LinkedIn,6.0 +U456,25,Male,4.1,6.0,5.0,5.0,1.0,X (Twitter),9.0 +U457,41,Female,2.9,8.0,3.0,0.0,3.0,LinkedIn,10.0 +U458,34,Male,2.1,9.0,4.0,5.0,2.0,Facebook,10.0 +U459,18,Male,7.3,5.0,8.0,1.0,1.0,YouTube,7.0 +U460,28,Female,7.5,6.0,8.0,3.0,2.0,Facebook,6.0 +U461,43,Male,6.0,6.0,5.0,5.0,1.0,Instagram,9.0 +U462,35,Male,4.5,7.0,8.0,4.0,4.0,Instagram,8.0 +U463,43,Female,2.6,9.0,5.0,4.0,5.0,Instagram,10.0 +U464,23,Male,6.5,5.0,10.0,5.0,3.0,LinkedIn,5.0 +U465,16,Female,3.5,8.0,5.0,4.0,3.0,TikTok,10.0 +U466,18,Male,4.2,7.0,7.0,2.0,3.0,TikTok,10.0 +U467,28,Male,4.4,7.0,7.0,3.0,4.0,TikTok,8.0 +U468,43,Male,5.1,6.0,6.0,3.0,4.0,LinkedIn,9.0 +U469,40,Male,4.1,6.0,7.0,1.0,2.0,Facebook,10.0 +U470,48,Female,5.6,6.0,6.0,5.0,3.0,TikTok,8.0 +U471,21,Male,4.4,5.0,6.0,4.0,3.0,YouTube,7.0 +U472,47,Female,6.8,5.0,4.0,3.0,1.0,Instagram,10.0 +U473,36,Female,7.4,3.0,8.0,5.0,4.0,Facebook,5.0 +U474,31,Female,5.7,7.0,5.0,3.0,5.0,Instagram,10.0 +U475,36,Female,6.3,7.0,7.0,3.0,4.0,TikTok,8.0 +U476,26,Female,9.3,3.0,8.0,2.0,1.0,Facebook,6.0 +U477,34,Male,3.4,8.0,5.0,4.0,0.0,X (Twitter),10.0 +U478,35,Male,3.3,9.0,6.0,4.0,4.0,YouTube,10.0 +U479,33,Male,6.8,6.0,8.0,2.0,1.0,TikTok,9.0 +U480,29,Female,9.0,4.0,10.0,3.0,3.0,TikTok,4.0 +U481,30,Male,5.0,7.0,8.0,2.0,5.0,YouTube,7.0 +U482,46,Female,8.6,4.0,8.0,2.0,2.0,YouTube,4.0 +U483,16,Female,5.7,6.0,6.0,0.0,2.0,X (Twitter),8.0 +U484,18,Male,4.3,7.0,7.0,3.0,3.0,TikTok,10.0 +U485,31,Female,3.7,7.0,7.0,0.0,1.0,LinkedIn,9.0 +U486,38,Male,6.6,6.0,8.0,2.0,1.0,TikTok,7.0 +U487,26,Male,3.9,8.0,5.0,2.0,3.0,Instagram,10.0 +U488,27,Female,5.6,7.0,7.0,5.0,2.0,Facebook,8.0 +U489,25,Female,8.4,5.0,9.0,1.0,3.0,Facebook,7.0 +U490,47,Female,4.9,7.0,7.0,1.0,7.0,Instagram,10.0 +U491,31,Male,7.9,5.0,8.0,2.0,3.0,Facebook,6.0 +U492,23,Male,3.3,10.0,4.0,2.0,1.0,YouTube,10.0 +U493,27,Female,4.5,5.0,7.0,6.0,5.0,Facebook,9.0 +U494,39,Female,3.0,7.0,2.0,1.0,0.0,Facebook,10.0 +U495,43,Female,5.6,8.0,6.0,2.0,0.0,Instagram,10.0 +U496,23,Male,6.9,5.0,7.0,4.0,2.0,X (Twitter),10.0 +U497,43,Female,5.6,7.0,6.0,5.0,2.0,Facebook,9.0 +U498,41,Male,7.7,5.0,7.0,2.0,2.0,LinkedIn,8.0 +U499,23,Male,4.2,9.0,7.0,0.0,2.0,Facebook,9.0 +U500,43,Female,5.9,5.0,8.0,3.0,3.0,X (Twitter),7.0 diff --git a/proposal.md b/proposal.md index da2a548..3f059fa 100644 --- a/proposal.md +++ b/proposal.md @@ -5,9 +5,11 @@ argument. ## Overarching Question +How does time spent on social media affect happiness? + ### What central question are you interested in exploring? Why are you interested in exploring this question? -The central question I am interested in is I’m interested in this question because social media is a major part of daily life, especially for young people. Some say it helps them connect with others, while others say it makes them feel less satisfied or distracted. I’m curious about this topic because I use social media every day and often wonder if the amount of time I spend online affects how happy I feel. I want to explore whether people who spend more time on social media report lower levels of happiness. +The central question I am interested in is I’m interested in this question because social media is a major part of daily life, especially for young people. Some say it helps them connect with others, while others say it makes them feel less satisfied or distracted. I’m curious about this topic because I use social media every day and often wonder if the amount of time I spend online affects how happy I feel. I aim to investigate whether individuals who spend more time on social media report lower levels of happiness. ### What specific research questions will you investigate? @@ -21,11 +23,11 @@ Does age or gender affect how social media use relates to happiness? ### What data set will you use to answer your overarching question? -Dataset name: Mental Health & Solcial Media Balance Dataset +Dataset name: Mental Health & Social Media Balance Dataset Data source: Kaggle (public dataset) -About the data: The dataset includes information about how many hours people spend on social media each day, their reported happiness levels, and demographic details such as age and gender. +About the data: The dataset includes information on the number of hours people spend on social media each day, their reported happiness levels, and demographic details such as age and gender. ### Where is this data from?